WO2014196123A1 - 粉末冶金用合金鋼粉および鉄基焼結体の製造方法 - Google Patents

粉末冶金用合金鋼粉および鉄基焼結体の製造方法 Download PDF

Info

Publication number
WO2014196123A1
WO2014196123A1 PCT/JP2014/002343 JP2014002343W WO2014196123A1 WO 2014196123 A1 WO2014196123 A1 WO 2014196123A1 JP 2014002343 W JP2014002343 W JP 2014002343W WO 2014196123 A1 WO2014196123 A1 WO 2014196123A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
iron
alloy steel
mass
sintered body
Prior art date
Application number
PCT/JP2014/002343
Other languages
English (en)
French (fr)
Other versions
WO2014196123A8 (ja
Inventor
前谷 敏夫
宇波 繁
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201480032484.6A priority Critical patent/CN105263653A/zh
Priority to KR1020157035083A priority patent/KR20160006769A/ko
Priority to US14/787,882 priority patent/US10265766B2/en
Priority to SE1551574A priority patent/SE540608C2/en
Priority to CA2911031A priority patent/CA2911031C/en
Publication of WO2014196123A1 publication Critical patent/WO2014196123A1/ja
Publication of WO2014196123A8 publication Critical patent/WO2014196123A8/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals

Definitions

  • the present invention relates to an alloy steel powder for powder metallurgy suitable for use in powder metallurgy technology, and in particular, intends to improve the strength and toughness of a sintered material using such alloy steel powder. Moreover, this invention relates to the manufacturing method of the iron-based sintered compact excellent in the intensity
  • the powder metallurgy technology can manufacture parts having a complicated shape in a shape very close to the product shape (so-called near net shape) and with high dimensional accuracy, so that the cutting cost can be greatly reduced. For this reason, powder metallurgy products are used in various fields as various mechanical structures and parts thereof. Furthermore, recently, there has been a strong demand for improvement in the strength of powder metallurgy products in order to reduce the size and weight of parts. In particular, there is a demand for higher strength in iron-based powder products (iron-based sintered bodies). strong.
  • the iron-based powder compact for powder metallurgy which is the pre-stage of the iron-based sintered body, is generally made of an alloy powder such as copper powder and graphite powder, and a lubricant such as stearic acid and zinc stearate with respect to the iron-based powder.
  • an alloy powder such as copper powder and graphite powder
  • a lubricant such as stearic acid and zinc stearate with respect to the iron-based powder.
  • iron base powder is classified into iron powder (for example, pure iron powder etc.), alloy steel powder, etc. according to a component.
  • category by a manufacturing method, there exist atomized iron powder, reduced iron powder, etc., and the word iron powder in these classification
  • the density of an iron-based powder compact for powder metallurgy obtained by a normal powder metallurgy process is generally about 6.8 to 7.3 Mg / m 3 .
  • This iron-based powder molded body is subsequently subjected to a sintering process to be an iron-based sintered body, and further subjected to sizing, cutting, or the like as necessary to obtain a powder metallurgy product. If higher strength is required, carburizing heat treatment or bright heat treatment may be performed after sintering.
  • the mixed powder in which each alloy element powder is mixed with the pure iron powder shown in the above (1) has an advantage that high compressibility as high as that of the pure iron powder can be secured.
  • the segregation of each alloy element powder is large, there is a large variation in characteristics, and the alloy elements do not diffuse sufficiently in Fe, and the inhomogeneous structure remains and effective base strengthening cannot be achieved. was there.
  • the amount of use of the mixed powder in which each alloy element powder is blended with the above pure iron powder has not been able to meet the recent demands for characteristic stabilization and high strength.
  • the prealloyed steel powder that completely alloyes each element shown in (2) above is manufactured by atomizing molten steel, which can achieve base strengthening with a homogeneous structure, but by solid solution hardening action Decrease in compressibility is a problem.
  • the diffusion-adhesive alloy steel powder shown in (3) above contains pure iron powder and pre-alloy steel powder mixed with metal powders of each element, heated in a non-oxidizing or reducing atmosphere, Since each metal powder is partially diffusion bonded on the surface of iron powder or prealloyed steel powder, the advantages of the iron-based mixed powder of (1) above and the prealloyed steel powder of (2) above are combined be able to. Therefore, while preventing segregation of alloy elements, high compressibility comparable to that of pure iron powder can be secured, and at the same time, a composite structure in which a partial alloy concentrated phase is dispersed has the possibility of strengthening the base. Development is being made as diffusion-adhesive alloy steel powder for strength.
  • alloy elements such as Ni, Cu and Mo that improve hardenability to iron-based powders.
  • Mo is added as a pre-alloying element to iron powder within a range in which compressibility is not impaired (Mo: 0.1 to 1.0 mass%).
  • a technique has been disclosed in which Cu and Ni are diffused and adhered to the particle surface in the form of powder to achieve both compressibility during compacting and strength of the sintered member.
  • Patent Document 2 proposes an alloy steel powder for powder metallurgy for high-strength sintered bodies in which two or more kinds of alloy elements, particularly Mo and Ni, or further Cu are diffused and adhered to the surface of steel powder. .
  • each diffusion adhesion element it is further possible to control each diffusion adhesion element so that the diffusion adhesion concentration with respect to fine powder having a particle diameter of 44 ⁇ m or less is within a range of 0.9 to 1.9 times the diffusion adhesion concentration with respect to the entire steel powder. It has been proposed that the impact toughness of the sintered body is ensured by this limitation to a relatively wide range.
  • Mo-based alloy steel powders that do not contain Ni or Cu as the main alloying element have been proposed.
  • Mo which is a ferrite stabilizing element
  • Alloy steel powder has been proposed.
  • This alloy steel powder is homogeneous and stable by adapting the particle size distribution to the process of pressure sintering to obtain a high-density sintered body and by not using a diffusion adhesion type alloy element. The organization is said to be obtained.
  • Patent Document 4 there is a technique disclosed in Patent Document 4 as an alloy steel powder for powder metallurgy having Mo as a main alloy element.
  • This technology proposes an alloy steel powder in which Mo: 0.2-10.0% by mass is diffused and adhered to the surface of an iron-based powder containing Mn of 1.0% by mass or less, or even less than 0.2% by mass of Mo as a pre-alloy.
  • the iron-based powder may be atomized iron powder or reduced iron powder, and the average particle size is preferably 30 to 120 ⁇ m.
  • this alloy steel powder is not only excellent in compressibility but is said to be able to obtain a high-density and high-strength sintered part.
  • Patent Document 3 has a disadvantage that a high molding density cannot be obtained because the Mo addition amount is relatively high at 1.8% by mass or more and the compressibility is low. For this reason, when a normal sintering process (single sintering without pressing) is applied, only a low sintered density can be obtained, and sufficient strength and toughness cannot be obtained.
  • Patent Document 4 is adapted to a powder metallurgy process including recompression and re-sintering of a sintered body. That is, the usual sintering method has a problem that the above-described effects are not so much exhibited. As described above, according to the inventors' research, it is difficult to achieve both high strength and toughness in a sintered body using any of the alloy steel powders described in Patent Documents 1 to 4 described above. I understood.
  • the present invention has been developed in view of the above-described current situation, overcomes the problems of the prior art described above, and is an alloy steel for powder metallurgy capable of achieving both high strength and toughness of a sintered body using the same.
  • the object is to propose a powder together with a method for producing an iron-based sintered body using the powder.
  • the inventors have made various studies on the alloy components of the iron-based powder and the means for adding the same, and as a result, have obtained the following knowledge. That is, in alloy steel powder in which Mo is diffused and adhered to the surface of the iron-base powder, when reduced iron powder is used for the iron-base powder and a predetermined amount of Cu powder and graphite powder are added, the alloy steel powder is formed and sintered. When sintered, the reduced iron powder improves the sinterability and the pores of the sintered body become finer. At the same time, the sintering is accelerated by adding copper powder, and the solid solution strengthening and hardenability are improved by adding copper powder and graphite powder. As a result, it was found that both the strength and toughness of the sintered body were improved. The present invention has been made based on the above findings.
  • the gist configuration of the present invention is as follows. 1. Alloy steel powder for powder metallurgy with Mo-containing alloy powder adhered to the surface of iron-based powder, The iron-based powder contains reduced iron powder, and Mo contains 0.2 to 1.5% by mass with respect to the total alloy steel powder. Further, Cu powder contains 0.5 to 4.0% by mass with respect to the total alloy steel powder, graphite. Alloy steel powder for powder metallurgy containing 0.1 to 1.0 mass% of each powder.
  • Alloy steel powder for powder metallurgy wherein the oxygen content of the iron-based powder described in 1 is 0.2% by mass or less.
  • the alloy steel powder for powder metallurgy according to the present invention it is not necessary to use Ni, and since the compressibility is high, a sintered material having both high strength and high toughness even at a normal sintering method. (Iron-based sintered body) can be obtained.
  • the alloy steel powder for powder metallurgy according to the present invention is obtained by diffusing and attaching a Mo-containing powder to the surface of an iron-based powder, and the iron-based powder has a mixed powder that is reduced iron powder. It is a feature. Then, by mixing the above-mentioned mixed powder with an appropriate amount of Cu powder and graphite powder, forming a compact and sintering, the pores of the sintered body are effectively miniaturized and the sintering is promoted. It is.
  • the inventors consider the reason why the pores of the sintered body are effectively refined and the sintering is promoted by the present invention as follows. Generally, since there are many pores in a sintered body, stress concentrates on the pores, and the strength and toughness of the sintered body tend to decrease. However, in the alloy steel powder for powder metallurgy according to the present invention, when the pores of the sintered body are made fine, the degree of stress concentration is reduced and the sintered neck portion is strengthened.
  • % shown below means the mass%, and unless otherwise indicated, means the ratio (mass%) with respect to the whole alloy steel powder for powder metallurgy of the present invention (after diffusion adhesion of the Mo-containing powder).
  • reduced iron powder is mainly used as the iron-based powder.
  • the reduced iron powder it is preferable to use reduced iron powder obtained by reducing mill scale or iron ore produced during the production of steel. Reduced iron powder has better moldability than atomized iron powder, and it is difficult to form coarse pores by molding.
  • the apparent density of the reduced iron powder may be about 1.7 Mg / m 3 to 3.0 Mg / m 3 . More preferably, it is 2.2 to 2.8 Mg / m 3 .
  • atomized iron powder or the like may be added to the reduced iron powder within a range that does not impair the strength and toughness of the sintered body. Specifically, if the reduced iron powder in the iron-based powder is 80% or more, it is sufficient for the present invention. More preferably, the reduced iron powder in the iron-based powder: 90% or more.
  • the particle size of the reduced iron powder used in the present invention may be one having a maximum particle size of less than 180 ⁇ m, which is generally used for powder metallurgy. That is, powder that has passed through a sieve having an opening diameter of 180 ⁇ m as defined in JIS Z 8801 may be used.
  • the oxygen content of the reduced iron powder used in the present invention is 0.3% or less, preferably 0.25% or less, more preferably 0.2% or less. This is because the lower the oxygen content of the reduced iron powder, the better the compressibility, the more the sintering is promoted, and the high strength and high toughness can be obtained. In addition, although it does not specifically limit about the lower limit of oxygen content of reduced iron powder, About 0.1% is preferable.
  • the target Mo-containing powder itself may be used, or a Mo compound that can be reduced to the Mo-containing powder may be used.
  • the average particle diameter of the Mo raw material powder is 50 ⁇ m or less, preferably 20 ⁇ m or less.
  • the average particle diameter is the median diameter (so-called d50).
  • Mo-containing powder Mo alloy powder such as pure Mo powder, oxidized Mo powder, or Fe-Mo (ferromolybdenum) powder is advantageously adapted.
  • Mo compound Mo carbide, Mo sulfide, Mo nitride and the like are suitable.
  • the Mo-containing powder is uniformly attached to the surface of the iron-based powder. If not uniformly adhered, powdered metallurgy alloy steel powder tends to fall off from the iron-based powder surface when pulverized after transportation, or during transportation, etc., so free Mo-containing powder is particularly likely to increase .
  • alloy steel powder in such a state is molded and sintered, the dispersed state of carbides tends to segregate. Therefore, in order to increase the strength and toughness of the sintered body, it is preferable to uniformly attach the Mo-containing powder to the surface of the iron-based powder and reduce the free Mo-containing powder generated by dropping off.
  • the amount of Mo to be diffused is 0.2 to 1.5%. Below 0.2%, the effect of improving the hardenability is small and the effect of improving the strength is also small. On the other hand, if it exceeds 1.5%, the effect of improving the hardenability is saturated, and the non-uniformity of the structure of the sintered body is rather increased, so that high strength and toughness cannot be obtained. Therefore, the amount of Mo to be diffused is 0.2 to 1.5%. Preferably it is 0.3 to 1.0% of range.
  • Cu powder is added to the alloy steel powder for powder metallurgy in the present invention in the range of 0.5 to 4.0% and graphite powder in the range of 0.1 to 1.0%, and mixed.
  • Cu is a useful element that enhances the strength of the sintered part by strengthening the solid solution of the iron-based powder and improving the hardenability. Further, the Cu powder melts during sintering to form a liquid phase, and has an effect of fixing the iron-based powder particles to each other. However, if the addition amount is less than 0.5%, the effect of addition is poor. On the other hand, if it exceeds 4.0%, not only the strength improvement effect of the sintered part is saturated but also machinability is reduced. Therefore, Cu powder is limited to the range of 0.5 to 4.0%. Preferably it is 1.0 to 3.0% of range. The average particle size of the Cu powder is preferably about 50 ⁇ m or less.
  • C which is the main component of graphite powder, is a useful element that dissolves in iron during sintering and enhances the strength of sintered parts by strengthening solid solution and improving hardenability.
  • the amount of graphite to be added may be small, but the above effect cannot be obtained unless the amount is less than 0.1%.
  • carburizing heat treatment is not performed at the time of sintering, graphite powder is added. However, if it exceeds 1.0%, hypereutectoid precipitation occurs, so that cementite is precipitated and strength is reduced. Therefore, the graphite powder is limited to the range of 0.1 to 1.0%.
  • the average particle size of the graphite powder is preferably about 50 ⁇ m or less.
  • the balance of the alloy steel powder is iron and impurities.
  • impurities contained in the alloy steel powder include C, O, N, and S. These are C: 0.02% or less, O: 0.3% or less, N: 0.004% or less, S: 0.03% or less, respectively. If so, there is no problem.
  • O is preferably 0.25% or less. This is because if the amount of impurities exceeds this range, the compressibility of the alloy steel powder is lowered, and it becomes difficult to perform compression molding into a preform having a sufficient density.
  • Mo raw material powder which is a raw material for reduced iron powder and Mo-containing powder
  • the iron-based powder is so-called reduced iron powder.
  • Mo raw material powder is advantageously adapted to Mo alloy powder such as Mo pure metal powder, oxidized Mo powder, or Fe—Mo (ferromolybdenum) powder.
  • Mo compound Mo carbide, Mo sulfide, Mo nitride and the like are suitable.
  • Mo amount is 0.2 to 1.5% with respect to alloy steel powder for powder metallurgy.
  • a mixing method For example, it can carry out using a Henschel mixer, a cone type mixer, etc.
  • the powder metallurgy of the present invention is obtained by holding this mixture at a high temperature, diffusing and bonding Mo into iron at the contact surface between the iron-based powder and the Mo raw material powder, and then adding Cu powder and graphite powder. Alloy steel powder is obtained.
  • the atmosphere for the heat treatment a reducing atmosphere or a hydrogen-containing atmosphere is suitable, and a hydrogen atmosphere is particularly suitable.
  • heat treatment may be applied under vacuum.
  • a suitable heat treatment temperature is in the range of 800 to 1000 ° C.
  • the addition method of Cu powder and graphite powder can also depend on a conventional method.
  • the iron-based powder and the Mo-containing powder are usually sintered and solidified, and thus pulverized and classified to a desired particle size. . Furthermore, you may anneal as needed.
  • the particle size of the alloy steel powder for powder metallurgy is preferably 180 ⁇ m or less.
  • an additive for improving characteristics can be added according to the purpose.
  • Ni powder can be added, and for the purpose of improving the machinability of the sintered body, addition of a machinability improving powder such as MnS can be appropriately performed.
  • a powdery lubricant can be mixed. It can also be molded by applying or adhering a lubricant to the mold.
  • a lubricant any of metal soaps such as zinc stearate and lithium stearate, amide waxes such as ethylenebisstearic acid amide, and other known lubricants can be suitably used.
  • the amount is preferably about 0.1 to 1.2 parts by mass with respect to 100 parts by mass of alloy steel powder for powder metallurgy.
  • the temperature at the time of pressurization is preferably in the range of room temperature (about 20 ° C.) to about 160 ° C.
  • the sintering of the alloy steel powder for powder metallurgy according to the present invention is preferably performed in a temperature range of 1100 to 1300 ° C. This is because if the sintering temperature is less than 1100 ° C., the sintering does not proceed and the characteristics of the sintered body deteriorate, whereas if it exceeds 1300 ° C., the life of the sintering furnace is shortened. Because it becomes economically disadvantageous.
  • the sintering time is preferably in the range of 10 to 180 minutes.
  • the obtained sintered body can be subjected to strengthening treatment such as carburizing quenching, bright quenching, induction quenching, and carbonitriding as required, but according to the present invention even when the strengthening treatment is not performed.
  • the sintered body using the alloy steel powder for powder metallurgy has improved strength and toughness compared to a conventional sintered body (one not subjected to strengthening treatment). In addition, what is necessary is just to give each reinforcement
  • Mo oxide powder (average particle size: 10 ⁇ m) is added to these iron-based powders at a specified ratio, mixed for 15 minutes with a V-type mixer, and then heat-treated in a hydrogen atmosphere with a dew point of 30 ° C (holding temperature: 900 ° C) Holding time: 1 h), an alloy steel powder for powder metallurgy in which a predetermined amount of Mo shown in Table 1 was diffused and adhered to the surface of the iron-based powder was manufactured. Next, copper powder (average particle size 30 ⁇ m) and graphite powder (average particle size: 5 ⁇ m) in the amounts shown in Table 1 were added to the alloy steel powder for powder metallurgy, and the obtained alloy steel was further added.
  • the obtained sintered body was processed into a round bar tensile test piece having a parallel part diameter of 5 mm in order to be subjected to a tensile test specified by JIS Z 2241.
  • a tensile test specified by JIS Z 2241 JIS Z 2241.
  • Charpy impact test specified in JIS Z 2242 after carburizing with a carbon potential of 0.8 mass% (holding temperature: 870 ° C, holding time: 60 minutes) in the as-sintered shape, What performed quenching (60 degreeC, oil quenching) and tempering (holding temperature: 180 degreeC, holding time: 60 minutes) was used.
  • Table 1 shows the results of a 4Ni material (4Ni-1.5Cu-0.5Mo) as a conventional material. It can be seen that the inventive example can obtain the same or better characteristics than the conventional 4Ni material without using Ni.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明に従い、鉄基粉末が還元鉄粉を含み、かつMoを合金鋼粉全体に対する比率で0.2~1.5質量%含み、さらに、合金鋼粉全体に対する比率で、Cu粉を0.5~4.0質量%、黒鉛粉を0.1~1.0質量%それぞれ含有することによって、それを用いた焼結体の強度と靭性の両立が高いレベルで可能な、鉄基粉末を主成分とする粉末冶金用合金鋼粉を得ることができる。

Description

粉末冶金用合金鋼粉および鉄基焼結体の製造方法
 本発明は、粉末冶金技術に供して好適な粉末冶金用合金鋼粉に関し、特に、かかる合金鋼粉を用いた焼結材料の強度および靭性の向上を図ろうとするものである。
 また、本発明は、上記の粉末冶金用合金鋼粉を用いて製造した強度および靭性に優れた鉄基焼結体の製造方法に関するものである。
 粉末冶金技術は、複雑な形状の部品を、製品形状に極めて近い形状(いわゆるニアネット形状)で、かつ高い寸法精度で製造できることから、大幅な切削コストの低減が可能となる。このため、粉末冶金製品が各種の機械構造物やその部品として、多方面に利用されている。
 さらに、最近では、部品の小型化、軽量化のために、粉末冶金製品の強度の向上が強く要望されていて、特に、鉄基粉末製品(鉄基焼結体)に対する高強度化の要求が強い。
 鉄基焼結体の前段階である粉末冶金用鉄基粉末成形体は、一般に、鉄基粉末に対し、銅粉、黒鉛粉などの合金用粉末と、ステアリン酸、ステアリン酸亜鉛等の潤滑剤とを混合して鉄基粉末混合粉とし、これを金型に充填して加圧成形することにより製造される。そして、鉄基粉末は、成分に応じて、鉄粉(例えば純鉄粉等)や、合金鋼粉等に分類される。また、製法による分類では、アトマイズ鉄粉や、還元鉄粉等があり、これらの分類における鉄粉という単語は、合金鋼粉を含む広い意味で用いられる。
 通常の粉末冶金工程で得られる粉末冶金用鉄基粉末成形体の密度は、6.8~7.3Mg/m3程度が一般的である。この鉄基粉末成形体は、その後に焼結処理が施されて鉄基焼結体とされ、さらに必要に応じてサイジングや切削加工などが施されて、粉末冶金製品とされる。また、さらに高い強度が必要な場合は、焼結後に浸炭熱処理や光輝熱処理が施されることもある。
 ここに、従来から、原料粉の段階で、合金元素を加えた粉末として、
(1)純鉄粉に各合金元素粉末を配合した混合粉、
(2)完全に各元素を合金化した予合金鋼粉、
(3)純鉄粉や予合金鋼粉の表面に、各合金元素粉末を部分的に拡散させた拡散付着合金鋼粉等が知られている。
 上記(1)に示した純鉄粉に各合金元素粉末を配合する混合粉は、純鉄粉並みの高圧縮性を確保できるという利点がある。しかしながら、各合金元素粉末の偏析が大きいため、特性のばらつきが大きく、また、合金元素がFe中に十分に拡散せず、不均質組織のままとなって効果的な基地強化を達成できないという問題があった。
 このために、上記純鉄粉に各合金元素粉末を配合した混合粉は、近年の特性安定化、高強度化の要求に対応できずに、その使用量が減少してきている。
 また、上記(2)に示した各元素を完全に合金化する予合金鋼粉は、溶鋼をアトマイズして製造するものであって、均質組織による基地強化が達成できるものの、固溶硬化作用による圧縮性低下が課題となっている。
 さらに、上記(3)に示した拡散付着合金鋼粉は、純鉄粉や予合金鋼粉に各元素の金属粉末を配合し、非酸化性または還元性の雰囲気の下で加熱して、純鉄粉や予合金鋼粉の表面に各金属粉末を部分的に拡散接合して製造することから、上記(1)の鉄基混合粉および上記(2)の予合金鋼粉の良い点を組み合わせることができる。
 したがって、合金元素の偏析を防止しながら、純鉄粉並みの高圧縮性を確保できると同時に、部分的な合金濃化相が分散する複合組織となるため、基地強化の可能性があり、高強度用の拡散付着合金鋼粉として開発が行われている。
 このように、粉末冶金製品の強度、靭性を向上させるためには高合金化が考えられる。しかしながら、この高合金化には、素材となる合金鋼粉が硬化して圧縮性が低下し、加圧成形における設備負担が増大するという問題が生じる。また、合金鋼粉の圧縮性の低下は、焼結体の密度低下を通じて高強度化を相殺することになる。すなわち、粉末冶金製品の強度、靭性を向上させるためには、圧縮性の低下を極力抑えつつ、焼結体を高強度化する技術が求められる。
 上述したような、圧縮性を維持しつつ焼結体を高強度化する技術としては、焼入性を改善するNi,CuおよびMo等の合金元素を鉄基粉末に添加することが一般的に行われている。この目的に対して有効な元素として、例えば特許文献1では、Moを圧縮性が損なわれない範囲(Mo:0.1~1.0質量%)で鉄粉に予合金元素として添加し、さらにこの鉄粉の粒子表面にCuとNiを粉末の形で拡散付着させることによって、圧粉成形時の圧縮性と焼結後の部材の強度を両立させる技術が開示されている。
 また、特許文献2には、鉄鋼粉表面に2種類以上の合金元素、特にMoとNi、あるいはさらにCuを拡散付着させた高強度焼結体用の粉末冶金用合金鋼粉が提案されている。
 この技術では、さらに、各拡散付着元素について、粒子径:44μm以下の微粒粉に対する拡散付着濃度が、その鉄鋼粉全体に対する拡散付着濃度の0.9~1.9倍の範囲内に収まるように制御することが提案されており、この比較的広い範囲への限定によって焼結体の衝撃靭性が確保されるとされている。
 他方、Moを主たる合金元素として、NiやCuを含まないMo系合金鋼粉もこれまで提案されている。例えば、特許文献3では、自己拡散速度の速いFeのα単一相を形成して焼結を促進させるために、フェライト安定化元素であるMoを1.5~20質量%の範囲で予合金として含む合金鋼粉が提案されている。この合金鋼粉は、加圧焼結という工程に粒径分布等を適合させることにより、高密度の焼結体が得られるとし、また拡散付着型の合金元素を用いないことで、均質で安定した組織が得られるとしている。
 同様に、Moを主たる合金元素とする粉末冶金用合金鋼粉として、特許文献4に開示の技術がある。この技術は、Mnを1.0質量%以下、あるいはさらにMoを0.2質量%未満、予合金として含有する鉄基粉末の表面に、Mo:0.2~10.0質量%を拡散付着させた合金鋼粉を提案するものである。鉄基粉末は、アトマイズ鉄粉を用いても、また還元鉄粉を用いても良く、平均粒径は30~120μmとするのが好適であるとされている。そして、この合金鋼粉は、圧縮性に優れるだけでなく、高密度かつ高強度の焼結部品を得ることができるとされている。
特公昭63-66362号公報 特開昭61-130401号公報 特公平6-89365号公報 特開2002-146403号公報
 しかしながら、特許文献1および2に記載された技術では、Niの焼結時の拡散が遅いので、鉄粉や鉄鋼粉にNiを十分に拡散させるために長時間の焼結が必要となるという問題がある。
 また、特許文献3に記載された技術では、Mo添加量が1.8質量%以上と比較的高く、圧縮性が低いので、高い成形密度が得られないという欠点がある。このため、通常の焼結工程(加圧せず1回焼結)を適用した場合は低い焼結密度のものしか得られず、十分な強度、靭性が得られないという問題があった。
 さらに、特許文献4に記載された技術は、焼結体の再圧縮および再焼結を含む粉末冶金工程に適合させたものである。すなわち、通常の焼結法では、前述した効果がそれほど発揮されないという問題があった。
 以上のように、発明者らの研究では、上記した特許文献1~4に記載のいずれの合金鋼粉を用いた焼結体でも、強度と靭性を高いレベルで両立させるのは困難であることが分かった。
 本発明は、上記した現状に鑑み開発されたもので、上記した従来技術の問題点を克服し、それを用いた焼結体の強度と靭性の両立が高いレベルで可能な粉末冶金用合金鋼粉を、それを用いた鉄基焼結体の製造方法と共に提案することを目的とする。
 さて、発明者等は、上記の目的を達成するために、鉄基粉末の合金成分およびその添加手段について種々倹討を重ねた結果、以下に述べる知見を得た。
 すなわち、鉄基粉末表面にMoを拡散付着させた合金鋼粉において、その鉄基粉末に還元鉄粉を用いると共に、所定量のCu粉および黒鉛粉を添加すると、この合金鋼粉を成形、焼結した場合、還元鉄粉の焼結性が良くなって焼結体の気孔が微細化すると同時に、銅粉添加による焼結促進、ならびに銅粉、黒鉛粉添加による固溶強化、焼入れ性向上効果により、焼結体の強度と靭性が共に向上するという知見を得た。
 本発明は、上記知見に基づいてなされたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.鉄基粉末の表面に、Mo含有合金粉末を付着させた粉末冶金用合金鋼粉であって、
 上記鉄基粉末が還元鉄粉を含み、かつMoが上記合金鋼粉全体に対する比率で0.2~1.5質量%含み、さらに、上記合金鋼粉全体に対する比率で、Cu粉を0.5~4.0質量%、黒鉛粉を0.1~1.0質量%それぞれ含有している粉末冶金用合金鋼粉。
2.前記1に記載の鉄基粉末の酸素含有量が0.2質量%以下である粉末冶金用合金鋼粉。
3.還元鉄粉を含む鉄基粉末とMo原料粉末を、粉末冶金用合金鋼粉に対して、Mo量:0.2~1.5質量%で混合した後、熱処理により前記鉄基粉末の表面にMoを拡散付着させ、さらに、前記合金鋼粉全体に対する比率でCu粉:0.5~4.0質量%および黒鉛粉:0.1~1.0質量%を添加し、混合した後、加圧成形処理、焼結処理を順次行って鉄基焼結体とする鉄基焼結体の製造方法。
 本発明に従う粉末冶金用合金鋼粉によれば、Niを用いる必要がなく、かつ圧縮性が高いので、通常の焼結法であっても、安価で高強度と高靭性を兼ね備えた焼結材(鉄基焼結体)を得ることができる。
 以下、本発明を具体的に説明する。
 本発明の粉末冶金用合金鋼粉は、鉄基粉末の表面に、Mo含有粉末を拡散付着させたものであって、上記鉄基粉末が還元鉄粉である混合粉を有していることを特徴としている。そして、上記した混合粉を、適量のCu粉および黒鉛粉と混合し、成形体にして、焼結することによって、焼結体の気孔が効果的に微細化すると共に、焼結が促進されるのである。
 本発明によって、焼結体の気孔が効果的に微細化すると共に、焼結が促進される理由について、発明者らは以下のように考えている。
 一般に、焼結体には気孔が多く存在するため、気孔部分に応力が集中し、焼結体の強度や、靱性が低下する傾向にある。しかしながら、本発明に従う粉末冶金用合金鋼粉では、焼結体の気孔が微細化されることによって、応力集中の度合いが緩和されると共に、焼結ネック部が強靭化されることになる。
 加えて、本発明に従う粉末冶金用合金鋼粉では、焼結体の気孔周囲部にMoが濃化すると共にCuによる焼結促進によって、気孔周囲部がさらに強化されると同時に、基地部にMoが少ないため、焼結ネック部に比べると炭化物が生成し難くなって、組織全体に亘り高靭性な組織となる。
 すなわち、気孔分布およびMo分布の制御、ならびにCuによる焼結促進効果によって、本発明では、焼結体の高強度と高靭性の両立が可能になったものと考えられる。
 以下、本発明の限定理由について説明する。なお、以下に示す「%」は、質量%を意味し、特に断らない限り、本発明の粉末冶金用合金鋼粉(Mo含有粉末の拡散付着後)全体に対する比率(質量%)を意味する。
 本発明において、鉄基粉末として、還元鉄粉を主体として使用する。還元鉄粉は、鋼材の製造時に生成するミルスケールや鉄鉱石を還元して得られた還元鉄粉を用いるのが好ましい。還元鉄粉は、アトマイズ鉄粉に比べ、成形性が良く、成形により粗大な気孔ができにくい。さらに焼結性も良いため、粗大な気孔が少なく、気孔が微細化することによって、焼結体の強度や靭性が向上するため好ましい。なお、還元鉄粉の見掛密度としては、1.7Mg/m3から3.0Mg/m3程度であればよい。より好ましくは2.2~2.8Mg/mである。
 また、焼結体の強度や靭性を損なわない範囲で還元鉄粉にアトマイズ鉄粉等を加えても良い。具体的には、鉄基粉末中の還元鉄粉が80%以上であれば、本発明には十分である。より好ましくは、鉄基粉末中の還元鉄粉:90%以上である。
 ここで、本発明に用いる還元鉄粉の粒径は、粉末冶金用に汎用的に用いられる最大粒径180μm未満のものを使用することができる。すなわち、JIS Z 8801で規定される目開き径:180μmの篩を通過した粉末を用いればよい。
 また、本発明に用いる還元鉄粉の酸素含有量は、0.3%以下、好ましくは0.25%以下、より好ましくは0.2%以下である。還元鉄粉の酸素含有量は低い方が圧縮性に優れるとともに、焼結が促進され、高強度、高靭性が得られるからである。なお、還元鉄粉の酸素含有量の下限値については、特に限定されないが、0.1%程度が好ましい。
 一方、Mo原料粉末としては、目的とするMo含有粉末そのものを用いても良いし、あるいはMo含有粉末に還元可能なMoの化合物を用いても良い。Mo原料粉末の平均粒径は50μm以下、好ましくは20μm以下である。尚、平均粒径とは、メジアン径(いわゆるd50)のことである。
 ここに、Mo含有粉末としては、Moの純金属粉末をはじめとして、酸化Mo粉末、あるいはFe-Mo(フェロモリブデン)粉末などのMo合金粉末が有利に適合する。また、Moの化合物としては、Mo炭化物、Mo硫化物、Mo窒化物などが好適である。
 本発明において、Mo含有粉末は、均一に鉄基粉末表面に付着していることが好ましい。均一に付着していない場合、粉末冶金用合金鋼粉を付着処理後に粉砕する際や、運搬等の際に、鉄基粉末表面から脱落しやすいので、遊離状態のMo含有粉末が特に増加しやすい。そのような状態の合金鋼粉を成形し、焼結すると、炭化物の分散状態が偏析してしまう傾向にある。
 したがって、焼結体の強度、靭性を高めるためには、鉄基粉末の表面にMo含有粉末を均一に付着させ、脱落などにより発生する遊離状態のMo含有粉末を低減することが好ましい。
 拡散付着させるMo量は、0.2~1.5%である。0.2%を下回ると、焼き入れ性向上効果が少なく、強度向上効果も少ない。一方、1.5%を超えると、焼き入れ性向上効果は飽和し、むしろ焼結体の組織の不均一性が高まるため、高い強度と靱性が得られなくなるからである。したがって、拡散付着させるMo量は0.2~1.5%とする。好ましくは0.3~1.0%の範囲である。
 さらに、本発明における粉末冶金用合金鋼粉には、Cu粉を0.5~4.0%、黒鉛粉を0.1~1.0%の範囲でそれぞれ添加し、混合する。
 ここで、Cuは、鉄基粉末の固溶強化、焼入れ性向上により、焼結部品の強度を高める有用元素である。また、Cu粉は、焼結の際に溶融して液相となり、鉄基粉末の粒子を互いに固着させる作用もある。
 しかしながら、添加量が0.5%に満たないとその添加効果に乏しく、一方4.0%を超えると、焼結部品の強度向上効果が飽和するばかりでなく、切削性の低下を招く。したがって、Cu粉は0.5~4.0%の範囲に限定する。好ましくは1.0~3.0%の範囲である。なお、Cu粉の平均粒径は、50μm以下程度が好ましい。
 黒鉛粉の主成分であるCは、焼結時に鉄に固溶し、固溶強化、焼入れ性向上により、焼結部品の強度を高める有用元素である。なお、焼結後に浸炭熱処理等で、焼結体に外部から浸炭する場合には、添加する黒鉛量は少なくても良いが、0.1%に満たないと上述の効果を得ることができない。一方、焼結時に浸炭熱処理を行わない場合には、黒鉛粉を添加するが、1.0%を超えると過共析になるため、セメンタイトが析出して強度の低下を招く。したがって、黒鉛粉は0.1~1.0%の範囲に限定する。なお、黒鉛粉の平均粒径は、50μm以下程度が好ましい。
 合金鋼粉の残部は鉄および不純物である。合金鋼粉に含有される不純物としては、C、O、N、S等が挙げられるが、これらはそれぞれC:0.02%以下、O:0.3%以下、N:0.004%以下、S:0.03%以下であれば特に問題はない。特に、Oは0.25%以下が好ましい。不純物量がこの範囲を超えると合金鋼粉の圧縮性が低下し、十分な密度を有する予備成形体に圧縮成形することが困難となるからである。
 次に、本発明の粉末冶金用合金鋼粉の製造方法について説明する。
 まず、鉄基粉末として還元鉄粉およびMo含有粉末の原料であるMo原料粉末を準備する。
 鉄基粉末は、いわゆる還元鉄粉である。また、Mo原料粉末は、上述したとおり、Moの純金属粉末をはじめとして、酸化Mo粉末、あるいはFe-Mo(フェロモリブデン)粉末などのMo合金粉末が有利に適合する。また、Moの化合物としては、Mo炭化物、Mo硫化物、Mo窒化物などが好適である。
 ついで、上記した鉄基粉末とMo原料粉末を、前述した比率(粉末冶金用合金鋼粉に対して、Mo量が0.2~1.5%)で混合する。混合方法について特に制限はなく、例えばヘンシェルミキサーやコーン型ミキサーなどを用いて行うことができる。
 さらに、この混合物を高温で保持し、鉄基粉末とMo原料粉末の接触面でMoを鉄中に拡散させて接合し、ついで、Cu粉および黒鉛粉を添加することにより、本発明の粉末冶金用合金鋼粉が得られる。
 ここに、熱処理の雰囲気としては、還元性雰囲気や水素含有雰囲気が好適であり、とりわけ水素雰囲気が適している。なお、真空下で熱処理を加えても良い。また、好適な熱処理の温度は800~1000℃の範囲である。さらに、Cu粉および黒鉛粉の添加方法も常法に依ることができる。
 上述のようにして、熱処理すなわち拡散付着処理を行った場合、通常は、鉄基粉末とMo含有粉末が焼結して固まった状態となっているので、所望の粒径に粉砕・分級を行う。さらに、必要に応じて焼鈍を施してもよい。なお、粉末冶金用合金鋼粉の粒径としては、180μm以下が好ましい。
 本発明では、目的に応じて特性を改善するための添加材を添加することができる。例えば、焼結体の強度を改善する目的で、Ni粉の添加を、また、焼結体の切削性を改善する目的で、MnSなどの切削性改善用粉末の添加を適宜することができる。
 さらに、本発明の粉末冶金用合金鋼粉を用いて焼結体を製造する際に好適な成形条件、焼結条件について説明する。
 本発明の粉末冶金用合金鋼粉を用いた加圧成形に際しては、他に、粉末状の潤滑剤を混合することができる。また、金型に潤滑剤を塗布あるいは付着させて成形することもできる。いずれの場合であっても、潤滑剤として、ステアリン酸亜鉛やステアリン酸リチウムなどの金属石鹸、エチレンビスステアリン酸アミドなどのアミド系ワックスおよびその他公知の潤滑剤のいずれもが好適に用いることができる。なお、潤滑剤を混合する場合は、粉末冶金用合金鋼粉:100質量部に対して、0.1~1.2質量部程度とすることが好ましい。
 本発明の粉末冶金用合金鋼粉を加圧成形するに際しては、400~1000MPaの加圧力で行うことが好ましい。というのは、加圧力が400MPaに満たないと得られる成形体の密度が低くなって、焼結体の特性が低下するからであり、一方1000MPaを超えると金型の寿命が短くなって、経済的に不利になるからである。なお、加圧の際の温度は、常温(約20℃)~約160℃の範囲とすることが好ましい。
 また、本発明の粉末冶金用合金鋼粉の焼結は、1100~1300℃の温度域で行うことが好ましい。というのは、焼結温度が1100℃に満たないと焼結が進行しなくなって、焼結体の特性が低下するからであり、一方、1300℃を超えると焼結炉の寿命が短くなって、経済的に不利になるからである。なお、焼結時間は10~180分の範囲とすることが好ましい。
 得られた焼結体には必要に応じて、浸炭焼入れ、光輝焼入れ、高周波焼入れおよび浸炭窒化処理等の強化処理を施すことができるが、強化処理を施さない場合であっても、本発明に従う粉末冶金用合金鋼粉を用いた焼結体は、従来の焼結体(強化処理を施さないもの)に比べて強度および靭性が改善されている。なお、各強化処理は常法に従って施せば良い。
 以下、実施例により、本発明をさらに詳細にするが、本発明は、以下の例に何ら限定されるものではない。
 鉄基粉末には、見掛密度:2.60g/cm3の還元鉄粉、あるいは見掛密度:3.00g/cm3のアトマイズ鉄粉を用いた。これらの鉄基粉末に酸化Mo粉末(平均粒径:10μm)を所定の比率で添加し、V型混合機で15分間混合したのち、露点:30℃の水素雰囲気で熱処理(保持温度:900℃、保持時間:1h)して、鉄基粉末の表面に表1に示す所定量のMoを拡散付着させた粉末冶金用合金鋼粉を製造した。
 ついで、これらの粉末冶金用合金鋼粉に対して、表1に示した量の銅粉(平均粒径30μm)および黒鉛粉(平均粒径:5μm)を添加し、さらに、得られた合金鋼粉の混合粉:100質量部に対しエチレンビスステアリン酸アミドを0.6質量部添加したのち、V型混合機で15分間混合した。その後、密度:7.0g/cm3に加圧成形して、長さ:55mm、幅:10mm、厚さ:10mmのタブレット状成形体を作製した。
 このタブレット状成形体に焼結を施して、焼結体とした。この焼結は、プロパン変成ガス雰囲気中にて、焼結温度:1130℃、焼結時間:20分の条件で行った。
 得られた焼結体を、JIS Z 2241で規定される引張試験に供するため、平行部径:5mmの丸棒引張試験片に加工した。また、JIS Z 2242で規定されるシャルピー衝撃試験用には、焼結したままの形状で、カーボンポテンシャル0.8mass%のガス浸炭(保持温度:870℃、保持時間:60分)を行った後、焼入れ(60℃、油焼入れ)および焼戻し(保持温度:180℃、保持時間:60分)を行ったものを用いた。
 これらの焼結体をJIS Z 2241で規定される引張試験およびJIS Z 2242で規定されるシャルピー衝撃試験に供して、引張強さ(MPa)および衝撃値(J/cm2)を測定した。それぞれの測定結果を、表1に併せて示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示したとおり、発明例と比較例の引張強さおよび衝撃値を比べると、発明例はいずれも、引張強さ:1000MPa以上であって衝撃値:14.0J/cm2以上を示し、強度と靭性を高いレベルで両立できたのに対し、比較例は、引張強さと衝撃値の少なくともいずれかにおいて、発明例に比べて劣っていた。
 なお、表1には、従来材として4Ni材(4Ni-1.5Cu-0.5Mo)の結果を合わせて示した。発明例は、Niを用いずとも、従来の4Ni材と同等以上の特性が得られることが分かる。

Claims (3)

  1.  鉄基粉末の表面に、Mo含有合金粉末を付着させた粉末冶金用合金鋼粉であって、
     上記鉄基粉末が還元鉄粉を含み、かつMoが上記合金鋼粉全体に対する比率で0.2~1.5質量%含み、さらに、上記合金鋼粉全体に対する比率で、Cu粉を0.5~4.0質量%、黒鉛粉を0.1~1.0質量%それぞれ含有している粉末冶金用合金鋼粉。
  2.  請求項1に記載の鉄基粉末の酸素含有量が0.2質量%以下である粉末冶金用合金鋼粉。
  3.  還元鉄粉を含む鉄基粉末とMo原料粉末を、粉末冶金用合金鋼粉に対して、Mo量:0.2~1.5質量%で混合した後、熱処理により前記鉄基粉末の表面にMoを拡散付着させ、さらに、前記合金鋼粉全体に対する比率でCu粉:0.5~4.0質量%および黒鉛粉:0.1~1.0質量%を添加し、混合した後、加圧成形処理、焼結処理を順次行って鉄基焼結体とする鉄基焼結体の製造方法。
PCT/JP2014/002343 2013-06-07 2014-04-25 粉末冶金用合金鋼粉および鉄基焼結体の製造方法 WO2014196123A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480032484.6A CN105263653A (zh) 2013-06-07 2014-04-25 粉末冶金用合金钢粉以及铁基烧结体的制造方法
KR1020157035083A KR20160006769A (ko) 2013-06-07 2014-04-25 분말 야금용 합금강분 및 철기 소결체의 제조 방법
US14/787,882 US10265766B2 (en) 2013-06-07 2014-04-25 Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
SE1551574A SE540608C2 (en) 2013-06-07 2014-04-25 Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
CA2911031A CA2911031C (en) 2013-06-07 2014-04-25 Alloy steel powder for powder metallurgy and method of producing iron-based sintered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-120995 2013-06-07
JP2013120995A JP6227903B2 (ja) 2013-06-07 2013-06-07 粉末冶金用合金鋼粉および鉄基焼結体の製造方法

Publications (2)

Publication Number Publication Date
WO2014196123A1 true WO2014196123A1 (ja) 2014-12-11
WO2014196123A8 WO2014196123A8 (ja) 2015-10-22

Family

ID=52007784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002343 WO2014196123A1 (ja) 2013-06-07 2014-04-25 粉末冶金用合金鋼粉および鉄基焼結体の製造方法

Country Status (7)

Country Link
US (1) US10265766B2 (ja)
JP (1) JP6227903B2 (ja)
KR (1) KR20160006769A (ja)
CN (1) CN105263653A (ja)
CA (1) CA2911031C (ja)
SE (1) SE540608C2 (ja)
WO (1) WO2014196123A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5949952B2 (ja) * 2013-09-26 2016-07-13 Jfeスチール株式会社 鉄基焼結体の製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106687702B (zh) * 2014-09-30 2019-11-01 Ntn株式会社 滑动部件及其制造方法
JP6222189B2 (ja) 2014-12-05 2017-11-01 Jfeスチール株式会社 粉末冶金用合金鋼粉および焼結体
WO2016088333A1 (ja) * 2014-12-05 2016-06-09 Jfeスチール株式会社 粉末冶金用合金鋼粉および焼結体
CN108025357B (zh) * 2015-09-18 2020-03-03 杰富意钢铁株式会社 粉末冶金用混合粉、烧结体及烧结体的制造方法
CN105886929A (zh) * 2016-06-14 2016-08-24 芜湖三刀材料科技有限公司 一种铁基镶件材料及制备方法
JP6627856B2 (ja) * 2017-02-02 2020-01-08 Jfeスチール株式会社 粉末冶金用混合粉および焼結体の製造方法
WO2018142778A1 (ja) * 2017-02-02 2018-08-09 Jfeスチール株式会社 粉末冶金用混合粉、焼結体、および焼結体の製造方法
CN107297495A (zh) * 2017-06-20 2017-10-27 江苏军威电子科技有限公司 一种电动工具用混合粉及其制备方法
JP6514421B1 (ja) * 2017-10-30 2019-05-15 Tpr株式会社 鉄基焼結合金製バルブガイドおよびその製造方法
CN111432957B (zh) * 2017-12-05 2022-03-29 杰富意钢铁株式会社 合金钢粉
KR102325463B1 (ko) * 2017-12-05 2021-11-11 제이에프이 스틸 가부시키가이샤 부분 확산 합금강 분말
KR102383517B1 (ko) * 2018-03-26 2022-04-08 제이에프이 스틸 가부시키가이샤 분말 야금용 합금 강분 및 분말 야금용 철기 혼합 분말
KR102383515B1 (ko) * 2018-03-26 2022-04-08 제이에프이 스틸 가부시키가이샤 분말 야금용 합금 강분 및 분말 야금용 철기 혼합 분말
CN113677459A (zh) * 2019-04-05 2021-11-19 杰富意钢铁株式会社 粉末冶金用铁基混合粉末和铁基烧结体
KR20210029582A (ko) * 2019-09-06 2021-03-16 현대자동차주식회사 철계 예합금 분말, 철계 확산접합 분말 및 이를 이용하는 분말야금용 철계 합금 분말
CN114871424A (zh) * 2022-05-10 2022-08-09 辽宁晟钰新材料科技有限公司 一种粉末冶金用无镍扩散合金钢粉

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064001A (ja) * 1998-08-20 2000-02-29 Kawasaki Steel Corp 高強度焼結部品用混合粉
JP2002146403A (ja) * 2000-08-31 2002-05-22 Kawasaki Steel Corp 粉末冶金用合金鋼粉
JP2004156063A (ja) * 2002-11-01 2004-06-03 Jfe Steel Kk 粉末冶金用鉄基粉末混合物およびその製造方法
JP2004232004A (ja) * 2003-01-29 2004-08-19 Jfe Steel Kk 面圧疲労特性に優れた鉄系焼結熱処理材料用合金鋼粉
JP2005330573A (ja) * 2003-08-18 2005-12-02 Jfe Steel Kk 粉末冶金用合金鋼粉
JP2006257539A (ja) * 2004-04-22 2006-09-28 Jfe Steel Kk 粉末冶金用混合粉体
JP2006283177A (ja) * 2005-04-05 2006-10-19 Toyota Motor Corp 鉄基焼結合金及びその製造方法
JP2011094187A (ja) * 2009-10-29 2011-05-12 Jfe Steel Corp 高強度鉄基焼結体の製造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212876A (en) 1963-04-22 1965-10-19 Hoganasmetoder Ab Method for the production of iron powder from sponge iron
JPS59215401A (ja) 1983-05-19 1984-12-05 Kawasaki Steel Corp 粉末冶金用合金鋼粉およびその製造方法
JPS61130401A (ja) 1984-11-28 1986-06-18 Kawasaki Steel Corp 粉末冶金用合金鋼粉およびその製造方法
JPS6366362A (ja) 1987-05-22 1988-03-25 倉敷紡績株式会社 補強用基布
JPH01127602A (ja) 1987-11-09 1989-05-19 Mitsubishi Metal Corp 焼結性および成形性にすぐれた粉末冶金用耐摩耗性合金鋼粉末
JPH0689365B2 (ja) 1987-11-27 1994-11-09 川崎製鉄株式会社 粉末冶金用アトマイズ予合金鋼粉
JP3215176B2 (ja) 1992-09-07 2001-10-02 株式会社東芝 文書画像処理装置及び文書画像処理方法
SE513498C2 (sv) 1993-09-01 2000-09-18 Kawasaki Steel Co Atomiserat stålpulver och sintrat stål med god maskinbearbetbarhet tillverkat därav
JPH07233401A (ja) 1993-09-01 1995-09-05 Kawasaki Steel Corp 切削性および寸法精度に優れたアトマイズ鋼粉および焼結鋼
JPH07310101A (ja) 1994-05-12 1995-11-28 Powder Tec Kk 焼結含油軸受用還元鉄粉およびその製造方法
JP3294980B2 (ja) 1994-11-28 2002-06-24 川崎製鉄株式会社 切削性に優れた高強度焼結材料用合金鋼粉
JPH08199201A (ja) 1995-01-30 1996-08-06 Kawasaki Steel Corp 粉末冶金用部分合金化鋼粉の製造方法
US6514307B2 (en) 2000-08-31 2003-02-04 Kawasaki Steel Corporation Iron-based sintered powder metal body, manufacturing method thereof and manufacturing method of iron-based sintered component with high strength and high density
JP4060092B2 (ja) 2002-02-20 2008-03-12 Jfeスチール株式会社 粉末冶金用合金鋼粉およびその焼結体
CA2476836C (en) 2003-08-18 2009-01-13 Jfe Steel Corporation Alloy steel powder for powder metallurgy
US7384446B2 (en) * 2004-04-22 2008-06-10 Jfe Steel Corporation Mixed powder for powder metallurgy
US20080202651A1 (en) 2004-11-25 2008-08-28 Jfe Steel Corporation Method For Manufacturing High-Density Iron-Based Compacted Body and High-Density Iron-Based Sintered Body
US8086168B2 (en) * 2005-07-06 2011-12-27 Sandisk Il Ltd. Device and method for monitoring, rating and/or tuning to an audio content channel
JP4923801B2 (ja) 2005-08-12 2012-04-25 Jfeスチール株式会社 高密度鉄基成形体および高強度高密度鉄基焼結体の製造方法
CN100441711C (zh) 2006-08-09 2008-12-10 海门市常乐粉末冶金厂 高强度粉末冶金伞齿轮的制造方法及用于该方法的渗铜剂
JP4886543B2 (ja) 2007-02-09 2012-02-29 株式会社東芝 通信装置および通信方法
JP5141136B2 (ja) 2007-08-20 2013-02-13 Jfeスチール株式会社 粉末冶金用原料粉末の混合方法
WO2009148402A1 (en) 2008-06-06 2009-12-10 Höganäs Ab (Publ) Iron- based pre-alloyed powder
JP2010053409A (ja) 2008-08-28 2010-03-11 Sumitomo Electric Ind Ltd 金属粉末の製造方法および金属粉末、導電性ペースト、積層セラミックコンデンサ
JP5504971B2 (ja) 2010-02-26 2014-05-28 Jfeスチール株式会社 粉末冶金用混合粉および切削性に優れた金属粉末製焼結体
CN101844227B (zh) 2010-05-19 2012-07-25 株洲钻石切削刀具股份有限公司 硬质合金注射成形用黏结剂的应用
JP5585237B2 (ja) 2010-06-24 2014-09-10 セイコーエプソン株式会社 粉末冶金用金属粉末および焼結体
JP5552031B2 (ja) 2010-11-09 2014-07-16 株式会社神戸製鋼所 粉末冶金用混合粉末
CN103143704B (zh) 2013-04-03 2014-11-05 中南大学 一种粉末冶金用含Mn铁基预混合料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064001A (ja) * 1998-08-20 2000-02-29 Kawasaki Steel Corp 高強度焼結部品用混合粉
JP2002146403A (ja) * 2000-08-31 2002-05-22 Kawasaki Steel Corp 粉末冶金用合金鋼粉
JP2004156063A (ja) * 2002-11-01 2004-06-03 Jfe Steel Kk 粉末冶金用鉄基粉末混合物およびその製造方法
JP2004232004A (ja) * 2003-01-29 2004-08-19 Jfe Steel Kk 面圧疲労特性に優れた鉄系焼結熱処理材料用合金鋼粉
JP2005330573A (ja) * 2003-08-18 2005-12-02 Jfe Steel Kk 粉末冶金用合金鋼粉
JP2006257539A (ja) * 2004-04-22 2006-09-28 Jfe Steel Kk 粉末冶金用混合粉体
JP2006283177A (ja) * 2005-04-05 2006-10-19 Toyota Motor Corp 鉄基焼結合金及びその製造方法
JP2011094187A (ja) * 2009-10-29 2011-05-12 Jfe Steel Corp 高強度鉄基焼結体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5949952B2 (ja) * 2013-09-26 2016-07-13 Jfeスチール株式会社 鉄基焼結体の製造方法

Also Published As

Publication number Publication date
WO2014196123A8 (ja) 2015-10-22
CA2911031A1 (en) 2014-12-11
KR20160006769A (ko) 2016-01-19
US10265766B2 (en) 2019-04-23
SE1551574A1 (sv) 2015-12-02
JP2014237878A (ja) 2014-12-18
SE540608C2 (en) 2018-10-02
JP6227903B2 (ja) 2017-11-08
CA2911031C (en) 2018-01-16
US20160136727A1 (en) 2016-05-19
CN105263653A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6227903B2 (ja) 粉末冶金用合金鋼粉および鉄基焼結体の製造方法
JP5949952B2 (ja) 鉄基焼結体の製造方法
JP6394768B2 (ja) 粉末冶金用合金鋼粉および焼結体
JP6146548B1 (ja) 粉末冶金用混合粉末の製造方法、焼結体の製造方法、および焼結体
JP5929967B2 (ja) 粉末冶金用合金鋼粉
JP5958144B2 (ja) 粉末冶金用鉄基混合粉および高強度鉄基焼結体ならびに高強度鉄基焼結体の製造方法
WO2016088333A1 (ja) 粉末冶金用合金鋼粉および焼結体
JP6515955B2 (ja) 粉末冶金用混合粉末および鉄基焼結体の製造方法
JP5929084B2 (ja) 粉末冶金用合金鋼粉ならびに鉄基焼結材料およびその製造方法
WO2018142778A1 (ja) 粉末冶金用混合粉、焼結体、および焼結体の製造方法
JP4715358B2 (ja) 粉末冶金用合金鋼粉
JP6044492B2 (ja) Mo含有海綿鉄およびMo含有還元鉄粉の製造方法
JP2012126972A (ja) 粉末冶金用合金鋼粉ならびに鉄基焼結材料およびその製造方法
WO2018143088A1 (ja) 粉末冶金用混合粉、焼結体、および焼結体の製造方法
JP2007100115A (ja) 粉末冶金用合金鋼粉
WO2023157386A1 (ja) 粉末冶金用鉄基混合粉および鉄基焼結体
JP2012126971A (ja) 粉末冶金用合金鋼粉ならびに鉄基焼結材料およびその製造方法
JP2007126695A (ja) 粉末冶金用合金鋼

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032484.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14806978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2911031

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14787882

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157035083

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14806978

Country of ref document: EP

Kind code of ref document: A1