WO2014196123A1 - 粉末冶金用合金鋼粉および鉄基焼結体の製造方法 - Google Patents
粉末冶金用合金鋼粉および鉄基焼結体の製造方法 Download PDFInfo
- Publication number
- WO2014196123A1 WO2014196123A1 PCT/JP2014/002343 JP2014002343W WO2014196123A1 WO 2014196123 A1 WO2014196123 A1 WO 2014196123A1 JP 2014002343 W JP2014002343 W JP 2014002343W WO 2014196123 A1 WO2014196123 A1 WO 2014196123A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- iron
- alloy steel
- mass
- sintered body
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0264—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/35—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/45—Others, including non-metals
Definitions
- the present invention relates to an alloy steel powder for powder metallurgy suitable for use in powder metallurgy technology, and in particular, intends to improve the strength and toughness of a sintered material using such alloy steel powder. Moreover, this invention relates to the manufacturing method of the iron-based sintered compact excellent in the intensity
- the powder metallurgy technology can manufacture parts having a complicated shape in a shape very close to the product shape (so-called near net shape) and with high dimensional accuracy, so that the cutting cost can be greatly reduced. For this reason, powder metallurgy products are used in various fields as various mechanical structures and parts thereof. Furthermore, recently, there has been a strong demand for improvement in the strength of powder metallurgy products in order to reduce the size and weight of parts. In particular, there is a demand for higher strength in iron-based powder products (iron-based sintered bodies). strong.
- the iron-based powder compact for powder metallurgy which is the pre-stage of the iron-based sintered body, is generally made of an alloy powder such as copper powder and graphite powder, and a lubricant such as stearic acid and zinc stearate with respect to the iron-based powder.
- an alloy powder such as copper powder and graphite powder
- a lubricant such as stearic acid and zinc stearate with respect to the iron-based powder.
- iron base powder is classified into iron powder (for example, pure iron powder etc.), alloy steel powder, etc. according to a component.
- category by a manufacturing method, there exist atomized iron powder, reduced iron powder, etc., and the word iron powder in these classification
- the density of an iron-based powder compact for powder metallurgy obtained by a normal powder metallurgy process is generally about 6.8 to 7.3 Mg / m 3 .
- This iron-based powder molded body is subsequently subjected to a sintering process to be an iron-based sintered body, and further subjected to sizing, cutting, or the like as necessary to obtain a powder metallurgy product. If higher strength is required, carburizing heat treatment or bright heat treatment may be performed after sintering.
- the mixed powder in which each alloy element powder is mixed with the pure iron powder shown in the above (1) has an advantage that high compressibility as high as that of the pure iron powder can be secured.
- the segregation of each alloy element powder is large, there is a large variation in characteristics, and the alloy elements do not diffuse sufficiently in Fe, and the inhomogeneous structure remains and effective base strengthening cannot be achieved. was there.
- the amount of use of the mixed powder in which each alloy element powder is blended with the above pure iron powder has not been able to meet the recent demands for characteristic stabilization and high strength.
- the prealloyed steel powder that completely alloyes each element shown in (2) above is manufactured by atomizing molten steel, which can achieve base strengthening with a homogeneous structure, but by solid solution hardening action Decrease in compressibility is a problem.
- the diffusion-adhesive alloy steel powder shown in (3) above contains pure iron powder and pre-alloy steel powder mixed with metal powders of each element, heated in a non-oxidizing or reducing atmosphere, Since each metal powder is partially diffusion bonded on the surface of iron powder or prealloyed steel powder, the advantages of the iron-based mixed powder of (1) above and the prealloyed steel powder of (2) above are combined be able to. Therefore, while preventing segregation of alloy elements, high compressibility comparable to that of pure iron powder can be secured, and at the same time, a composite structure in which a partial alloy concentrated phase is dispersed has the possibility of strengthening the base. Development is being made as diffusion-adhesive alloy steel powder for strength.
- alloy elements such as Ni, Cu and Mo that improve hardenability to iron-based powders.
- Mo is added as a pre-alloying element to iron powder within a range in which compressibility is not impaired (Mo: 0.1 to 1.0 mass%).
- a technique has been disclosed in which Cu and Ni are diffused and adhered to the particle surface in the form of powder to achieve both compressibility during compacting and strength of the sintered member.
- Patent Document 2 proposes an alloy steel powder for powder metallurgy for high-strength sintered bodies in which two or more kinds of alloy elements, particularly Mo and Ni, or further Cu are diffused and adhered to the surface of steel powder. .
- each diffusion adhesion element it is further possible to control each diffusion adhesion element so that the diffusion adhesion concentration with respect to fine powder having a particle diameter of 44 ⁇ m or less is within a range of 0.9 to 1.9 times the diffusion adhesion concentration with respect to the entire steel powder. It has been proposed that the impact toughness of the sintered body is ensured by this limitation to a relatively wide range.
- Mo-based alloy steel powders that do not contain Ni or Cu as the main alloying element have been proposed.
- Mo which is a ferrite stabilizing element
- Alloy steel powder has been proposed.
- This alloy steel powder is homogeneous and stable by adapting the particle size distribution to the process of pressure sintering to obtain a high-density sintered body and by not using a diffusion adhesion type alloy element. The organization is said to be obtained.
- Patent Document 4 there is a technique disclosed in Patent Document 4 as an alloy steel powder for powder metallurgy having Mo as a main alloy element.
- This technology proposes an alloy steel powder in which Mo: 0.2-10.0% by mass is diffused and adhered to the surface of an iron-based powder containing Mn of 1.0% by mass or less, or even less than 0.2% by mass of Mo as a pre-alloy.
- the iron-based powder may be atomized iron powder or reduced iron powder, and the average particle size is preferably 30 to 120 ⁇ m.
- this alloy steel powder is not only excellent in compressibility but is said to be able to obtain a high-density and high-strength sintered part.
- Patent Document 3 has a disadvantage that a high molding density cannot be obtained because the Mo addition amount is relatively high at 1.8% by mass or more and the compressibility is low. For this reason, when a normal sintering process (single sintering without pressing) is applied, only a low sintered density can be obtained, and sufficient strength and toughness cannot be obtained.
- Patent Document 4 is adapted to a powder metallurgy process including recompression and re-sintering of a sintered body. That is, the usual sintering method has a problem that the above-described effects are not so much exhibited. As described above, according to the inventors' research, it is difficult to achieve both high strength and toughness in a sintered body using any of the alloy steel powders described in Patent Documents 1 to 4 described above. I understood.
- the present invention has been developed in view of the above-described current situation, overcomes the problems of the prior art described above, and is an alloy steel for powder metallurgy capable of achieving both high strength and toughness of a sintered body using the same.
- the object is to propose a powder together with a method for producing an iron-based sintered body using the powder.
- the inventors have made various studies on the alloy components of the iron-based powder and the means for adding the same, and as a result, have obtained the following knowledge. That is, in alloy steel powder in which Mo is diffused and adhered to the surface of the iron-base powder, when reduced iron powder is used for the iron-base powder and a predetermined amount of Cu powder and graphite powder are added, the alloy steel powder is formed and sintered. When sintered, the reduced iron powder improves the sinterability and the pores of the sintered body become finer. At the same time, the sintering is accelerated by adding copper powder, and the solid solution strengthening and hardenability are improved by adding copper powder and graphite powder. As a result, it was found that both the strength and toughness of the sintered body were improved. The present invention has been made based on the above findings.
- the gist configuration of the present invention is as follows. 1. Alloy steel powder for powder metallurgy with Mo-containing alloy powder adhered to the surface of iron-based powder, The iron-based powder contains reduced iron powder, and Mo contains 0.2 to 1.5% by mass with respect to the total alloy steel powder. Further, Cu powder contains 0.5 to 4.0% by mass with respect to the total alloy steel powder, graphite. Alloy steel powder for powder metallurgy containing 0.1 to 1.0 mass% of each powder.
- Alloy steel powder for powder metallurgy wherein the oxygen content of the iron-based powder described in 1 is 0.2% by mass or less.
- the alloy steel powder for powder metallurgy according to the present invention it is not necessary to use Ni, and since the compressibility is high, a sintered material having both high strength and high toughness even at a normal sintering method. (Iron-based sintered body) can be obtained.
- the alloy steel powder for powder metallurgy according to the present invention is obtained by diffusing and attaching a Mo-containing powder to the surface of an iron-based powder, and the iron-based powder has a mixed powder that is reduced iron powder. It is a feature. Then, by mixing the above-mentioned mixed powder with an appropriate amount of Cu powder and graphite powder, forming a compact and sintering, the pores of the sintered body are effectively miniaturized and the sintering is promoted. It is.
- the inventors consider the reason why the pores of the sintered body are effectively refined and the sintering is promoted by the present invention as follows. Generally, since there are many pores in a sintered body, stress concentrates on the pores, and the strength and toughness of the sintered body tend to decrease. However, in the alloy steel powder for powder metallurgy according to the present invention, when the pores of the sintered body are made fine, the degree of stress concentration is reduced and the sintered neck portion is strengthened.
- % shown below means the mass%, and unless otherwise indicated, means the ratio (mass%) with respect to the whole alloy steel powder for powder metallurgy of the present invention (after diffusion adhesion of the Mo-containing powder).
- reduced iron powder is mainly used as the iron-based powder.
- the reduced iron powder it is preferable to use reduced iron powder obtained by reducing mill scale or iron ore produced during the production of steel. Reduced iron powder has better moldability than atomized iron powder, and it is difficult to form coarse pores by molding.
- the apparent density of the reduced iron powder may be about 1.7 Mg / m 3 to 3.0 Mg / m 3 . More preferably, it is 2.2 to 2.8 Mg / m 3 .
- atomized iron powder or the like may be added to the reduced iron powder within a range that does not impair the strength and toughness of the sintered body. Specifically, if the reduced iron powder in the iron-based powder is 80% or more, it is sufficient for the present invention. More preferably, the reduced iron powder in the iron-based powder: 90% or more.
- the particle size of the reduced iron powder used in the present invention may be one having a maximum particle size of less than 180 ⁇ m, which is generally used for powder metallurgy. That is, powder that has passed through a sieve having an opening diameter of 180 ⁇ m as defined in JIS Z 8801 may be used.
- the oxygen content of the reduced iron powder used in the present invention is 0.3% or less, preferably 0.25% or less, more preferably 0.2% or less. This is because the lower the oxygen content of the reduced iron powder, the better the compressibility, the more the sintering is promoted, and the high strength and high toughness can be obtained. In addition, although it does not specifically limit about the lower limit of oxygen content of reduced iron powder, About 0.1% is preferable.
- the target Mo-containing powder itself may be used, or a Mo compound that can be reduced to the Mo-containing powder may be used.
- the average particle diameter of the Mo raw material powder is 50 ⁇ m or less, preferably 20 ⁇ m or less.
- the average particle diameter is the median diameter (so-called d50).
- Mo-containing powder Mo alloy powder such as pure Mo powder, oxidized Mo powder, or Fe-Mo (ferromolybdenum) powder is advantageously adapted.
- Mo compound Mo carbide, Mo sulfide, Mo nitride and the like are suitable.
- the Mo-containing powder is uniformly attached to the surface of the iron-based powder. If not uniformly adhered, powdered metallurgy alloy steel powder tends to fall off from the iron-based powder surface when pulverized after transportation, or during transportation, etc., so free Mo-containing powder is particularly likely to increase .
- alloy steel powder in such a state is molded and sintered, the dispersed state of carbides tends to segregate. Therefore, in order to increase the strength and toughness of the sintered body, it is preferable to uniformly attach the Mo-containing powder to the surface of the iron-based powder and reduce the free Mo-containing powder generated by dropping off.
- the amount of Mo to be diffused is 0.2 to 1.5%. Below 0.2%, the effect of improving the hardenability is small and the effect of improving the strength is also small. On the other hand, if it exceeds 1.5%, the effect of improving the hardenability is saturated, and the non-uniformity of the structure of the sintered body is rather increased, so that high strength and toughness cannot be obtained. Therefore, the amount of Mo to be diffused is 0.2 to 1.5%. Preferably it is 0.3 to 1.0% of range.
- Cu powder is added to the alloy steel powder for powder metallurgy in the present invention in the range of 0.5 to 4.0% and graphite powder in the range of 0.1 to 1.0%, and mixed.
- Cu is a useful element that enhances the strength of the sintered part by strengthening the solid solution of the iron-based powder and improving the hardenability. Further, the Cu powder melts during sintering to form a liquid phase, and has an effect of fixing the iron-based powder particles to each other. However, if the addition amount is less than 0.5%, the effect of addition is poor. On the other hand, if it exceeds 4.0%, not only the strength improvement effect of the sintered part is saturated but also machinability is reduced. Therefore, Cu powder is limited to the range of 0.5 to 4.0%. Preferably it is 1.0 to 3.0% of range. The average particle size of the Cu powder is preferably about 50 ⁇ m or less.
- C which is the main component of graphite powder, is a useful element that dissolves in iron during sintering and enhances the strength of sintered parts by strengthening solid solution and improving hardenability.
- the amount of graphite to be added may be small, but the above effect cannot be obtained unless the amount is less than 0.1%.
- carburizing heat treatment is not performed at the time of sintering, graphite powder is added. However, if it exceeds 1.0%, hypereutectoid precipitation occurs, so that cementite is precipitated and strength is reduced. Therefore, the graphite powder is limited to the range of 0.1 to 1.0%.
- the average particle size of the graphite powder is preferably about 50 ⁇ m or less.
- the balance of the alloy steel powder is iron and impurities.
- impurities contained in the alloy steel powder include C, O, N, and S. These are C: 0.02% or less, O: 0.3% or less, N: 0.004% or less, S: 0.03% or less, respectively. If so, there is no problem.
- O is preferably 0.25% or less. This is because if the amount of impurities exceeds this range, the compressibility of the alloy steel powder is lowered, and it becomes difficult to perform compression molding into a preform having a sufficient density.
- Mo raw material powder which is a raw material for reduced iron powder and Mo-containing powder
- the iron-based powder is so-called reduced iron powder.
- Mo raw material powder is advantageously adapted to Mo alloy powder such as Mo pure metal powder, oxidized Mo powder, or Fe—Mo (ferromolybdenum) powder.
- Mo compound Mo carbide, Mo sulfide, Mo nitride and the like are suitable.
- Mo amount is 0.2 to 1.5% with respect to alloy steel powder for powder metallurgy.
- a mixing method For example, it can carry out using a Henschel mixer, a cone type mixer, etc.
- the powder metallurgy of the present invention is obtained by holding this mixture at a high temperature, diffusing and bonding Mo into iron at the contact surface between the iron-based powder and the Mo raw material powder, and then adding Cu powder and graphite powder. Alloy steel powder is obtained.
- the atmosphere for the heat treatment a reducing atmosphere or a hydrogen-containing atmosphere is suitable, and a hydrogen atmosphere is particularly suitable.
- heat treatment may be applied under vacuum.
- a suitable heat treatment temperature is in the range of 800 to 1000 ° C.
- the addition method of Cu powder and graphite powder can also depend on a conventional method.
- the iron-based powder and the Mo-containing powder are usually sintered and solidified, and thus pulverized and classified to a desired particle size. . Furthermore, you may anneal as needed.
- the particle size of the alloy steel powder for powder metallurgy is preferably 180 ⁇ m or less.
- an additive for improving characteristics can be added according to the purpose.
- Ni powder can be added, and for the purpose of improving the machinability of the sintered body, addition of a machinability improving powder such as MnS can be appropriately performed.
- a powdery lubricant can be mixed. It can also be molded by applying or adhering a lubricant to the mold.
- a lubricant any of metal soaps such as zinc stearate and lithium stearate, amide waxes such as ethylenebisstearic acid amide, and other known lubricants can be suitably used.
- the amount is preferably about 0.1 to 1.2 parts by mass with respect to 100 parts by mass of alloy steel powder for powder metallurgy.
- the temperature at the time of pressurization is preferably in the range of room temperature (about 20 ° C.) to about 160 ° C.
- the sintering of the alloy steel powder for powder metallurgy according to the present invention is preferably performed in a temperature range of 1100 to 1300 ° C. This is because if the sintering temperature is less than 1100 ° C., the sintering does not proceed and the characteristics of the sintered body deteriorate, whereas if it exceeds 1300 ° C., the life of the sintering furnace is shortened. Because it becomes economically disadvantageous.
- the sintering time is preferably in the range of 10 to 180 minutes.
- the obtained sintered body can be subjected to strengthening treatment such as carburizing quenching, bright quenching, induction quenching, and carbonitriding as required, but according to the present invention even when the strengthening treatment is not performed.
- the sintered body using the alloy steel powder for powder metallurgy has improved strength and toughness compared to a conventional sintered body (one not subjected to strengthening treatment). In addition, what is necessary is just to give each reinforcement
- Mo oxide powder (average particle size: 10 ⁇ m) is added to these iron-based powders at a specified ratio, mixed for 15 minutes with a V-type mixer, and then heat-treated in a hydrogen atmosphere with a dew point of 30 ° C (holding temperature: 900 ° C) Holding time: 1 h), an alloy steel powder for powder metallurgy in which a predetermined amount of Mo shown in Table 1 was diffused and adhered to the surface of the iron-based powder was manufactured. Next, copper powder (average particle size 30 ⁇ m) and graphite powder (average particle size: 5 ⁇ m) in the amounts shown in Table 1 were added to the alloy steel powder for powder metallurgy, and the obtained alloy steel was further added.
- the obtained sintered body was processed into a round bar tensile test piece having a parallel part diameter of 5 mm in order to be subjected to a tensile test specified by JIS Z 2241.
- a tensile test specified by JIS Z 2241 JIS Z 2241.
- Charpy impact test specified in JIS Z 2242 after carburizing with a carbon potential of 0.8 mass% (holding temperature: 870 ° C, holding time: 60 minutes) in the as-sintered shape, What performed quenching (60 degreeC, oil quenching) and tempering (holding temperature: 180 degreeC, holding time: 60 minutes) was used.
- Table 1 shows the results of a 4Ni material (4Ni-1.5Cu-0.5Mo) as a conventional material. It can be seen that the inventive example can obtain the same or better characteristics than the conventional 4Ni material without using Ni.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
また、本発明は、上記の粉末冶金用合金鋼粉を用いて製造した強度および靭性に優れた鉄基焼結体の製造方法に関するものである。
さらに、最近では、部品の小型化、軽量化のために、粉末冶金製品の強度の向上が強く要望されていて、特に、鉄基粉末製品(鉄基焼結体)に対する高強度化の要求が強い。
(1)純鉄粉に各合金元素粉末を配合した混合粉、
(2)完全に各元素を合金化した予合金鋼粉、
(3)純鉄粉や予合金鋼粉の表面に、各合金元素粉末を部分的に拡散させた拡散付着合金鋼粉等が知られている。
このために、上記純鉄粉に各合金元素粉末を配合した混合粉は、近年の特性安定化、高強度化の要求に対応できずに、その使用量が減少してきている。
したがって、合金元素の偏析を防止しながら、純鉄粉並みの高圧縮性を確保できると同時に、部分的な合金濃化相が分散する複合組織となるため、基地強化の可能性があり、高強度用の拡散付着合金鋼粉として開発が行われている。
この技術では、さらに、各拡散付着元素について、粒子径:44μm以下の微粒粉に対する拡散付着濃度が、その鉄鋼粉全体に対する拡散付着濃度の0.9~1.9倍の範囲内に収まるように制御することが提案されており、この比較的広い範囲への限定によって焼結体の衝撃靭性が確保されるとされている。
以上のように、発明者らの研究では、上記した特許文献1~4に記載のいずれの合金鋼粉を用いた焼結体でも、強度と靭性を高いレベルで両立させるのは困難であることが分かった。
すなわち、鉄基粉末表面にMoを拡散付着させた合金鋼粉において、その鉄基粉末に還元鉄粉を用いると共に、所定量のCu粉および黒鉛粉を添加すると、この合金鋼粉を成形、焼結した場合、還元鉄粉の焼結性が良くなって焼結体の気孔が微細化すると同時に、銅粉添加による焼結促進、ならびに銅粉、黒鉛粉添加による固溶強化、焼入れ性向上効果により、焼結体の強度と靭性が共に向上するという知見を得た。
本発明は、上記知見に基づいてなされたものである。
1.鉄基粉末の表面に、Mo含有合金粉末を付着させた粉末冶金用合金鋼粉であって、
上記鉄基粉末が還元鉄粉を含み、かつMoが上記合金鋼粉全体に対する比率で0.2~1.5質量%含み、さらに、上記合金鋼粉全体に対する比率で、Cu粉を0.5~4.0質量%、黒鉛粉を0.1~1.0質量%それぞれ含有している粉末冶金用合金鋼粉。
本発明の粉末冶金用合金鋼粉は、鉄基粉末の表面に、Mo含有粉末を拡散付着させたものであって、上記鉄基粉末が還元鉄粉である混合粉を有していることを特徴としている。そして、上記した混合粉を、適量のCu粉および黒鉛粉と混合し、成形体にして、焼結することによって、焼結体の気孔が効果的に微細化すると共に、焼結が促進されるのである。
一般に、焼結体には気孔が多く存在するため、気孔部分に応力が集中し、焼結体の強度や、靱性が低下する傾向にある。しかしながら、本発明に従う粉末冶金用合金鋼粉では、焼結体の気孔が微細化されることによって、応力集中の度合いが緩和されると共に、焼結ネック部が強靭化されることになる。
すなわち、気孔分布およびMo分布の制御、ならびにCuによる焼結促進効果によって、本発明では、焼結体の高強度と高靭性の両立が可能になったものと考えられる。
本発明において、鉄基粉末として、還元鉄粉を主体として使用する。還元鉄粉は、鋼材の製造時に生成するミルスケールや鉄鉱石を還元して得られた還元鉄粉を用いるのが好ましい。還元鉄粉は、アトマイズ鉄粉に比べ、成形性が良く、成形により粗大な気孔ができにくい。さらに焼結性も良いため、粗大な気孔が少なく、気孔が微細化することによって、焼結体の強度や靭性が向上するため好ましい。なお、還元鉄粉の見掛密度としては、1.7Mg/m3から3.0Mg/m3程度であればよい。より好ましくは2.2~2.8Mg/m3 である。
したがって、焼結体の強度、靭性を高めるためには、鉄基粉末の表面にMo含有粉末を均一に付着させ、脱落などにより発生する遊離状態のMo含有粉末を低減することが好ましい。
しかしながら、添加量が0.5%に満たないとその添加効果に乏しく、一方4.0%を超えると、焼結部品の強度向上効果が飽和するばかりでなく、切削性の低下を招く。したがって、Cu粉は0.5~4.0%の範囲に限定する。好ましくは1.0~3.0%の範囲である。なお、Cu粉の平均粒径は、50μm以下程度が好ましい。
まず、鉄基粉末として還元鉄粉およびMo含有粉末の原料であるMo原料粉末を準備する。
鉄基粉末は、いわゆる還元鉄粉である。また、Mo原料粉末は、上述したとおり、Moの純金属粉末をはじめとして、酸化Mo粉末、あるいはFe-Mo(フェロモリブデン)粉末などのMo合金粉末が有利に適合する。また、Moの化合物としては、Mo炭化物、Mo硫化物、Mo窒化物などが好適である。
ここに、熱処理の雰囲気としては、還元性雰囲気や水素含有雰囲気が好適であり、とりわけ水素雰囲気が適している。なお、真空下で熱処理を加えても良い。また、好適な熱処理の温度は800~1000℃の範囲である。さらに、Cu粉および黒鉛粉の添加方法も常法に依ることができる。
本発明の粉末冶金用合金鋼粉を用いた加圧成形に際しては、他に、粉末状の潤滑剤を混合することができる。また、金型に潤滑剤を塗布あるいは付着させて成形することもできる。いずれの場合であっても、潤滑剤として、ステアリン酸亜鉛やステアリン酸リチウムなどの金属石鹸、エチレンビスステアリン酸アミドなどのアミド系ワックスおよびその他公知の潤滑剤のいずれもが好適に用いることができる。なお、潤滑剤を混合する場合は、粉末冶金用合金鋼粉:100質量部に対して、0.1~1.2質量部程度とすることが好ましい。
鉄基粉末には、見掛密度:2.60g/cm3の還元鉄粉、あるいは見掛密度:3.00g/cm3のアトマイズ鉄粉を用いた。これらの鉄基粉末に酸化Mo粉末(平均粒径:10μm)を所定の比率で添加し、V型混合機で15分間混合したのち、露点:30℃の水素雰囲気で熱処理(保持温度:900℃、保持時間:1h)して、鉄基粉末の表面に表1に示す所定量のMoを拡散付着させた粉末冶金用合金鋼粉を製造した。
ついで、これらの粉末冶金用合金鋼粉に対して、表1に示した量の銅粉(平均粒径30μm)および黒鉛粉(平均粒径:5μm)を添加し、さらに、得られた合金鋼粉の混合粉:100質量部に対しエチレンビスステアリン酸アミドを0.6質量部添加したのち、V型混合機で15分間混合した。その後、密度:7.0g/cm3に加圧成形して、長さ:55mm、幅:10mm、厚さ:10mmのタブレット状成形体を作製した。
このタブレット状成形体に焼結を施して、焼結体とした。この焼結は、プロパン変成ガス雰囲気中にて、焼結温度:1130℃、焼結時間:20分の条件で行った。
得られた焼結体を、JIS Z 2241で規定される引張試験に供するため、平行部径:5mmの丸棒引張試験片に加工した。また、JIS Z 2242で規定されるシャルピー衝撃試験用には、焼結したままの形状で、カーボンポテンシャル0.8mass%のガス浸炭(保持温度:870℃、保持時間:60分)を行った後、焼入れ(60℃、油焼入れ)および焼戻し(保持温度:180℃、保持時間:60分)を行ったものを用いた。
なお、表1には、従来材として4Ni材(4Ni-1.5Cu-0.5Mo)の結果を合わせて示した。発明例は、Niを用いずとも、従来の4Ni材と同等以上の特性が得られることが分かる。
Claims (3)
- 鉄基粉末の表面に、Mo含有合金粉末を付着させた粉末冶金用合金鋼粉であって、
上記鉄基粉末が還元鉄粉を含み、かつMoが上記合金鋼粉全体に対する比率で0.2~1.5質量%含み、さらに、上記合金鋼粉全体に対する比率で、Cu粉を0.5~4.0質量%、黒鉛粉を0.1~1.0質量%それぞれ含有している粉末冶金用合金鋼粉。 - 請求項1に記載の鉄基粉末の酸素含有量が0.2質量%以下である粉末冶金用合金鋼粉。
- 還元鉄粉を含む鉄基粉末とMo原料粉末を、粉末冶金用合金鋼粉に対して、Mo量:0.2~1.5質量%で混合した後、熱処理により前記鉄基粉末の表面にMoを拡散付着させ、さらに、前記合金鋼粉全体に対する比率でCu粉:0.5~4.0質量%および黒鉛粉:0.1~1.0質量%を添加し、混合した後、加圧成形処理、焼結処理を順次行って鉄基焼結体とする鉄基焼結体の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480032484.6A CN105263653A (zh) | 2013-06-07 | 2014-04-25 | 粉末冶金用合金钢粉以及铁基烧结体的制造方法 |
KR1020157035083A KR20160006769A (ko) | 2013-06-07 | 2014-04-25 | 분말 야금용 합금강분 및 철기 소결체의 제조 방법 |
US14/787,882 US10265766B2 (en) | 2013-06-07 | 2014-04-25 | Alloy steel powder for powder metallurgy and method of producing iron-based sintered body |
SE1551574A SE540608C2 (en) | 2013-06-07 | 2014-04-25 | Alloy steel powder for powder metallurgy and method of producing iron-based sintered body |
CA2911031A CA2911031C (en) | 2013-06-07 | 2014-04-25 | Alloy steel powder for powder metallurgy and method of producing iron-based sintered body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-120995 | 2013-06-07 | ||
JP2013120995A JP6227903B2 (ja) | 2013-06-07 | 2013-06-07 | 粉末冶金用合金鋼粉および鉄基焼結体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014196123A1 true WO2014196123A1 (ja) | 2014-12-11 |
WO2014196123A8 WO2014196123A8 (ja) | 2015-10-22 |
Family
ID=52007784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/002343 WO2014196123A1 (ja) | 2013-06-07 | 2014-04-25 | 粉末冶金用合金鋼粉および鉄基焼結体の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10265766B2 (ja) |
JP (1) | JP6227903B2 (ja) |
KR (1) | KR20160006769A (ja) |
CN (1) | CN105263653A (ja) |
CA (1) | CA2911031C (ja) |
SE (1) | SE540608C2 (ja) |
WO (1) | WO2014196123A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5949952B2 (ja) * | 2013-09-26 | 2016-07-13 | Jfeスチール株式会社 | 鉄基焼結体の製造方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106687702B (zh) * | 2014-09-30 | 2019-11-01 | Ntn株式会社 | 滑动部件及其制造方法 |
JP6222189B2 (ja) | 2014-12-05 | 2017-11-01 | Jfeスチール株式会社 | 粉末冶金用合金鋼粉および焼結体 |
WO2016088333A1 (ja) * | 2014-12-05 | 2016-06-09 | Jfeスチール株式会社 | 粉末冶金用合金鋼粉および焼結体 |
CN108025357B (zh) * | 2015-09-18 | 2020-03-03 | 杰富意钢铁株式会社 | 粉末冶金用混合粉、烧结体及烧结体的制造方法 |
CN105886929A (zh) * | 2016-06-14 | 2016-08-24 | 芜湖三刀材料科技有限公司 | 一种铁基镶件材料及制备方法 |
JP6627856B2 (ja) * | 2017-02-02 | 2020-01-08 | Jfeスチール株式会社 | 粉末冶金用混合粉および焼結体の製造方法 |
WO2018142778A1 (ja) * | 2017-02-02 | 2018-08-09 | Jfeスチール株式会社 | 粉末冶金用混合粉、焼結体、および焼結体の製造方法 |
CN107297495A (zh) * | 2017-06-20 | 2017-10-27 | 江苏军威电子科技有限公司 | 一种电动工具用混合粉及其制备方法 |
JP6514421B1 (ja) * | 2017-10-30 | 2019-05-15 | Tpr株式会社 | 鉄基焼結合金製バルブガイドおよびその製造方法 |
CN111432957B (zh) * | 2017-12-05 | 2022-03-29 | 杰富意钢铁株式会社 | 合金钢粉 |
KR102325463B1 (ko) * | 2017-12-05 | 2021-11-11 | 제이에프이 스틸 가부시키가이샤 | 부분 확산 합금강 분말 |
KR102383517B1 (ko) * | 2018-03-26 | 2022-04-08 | 제이에프이 스틸 가부시키가이샤 | 분말 야금용 합금 강분 및 분말 야금용 철기 혼합 분말 |
KR102383515B1 (ko) * | 2018-03-26 | 2022-04-08 | 제이에프이 스틸 가부시키가이샤 | 분말 야금용 합금 강분 및 분말 야금용 철기 혼합 분말 |
CN113677459A (zh) * | 2019-04-05 | 2021-11-19 | 杰富意钢铁株式会社 | 粉末冶金用铁基混合粉末和铁基烧结体 |
KR20210029582A (ko) * | 2019-09-06 | 2021-03-16 | 현대자동차주식회사 | 철계 예합금 분말, 철계 확산접합 분말 및 이를 이용하는 분말야금용 철계 합금 분말 |
CN114871424A (zh) * | 2022-05-10 | 2022-08-09 | 辽宁晟钰新材料科技有限公司 | 一种粉末冶金用无镍扩散合金钢粉 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000064001A (ja) * | 1998-08-20 | 2000-02-29 | Kawasaki Steel Corp | 高強度焼結部品用混合粉 |
JP2002146403A (ja) * | 2000-08-31 | 2002-05-22 | Kawasaki Steel Corp | 粉末冶金用合金鋼粉 |
JP2004156063A (ja) * | 2002-11-01 | 2004-06-03 | Jfe Steel Kk | 粉末冶金用鉄基粉末混合物およびその製造方法 |
JP2004232004A (ja) * | 2003-01-29 | 2004-08-19 | Jfe Steel Kk | 面圧疲労特性に優れた鉄系焼結熱処理材料用合金鋼粉 |
JP2005330573A (ja) * | 2003-08-18 | 2005-12-02 | Jfe Steel Kk | 粉末冶金用合金鋼粉 |
JP2006257539A (ja) * | 2004-04-22 | 2006-09-28 | Jfe Steel Kk | 粉末冶金用混合粉体 |
JP2006283177A (ja) * | 2005-04-05 | 2006-10-19 | Toyota Motor Corp | 鉄基焼結合金及びその製造方法 |
JP2011094187A (ja) * | 2009-10-29 | 2011-05-12 | Jfe Steel Corp | 高強度鉄基焼結体の製造方法 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3212876A (en) | 1963-04-22 | 1965-10-19 | Hoganasmetoder Ab | Method for the production of iron powder from sponge iron |
JPS59215401A (ja) | 1983-05-19 | 1984-12-05 | Kawasaki Steel Corp | 粉末冶金用合金鋼粉およびその製造方法 |
JPS61130401A (ja) | 1984-11-28 | 1986-06-18 | Kawasaki Steel Corp | 粉末冶金用合金鋼粉およびその製造方法 |
JPS6366362A (ja) | 1987-05-22 | 1988-03-25 | 倉敷紡績株式会社 | 補強用基布 |
JPH01127602A (ja) | 1987-11-09 | 1989-05-19 | Mitsubishi Metal Corp | 焼結性および成形性にすぐれた粉末冶金用耐摩耗性合金鋼粉末 |
JPH0689365B2 (ja) | 1987-11-27 | 1994-11-09 | 川崎製鉄株式会社 | 粉末冶金用アトマイズ予合金鋼粉 |
JP3215176B2 (ja) | 1992-09-07 | 2001-10-02 | 株式会社東芝 | 文書画像処理装置及び文書画像処理方法 |
SE513498C2 (sv) | 1993-09-01 | 2000-09-18 | Kawasaki Steel Co | Atomiserat stålpulver och sintrat stål med god maskinbearbetbarhet tillverkat därav |
JPH07233401A (ja) | 1993-09-01 | 1995-09-05 | Kawasaki Steel Corp | 切削性および寸法精度に優れたアトマイズ鋼粉および焼結鋼 |
JPH07310101A (ja) | 1994-05-12 | 1995-11-28 | Powder Tec Kk | 焼結含油軸受用還元鉄粉およびその製造方法 |
JP3294980B2 (ja) | 1994-11-28 | 2002-06-24 | 川崎製鉄株式会社 | 切削性に優れた高強度焼結材料用合金鋼粉 |
JPH08199201A (ja) | 1995-01-30 | 1996-08-06 | Kawasaki Steel Corp | 粉末冶金用部分合金化鋼粉の製造方法 |
US6514307B2 (en) | 2000-08-31 | 2003-02-04 | Kawasaki Steel Corporation | Iron-based sintered powder metal body, manufacturing method thereof and manufacturing method of iron-based sintered component with high strength and high density |
JP4060092B2 (ja) | 2002-02-20 | 2008-03-12 | Jfeスチール株式会社 | 粉末冶金用合金鋼粉およびその焼結体 |
CA2476836C (en) | 2003-08-18 | 2009-01-13 | Jfe Steel Corporation | Alloy steel powder for powder metallurgy |
US7384446B2 (en) * | 2004-04-22 | 2008-06-10 | Jfe Steel Corporation | Mixed powder for powder metallurgy |
US20080202651A1 (en) | 2004-11-25 | 2008-08-28 | Jfe Steel Corporation | Method For Manufacturing High-Density Iron-Based Compacted Body and High-Density Iron-Based Sintered Body |
US8086168B2 (en) * | 2005-07-06 | 2011-12-27 | Sandisk Il Ltd. | Device and method for monitoring, rating and/or tuning to an audio content channel |
JP4923801B2 (ja) | 2005-08-12 | 2012-04-25 | Jfeスチール株式会社 | 高密度鉄基成形体および高強度高密度鉄基焼結体の製造方法 |
CN100441711C (zh) | 2006-08-09 | 2008-12-10 | 海门市常乐粉末冶金厂 | 高强度粉末冶金伞齿轮的制造方法及用于该方法的渗铜剂 |
JP4886543B2 (ja) | 2007-02-09 | 2012-02-29 | 株式会社東芝 | 通信装置および通信方法 |
JP5141136B2 (ja) | 2007-08-20 | 2013-02-13 | Jfeスチール株式会社 | 粉末冶金用原料粉末の混合方法 |
WO2009148402A1 (en) | 2008-06-06 | 2009-12-10 | Höganäs Ab (Publ) | Iron- based pre-alloyed powder |
JP2010053409A (ja) | 2008-08-28 | 2010-03-11 | Sumitomo Electric Ind Ltd | 金属粉末の製造方法および金属粉末、導電性ペースト、積層セラミックコンデンサ |
JP5504971B2 (ja) | 2010-02-26 | 2014-05-28 | Jfeスチール株式会社 | 粉末冶金用混合粉および切削性に優れた金属粉末製焼結体 |
CN101844227B (zh) | 2010-05-19 | 2012-07-25 | 株洲钻石切削刀具股份有限公司 | 硬质合金注射成形用黏结剂的应用 |
JP5585237B2 (ja) | 2010-06-24 | 2014-09-10 | セイコーエプソン株式会社 | 粉末冶金用金属粉末および焼結体 |
JP5552031B2 (ja) | 2010-11-09 | 2014-07-16 | 株式会社神戸製鋼所 | 粉末冶金用混合粉末 |
CN103143704B (zh) | 2013-04-03 | 2014-11-05 | 中南大学 | 一种粉末冶金用含Mn铁基预混合料及其制备方法 |
-
2013
- 2013-06-07 JP JP2013120995A patent/JP6227903B2/ja active Active
-
2014
- 2014-04-25 US US14/787,882 patent/US10265766B2/en active Active
- 2014-04-25 CN CN201480032484.6A patent/CN105263653A/zh active Pending
- 2014-04-25 WO PCT/JP2014/002343 patent/WO2014196123A1/ja active Application Filing
- 2014-04-25 SE SE1551574A patent/SE540608C2/en unknown
- 2014-04-25 CA CA2911031A patent/CA2911031C/en active Active
- 2014-04-25 KR KR1020157035083A patent/KR20160006769A/ko not_active Application Discontinuation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000064001A (ja) * | 1998-08-20 | 2000-02-29 | Kawasaki Steel Corp | 高強度焼結部品用混合粉 |
JP2002146403A (ja) * | 2000-08-31 | 2002-05-22 | Kawasaki Steel Corp | 粉末冶金用合金鋼粉 |
JP2004156063A (ja) * | 2002-11-01 | 2004-06-03 | Jfe Steel Kk | 粉末冶金用鉄基粉末混合物およびその製造方法 |
JP2004232004A (ja) * | 2003-01-29 | 2004-08-19 | Jfe Steel Kk | 面圧疲労特性に優れた鉄系焼結熱処理材料用合金鋼粉 |
JP2005330573A (ja) * | 2003-08-18 | 2005-12-02 | Jfe Steel Kk | 粉末冶金用合金鋼粉 |
JP2006257539A (ja) * | 2004-04-22 | 2006-09-28 | Jfe Steel Kk | 粉末冶金用混合粉体 |
JP2006283177A (ja) * | 2005-04-05 | 2006-10-19 | Toyota Motor Corp | 鉄基焼結合金及びその製造方法 |
JP2011094187A (ja) * | 2009-10-29 | 2011-05-12 | Jfe Steel Corp | 高強度鉄基焼結体の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5949952B2 (ja) * | 2013-09-26 | 2016-07-13 | Jfeスチール株式会社 | 鉄基焼結体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2014196123A8 (ja) | 2015-10-22 |
CA2911031A1 (en) | 2014-12-11 |
KR20160006769A (ko) | 2016-01-19 |
US10265766B2 (en) | 2019-04-23 |
SE1551574A1 (sv) | 2015-12-02 |
JP2014237878A (ja) | 2014-12-18 |
SE540608C2 (en) | 2018-10-02 |
JP6227903B2 (ja) | 2017-11-08 |
CA2911031C (en) | 2018-01-16 |
US20160136727A1 (en) | 2016-05-19 |
CN105263653A (zh) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6227903B2 (ja) | 粉末冶金用合金鋼粉および鉄基焼結体の製造方法 | |
JP5949952B2 (ja) | 鉄基焼結体の製造方法 | |
JP6394768B2 (ja) | 粉末冶金用合金鋼粉および焼結体 | |
JP6146548B1 (ja) | 粉末冶金用混合粉末の製造方法、焼結体の製造方法、および焼結体 | |
JP5929967B2 (ja) | 粉末冶金用合金鋼粉 | |
JP5958144B2 (ja) | 粉末冶金用鉄基混合粉および高強度鉄基焼結体ならびに高強度鉄基焼結体の製造方法 | |
WO2016088333A1 (ja) | 粉末冶金用合金鋼粉および焼結体 | |
JP6515955B2 (ja) | 粉末冶金用混合粉末および鉄基焼結体の製造方法 | |
JP5929084B2 (ja) | 粉末冶金用合金鋼粉ならびに鉄基焼結材料およびその製造方法 | |
WO2018142778A1 (ja) | 粉末冶金用混合粉、焼結体、および焼結体の製造方法 | |
JP4715358B2 (ja) | 粉末冶金用合金鋼粉 | |
JP6044492B2 (ja) | Mo含有海綿鉄およびMo含有還元鉄粉の製造方法 | |
JP2012126972A (ja) | 粉末冶金用合金鋼粉ならびに鉄基焼結材料およびその製造方法 | |
WO2018143088A1 (ja) | 粉末冶金用混合粉、焼結体、および焼結体の製造方法 | |
JP2007100115A (ja) | 粉末冶金用合金鋼粉 | |
WO2023157386A1 (ja) | 粉末冶金用鉄基混合粉および鉄基焼結体 | |
JP2012126971A (ja) | 粉末冶金用合金鋼粉ならびに鉄基焼結材料およびその製造方法 | |
JP2007126695A (ja) | 粉末冶金用合金鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480032484.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14806978 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2911031 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14787882 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157035083 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14806978 Country of ref document: EP Kind code of ref document: A1 |