WO2014192234A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2014192234A1
WO2014192234A1 PCT/JP2014/002499 JP2014002499W WO2014192234A1 WO 2014192234 A1 WO2014192234 A1 WO 2014192234A1 JP 2014002499 W JP2014002499 W JP 2014002499W WO 2014192234 A1 WO2014192234 A1 WO 2014192234A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
region
semiconductor device
manufacturing
conductive layer
Prior art date
Application number
PCT/JP2014/002499
Other languages
English (en)
French (fr)
Inventor
吉本 篤司
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to EP14803515.7A priority Critical patent/EP2919273B1/en
Priority to CN201480003361.XA priority patent/CN104854705B/zh
Priority to JP2015519623A priority patent/JP5994938B2/ja
Publication of WO2014192234A1 publication Critical patent/WO2014192234A1/ja
Priority to US14/730,851 priority patent/US10062761B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device, and more particularly to an improvement of a method of manufacturing an insulated gate semiconductor device having a trench gate structure.
  • IGBT insulated gate bipolar transistor
  • FIG. 24A An example of the structure of this IGBT is shown in FIG. 24, in order to make the drawing easy to see, hatching representing a cross section is partially omitted.
  • the planar gate type IGBT 100 shown in the cross-sectional view of FIG. 24A the planar gate structure is formed by providing the gate electrode 101a along the wafer surface.
  • the gate electrode 203 is formed inside the trench 201 having a shape extending perpendicularly to the depth direction from the stripe planar pattern on the wafer surface.
  • a trench gate structure is formed.
  • an n channel (not shown) is formed along the p-type base region 204 on both side walls inside the trench 201, that is, in the direction perpendicular to the substrate surface. It becomes easy to narrow down. As a result, it becomes easy to make the channel density higher than that of the planar gate type IGBT. Further, since the on-state voltage can be further reduced along with the densification of the channel, the application of the trench gate type IGBT is increasing in recent years.
  • Patent Document 1 discloses a method of dividing a gate electrode in which a polysilicon film uniformly formed in a trench is etched back by anisotropic etching.
  • Patent Document 2 the polysilicon layer filled in the trench is divided at the bottom, and only the polysilicon layer on the side wall close to the n + -type emitter region and the p-type base region side (active mesa region side) A structure is disclosed in which the gate electrode is separated and divided, and the polysilicon layer on the floating mesa region side is connected not to the gate electrode but to the emitter electrode. Furthermore, Patent Document 2 also discloses a method of dividing such a polysilicon layer. That is, the polysilicon layer is formed to a thickness that does not completely fill the inside of the trench. While leaving the polysilicon layer on the substrate surface, the oxide film is used as a mask to cut the polysilicon layer at the bottom of the trench. In this method, the polysilicon layer in the trench is filled with an oxide film or the like to insulate and isolate the polysilicon layers on both side walls from each other, and then the lead portion with the polysilicon layer on the substrate surface is formed.
  • 25 to 34 are main-portion cross-sectional views showing the manufacturing process of the conventional trench gate type IGBT in order of steps.
  • a trench 302 is formed in the vertical direction from the surface of a silicon substrate 301 by anisotropic plasma etching such as reactive ion etching (RIE) known in the art.
  • RIE reactive ion etching
  • gate oxide film 303 a is formed in trench 302.
  • a doped polysilicon layer 304 is formed in the trench 302 by, for example, chemical vapor deposition (CVD) with a thickness that does not fill the trench 302. For example, for a trench width of 2 ⁇ m, a doped polysilicon layer 304 about 0.5 ⁇ m thick is formed.
  • CVD chemical vapor deposition
  • doped polysilicon layer 304 on the surface of silicon substrate 301 and at the bottom of trench 302 is removed as shown in FIG.
  • the doped polysilicon layer 304 separated in a shape stuck along both side wall portions of the trench 2 remains.
  • doped polysilicon layer 304 formed along the inner wall surface of trench 302 is divided into two doped polysilicon electrodes 304 a and 304 b opposed to each other with a gap on the side wall in the width direction of trench 302. Be done.
  • the gate oxide film 303a on the surface of the silicon substrate 301 is selectively removed by, for example, a chemical mechanical polishing (CMP) method.
  • CMP chemical mechanical polishing
  • the photoresist 314a formed by photolithography is used as a mask from the surface of the silicon substrate 301. Ion implantation of boron (B) into the inside. Thereafter, the photoresist 314a is removed, and then heat treatment is performed to activate the ion-implanted boron, whereby the p-type base region 307 (see FIG. 31) is formed.
  • n + -type emitter region 308 As shown in FIG. 31, phosphorous (P) is ion-implanted from the surface of the silicon substrate 301 using the photoresist 314b formed by photolithography as a mask. Thereafter, the photoresist 314 b is removed, and heat treatment is performed to activate the ion-implanted phosphorus, whereby an n + -type emitter region 308 is formed as shown in FIG.
  • the p-type base region 307 and the n + -type emitter are formed in the mesa-like silicon substrate portion between the adjacent trenches 302 by two ion implantations.
  • Region 308 is formed.
  • the inside of the trench 302 is filled with a resist (photoresists 314 a and 314 b) to prevent the ion implantation to the bottom of the trench 302 where the gate oxide film 303 a is exposed.
  • a highly buried oxide film 303c such as a high temperature oxide film (HTO) or tetra-ethoxy silane (TEOS) is used to form an inside of the trench 2, ie, between two doped polysilicon electrodes.
  • HTO high temperature oxide film
  • TEOS tetra-ethoxy silane
  • doped polysilicon layer 304 is formed on both side walls in trench 302 through gate oxide film 303a, respectively, on the side of doped polysilicon electrode 304a on the active mesa region 305 side and on the floating mesa region 306 side.
  • a trench gate structure is formed divided into the doped polysilicon electrode 304b.
  • the p type base region 307 and the n + type emitter region 308 are selectively ion implanted.
  • a photolithography process is performed to form on a predetermined region of the surface of silicon substrate 301 by the above.
  • the photoresists 314a and 314b enter the recess of the narrow trench 302.
  • the photoresists 314a and 314b in the trench 302 need to be removed after ion implantation, since the width of the trench 302 is as narrow as about 2 ⁇ m, complete removal of the hardened photoresist 314a and 314b is not easy.
  • the remaining photoresists 314a and 314b become a source of contamination in a later step, which is one of the causes of a decrease in the yield rate.
  • the present invention has been made to solve the above-mentioned problems. That is, the present invention is to provide a method of manufacturing a semiconductor device having a process in which no photoresist remains in a trench.
  • a method of manufacturing a semiconductor device includes the steps of: forming a trench in a depth direction from a surface of a semiconductor substrate of a first conductivity type; And forming the conductive layer in the trench, dividing the conductive layer into the gate electrode and the wiring layer in the trench facing each other, and forming the second insulating layer between the gate electrode and the wiring layer in the trench.
  • a step of filling with a film a step of introducing an impurity of the second conductivity type into the entire surface of the semiconductor substrate to form a channel formation region of the second conductivity type, a surface opening of a trench to be a part of the channel formation region And selectively forming a main electrode region of the first conductivity type in a region in contact with the portion.
  • the process when manufacturing a semiconductor device having two conductors divided to face each other with a gap on the side wall of the trench in the trench, the process has no photoresist remaining in the trench.
  • a method of manufacturing a semiconductor device can be provided.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a main-portion cross-sectional view for illustrating the manufacturing process flow of the semiconductor device according to the first embodiment of the present invention. It is a principal part perspective view of the semiconductor device concerning a 1st embodiment of the present invention.
  • the “main electrode region” means a semiconductor region of low resistivity, which is one of the emitter region and the collector region in the IGBT.
  • FET field effect transistor
  • SIT electrostatic induction transistor
  • the “second main electrode region” is a semiconductor region which is either the emitter region or the collector region which does not become the first main electrode region in the IGBT, and in the FET and SIT is the semiconductor region which is the first main electrode region. It means a semiconductor region which becomes one of a source region and a drain region which are not necessary.
  • the “first main electrode area” will be described, so the “first main electrode area” will be referred to as “main electrode area” for the sake of convenience.
  • the first conductivity type is n-type and the second conductivity type is p-type will be exemplarily described, but the conductivity types are selected in reverse relation
  • the first conductivity type may be p-type
  • the second conductivity type may be n-type.
  • electrons or holes are the majority carriers in the layer or region having n or p.
  • + and ⁇ attached to n and p mean that the semiconductor regions have higher or lower impurity concentrations, respectively, as compared to semiconductor regions to which + and ⁇ are not attached.
  • the conductive layer may be a refractory metal such as tungsten (W) or molybdenum (Mo), a silicide of the refractory metal, or a polycide film of a composite film of a silicide and doped polysilicon.
  • the semiconductor device for example, a first conductivity type made of monocrystalline silicon (n - -type) trench gate type that mainly the semiconductor substrate 1 of It is an IGBT.
  • An active mesa region 5 and a floating mesa region 6 partitioned by the trench 2 are formed on the surface of the semiconductor substrate 1.
  • a plurality of active mesa regions 5 and floating mesa regions 6 are alternately arranged in the width direction (short direction) orthogonal to the longitudinal direction of the trench 2.
  • the transistor cell mainly includes the trench 2, the gate insulating film 3a as the first insulating film, the gate electrode 4a, the channel forming region 7 of the first conductivity type (p type), and the main of the first conductivity type (n + type). Electrode region 8, buffer layer 11 of first conductivity type (n.sup. + Type), collector region (second main electrode region) 12 of second conductivity type ( p.sup. Type), collector electrode (second main electrode) 13, etc. It has a configuration.
  • the “channel formation region 7” means a base region in the IGBT, but in a semiconductor device other than the IGBT, it means a region in which a channel is formed on the surface equivalent to the base region of the IGBT.
  • the “main electrode region 8” means the emitter region of the IGBT as described at the beginning.
  • Trench 2 extends from the surface of semiconductor substrate 1 in the depth direction.
  • the trenches 2 are formed, for example, in a stripe parallel plane pattern with a width of 2 ⁇ m and a depth of about 5 ⁇ m to 10 ⁇ m.
  • the trench 2 is formed by dry etching such as RIE, for example.
  • a channel is formed under the control of the voltage applied to the gate electrode 4a on the surface of the channel forming region 7 which is the position of the side wall of the trench 2 opposed to the gate electrode 4a via the gate insulating film 3a.
  • the gate insulating film 3 a is formed along the inner wall of the trench 2 and is formed of, for example, a silicon dioxide film (SiO 2 ) manufactured by subjecting the semiconductor substrate 1 to a thermal oxidation process.
  • a silicon oxide film or a silicon nitride (Si 3 N 4 ) film formed by a chemical vapor deposition (CVD) method or a laminated film of these can be used. It is preferable to use a silicon oxide film by a thermal oxidation method which is advantageous for compactness in a power device (power semiconductor device) which is required to
  • the FET it may be a MOS type in which the gate insulating film is an oxide film or a MIS type in which the gate insulating film is an insulating film such as a silicon oxide film or a silicon nitride film or a laminated film thereof.
  • the gate electrode 4 a is formed on the side wall of the active mesa region 5 in the trench 2 via the gate insulating film 3 a.
  • Channel formation region 7 is provided on the surface of semiconductor substrate 1 in active mesa region 5.
  • Main electrode region 8 is formed in active mesa region 5 in a region in contact with the surface opening of trench 2 which is a part of channel formation region 7.
  • the buffer layer 11 and the collector region 12 are formed on the back surface opposite to the front surface of the semiconductor substrate 1.
  • Collector electrode 13 is formed on the back surface of semiconductor substrate 1 so as to be in contact with collector region 12.
  • a channel forming region 7 is formed on the surface of the floating mesa region 6 as in the active mesa region 5. Unlike the active mesa region 5, the main electrode region 8 is not formed in the channel formation region 7 of the floating mesa region 6.
  • An in-trench interconnection layer 4b is formed on the side wall of the floating mesa region 6 in the trench 2 via the gate insulating film 3a. The in-trench interconnection layer 4b is electrically connected to an emitter electrode 10 described later for the purpose of reducing the feedback capacitance.
  • the gate electrode 4 a and the in-trench interconnection layer 4 b are formed of, for example, a low specific resistance doped polysilicon layer to which an impurity is added as the conductive layer 4.
  • the gate electrode 4a and the in-trench interconnection layer 4b are formed in the trench 2 by dividing the conductive layer 4 into two opposing conductors (interconnection layers) on the side wall in the width direction of the trench 2 with a gap. Be done.
  • Gate electrode 4a and in-trench interconnection layer 4b are electrically insulated and separated by an oxide film 3e as a second insulating film filled in the gap between these electrodes.
  • Oxide film 3 e is also formed on the surface of semiconductor substrate 1.
  • An emitter electrode 10 is formed on the surface of the semiconductor substrate 1 via an oxide film 3e as an insulating film. Emitter electrode 10 is electrically connected to each of channel formation region 7 and main electrode region 8 through an opening 3 h formed in oxide film 3 e.
  • the surface pattern of main electrode region 8 is a pattern contacting along the surface opening of trench 2, but as shown in FIGS. 1 and 15, it is not a continuous pattern but a predetermined surface of the substrate between trenches 2. It is also preferable to have a structure formed at intervals.
  • the area where the main electrode area 8 is formed is the active mesa area 5, and the area where the main electrode area 8 is not formed is the floating mesa area 6.
  • the depth of the channel forming region 7 in both these regions 5 and 6 may be the same depth as shown in FIGS. 9 and 10, but in order to reduce the electric field strength at the bottom of the trench 2, the depth of the floating mesa region 6 is It is also preferable to make the depth of the channel formation region 7 deeper than the trench 2 (not shown).
  • the semiconductor substrate 1 shown in FIG. 2 is prepared.
  • a trench 2 extending in the depth direction, for example, the vertical direction from the surface of the semiconductor substrate 1 is formed.
  • the trench 2 is formed by dry etching such as RIE, for example.
  • active mesa region 5 and floating mesa region 6 partitioned by trench 2 are formed on the surface of semiconductor substrate 1.
  • a gate insulating film 3 a made of a silicon dioxide film is formed inside the trench 2 as a first insulating film by, eg, thermal oxidation.
  • a doped polysilicon layer having a reduced specific resistance is formed as a conductive layer 4 in the trench 2 with a thickness such that the trench 2 is completely filled.
  • a conductive layer 4 of about 2.5 ⁇ m in thickness is formed.
  • the conductive layer 4 is formed by, for example, a CVD method.
  • the conductive layer 4 is etched back by dry etching such as RIE to selectively remove the conductive layer 4 on the surface of the semiconductor substrate 1 and on the trench 2 as shown in FIG.
  • gate insulating film 3a on the surface of semiconductor substrate 1 is selectively removed by wet etching or the like to expose the surface of semiconductor substrate 1.
  • gate insulating film 3 a and conductive layer 4 are selectively embedded only in trench 2, and the surface of semiconductor substrate 1 becomes a substantially flat surface.
  • a channel formation region 7 of the second conductivity type (p type) and a main electrode region 8 of the first conductivity type (n +) are formed on the surface of the semiconductor substrate 1 between adjacent trenches 2 by photolithography and ion implantation.
  • boron (B) ions are implanted as impurity ions of the second conductivity type on the entire surface of the semiconductor substrate 1 as shown in FIG.
  • Ion implantation can be performed on the entire surface.
  • channel formation region 7 to which the second conductivity type impurity is added by ion implantation as shown in FIG. And an active mesa region 5 is defined therebetween.
  • channel formation region 7 is also formed in floating mesa region 6. The surface of the channel forming region 7 facing the side wall of the trench 2 is a portion where a channel is formed.
  • the photoresist 14 formed by photolithography is used as a mask for impurity ion implantation, and phosphorus (P), for example, is used as impurity ions of the first conductivity type. Selectively inject ions.
  • the photoresist 14 is used as a mask for impurity ion implantation in this ion implantation, since the inside of the trench 2 is entirely filled with the conductive layer 4, the photoresist enters the trench 2, and after the ion implantation Removal of the photoresist is not difficult.
  • main electrode region 8 to which phosphorus is added as an impurity becomes an active mesa region 5 as shown in FIG. It is formed inside of the channel formation region 7.
  • main electrode region 8 is not formed in floating mesa region 6.
  • channel formation region 7 and main electrode region 8 are formed on the surface of active mesa region 5 without leaving photoresist residue in trench 2. Can be formed.
  • the main electrode region 8 is formed on the surface layer in the channel formation region 7.
  • an oxide film 3b is deposited on the surface of the semiconductor substrate 1 as an insulating film by, for example, the CVD method.
  • an opening 3d is formed in the oxide film 3b.
  • the openings 3 d are formed in a stripe pattern in the same manner as the stripe pattern of the trench 2.
  • the remaining oxide film 3b is used as an etching mask, and the central portion of the conductive layer 4 embedded in the trench 2 is filled through the opening 3d of the stripe pattern of the oxide film 3b, in other words, the trench 2 is filled.
  • the conductive layer 4 is removed from the surface to the bottom of the trench 2 at the center in the width direction of the trench 2 by highly directional dry etching such as RIE or ion milling to form a hole 9 as shown in FIG.
  • conductive layer 4 filled in trench 2 is formed on the side wall in the width direction of trench 2 and includes two conductors facing each other through the gap formed by hole 9, ie, gate electrode 4a It is separated and divided into the wiring layer 4b in the trench.
  • the gate electrode 4a is formed on the side wall in the trench 2 of the active mesa region 5 via the gate insulating film 3a, and is used as a gate electrode of the trench gate type IGBT.
  • the in-trench interconnection layer 4b is formed on the side wall of the floating mesa region 6 in the trench 2 via the gate insulating film 3a, and is electrically insulated from the gate electrode 4a and will be described later for the purpose of reducing feedback capacitance. It is electrically connected to the emitter electrode 10.
  • the second insulating film highly buried oxide such as high temperature oxide film (HTO), organic silicon compound, phosphosilicate glass (PSG), boron doped phosphosilicate glass (BPSG), etc.
  • HTO high temperature oxide film
  • organic silicon compound organic silicon compound
  • PSG phosphosilicate glass
  • BPSG boron doped phosphosilicate glass
  • TCTS tetra-ethoxy-silane
  • OMCTS octa-methyl-cyclo-tetra-siloxane
  • TPOS tetra-propoxy-silane
  • TMC tetra-methyl-cyclo-siloxane
  • the insulating film on the channel formation region 7 and the main electrode region 8, namely, the oxide film 3c and the oxide film 3b are selectively removed to form an opening 3h as shown in FIG.
  • an aluminum (Al) film or an aluminum alloy film such as Al-Si, Al-Cu, Al-Cu-Si, etc. is formed on the entire surface of the semiconductor substrate 1 including the inside of the opening 3h by sputter deposition or the like.
  • a metal film is formed, and then the metal film is patterned to contact each of channel forming region 7 and main electrode region 8 through opening 3 h as shown in FIG. 14, ie, electrically and mechanically.
  • the emitter electrode 10 is formed as a metal electrode connected to the
  • the laminated film of the oxide film 3b and the oxide film 3c shown in FIG. 14 corresponds to the oxide film 3e as the insulating film in FIG. There is. Further, since the surface of the portion of channel forming region 7 constituting floating mesa region 6 where main electrode region 8 is not formed is covered with oxide film 3 e (3 b and 3 c), the channel forming region constituting floating mesa region 6 7 and emitter electrode 10 are electrically isolated. A polyimide resin film can also be formed on the surface of the emitter electrode 10 as a passivation film (not shown).
  • buffer layer 11 or field stop layer, FP layer
  • collector region second main electrode region
  • two conductive layers opposing the doped polysilicon layer 304 in the trench 302 to the side wall of the trench 302 via a gap are provided. (See FIG. 28) after separation and division into the body (doped polysilicon electrodes 304a and 304b) and before the space between the two conductors (electrodes) is filled with the oxide film 303c (see FIG. 33). Since two ion implantations for forming the p-type base region 307 and the n + -type emitter region 308 are performed (see FIGS. 30 and 31), the photoresists 314a and 314b used as masks at the time of ion implantation Enters the gap between the two conductors (304a, 304b).
  • the semiconductor device (trench gate type IGBT) according to the first embodiment of the present invention
  • FIG. 12 and FIG. Divided into two conductors (gate electrode 4a and wiring layer 4b in the trench) opposed to each other via a gap (hole 9), and the gap between the two conductors is filled with oxide film 3c
  • the conductive layer 4 in the trench 2 is divided into two conductors (the gate electrode 4a and the wiring layer 4b in the trench), and the space (hole 9) between the two conductors is filled with the oxide film 3c
  • two ion implantations for forming the channel formation region 7 and the main electrode region 8 are not performed.
  • the photoresist used as a mask at the time of ion implantation enters trench 2 as in the conventional method of manufacturing a trench gate type IGBT. There is no.
  • the conductive layer 4 is formed in the trench 2 in such a thickness that the trench 2 is completely filled.
  • a first conductivity type of monocrystalline silicon - semiconductor n-type
  • the doped polysilicon layer is formed, for example, by the CVD method to such a thickness that the trench 22 is not completely filled up, in other words, a thickness such that a space is left in the trench 22.
  • a conductive layer 24 having a thickness of about 0.5 ⁇ m is formed for a trench width of 2 ⁇ m.
  • the conductive layer 24 separated in a stuck shape is left along both side wall portions of the trench 22, and two conductive members made of the conductive layer 24, that is, the gate electrode 24a and the wiring layer 24b in the trench are formed. Be done.
  • the gate electrode 24a and the in-trench interconnection layer 24b are formed on the side wall in the width direction of the trench 22 along the inner wall surface of the trench 22 and face each other through a gap formed by reducing the film thickness. It is divided and divided.
  • the gate electrode 24a is formed on the side wall in the trench 22 of the active mesa region 25 via the gate insulating film 23a, and constitutes the gate electrode of the trench gate type IGBT.
  • the intra-trench interconnection layer 24b is formed on the side wall of the floating mesa region 26 in the trench 22 via the gate insulating film 23a, is electrically separated from the gate electrode 24a, and an emitter described later for the purpose of reducing feedback capacitance. It is electrically connected to the electrode 30.
  • the gate insulating film 23a is made of, for example, a silicon dioxide film produced by subjecting the semiconductor substrate 21 to a thermal oxidation process.
  • an oxide film 23b as a second insulating film is formed on the surface of the semiconductor substrate 21 by, for example, the CVD method with a thickness that completely fills the trench 22.
  • an oxide film having a high embedding property such as HTO, an organic silicon compound, TEOS, PSG, or BPSG may be used.
  • the gap between the gate electrode 24a and the in-trench interconnection layer 24b (between the two conductors) is filled with the oxide film 23b.
  • the insulating film on the surface of the semiconductor substrate 21, ie, the oxide film 23 b and the gate insulating film 23 a are selectively removed by etching to expose the surface of the semiconductor substrate 21.
  • gate insulating film 23a, oxide film 23b, and two conductors (gate electrode 24a and wiring layer 24b in the trench) opposed to each other through oxide film 23b are selectively selected only in trench 22.
  • the surface of the semiconductor substrate 21 is substantially flat.
  • the channel formation region (base region) 27 of the second conductivity type (p type) and the first conductivity type (n +) are formed on the surface of the semiconductor substrate 1 between the adjacent trenches 22 by photolithography and ion implantation. ) Is formed in a required pattern.
  • boron (B) ions are implanted on the entire surface of the semiconductor substrate 21 as impurity ions of the second conductivity type as shown in FIG. 19 (FIG. 19).
  • trench 22 is filled with two conductors (gate electrode 24 a and interconnection layer 24 b in trench) made of a doped polysilicon layer having a high impurity concentration, and oxide film 23 b. Since it is not necessary to protect the inside or bottom of the semiconductor device, impurity ions can be implanted into the front of the surface of the semiconductor substrate 21 without using a mask made of photoresist. Thereafter, heat treatment for activating ion-implanted boron is performed to form channel formation region 27 (see FIG. 20) to which the ion-implanted second conductivity type impurity is added, and trench 22 and trench 22 are formed. The active mesa region 25 is defined between them. The surface of the channel forming region 27 facing the side wall of the trench 22 is a portion where the channel is formed. In this process, channel formation region 27 is also formed in floating mesa region 6.
  • the photoresist 14a formed by photolithography is used as a mask for impurity ion implantation, and phosphorus (P), for example, is used as the impurity ion of the first conductivity type.
  • P phosphorus
  • the inside of the trench 22 is formed of two conductors (the gate electrode 24a and the wiring layer 24b in the trench) and the oxide film 23b. Because it is buried, the photoresist does not enter the trench 22 and its removal becomes difficult after ion implantation.
  • a heat treatment for activating the ion-implanted phosphorus is performed to form a main electrode region to which the ion-implanted first conductivity type impurity is added as shown in FIG. Is formed.
  • main electrode region 28 is not formed in floating mesa region 26.
  • channel formation region 27 and main electrode region 28 by photolithography and ion implantation, channel formation region 27 is formed on the surface of active mesa region 25 without leaving a residue of resist in trench 22.
  • a main electrode region 28 can be formed.
  • the main electrode region 28 is formed on the surface layer in the channel formation region 27.
  • an oxide film 23c as a third insulating film is formed on the entire surface of the semiconductor substrate 1 by, for example, the CVD method.
  • the insulating film on the channel formation region 27 and the main electrode region 28, that is, the oxide film 23 c is selectively removed by photolithography as in the first embodiment by photolithography. (See FIG. 23).
  • a metal film such as an aluminum film or an aluminum alloy film, is formed on the entire surface of the semiconductor substrate 21 including the inside of the opening 23h by sputter deposition or the like, and then the metal film is patterned to As shown in FIG.
  • an emitter electrode (first main electrode) 30 as a metal electrode is in contact with each of channel formation region 7 and main electrode region 8 through opening 23h, that is, electrically and mechanically connected.
  • the subsequent wafer process is the same as that of the first embodiment, and becomes a wafer process of the semiconductor device (trench gate type IGBT) according to the second embodiment of the present invention.
  • conductive layer 24 in trench 22 is formed on the sidewall of trench 22.
  • the two conductors (gate electrode 24a and wiring layer 24b in the trench) are separated and divided via a gap, and the gap between the two conductors is filled with oxide film 23b, and conductivity in trench 22 is obtained.
  • a channel forming region 27 and a main electrode region 28 are formed between the division of the layer 24 into two conductors (the gate electrode 24a and the wiring layer 24b in the trench) and the filling of the gap between the two conductors with the oxide film 23b.
  • the photoresist used as a mask at the time of ion implantation is trench 22. It does not go inside.
  • the present invention is not limited to this.
  • the present invention can be applied to the manufacture of a pnp type trench gate type IGBT in which the main electrode region (first main electrode region) is formed of p-type.
  • the present invention can also be applied to the manufacture of trench gate type MISFETs of n channel conductivity type or p channel conductivity type.
  • the present invention is also applicable to MOS composite devices such as depletion mode thyristors (DMTs) and field control thyristors (FCTs). Further, if the collector region on the back surface side of the semiconductor substrate is not formed, it is also easy to form a trench gate type MOSFET or a trench gate type MOS SIT as an example of another insulated gate type semiconductor device. As described above, according to the method of manufacturing a semiconductor device according to the first and second embodiments of the present invention, it is possible to provide a method of manufacturing a semiconductor device having a process in which no photoresist remains in the trench. it can.
  • any of the semiconductor device manufacturing methods according to the first and second embodiments of the present invention when introducing an impurity for forming a channel formation region, a photoresist is used as a mask for selective introduction of the impurity. Therefore, the number of masks (reticles) for photoresist can be reduced as compared with the prior art, and cost reduction can be realized. That is, the reduction of the number of masks not only reduces the manufacturing cost of the mask itself, but also reduces the series of processes of photoresist application for forming a photoresist pattern using the mask, exposure, development, cleaning and drying. Thus, the process cost of the semiconductor device can be significantly reduced. Furthermore, the defect occurrence rate due to foreign matter can be reduced, and the yield and reliability of the semiconductor device can be improved.
  • the present invention can be applied to the manufacture of a trench gate type semiconductor device using a semiconductor substrate such as silicon carbide (SiC) or gallium nitride (GaN).
  • a semiconductor substrate such as silicon carbide (SiC) or gallium nitride (GaN).
  • a trench gate type semiconductor device using, as a conductive layer, a high melting point metal layer such as platinum (Pt), tungsten, or molybdenum or a silicide layer, or a composite layer of a silicide layer and a doped polysilicon layer It can be applied to
  • the method of manufacturing a semiconductor device according to the present invention is useful for a method of manufacturing a semiconductor device having a process in which no photoresist remains in a trench and having two conductors in the trench.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thyristors (AREA)

Abstract

 半導体装置の製造方法は、第1導電型の半導体基板(1)の表面から深さ方向にトレンチ(2)を形成する工程と、トレンチ内に第1絶縁膜(3a)を介して導電層(4)を形成する工程と、トレンチの内部において導電層を分割して互いに対向するゲート電極(4a)とトレンチ内配線層(4b)に分割し、ゲート電極とトレンチ内配線層との間隙を第2絶縁膜(3e)で充填する工程と、半導体基板の表面の全面に第2導電型の不純物を導入して第2導電型のチャネル形成領域(7)を形成する工程と、チャネル形成領域の一部となるトレンチの表面開口部に沿って接する領域に第1導電型の主電極領域(8)を選択的に形成する工程とを含む。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に係り、特には、トレンチゲート構造を有する絶縁ゲート型半導体装置の製造方法の改良に関する。
 電力変換装置の低消費電力化が進む中で、その電力変換装置の中で中心的な役割を果たすパワーデバイスへの低消費電力化に対する期待は大きい。そのパワーデバイスの中でも伝導度変調効果により、低オン電圧を達成でき、また電圧駆動のためゲート制御が容易である絶縁ゲート型バイポーラトランジスタ(以下IGBTと称する)の使用は定着してきている。このIGBTの構造について、図24に一例を示す。図24では、図面を見易くするため、断面を表すハッチングを一部省略している。図24(a)の要部断面図に示すプレーナゲート型IGBT100では、ウエハ表面に沿ってゲート電極101aが設けられることによりプレーナゲート構造を形成する。図24(b)の要部断面図に示すトレンチゲート型IGBT200では、ウエハ表面のストライプ状の平面パターンから深さ方向に垂直に延びる形状のトレンチ201内部に酸化膜202を介してゲート電極203が埋設されることによりトレンチゲート構造を形成する。また、トレンチゲート型IGBT200は、トレンチ201の内部の両側壁のp型ベース領域204に沿って、すなわち基板面に垂直方向にnチャネル(図示せず)が形成されるので、トレンチ開口幅および間隔を狭くし易くなる。この結果、チャネル密度をプレーナゲート型IGBTよりも高くすることが容易となる。また、チャネルの高密度化とともに、オン電圧のいっそうの低減が可能になるため、近年トレンチゲート型IGBTの適用が増えつつある。
 前述のようなチャネル密度を高くしてオン電圧を低減することのできるトレンチゲート構造に関し、トレンチ内面に形成されるゲート電極膜をトレンチ底部で分離する構成を記載したトレンチゲート構造の図面が開示されている(特許文献1)。また、特許文献1には、トレンチ内に一様に形成したポリシリコン膜を異方性エッチングによりエッチバックする、ゲート電極の分割方法が開示されている。さらに、特許文献2には、トレンチ内部に充填されたポリシリコン層を底部で分割し、n型エミッタ領域とp型ベース領域側(活性メサ領域側)に近い側壁側のポリシリコン層のみをゲート電極として分離分割し、フローティングメサ領域側のポリシリコン層はゲート電極には接続せずエミッタ電極に接続する構造が開示されている。さらに、この特許文献2では、そのようなポリシリコン層の分割方法も開示している。すなわち、トレンチ内を完全に充填しない程度の厚さのポリシリコン層を形成する。基板表面のポリシリコン層を残した状態で酸化膜をマスクに用いてトレンチ底部のポリシリコン層を切断する。トレンチ内のポリシリコン層間を酸化膜等で充填して両側壁のポリシリコン層を相互に絶縁分離をした後に、基板表面のポリシリコン層との引き出し部を形成する方法である。
 図25~図34は、従来のトレンチゲート型IGBTの製造プロセスをステップ順に示す要部断面図である。
 まず、図25に示すように、シリコン基板301の表面から垂直方向に公知の反応性イオンエッチング(RIE)などによる異方性プラズマエッチングによりトレンチ302を形成する。シリコン基板301の表面にトレンチ302を形成することにより、トレンチ2で区画された活性メサ領域305およびフローティングメサ領域306が形成される。その後、図26に示すように、トレンチ302の内部にゲート酸化膜303aを形成する。
 次に、図27に示すように、トレンチ302内にドープドポリシリコン層304をトレンチ302が埋まらない程度の厚さで例えば化学的気相堆積(CVD)法により形成する。例えば、2μmのトレンチ幅に対して、厚さ0.5μm程度のドープドポリシリコン層304を形成する。
 次に、このドープドポリシリコン層304を異方性エッチングによってエッチバックすることによって、図28に示すように、シリコン基板301の表面上およびトレンチ302の底部のドープドポリシリコン層304が除去されて、トレンチ2の両側壁部分に沿って張り付いた形状で分離されたドープドポリシリコン層304が残る。この工程において、トレンチ302の内壁面に沿って形成されたドープドポリシリコン層304は、トレンチ302の幅方向の側壁に間隙を介して対向する2つのドープドポリシリコン電極304a,304bに分離分割される。
 次に、図29に示すように、シリコン基板301の表面上のゲート酸化膜303aを例えば化学的機械研磨(CMP)法で選択的に除去する。
 次に、隣接するトレンチ302間のメサ状シリコン基板部分にp型ベース領域307を形成するため、図30に示すように、フォトリソグラフィで形成したフォトレジスト314aをマスクとしてシリコン基板301の表面からその内部にボロン(B)をイオン注入する。その後、フォトレジスト314aを除去した後、イオン注入されたボロンを活性化させる熱処理を施すことにより、p型ベース領域307(図31参照)が形成される。
 次に、n型エミッタ領域308を形成するため、図31に示すように、フォトリソグラフィで形成したフォトレジスト314bをマスクとしてシリコン基板301の表面からその内部にリン(P)をイオン注入する。その後、フォトレジスト314bを除去した後、イオン注入されたリンを活性化させる熱処理を施すことにより、図32に示すように、n型エミッタ領域308が形成される。
 このように従来のトレンチゲート型IGBTの製造方法では、2回のイオン注入により、図32に示すように、隣接するトレンチ302間のメサ状シリコン基板部分にp型ベース領域307とn型エミッタ領域308を形成する。この2回のイオン注入において、トレンチ302の内部をレジスト(フォトレジスト314a,314b)で埋めることで、ゲート酸化膜303aが露出しているトレンチ302の底部へのイオン注入を防止している。
 次に、図33に示すように、高温酸化膜(HTO)やテトラ・エトキシ・シラン(TEOS)のような埋め込み性の高い酸化膜303cでトレンチ2内部、すなわち、2つのドープドポリシリコン電極間の間隙を充填する。
 次に、図34に示すように、p型ベース領域307上およびn型エミッタ領域308上の酸化膜303cを選択的に除去して開口し、エミッタ電極310を接触させる。この結果、図34に示すように、トレンチ302内の両側壁にゲート酸化膜303aを介してドープドポリシリコン層304がそれぞれ活性メサ領域305側のドープドポリシリコン電極304aとフローティングメサ領域306側のドープドポリシリコン電極304bとに分離分割されたトレンチゲート構造が形成される。
 しかしながら、前述したように、従来のトレンチゲート型IGBTの製造方法では、トレンチゲート構造の作成プロセス中の図30と図31において、p型ベース領域307とn型エミッタ領域308を選択的イオン注入によりシリコン基板301の表面の所定の領域に形成するために、フォトリソグラフィ工程が行われる。その際、幅の狭いトレンチ302の凹部内にフォトレジスト314a,314bが入り込むことになる。トレンチ302中のフォトレジスト314a,314bはイオン注入後に除去する必要があるが、トレンチ302の幅が2μm程度と狭いので、硬化したフォトレジスト314a,314bの完全な除去は容易とは言えない。残存したフォトレジスト314a,314bは後工程で汚染源となり、良品率低下の原因の一つとなる。
特開2009-200103号公報(図1、段落0024) 米国特許第6815769号(Fig1)
 本発明は、前述した問題点を解消するためになされたものである。すなわち、本発明は、トレンチ内にフォトレジストが残存しないプロセスを有する半導体装置の製造方法を提供することである。
 上記目的を達成するために、本発明の一態様にかかる半導体装置の製造方法は、第1導電型の半導体基板の表面から深さ方向にトレンチを形成する工程と、トレンチ内に第1絶縁膜を介して導電層を形成する工程と、トレンチの内部において導電層を分割して互いに対向するゲート電極とトレンチ内配線層に分割し、ゲート電極と前記トレンチ内配線層との間隙を第2絶縁膜で充填する工程と、半導体基板の表面の全面に第2導電型の不純物を導入して第2導電型のチャネル形成領域を形成する工程と、チャネル形成領域の一部となるトレンチの表面開口部に沿って接する領域に第1導電型の主電極領域を選択的に形成する工程とを含むことを特徴としている。
 本発明によれば、トレンチ内において、トレンチの側壁に間隙を介して対向するように分割された2つの導電体を有する半導体装置を製造する際に、トレンチ内にフォトレジストが残存しないプロセスを有する半導体装置の製造方法を提供することができる。
本発明の第1の実施形態にかかる半導体装置(トレンチゲート型IGBT)の要部拡大断面図である。 本発明の第1の実施形態にかかる半導体装置(トレンチゲート型IGBT)の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第1の実施形態にかかる半導体装置の要部斜視図である。 本発明の第2の実施形態にかかる半導体装置(トレンチゲート型IGBT)の製造プロセスフローを説明するための要部断面図である。 本発明の第2の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第2の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第2の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第2の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第2の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第2の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の第2の実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 従来のIGBTの概略構成を示す要部断面図((a)はプレーナゲート型IGBT,(b)はトレンチゲート型IGBT)である。 従来のトレンチゲート型IGBTの製造プロセスフローを説明するための要部断面図である。 従来のトレンチゲート型IGBTの製造プロセスフローを説明するための要部断面図である。 従来のトレンチゲート型IGBTの製造プロセスフローを説明するための要部断面図である。 従来のトレンチゲート型IGBTの製造プロセスフローを説明するための要部断面図である。 従来のトレンチゲート型IGBTの製造プロセスフローを説明するための要部断面図である。 従来のトレンチゲート型IGBTの製造プロセスフローを説明するための要部断面図である。 従来のトレンチゲート型IGBTの製造プロセスフローを説明するための要部断面図である。 従来のトレンチゲート型IGBTの製造プロセスフローを説明するための要部断面図である。 従来のトレンチゲート型IGBTの製造プロセスフローを説明するための要部断面図である。 従来のトレンチゲート型IGBTの製造プロセスフローを説明するための要部断面図である。
 以下、本発明の第1および第2の実施形態にかかる半導体装置の製造方法を、図面を参照して詳細に説明する。
 本明細書において、「主電極領域」とは、IGBTにおいてエミッタ領域又はコレクタ領域のいずれか一方となる低比抵抗の半導体領域を意味する。電界効果トランジスタ(FET)や静電誘導トランジスタ(SIT)においてはソース領域又はドレイン領域のいずれか一方となる半導体領域を意味するので「半導体装置」に依拠した名称となる。より具体的に、上記の「一方となる半導体領域」を「第1主電極領域」として定義すれば、「他方の半導体領域」は、「第2主電極領域」となる。すなわち、「第2主電極領域」とは、IGBTにおいては第1主電極領域とはならないエミッタ領域又はコレクタ領域のいずれか一方となる半導体領域、FET,SITにおいては上記第1主電極領域とはならないソース領域又はドレイン領域の何れか一方となる半導体領域を意味する。以下の第1および第2の実施の形態では、「第1主電極領域」にのみ着目して説明するので、「第1主電極領域」を便宜上「主電極領域」と呼ぶ。
 以下の第1および第2の実施形態の説明では、第1導電型がn型、第2導電型がp型の場合について例示的に説明するが、導電型を逆の関係に選択して、第1導電型をp型、第2導電型をn型としても構わない。
 また、本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、+および-の付記されていない半導体領域に比してそれぞれ相対的に不純物濃度が高いまたは低い半導体領域であることを意味する。
 なお、以下の第1および第2の実施形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
 また、第1および第2の実施形態で説明される添付図面は、見易くまたは理解し易くするために正確なスケール、寸法比で描かれていない。本発明はその要旨を超えない限り、以下に説明する第1および第2の実施形態の記載に限定されるものではない。
 以下の第1および第2の実施形態では、本発明の「半導体装置」の代表例としてトレンチゲート型IGBTの製造方法に着目して例示的に説明する。また、以下の第1および第2の実施形態では、トレンチ内に分割して形成される2の電極の導電層として便宜上ドープドポリシリコン層を用いた場合について説明するが、導電層はドープドシリコン層に限定されるものではない。導電層としては、タングステン(W),モリブデン(Mo)などの高融点金属、これらの高融点金属のシリサイド、又はシリサイドとドープドポリシリコンとの複合膜のポリサイド膜などでもかまわない。
 (第1の実施形態)
 図1および図15に示すように、本発明の第1の実施形態にかかる半導体装置は、例えば単結晶シリコンからなる第1導電型(n型)の半導体基板1を主体にしたトレンチゲート型IGBTである。
 半導体基板1の表面には、トレンチ2で区画された活性メサ領域5とフローティングメサ領域6とが形成されている。活性メサ領域5およびフローティングメサ領域6は、トレンチ2の長手方向と直交する幅方向(短手方向)に交互にそれぞれ複数配置されている。
 また、本発明の第1の実施形態にかかる半導体装置は、詳細に図示していないが、活性メサ領域5に形成されたトランジスタセルを電気的に複数個並列に接続して大電力を得る構成になっている。図1には、1つのトランジスタセルが示されている。
 トランジスタセルは、主に、トレンチ2、第1絶縁膜としてのゲート絶縁膜3a、ゲート電極4a、第1導電型(p型)のチャネル形成領域7、第1導電型(n型)の主電極領域8、第1導電型(n型)のバッファ層11、第2導電型(p型)のコレクタ領域(第2主電極領域)12、コレクタ電極(第2主電極)13などを有する構成になっている。「チャネル形成領域7」は、IGBTにおいてはベース領域を意味するが、IGBT以外の半導体装置においてはIGBTのベース領域に等価な表面にチャネルが形成される領域を意味する。また、「主電極領域8」は冒頭で述べたとおりIGBTのエミッタ領域を意味する。
 トレンチ2は、半導体基板1の表面から深さ方向に向かって延びている。トレンチ2は、例えば幅2μm、深さ5μm~10μm程度のストライプ状平行平面パターンで形成されている。また、トレンチ2は、例えばRIEなどのドライエッチングにより形成される。ゲート電極4aにゲート絶縁膜3aを介して対向するトレンチ2の側壁の位置となるチャネル形成領域7の表面にはゲート電極4aに印加される電圧に制御されてチャネルが形成される。
 ゲート絶縁膜3aは、トレンチ2の内壁に沿って形成され、例えば半導体基板1に熱酸化処理を施して作製された二酸化シリコン膜(SiO)で形成されている。ゲート絶縁膜3aとしては熱酸化法の他に化学的気相堆積(CVD)法による酸化シリコン膜や窒化シリコン(Si)膜、或いはこれらの積層膜を用いることができるが、高耐圧が要求されるパワートデバイス(電力用半導体装置)においては緻密性に有利な熱酸化法による酸化シリコン膜を用いることが好ましい。
 FETでは、ゲート絶縁膜が酸化膜からなるMOS型でも、ゲート絶縁膜が酸化シリコン膜や窒化シリコン膜、或いはこれらの積層膜などの絶縁膜からなるMIS型でもかまわない。
 ゲート電極4aは、トレンチ2内において、活性メサ領域5の側壁にゲート絶縁膜3aを介して形成されている。チャネル形成領域7は、活性メサ領域5において、半導体基板1の表面に設けられている。主電極領域8は、活性メサ領域5において、チャネル形成領域7の一部となるトレンチ2の表面開口部に沿って接する領域に形成されている。バッファ層11およびコレクタ領域12は、半導体基板1の表面とは反対側の裏面に形成されている。コレクタ電極13は半導体基板1の裏面にコレクタ領域12と接するようにして形成されている。
 フローティングメサ領域6の表面には、活性メサ領域5と同様にチャネル形成領域7が形成されている。このフローティングメサ領域6のチャネル形成領域7には、活性メサ領域5とは異なり主電極領域8は形成されていない。フローティングメサ領域6のトレンチ2内における側壁には、ゲート絶縁膜3aを介してトレンチ内配線層4bが形成されている。このトレンチ内配線層4bは、帰還容量を低減する目的で後述するエミッタ電極10と電気的に接続されている。
 ゲート電極4aおよびトレンチ内配線層4bは、導電層4として例えば不純物が添加された低比抵抗のドープドポリシリコン層で形成されている。このゲート電極4aおよびトレンチ内配線層4bは、トレンチ2内において、導電層4をトレンチ2の幅方向の側壁に間隙を介して対向する2つの導電体(配線層)に分離分割することによって形成される。
 ゲート電極4aおよびトレンチ内配線層4bは、これらの電極間の間隙に充填された第2絶縁膜としての酸化膜3eによって電気的に絶縁分離されている。酸化膜3eは、半導体基板1の表面上にも形成されている。
 半導体基板1の表面上には、絶縁膜としての酸化膜3eを介してエミッタ電極10が形成されている。このエミッタ電極10は、酸化膜3eに形成された開口部3hを通してチャネル形成領域7および主電極領域8の各々と電気的に接続されている。
 ここで、主電極領域8の表面パターンはトレンチ2の表面開口部に沿って接するパターンであるが、図1および図15に示すように、連続するパターンではなくトレンチ2間の基板表面に所定の間隔をおいて形成される構造とすることも好ましい。この構造では主電極領域8が形成される領域は活性メサ領域5となり、主電極領域8が形成されない領域はフローティングメサ領域6となる。これらの両領域5、6におけるチャネル形成領域7の深さは図9、図10に示すように同じ深さでもよいが、トレンチ2底部での電界強度を緩和するために、フローティングメサ領域6のチャネル形成領域7の深さをトレンチ2より深くすることも好ましい(図示せず)。
 次に、本発明の第1の実施形態にかかる半導体装置(トレンチゲート型IGBT)の製造方法について、図2乃至図14を用いて説明する。
 まず、図2に示す半導体基板1を準備する。
 次に、図2に示すように、半導体基板1の表面から深さ方向、例えば垂直方向に延びるトレンチ2を形成する。トレンチ2は、例えばRIEなどのドライエッチングで形成する。この工程により、半導体基板1の表面に、トレンチ2で区画された活性メサ領域5およびフローティングメサ領域6が形成される。その後、図3に示すように、トレンチ2の内部に第1絶縁膜として例えば熱酸化処理により二酸化シリコン膜からなるゲート絶縁膜3aを形成する。
 次に、図4に示すように、トレンチ2内に導電層4として不純物を添加して比抵抗を低減したドープドポリシリコン層をトレンチ2が埋め尽くされる厚さで形成する。例えば2μmのトレンチ幅に対して、厚さ2.5μm程度の導電層4を形成する。導電層4は、例えばCVD法で形成される。
 次に、この導電層4をRIEなどのドライエッチングでエッチバックすることによって、図5に示すように、半導体基板1の表面上およびトレンチ2上の導電層4を選択的に除去する。その後、半導体基板1の表面上のゲート絶縁膜3aをウエットエッチングなどにより選択的に除去して半導体基板1の表面を露出させる。これにより、図6に示すように、トレンチ2の内部だけにゲート絶縁膜3aと導電層4が選択的に埋め込まれ、半導体基板1の表面は略平坦面となる。
 次に、フォトリソグラフィとイオン注入により、隣接するトレンチ2間の半導体基板1の表面に第2導電型(p型)のチャネル形成領域7および第1導電型(n+)の主電極領域8を形成する。最初に、チャネル形成領域7を形成するため、図7に示すように、半導体基板1の表面の全面に第2導電型の不純物イオンとして例えばボロン(B)イオンを注入する。このイオン注入において、トレンチ2内がすでに導電層4にて充填されており、トレンチ2の内部や底面を保護する必要がないため、フォトレジストからなるマスクを用いることなく、半導体基板1の表面の全面にイオン注入できる。この後、イオン注入されたボロンイオンを活性化させる熱処理を施すことにより、イオン注入で第2導電型不純物が添加されたチャネル形成領域7が図8に示すように形成され、トレンチ2とトレンチ2との間に活性メサ領域5が定義される。この工程において、チャネル形成領域7は、フローティングメサ領域6にも形成される。トレンチ2の側壁に面したチャネル形成領域7の表面がチャネルが形成される部分となる。
 次に、主電極領域8を形成するため、図8に示すように、フォトリソグラフィで形成したフォトレジスト14を不純物イオン注入用マスクとして使用し、第1導電型の不純物イオンとして例えばリン(P)イオンを選択的に注入する。ここで、このイオン注入においては不純物イオン注入用マスクとしてフォトレジスト14を用いているが、トレンチ2内は導電層4ですべて埋められているので、トレンチ2内にフォトレジストが入り込み、イオン注入後にフォトレジストの除去が困難になることがない。次に、フォトレジスト14を除去した後、イオン注入されたリンイオンを活性化させる熱処理を施すことにより、図9に示すように、リンが不純物として添加された主電極領域8が活性メサ領域5のチャネル形成領域7の内部に形成される。この工程において、主電極領域8は、フローティングメサ領域6には形成されない。
 このようにして、チャネル形成領域7と主電極領域8とを形成することにより、トレンチ2内にフォトレジストの残渣を残すことなく活性メサ領域5の表面にチャネル形成領域7と主電極領域8とを形成することができる。主電極領域8は、チャネル形成領域7内の表層に形成される。
 次に、図10に示すように、半導体基板1の表面に絶縁膜として例えばCVD法で酸化膜3bを堆積する。
 次に、フォトリソグラフィにより、ストライプ状表面パターンのトレンチ2内に埋め込まれた導電層4上の酸化膜3bの中央に、換言すればトレンチ2の幅方向の中央に対応する部分に、トレンチ2のストライプ状パターンに沿って窓明けエッチングをして、図11に示すように、酸化膜3bに開口部3dを形成する。開口部3dは、トレンチ2のストライプ状パターンと同様にストライプ状パターンで形成される。
 次に、残った酸化膜3bをエッチングマスクとして使用し、酸化膜3bのストライプ状パターンの開口部3dを通してトレンチ2に埋め込まれた導電層4の中央部を、換言すればトレンチ2に充填された導電層4をトレンチ2の幅方向の中央でRIEやイオンミリングなどの指向性の高いドライエッチングにより表面からトレンチ2の底部まで除去して、図12に示すように、孔9を形成する。
 この工程において、トレンチ2に充填された導電層4は、トレンチ2の幅方向の側壁に形成され、かつ孔9によって形成された間隙を介して互いに対向する2つの導電体、すなわちゲート電極4aとトレンチ内配線層4bとに分離分割される。ゲート電極4aは、活性メサ領域5のトレンチ2内における側壁にゲート絶縁膜3aを介して形成され、トレンチゲート型IGBTのゲート電極として使用される。トレンチ内配線層4bは、フローティングメサ領域6のトレンチ2内における側壁にゲート絶縁膜3aを介して形成され、ゲート電極4aと電気的に絶縁分離されると共に、帰還容量を低減する目的で後述するエミッタ電極10と電気的に接続される。
 次に、図13に示すように、第2絶縁膜として、高温酸化膜(HTO),有機シリコン化合物,リンケイ酸ガラス(PSG),硼素添加リンケイ酸ガラス(BPSG)のような埋め込み性の高い酸化膜3cにより孔9の内部を充填する。有機シリコン化合物としては、テトラ・エトキシ・シラン(TEOS),オクタ・メチル・シクロ・テトラ・シロキサン(OMCTS),テトラ・プロポキシ・シラン(TPOS)や、テトラ・メチル・シクロ・シロキサン(TMCTS)などが使用可能である。すなわち、ゲート電極4aとトレンチ内配線層4bとの間(2つの導電体間)の間隙を流動性の高い酸化膜3cで充填する。この工程において、半導体基板1の表面上にも酸化膜3cが形成される。
 次に、チャネル形成領域7上および主電極領域8上の絶縁膜、すなわち酸化膜3c、および酸化膜3bを選択的に除去して、図14に示すように、開口部3hを形成する。
 次に、開口部3h内を含む半導体基板1の表面上の全面にスパッタ蒸着などにより例えばアルミニウム(Al)膜、又はAl-Si,Al-Cu,Al-Cu-Siなどのアルミニウム合金膜などの金属膜を形成し、その後、この金属膜をパターンニングして、図14に示すように、開口部3hを通してチャネル形成領域7および主電極領域8の各々に接触する、すなわち電気的にかつ機械的に接続される金属電極としてのエミッタ電極10を形成する。
 第1の実施形態にかかる半導体装置(トレンチゲート型IGBT)の製造方法では、図14に示す酸化膜3bと酸化膜3cとの積層膜が図1の絶縁膜としての酸化膜3eに相当している。また、主電極領域8が形成されないフローティングメサ領域6を構成するチャネル形成領域7の部分の表面は酸化膜3e(3b,3c)で覆われているので、フローティングメサ領域6を構成するチャネル形成領域7とエミッタ電極10とは電気的に絶縁される。エミッタ電極10の表面にさらにポリイミド樹脂膜をパッシベーション膜(図示せず)として形成することもできる。さらに、パワーデバイスとして完成させるには、前述のプロセス処理を終えた半導体基板1の表面側に保護テープを貼付した後、厚さ600μm以上の半導体基板1の反対面(裏面とする)をCMPなどにより研磨研削して耐圧に必要な厚さに薄くする。研削面を清浄処理後、半導体基板1の裏面にバッファ層11(またはフィールドストップ層、FP層)およびコレクタ領域(第2主電極領域)12を形成し、裏面の表面にコレクタ電極13を形成すると、図1に示す本発明の第1の実施形態にかかる半導体装置(トレンチゲート型IGBT)のウエハプロセスが終了する。
 ここで、従来のトレンチゲート型IGBTの製造方法では、図28乃至図33に示すように、トレンチ302内のドープドポリシリコン層304を、トレンチ302の側壁に間隙を介して対向する2つの導電体(ドープドポリシリコン電極304a,304b)に分離分割した後(図28参照)であって、この2つの導電体(電極)間の間隙を酸化膜303cで充填する前(図33参照)に、p型ベース領域307およびn型エミッタ領域308を形成するための2回のイオン注入を実施しているため(図30および図31参照)、イオン注入時にマスクとして使用するフォトレジスト314a,314bが2つの導電体(304a,304b)間の間隙に入り込んでしまう。
 これに対し、本発明の第1の実施形態にかかる半導体装置(トレンチゲート型IGBT)の製造方法では、図12および図13に示すように、トレンチ2内の導電層4を、トレンチ2の側壁に間隙(孔9)を介して対向する2つの導電体(ゲート電極4a,トレンチ内配線層4b)に分離分割して、この2つの導電体間の間隙を酸化膜3cで充填しており、トレンチ2内の導電層4を2つの導電体(ゲート電極4a,トレンチ内配線層4b)に分割してから、この2つの導電体間の間隙(孔9)を酸化膜3cで充填するまでの間ではチャネル形成領域7および主電極領域8を形成するための2回のイオン注入を実施しないプロセスになっている。そして、本発明の第1の実施形態にかかる半導体装置の製造方法では、トレンチ2内の導電層4を2つの導電体(ゲート電極4a,トレンチ内配線層4b)に分離分割する前、すなわちトレンチ2内が導電層4で全て埋め尽くされている状態でチャネル形成領域7および主電極領域8を形成するための2回のイオン注入を実施している。(図7および図8参照)。したがって、本発明の第1の実施形態にかかる半導体装置の製造方法によれば、従来のトレンチゲート型IGBTの製造方法のように、イオン注入時にマスクとして使用するフォトレジストがトレンチ2内に入り込むことはない。
 (第2の実施形態)
 前述の第1の実施形態では、図4に示すようにトレンチ2内に導電層4をトレンチ2が完全に埋め尽くされる厚さで形成した。これに対し、第2の実施形態にかかる半導体装置の製造方法では、上述の図25および図26と同様の工程を施して、例えば単結晶シリコンからなる第1導電型(n型)の半導体基板21にトレンチ22および第1絶縁膜としてのゲート絶縁膜23a(図16参照)を形成した後、上述の図27、図28と同様に、半導体基板21のトレンチ22内に導電層24として例えばドープドポリシリコン層をトレンチ22が埋め尽くされない程度の厚さ、換言すればトレンチ22内に空間が残るような厚さで例えばCVD法により形成する。例えば、2μmのトレンチ幅に対して、厚さ0.5μm程度の導電層24を形成する。この導電層24をRIEやイオンミリングなどの指向性の高いドライエッチングによってエッチバックすることにより、半導体基板21の表面上およびトレンチ22の底部における部分の導電層24が除去されて、図16に示すように、トレンチ22の両側壁部分に沿って張り付いた形状で分離された導電層24が残り、この導電層24からなる2つの導電体、すなわちゲート電極24aとトレンチ内配線層24bとが形成される。このゲート電極24aおよびトレンチ内配線層24bは、トレンチ22の内壁面に沿ってトレンチ22の幅方向の側壁に形成され、かつ膜厚を薄くすることによって形成された間隙を介して互いに対向して分離分割される。ゲート電極24aは、活性メサ領域25のトレンチ22内における側壁にゲート絶縁膜23aを介して形成され、トレンチゲート型IGBTのゲート電極を構成する。トレンチ内配線層24bは、フローティングメサ領域26のトレンチ22内における側壁にゲート絶縁膜23aを介して形成され、ゲート電極24aと電気的に分離されると共に、帰還容量を低減する目的で後述するエミッタ電極30と電気的に接続される。ゲート絶縁膜23aは、例えば半導体基板21に熱酸化処理を施して作製された二酸化シリコン膜からなる。
 次に、図17に示すように、半導体基板21の表面上にトレンチ22が完全に埋め尽くされる厚さで第2絶縁膜としての酸化膜23bを例えばCVD法で形成する。酸化膜23bとしては、HTO,有機シリコン系化合物,TEOS,PSG,BPSGのような埋め込み性の高い酸化膜を用いてもよい。この工程において、ゲート電極24aとトレンチ内配線層24bとの間(2つの導電体間)の間隙は、酸化膜23bで充填される。
 次に、図18に示すように、半導体基板21の表面上の絶縁膜、すなわち酸化膜23bおよびゲート絶縁膜23aをエッチングにより選択的に除去して半導体基板21の表面を露出させる。これにより、トレンチ22の内部だけに、ゲート絶縁膜23aと、酸化膜23bと、この酸化膜23bを介して対向する2つの導電体(ゲート電極24a,トレンチ内配線層24b)とが選択的に埋め込まれ、半導体基板21の表面は略平坦面となる。
 次に、この状態で、フォトリソグラフィとイオン注入により、隣接するトレンチ22間の半導体基板1の表面に第2導電型(p型)のチャネル形成領域(ベース領域)27および第1導電型(n+)型の主電極領域(エミッタ領域)28を所要のパターンで形成する。最初に、チャネル形成領域27を形成するため、図19に示すように、半導体基板21の表面の全面に第2導電型の不純物イオンとして例えばボロン(B)イオンを注入する(図19)。このイオン注入においては、トレンチ22内が不純物濃度の高いドープドポリシリコン層からなる2つの導電体(ゲート電極24a,トレンチ内配線層24b)と、酸化膜23bとで充填されており、トレンチ22の内部や底面を保護する必要がないため、フォトレジストからなるマスクを用いることなく、半導体基板21の表面の前面に不純物イオンを注入できる。この後、イオン注入されたボロンを活性化させる熱処理を施すことにより、イオン注入された第2導電型不純物が添加されたチャネル形成領域27(図20参照)が形成され、トレンチ22とトレンチ22との間に活性メサ領域25が定義される。トレンチ22の側壁に面したチャネル形成領域27の表面がチャネルが形成される部分となる。この工程において、チャネル形成領域27は、フローティングメサ領域6にも形成される。
 次に、主電極領域28を形成するため、図20に示すように、フォトリソグラフィで形成したフォトレジスト14aを不純物イオン注入用マスクとして使用し、第1導電型の不純物イオンとして例えばリン(P)イオンを選択的に注入する。ここで、このイオン注入においては、不純物イオン注入用マスクとしてフォトレジスト14aを用いているが、トレンチ22内は2つの導電体(ゲート電極24a,トレンチ内配線層24b)と、酸化膜23bとで埋められているので、トレンチ22内にフォトレジストが入り込み、イオン注入後にその除去が困難になることがない。次に、フォトレジスト14aを除去した後、イオン注入されたリンを活性化させる熱処理を施すことにより、図21に示すように、イオン注入された第1導電型不純物が添加された主電極領域   28が形成される。この工程において、主電極領域28は、フローティングメサ領域26には形成されない。
 このようにして、フォトリソグラフィとイオン注入でチャネル形成領域27と主電極領域28とを形成することにより、トレンチ22内にレジストの残渣を残すことなく活性メサ領域25の表面にチャネル形成領域27と主電極領域28とを形成することができる。主電極領域28は、チャネル形成領域27内の表層に形成される。
 次に、図22に示すように、半導体基板1の表面上の全面に第3絶縁膜としての酸化膜23cを例えばCVD法で形成する。
 次に、図23に示すように、フォトリソグラフィによって、実施例1と同様に、チャネル形成領域27上および主電極領域28上の絶縁膜、すなわち酸化膜23cを選択的に除去して開口部23h(図23参照)を形成する。
 次に、開口部23h内を含む半導体基板21の表面上の全面にスパッタ蒸着などにより例えばアルミニウム膜、又はアルミニウム合金膜などの金属膜を形成し、その後、この金属膜をパターンニングして、図23に示すように、開口部23hを通してチャネル形成領域7および主電極領域8の各々に接触する、すなわち電気的にかつ機械的に接続される金属電極としてのエミッタ電極(第1主電極)30を形成する。
 これ以降のウエハプロセスは第1の実施形態と同様にすることにより、本発明の第2の実施形態にかかる半導体装置(トレンチゲート型IGBT)のウエハプロセスとなる。
 ここで、本発明の第2の実施形態にかかる半導体装置(トレンチゲート型IGBT)の製造方法では、図16および図17に示すように、トレンチ22内の導電層24を、トレンチ22の側壁に間隙を介して対向する2つの導電体(ゲート電極24a,トレンチ内配線層24b)に分離分割して、この2つの導電体間の間隙を酸化膜23bで充填しており、トレンチ22内の導電層24を2つの導電体(ゲート電極24a,トレンチ内配線層24b)に分割してから2つの導電体間の間隙を酸化膜23bで充填するまでの間ではチャネル形成領域27および主電極領域28を形成するための2回のイオン注入を実施しないプロセスになっている。そして、本発明の第2の実施形態にかかる半導体装置の製造方法では、トレンチ22内の2つの導電体(ゲート電極4a,トレンチ内配線層4b)間の間隙を酸化膜23bで充填した後、すなわちトレンチ2内が2つの導電体(ゲート電極4a,トレンチ内配線層4b)および酸化膜23bで全て埋め尽くされている状態でチャネル形成領域27および主電極領域28を形成するための2回のイオン注入を実施している。したがって、本発明の第2の実施形態にかかる半導体装置の製造方法においても、前述の第1の実施形態にかかる半導体装置の製造方法と同様に、イオン注入時にマスクとして使用するフォトレジストがトレンチ22内に入る込むことはない。
 (その他の実施形態)
 以上説明した本発明の第1および第2の実施形態にかかる半導体装置の製造方法では、主電極領域がn型で形成されたnpn型のトレンチゲート型IGBTについて説明した。しかしながら、本発明はこれに限定されるものではなく、例えば、主電極領域(第1主電極領域)がp型で形成されたpnp型のトレンチゲート型IGBTの製造に適用することができる。また、nチャネル導電型やpチャネル導電型のトレンチゲート型MISFETの製造に適用することができる。
 更には、デプリーション・モード・サイリスタ(DMT)や電界制御サイリスタ(FCT)などのMOS複合デバイスにも適用可能である。
 また、半導体基板の裏面側のコレクタ領域を形成しないようにすれば、他の絶縁ゲート型半導体装置の例としてトレンチゲート型MOSFETやトレンチゲート型MOSSITとすることも容易である。
 以上説明したように、本発明の第1および第2の実施形態にかかる半導体装置の製造方法によれば、いずれもトレンチ内にフォトレジストが残存しないプロセスを有する半導体装置の製造方法とすることができる。
 また、本発明の第1および第2の実施形態にかかる半導体装置の製造方法の何れも、チャネル形成領域を形成するための不純物を導入する際、フォトレジストを不純物の選択導入用マスクとして用いていないため、従来と比較してフォトレジスト用のマスク(レチクル)枚数を低減でき、低コスト化を実現することができる。すなわち、マスク枚数の低減は、マスクそのものの製作コストの低減のみならず、マスクを用いたフォトレジストパターン形成のためのフォトレジストの塗布、感光、現像および洗浄・乾燥の一連の処理を削減することができるので、半導体装置のプロセスコストを大幅に低減することができる。さらに、異物による不良発生率を低減でき、半導体装置の歩留まり、および信頼性を向上させることができる。
 また、本発明の第1および第2の実施形態に係る半導体装置の製造方法では、半導体基板としてシリコン半導体基板を用いた場合について説明したが、本発明はこれに限定されるものではなく、例えば炭化ケイ素(SiC)や窒化ガリウム(GaN)などの半導体基板を用いたトレンチゲート型半導体装置の製造に適用することができる。
 また、本発明の第1および第2の実施形態にかかる半導体装置の製造方法では、導電層としてドープドポリシリコン層を用いた場合について説明したが、冒頭で述べたとおり、本発明はこれに限定されるものではなく、例えば白金(Pt)、タングステン、モリブデンなどの高融点金属層やシリサイド層、或いはシリサイド層とドープドポリシリコン層との複合層を導電層として用いたトレンチゲート型半導体装置に適用することができる。
 以上のように、本発明にかかる半導体装置の製造方法は、トレンチ内にフォトレジストが残存しないプロセスを有し、トレンチ内に2つの導電体を有する半導体装置の製造方法に有用である。
 1,21…半導体基板
 2,22…トレンチ
 3a,23a…ゲート絶縁膜
 3b,3c,23b,23c,23e…酸化膜、
 3h,23h…開口部
 4,24…ドープドポリシリコン層
 4a,24a…ゲート電極
 4b,24b…電極
 5,25…活性メサ領域
 6,26…フローティングメサ領域
 7,27…チャネル形成領域
 8,28…主電極領域
 9…孔
 10,30…エミッタ電極
 11…バッファ層
 12…コレクタ領域
 13…コレクタ電極
 14,14a…フォトレジスト

Claims (9)

  1.  第1導電型の半導体基板の表面から深さ方向にトレンチを形成する工程と、
     前記トレンチ内に第1絶縁膜を介して導電層を形成する工程と、
     前記トレンチの内部において前記導電層を分割して互いに対向するゲート電極とトレンチ内配線層に分割し、前記ゲート電極と前記トレンチ内配線層との間隙を第2絶縁膜で充填する工程と、
     前記半導体基板の表面の全面に第2導電型の不純物を導入して第2導電型のチャネル形成領域を形成する工程と、
     前記チャネル形成領域の一部となる前記トレンチの表面開口部に沿って接する領域に第1導電型の主電極領域を選択的に形成する工程と、
     を含むことを特徴とする半導体装置の製造方法。
  2.  前記チャネル形成領域を形成する工程は、前記導電層を分離する前に実施することを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記導電層を形成する工程は、前記トレンチ内を前記導電層で埋め込むことを特徴とする請求項2に記載の半導体装置の製造方法。
  4.  前記チャネル形成領域を形成する工程は、前記ゲート電極と前記トレンチ内配線層との間隙を前記第2絶縁膜で充填した後に実施することを特徴とする請求項1に記載の半導体装置の製造方法。
  5.  前記導電層を形成する工程は、前記トレンチ内に空間が残るように前記トレンチの側壁に沿って薄く形成することを特徴とする請求項4に記載の半導体装置の製造方法。
  6.  前記チャネル形成領域を形成する工程は、前記半導体基板の表面の全面に第2導電型の不純物イオンを注入する工程を含むことを特徴とする請求項1乃至請求項5の何れか1項に記載の半導体装置の製造方法。
  7.  前記主電極領域を形成する工程は、前記チャネル形成領域に第1導電型の不純物イオンを選択的に注入する工程を含むことを特徴とする請求項1乃至請求項5の何れか1項に記載の半導体装置の製造方法。
  8.  前記導電層は、不純物が添加されたポリシリコン層であることを特徴とする請求項1乃至請求項5の何れか1項に記載の半導体装置の製造方法。
  9.  前記第1絶縁膜は前記半導体基板の熱酸化により作製されており、前記第2絶縁膜はHTO、誘起シリコン化合物、PSG、BPSGの何れかであることを特徴とする請求項1乃至請求項5の何れか1項に記載の半導体装置の製造方法。
PCT/JP2014/002499 2013-05-31 2014-05-12 半導体装置の製造方法 WO2014192234A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14803515.7A EP2919273B1 (en) 2013-05-31 2014-05-12 Method for manufacturing semiconductor device
CN201480003361.XA CN104854705B (zh) 2013-05-31 2014-05-12 半导体装置的制造方法
JP2015519623A JP5994938B2 (ja) 2013-05-31 2014-05-12 半導体装置の製造方法
US14/730,851 US10062761B2 (en) 2013-05-31 2015-06-04 Method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-114979 2013-05-31
JP2013114979 2013-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/730,851 Continuation US10062761B2 (en) 2013-05-31 2015-06-04 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2014192234A1 true WO2014192234A1 (ja) 2014-12-04

Family

ID=51988289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002499 WO2014192234A1 (ja) 2013-05-31 2014-05-12 半導体装置の製造方法

Country Status (5)

Country Link
US (1) US10062761B2 (ja)
EP (1) EP2919273B1 (ja)
JP (1) JP5994938B2 (ja)
CN (1) CN104854705B (ja)
WO (1) WO2014192234A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327806B1 (en) * 2016-11-24 2021-07-21 Murata Integrated Passive Solutions Integrated electronic component suitable for broadband biasing
CN108630540B (zh) * 2017-03-24 2021-05-28 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法
CN111180395B (zh) * 2018-11-09 2022-06-17 长鑫存储技术有限公司 半导体器件的形成方法
US11355630B2 (en) * 2020-09-11 2022-06-07 Wolfspeed, Inc. Trench bottom shielding methods and approaches for trenched semiconductor device structures
JP7490597B2 (ja) * 2021-03-05 2024-05-27 株式会社東芝 半導体装置およびその製造方法
CN113299757A (zh) * 2021-05-21 2021-08-24 江苏东海半导体科技有限公司 一种抑制尖峰电压的mosfet结构及其制造方法
CN114093934B (zh) * 2022-01-20 2022-05-20 深圳市威兆半导体有限公司 一种igbt器件及其制造方法
CN116779666B (zh) * 2023-08-22 2024-03-26 深圳芯能半导体技术有限公司 一种带esd结构的igbt芯片及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030160270A1 (en) * 2002-01-28 2003-08-28 Frank Pfirsch Power semiconductor component, IGBT, IEGT, field-effect transistor, and method for fabricating the semiconductor component
JP2009200103A (ja) 2008-02-19 2009-09-03 Hitachi Ltd 半導体装置及びその製造方法
JP2012064641A (ja) * 2010-09-14 2012-03-29 Toshiba Corp 半導体装置
JP2012248604A (ja) * 2011-05-26 2012-12-13 Denso Corp 半導体装置およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19705276A1 (de) * 1996-12-06 1998-08-20 Semikron Elektronik Gmbh IGBT mit Trench-Gate-Struktur
JP2002184980A (ja) 2000-10-05 2002-06-28 Fuji Electric Co Ltd トレンチ型ラテラルmosfetおよびその製造方法
US6462387B1 (en) * 2001-06-29 2002-10-08 Chinatech Corporation High density read only memory
JP2004207706A (ja) * 2002-12-10 2004-07-22 Fuji Electric Device Technology Co Ltd 半導体装置および半導体装置の製造方法
JP2005340626A (ja) * 2004-05-28 2005-12-08 Toshiba Corp 半導体装置
JP4959928B2 (ja) * 2004-09-07 2012-06-27 株式会社東芝 絶縁ゲート型半導体装置
TWI255554B (en) * 2005-03-28 2006-05-21 Pyramis Holding Ltd Power semiconductor device with buried gate bus and the manufacturing method therefor
US7719080B2 (en) * 2005-06-20 2010-05-18 Teledyne Scientific & Imaging, Llc Semiconductor device with a conduction enhancement layer
JP4294050B2 (ja) * 2006-12-27 2009-07-08 三洋電機株式会社 半導体装置およびその製造方法
JP5806535B2 (ja) 2011-07-20 2015-11-10 株式会社 日立パワーデバイス 半導体装置及びそれを用いた電力変換装置
EP2985790B1 (en) * 2013-04-11 2021-06-09 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030160270A1 (en) * 2002-01-28 2003-08-28 Frank Pfirsch Power semiconductor component, IGBT, IEGT, field-effect transistor, and method for fabricating the semiconductor component
US6815769B2 (en) 2002-01-28 2004-11-09 Infineon Technologies Ag Power semiconductor component, IGBT and field-effect transistor
JP2009200103A (ja) 2008-02-19 2009-09-03 Hitachi Ltd 半導体装置及びその製造方法
JP2012064641A (ja) * 2010-09-14 2012-03-29 Toshiba Corp 半導体装置
JP2012248604A (ja) * 2011-05-26 2012-12-13 Denso Corp 半導体装置およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2919273A4 *

Also Published As

Publication number Publication date
JPWO2014192234A1 (ja) 2017-02-23
US20150270361A1 (en) 2015-09-24
JP5994938B2 (ja) 2016-09-21
EP2919273B1 (en) 2018-02-14
US10062761B2 (en) 2018-08-28
CN104854705A (zh) 2015-08-19
CN104854705B (zh) 2018-01-09
EP2919273A4 (en) 2016-06-22
EP2919273A1 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2014192234A1 (ja) 半導体装置の製造方法
JP4860102B2 (ja) 半導体装置
JP4590884B2 (ja) 半導体装置およびその製造方法
TWI445161B (zh) 半導體裝置及其製備方法
JP5096739B2 (ja) 半導体装置の製造方法
JP5509543B2 (ja) 半導体装置の製造方法
JP2008084995A (ja) 高耐圧トレンチmosトランジスタ及びその製造方法
JP6566835B2 (ja) 半導体装置およびその製造方法
JP2002033476A (ja) 半導体装置およびその製造方法
JP3701227B2 (ja) 半導体装置及びその製造方法
JP2008135474A (ja) 半導体装置
KR20120021240A (ko) 반도체 장치 및 그 제조 방법
JP3354127B2 (ja) 高電圧素子及びその製造方法
TWI760453B (zh) 半導體裝置之製造方法
JP2009081427A (ja) 半導体装置および半導体装置の製造方法
US7723784B2 (en) Insulated gate semiconductor device and method for manufacturing the same
US6878997B2 (en) Compensation component and method for fabricating the component
JPH07283302A (ja) 半導体集積回路装置の製造方法
JP3646343B2 (ja) 半導体装置の製造方法
JP2011029675A (ja) 半導体装置
JP2012142487A (ja) 半導体装置およびその製造方法
JP2010027680A (ja) 半導体装置および半導体装置に製造方法
JP5266829B2 (ja) 半導体装置及びその製造方法
JP2009071009A (ja) 半導体装置及びその製造方法
JP2007067249A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014803515

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015519623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE