WO2014181426A1 - 半導体モジュール及び半導体装置 - Google Patents
半導体モジュール及び半導体装置 Download PDFInfo
- Publication number
- WO2014181426A1 WO2014181426A1 PCT/JP2013/063053 JP2013063053W WO2014181426A1 WO 2014181426 A1 WO2014181426 A1 WO 2014181426A1 JP 2013063053 W JP2013063053 W JP 2013063053W WO 2014181426 A1 WO2014181426 A1 WO 2014181426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiator
- semiconductor module
- module according
- conductive material
- semiconductor
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 134
- 239000004020 conductor Substances 0.000 claims abstract description 52
- 239000011810 insulating material Substances 0.000 claims abstract description 44
- 239000011347 resin Substances 0.000 claims abstract description 42
- 229920005989 resin Polymers 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 238000001816 cooling Methods 0.000 claims abstract description 18
- 230000002093 peripheral effect Effects 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 51
- 230000017525 heat dissipation Effects 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 229910010293 ceramic material Inorganic materials 0.000 claims description 3
- 238000007747 plating Methods 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 244000126211 Hericium coralloides Species 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 239000004519 grease Substances 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49838—Geometry or layout
- H01L23/49844—Geometry or layout for devices being provided for in H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4871—Bases, plates or heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/04—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
- H01L23/053—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3677—Wire-like or pin-like cooling fins or heat sinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3736—Metallic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L24/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L24/41—Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
- H01L25/072—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
- H01L2224/331—Disposition
- H01L2224/3318—Disposition being disposed on at least two different sides of the body, e.g. dual array
- H01L2224/33181—On opposite sides of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/37001—Core members of the connector
- H01L2224/37099—Material
- H01L2224/371—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/37117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/37124—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/401—Disposition
- H01L2224/40135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/40137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/401—Disposition
- H01L2224/40151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/40221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/40245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/40247—Connecting the strap to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/41—Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
- H01L2224/411—Disposition
- H01L2224/4112—Layout
- H01L2224/41175—Parallel arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73263—Layer and strap connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/848—Bonding techniques
- H01L2224/84801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/40—Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
- H01L23/4006—Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L24/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- the present invention relates to a semiconductor module and a semiconductor device used, for example, for on-vehicle motor control.
- a semiconductor module has been attached to a radiator via grease in order to improve adhesion and heat dissipation.
- the semiconductor module is attached to the radiator using a pressing plate and screws in order to suppress warpage and secure adhesion with grease.
- a technique is disclosed in which a through hole is provided in the center of a semiconductor module, and a screw is passed through the through hole to hold the semiconductor module with a plate-shaped spring plate (see Patent Document 1).
- the radiator is often attached to the cooling jacket using screws.
- a semiconductor module is disclosed in which an insulating substrate is soldered to a radiator, a semiconductor chip is fixed to the insulating substrate, and a case is bonded to the periphery of the radiator (see Patent Document 2).
- the present invention has been made to solve the above-described problems, and its purpose is to ensure heat dissipation, improve the degree of freedom of layout inside the module, and suppress module deformation and destruction.
- a semiconductor module and a semiconductor device are obtained.
- the semiconductor module according to the present invention includes a radiator having a fixed surface and a heat radiating surface opposite to the fixed surface, a fin provided at a central portion of the heat radiating surface, and the fixing surface of the heat radiator. Insulating material provided on top, conductive material provided on the insulating material, a semiconductor chip provided on the conductive material, a metal frame connected to the semiconductor chip, and the fin exposed to the outside.
- heat dissipation can be ensured, the degree of freedom of layout inside the module can be improved, and deformation and destruction of the module can be suppressed.
- FIG. 1 is a circuit diagram of a semiconductor module according to Embodiment 1 of the present invention. It is sectional drawing which shows the state which fixed the semiconductor module of FIG. 1 to the cooling jacket which is a flow path of a refrigerant
- FIG. 1 is a sectional view showing a semiconductor module according to Embodiment 1 of the present invention.
- the semiconductor module 1 has a radiator 2.
- the radiator 2 has a size of about 80 mm ⁇ 80 mm, a thickness of about 3 mm, and is made of Al or Cu.
- the radiator 2 has a fixed surface 2a (upper surface) and a heat radiating surface 2b (lower surface) which is the surface opposite to the fixed surface 2a.
- the fin 3 is provided in the center part of the heat radiating surface 2b.
- the insulating material 4 is provided on the fixed surface 2a of the radiator 2 without a soldering material such as solder.
- the insulating material 4 is an insulating substrate made of, for example, AlN or Si 3 N 4 .
- the thickness of the insulating material 4 is desirably a minimum thickness, for example, 0.635 mm.
- a conductive material 5 that is a metal pattern is provided on an insulating material 4 that is an insulating substrate.
- the thickness of the conductive material 5 is about 1 to 1.5 times the thickness of the radiator 2. However, in order to improve heat dissipation, it is desirable that the thickness of the insulating material 4 is smaller than the thickness of the conductive material 5 and the radiator 2.
- the semiconductor chip 6 is provided on the conductive material 5, and the lower surface electrode of the semiconductor chip 6 is bonded to the conductive material 5 by a conductive bonding material 7 such as solder.
- a metal frame 9 is connected to the upper surface electrode of the semiconductor chip 6 by a conductive bonding material 8 such as solder.
- the mold resin 10 covers the radiator 2, the insulating material 4, the conductive material 5, the semiconductor chip 6, the conductive bonding materials 7 and 8, and the metal frame 9 so that the fins 3 are exposed to the outside.
- a hole 11 penetrating the outer periphery of the radiator 2 and the outer periphery of the mold resin 10 is provided.
- the height of the upper surface of the mold resin 10 is constant.
- FIG. 2 is a view showing a heat radiating surface of the radiator of the semiconductor module of FIG.
- the fin 3 is provided in the center part of the heat radiating surface 2b.
- the outer peripheral portion of the radiator 2 is a sealing portion that is sealed with the mold resin 10.
- a hole 11 is provided in the sealing portion.
- the material of the radiator 2 and the fin 3 may be the same or different. For example, in order to improve heat dissipation, a material having higher thermal conductivity than the radiator 2 may be used as the material of the fin 3.
- FIG. 4, and FIG. 5 are a top view, an internal view, and a circuit diagram of the semiconductor module according to the first embodiment of the present invention.
- the mold resin 10 is omitted.
- the semiconductor module has a 6-in-1 structure, that is, a structure in which six switching elements are mounted on one module.
- the IGBTs 12a to 12f and the forward diodes 13a to 13f correspond to the semiconductor chip 6 in FIG.
- the metal frames 9a to 9e correspond to the U electrode, the V electrode, the W electrode, the P electrode, and the N electrode, respectively.
- the lower surfaces of the IGBTs 12a to 12c and the forward diodes 13a to 13c are connected to the conductive material 5a.
- the lower surfaces of the IGBTs 12d to 12f and the forward diodes 13d to 13f are connected to the conductive materials 5b to 5d.
- Metal frames 9a to 9c are connected to the upper surfaces of the IGBTs 12a to 12c and the forward diodes 13a to 13c, respectively, and are connected to the conductive materials 5b to 5d, respectively.
- a metal frame 9d is connected to the conductive material 5a.
- a metal frame 9e is connected to the upper surfaces of the IGBTs 12d to 12f and the forward diodes 13d to 13f.
- FIG. 6 is a cross-sectional view showing a state in which the semiconductor module of FIG. 1 is fixed to a cooling jacket that is a refrigerant flow path.
- the semiconductor module 1 is attached to the cooling jacket 15 by inserting the screw 14 through the hole 11 of the semiconductor module 1 and inserting it into the screw hole of the cooling jacket 15.
- a sealing material 17 such as an O-ring is disposed in the groove 16 of the cooling jacket 15.
- FIG. 7 is a cross-sectional view showing a metal pattern of the semiconductor module of FIG. 1 and a method of manufacturing a radiator.
- the molten metal can be poured into the mold 18 in a state where the insulating material 4 is held in the mold 18 so that the two can be manufactured integrally.
- the ratio of the thickness of the conductive material 5 and the radiator 2 can be freely changed by arbitrarily setting the position of the insulating material 4.
- FIG. In that case, each metal is poured into the upper and lower surfaces of the insulating material 4 using different molds in different steps.
- the semiconductor chip 6 and the radiator 2 are sealed and fixed with the mold resin 10, so that the screws used for fixing both of them, the plate material for suppressing warpage of the module, Inclusions such as grease become unnecessary, and the number of members can be reduced.
- the mounting holes 11 are provided in the outer periphery of the module, the degree of freedom in the layout inside the module can be improved. Since there are no holes 11 in the center of the semiconductor module 1, six or more switching elements can be arranged, so that a three-phase inverter capable of driving a motor can be realized with one semiconductor module.
- the radiator 2 is sealed with the mold resin 10 including the periphery of the hole 11 which is a screw fastening portion where stress is easily concentrated, the strength of the entire module is increased, and deformation and destruction of the module are suppressed. Can do.
- the radiator 2 and the insulating material 4 are directly joined, the heat radiation performance is improved as compared with the structure in which both are joined by the conductive joining material. Furthermore, since there is no fear of occurrence of cracks in the conductive bonding material, the life of the heat cycle and power cycle is improved. Further, since the joining step using the joining material can be omitted, the assembly cost can be reduced.
- the strength of the semiconductor module is improved by using an insulating substrate having a high yield strength as the insulating material 4.
- the insulating substrate is preferably made of a ceramic material. Since the ceramic material has high thermal conductivity, the heat dissipation of the semiconductor module is improved.
- a sheet-like resin such as an epoxy material may be coated on the fixed surface 2a. Since the sheet-like resin is flexible, brittle fracture of the insulating material 4 hardly occurs, and the life of the power cycle and heat cycle is improved. Moreover, since the insulating sheet is thinner than the insulating substrate, the thickness of the entire semiconductor module can be reduced.
- a heat spreader such as Cu is provided as the conductive material 5 on the insulating sheet, and the semiconductor chip 6 is mounted thereon. Since the heat generated by the semiconductor chip 6 can be efficiently diffused by the heat spreader, the temperature rise of the entire semiconductor module can be suppressed.
- the conductive material 5 and the semiconductor chip 6 are bonded by the conductive bonding material 7, it is preferable that a plating process is performed on the surface of the conductive material 5 where the semiconductor chip 6 is mounted. By performing the plating process, the wettability of the conductive bonding material 7 between the conductive material 5 and the semiconductor chip 6 is improved.
- the material of the radiator 2 and the conductive material 5 are the same.
- the radiator 2 and the conductive material 5 can be simultaneously formed by a molten metal method or the like, so that the manufacturing process can be reduced.
- the material of the radiator 2 and the conductive material 5 is preferably Al or an Al alloy. Since Al or Al alloy is lightweight, the weight of the entire semiconductor module can be reduced.
- FIG. 8 is a diagram showing a simulation analysis result of the amount of warpage of the radiator due to heating when the ratio of the thickness of the conductive material to the thickness of the radiator is changed. Heated from 25 ° C to 250 ° C. All of the heat sink 2, the fin 3, and the conductive material 5 were made of Al. The insulating material 4 was an AlN plate having a thickness of 0.635 mm. The amount of warpage on the vertical axis takes a positive value when it is convex along the fin side of the radiator.
- the warpage is preferably within 230 ⁇ m. From the analysis results, it was found that if the thickness of the conductive material 5 is 1.15 times or more and 1.45 times or less of the thickness of the radiator 2, the absolute value of the warp due to heat of the radiator 2 is within 230 ⁇ m. .
- the warpage can be suppressed to about 120 ⁇ m or less, which is more desirable.
- the reason why the thickness ratio at which the amount of warpage is smaller is larger than 1 is that the radiator 2 covers (is in close contact with) the entire lower surface of the insulating material 4 whereas the conductive material 5 is on the upper surface of the insulating material 4. If the thermal expansion coefficient of the radiator 2 and the conductive material 5 is the same (same material) when they do not occupy the entire surface, in order to generate the same stress on the upper and lower surfaces of the insulating material 4 when the temperature changes, This is because the material 5 needs to be thicker.
- the range of the thickness ratio in which the amount of warpage is small does not depend on the shape (height, diameter) of the fin 3.
- the area of the conductive material 5 is usually about 60 to 80% of the area of the radiator 2, and the thickness ratio is 1.2 to 1.4 times in the range of the area ratio (60 to 80%).
- the absolute value of the warp amount becomes smaller in the range, and the absolute value of the warp amount becomes minimum at about 1.3 times.
- the thickness and material of the mold resin 10 is necessary to design the thickness and material of the mold resin 10 in consideration of the resistance to mechanical stress of the radiator 2 (stress when a specified permanent elongation occurs). This design is particularly important when a material having a low proof stress such as Al is selected as the material of the radiator 2 for weight reduction. For example, if the thickness of the radiator 2 is 3 mm and the material is Al with low yield strength, when it is attached to the cooling jacket and water cooling is started, the hydrostatic pressure (0.5 to 1.0 MPa) and the reaction force of the sealing material ( 1.0 to 10.0 N / mm), the stress generated in the vicinity of the screw fastening portion exceeds the proof stress and causes plastic deformation. If the stress exceeds the proof stress, the deformation proceeds and there is a concern about water leakage.
- a material having a low proof stress such as Al
- FIG. 9 is a diagram showing the relationship between the thickness of the mold resin and the generated stress. It can be seen that as the mold resin 10 is thicker, the generated stress can be reduced.
- FIG. 10 and 11 are a sectional view and a top view showing the semiconductor module according to the second embodiment of the present invention.
- the stress generated when the semiconductor module 1 is attached to the cooling jacket 15 and used increases near the hole 11. Therefore, in the present embodiment, a protruding portion 10a protruding upward is provided on the outer peripheral portion of the mold resin 10, and the height of the upper surface of the mold resin 10 in the vicinity of the hole 11 is set to be higher than the height of the upper surface of the mold resin 10 in the module central portion. Make it high.
- the strength of the module can be improved.
- the amount of the mold resin 10 can be reduced as compared with the case where the whole mold resin 10 is thickened.
- FIG. 12 and 13 are a top view and an internal view showing a semiconductor module according to Embodiment 3 of the present invention.
- the radiator 2 has a protruding portion 19 protruding outward.
- the hole 11 is provided in the protrusion 19.
- Mold resin 10 is formed in the same shape as that of radiator 2. Thereby, the material usage-amount of the heat radiator 2 and the mold resin 10 can be reduced.
- the metal frames 9d and 9e between the protrusions 19 the floor area of the semiconductor module can be reduced.
- FIG. 14 is a top view showing Modification 1 of the semiconductor module according to Embodiment 3 of the present invention.
- the planar shape of the mold resin 10 is a square, and a notch 10b is provided between the metal frames 9d and 9e. Accordingly, the distance between the metal frames can be reduced by obtaining the creepage distance with the mold resin 10.
- FIG. 15 is a top view showing a second modification example of the semiconductor module according to the third embodiment of the present invention.
- Modification 2 is a combination of Embodiments 2 and 3, and the effects of both can be obtained.
- FIG. FIG. 16 is a cross-sectional view showing a semiconductor module according to Embodiment 4 of the present invention.
- An insulating material 4 whose rear surface is metallized is bonded to a fixed surface 2 a of the radiator 2 via a bonding material 20.
- the bonding material 20 is, for example, solder that is a conductive bonding material.
- the semiconductor module can be miniaturized. Also, when the heat radiator 2 or the semiconductor chip 6 on the insulating material 4 is replaced after the heat radiator 2 is joined to the insulating material 4, the heat radiator 2 can be easily removed and replaced.
- the upper surface of the insulating material 4 and the conductive material 5 can be bonded with a bonding material such as solder. Also in this case, the insulating material 4 and the conductive material 5 can be formed separately and then joined together.
- FIG. 17 and 18 are a sectional view and a top view showing the semiconductor module according to the fifth embodiment of the present invention.
- a collar 21 made of a material (Fe or the like) having higher yield strength than the radiator 2 is inserted into the hole 11 of the mold resin 10. Since the reaction force caused by tightening the screw 14 is received by the collar 21 having a high yield strength, deformation of the radiator 2 and the mold resin 10 around the hole 11 can be suppressed.
- the collar 21 is penetrated to the lower surface of the radiator 2, the deformation of the radiator 2 can be suppressed, and the axial force can be maintained. Moreover, it is preferable that at least one unevenness is provided on the outer surface of the collar 21 (for example, knurling). Thereby, the adhesiveness of the mold resin 10 and the collar 21 is improved, and peeling of both can be suppressed.
- FIG. 19 and 20 are a sectional view and a top view showing a semiconductor module according to the sixth embodiment of the present invention.
- a plate member 22 made of a material (Fe or the like) having higher proof strength than the radiator 2 is provided around the hole 11 of the radiator 2.
- thread 14 can be suppressed. Therefore, warpage of the entire module is suppressed, and sealing performance with the cooling jacket 15 can be ensured.
- a knurling process may be provided on the surface of the plate material 22.
- adhesiveness with the heat radiator 2 is securable.
- the radiator 2 and the plate material 22 are alloyed at the interface by selecting a material that diffuses the material of the plate material 22 into the heat radiator 2.
- characteristics, such as heat conductivity and yield strength of the heat radiator 2 can be locally changed. For example, if the material of the radiator 2 is Al, the material of the plate 22 is Fe.
- FIG. FIG. 21 is a cross-sectional view showing a semiconductor module according to Embodiment 7 of the present invention.
- a step 23 is provided on the heat radiating surface 2 b of the radiator 2, and the center portion protrudes. Thereby, it becomes easy for a refrigerant
- coolant to hit the root of the fin 3, and heat dissipation performance improves. Furthermore, since the thickness of the radiator 2 increases by the height of the step 23, the strength of the module is also improved.
- FIG. 22 and 23 are a sectional view and an internal view showing a semiconductor module according to Embodiment 8 of the present invention.
- a guide 24 is provided on the outer peripheral portion of the fixed surface 2 a of the radiator 2. This guide 24 fixes the end of the insulating material 4. Thereby, since the function as an aggregate can be given to the insulating material 4, the intensity
- FIG. 24 is a cross-sectional view showing a method for manufacturing the metal pattern and the radiator of the semiconductor module of FIG.
- the radiator 2, the conductive material 5, and the guide 24 can be manufactured at the same time by pouring molten metal while holding the insulating material 4 in the mold 18.
- FIG. FIG. 25 is an internal view showing a semiconductor module according to Embodiment 9 of the present invention.
- the planar shape of the conductive material 5 is a comb tooth shape.
- FIG. 26 and 27 are a sectional view and a top view showing the semiconductor device according to the tenth embodiment of the present invention.
- the semiconductor module 1 is pressed by an external plate member 25 and fixed to the cooling jacket 15.
- the plate member 25 is in contact with the semiconductor module 1 and is attached to the cooling jacket 15 with screws 14.
- the material of the plate member 25 is preferably a material having high yield strength and low magnetic permeability (for example, Cu).
- the warp of the semiconductor module 1 can be suppressed by pressing with the plate member 25 having high yield strength, and the sealing performance with the cooling jacket 15 can be maintained.
- a material having high yield strength can be used for the fastening portion of the screw 14, deformation of the semiconductor module 1 can be suppressed.
- a material having a low magnetic permeability it is possible to prevent the magnetic field generated when a current flows through the semiconductor chip 6 from diffusing to the outside. Thereby, even if a control board etc. are set
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Geometry (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
図1は、本発明の実施の形態1に係る半導体モジュールを示す断面図である。半導体モジュール1は放熱器2を有する。放熱器2は、大きさは約80mm×80mm程度、厚みは3mm程度であり、AlやCuからなる。放熱器2は、固定面2a(上面)と、固定面2aと反対の面である放熱面2b(下面)とを有する。フィン3が放熱面2bの中央部に設けられている。
図10及び図11は、本発明の実施の形態2に係る半導体モジュールを示す断面図及び上面図である。半導体モジュール1を冷却ジャケット15に取り付けて使用した場合に発生する応力は穴11付近で高くなる。そこで、本実施の形態ではモールド樹脂10の外周部に上側に突出した突出部10aを設けて、穴11付近におけるモールド樹脂10の上面の高さをモジュール中央部におけるモールド樹脂10の上面の高さより高くする。機械的な応力の集中しやすい穴11付近のモールド樹脂10を厚くすることでモジュールの強度を向上することができる。また、モールド樹脂10の一部を厚くするので、モールド樹脂10の全体を厚くするよりもモールド樹脂10の量を削減することができる。
図12及び図13は、本発明の実施の形態3に係る半導体モジュールを示す上面図及び内部図である。放熱器2は外側に突出した突出部19を有する。穴11は突出部19に設けられている。その放熱器2と同形状でモールド樹脂10を形成する。これにより、放熱器2とモールド樹脂10の材料使用量を削減することができる。また、突出部19間に金属フレーム9d,9eを配置することで、半導体モジュールの床面積を低減することもできる。
図16は、本発明の実施の形態4に係る半導体モジュールを示す断面図である。放熱器2の固定面2aに、裏面をメタライズした絶縁材4が接合材20を介して接合されている。接合材20は例えば導電性接合材である半田である。半田などの熱伝導性のよい材料を接合材20に用いることで、半導体モジュール1の放熱性は実施の形態1の半導体モジュールに若干劣るものの、グリスを用いた従来技術より格段に高い放熱性を安定して得ることができる。
図17及び図18は、本発明の実施の形態5に係る半導体モジュールを示す断面図及び上面図である。放熱器2より耐力の高い材質(Feなど)からなるカラー21がモールド樹脂10の穴11に挿入されている。ネジ14の締め付けによる反力を耐力の高いカラー21で受けるため、穴11周辺の放熱器2とモールド樹脂10の変形を抑制することができる。
図19及び図20は、本発明の実施の形態6に係る半導体モジュールを示す断面図及び上面図である。放熱器2より耐力の高い材質(Feなど)からなる板材22が放熱器2の穴11の周辺に設けられている。これにより、ネジ14の締付に対する穴11周辺の放熱器2の変形を抑制することができる。従って、モジュール全体の反りが抑制され、冷却ジャケット15との封止性を確保することができる。
図21は、本発明の実施の形態7に係る半導体モジュールを示す断面図である。放熱器2の放熱面2bに段差23が設けられ、中央部が突出している。これにより、冷媒がフィン3の根元に当たりやすくなり放熱性能が向上する。さらに、放熱器2の厚みが段差23の高さ分だけ増加するため、モジュールの強度も向上する。
図22及び図23は、本発明の実施の形態8に係る半導体モジュールを示す断面図及び内部図である。放熱器2の固定面2aの外周部にガイド24が設けられている。このガイド24が絶縁材4の端部を固定する。これにより、絶縁材4に骨材としての機能を持たせることができるため、放熱器2の強度を向上させることができる。
図25は、本発明の実施の形態9に係る半導体モジュールを示す内部図である。導電材5の平面形状は櫛の歯状である。これにより、絶縁材4の上面のうち導電材5が無い非パターン部が蛇行するため、非パターン部が直線のモジュールと比較して曲げに対する強度が高くなる。
図26及び図27は、本発明の実施の形態10に係る半導体装置を示す断面図及び上面図である。半導体モジュール1を外付けの板材25で押さえつけて冷却ジャケット15に固定する。板材25は半導体モジュール1と接触しており、ネジ14により冷却ジャケット15へ取り付けられている。板材25の材質は、耐力が高く透磁率の低いもの(例えばCu)がよい。
Claims (20)
- 固定面と、前記固定面と反対の面である放熱面とを有する放熱器と、
前記放熱面の中央部に設けられたフィンと、
前記放熱器の前記固定面上に設けられた絶縁材と、
前記絶縁材上に設けられた導電材と、
前記導電材上に設けられた半導体チップと、
前記半導体チップに接続された金属フレームと、
前記フィンを外部に露出させるように、前記放熱器、前記絶縁材、前記導電材、前記半導体チップ、及び前記金属フレームを覆うモールド樹脂とを備え、
前記放熱器の外周部と前記モールド樹脂の外周部を貫通する穴が設けられ、
前記穴にネジを通して冷却ジャケットに取り付けられることを特徴とする半導体モジュール。 - 前記穴付近における前記モールド樹脂の上面の高さをモジュール中央部における前記モールド樹脂の上面の高さより高くすることを特徴とする請求項1に記載の半導体モジュール。
- 前記放熱器は外側に突出した突出部を有し、
前記穴は前記突出部に設けられていることを特徴とする請求項1又は2に記載の半導体モジュール。 - 前記モールド樹脂の平面形状は四角であることを特徴とする請求項3に記載の半導体モジュール。
- 前記モールド樹脂の前記穴に挿入され、前記放熱器より耐力の高い材質からなるカラーを更に備えることを特徴とする請求項1に記載の半導体モジュール。
- 前記カラーの外側面に凹凸が設けられていることを特徴とする請求項5に記載の半導体モジュール。
- 前記放熱器の前記穴の周辺に設けられ、前記放熱器より耐力の高い材質からなる板材を更に備えることを特徴とする請求項1に記載の半導体モジュール。
- 前記放熱器と前記板材が界面で合金化されていることを特徴とする請求項7に記載の半導体モジュール。
- 前記放熱面に段差が設けられていることを特徴とする請求項1に記載の半導体モジュール。
- 前記放熱器は、前記固定面の外周部に設けられたガイドを有し、
前記ガイドが前記絶縁材の端部を固定することを特徴とする請求項1に記載の半導体モジュール。 - 前記導電材の平面形状は櫛の歯状であることを特徴とする請求項1~10の何れか1項に記載の半導体モジュール。
- 前記絶縁材は絶縁基板であることを特徴とする請求項1~11の何れか1項に記載の半導体モジュール。
- 前記絶縁基板はセラミック材料からなることを特徴とする請求項12に記載の半導体モジュール。
- 前記絶縁材はシート状の樹脂であることを特徴とする請求項1~11の何れか1項に記載の半導体モジュール。
- 前記導電材の表面のうち前記半導体チップを実装する領域にめっき処理が施され、
前記導電材と前記半導体チップが導電性接合材により接合されていることを特徴とする請求項1~14の何れか1項に記載の半導体モジュール。 - 前記放熱器と前記導電材の材料が同じであることを特徴とする請求項1~15の何れか1項に記載の半導体モジュール。
- 前記放熱器と前記導電材の材料がAl又はAl合金であることを特徴とする請求項16に記載の半導体モジュール。
- 前記導電材の厚みは前記放熱器の厚みの1.15倍以上、1.45倍以下であることを特徴とする請求項1~17の何れか1項に記載の半導体モジュール。
- 前記半導体チップは、インバータを構成する複数のスイッチング素子を有することを特徴とする請求項1~18の何れか1項に記載の半導体モジュール。
- 半導体モジュールと、
前記半導体モジュールを押さえつけて冷却ジャケットに固定する板材とを備え、
前記半導体モジュールは、
固定面と、前記固定面と反対の面である放熱面とを有する放熱器と、
前記放熱面の中央部に設けられたフィンと、
前記放熱器の前記固定面上に設けられた絶縁材と、
前記絶縁材上に設けられた導電材と
前記導電材上に設けられた半導体チップと、
前記半導体チップに接続された金属フレームと、
前記フィンを外部に露出させるように、前記放熱器、前記絶縁材、前記導電材、前記半導体チップ、及び前記金属フレームを覆うモールド樹脂とを有することを特徴とする半導体装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112013007047.2T DE112013007047B4 (de) | 2013-05-09 | 2013-05-09 | Halbleitermodul |
CN201380076454.0A CN105190874B (zh) | 2013-05-09 | 2013-05-09 | 半导体模块及半导体装置 |
JP2015515695A JP6065973B2 (ja) | 2013-05-09 | 2013-05-09 | 半導体モジュール |
US14/787,103 US9362219B2 (en) | 2013-05-09 | 2013-05-09 | Semiconductor module and semiconductor device |
PCT/JP2013/063053 WO2014181426A1 (ja) | 2013-05-09 | 2013-05-09 | 半導体モジュール及び半導体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/063053 WO2014181426A1 (ja) | 2013-05-09 | 2013-05-09 | 半導体モジュール及び半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014181426A1 true WO2014181426A1 (ja) | 2014-11-13 |
Family
ID=51866929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/063053 WO2014181426A1 (ja) | 2013-05-09 | 2013-05-09 | 半導体モジュール及び半導体装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9362219B2 (ja) |
JP (1) | JP6065973B2 (ja) |
CN (1) | CN105190874B (ja) |
DE (1) | DE112013007047B4 (ja) |
WO (1) | WO2014181426A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016111274A (ja) * | 2014-12-09 | 2016-06-20 | トヨタ自動車株式会社 | 半導体装置 |
CN107112316A (zh) * | 2014-12-26 | 2017-08-29 | 三菱电机株式会社 | 半导体模块 |
JP2019029383A (ja) * | 2017-07-25 | 2019-02-21 | 株式会社デンソー | 半導体装置 |
WO2020188617A1 (ja) * | 2019-03-15 | 2020-09-24 | 三菱電機株式会社 | 半導体装置、及び冷却用部材付き半導体装置 |
JP2021034638A (ja) * | 2019-08-28 | 2021-03-01 | 三菱電機株式会社 | 半導体装置 |
JP2021111765A (ja) * | 2020-01-16 | 2021-08-02 | 三菱電機株式会社 | 半導体装置 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6260702B2 (ja) * | 2014-07-09 | 2018-01-17 | 三菱電機株式会社 | 半導体装置 |
JP2018014414A (ja) * | 2016-07-21 | 2018-01-25 | トヨタ自動車株式会社 | 半導体装置 |
US10222402B2 (en) | 2017-05-18 | 2019-03-05 | Cypress Semiconductor Corporation | Current sensing in a USB power control analog subsystem |
WO2018216146A1 (ja) * | 2017-05-24 | 2018-11-29 | 三菱電機株式会社 | 半導体パッケージ |
CN111433910B (zh) * | 2017-12-13 | 2023-10-10 | 三菱电机株式会社 | 半导体装置以及半导体装置的制造方法 |
JP7298177B2 (ja) * | 2019-02-15 | 2023-06-27 | 富士電機株式会社 | 半導体モジュール及び半導体モジュールの製造方法 |
CN113892172A (zh) * | 2019-05-30 | 2022-01-04 | 三菱电机株式会社 | 半导体装置 |
US11145571B2 (en) * | 2019-06-04 | 2021-10-12 | Semiconductor Components Industries, Llc | Heat transfer for power modules |
DE102019209069A1 (de) * | 2019-06-24 | 2020-12-24 | Siemens Aktiengesellschaft | Befestigung von Leistungshalbleiterbauelementen auf gekrümmten Oberflächen |
DE102019119118B4 (de) * | 2019-07-15 | 2024-06-13 | Infineon Technologies Ag | Halbleitergehäuse, halbleiteranordnung und verfahren zur herstellung eines halbleitergehäuses |
DE102019215793A1 (de) * | 2019-10-14 | 2021-04-15 | Vitesco Technologies GmbH | Verdrahtungssubstrat für ein Halbleiterbauteil und Verfahren zur Herstellung eines Verdrahtungssubstrats |
DE112020006455T5 (de) * | 2020-01-08 | 2022-10-27 | Mitsubishi Electric Corporation | Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung |
DE112021000813T5 (de) * | 2020-01-31 | 2022-11-24 | Hanon Systems | Elektrischer kompressor, wechselrichterherstellungsausrüstung und wechselrichterherstellungsverfahren |
JP7023339B1 (ja) * | 2020-11-04 | 2022-02-21 | 三菱電機株式会社 | 半導体装置 |
JP7455058B2 (ja) * | 2020-12-28 | 2024-03-25 | 三菱電機株式会社 | 半導体モジュール |
US11908766B2 (en) | 2021-04-05 | 2024-02-20 | Jmj Korea Co., Ltd. | Cooling system where semiconductor component comprising semiconductor chip and cooling apparatus are joined |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004172378A (ja) * | 2002-11-20 | 2004-06-17 | Mitsubishi Materials Corp | パワーモジュール用基板の製造方法並びにパワーモジュール用基板及びパワーモジュール |
JP2007184315A (ja) * | 2006-01-04 | 2007-07-19 | Hitachi Ltd | 樹脂封止型パワー半導体モジュール |
JP2008311550A (ja) * | 2007-06-18 | 2008-12-25 | Nichicon Corp | パワー半導体モジュール |
JP2012028561A (ja) * | 2010-07-23 | 2012-02-09 | Mitsubishi Electric Corp | 半導体装置 |
JP2012084708A (ja) * | 2010-10-13 | 2012-04-26 | Mitsubishi Electric Corp | 半導体装置 |
JP2013030649A (ja) * | 2011-07-29 | 2013-02-07 | Mitsubishi Electric Corp | 半導体モジュール及びその製造方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6288347A (ja) | 1985-10-15 | 1987-04-22 | Shindengen Electric Mfg Co Ltd | 樹脂封止型半導体装置 |
JPH0786471A (ja) * | 1993-09-20 | 1995-03-31 | Hitachi Ltd | 半導体モジュ−ル |
JPH0982883A (ja) * | 1995-09-08 | 1997-03-28 | Fujitsu Ltd | 半導体装置 |
US6181006B1 (en) * | 1998-05-28 | 2001-01-30 | Ericsson Inc. | Thermally conductive mounting arrangement for securing an integrated circuit package to a heat sink |
JPH11354659A (ja) | 1998-06-11 | 1999-12-24 | Sansha Electric Mfg Co Ltd | 電力用半導体モジュール |
US6212074B1 (en) * | 2000-01-31 | 2001-04-03 | Sun Microsystems, Inc. | Apparatus for dissipating heat from a circuit board having a multilevel surface |
JP2002158322A (ja) | 2000-11-20 | 2002-05-31 | Mitsubishi Electric Corp | 半導体モジュール |
JP2002315357A (ja) | 2001-04-16 | 2002-10-25 | Hitachi Ltd | インバータ装置 |
JP3646665B2 (ja) | 2001-04-17 | 2005-05-11 | 株式会社日立製作所 | インバータ装置 |
JP2003168769A (ja) * | 2001-11-30 | 2003-06-13 | Mitsubishi Electric Corp | 電力用半導体装置 |
JP4016271B2 (ja) * | 2003-03-26 | 2007-12-05 | 株式会社デンソー | 両面冷却型半導体モジュール |
KR100677617B1 (ko) * | 2005-09-29 | 2007-02-02 | 삼성전자주식회사 | 히트싱크 어셈블리 |
JP2007235004A (ja) * | 2006-03-03 | 2007-09-13 | Mitsubishi Electric Corp | 半導体装置 |
US7849914B2 (en) * | 2006-05-02 | 2010-12-14 | Clockspeed, Inc. | Cooling apparatus for microelectronic devices |
JP4336718B2 (ja) | 2007-02-08 | 2009-09-30 | 三菱電機株式会社 | 半導体装置 |
US7564129B2 (en) | 2007-03-30 | 2009-07-21 | Nichicon Corporation | Power semiconductor module, and power semiconductor device having the module mounted therein |
JP2008300379A (ja) | 2007-05-29 | 2008-12-11 | Sumitomo Electric Ind Ltd | パワーモジュール |
JP2009118176A (ja) | 2007-11-06 | 2009-05-28 | Olympus Imaging Corp | カメラ,画面作成方法,画面作成プログラム |
JP5642336B2 (ja) | 2008-02-06 | 2014-12-17 | 富士電機株式会社 | 半導体装置およびその製造方法 |
JP5257817B2 (ja) | 2010-06-15 | 2013-08-07 | 三菱電機株式会社 | 半導体装置 |
JP2012079950A (ja) | 2010-10-04 | 2012-04-19 | Toyota Motor Corp | 半導体冷却装置 |
JP5251991B2 (ja) | 2011-01-14 | 2013-07-31 | トヨタ自動車株式会社 | 半導体モジュール |
JP5602095B2 (ja) | 2011-06-09 | 2014-10-08 | 三菱電機株式会社 | 半導体装置 |
JP2015073012A (ja) * | 2013-10-03 | 2015-04-16 | 富士電機株式会社 | 半導体装置 |
-
2013
- 2013-05-09 DE DE112013007047.2T patent/DE112013007047B4/de active Active
- 2013-05-09 US US14/787,103 patent/US9362219B2/en active Active
- 2013-05-09 JP JP2015515695A patent/JP6065973B2/ja active Active
- 2013-05-09 CN CN201380076454.0A patent/CN105190874B/zh active Active
- 2013-05-09 WO PCT/JP2013/063053 patent/WO2014181426A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004172378A (ja) * | 2002-11-20 | 2004-06-17 | Mitsubishi Materials Corp | パワーモジュール用基板の製造方法並びにパワーモジュール用基板及びパワーモジュール |
JP2007184315A (ja) * | 2006-01-04 | 2007-07-19 | Hitachi Ltd | 樹脂封止型パワー半導体モジュール |
JP2008311550A (ja) * | 2007-06-18 | 2008-12-25 | Nichicon Corp | パワー半導体モジュール |
JP2012028561A (ja) * | 2010-07-23 | 2012-02-09 | Mitsubishi Electric Corp | 半導体装置 |
JP2012084708A (ja) * | 2010-10-13 | 2012-04-26 | Mitsubishi Electric Corp | 半導体装置 |
JP2013030649A (ja) * | 2011-07-29 | 2013-02-07 | Mitsubishi Electric Corp | 半導体モジュール及びその製造方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016111274A (ja) * | 2014-12-09 | 2016-06-20 | トヨタ自動車株式会社 | 半導体装置 |
CN107112316A (zh) * | 2014-12-26 | 2017-08-29 | 三菱电机株式会社 | 半导体模块 |
JP2019029383A (ja) * | 2017-07-25 | 2019-02-21 | 株式会社デンソー | 半導体装置 |
WO2020188617A1 (ja) * | 2019-03-15 | 2020-09-24 | 三菱電機株式会社 | 半導体装置、及び冷却用部材付き半導体装置 |
JPWO2020188617A1 (ja) * | 2019-03-15 | 2021-10-14 | 三菱電機株式会社 | 半導体装置、及び冷却用部材付き半導体装置 |
JP7204886B2 (ja) | 2019-03-15 | 2023-01-16 | 三菱電機株式会社 | 半導体装置、及び冷却用部材付き半導体装置 |
US12074088B2 (en) | 2019-03-15 | 2024-08-27 | Mitsubishi Electric Corporation | Semiconductor device and semiconductor device with cooling member |
JP2021034638A (ja) * | 2019-08-28 | 2021-03-01 | 三菱電機株式会社 | 半導体装置 |
JP7292155B2 (ja) | 2019-08-28 | 2023-06-16 | 三菱電機株式会社 | 半導体装置 |
JP2021111765A (ja) * | 2020-01-16 | 2021-08-02 | 三菱電機株式会社 | 半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014181426A1 (ja) | 2017-02-23 |
CN105190874B (zh) | 2018-05-18 |
JP6065973B2 (ja) | 2017-01-25 |
US9362219B2 (en) | 2016-06-07 |
CN105190874A (zh) | 2015-12-23 |
DE112013007047T5 (de) | 2016-01-21 |
US20160079155A1 (en) | 2016-03-17 |
DE112013007047B4 (de) | 2023-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6065973B2 (ja) | 半導体モジュール | |
CN107112316B (zh) | 半导体模块 | |
JP5472498B2 (ja) | パワーモジュールの製造方法 | |
JP2007184315A (ja) | 樹脂封止型パワー半導体モジュール | |
WO2015151235A1 (ja) | 半導体装置 | |
WO2015029186A1 (ja) | 半導体モジュール、半導体装置、及び自動車 | |
JP5071405B2 (ja) | 電力用半導体装置 | |
JP2002203942A (ja) | パワー半導体モジュール | |
JP2002315357A (ja) | インバータ装置 | |
US20090102040A1 (en) | Power semiconductor module | |
JP6945418B2 (ja) | 半導体装置および半導体装置の製造方法 | |
JP5120032B2 (ja) | 電子装置 | |
JP6048238B2 (ja) | 電子装置 | |
CN116666322A (zh) | 半导体封装件、冷却系统、基板以及该基板制造方法 | |
JP7237647B2 (ja) | 回路基板および電子装置 | |
KR20190005736A (ko) | 반도체 모듈 | |
JP4046623B2 (ja) | パワー半導体モジュールおよびその固定方法 | |
JP2010003858A (ja) | 半導体装置 | |
JP2010062491A (ja) | 半導体装置および複合半導体装置 | |
JP2004096034A (ja) | モジュール構造体の製造方法並びに回路基板の固定方法及び回路基板 | |
JP5278011B2 (ja) | 半導体の冷却構造及びその製造方法 | |
JP2009253034A (ja) | 半導体素子冷却装置 | |
JP2008159946A (ja) | 半導体モジュールの冷却装置およびその製造方法 | |
JP2009224556A (ja) | 印刷版及びそれを用いたパワーモジュールの組み付け方法 | |
JP2017028131A (ja) | パッケージ実装体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380076454.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13883933 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015515695 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14787103 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120130070472 Country of ref document: DE Ref document number: 112013007047 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13883933 Country of ref document: EP Kind code of ref document: A1 |