WO2014180187A1 - 一种低成本细晶弱织构镁合金薄板及其制造方法 - Google Patents

一种低成本细晶弱织构镁合金薄板及其制造方法 Download PDF

Info

Publication number
WO2014180187A1
WO2014180187A1 PCT/CN2014/073350 CN2014073350W WO2014180187A1 WO 2014180187 A1 WO2014180187 A1 WO 2014180187A1 CN 2014073350 W CN2014073350 W CN 2014073350W WO 2014180187 A1 WO2014180187 A1 WO 2014180187A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
rolling
temperature
alloy sheet
sheet
Prior art date
Application number
PCT/CN2014/073350
Other languages
English (en)
French (fr)
Inventor
梁高飞
张永杰
杨旗
王刚
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to KR1020157021674A priority Critical patent/KR101722105B1/ko
Priority to DE112014002336.1T priority patent/DE112014002336B4/de
Priority to US14/773,996 priority patent/US10000836B2/en
Priority to JP2015560540A priority patent/JP6166798B2/ja
Publication of WO2014180187A1 publication Critical patent/WO2014180187A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent

Definitions

  • the invention relates to a low-cost magnesium alloy and a manufacturing method thereof, in particular to a magnesium alloy thin plate with fine crystal, weak texture and good forming property and a manufacturing method thereof, and the obtained average grain size of the magnesium alloy sheet is ⁇ 1 ( ⁇ 111, the base surface texture strength ⁇ 5, the base surface texture strength after annealing at 250 ⁇ 400 °C ⁇ 3; the forming performance is higher than AZ31.
  • the magnesium crystal structure is a close-packed hexagonal, and the magnesium alloy sheet with strong texture exhibits mechanical anisotropy and low formability.
  • Fine-grained structure and discrete weak texture are the fundamental ways to improve the deformation performance and reduce the deformation anisotropy of magnesium sheets under medium-low temperature and fast strain rate conditions.
  • this micro-structural feature can improve the surface quality of formed magnesium sheets.
  • fine-grained structure can effectively inhibit the occurrence of mechanical twinning, moderately relieve the requirement of polymorphic continuous deformation on the amount of dislocation slip coefficient by grain boundary sliding, and reduce excessive stress concentration at local grain boundary.
  • discrete weak plate texture increases the base surface and cylinder sliding movement, improve the deformation hardening index and make the deformation occur uniformly along the board surface, thereby improving the forming performance of the sheet.
  • Fine grain and discrete weak texture can be obtained by suitable rolling techniques.
  • Hitachi metal is rolled at high temperature (about 500 °C), and the non-base surface slip (Prismatic ⁇ a> and Pyramidal ⁇ c+a>) is simultaneously activated.
  • the texture strength of the magnesium plate is 3.7, and the grain remains basically before and after annealing. Around 6 ⁇ , the sheet can be stamped at room temperature.
  • NanoMag Company produces AZ61 magnesium plate, it is rolled above the dynamic recrystallization temperature, and the roll is preheated at 200 °C.
  • the single pass large reduction ( ⁇ 40%) deformation mode is adopted, and the material base surface texture strength is less than 3.
  • the texture of the plate is further weakened and discretized, and the microstructure is equiaxed. It should be noted that the mesophase particles dispersed in the matrix of AZ61 magnesium alloy promote the weakening of the texture of the rolled sheet.
  • the material is mainly composed of equiaxed crystals having a size of 5 ⁇ m, and the texture of the sheet is discretized.
  • the magnesium alloy rolling process technology line tube should be summarized as follows: 1) high temperature rolling; 2) high strain rate, large reduction of pass; 3) shear rolling; 4) repeated bending after rolling.
  • Alloy design is another way to obtain fine-grained and discrete weakly textured magnesium sheets.
  • Korean Patent KR2003044997 discloses a high-forming magnesium alloy and a manufacturing technique thereof, and its chemical composition (mass percentage) is: Zn: 0.5-5.0%, Y: 0.2-2.0%, Al ⁇ 2.5%, Mn ⁇ 0.5%, Ti ⁇ 0.2%, Zr ⁇ 0.5%, Cd ⁇ 0.5%, Tl ⁇ 0.5%, Bi ⁇ 0.5%, Pb ⁇ 0.5%, Ca ⁇ 0.3%, Sr ⁇ 0.3%, Sn ⁇ 0.5%, Li ⁇ 0.5%, Si ⁇ 0.5%;
  • the process is: 1) Magnesium ingot heated to 250 ⁇ 450 °C, heating time 2min/mm; 2) Rolling temperature 200 ⁇ 450 °C, first pass reduction ⁇ 20%, other passes The reduction is 10 ⁇ 35%; 3) The annealing temperature is 180 ⁇ 350 °C.
  • Chinese patent CN101985714 discloses a high plasticity magnesium alloy and a preparation method thereof, the chemical composition (mass percentage) thereof is: A1: 0.1-6.0%, Sn: 0.1-3.0%, Mn: 0.01-2.0%, Sr: 0.01-2.0 %, can be used to manufacture sheets and profiles.
  • the high-forming magnesium alloy composition (mass percentage) disclosed in JP2012122102A is: Zn: 2.61-6.0%, Ca: 0.01-0.9%, and a small amount of Sr and Zr, wherein Ca+Sr is preferably 0.01 to 1.5%, Zr +Mn is 0.01-0.7%, and the room temperature performance of the magnesium plate is produced: yield strength 90 Mpa, Ericksei i ⁇ 7.0.
  • WO2010110505 discloses a method for producing a high-temperature formability Mg-Zn-based magnesium alloy at room temperature. Its chemical composition (mass percentage) is: Zn ⁇ 3.5%, and additionally contains one of Fe, Sc, Ca, Ag, Ti, Zr, Mn, Si, Ni, Sr, Ni, Sr, Cu, Al, Sn or A variety of elements, by lowering the recovery and recrystallization temperatures, activate low temperature non-base slip, the material has excellent formability.
  • Korean Patent KR20120049686 discloses a high-strength and high-formed magnesium sheet and a method of producing the same. Its chemical composition (mass percentage) is: Zn: 5-10%, Ag: 0.1-3.0%, Ca: 0.1-3.0%, Zr: 0.1-3.0%, Mn: 0.1-1.0%;
  • the TMP technology achieves a fine grain structure with a forming limit height of more than 10 mm.
  • the rare earth element can weaken the texture of the magnesium alloy sheet.
  • the patent WO2010041791 adds the Y element to the Mg-Zn based magnesium alloy to produce precipitation strengthening effect, and refines the crystal grains by double roll continuous casting and TMP technology, and the material has high temperature at room temperature. Strength, plasticity and low anisotropy, etc., resulting in high formability.
  • ZE10 Mgl.3Zn0.1Ce
  • ZEK100 Mgl.3ZnO.2CeO. lLaO.5Zr
  • the object of the present invention is to provide a novel low-cost fine-grained weak-texture magnesium alloy sheet and a manufacturing method thereof, wherein the magnesium alloy composition is designed to have a single crystal grain size, the average grain size of the magnesium alloy sheet is ⁇ 5 ⁇ , and the base surface texture strength is ⁇ 5. After annealing at 250 ⁇ 400 °C, the texture strength of the base surface is ⁇ 3; the ultimate tensile ratio at room temperature is higher than AZ31, and the forming property is good, and it has application possibilities in the fields of automobile and rail transit.
  • the Mg-Ca-Zn-Zr-based magnesium alloy of the present invention contains only Ca, Zn, and Zr elements in a total content of less than 3.0%, and does not contain valuable elements such as rare earths.
  • Ca is used to improve the metallurgical quality of magnesium alloys, to reduce oxidation during heat treatment of melts and castings before casting, and to refine grains, improve creep resistance and rollability of sheets.
  • the present invention mainly utilizes Ca to significantly weaken the texture of the discrete plate and the age hardening property, thereby improving the strength of the magnesium alloy plate and improving the room temperature forming property.
  • the Ca content is selected to be 0.5-1.0%.
  • Zn is used for solid solution strengthening and age strengthening, and has a precipitation hardening effect in combination with Zr.
  • Zn can reduce the corrosion rate of magnesium alloy.
  • Ca element is obviously weakened and discrete plate texture, but the corrosion resistance of magnesium alloy is obviously reduced.
  • the comprehensive corrosion resistance of magnesium alloy can be optimized by adjusting the ratio of Zn/Ca; When the Zn content is too high, The hot brittleness of magnesium alloy is obviously increased. Considering the comprehensive consideration, the Zn content is selected to be 0.4 ⁇ 1.0%.
  • Zr has a strong grain refining effect, which is effective for Zn-containing magnesium alloys; at the same time, it improves the corrosion resistance of materials and reduces the stress corrosion sensitivity. It is generally believed that only solid solution Zr can be used for grain refinement. Considering solid solubility and smelting, the Zr content is selected to be 0.5 to 1.0%.
  • the method for producing the Mg-Ca-Zn-Zr-based magnesium alloy sheet (thickness: 0.3 to 4 mm) of the present invention may be a plurality of original sheets such as hot-rolled blank, two-roll continuous casting and rolling, and extrusion, and is subjected to warm rolling.
  • the process is implemented by any of the following methods (1) ⁇ (3):
  • a method for producing a Mg-Ca-Zn-Zr-based magnesium alloy sheet comprising the following steps:
  • the Mg-Ca-Zn-Zr-based magnesium alloy billet satisfying the above-mentioned distribution ratio is heated to a solution treatment temperature of 370 to 500 ° C, and then the Mg-Ca-Zn-Zr is obtained by hot rolling and warm rolling.
  • finishing temperature is 300 ⁇ 350 °C
  • single pass reduction rate is 20 ⁇ 50%; during warm rolling, roll surface is preheated to 150 ⁇ 300 °C, magnesium alloy plate is hot on line, rolling The system temperature is 150 ⁇ 300 °C, and the single pass reduction rate is 20 ⁇ 40%.
  • the amount of avenue reduction is used as much as possible to complete the rolling in one cycle without secondary heating.
  • the magnesium alloy of the invention has a higher melting point and contains a certain Zr element, and the casting slab has a higher heating temperature, and is selected from 370 to 500 ° C, and requires a longer holding time, according to 0.5 to l min. /mm operation; correspondingly, the rolling is carried out at a higher temperature, the rolling temperature is selected from 450 to 500 ° C, and the finishing temperature is 300 to 350 ° C; hot rolling needs to be completed in one heating cycle to control single pass pressure The rate is 20 ⁇ 50%.
  • the magnesium alloy sheet needs to be replenished on-line, and the Mg-Ca-Zn-Zr-based magnesium alloy hot-rolled sheet has fine grain size and weak board texture, and the material has excellent rolling characteristics, and the warm rolling window is larger than AZ31 magnesium alloy, the surface of the roll is preheated at 150 ⁇ 300 °C, the rolling temperature is 150 ⁇ 300 °C, and the single pass reduction rate is 20 ⁇ 40%.
  • a method for producing a Mg-Ca-Zn-Zr-based magnesium alloy sheet comprising the following steps:
  • the magnesium alloy melt which satisfies the above-mentioned distribution ratio is cast into a twin-roll continuous casting mill to obtain a cast-rolled coil, and the cast-rolled coil is subjected to solution treatment and then warm-rolled or directly rolled and rolled.
  • solution treatment temperature is 370 ⁇ 500°C, holding time is 0.5 ⁇ lmin/mm; during warm rolling, roll surface is preheated to 180 ⁇ 300°C, magnesium alloy plate is hot on line, rolling temperature For 180 ⁇ 300 °C, the single pass reduction rate is 20-40%.
  • the two-roll continuous casting and rolling magnesium alloy plate cannot be milled, and the Mg-Ca-Zn-Zr magnesium alloy contains elements such as Ca and Al to prevent the formation of harmful inclusions such as CaF.
  • the spout outlet cannot pass SF 6 gas, and is selected to be protected by S0 2 ; meanwhile, in order to prevent the formation of harmful inclusions such as A1N, N 2 + C 2 2 gas is used in the entire melting and casting system.
  • the hot rolling characteristics of the twin-roll continuous casting and rolling magnesium alloy sheet are lower than that of the hot rolling blank.
  • the surface of the roll is preheated to 180 ⁇ 300 °C, and the rolling temperature is 180 ⁇ 300 °C, single pass.
  • the reduction rate is 20-40%.
  • a method for manufacturing a Mg-Ca-Zn-Zr-based magnesium alloy sheet comprising the following steps:
  • the magnesium alloy slab satisfying the above-mentioned distribution ratio is heated to a solution treatment temperature of 370 to 500 ° C, and then subjected to horizontal extrusion to obtain a Mg-Ca-Zn-Zr-based magnesium alloy sheet having a thickness of 2 to 4 mm, or After horizontal extrusion, the Mg-Ca-Zn-Zr-based magnesium alloy sheet having a thickness of 0.3 ⁇ 2 mm is obtained by warm rolling; wherein the holding time of the solution treatment is 0.5 ⁇ lmin/mm; when horizontally extruded, extrusion
  • the cylinder and the mold (die pad) are preheated to 400 ⁇ 500 °C, the extrusion temperature is 350 ⁇ 500 °C, and the extrusion rate is 2 ⁇ 10m/min.
  • the surface of the roll is preheated to 150 ⁇ 300°C.
  • the magnesium alloy plate is heated on-line, the rolling temperature is 150 ⁇ 300°C, and the single pass reduction rate is 30-50%.
  • the Mg-Ca-Zn-Zr-based magnesium alloy of the present invention has a high melting point, requires a relatively high solid solution temperature and extrusion temperature during extrusion, and requires an extrusion cylinder and a die (die pad). Preheat to 400 ⁇ 500 °C, extrusion can be carried out at a higher rate, choose 2 ⁇ 10m/min.
  • the extruded magnesium alloy sheet has excellent rolling characteristics and can be selected for a large single pass reduction ratio: 30 to 50%.
  • the surface of the roll is preheated to 150 ⁇ 300°C by the warm rolling process.
  • the magnesium alloy plate is heated on-line, the rolling temperature is 150 ⁇ 300°C, and the single pass reduction rate is 30-50%. .
  • the subsequent step includes the cold rolling step, and the reduction ratio of the cold rolling is 10 to 20%, and the thickness of the finished sheet can be further reduced to about 0.3 mm.
  • the annealing and/or aging treatment of the magnesium alloy sheet is further included; wherein, the annealing temperature is 250 to 400 ° C, and the aging treatment temperature is 150 ⁇ 200°C. Annealing can further weaken the texture and improve the forming properties of the material.
  • the annealing temperature is selected to be 250-400 °C.
  • the Mg-Ca-Zn-Zr-based magnesium alloy of the present invention has a certain age hardening effect, and the control of the aging temperature is very important, so the aging temperature is selected to be 150 to 200 °C.
  • the invention has the following beneficial effects:
  • the average grain size of the magnesium alloy sheet obtained by the invention is ⁇ 10 ⁇ , the texture strength of the base surface is ⁇ 5, and the texture strength of the base surface after annealing is ⁇ 3; the grain size is obviously smaller than the average grain size of the AZ31B thin plate manufactured under the same conditions, and The board texture is significantly weakened.
  • the mechanical properties of the material are varied within a wide range to meet the requirements of different components.
  • the magnesium alloy of the invention has the chemical composition and the non-precious alloying elements, and has wide application process and low production cost.
  • the magnesium alloy sheet of the invention has certain application prospects and potentials in the fields of automobile, rail transit, 3C, etc., and can be used in an automobile inner panel, a flap inner panel, a trunk lid inner panel, an interior panel, a rail transit body, and the like.
  • 3C product housing and other components are used as sheet metal.
  • Fig. 1 is a view showing the microstructure of a Mg-Ca-Zn-Zr-based magnesium alloy ingot according to Example 1 of the present invention.
  • Fig. 2 is a texture distribution diagram of a Mg-Ca-Zn-Zr-based magnesium sheet according to Example 1 of the present invention.
  • Figure 3 is a texture distribution diagram of an AZ31 magnesium plate according to Example 2 of the present invention.
  • Fig. 4 is a view showing the microstructure of the Mg-Ca-Zn-Zr-based magnesium plate after annealing in Example 3 of the present invention.
  • Fig. 5 is a view showing the grain size distribution of the annealed Mg-Ca-Zn-Zr-based magnesium plate according to Example 3 of the present invention.
  • Fig. 6 is a texture distribution diagram of an annealed Mg-Ca-Zn-Zr-based magnesium plate according to Example 3 of the present invention.
  • Figure 7 is a view showing the microstructure of the AZ31 magnesium sheet after annealing in Example 4 of the present invention.
  • Figure 8 is a graph showing the grain distribution of the annealed AZ31 magnesium plate.
  • Figure 9 is a texture distribution diagram of an annealed AZ31 magnesium plate according to Example 4 of the present invention.
  • Fig. 10 is a graph showing the room temperature ultimate tensile ratio of the annealed Mg-Ca-Zn-Zr-based magnesium plate of Example 3 of the present invention.
  • Figure 11 is a graph showing the room temperature ultimate draw ratio of the annealed AZ31 magnesium plate of Example 4 of the present invention.
  • Fig. 12 is a graph showing changes in hardness of an Mg-Ca-Zn-Zr-based magnesium plate according to Example 6 of the present invention after aging treatment. detailed description
  • the chemical composition of the Mg-Ca-Zn-Zr-based magnesium alloy sheet is shown in Table 1.
  • the manufacturing method is as follows: a magnesium alloy slab (microstructure as shown in FIG. 1) which satisfies the distribution ratio shown in Table 1 is heated to a solution temperature of 500 ° C, and the holding time is 0.5 min/mm, after rolling The Mg-Ca-Zn-Zr-based magnesium alloy of the present example was obtained.
  • hot rolling the surface of the roll is preheated to 150 ° C, the rolling temperature is 450 ° C, the finishing temperature is 350 ° C, and the single pass reduction rate is 20 to 30%.
  • the roll surface is preheated.
  • magnesium alloy plate on-line heat rolling temperature is 220 ° C
  • single pass reduction rate is 20 ⁇ 40%; cold rolling, cold rolling reduction 10%, the final thickness is 0.4mm .
  • the microstructure of the magnesium alloy slab of Example 1 is shown in Fig. 1, and its structure is equiaxed, and the average grain size is about 50 ⁇ m.
  • Example 2 (Comparative Example 1)
  • Example 3 The texture distribution of the magnesium alloy AZ31B of Comparative Example 1 is shown in Fig. 3, and the texture strength was 8.0.
  • Example 3 The texture distribution of the magnesium alloy AZ31B of Comparative Example 1 is shown in Fig. 3, and the texture strength was 8.0.
  • the chemical composition of the Mg-Ca-Zn-Zr-based magnesium alloy sheet is shown in Table 1.
  • the manufacturing method is as follows: the magnesium alloy slab which satisfies the distribution ratio shown in Table 1 is heated to a solution temperature of 500 ° C for a solution time of 0.5 min/mm; during hot rolling, the surface of the roll is preheated at 150 ° C.
  • the rolling temperature is 450 °C
  • the finishing temperature is 350 °C
  • the single pass reduction rate is 20 ⁇ 30%.
  • the surface of the roll is preheated to 150 °C, the magnesium alloy plate is replenished online, and the rolling temperature is For 220 ° C, the single pass reduction rate is 20-40%; when cold rolling, the cold rolling reduction is 10%, and the final plate thickness is 0.4 mm; 375 °C annealing for 17 minutes.
  • Example 4 (Comparative Example 2)
  • the microstructure of the magnesium alloy AZ31B of Comparative Example 2 is shown in Fig. 7.
  • the grain size distribution is as shown in Fig. 8, and the average grain size is 22 ⁇ m.
  • the texture distribution is shown in Fig. 9, and the texture strength is 6.2.
  • the forming property test is shown in Fig. 11, and the room temperature ultimate draw ratio (LDR) was 1.74.
  • Example 5 The microstructure of the magnesium alloy AZ31B of Comparative Example 2 is shown in Fig. 7.
  • the grain size distribution is as shown in Fig. 8, and the average grain size is 22 ⁇ m.
  • the texture distribution is shown in Fig. 9, and the texture strength is 6.2.
  • the forming property test is shown in Fig. 11, and the room temperature ultimate draw ratio (LDR) was 1.74.
  • the chemical composition of the Mg-Ca-Zn-Zr-based magnesium alloy sheet is shown in Table 1.
  • the manufacturing method is as follows: the magnesium alloy slab which satisfies the distribution ratio shown in Table 1 is heated to a solution temperature of 500 ° C, and the holding time is 0.5 min/mm; when hot rolling, the surface of the roll is preheated at 150 ° C, rolling The temperature is 450 °C, the finishing temperature is 350 °C, the single pass reduction rate is 20 ⁇ 30%; when the temperature is rolled, the surface of the roll is preheated to 150 °C, the magnesium alloy plate is replenished online, and the rolling temperature is 220. °C, single pass reduction rate is 20-40%; cold rolling, cold rolling reduction 10%, final plate thickness is 0.8mm; 375 °C annealing for 35min.
  • the Mg-Ca-Zn-Zr-based magnesium alloy sheet obtained in this example had an average grain size of 5.32 ⁇ , a texture strength of 2.6, a relatively distributed distribution, and a room temperature ultimate draw ratio (LDR) of 1.86.
  • Example 6
  • the chemical composition of the Mg-Ca-Zn-Zr-based magnesium alloy sheet is shown in Table 1.
  • the manufacturing method is as follows: the magnesium alloy slab which satisfies the distribution ratio shown in Table 1 is heated to a solution temperature of 500 ° C for a solution time of 0.5 min/mm; during hot rolling, the surface of the roll is preheated at 150 ° C.
  • the rolling temperature is 450 °C
  • the finishing temperature is 350 °C
  • the single pass reduction rate is 20-30%.
  • the surface of the roll is preheated to 150 °C, the magnesium alloy plate is replenished online, and the rolling temperature is For 220 ° C, the single pass reduction rate is 20-40%; during cold rolling, the cold rolling reduction is 10%, and the final plate thickness is 0.4 mm; 150 ° C artificial aging treatment.
  • the effect of aging treatment on the hardness of magnesium alloy is shown in Fig. 12. After age hardening for 1 h, the hardness of the material is increased from HV72 to HV85.
  • the Mg-Ca-Zn-Zr-based magnesium alloy sheet obtained in this example had an average grain size of 4.4 ⁇ m, a texture strength of 4.0, a relatively distributed distribution, and a room temperature ultimate draw ratio (LDR) of 1.79.
  • Example 7 (Comparative Example 3)
  • the chemical composition of the Mg-Ca-Zn-Zr-based magnesium alloy sheet is shown in Table 1.
  • the manufacturing method is as follows: the magnesium alloy slab which satisfies the distribution ratio shown in Table 1 is heated to a solution temperature of 500 ° C for a solution time of 0.5 min/mm; during hot rolling, the surface of the roll is preheated at 150 ° C.
  • the rolling temperature is 450 °C
  • the finishing temperature is 350 °C
  • the single pass reduction rate is 20 ⁇ 40%.
  • the surface of the roll is preheated to 200 °C, the magnesium alloy plate is heated on line, the rolling temperature For 200 ° C, the single pass reduction rate is 20-40%; during cold rolling, the cold rolling reduction is 15%, and the final plate thickness is 0.6 mm.
  • the Mg-Ca-Zn-Zr-based magnesium alloy sheet obtained in this example had an average grain size of 5.2 ⁇ , a texture strength of 4.6, and a relatively dispersed distribution.
  • Example 9
  • the chemical composition of the Mg-Ca-Zn-Zr-based magnesium alloy sheet is shown in Table 1.
  • the manufacturing method is as follows: a magnesium alloy melt which satisfies the distribution ratio shown in Table 1 is cast into a two-roll continuous casting mill, the roller rotation linear velocity is 6 m/min, the roll gap is 4 mm, the roller surface is graphite lubricated, and the furnace and the casting system pass N 2 +C0 2 gas, spout outlet through S0 2 protection; solution temperature 450 ° C, holding time 0.51 min / mm; hot rolling, roll surface preheating 180 ° C, magnesium alloy plate online heat, rolling temperature 180 ⁇ 200 ° C, single pass reduction rate of 20 ⁇ 30%; then 15% cold rolling, 400 ° C annealing for 2h.
  • the Mg-Ca-Zn-Zr-based magnesium alloy sheet obtained in this example had an average grain size of 8.6 ⁇ m, a texture strength of 2.6, a relatively distributed distribution, and a room temperature ultimate draw ratio (LDR) of 1.89.
  • LDR room temperature ultimate draw ratio
  • the chemical composition of the Mg-Ca-Zn-Zr-based magnesium alloy sheet is shown in Table 1.
  • the manufacturing method is as follows: the magnesium alloy billet which meets the distribution ratio shown in Table 1 is heated to a solution temperature of 500 ° C, and the holding time is 0.5 min/mm; horizontal extrusion, extrusion barrel and mold (die pad) Preheating to 500 ° C, extrusion temperature 350 ° C, extrusion rate 5 m / min, to obtain a magnesium alloy sheet with a thickness of 4 mm; Using the warm rolling process, the surface of the roll is preheated at 150 °C, the magnesium alloy plate is heated on-line, the rolling temperature is 150 ⁇ 200 °C, the single pass reduction rate is 30 ⁇ 50%; then 20% cold rolling, 400° C was annealed for 30 min.
  • the Mg-Ca-Zn-Zr-based magnesium alloy sheet obtained in this example had an average grain size of 8.5 ⁇ , a texture strength of 2.8, a relatively distributed distribution, and a room temperature ultimate draw ratio (LDR) of 1.88.
  • LDR room temperature ultimate draw ratio
  • the chemical composition of the Mg-Ca-Zn-Zr-based magnesium alloy is shown in Table 1: The manufacturing method is the same as in Example 8.
  • the Mg-Ca-Zn-Zr-based magnesium alloy sheet obtained in this example had an average grain size of 5.4 ⁇ m and a texture strength of 4.6, and the distribution was relatively dispersed.
  • the chemical composition of the Mg-Ca-Zn-Zr-based magnesium alloy is shown in Table 1: The manufacturing method is the same as in Example 9.
  • the Mg-Ca-Zn-Zr-based magnesium alloy sheet obtained in this example had an average grain size of 6.8 ⁇ , a texture strength of 2.8, a relatively distributed distribution, and a room temperature ultimate draw ratio (LDR) of 1.85.
  • Example 13
  • the manufacturing method of the Mg-Ca-Zn-Zr-based magnesium alloy sheet is as follows:
  • the magnesium alloy melt was cast into a two-roll continuous casting mill according to Example 9, the roll rotation rate was 6 m/min, the roll gap was 4 mm, the roll surface was graphite lubricated, and the furnace and the casting system were passed through N 2 + C0 2 gas. The mouth outlet is protected by S0 2 ; then the hot rolling is directly carried out.
  • the temperature is rolled, the surface of the roll is preheated at 180 ° C, the magnesium alloy plate is heated on-line, the rolling temperature is 180-200 ° C, and the single pass reduction rate is 20-30. %; then 15% cold rolling, annealing at 400 ° C for 2h.
  • the Mg-Ca-Zn-Zr-based magnesium alloy sheet obtained in this example had an average grain size of 8.9 ⁇ m, a texture strength of 2.9, a relatively distributed distribution, and a room temperature ultimate draw ratio (LDR) of 1.82.
  • LDR room temperature ultimate draw ratio
  • the manufacturing method of the Mg-Ca-Zn-Zr-based magnesium alloy sheet is as follows:
  • the magnesium alloy slab according to the distribution ratio of Example 10 is heated to a solution temperature of 500 ° C, Holding time 0.5min/mm; Horizontal extrusion, extrusion tube and mold (die pad) preheated to 500 ° C, extrusion temperature 350 ° C, extrusion rate 5 m / min, to obtain a magnesium alloy sheet with a thickness of 4 mm Then 20% cold rolling and 400 °C annealing for 30 min.
  • the Mg-Ca-Zn-Zr-based magnesium alloy sheet obtained in this example had an average grain size of 5.9 ⁇ , a texture strength of 2.8, a relatively distributed distribution, and a room temperature ultimate draw ratio (LDR) of 1.88.
  • LDR room temperature ultimate draw ratio
  • the manufacturing method of the Mg-Ca-Zn-Zr-based magnesium alloy sheet is as follows:
  • the magnesium alloy billet having a distribution ratio according to Example 1 was subjected to solution treatment at a temperature of 500 ° C for a holding time of 0.5 min/mm, and the Mg-Ca-Zn-Zr-based magnesium alloy of the present example was obtained after rolling.
  • hot rolling the surface of the roll is preheated to 150 ° C, the rolling temperature is 450 ° C, the finishing temperature is 350 ° C, and the single pass reduction rate is 20 to 30%.
  • the roll surface is preheated.
  • the magnesium alloy plate is replenished on-line with a rolling temperature of 220 ° C and a single pass reduction of 20 to 40%.
  • the obtained magnesium alloy sheet has a thickness of 0.44 m and an annealing treatment at 300 ° C for 30 min.
  • the Mg-Ca-Zn-Zr-based magnesium alloy sheet obtained in this example had an average grain size of 4.2 ⁇ m, a texture strength of 2.6, a relatively distributed distribution, and a room temperature ultimate draw ratio (LDR) of 1.92.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种Mg-Ca-Zn-Zr系镁合金薄板,其化学成分的重量百分比为:Ca:0.5〜1.0%、Zn:0.4〜1.0%、Zr:0.5〜1.0%,其余为Mg和不可避免的杂质;该镁合金薄板平均晶粒尺寸≤10μm,基面织构强度≤5,经250〜400°C退火后基面织构强度≤3;室温极限拉伸比高于AZ31;晶粒尺寸明显小于同条件下制造的AZ31B薄板平均晶粒尺寸,并且板织构显著弱化。该镁合金成分简单、无贵重合金元素,工艺适用面广,生产成本低,可在汽车门内板、发盖内板、行李箱盖内板、内饰板、轨道交通车体以及3C产品外壳等部件作为板材应用。

Description

一种低成本细晶弱织构镁合金薄板及其制造方法 技术领域
本发明涉及一种低成本镁合金及其制造方法, 尤其是细晶、 弱织构、 并具有良好成形性能的镁合金薄板及其制造方法,获得的镁合金薄板平均 晶粒尺寸≤1(^111 ,基面织构强度≤5 ,经 250~400 °C退火后基面织构强度≤3 ; 成形性能高于 AZ31。
背景技术
镁晶体结构为密排六方,具有强织构的镁合金板材表现出机械性能各 向异性和低成形性能。细晶组织和离散弱织构是提高镁板在中低温和快应 变速率条件下变形性能和降低变形各向异性的根本途径,同时这一微观结 构特征可提高成形镁板的表面质量。 在镁合金塑性变形过程中, 细晶组织 可以有效抑制机械孪晶的发生、通过晶界滑动适度緩解多晶体连续变形对 位错滑移系数量的要求、 降低局部晶界处过度的应力集中, 并且容纳变形 缺陷; 离散弱板织构增加基面和柱面滑移开动, 提高变形硬化指数和使变 形沿板面均匀发生, 从而提高板材的成形性能。
细晶和离散弱织构可以通过合适的轧制技术获得。 日立金属通过高温 轧制 ( 500°C左右) , 使非基面滑移 ( Prismatic <a>和 Pyramidal <c+a> ) 同时开动, 镁板织构强度为 3.7, 并且退火前后晶粒基本保持 6μηι左右, 使板材可在室温条件下沖压。
美国 NanoMag公司生产 AZ61镁板时, 在动态再结晶温度以上轧制, 轧辊预热 200 °C , 采用了单道次大压下量(≥40% )变形模式, 材料基面织 构强度小于 3 , 退火后板织构进一步弱化和离散化, 显微组织为等轴晶; 需要指出的是, AZ61镁合金基体弥散的中间相颗粒物促进了轧制板材的 织构弱化。
日本 Osaka大学提出 "高应变速率、 道次大压下量" 的变形模式, 应 变速率 180-2000/s, 道次压下量 50-60%, 在轧制变形区内轧制变形热使 轧制温度明显升高, 从而发生动态再结晶, 材料主要由尺寸 5μηι的等轴 晶组成, 板织构离散化。
为获得细晶和离散弱板织构, 镁合金轧制工艺技术路线筒要总结有: 1 ) 高温轧制; 2 ) 高应变速率、 道次大压下量; 3 )剪切轧制; 4 )轧制后 反复弯矫。
合金设计是获得细晶和离散弱织构镁板的另一条途径。 韩国专利 KR2003044997公开一种高成形镁合金及其制造技术, 其化学成份(质量 百分比)为: Zn: 0.5-5.0%, Y: 0.2-2.0%, Al<2.5%, Mn <0.5%, Ti<0.2%, Zr<0.5%, Cd<0.5%, Tl<0.5%, Bi<0.5%, Pb<0.5%, Ca<0.3%, Sr<0.3%, Sn<0.5% , Li<0.5%, Si<0.5%; 其工艺流程为: 1 ) 镁锭加热至 250~450 °C , 加热时间 2min/mm; 2 ) 轧制温度 200~450 °C , 首道次压下量≤20% , 其余道次压下量 10~35%; 3 ) 退火温度 180~350°C。
中国专利 CN101985714公开一种高塑性镁合金及其制备方法, 其化 学成分(质量百分比)为: A1: 0.1-6.0%, Sn: 0.1-3.0%, Mn: 0.01-2.0%, Sr: 0.01-2.0%, 可用于制造板材和型材。
曰本专利 JP2012122102A公开的高成形镁合金成分(质量百分比) 为: Zn: 2.61-6.0%, Ca: 0.01-0.9%, 另有少量 Sr和 Zr, 其中优选 Ca+Sr 为 0.01~1.5%, Zr+Mn为 0.01-0.7%, 制造出镁板的室温性能: 屈服强度 90Mpa, Ericksei i≥7.0。
WO2010110505公开一种室温高速成形性能 Mg-Zn基镁合金的制造 方法。 其化学成分(质量百分比) 为: Zn≤3.5% , 另含有 Fe、 Sc、 Ca、 Ag、 Ti、 Zr、 Mn、 Si、 Ni、 Sr、 Ni、 Sr、 Cu、 Al、 Sn中的一种或多种元 素, 通过降低回复和再结晶温度, 激活低温非基面滑移, 材料具有优异的 成形性能。
最近, 韩国专利 KR20120049686公开了一种高强高成形镁板及其制 造方法。 其化学成分(质量百分比)为: Zn: 5-10%, Ag: 0.1-3.0%, Ca: 0.1-3.0%, Zr: 0.1-3.0%, Mn: 0.1-1.0%; 通过轧前预处理和 TMP技术获 得细晶组织, 成形极限高度可以超过 10mm。
稀土元素可以弱化镁合金板织构, 如专利 WO2010041791将 Y元素 加入 Mg-Zn基镁合金中产生析出强化作用, 并利用双辊连续铸轧和 TMP 技术细化晶粒, 材料在室温下具有高强度、 塑性和低的各向异性等优点, 从而具有高成形性能。
另外, ZE10 ( Mgl.3Zn0.1Ce )、 ZEK100 ( Mgl.3ZnO.2CeO. lLaO.5Zr )、
ZW41 ( Mg4.0Zn0.7Y ) 、 ZGl l ( Mgl.2ZnO.8Gd ) 、 ZG21 ( Mg2.3ZnO.7Gd ) 等稀土镁合金板织构明显弱化。 以 ZG11为例, 晶粒尺寸 12-15μηι, 均匀 延伸率 15%, 总延伸率达到 36%, Lankford值 1 (远低于 AZ31 : 3 ) , 参 见 H Yan等, Mater. ScL Eng. A, 2010, 527: 3317-22。
虽然稀土元素在弱化镁板织构方面效果明显, 但出于成本等因素考 虑, 一般认为稀土镁合金板在汽车中的应用困难很大。 对汽车和轨道交通 领域而言, 合金设计和制造工艺要求筒单而有效, 性能要求 "适当" 而非 "卓越" , 在轻量化、 性能、 成本三者之间寻求平衡, 这一点与军工、 航 空航天等领域完全不同。 发明内容
本发明的目的在于提供一种新型的低成本细晶弱织构镁合金薄板及 其制造方法, 该镁合金成分设计筒单, 镁合金薄板平均晶粒尺寸≤5μηι, 基面织构强度≤5 , 经 250~400°C退火后基面织构强度≤3; 室温极限拉伸比 高于 AZ31 , 成形性能好, 在汽车、 轨道交通等领域具有应用的可能性。
为了实现上述目的, 本发明采用如下的技术方案:
一种 Mg-Ca-Zn-Zr系镁合金薄板, 其化学成分的重量百分比为: Ca: 0.5-1.0%, Zn: 0.4-1.0%, Zr: 0.5-1.0%, 其余为 Mg和不可避免的杂质; 该镁合金薄板平均晶粒尺寸≤10μηι, 基面织构强度≤5 , 经 250~400°C退火 后基面织构强度≤3; 室温极限拉伸比高于 AZ31。
本发明的 Mg-Ca-Zn-Zr系镁合金中只含有 Ca、 Zn、 Zr元素, 总含量 低于 3.0%, 不含稀土等贵重元素。
本发明的化学成分设计中:
Ca: Ca用于改善镁合金的冶金质量, 浇铸前减轻熔体和铸件热处理 过程中的氧化, 并且细化晶粒, 提高蠕变抗力以及薄板的可轧制性能。 本 发明主要利用 Ca明显弱化离散板织构以及时效硬化的特性, 从而提高镁 合金板强度, 改善室温成形性能。 考虑到冶炼以及 Ca在镁合金中的固溶 度, Ca含量选择为 0.5-1.0%。
Zn: Zn用于固溶强化和时效强化, 与 Zr结合具有沉淀硬化作用; 另 夕卜, Zn可以降低镁合金的腐蚀速率。 Ca元素明显弱化、 离散板织构, 但 明显降低镁合金的耐蚀性能, Zn 元素同时加入后, 耐蚀性能提高, 通过 调节 Zn/Ca比例可以优化镁合金的综合耐蚀性; 不过, 当 Zn含量太高时, 镁合金热脆性明显增加, 综合考虑, Zn含量选择为 0.4~1.0%。
Zr: Zr具有很强的晶粒细化作用, 用于含 Zn的镁合金中效果明显; 同时提高材料耐蚀性, 降低应力腐蚀敏感性。 一般认为只有固溶的 Zr可 用于晶粒细化, 考虑固溶度与冶炼, Zr含量选择为 0.5~1.0%。
本发明的 Mg-Ca-Zn-Zr系镁合金薄板(厚度 0.3~4mm ) 的制造方法, 可以使用热轧开坯、 双辊连续铸轧、 挤压开坯等多种原板, 附以温轧工艺 实现, 具体为以下方法 ( 1 ) ~ ( 3 ) 中的任一:
( 1 ) Mg-Ca-Zn-Zr系镁合金薄板(厚度 0.3~4mm ) 的制造方法, 包 括如下步骤:
将满足上述成分配比的 Mg-Ca-Zn-Zr系镁合金铸坯加热到 370~500°C 温度下固溶处理, 然后经热轧、温轧后获得所述 Mg-Ca-Zn-Zr系镁合金薄 板, 该薄板的厚度为 0.3~4mm; 其中, 固溶处理的保温时间为 0.5~lmin/mm;热轧时,轧辊表面在 150~350°C下预热,开轧温度为 450~500 °C , 终轧温度为 300~350°C , 单道次压下率为 20~50%; 温轧时, 轧辊表 面预热至 150~300°C , 镁合金板在线补热, 轧制温度为 150~300°C , 单道 次压下率为 20~40%。
本发明的热轧过程中, 尽量采用大道次压下量, 使轧制一个周期内完 成而不用二次加热。 与商业常用的 AZ31镁合金对比, 本发明的镁合金熔 点较高, 并且含有一定 Zr元素, 铸坯加热温度较高, 选择 370~500°C , 同时需要较长的保温时间, 按照 0.5~lmin/mm操作; 相应地, 轧制在较 高温度下进行, 开轧温度选择 450~500°C、 终轧温度 300~350°C ; 热轧需 要在一个加热周期内完成, 控制单道次压下率为 20~50%。
本发明的温轧过程中, 镁合金板需要在线补热, 由于 Mg-Ca-Zn-Zr 系镁合金热轧板晶粒细小、 板织构弱, 材料可轧制特性优异, 温轧窗口大 于 AZ31镁合金,选择轧辊表面在 150~300°C下预热,轧制温度为 150~300 °C , 单道次压下率为 20~40%。
( 2 ) Mg-Ca-Zn-Zr系镁合金薄板(厚度 0.3~4mm ) 的制造方法, 包 括如下步骤:
将满足上述成分配比的镁合金熔体浇铸至双辊连续铸轧机铸轧,获得 铸轧板卷, 将铸轧板卷经固溶处理后温轧或者将铸轧板卷直接进行温轧, 获得所述 Mg-Ca-Zn-Zr系镁合金薄板, 该薄板的厚度为 0.3~4mm; 其中, 采用双辊连续铸轧机铸轧时,辊旋转线速率为 5-10m/min,辊缝为 4-8mm, 辊表面采用石墨润滑, 熔炉与浇铸系统通 N2+C02气体, 浇嘴出口通 S02 保护; 固溶处理的温度为 370~500°C , 保温时间为 0.5~lmin/mm; 温轧时, 轧辊表面预热至 180~300°C ,镁合金板在线补热, 轧制温度为 180~300°C , 单道次压下率为 20-40%。
本发明与热轧开坯技术相比, 双辊连续铸轧镁合金板不能铣皮, 而 Mg-Ca-Zn-Zr系镁合金中含有 Ca、 Al等元素, 为防止形成 CaF等有害夹 杂物, 浇嘴出口不能通 SF6气体, 选择用 S02保护; 同时, 为防止形成 A1N等有害夹杂物, 整个熔炼与浇铸系统中利用 N2+C02气体。 双辊连续 铸轧镁合金板温轧特性低于热轧开坯, 为保证材料收得率, 选择轧辊表面 预热至 180~300°C , 轧制温度为 180~300°C , 单道次压下率为 20-40%。
( 3 ) Mg-Ca-Zn-Zr系镁合金薄板(厚度 2~4mm ) 的制造方法, 包括 如下步骤:
将满足上述成分配比的镁合金铸坯加热到 370~500°C温度下固溶处 理, 然后经卧式挤压获得厚度为 2~4mm的 Mg-Ca-Zn-Zr系镁合金薄板, 或者经卧式挤压后温轧获得厚度为 0.3~2mm的 Mg-Ca-Zn-Zr系镁合金薄 板; 其中, 固溶处理的保温时间为 0.5~lmin/mm; 卧式挤压时, 挤压筒和 模具 (模垫) 预热至 400~500 °C , 挤压温度为 350~500 °C , 挤压速率为 2~10m/min; 温轧时, 轧辊表面预热至 150~300°C , 镁合金板在线补热, 轧制温度为 150~300°C , 单道次压下率为 30-50%。
如前所述, 本发明的 Mg-Ca-Zn-Zr系镁合金熔点较高, 挤压过程中需 要比较高的固溶温度和挤压温度, 并且需要对挤压筒和模具(模垫)预热 到 400~500°C , 挤压可以在较高的速率下进行, 选择 2~10m/min。 挤压镁 合金板可轧制特性优良, 可以选择较大的单道次压下率: 30~50%。 对于 0.3~2mm厚度的板材, 利用温轧工艺, 轧辊表面预热至 150~300°C , 镁合 金板在线补热, 轧制温度 150~300°C , 单道次压下率 30-50%。
进一步的, 为改善镁合金薄板质量尤其是温轧镁合金薄板质量, 后续 还包括冷轧步骤, 冷轧的压下率为 10~20%, 可进一步将成品板材厚度降 氐至 0.3mm左右。
进一步的, 为进一步改善镁合金板成形性能, 还包括对镁合金板进行 退火处理和 /或时效处理; 其中, 退火温度为 250~400°C , 时效处理温度为 150~200°C。 退火可以进一步弱化织构, 提高材料的成形性能, 选择退火 温度为 250~400°C。 与 AZ31对比, 本发明的 Mg-Ca-Zn-Zr系镁合金具有 一定时效硬化效果, 对时效温度的控制非常重要, 因此选择时效温度为 150~200°C。
本发明与现有技术相比具有以下有益效果:
本发明获得的镁合金薄板平均晶粒尺寸≤10μηι, 基面织构强度≤5 , 退 火后基面织构强度≤3 ; 晶粒尺寸明显小于同条件下制造的 AZ31B薄板平 均晶粒尺寸, 并且板织构显著弱化。 此外, 结合后续退火和 /或时效处理 等热处理工艺,使材料机械性能在较大范围内变化,满足不同构件的要求。
本发明的镁合金化学成分筒单、 无贵重合金元素, 工艺适用面广, 生 产成本低。
本发明的镁合金板在汽车、 轨道交通、 3C 等领域具有一定的应用前 景与潜力, 可在汽车门内板、 发盖内板、 行李箱盖内板、 内饰板、 轨道交 通车体以及 3C产品外壳等部件作为板材应用。 附图说明
图 1为本发明实施例 1的 Mg-Ca-Zn-Zr系镁合金铸锭显微组织图。 图 2为本发明实施例 1的 Mg-Ca-Zn-Zr系镁板织构分布图。
图 3为本发明实施例 2的 AZ31镁板的织构分布图。
图 4为本发明实施例 3的 Mg-Ca-Zn-Zr系镁板退火后的显微组织。 图 5为本发明实施例 3的退火 Mg-Ca-Zn-Zr系镁板晶粒分布图。
图 6为本发明实施例 3的退火 Mg-Ca-Zn-Zr系镁板的织构分布图。 图 7为本发明实施例 4的 AZ31镁板退火后的显微组织。
图 8为退火 AZ31镁板晶粒分布图。
图 9为本发明实施例 4的退火 AZ31镁板的织构分布图。
图 10为本发明实施例 3的退火 Mg-Ca-Zn-Zr系镁板的室温极限拉伸 比图。
图 11为本发明实施例 4的退火 AZ31镁板的室温极限拉伸比图。 图 12为本发明实施例 6的 Mg-Ca-Zn-Zr系镁板经时效处理后的硬度 变化。 具体实施方式
下面结合具体实施例对本发明的技术方案进一步详细描述。
实施例 1 :
Mg-Ca-Zn-Zr系镁合金薄板的化学成分如表 1所示。 制造方法为: 将满足表 1所示成分配比的镁合金铸坯(显微组织如图 1所示)加热 到 500°C温度下固溶处理, 保温时间为 0.5min/mm, 轧制后获得本实施例 的 Mg-Ca-Zn-Zr系镁合金。 其中热轧时, 轧辊表面预热至 150°C , 开轧温 度为 450°C , 终轧温度为 350°C , 单道次压下率为 20~30%; 温轧时, 轧辊 表面预热至 150°C , 镁合金板在线补热, 轧制温度为 220°C , 单道次压下 率为 20~40%; 冷轧时, 冷轧压下量 10%, 最终板厚为 0.4mm。
实施例 1的镁合金铸坯显微组织如图 1所示, 其组织为等轴晶, 平均 晶粒尺寸为 50μηι左右。
实施例 1的 Mg-Ca-Zn-Zr系镁合金薄板织构分布如图 2所示,织构强 度为 4.4; 平均晶粒尺寸为 3.85μηι。 实施例 2: (对比例 1 )
对比例 1的镁合金成分: ΑΖ31Β。
制造方法: 同实施例 1。
对比例 1的镁合金 AZ31B的织构分布如图 3所示, 织构强度为 8.0。 实施例 3:
Mg-Ca-Zn-Zr系镁合金薄板的化学成分如表 1所示。 制造方法为: 将满足表 1 所示成分配比的镁合金铸坯加热到 500 °C温度下固溶处 理, 保温时间 0.5min/mm; 热轧轧制时, 轧辊表面预热 150 °C , 开轧温度 为 450°C , 终轧温度为 350°C , 单道次压下率 20~30%; 温轧时, 轧辊表面 预热至 150°C , 镁合金板在线补热, 轧制温度为 220°C , 单道次压下率为 20-40%;冷轧时,冷轧压下量 10%,最终板厚为 0.4mm; 375 °C退火 17min 即可。
实施例 3的 Mg-Ca-Zn-Zr系镁合金板显微组织如图 4所示,晶粒尺寸 分布如图 5所示, 平均晶粒尺寸为 4.62μηι; 其织构分布如图 6所示, 织 构强度为 2.8, 分布相对分散。 成形性能测试如图 10所示, 室温极限拉伸 比 ( LDR ) 为 1.88 ο 实施例 4: (对比例 2 )
对比例 2的镁合金成分: ΑΖ31Β。
制造方法: 同实施例 3。
对比例 2的镁合金 AZ31B的显微组织如图 7所示, 晶粒尺寸分布如 图 8所示,平均晶粒尺寸为 22μηι;织构分布如图 9所示,织构强度为 6.2。 成形性能测试如图 11所示, 室温极限拉伸比 (LDR ) 为 1.74。 实施例 5:
Mg-Ca-Zn-Zr系镁合金薄板的化学成分如表 1所示。 制造方法为: 将满足表 1 所示成分配比的镁合金铸坯加热到 500 °C温度下固溶处 理, 保温时间 0.5min/mm; 热轧时, 轧辊表面预热 150°C , 开轧温度为 450 °C , 终轧温度为 350°C , 单道次压下率 20~30%; 温轧时, 轧辊表面预热 至 150 °C , 镁合金板在线补热, 轧制温度为 220 °C , 单道次压下率为 20-40%;冷轧时,冷轧压下量 10%,最终板厚为 0.8mm; 375 °C退火 35min 即可。
本实施例获得的 Mg-Ca-Zn-Zr 系镁合金薄板, 平均晶粒尺寸为 5.32μηι,织构强度为 2.6,分布相对分散, 室温极限拉伸比( LDR )为 1.86。 实施例 6:
Mg-Ca-Zn-Zr系镁合金薄板的化学成分如表 1所示。 制造方法为: 将满足表 1 所示成分配比的镁合金铸坯加热到 500 °C温度下固溶处 理, 保温时间 0.5min/mm; 热轧轧制时, 轧辊表面预热 150 °C , 开轧温度 为 450°C , 终轧温度为 350°C , 单道次压下率 20-30%; 温轧时, 轧辊表面 预热至 150°C , 镁合金板在线补热, 轧制温度为 220°C , 单道次压下率为 20-40%; 冷轧时, 冷轧压下量 10%, 最终板厚为 0.4mm; 150°C人工时效 处理。 时效处理对镁合金硬度的影响如图 12所示, 时效硬化 lh后, 材料 硬度由 HV72提高至 HV85。
本实施例获得的 Mg-Ca-Zn-Zr系镁合金薄板,平均晶粒尺寸为 4.4μηι, 织构强度为 4.0, 分布相对分散, 室温极限拉伸比 (LDR ) 为 1.79。 实施例 7: (对比例 3 )
对比例 3的镁合金成分: AZ31B。
制造方法: 同实施例 6。
时效处理对镁合金硬度的影响如图 12所示。 实施例 8:
Mg-Ca-Zn-Zr系镁合金薄板的化学成分如表 1所示。 制造方法为: 将满足表 1 所示成分配比的镁合金铸坯加热到 500 °C温度下固溶处 理, 保温时间 0.5min/mm; 热轧轧制时, 轧辊表面预热 150 °C , 开轧温度 为 450°C , 终轧温度为 350°C , 单道次压下率 20~40%; 温轧时, 轧辊表面 预热至 200°C , 镁合金板在线补热, 轧制温度为 200°C , 单道次压下率为 20-40%; 冷轧时, 冷轧压下量 15%, 最终板厚为 0.6 mm。
本实施例获得的 Mg-Ca-Zn-Zr系镁合金薄板,平均晶粒尺寸为 5.2μηι, 织构强度为 4.6, 分布相对分散。 实施例 9:
Mg-Ca-Zn-Zr系镁合金薄板的化学成分如表 1所示。 制造方法为: 将满足表 1所示成分配比的镁合金熔体浇铸至双辊连续铸轧机,辊旋 转线速率 6m/min,辊缝 4mm,辊表面石墨润滑,熔炉与浇铸系统通 N2+C02 气体, 浇嘴出口通 S02保护; 固溶温度 450°C , 保温时间 0.51min/mm; 温 轧时, 轧辊表面预热 180°C , 镁合金板在线补热, 轧制温度 180~200°C , 单道次压下率 20~30%; 然后进行 15%的冷轧, 400°C退火处理 2h。
本实施例获得的 Mg-Ca-Zn-Zr系镁合金薄板,平均晶粒尺寸为 8.6μηι, 织构强度为 2.6, 分布相对分散, 室温极限拉伸比 (LDR ) 为 1.89。 实施例 10:
Mg-Ca-Zn-Zr系镁合金薄板的化学成分如表 1所示。 制造方法为: 将满足表 1 所示成分配比的镁合金铸坯加热到 500 °C温度下固溶处 理, 保温时间 0.5min/mm; 卧式挤压, 挤压筒和模具 (模垫)预热至 500 °C , 挤压温度 350°C , 挤压速率 5m/min, 获得厚度为 4mm的镁合金薄板; 利用温轧工艺, 轧辊表面预热 150 °C , 镁合金板在线补热, 轧制温度 150~200°C , 单道次压下率 30~50%; 然后进行 20%的冷轧, 400°C退火处 理 30min。
本实施例获得的 Mg-Ca-Zn-Zr系镁合金薄板,平均晶粒尺寸为 8.5μηι, 织构强度为 2.8 , 分布相对分散, 室温极限拉伸比 (LDR ) 为 1.88。 实施例 11
Mg-Ca-Zn-Zr系镁合金的化学成分如表 1所示: 制造方法与实施例 8 相同。
本实施例获得的 Mg-Ca-Zn-Zr系镁合金薄板,平均晶粒尺寸为 5.4μηι, 织构强度为 4.6, 分布相对分散。 实施例 12
Mg-Ca-Zn-Zr系镁合金的化学成分如表 1所示: 制造方法与实施例 9 相同。
本实施例获得的 Mg-Ca-Zn-Zr系镁合金薄板,平均晶粒尺寸为 6.8μηι, 织构强度为 2.8 , 分布相对分散, 室温极限拉伸比 (LDR ) 为 1.85。 实施例 13 :
Mg-Ca-Zn-Zr系镁合金薄板的制造方法为:
按照实施例 9成分配比的镁合金熔体浇铸至双辊连续铸轧机,辊旋转 线速率 6m/min, 辊缝 4mm, 辊表面石墨润滑, 熔炉与浇铸系统通 N2+C02 气体, 浇嘴出口通 S02保护; 之后直接进行温轧, 温轧时, 轧辊表面预热 180°C ,镁合金板在线补热,轧制温度 180-200 °C ,单道次压下率 20~30%; 然后进行 15%的冷轧, 400°C退火处理 2h。
本实施例获得的 Mg-Ca-Zn-Zr系镁合金薄板,平均晶粒尺寸为 8.9μηι, 织构强度为 2.9 , 分布相对分散, 室温极限拉伸比 (LDR ) 为 1.82。 实施例 14:
Mg-Ca-Zn-Zr系镁合金薄板的制造方法为:
按照实施例 10成分配比的镁合金铸坯加热到 500 °C温度下固溶处理, 保温时间 0.5min/mm; 卧式挤压, 挤压筒和模具 (模垫)预热至 500°C , 挤压温度 350°C , 挤压速率 5m/min, 获得厚度为 4mm的镁合金薄板; 然 后进行 20%的冷轧, 400 °C退火处理 30min。
本实施例获得的 Mg-Ca-Zn-Zr系镁合金薄板,平均晶粒尺寸为 5.9μηι, 织构强度为 2.8 , 分布相对分散, 室温极限拉伸比 (LDR ) 为 1.88。 实施例 15:
Mg-Ca-Zn-Zr系镁合金薄板的制造方法为:
按照实施例 1成分配比的镁合金铸坯加热到 500 °C温度下固溶处理, 保温时间为 0.5min/mm, 轧制后获得本实施例的 Mg-Ca-Zn-Zr系镁合金。 其中热轧时, 轧辊表面预热至 150°C , 开轧温度为 450°C , 终轧温度为 350 °C , 单道次压下率为 20~30%; 温轧时, 轧辊表面预热至 150°C , 镁合金 板在线补热, 轧制温度为 220°C , 单道次压下率为 20~40%; 获得的镁合 金薄板板厚为 0.44m, 300°C退火处理 30min。
本实施例获得的 Mg-Ca-Zn-Zr系镁合金薄板,平均晶粒尺寸为 4.2μηι, 织构强度为 2.6, 分布相对分散, 室温极限拉伸比 (LDR ) 为 1.92。
Figure imgf000013_0001

Claims

权 利 要 求 书
1. 一种 Mg-Ca-Zn-Zr系镁合金薄板, 其化学成分的重量百分比为: Ca: 0.5-1.0%, Zn: 0.4-1.0%, Zr: 0.5-1.0%, 其余为 Mg和不可避免的杂质; 该镁合金薄板的平均晶粒尺寸≤1(^111, 基面织构强度≤5, 经 250~400°C退 火后基面织构强度≤3; 室温极限拉伸比高于 AZ31; 该镁合金板薄板的厚 度为 0.3~4mm。
2. 如权利要求 1所述的 Mg-Ca-Zn-Zr系镁合金薄板的制造方法, 为以下 方法 ( 1) ~ (3) 中的任一:
方法 ( 1) :
将满足上述成分配比的 Mg-Ca-Zn-Zr 系镁合金铸坯加热到 370~500°C温度下进行固溶处理, 然后经热轧、 温轧后获得所述 Mg-Ca-Zn-Zr系镁合金薄板, 该薄板的厚度为 0.3~4mm; 其中, 固溶处理的保温时间为 0.5~lmin/mm;
热轧时, 轧辊表面在 150~350°C下预热, 开轧温度为 450~500°C, 终轧温度为 300~350°C, 单道次压下率为 20~50%;
温轧时, 轧辊表面预热至 150~300°C, 镁合金板在线补热, 轧制 温度为 150~300°C, 单道次压下率为 20~40%;
方法 (2) :
将满足上述成分配比的镁合金熔体浇铸至双辊连续铸轧机铸轧, 获得铸轧板卷, 将铸轧板卷经固溶处理、 温轧或者将铸轧板卷直 接进行温轧, 获得所述 Mg-Ca-Zn-Zr系镁合金薄板, 该薄板的厚 度为 0.3~4mm; 其中,
采用双辊连续铸轧机铸轧时, 辊旋转线速率为 5-10m/min, 辊缝 为 4-8mm, 辊表面采用石墨润滑, 熔炉与浇铸系统通 N2+C02气 体, 浇嘴出口通 S02保护;
固溶处理的温度为 370~500°C, 保温时间为 0.5~lmin/mm; 温轧时, 轧辊表面预热至 180~300°C, 镁合金板在线补热, 轧制 温度为 180~300°C, 单道次压下率为 20-40%;
方法 (3) : 将满足上述成分配比的镁合金铸坯加热到 370~500 °C温度下固溶 处理,然后经卧式挤压获得厚度为 2~4mm的 Mg-Ca-Zn-Zr系镁合 金薄板, 或者经卧式挤压后温轧获得厚度为 0.3~2mm 的 Mg-Ca-Zn-Zr系镁合金薄板; 其中,
固溶处理的保温时间为 0.5~lmin/mm;
卧式挤压时, 挤压筒和模具预热至 400~500 °C , 挤压温度为 350-500 °C , 挤压速率为 2~10m/min;
温轧时, 轧辊表面预热至 150~300°C , 镁合金板在线补热, 轧制 温度为 150~300°C , 单道次压下率为 30-50%。
3. 如权利要求 2所述的 Mg-Ca-Zn-Zr系镁合金薄板的制造方法, 其特征 在于, 获得的 Mg-Ca-Zn-Zr 系镁薄板还包括冷轧步骤, 冷轧的压下率为 10-20% , 成品板材厚度不低于 0.3mm。 4. 如权利要求 2或 3所述的 Mg-Ca-Zn-Zr系镁合金薄板的制造方法, 其 特征在于, 冷轧后还包括退火处理和 /或时效处理; 其中, 退火温度为 250-400 °C , 时效处理温度为 150~200 °C。
PCT/CN2014/073350 2013-05-07 2014-03-13 一种低成本细晶弱织构镁合金薄板及其制造方法 WO2014180187A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157021674A KR101722105B1 (ko) 2013-05-07 2014-03-13 저비용 미세 과립 약한 조직 마그네슘 합금판 및 이의 제조 방법
DE112014002336.1T DE112014002336B4 (de) 2013-05-07 2014-03-13 Kostengünstiges feinkörniges Magnesiumlegierungsblech mit schwacher Textur und Verfahren zur Herstellung desselben
US14/773,996 US10000836B2 (en) 2013-05-07 2014-03-13 Low-cost fine-grain weak-texture magnesium alloy sheet and method of manufacturing the same
JP2015560540A JP6166798B2 (ja) 2013-05-07 2014-03-13 安価な細粒弱組織マグネシウム合金シートおよびそれを製造する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310163323.8 2013-05-07
CN201310163323.8A CN103255329B (zh) 2013-05-07 2013-05-07 一种低成本细晶弱织构镁合金薄板及其制造方法

Publications (1)

Publication Number Publication Date
WO2014180187A1 true WO2014180187A1 (zh) 2014-11-13

Family

ID=48959532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073350 WO2014180187A1 (zh) 2013-05-07 2014-03-13 一种低成本细晶弱织构镁合金薄板及其制造方法

Country Status (6)

Country Link
US (1) US10000836B2 (zh)
JP (1) JP6166798B2 (zh)
KR (1) KR101722105B1 (zh)
CN (1) CN103255329B (zh)
DE (1) DE112014002336B4 (zh)
WO (1) WO2014180187A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513914A (ja) * 2015-04-08 2018-05-31 バオシャン アイアン アンド スティール カンパニー リミテッド 成形可能なマグネシウム型の展伸用合金
EP3391976A4 (en) * 2015-12-14 2019-07-03 Baoshan Iron & Steel Co., Ltd. ROLLING OF MAGNESIUM ALLOY SHEET AND PREPARATION METHOD
WO2019163161A1 (ja) * 2018-02-21 2019-08-29 国立研究開発法人物質・材料研究機構 マグネシウム合金及びマグネシウム合金の製造方法
CN116921430A (zh) * 2023-08-25 2023-10-24 太原科技大学 一种基于晶粒尺寸和基面织构协同调控的镁合金板材强韧化轧制方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255329B (zh) * 2013-05-07 2015-08-26 宝山钢铁股份有限公司 一种低成本细晶弱织构镁合金薄板及其制造方法
CN103725999A (zh) * 2013-12-26 2014-04-16 中国兵器工业第五九研究所 一种变形镁合金织构的弱化方法
CN104607466A (zh) * 2015-01-14 2015-05-13 大连理工大学 一种高室温塑性镁合金板的热轧加工方法
US10570490B2 (en) 2015-04-08 2020-02-25 Baoshan Iron & Steel Co., Ltd. Strain-induced age strengthening in dilute magnesium alloy sheets
CN105349861B (zh) * 2015-11-24 2017-07-07 北京工业大学 一种可快速轧制成形的镁金属板材及其轧制方法
EP3205736B1 (en) * 2016-02-11 2018-08-22 Volkswagen AG Magnesium alloy sheet produced by twin roll casting
CN106513629A (zh) * 2016-11-10 2017-03-22 无锡市明盛强力风机有限公司 一种改良az31镁合金轮毂挤压铸造工艺
EP3569723B1 (en) 2017-01-10 2023-05-10 Fuji Light Metal Co., Ltd. Magnesium alloy
CN108300918B (zh) * 2017-01-11 2020-05-12 北京科技大学 一种具有高室温成形性能含钙稀土镁合金板材及制备方法
CN106637011B (zh) * 2017-02-08 2018-05-08 吉林大学 一种使超塑性镁合金具有近球形析出相的制备方法
US11692256B2 (en) * 2017-07-10 2023-07-04 National Institute For Materials Science Magnesium-based wrought alloy material and manufacturing method therefor
US11578396B2 (en) * 2017-07-18 2023-02-14 National Institute For Materials Science Magnesium-based alloy wrought product and method for producing same
CN109868380B (zh) * 2017-12-01 2021-09-03 南京理工大学 一种多尺度析出强化镁合金材料的制备方法
WO2019172047A1 (ja) * 2018-03-03 2019-09-12 国立研究開発法人物質・材料研究機構 マグネシウム合金時効処理材とその製造方法
CN110404999A (zh) * 2018-04-28 2019-11-05 宝山钢铁股份有限公司 一种具有弱各向异性高室温成形性的镁板及其制造方法
CN114686739A (zh) 2018-07-09 2022-07-01 株式会社日本医疗机器技研 镁合金
JP7186396B2 (ja) * 2019-02-13 2022-12-09 国立大学法人豊橋技術科学大学 高強度棒状マグネシウム合金の製造方法
CN109940094B (zh) * 2019-04-19 2021-04-16 重庆科技学院 一种梯度应变调控镁合金板材成形性的模具及方法
EP3741880B1 (en) 2019-05-20 2023-06-28 Volkswagen AG Sheet metal product with high bendability and manufacturing thereof
JP7352083B2 (ja) 2019-11-22 2023-09-28 日本製鉄株式会社 焼結原料のサンプリング装置
CN113967663A (zh) * 2020-07-23 2022-01-25 宝山钢铁股份有限公司 一种镁合金板材全连续轧制生产工艺
CN112853239B (zh) * 2020-12-22 2022-03-11 山东理工大学 一种超细晶镁合金板材表面梯度组织结构与强化层及其制备方法
CN112899506B (zh) * 2021-01-18 2022-03-04 陕西科技大学 一种Mg-Zn-Ca合金及其加工方法
CN112941385B (zh) * 2021-02-03 2022-05-20 中南大学 一种低稀土含量高疲劳性能镁合金板材及其制备方法
CN113373360B (zh) * 2021-07-19 2022-10-21 南昌航空大学 一种提高az系变形镁合金强度和抗腐蚀性能的方法
CN113941613B (zh) * 2021-09-30 2024-01-05 哈尔滨工业大学(威海) 一种镁及镁合金无缝管材螺旋挤压装置及挤压工艺
CN114226461B (zh) * 2021-12-20 2023-12-01 哈尔滨工业大学(威海) 一种镁合金板带材异温异速协调轧制装置及应用
CN114438387B (zh) * 2022-02-10 2022-10-14 重庆大学 一种低成本高强阻燃镁合金及其制备方法
CN114855040B (zh) * 2022-04-28 2023-01-13 北京大学 一种Mg-Ba系镁合金及其制备方法与应用
CN115044812A (zh) * 2022-06-17 2022-09-13 北京机科国创轻量化科学研究院有限公司 一种高延伸率微合金化改性az31镁合金薄板材料及其制备方法
CN115233060B (zh) * 2022-08-12 2023-02-03 吉林大学 一种高强塑弱织构低合金含量Mg-Zn-Y-Ca-Zr镁合金及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235041A (ja) * 1993-02-09 1994-08-23 Nippon Steel Corp 耐熱性に優れた鋳物用マグネシウム基合金
US20030000608A1 (en) * 1996-11-01 2003-01-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Magnesium alloy and heat treatment method thereof
WO2012070870A2 (ko) * 2010-11-23 2012-05-31 포항공과대학교 산학협력단 상온성형성이 우수한 마그네슘 합금 판재 및 그 제조방법
WO2012115190A1 (ja) * 2011-02-24 2012-08-30 住友電気工業株式会社 マグネシウム合金材及びその製造方法
WO2012115191A1 (ja) * 2011-02-24 2012-08-30 住友電気工業株式会社 マグネシウム合金材及びその製造方法
CN103255329A (zh) * 2013-05-07 2013-08-21 宝山钢铁股份有限公司 一种低成本细晶弱织构镁合金薄板及其制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320055A (en) * 1964-08-19 1967-05-16 Dow Chemical Co Magnesium-base alloy
KR100509648B1 (ko) * 2003-05-23 2005-08-24 연우인더스트리(주) 성형성이 우수한 마그네슘합금 및 이를 이용한마그네슘합금 제품의 제조방법
WO2005052204A1 (ja) * 2003-11-26 2005-06-09 Yoshihito Kawamura 高強度高靭性マグネシウム合金及びその製造方法
AU2005258658B8 (en) * 2004-06-30 2011-03-10 Sumitomo Electric Industries, Ltd. Method of Producing a Magnesium-Alloy Material
JP4780520B2 (ja) 2005-11-10 2011-09-28 学校法人早稲田大学 マグネシウム合金板の製造方法とそのマグネシウム合金板
JP5467294B2 (ja) * 2008-06-05 2014-04-09 独立行政法人産業技術総合研究所 易成形性マグネシウム合金板材及びその作製方法
KR20100038809A (ko) * 2008-10-06 2010-04-15 포항공과대학교 산학협력단 고성형성 마그네슘 합금 판재 및 그 제조방법
JP2010111883A (ja) * 2008-11-04 2010-05-20 Daido Steel Co Ltd 高加工性マグネシウム合金
KR20100106137A (ko) * 2009-03-23 2010-10-01 주식회사 지알로이테크놀로지 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금과 그 합금 판재의 제조방법
CN101857933B (zh) * 2009-04-10 2012-05-23 中国科学院金属研究所 一种高塑性、低各向异性镁合金及其板材的热轧制工艺
JP5660374B2 (ja) * 2009-11-24 2015-01-28 住友電気工業株式会社 マグネシウム合金板の製造方法及びマグネシウム合金コイル材
KR101252784B1 (ko) * 2010-11-09 2013-04-11 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 고강도 고성형성 마그네슘 합금 판재 및 그 제조방법
CN101985714B (zh) * 2010-12-07 2012-09-26 吉林大学 一种高塑性镁合金及其制备方法
JP5692847B2 (ja) * 2010-12-08 2015-04-01 独立行政法人産業技術総合研究所 常温成形性と強度を改善したマグネシウム合金板材及びその作製方法
CN102242327B (zh) * 2011-05-14 2012-11-07 中国科学院金属研究所 非/弱基面织构镁合金变形材的冷轧方法及其冷轧板材
KR20160025898A (ko) * 2014-08-28 2016-03-09 홍익대학교 산학협력단 기계적 물성과 생분해성이 우수한 마그네슘 합금 판재 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235041A (ja) * 1993-02-09 1994-08-23 Nippon Steel Corp 耐熱性に優れた鋳物用マグネシウム基合金
US20030000608A1 (en) * 1996-11-01 2003-01-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Magnesium alloy and heat treatment method thereof
WO2012070870A2 (ko) * 2010-11-23 2012-05-31 포항공과대학교 산학협력단 상온성형성이 우수한 마그네슘 합금 판재 및 그 제조방법
WO2012115190A1 (ja) * 2011-02-24 2012-08-30 住友電気工業株式会社 マグネシウム合金材及びその製造方法
WO2012115191A1 (ja) * 2011-02-24 2012-08-30 住友電気工業株式会社 マグネシウム合金材及びその製造方法
CN103255329A (zh) * 2013-05-07 2013-08-21 宝山钢铁股份有限公司 一种低成本细晶弱织构镁合金薄板及其制造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513914A (ja) * 2015-04-08 2018-05-31 バオシャン アイアン アンド スティール カンパニー リミテッド 成形可能なマグネシウム型の展伸用合金
EP3391976A4 (en) * 2015-12-14 2019-07-03 Baoshan Iron & Steel Co., Ltd. ROLLING OF MAGNESIUM ALLOY SHEET AND PREPARATION METHOD
WO2019163161A1 (ja) * 2018-02-21 2019-08-29 国立研究開発法人物質・材料研究機構 マグネシウム合金及びマグネシウム合金の製造方法
JP2019143206A (ja) * 2018-02-21 2019-08-29 国立研究開発法人物質・材料研究機構 マグネシウム合金及びマグネシウム合金の製造方法
JP7076731B2 (ja) 2018-02-21 2022-05-30 国立研究開発法人物質・材料研究機構 マグネシウム合金及びマグネシウム合金の製造方法
US11739400B2 (en) 2018-02-21 2023-08-29 National Institute For Materials Science Magnesium alloy and method for manufacturing the same
CN116921430A (zh) * 2023-08-25 2023-10-24 太原科技大学 一种基于晶粒尺寸和基面织构协同调控的镁合金板材强韧化轧制方法
CN116921430B (zh) * 2023-08-25 2024-02-23 太原科技大学 一种基于晶粒尺寸和基面织构协同调控的镁合金板材强韧化轧制方法

Also Published As

Publication number Publication date
US20160024629A1 (en) 2016-01-28
CN103255329A (zh) 2013-08-21
DE112014002336T5 (de) 2016-01-21
KR101722105B1 (ko) 2017-03-31
US10000836B2 (en) 2018-06-19
DE112014002336B4 (de) 2021-02-25
CN103255329B (zh) 2015-08-26
KR20150105450A (ko) 2015-09-16
JP6166798B2 (ja) 2017-07-19
JP2016516126A (ja) 2016-06-02

Similar Documents

Publication Publication Date Title
WO2014180187A1 (zh) 一种低成本细晶弱织构镁合金薄板及其制造方法
TWI310789B (en) Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
WO2009096622A1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
JP5233607B2 (ja) 成形性に優れたアルミニウム合金板およびその製造方法
WO2014075466A1 (zh) 一种低Gd含量、高延展性镁合金板材及其热轧制工艺
CA2706198C (en) Aluminum alloy sheet for motor vehicle and process for producing the same
JP6176393B2 (ja) 曲げ加工性と形状凍結性に優れた高強度アルミニウム合金板
KR20120095184A (ko) 이방성이 낮은 고강도 고연성 마그네슘 합금 압출재 및 그 제조방법
KR20100038809A (ko) 고성형성 마그네슘 합금 판재 및 그 제조방법
JP2008063623A (ja) 成形加工用アルミニウム合金板の製造方法
JP5135684B2 (ja) 高温高速成形性に優れたアルミニウム合金板およびその製造方法
JP7274585B2 (ja) マグネシウム合金板材およびその製造方法
JP5059505B2 (ja) 高強度で成形が可能なアルミニウム合金冷延板
JP4944474B2 (ja) 伸びフランジ性に優れたアルミニウム合金板およびその製造方法
JP2010053386A (ja) 成形性に優れるマグネシウム合金板材およびその製造方法
CN110238229B (zh) 一种铝合金板材的制造方法
JP5220310B2 (ja) 自動車用アルミニウム合金板及びその製造方法
JP5050577B2 (ja) 深絞り性および耐焼付け軟化性に優れた成形加工用アルミニウム合金板及びその製造方法
JP6581347B2 (ja) アルミニウム合金板の製造方法
JP7125416B2 (ja) マグネシウム合金板材およびその製造方法
WO2008078399A1 (en) Method of producing aluminum alloy sheet
KR101252784B1 (ko) 고강도 고성형성 마그네슘 합금 판재 및 그 제조방법
CN104060138A (zh) 一种低成本高性能非稀土镁合金板材及其制备方法
JP3857168B2 (ja) Al−Mg−Si系合金板の製造方法
JP2011144410A (ja) 高成形性Al−Mg−Si系合金板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157021674

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015560540

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773996

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140023361

Country of ref document: DE

Ref document number: 112014002336

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794604

Country of ref document: EP

Kind code of ref document: A1