WO2014075466A1 - 一种低Gd含量、高延展性镁合金板材及其热轧制工艺 - Google Patents

一种低Gd含量、高延展性镁合金板材及其热轧制工艺 Download PDF

Info

Publication number
WO2014075466A1
WO2014075466A1 PCT/CN2013/080696 CN2013080696W WO2014075466A1 WO 2014075466 A1 WO2014075466 A1 WO 2014075466A1 CN 2013080696 W CN2013080696 W CN 2013080696W WO 2014075466 A1 WO2014075466 A1 WO 2014075466A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
rolling
sheet
alloy
texture
Prior art date
Application number
PCT/CN2013/080696
Other languages
English (en)
French (fr)
Inventor
陈荣石
闫宏
韩恩厚
柯伟
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Priority to US14/375,717 priority Critical patent/US20140373982A1/en
Publication of WO2014075466A1 publication Critical patent/WO2014075466A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the invention relates to the technical field of metal materials, in particular to a low Gd content, high ductility magnesium alloy sheet and a hot rolling process thereof. Background technique
  • Magnesium alloys are increasingly favored by the market for their advantages of small specific gravity, high specific strength, high damping, high thermal conductivity, good shock absorption and easy recycling.
  • die-cast magnesium alloys have been widely used in industrial fields such as automobiles and 3C electronic products.
  • the subsequent surface treatment process of die-cast magnesium alloy is cumbersome and complicated, and it is easy to pollute the environment. Therefore, the industry hopes to adopt a secondary processing method such as stamping and punching for higher production efficiency, and directly form a magnesium alloy plate into a car and a 3C electronic product casing. .
  • the rolling process is long and the yield is low.
  • the room temperature of the sheet is low (generally 15 to 20%), the anisotropy is large, and the strain hardening factor is small.
  • the secondary plastic forming ability at room temperature and low temperature is insufficient, and secondary forming is difficult. Therefore, secondary processing usually needs to be performed at a high temperature or a medium temperature, resulting in low production efficiency and high production and application cost when using a sheet. . Therefore, the development of low-expansion magnesium alloy sheet with high ductility and suitable for room temperature forming and its high-efficiency rolling process are one of the key points in the development of magnesium alloy sheet, which is of great significance for expanding the application scale of magnesium alloy sheet.
  • magnesium alloy sheets One of the most economical and efficient ways to prepare magnesium alloy sheets is the hot rolling method, which can not only produce wide-width sheets, but also control the grain size, texture and texture distribution through repeated rolling and heat treatment to obtain excellent mechanical properties.
  • hot rolling method which can not only produce wide-width sheets, but also control the grain size, texture and texture distribution through repeated rolling and heat treatment to obtain excellent mechanical properties.
  • a variety of plates A variety of plates.
  • existing commercial magnesium alloy sheets, such as AZ31 form strong basal texture and anisotropy of microstructure during rolling, which are caused by high flow stress and plasticity in subsequent secondary plastic working.
  • the texture weakening of magnesium alloys is related to the second phase, solid solution atoms, lattice constant changes, etc., and solid solution atoms are the key factors affecting the texture. Adding a small amount of rare earth elements to the magnesium alloy results in randomization of dynamic recrystallized grain orientation during deformation to form a non-basal texture.
  • This micro-rare alloying control texture has a positive significance for the development of highly plastic magnesium alloy sheets.
  • the phase equilibrium thermodynamics principle and phase diagram of magnesium alloy it is envisaged that by adding rare earth elements such as Y, Nd, Gd, etc., a microstructure containing fine second phase particles is obtained, and after annealing by rolling, a weak base texture is formed.
  • Magnesium alloy sheet which reduces the anisotropy of the sheet, high strain hardening index, asymmetry of tension and compression, and ensures the stability of plastic flow during secondary processing, and improves the plasticity and secondary forming properties of the sheet.
  • Roll heating technology is an important technology for the industrial continuous rolling of magnesium alloy sheet.
  • the heating of the roll can ensure the temperature of the billet during the rolling process, achieve multi-pass continuous rolling, reduce the number of annealing and improve production efficiency. Studies have shown that the heating temperature of the rolls at 25-400 ° C has little effect on the final texture, texture and mechanical properties of the panels of the present invention, and the characteristics of the materials of the present invention can be ensured.
  • the present application makes it possible to prepare a magnesium alloy sheet having a non-base surface texture and high ductility at room temperature by utilizing the unique action of rare earth elements in a magnesium alloy by an ordinary rolling process and a heat treatment process.
  • the A1 and Zn elements are the main alloying elements in magnesium alloys.
  • Zn element is selected as the second alloying element except rare earth.
  • Mn is a trace element commonly used in magnesium alloys, which not only improves the corrosion resistance of the alloy, but also inhibits the growth of crystal grains without affecting the texture control effect. Therefore, an appropriate amount of Mn is added to the alloy.
  • Xi'an Jiaotong University reported an in-situ synthesis of quasi-crystalline high-strength magnesium alloy (publication number: CN1789458A) with composition and weight percentage: 3-10% Zn, 0.5-3.5% Y, l%Ce, 0-l %Nd, after rapid solidification and reciprocating large plastic extrusion, the tensile strength at room temperature is ⁇ 500MPaMPa ; the elongation is ⁇ 20%.
  • the Zn content in the alloys of the above two inventions is ⁇ 3%, even up to 10%.
  • the products of these two patents are suitable as high-strength sheet products.
  • the Zn content is not more than 2.1%, the alloy has good rolling performance, and the single pass rolling reduction can reach 50% or more, and the ordinary rolling method can be used for short process. , Efficient production of wide magnesium alloy sheet.
  • Chongqing University reported a Mg-Zn-Mn-Ce alloy that can be rapidly extruded. Its composition and weight percentage are: 1.8-4% Zn, 0.5-1.5% Mn, 0.15-0.80% Ce, extrusion. Tensile strength of the later magnesium alloy at room temperature: 285 MPa; tensile elongation: 20%.
  • the patent prepares a material by an extrusion process, using a rare earth Ce having a solid solubility of only 0.01 wt% in magnesium, forming a second phase refining crystal grain at a grain boundary, preventing the growth of crystal grains after deformation, and improving The crystallization temperature allows rapid extrusion at high temperatures.
  • the room temperature elongation of the extruded material does not exceed 20%.
  • the patent uses Ce with a small solid solubility to produce a second phase on the grain boundary, refining the grains, in order to increase the strength, and Ce does not weaken the texture of the magnesium alloy, thus The improvement in alloy plasticity is not obvious.
  • a Gd element having a solid solubility of 23.49% in magnesium is used, and the weakening effect of the texture of the magnesium alloy by the Gd solid solution atom is improved, and the rolling property of the alloy is improved, and After rolling, the grain orientation of the magnesium alloy sheet was changed to obtain a non-base surface texture, and the room temperature plasticity and forming property of the rolled sheet were improved.
  • the applicant has developed a high-plasticity Mg-Zn-RE magnesium alloy and its sheet rolling process (application number: 200910011111). Its composition and weight percentage are: 0-5%Zn, 0.1-10%. RE, magnesium is the balance margin. Due to the wide range of Zn and Gd and high content, excessively high content of Zn will reduce the plasticity of the alloy, while excessively high cost of Gd will not only increase the alloy cost, but also reduce the rolling properties and mechanical properties of the alloy. Limits the industrial scale application of alloys. Therefore, in the application of the present invention, it is desirable to further optimize and refine the previous patent. By comparing the weakening effect of rare earth elements such as Y and Gd on the texture, it is found that Gd has better effect than Y.
  • Gd in RE is selected as the alloying element, and it is hoped that the texture of the rolled sheet is weakened and improved by Gd. Based on the room temperature forming properties, the Gd content is reduced as much as possible, and the cost of the original patented alloy and sheet products is reduced.
  • the invention establishes the minimum effective content range of the texture non-base surface Gd, greatly reduces the alloy cost, can meet the requirement of low cost of the magnesium alloy for civilian products, and at the same time, improves the corrosion resistance and the inhibition of the magnesium alloy according to Mn.
  • the rolling properties are poor, the surface texture of the sheet is strong, the plasticity at room temperature is poor, the anisotropy is large, the strain hardening index is low, and the high alloy content in some alloys leads to the cost of the alloy.
  • the present invention provides a novel magnesium alloy sheet having low Gd content, high ductility, good room temperature ductility and formability, and a hot rolling process thereof, the principle of which is to fully utilize the trace Gd solid solution atom to the magnesium alloy rolling
  • the weakening effect of the texture in the process, the minimum effective content of the weakening of the Gd element texture is established, and the alloy cost is reduced.
  • the prepared magnesium alloy sheet has a non-base surface texture and has an elongation at room temperature of 35 to 50%, wherein the elongation in the rolling direction is >35%, and the elongation in the transverse direction is ⁇ 45%.
  • a low Gd content, high ductility magnesium alloy sheet the magnesium alloy being a Mg-Zn-Gd system, the chemical composition of which is: Zn 0.9 ⁇ 2.1%, rare earth Gd 0.2 ⁇ 0.8%, Mn 0 ⁇ 0.9%, the magnesium content is the balance margin.
  • the above hot rolling process of low Gd content and high ductility magnesium alloy sheet comprises the following steps:
  • the magnesium alloy ingot of the chemical composition is kept at 300 to 525 ° C for 0 to 120 hours; the ingot is round or square, and is cast by a metal mold and sand type. Or semi-continuous casting method production;
  • Annealing of rolled sheet The rolled sheet is annealed at 250 to 500 ° C for 0.5 to 120 hours.
  • the content of rare earth Gd in the magnesium alloy of the invention is very low, only 0.2-0.8%.
  • the alloy cost is reduced, and the relatively expensive Zr is not added, so that the enterprise can accept the alloy. the cost of.
  • the alloy of the invention has good rolling performance, and the rolling deformation amount per pass can reach more than 50%, which reduces the number and time of reheating in the rolling process, shortens the process flow, and improves the production efficiency; High yield; reduced total cost of the product; industrial continuous production can be directly carried out using existing rolling equipment and processes.
  • the process is simple and easy to control.
  • the plate prepared by the process of the invention has non-base surface texture, low anisotropy, high strain hardening rate, room temperature elongation of 35 ⁇ 50%, can realize room temperature overmolding of the plate, and reduce secondary plasticity.
  • the cost of forming, increasing productivity, will be widely used in electronics housings and automobiles.
  • the alloy of the present invention is applicable not only to rolled sheets but also to the production of profiles, pipes, free forgings and die forgings.
  • 1(a)-(b) are macroscopic photographs of rolled sheets of a magnesium alloy; wherein: (a) Mg-2.0Zn-0.2Gd-0.8Mn alloy in Example 1; (b) Mg- in Example 2 l.8Zn-0.4Gd alloy; (c) Mg-3.lZn-0.9Gd alloy in Comparative Example 2; (d) Mg-l.2Zn-4.9Gd alloy in Comparative Example 3.
  • 2(a)-(d) are rolled sheet structures of a magnesium alloy; wherein: (a) Mg-2.0Zn-0.2Gd-0.8Mn alloy in Example 1; (b) Mg-l in Example 2. 8Zn-0.4Gd alloy; (c) Mg-1. Zn-0.6Gd alloy in Example 3; (d) Mg-0.9Zn-0.7Gd-0.6Mn alloy in Example 4; (e) Mg in Comparative Example 1 -l.8Zn-0.lGd alloy.
  • 3(a)-(d) are the microstructures of the rolled sheet of the magnesium alloy which are annealed at different temperatures; wherein, (a) the Mg-2.0Zn-0.2Gd-0.8Mn sheet of Example 1 is annealed at 250 ° C for 2 hours.
  • Example 2 The Mg-l.8Zn-0.4Gd sheet in Example 2 was annealed at 325 ° C for 3 hours; (c) the Mg-l.9Zn-0.6Gd sheet in Example 3 was annealed at 350 ° C for 1 hour; d) The Mg-0.9Zn-0.7Gd-0.6Mn sheet in Example 4 was annealed at 400 ° C for 0.5 hour; (e) The Mg-1.8 Zn-0.lGd alloy sheet of Comparative Example 1 was annealed at 400 ° C for 1 hour.
  • Figure 4 is the base (0002) texture after annealing of the rolled sheet; wherein, (a) the Mg-2.0Zn-0.2Gd-0.8Mn sheet in Example 1 is annealed at 250 °C for 2 hours (texture strength grade: 1.07) , 1.23, 1.41, 1.62, 1.86, 2.14, 2.46, 2.82); (b) The Mg-l.8Zn-0.4Gd sheet in Example 2 was annealed at 325 ° C for 3 hours (texture strength grade: 1.08, 1.26, 1.47 , 1.71, 1.86, 2.14, 2.46, 2.82); (c) The Mg-l.9Zn-0.6Gd sheet in Example 3 was annealed at 350 ° C for 1 hour (texture strength grade: 1.09, 1.28, 1.50, 1.77, 2.08 , 2.45, 2.89, 3.40); (d) The Mg-0.9Zn-0.7Gd-0.6Mn sheet in Example 4 was annealed at 400 ° C for 0.5
  • Figure 5 is a tensile stress-strain curve of the rolled sheet after annealing; wherein, (a) in Example 1
  • the Mg-2.0Zn-0.2Gd-0.8Mn sheet was annealed at 250 ° C for 2 hours;
  • the Mg-1.8 Zn-0.4Gd sheet in Example 2 was annealed at 325 ° C for 3 hours;
  • Example 3 The Mg-l.9Zn-0.6Gd sheet was annealed at 350 ° C for 1 hour;
  • the Mg-0.9Zn-0.7Gd-0.6Mn sheet in Example 4 was annealed at 400 ° C for 0.5 hours;
  • Comparative Example 1 The Mg-l.8Zn-0.lGd alloy sheet was annealed at 400 ° C for 1 hour.
  • Table 1 shows the chemical composition of the Mg-Zn-Gd alloy in Examples 1-4 of the present invention (the data in the table is the result of chemical analysis, in terms of mass percentage), and the formulation described in Table 1 is only a part of the protective range.
  • Table 2 shows the chemical composition of Mg-Zn-Gd (in terms of mass percentage) in Comparative Examples 1-3.
  • Table 1 Chemical composition of Mg-Zn-Gd alloy in Examples 1-4
  • the rolled sheet is annealed at 250 °C for 2 hours to obtain a more uniform equiaxed crystal structure, as shown in Fig. 3 (a.
  • the annealed sheet has a non-basal texture and exhibits a double peak of ⁇ 40° in the lateral direction. Texture, as shown in Figure 4 (a), this type of texture is beneficial to improve the plasticity of the board.
  • Mg-Zn-Gd is cast into a 150mmx200mmx200mm ingot by conventional magnesium alloy smelting.
  • the weight percentage of the alloy composition is Zn: 1.8%, Gd: 0.4%, and the magnesium content is the balance margin (Table 1). No. 2);
  • Mg-Zn-Gd is cast into a 150mmx200mmx200mm ingot by conventional magnesium alloy smelting.
  • the weight percentage of the alloy composition is Zn: 1.9%, Gd: 0.6%, and the magnesium content is the balance margin (Table 1). No. 3);
  • Annealed sheet has a non-basal texture , exhibiting a bimodal texture that is deflected by ⁇ 40° to the lateral direction, as shown in Fig. 4 (c), which is advantageous for improving the plasticity of the sheet.
  • alloy composition weight percentage is Zn: 0.9%, Gd: 0.7%, Mm
  • the rolled sheet is annealed at 400 ° C for 0.5 hours to obtain a uniform equiaxed crystal structure, as shown in Figure 3 (d).
  • the annealed sheet has a non-base texture and exhibits a bimodal texture that deflects by ⁇ 40° to the lateral direction. As shown in Figure 4 (d), this type of texture is beneficial to improve the plasticity of the sheet.
  • Comparative example 1 1) using metal mold gravity casting, casting into a 150mmx200mmx200mm ingot by conventional magnesium alloy smelting, the alloy composition weight percentage is Zn: 1.8%, Gd: 0.1%, and the magnesium content is the balance margin (Table 2 No. 1);
  • the ingot is homogenized at 470 ° C for 8 hours, the ingot is cut into 150 mm x l00 mm x 20 mm blank and milled, and the milled blank is heated at 250 ° C for 2 hours and then rolled; roll temperature It is 25 °C; the first pass reduction is 30%, then the reduction of each pass is 30-45%. After each rolling, the furnace is kept warm for 5 ⁇ 10 minutes to continue rolling, and the plate is severely broken. Rolling of the sheet at a large amount of deformation cannot be guaranteed, as shown in Fig. 1 (d).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

一种镁合金板材,其化学成分按质量百分比计为:Zn 0.9-21.%,Gd 0.2-0.8%,Mn 0-0.9%,其余为Mg。该镁合金板材添加相对较低的元素Gd,降低了成本,并保证了轧制后板材的良好延伸性能,室温延伸率达到35-50%。

Description

一种低 Gd含量、 高延展性镁合金板材及其热轧制工艺 技术领域
本发明涉及金属材料技术领域, 具体涉及一种低 Gd含量、 高延展性镁合金板材 及其热轧制工艺。 背景技术
镁合金具有比重小、 比强度高、 高阻尼、 高导热性以及减震性好、 易于回收等优 点越来越受到市场的青睐。 目前, 压铸镁合金已经大量应用于汽车和 3C电子产品外 壳等工业领域。 但是, 压铸镁合金后续表面处理工艺繁琐复杂、 易污染环境, 因此工 业界希望采用具有较高生产效率的冲压、冲锻等二次加工方法,将镁合金板材直接成 形成汽车、 3C电子产品外壳。
然而, 由于现有工业用 AZ31镁合金轧制性能差, 轧制工艺流程长、 成材率低; 而且, 板材的室温塑性低 (一般在 15〜20%) 、 各向异性大、 应变硬化因子小, 导致 其在室温和低温下的二次塑性加工成形的能力不足, 二次成形困难, 因而, 二次加工 通常需要在高温或中温才能进行, 导致应用板材时生产效率低、 生产和应用成本高。 所以, 开发具有高延展性、适合室温成形的低成本镁合金板材及其高效轧制工艺是目 前镁合金板材研发的重点之一, 对扩大镁合金板材的应用规模具有重要意义。
制备镁合金板材最经济和高效的方式之一是热轧法, 不仅可以生产宽幅薄板, 而 且可以通过反复轧制及热处理, 调控晶粒尺寸、 组织和织构分布, 获得具有优异力学 性能的各种规格板材。 但是, 现有商业镁合金板材, 如 AZ31 , 在轧制过程中会形成 强烈的基面织构和组织性能的各向异性,这些特征是引起其后续二次塑性加工过程中 流变应力高以及塑性流动稳定性差等缺点,无法在室温和低温进行二次塑性加工成形 的主要原因; 而且, 由于各向异性引起镁合金板材强度和塑性强烈的拉压不对称性会 导致其室温和低温弯曲过程中压缩一侧产生裂纹, 使成形的零件报废。研究表明, 基 面织构较弱的镁合金板材在中、 低温条件下具有高的应变硬化速率(指数) , 从而能 够保证塑性流动的稳定性来获得较高的塑性。因此, 可以通过优化板材的织构来提高 镁合金的成形性能, 织构中基面织构组分越弱, 板材的可成形温度越低, 成形性能越 好。
镁合金的织构弱化与第二相、 固溶原子、 晶格常数变化等有关, 其中固溶原子是 影响织构的关键因素。 向镁合金中添加少量稀土元素,会导致变形过程中的动态再结 晶晶粒取向随机化, 形成非基面织构。这种微量稀土合金化调控织构对开发高塑性的 镁合金板材具有积极的意义。根据镁合金的相平衡热力学原理和相图, 设想通过添加 稀土元素如 Y、 Nd、 Gd等, 获得含有细小的第二相颗粒的组织, 通过轧制后退火, 形成具有弱基面织构的镁合金板材, 降低板材的各向异性、 高的应变硬化指数、 拉压 不对称性以及保证二次加工过程中塑性流动的稳定性,提高板材的塑性及二次成形性 能。
所以, 根据稀土元素对镁合金组织、 织构和性能的影响规律, 通过镁稀土合金进 行成分设计和优化,采用传统的热轧制工艺和热处理工艺等技术来细化晶粒、获得均 匀组织并调控织构,制备出低各向异性和弱织构、高应变硬化指数的具有高塑性的镁 合金板材, 是目前镁合金材料领域的研发重点之一。
轧辊加热技术是未来镁合金板材工业化连续轧制的重要技术,通过轧辊加热可以 保证轧制过程中坯料的温度,实现多道次的连续轧制,减小退火次数,提高生产效率。 研究表明轧辊的加热温度处于 25-400°C对本发明专利中板材的最终组织、织构和力学 性能的影响很小, 可以保证本发明中材料的特点。
因此, 本发明申请希望利用稀土元素在镁合金中的独特作用, 通过普通轧制工艺 和热处理工艺, 制备一种在室温下具有非基面织构、 高延展性的镁合金板材。 A1和 Zn元素是镁合金中的主要合金化元素, 但是由于 A1与稀土的结合力强, 容易形成 A1-RE 相, 使基体中的固溶稀土原子含量降低, 织构调控效果不明显; 因此, 选用 Zn元素作为除稀土外的第二个合金元素。 Mn是镁合金中常用的微量元素, 不仅可 以提高合金的耐腐蚀性, 而且会抑制在结晶晶粒的长大, 并且不会影响到织构调控效 果, 因此, 合金中需添加适量 Mn元素。
经文献检索发现, 目前有两项专利涉及到与本发明专利相关的技术: 上海交通大 学披露了一种自生准晶相增强的高塑性变形镁合金(专利申请号 200610026842.X), 其组分及重量百分比为: 3-7%Zn, 0.5-3%Gd, 0-0.5%Zr, 该组分的合金经挤压后在 室温下的抗拉强度: 260-320MPa; 拉伸伸长率: 20-26%。 西安交通大学报道了一种 原位合成准晶相高强镁合金 (公开号: CN1789458A) , 其组分及重量百分比为: 3-10%Zn, 0.5-3.5%Y, l%Ce, 0-l%Nd, 经快速凝固和往复大塑性挤压后, 室温下的 抗拉强度≥500MPaMPa; 伸长率≥20%。 以上两个发明中的合金中的 Zn含量均≥3%, 甚至达到 10%, 众所周知, Zn含量的增加, 会在基体中形成低熔点的第二相, 不仅 导致铸造过程中产生热裂, 而且导致镁合金轧制性能差, 轧制加工温度区间窄, 轧制 单道次轧制变形量小(一般小于 20%) , 因而产品生产效率较低、 成材率低, 通常需 要采用三向压应力的加工方式, 如挤压等, 不适合生产宽幅薄板, 所以两个专利中分 别采用的是挤压工艺和快速凝固 +挤压工艺。同时,两个发明中材料具有较好的强度, 但塑性在 20%左右,并不能够满足镁合金板材的室温成形性能要求。因此这两个专利 的产品并适合作为高延展性的板材产品。 本发明申请中的镁合金中, Zn含量不超过 2.1%, 合金具有很好的轧制性能, 单道次的轧制压下量可以达到 50%甚至更大, 可 以通过普通轧制方式短流程、 高效生产宽幅镁合金板材。
重庆大学报道了一种可实现快速挤压的 Mg-Zn-Mn-Ce系合金, 其组分及重量百 分比为: 1.8-4%Zn, 0.5-1.5%Mn, 0.15-0.80%Ce, 挤压后的镁合金室温下的抗拉强度: 285MPa; 拉伸伸长率: 20%。 该专利通过挤压工艺制备材料, 采用在镁中固溶度只 有 0.01wt%的稀土 Ce, 通过在晶界处形成第二相细化晶粒, 阻止变形后晶粒的长大, 并且提高再结晶温度, 可以实现高温快速挤压。挤压材的室温伸长率不超过 20%。该 专利是采用固溶度很小的 Ce, 使在晶界上产生第二相, 细化晶粒, 目的是提高强度, Ce 并不会对镁合金的织构起到弱化作用, 因而对镁合金塑性的提高不明显。 本发明 申请中 Mg-Zn-RE板材中采用的是在镁中固溶度为 23.49^%的 Gd元素, 利用 Gd固 溶原子对镁合金织构的弱化作用,提高合金的轧制性能, 且轧制后改变镁合金板材晶 粒取向, 获得非基面织构, 提高轧制板材的室温塑性及成形性能。
申请人前期已研发了一种高塑性的 Mg-Zn-RE镁合金及其板材的轧制工艺(申请 号: 200910011111 ), 其组分及重量百分比为: 0-5%Zn, 0.1-10%RE, 镁为平衡余量。 由于 Zn和 Gd范围较宽, 含量较高, 过高含量的 Zn会降低合金的塑性, 而过高含量 的成本昂贵的 Gd不仅增加了合金成本, 而且降低了合金的轧制性能和力学性能, 限 制了合金的工业化规模应用。 因此, 本发明申请中, 希望对上一专利进一步进行优化 和细化。通过对比 Y和 Gd等稀土元素对织构的弱化作用, 发现 Gd比 Y具有更好的 效果, 因而选择 RE中的 Gd作为合金化元素, 同时希望在保证 Gd对轧制板材织构 弱化和提高其室温成形性能的基础上, 尽可能降低 Gd含量, 降低原专利合金和板材 产品的成本。 本发明确立了织构非基面化的 Gd的最低有效含量范围, 大大降低了合 金成本, 可满足民用产品用镁合金对低成本的要求, 同时, 依据 Mn具有提高镁合金 耐腐蚀性、 抑制晶粒长大等有利作用, 并且不影响 Gd元素的织构弱化作用, 重新设 计和优化了 Mg-Zn-Gd (-Mn) 合金的化学成分, 是对申请人前一专利的有效改进和 优化。 发明内容
针对目前商业镁合金, 如 AZ31合金, 轧制性能差、 其板材基面织构强烈、 室温 塑性差、各向异性大、 应变硬化指数低的缺点, 以及一些合金中稀土含量高导致合金 成本过高的问题, 本发明提供一种低 Gd含量、 高延展性、 具有良好室温塑性和成形 性的新型镁合金板材及其热轧制工艺, 其原理是充分利用微量 Gd固溶原子对镁合金 轧制过程中的织构弱化作用,确立 Gd元素织构弱化的最低有效含量,降低合金成本。 制备的镁合金板材具有非基面织构, 室温伸长率 35〜50%, 其中沿轧制方向伸长率 >35%, 沿横向的伸长率≥45%。
本发明的技术方案是:
一种低 Gd含量、 高延展性镁合金板材, 所述镁合金为 Mg-Zn-Gd系, 以重量百 分比计, 其化学成分为: Zn 0.9〜2.1 %, 稀土 Gd 0.2〜0.8 %, Mn 0〜0.9%, 镁含量 为平衡余量。
上述低 Gd含量、 高延展性镁合金板材的热轧制工艺, 包括如下步骤:
1 )铸锭的均匀化处理: 将所述化学成分的镁合金铸锭在 300〜525°C条件下保温 0〜120 小时; 所述铸锭为圆形或方形, 采用金属模、 砂型重力铸造或半连续铸造方 法生产;
2) 铸锭的热轧制: 轧制温度: 250〜525°C (轧辊预热温度: 室温〜 400°C ); 每 道次的压下量: 35〜50%; 每轧制 1〜5道后回炉加热到轧制温度保温 10〜60分钟再 继续轧制, 总压下量 80〜95%;
3 )轧制板材的退火处理: 轧制后的板材在 250〜500°C进行退火处理 0.5〜120小 时。
本发明具有如下优点:
1、本发明镁合金中稀土 Gd含量很低, 仅为 0.2-0.8%, 在保证织构弱化和室温塑 性的基础上, 降低了合金成本, 并且不添加比较昂贵的 Zr, 使企业可以接受合金的 成本。
2、本发明中合金具有良好的轧制性能,每道次的轧制变形量可以达到 50%以上, 减少了轧制过程中回炉加热的次数和时间, 缩短了工艺流程, 提高了生产效率; 成品 率高;降低了产品的总成本;可以直接采用现有轧制设备和工艺进行工业化连续生产, 工艺简单, 易于控制。
3、本发明工艺制备的板材具有非基面织构、低的各向异性、 高的应变硬化速率, 室温伸长率达到 35〜50%,可以实现板材的室温二次成型,降低二次塑性成形的成本, 提高生产率, 将广泛应用于电子产品外壳和汽车等领域。
4、 本发明合金不仅适用于轧制板材, 也可以推广应用于型材、 管材、 自由锻件 和模锻件的生产。 附图说明
图 l(a)-(b)为镁合金的轧制板材的宏观照片; 其中: (a)实施例 1 中 Mg-2.0Zn-0.2Gd-0.8Mn合金; (b) 实施例 2中 Mg-l.8Zn-0.4Gd合金; (c) 对比例 2 中 Mg-3.lZn-0.9Gd合金; (d) 对比例 3中 Mg-l.2Zn-4.9Gd合金。
图 2(a)-(d)为镁合金的轧制板材组织; 其中 : (a) 实施例 1 中 Mg-2.0Zn-0.2Gd-0.8Mn合金; (b) 实施例 2 中 Mg-l.8Zn-0.4Gd合金; (c) 实施例 3 中 Mg-l.9Zn-0.6Gd合金; (d)实施例 4 中 Mg-0.9Zn-0.7Gd-0.6Mn合金; (e)对比例 1中 Mg-l.8Zn-0.lGd合金。
图 3(a)-(d)为镁合金的轧制板材在不同温度退火的组织; 其中, (a) 实施例 1 中 Mg-2.0Zn-0.2Gd-0.8Mn板材在 250°C退火 2小时; (b) 实施例 2 中 Mg-l.8Zn-0.4Gd 板材在 325°C退火 3小时;(c) 实施例 3 中 Mg-l.9Zn-0.6Gd板材在 350°C退火 1小时; (d) 实施例 4 中 Mg-0.9Zn-0.7Gd-0.6Mn板材在 400°C退火 0.5小时; (e)对比例 1中 Mg-l.8Zn-0.lGd合金板材 400°C退火 1小时。
图 4 为轧制板材退火后基面 ( 0002 ) 织构; 其中, (a) 实施例 1 中 Mg-2.0Zn-0.2Gd-0.8Mn板材在 250°C退火 2小时 (织构强度等级: 1.07, 1.23, 1.41, 1.62, 1.86, 2.14, 2.46, 2.82); (b) 实施例 2 中 Mg-l.8Zn-0.4Gd板材在 325°C退火 3 小时 (织构强度等级: 1.08, 1.26, 1.47, 1.71, 1.86, 2.14, 2.46, 2.82); (c) 实施例 3 中 Mg-l.9Zn-0.6Gd板材在 350°C退火 1小时 (织构强度等级: 1.09, 1.28, 1.50, 1.77, 2.08, 2.45, 2.89, 3.40); (d) 实施例 4中 Mg-0.9Zn-0.7Gd-0.6Mn板材在 400°C 退火 0.5小时 (织构强度等级: 1.08, 1.27, 1.48, 1.74, 2.03, 2.38, 2.79, 3.27); (e) 对比例 1中 Mg-l.8Zn-0.lGd合金板材 400°C退火 1小时 (织构强度等级: 1.1, 2.0, 3.3, 5.0, 6.9, 8.5, 10.1, 12.4)。
图 5 为轧制板材在退火后的拉伸应力应变曲线; 其中, (a) 实施例 1 中
Mg-2.0Zn-0.2Gd-0.8Mn板材在 250°C退火 2小时;(b) 实施例 2中 Mg-l.8Zn-0.4Gd板 材在 325°C退火 3小时; (c) 实施例 3中 Mg-l.9Zn-0.6Gd板材在 350°C退火 1小时; (d) 实施例 4中 Mg-0.9Zn-0.7Gd-0.6Mn板材在 400°C退火 0.5小时; (e) 对比例 1中 Mg-l.8Zn-0.lGd合金板材 400°C退火 1小时。 具体实施方式
下面结合附图及实施例详述本发明。需强调的是,以下实施例仅用于说明本发明, 而并不是对本发明的限定。 表 1为本发明实施例 1-4中 Mg-Zn-Gd合金化学组成 (表 中数据为化学分析的结果, 以质量百分含量计), 表 1所述配方仅为保护范围内的部 分成分。 表 2为对比例 1-3中的 Mg-Zn-Gd化学组成 (以质量百分含量计)。 表 1 实施例 1-4中的 Mg-Zn-Gd合金化学组成
Figure imgf000006_0001
表 2对比例 1-3中的 Mg-Zn-Gd合金化学组成
Figure imgf000006_0002
实施例 1
1 ) 采用金属模重力铸造, 经常规的镁合金熔炼浇注为 150mmx200mmx200mm 的铸锭, 合金成分重量百分比为 Zn: 2.0%, Gd: 0.2%, M 0.8, 镁含量为平衡余 量 (表 1编号 1 );
2)将铸锭在 450°C保温 10小时均匀化处理后,将铸锭切为 150mmx l00mmx20mm 的坯料并铣面,将铣面后的坯料在 250°C保温 2小时后进行轧制; 轧辊温度为 300°C; 第一道次的压下量为 35%,随后每道的压下量为 35-45%,每轧制一道后回炉保温 5〜 10分钟继续轧制, 直到板材厚度为 2mm, 总压下量 85%, 板材边及表面无任何裂纹, 见图 1 ( a), 轧制过程发生了动态再结晶, 板材具有细小的晶粒尺寸, 见图 2 ( a);
3 ) 轧制后的板材进行 250°C退火 2小时, 得到更加均匀的等轴晶组织, 见图 3 ( a 退火后的板材具有非基面织构, 呈现向横向偏转 ±40°的双峰织构, 如图 4 ( a) 所示, 该种类型织构有利于提高板材的塑性。
4)参考国标 GB 6397-86的 §3.6.2对于板材试样的规定制备的板材的拉伸力学性 能样品, 在室温沿着轧制方向和横向的应力应变曲线如图 5 ( a) 所示, 板材热处理 退火后的力学性能见表 3。 轧制板材沿轧制方向的抗拉强度为 246MPa, 屈服强度为 165MPa, 伸长率为 39%; 沿横向的抗拉强度为 229MPa, 屈服强度为 101MPa, 伸长 率为 45%。
实施例 2
1 ) 采用金属模重力铸造, Mg-Zn-Gd 经常规的镁合金熔炼浇注为 150mmx200mmx200mm的铸锭, 合金成分重量百分比为 Zn: 1.8%, Gd: 0.4%, 镁 含量为平衡余量 (表 1编号 2);
2)将铸锭在 420°C保温 10小时均匀化处理后,将铸锭切为 150mmx l00mmx20mm 的坯料并铣面, 将铣面后的坯料在 400°C保温 2小时后进行轧制; 轧辊温度为室温; 第一道次的压下量为 35%, 随后每道次的压下量为 45%, 每轧制两道后回炉保温 5〜 10分钟继续轧制, 直到板材厚度为 3.2mm, 总压下量 84%, 板材边及表面无任何裂 纹,见图 1 (b),轧制过程发生了动态再结晶,板材具有细小的晶粒尺寸,见图 2 (b) ; 3 ) 轧制后的板材在 320°C退火 3小时后, 发生了静态再结晶, 组织更加均匀, 见图 3 (b)。 退火后的板材具有非基面织构, 呈现向横向偏转约 ±40°的双峰织构, 如 图 4 (b) 所示, 该种类型织构有利于提高板材的塑性。
4)参考国标 GB 6397-86的 §3.6.2对于板材试样的规定制备的板材的拉伸力学性 能样品, 在室温沿着轧制方向和横向的应力应变曲线如图 5 (b) 所示, 其力学性能 见表 3。轧制板材沿轧制方向的抗拉强度为 253MPa, 屈服强度为 201MPa, 伸长率为 35%; 沿横向的抗拉强度为 231MPa, 屈服强度为 132MPa, 伸长率为 50%。
实施例 3
1 ) 采用金属模重力铸造, Mg-Zn-Gd 经常规的镁合金熔炼浇注为 150mmx200mmx200mm的铸锭, 合金成分重量百分比为 Zn: 1.9%, Gd: 0.6%, 镁 含量为平衡余量 (表 1编号 3 );
2)将铸锭切为 150mmx l00mmx20mm的坯料并铣面, 不经均匀化热处理, 直接 将铣面后的坯料在 380°C保温待轧; 轧辊温度为 250°C ; 第一道次的压下量为 35%, 随后每道的压下量为 35-45%, 每轧制两道后回炉加热保温 5〜10分钟继续轧制, 直 到板材厚度为 3mm, 总压下量 85%, 板材边及表面无任何裂纹, 板材呈现变形组织, 没有完全再结晶, 见图 2 ( c);
3 )轧制后的板材在 350°C保温 1小时进行退火处理, 发生了明显的静态再结晶, 得到了均匀的等轴晶组织, 见图 3 ( c 退火后的板材具有非基面织构, 呈现向横向 偏转 ±40°的双峰织构, 如图 4 ( c) 所示, 该种类型织构有利于提高板材的塑性。
4)参考国标 GB 6397-86的 §3.6.2对于板材试样的规定制备的板材的拉伸力学能 样品, 在室温沿着轧制方向和横向的应力应变曲线如图 5 ( c) 所示, 其力学性能见 表 3。 轧制板材沿轧制方向的抗拉强度为 248MPa, 屈服强度为 172MPa, 延伸率为 37%; 沿横向的抗拉强度为 237MPa, 屈服强度为 165MPa, 伸长率为 45%。
实施例 4
1 ) 采用金属模重力铸造, Mg-Zn-Gd 经常规的镁合金熔炼浇注为
150mmx200mmx200mm的铸锭, 合金成分重量百分比为 Zn: 0.9%, Gd: 0.7%, Mm
0.6, 镁含量为平衡余量 (表 1编号 4);
2)将铸锭切为 150mmx l00mmx20mm的坯料并铣面, 不经均匀化热处理, 直接 将铣面后的坯料在 320°C保温待轧; 轧辊温度为室温; 第一道次的压下量为 35%, 随 后每道的压下量为 45%,每轧制两道后回炉加热保温 5〜10分钟继续轧制,直到板材 厚度为 2mm, 总压下量 85%, 板材边及表面无任何裂纹, 板材呈现再结晶组织, 见 图 2 ( d);
3 )轧制后的板材在 400°C保温 0.5小时进行退火处理,得到了均匀的等轴晶组织, 见图 3 ( d)。 退火后的板材具有非基面织构, 呈现向横向偏转 ±40°的双峰织构, 如图 4 ( d) 所示, 该种类型织构有利于提高板材的塑性。
4)参考国标 GB 6397-86的 §3.6.2对于板材试样的规定制备的板材的拉伸力学能 样品, 在室温沿着轧制方向和横向的应力应变曲线如图 5 ( d) 所示, 其力学性能见 表 3。 轧制板材沿轧制方向的抗拉强度为 248MPa, 屈服强度为 172MPa, 延伸率为 37%; 沿横向的抗拉强度为 237MPa, 屈服强度为 165MPa, 伸长率为 45%。
对比例 1 1 ) 采用金属模重力铸造, 经常规的镁合金熔炼浇注为 150mmx200mmx200mm 的铸锭, 合金成分重量百分比为 Zn: 1.8%, Gd: 0.1%, 镁含量为平衡余量 (表 2编 号 1 );
2)将铸锭在 450°C保温 10小时均匀化处理后,将铸锭切为 150mmx l00mmx20mm 的坯料并铣面, 将铣面后的坯料在 250°C保温 2小时后进行轧制; 轧辊温度为 25 °C ; 第一道次的压下量为 30%,随后每道的压下量为 30-45%,每轧制一道后回炉保温 5〜 10分钟继续轧制, 直到板材厚度为 2mm, 总压下量 85%, 板材边及表面无任何裂纹, 轧制过程发生了明显的动态再结晶,板材晶粒尺寸比其他编号的合金大, 见图 2 ( e) ;
3 ) 轧制后的板材进行 400°C退火 1小时, 晶粒明显长大, 接近 50微米, 见图 3 ( e) o 退火后的板材呈现明显的基面织构, 与其他合金板材的非基面织构明显不同, 如图 4 ( e) 所示, 该种类型织构不利于提高板材的塑性。
4)参考国标 GB 6397-86的 §3.6.2对于板材试样的规定制备的板材的拉伸力学性 能样品, 在室温沿着轧制方向和横向的应力应变曲线如图 5 ( e) 所示, 板材热处理 退火后的力学性能见表 3。 轧制板材沿轧制方向的抗拉强度为 248MPa, 屈服强度为 220MPa, 伸长率为 25%; 沿横向的抗拉强度为 251MPa, 屈服强度为 218MPa, 伸长 率为 32%。
对比例 2
1 ) 采用金属模重力铸造, 经常规的镁合金熔炼浇注为 150mmx200mmx200mm 的铸锭, 合金成分重量百分比为 Zn: 3.1%, Gd: 0.9%, 镁含量为平衡余量 (表 2编 号 2);
2)将铸锭在 420°C保温 5小时均匀化处理后,将铸锭切为 150mmx l00mmx20mm 的坯料并铣面, 将铣面后的坯料在 250°C保温 2小时后进行轧制; 轧辊温度为 25 °C ; 第一道次的压下量为 30%,随后每道的压下量为 30-45%,每轧制一道后回炉保温 5〜 10分钟继续轧制, 直到板材厚度为 2mm, 板材两边裂纹严重, 见图 1 ( c), 轧制性 能相对较差, 板材成材率低。
对比例 3
1 ) 采用金属模重力铸造, 经常规的镁合金熔炼浇注为 150mmx200mmx200mm 的铸锭, 合金成分重量百分比为 Zn: 1.2%, Gd: 4.9%, 镁含量为平衡余量 (表 2编 号 3 );
2)将铸锭在 470°C保温 8小时均匀化处理后,将铸锭切为 150mmx l00mmx20mm 的坯料并铣面, 将铣面后的坯料在 250°C保温 2小时后进行轧制; 轧辊温度为 25 °C ; 第一道次的压下量为 30%,随后每道的压下量为 30-45%,每轧制一道后回炉保温 5〜 10 分钟继续轧制, 板材碎裂严重, 无法保证在较大的变形量下进行板材的轧制, 如 图 1 ( d)。
上述实施例及对比例中的 Mg-Zn-Gd轧制退火处理后板材沿轧制方向和横向的 力学性能如表 3所示。 表 3
Figure imgf000009_0001

Claims

权 利 要 求 书
1、 一种低 Gd含量、 高延展性镁合金板材, 其特征在于: 该板材为 Mg-Zn-Gd 系, 以重量百分比计, 其化学成分为: Zn 0.9〜2.1 %, Gd 0.2-0.8 % , Mn 0-0.9%, 余 量为 Mg。
2、 按照权利要求 1所述的低 Gd含量、 高延展性镁合金板材, 其特征在于: 该 板材的室温伸长率达到 35〜50%, 其中沿轧制方向伸长率≥35%, 沿横向的伸长率 >45% o
3、 一种低 Gd含量、 高延展性镁合金板材的热轧制工艺, 其特征在于: 包括如 下步骤:
1 )铸锭的均匀化处理: 将所述化学成分的镁合金铸锭在 300〜525 °C条件下保温 0〜120小时;
2) 铸锭的热轧制: 轧制温度: 250〜525 °C ; 每道次的压下量: 35〜50%; 每轧 制 1〜5道后回炉加热到轧制温度保温 5〜60分钟再继续轧制, 总压下量 80〜95%; 3 ) 轧制板材的退火处理: 轧制后的板材在 250〜500°C进行退火处理 0.5〜120 小时。
4、 按照权利要求 3所述镁合金板材的热轧制工艺, 其特征在于: 步骤 1 ) 中所 述铸锭为圆形或方形, 采用金属模、 砂型重力铸造或半连续铸造方法生产。
5、 按照权利要求 3所述镁合金板材的热轧制工艺, 其特征在于: 步骤 2) 热轧 制过程中, 轧辊预热温度: 室温〜 400°C。
PCT/CN2013/080696 2012-11-15 2013-08-02 一种低Gd含量、高延展性镁合金板材及其热轧制工艺 WO2014075466A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/375,717 US20140373982A1 (en) 2012-11-15 2013-08-02 Magnesium Alloy Sheet with Low Gd Content, High Ductility and the Hot Rolling Technology Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210461370.6 2012-11-15
CN201210461370.6A CN103667842B (zh) 2012-09-24 2012-11-15 一种低Gd含量、高延展性镁合金板材及其热轧制工艺

Publications (1)

Publication Number Publication Date
WO2014075466A1 true WO2014075466A1 (zh) 2014-05-22

Family

ID=50306610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080696 WO2014075466A1 (zh) 2012-11-15 2013-08-02 一种低Gd含量、高延展性镁合金板材及其热轧制工艺

Country Status (3)

Country Link
US (1) US20140373982A1 (zh)
CN (1) CN103667842B (zh)
WO (1) WO2014075466A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249626A (zh) * 2021-05-13 2021-08-13 西南交通大学 一种镁合金及改善其拉压不对称性的加工方法
CN114592149A (zh) * 2022-03-21 2022-06-07 中北大学 一种电弧增材用高强韧镁合金丝材的制备方法
CN115558829A (zh) * 2022-09-23 2023-01-03 赣南师范大学 一种室温高塑性低合金化镁合金及其制备方法
CN115742485A (zh) * 2022-11-29 2023-03-07 重庆理工大学 一种碳化硼增强Mg-Al-Ta层状复合板材及制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11491257B2 (en) 2010-07-02 2022-11-08 University Of Florida Research Foundation, Inc. Bioresorbable metal alloy and implants
CN104607466A (zh) * 2015-01-14 2015-05-13 大连理工大学 一种高室温塑性镁合金板的热轧加工方法
WO2016118444A1 (en) 2015-01-23 2016-07-28 University Of Florida Research Foundation, Inc. Radiation shielding and mitigating alloys, methods of manufacture thereof and articles comprising the same
CN106148785A (zh) * 2015-04-20 2016-11-23 中国科学院金属研究所 一种室温高延展性变形镁合金及其制备方法
CN106148784B (zh) * 2015-04-20 2019-03-19 中国科学院金属研究所 一种低成本室温高塑性变形镁合金材料及其制备工艺
US11638945B2 (en) 2015-12-18 2023-05-02 Magnesium Products of America, Inc. Truing machine and method for magnesium components
CN107012376B (zh) * 2016-01-27 2019-06-11 中国科学院金属研究所 一种低稀土含量的高速挤压镁合金变形材及其制备工艺
CN106825043A (zh) * 2017-01-18 2017-06-13 王显坤 高强韧低膨胀锌基耐磨合金薄板的轧制方法
KR102178806B1 (ko) * 2018-09-28 2020-11-13 주식회사 포스코 마그네슘 합금 판재 및 이의 제조방법
CN112746208B (zh) * 2021-02-01 2022-02-08 太原理工大学 一种低稀土含量高强韧性镁合金及其制备方法
CN113235027B (zh) * 2021-05-21 2021-12-10 重庆理工大学 一种强度和塑性匹配良好的变形镁合金板材及制备方法
CN114214550A (zh) * 2021-12-17 2022-03-22 河北科技大学 一种医用镁合金及其制备方法
CN115044812A (zh) * 2022-06-17 2022-09-13 北京机科国创轻量化科学研究院有限公司 一种高延伸率微合金化改性az31镁合金薄板材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851020A (zh) * 2006-05-25 2006-10-25 上海交通大学 自生准晶增强的高塑性变形镁合金
WO2010032828A1 (ja) * 2008-09-19 2010-03-25 国立大学法人 熊本大学 マグネシウム合金及びその製造方法
CN101857933A (zh) * 2009-04-10 2010-10-13 中国科学院金属研究所 一种高塑性、低各向异性镁合金及其板材的热轧制工艺
WO2011146790A1 (en) * 2010-05-20 2011-11-24 Harris Corporation Time dependent equalization of frequency domain spread orthogonal frequency division multiplexing using decision feedback equalization
CN102492883A (zh) * 2011-12-28 2012-06-13 东北大学 一种具有室温挤压特性的镁合金及其挤压材的制备方法
CN102747261A (zh) * 2011-04-19 2012-10-24 株式会社神户制钢所 镁合金材和发动机零件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474745B (zh) * 2009-01-20 2010-06-02 清华大学 Az31b镁合金冲压板材制备方法
CN102632100A (zh) * 2012-04-25 2012-08-15 中南大学 一种高延展性镁合金板带的加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851020A (zh) * 2006-05-25 2006-10-25 上海交通大学 自生准晶增强的高塑性变形镁合金
WO2010032828A1 (ja) * 2008-09-19 2010-03-25 国立大学法人 熊本大学 マグネシウム合金及びその製造方法
CN101857933A (zh) * 2009-04-10 2010-10-13 中国科学院金属研究所 一种高塑性、低各向异性镁合金及其板材的热轧制工艺
WO2011146790A1 (en) * 2010-05-20 2011-11-24 Harris Corporation Time dependent equalization of frequency domain spread orthogonal frequency division multiplexing using decision feedback equalization
CN102747261A (zh) * 2011-04-19 2012-10-24 株式会社神户制钢所 镁合金材和发动机零件
CN102492883A (zh) * 2011-12-28 2012-06-13 东北大学 一种具有室温挤压特性的镁合金及其挤压材的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249626A (zh) * 2021-05-13 2021-08-13 西南交通大学 一种镁合金及改善其拉压不对称性的加工方法
CN113249626B (zh) * 2021-05-13 2022-03-25 西南交通大学 一种镁合金及改善其拉压不对称性的加工方法
CN114592149A (zh) * 2022-03-21 2022-06-07 中北大学 一种电弧增材用高强韧镁合金丝材的制备方法
CN115558829A (zh) * 2022-09-23 2023-01-03 赣南师范大学 一种室温高塑性低合金化镁合金及其制备方法
CN115742485A (zh) * 2022-11-29 2023-03-07 重庆理工大学 一种碳化硼增强Mg-Al-Ta层状复合板材及制备方法

Also Published As

Publication number Publication date
CN103667842B (zh) 2016-04-13
CN103667842A (zh) 2014-03-26
US20140373982A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
WO2014075466A1 (zh) 一种低Gd含量、高延展性镁合金板材及其热轧制工艺
Cheng et al. Hot deformation behavior and workability characteristic of a fine-grained Mg‒8Sn‒2Zn‒2Al alloy with processing map
CN102337441B (zh) 一种超高强稀土镁合金板材的制备方法
JP6339616B2 (ja) 展伸用途のマグネシウム系合金
CN101857933B (zh) 一种高塑性、低各向异性镁合金及其板材的热轧制工艺
AU2016372756B2 (en) Magnesium alloy sheet rolling and preparation method
US20160024629A1 (en) Low-cost fine-grain weak-texture magnesium alloy sheet and method of manufacturing the same
KR101324715B1 (ko) 마그네슘 합금 판재의 성형성 향상방법 및 이에 의해 제조되는 마그네슘 합금 판재
WO2009096622A1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
WO2013115490A1 (ko) 고연성 및 고인성의 마그네슘 합금 및 이의 제조방법
CN108237147B (zh) 车身用原位纳米颗粒增强铝基复合材料的轧制工艺
Chen et al. Microstructure and mechanical properties of Mg–4.5 Al–1.0 Zn alloy sheets produced by twin roll casting and sequential warm rolling
TW201111522A (en) Magnesium alloy plate
CN106148784A (zh) 一种低成本室温高塑性变形镁合金材料及其制备工艺
CN107541627A (zh) 一种具有良好室温成形性的变形镁合金板材及其制备方法
CN106148785A (zh) 一种室温高延展性变形镁合金及其制备方法
JP7318274B2 (ja) Al-Mg-Si系アルミニウム合金冷延板及びその製造方法並びに成形用Al-Mg-Si系アルミニウム合金冷延板及びその製造方法
Liu et al. Effect of the long periodic stacking structure and W-phase on the microstructures and mechanical properties of the Mg–8Gd–xZn–0.4 Zr alloys
US11898232B2 (en) High-strength alloy based on aluminium and method for producing articles therefrom
JP5525444B2 (ja) マグネシウムをベースとする合金、およびその製造方法
Liu et al. Comparison of edge crack behavior of Mg sheets prepared by online heating rolling
CN104532091A (zh) 一种2系铝合金
CN101597708A (zh) 一种Al-Mg-Nd-Sc铝合金
CN104060138A (zh) 一种低成本高性能非稀土镁合金板材及其制备方法
CN110656268B (zh) 一种高强度抗疲劳铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855728

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14375717

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855728

Country of ref document: EP

Kind code of ref document: A1