WO2014178668A1 - 고무질 중합체 및 그 제조방법 - Google Patents

고무질 중합체 및 그 제조방법 Download PDF

Info

Publication number
WO2014178668A1
WO2014178668A1 PCT/KR2014/003893 KR2014003893W WO2014178668A1 WO 2014178668 A1 WO2014178668 A1 WO 2014178668A1 KR 2014003893 W KR2014003893 W KR 2014003893W WO 2014178668 A1 WO2014178668 A1 WO 2014178668A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
polymer
diene
monomer
rubbery
Prior art date
Application number
PCT/KR2014/003893
Other languages
English (en)
French (fr)
Inventor
채주병
정유성
박은선
전태영
이진호
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US14/764,559 priority Critical patent/US9771470B2/en
Priority to CN201480010975.0A priority patent/CN105008422B/zh
Publication of WO2014178668A1 publication Critical patent/WO2014178668A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/10Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a rubbery polymer and a method of manufacturing the same, and more particularly, to a core-shell structure, comprising a core and one or more shell layers, and the outermost shell layer is a diene-based polymer layer.
  • the present invention relates to a rubbery polymer capable of realizing a product having excellent colorability and a manufacturing method thereof.
  • rubber-reinforced graft copolymers in particular, rubber-reinforced graft copolymers produced by the emulsion polymerization method is typical of ABS, MBS, ASA, ATM, etc. These are usually rubbery polymers produced by the emulsion polymerization method Manufactured by graft copolymerization of various monomers considering matrix dispersibility in core to outer shell.
  • ABS polybutadiene latex is used as a core and PSAN (styrene-acrylonitrile copolymer) is grafted to outer shell. It is prepared through the process of copolymerization.
  • ABS products have excellent appearance characteristics such as impact resistance, glossiness, and coloration, and are widely used in electronic products, automobile interior and exterior materials, and toys requiring various colors and gloss.
  • an object of the present invention is to provide a method for improving the impact resistance and colorability at the same time in the production of rubber latex, more specifically, rubber-reinforced graft air In the preparation of the rubber latex used as a core in the preparation of the copolymer to solve this problem by producing a rubbery polymer of a multi-layer structure.
  • the present invention provides a rubbery polymer as a core-shell structure, comprising a core and one or more shell layers, and the outermost shell layer being a diene-based polymer layer.
  • the shell layer is characterized in that 2 to 10 layers in total.
  • the core has an average particle diameter of 1000 to 2000 mm 3.
  • the core is, for example, a diene monomer; Or at least one selected from the group consisting of diene monomers, vinyl aromatic monomers, vinyl cyan monomers, and acrylate monomers.
  • the core and each shell layer may have a refractive index difference of 0.02 or less, 0.001 to 0.02, or 0.01 to 0.02.
  • the difference in refractive index between the core and the entire shell layer may be 0.02 or less, 0.001 to 0.02, or 0.01 to 0.02, and there is an effect excellent in colorability within this range.
  • the shell layer is characterized by consisting of, for example, a diene-based polymer layer and a diene-based polymer layer.
  • the b-diene-based polymer layer is characterized in that 5 to 15% by weight, or 5 to 10% by weight based on a total of 100% by weight of the rubbery polymer.
  • the diene-based polymer layer is characterized in that 15 to 25% by weight, or 15 to 20% by weight based on a total of 100% by weight of the rubbery polymer.
  • the shell layer is, for example, characterized in that the diene-based polymer layer and the diene-based polymer layer is laminated alternately.
  • the rubbery polymer is for example characterized in that consisting of 40 to 70% by weight of the core and 30 to 60% by weight of the shell layer.
  • the core may include 30 to 50 wt% of a diene monomer and 10 to 20 wt% of a vinyl aromatic monomer based on 100 wt% of the rubbery polymer.
  • the shell layer is characterized in that made of a rubbery polymer, such as 100% by weight of the total diene monomer 10 / N 1 to 20 / N 1 % by weight (N 1 is the number of the diene-based polymer layer).
  • the shell layer is characterized in that it comprises a diene monomer 20 / N 2 to 40 / N 2 % by weight (N 2 is the number of the diene-based polymer layer) relative to the total 100% by weight of the rubbery polymer.
  • the rubbery polymer is, for example, characterized in that the average particle diameter is 3000 to 3300 mm 3.
  • the present invention comprises the steps of a) polymerizing a core polymer or a core-shell copolymer; And b) polymerizing a diene monomer in the presence of the core polymer or core-shell copolymer to form an outermost shell layer.
  • the method for preparing the rubbery polymer is, for example, when the polymerization conversion rate of step a) is 70% or more, characterized in that the polymerization by adding the diene monomer of step b).
  • Polymerization conversion rate of step a) is characterized in that for example 70 to 95%.
  • Step b) is characterized in that using a hydrophilic initiator or lipophilic initiator as an example.
  • the hydrophilic or lipophilic initiator can be used with, for example, a redox catalyst.
  • the rubber polymer manufacturing method may include, for example, 1) preparing a core polymer; 2) preparing a primary shell layer by adding a diene-based monomer to the core polymer when the polymerization conversion rate of step 1) is 70% or more; And 3) when the polymerization conversion rate of step 2) is 70% or more, preparing an outermost shell layer by adding a diene monomer.
  • the method for producing a rubbery polymer may include the steps of 1) preparing a core polymer; 2) preparing a primary shell layer by adding a diene-based monomer to the core polymer when the polymerization conversion rate of step 1) is 70% or more; 3) preparing a secondary shell layer by adding a diene monomer when the polymerization conversion rate of step 2) is 70% or more; 4) when the polymerization conversion rate of step 3) is 70% or more, adding a diene-based monomer to prepare a third shell layer; And 5) when the polymerization conversion rate of step 4) is 70% or more, preparing an outermost shell layer by further adding a diene-based monomer.
  • the diene monomer of the present description means, for example, a conjugated diene monomer.
  • the diene-based monomer of the present disclosure means the remaining monomers except for the diene monomer, for example, may be a remaining monomer other than the conjugated diene monomer, another example is a vinyl aromatic monomer, vinyl cyan monomer, acrylate monomer, etc. Can be.
  • the step of preparing the shell layer by the input of the diene-based monomer is characterized in that for example using a hydrophobic hydroperoxide-based initiator.
  • the step of preparing the shell layer by the input of the diene-based monomer is, for example, before the monomer is added, at least one redox catalyst selected from the group consisting of ferrous sulfate, dextrose, sodium pyrrole phosphate and sodium sulfite. It is characterized by.
  • the present invention also provides an ABS resin prepared by graft polymerization of the rubbery polymer, the vinyl aromatic monomer and the vinyl cyan monomer.
  • the present invention also provides an ABS resin composition comprising the ABS resin and the matrix resin.
  • the matrix resin may be at least one selected from the group consisting of SAN resin, MS resin, PC resin, PBT resin, PVC resin, and the like, for example.
  • the configuration of the rubber latex and its manufacturing method is as follows.
  • the steps presented in the present invention correspond to the nominally presented steps, and there is no need to clearly perform the polymerization by dividing the steps clearly, and it is possible to proceed with the polymerization through a continuous polymerization step.
  • the rubbery polymer is laminated in a multilayer structure having a range of refractive index differences.
  • the present invention has been completed.
  • the rubbery polymer according to the present invention includes, for example, a diene rubbery polymer core having an average particle diameter of 1500 to 2000 mm 3; And a shell having a multi-layered structure formed by alternately stacking 5 to 10% by weight of an aromatic or non-aromatic polymer having an unsaturated double bond and 10 to 20% by weight of a diene polymer on the core.
  • the weight percentages of the present disclosure are based on 100% by weight total of rubbery polymer.
  • the total amount of monomers constituting the rubbery polymer of the present disclosure means, for example, the total amount of monomers or the total amount of rubbery polymers introduced in the preparation of the rubbery polymer.
  • the diene rubber polymer core may be, for example, an average particle diameter of 1500 to 2000 mm 3.
  • the aromatic or non-aromatic polymer having an unsaturated double bond of the shell may be, for example, 10 to 20% by weight, or 15 to 25% by weight.
  • the diene polymer of the shell may be, for example, 20 to 30% by weight, or 30 to 40% by weight.
  • the shell of the multilayer structure may be, for example, two or more layers, and in another example, two to ten layers, or two to four layers.
  • the present invention is a method for producing a rubbery polymer, 40 to 70 parts by weight of a diene monomer is polymerized to produce a diene rubbery polymer core having an average particle diameter of 1500 to 2000 mm 3;
  • the shell layer (diene-based polymer layer) polymerized 5 to 10 parts by weight of an aromatic or non-aromatic monomer having an unsaturated double bond in the core and the shell layer (diene-based polymer layer) polymerized from 10 to 20 parts by weight of diene monomer
  • the primary shell may be prepared by adding 5 to 10 parts by weight of an aromatic or non-aromatic monomer having an unsaturated double bond in the core.
  • a secondary shell may be prepared by adding 10 to 20 parts by weight of the diene monomer.
  • a tertiary shell may be prepared by adding 5 to 10 parts by weight of an aromatic or non-aromatic monomer having an unsaturated double bond.
  • the polymerization conversion rate of the monomer introduced in the step of preparing the tertiary shell is 70% or more, 10 to 20 parts by weight of the diene monomer may be added to prepare a quaternary shell.
  • the rubbery polymers of the present disclosure can be obtained, for example, in latex form.
  • the latex for example, may have a solid content of 35 to 60% by weight.
  • the content of the diene monomer, the particle diameter of the diene rubbery polymer core, the content of the aromatic or non-aromatic polymer having an unsaturated double bond on the core and the content of the diene polymer on the core is the same as described above.
  • 0.1 to 1.5 parts by weight of an emulsifier, 0.01 to 2.0 parts by weight of a polymerization initiator, 0.01 to 0.4 parts by weight of a molecular weight regulator, and 0.1 to 2.0 parts by weight of an electrolyte are added in an amount of 40 to 70 parts by weight of a diene monomer.
  • the particle diameter of 1500 ⁇ 2000 ⁇ , polymerization conversion rate of 70% or more at the time of 5 to 10 parts by weight of the aromatic or non-aromatic monomer having an unsaturated double bond to form a primary shell the polymerization conversion rate of the introduced monomer is 70%
  • 10 to 20 parts by weight of diene monomer is further added to form a secondary shell.
  • 5 to 10 parts by weight of an aromatic or non-aromatic monomer having an unsaturated double bond is additionally added to form a tertiary shell.
  • the final polymer obtained at this time had a particle diameter of 3000 to 3300 mm 3, and the polymerization coagulated product to the polymer was less than 0.003% based on the total solid content.
  • the amount may be added, or 0.5 to 1.0 parts by weight of an emulsifier, 0.01 to 1.0 parts by weight of a polymerization initiator, 0.1 to 0.4 parts by weight of a molecular weight regulator, and 1.0 to 2.0 parts by weight of an electrolyte may be added.
  • the initial diene-based monomer input method is preferably prepared through a batch input method, and the subsequent manufacturing step of the shell is preferably added through a continuous input method.
  • diene monomer for example, monomers such as 1,3-butadiene, isoprene, 2-chloroprene, and the like may be used.
  • aromatic monomer having an unsaturated double bond for example, monomers such as styrene, alphamethyl styrene, chloro styrene, vinyl toluene and the like can be used.
  • Non-aromatic monomers are not particularly limited in use, but examples thereof include acrylic ester monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like; Vinyl cyan monomers such as acrylonitrile, methacrylonitrile, maleononitrile and the like; Unsaturated carboxylic acid monomers such as acrylic acid, maleic acid, methacrylic acid, itaconic acid, fumaric acid, and the like; And the like, specifically methyl acrylate, acrylonitrile or acrylic acid.
  • acrylic ester monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like
  • Vinyl cyan monomers such as acrylonitrile, methacrylonitrile, maleononitrile and the like
  • Unsaturated carboxylic acid monomers such as acrylic acid, maleic acid, methacryl
  • the acrylate monomers of the present disclosure may include, for example, (meth) acrylic acid ester monomers and unsaturated carboxylic acid monomers.
  • aromatic and non-aromatic monomers may be used alone or in combination of two kinds, and there is no restriction on use.
  • the rubbery polymer may have a difference in refractive index between the core and each shell layer of 0.02 or less, 0.001 to 0.02, or 0.01 to 0.02, and has excellent colorability within this range.
  • the rubbery polymer may have a difference in refractive index between the core and the entire shell layer of 0.02 or less, 0.001 to 0.02, or 0.01 to 0.02, and has excellent colorability within this range.
  • the refractive index of the core and the shell layer may be 1.518 to 1.590, or 1.518 to 1.560, respectively, there is an effect excellent in colorability within this range.
  • the refractive index of the present substrate may be calculated using an equation represented by the following Equation 1 as an example.
  • Refractive index (refraction index of component I) * (fraction of component I) + (refraction index of component j) * (fraction of component j)
  • the component may be, for example, a monomer.
  • the fraction of the component may be a ratio of the content of the corresponding component to the total content of all the components introduced.
  • the emulsifiers that can be used in this manufacturing step are not particularly limited and can be used emulsifiers having sulphonate terminal groups or emulsifiers having carboxylic acid terminal groups, and nonionic emulsifiers or reactive emulsifiers can be used alone or in combination. It can also be used.
  • the aromatic or non-aromatic monomer having the unsaturated double bond is 70 to 95% of the polymerization conversion rate of the diene monomer, it may be continuously introduced.
  • the components consisting of 0.1 to 1.5 parts by weight of an emulsifier, 0.01 to 2.0 parts by weight of a polymerization initiator, and 0.1 to 10 parts by weight of ion-exchanged water may be added in a batch or continuously when the monomer is added in the form of an emulsion.
  • the polymerization initiator, emulsifier, and ion-exchanged water to be added may be separately added, but in order to alleviate the rapid reaction during the polymerization reaction and to secure polymerization stability, it is preferable that the polymerization initiator is prepared in the form of an emulsion mixed with these components and continuously added. .
  • 0.5 to 1.5 parts by weight of an emulsifier, 0.01 to 1.5 parts by weight of a polymerization initiator, and 0.5 to 10 parts by weight of ion-exchanged water may be added, or 0.5 to 1.0 parts by weight of an emulsifier, 0.01 to 1.0 parts by weight of a polymerization initiator, and ion exchange. 1 to 5 parts by weight of water may be added.
  • the parts by weight are based on a total of 100 parts by weight of the monomers used in the preparation of the rubbery polymer.
  • Polymerization initiators that can be used in the present reaction include, for example, persulfate-based initiators having strong hydrophilic properties, such as pyrolysis initiators such as potassium persulfate, ammonium persulfate, and sodium persulfate.
  • Hydroperoxide-based initiators such as hydroperoxide, cumene hydroperoxide, tertiary butyl hydroperoxide and the like are used with commonly applicable redox catalysts such as ferrous sulfate, dextrose, sodium pyrrole phosphate, sodium sulfite, etc.
  • an initiator having strong hydrophilic property it is preferable to apply an initiator having strong hydrophilic property, and in the step of applying an aromatic or non-aromatic monomer having an unsaturated double bond, the hydrophobic initiator alone or With the redox catalyst To be preferred.
  • hydrophobic hydroperoxide system selected from the group consisting of diisopropyl benzene hydroperoxide, cumene hydro peroxide and tertiary butyl hydro peroxide
  • a hydrophilic initiator selected from the group consisting of potassium persulfate, ammonium persulfate and sodium persulfate may be used.
  • one or more redox catalysts selected from the group consisting of ferrous sulfate, dextrose, sodium pyrrole phosphate and sodium sulfite may be polymerized by batch feeding prior to the continuous monomer injection.
  • KCl KCl, CHCO 3 , Na 2 CO 3 , NaHSO 4, etc.
  • KCl CHCO 3 , Na 2 CO 3 , NaHSO 4, etc.
  • KCl CHCO 3 , Na 2 CO 3 , NaHSO 4, etc.
  • KCl CHCO 3 , Na 2 CO 3 , NaHSO 4, etc.
  • the molecular weight modifier examples include, for example, mercaptans such as n-dodecyl mercaptan, n-decyl mercaptan and t-dodecyl mercaptan, and common emulsion polymers such as alpha methyl styrene dimer. It is possible to use a molecular weight modifier, the amount is preferably applied to 0.1 to 0.4 parts by weight based on 100 parts by weight of the total monomer. When the molecular weight regulator is less than 0.1 part by weight, the polymerization rate decreases and the crosslinking degree of the rubbery polymer may increase, which may cause a decrease in impact strength as an impact resistant material. There is a possibility of uncomfortable odor and gas due to productivity decrease and residual molecular weight regulator.
  • mercaptans such as n-dodecyl mercaptan, n-decyl mercaptan and t-dodecyl mercaptan
  • the rubber-enhanced graft copolymer is prepared in detail through the emulsion polymerization method for the rubbery polymer prepared by the same method as described above.
  • the graft copolymer of the present invention comprises at least 30 to 50 wt% of at least one selected from the group consisting of vinyl aromatic monomers, vinyl cyanic monomers, and (methyl) acrylic acid ester monomers, relative to 50 to 70 wt% of the rubbery polymer.
  • the monomer is prepared by the method of emulsion polymerization.
  • the vinyl cyan monomer and / or (meth) acrylic acid ester monomer may be used in an amount of 10 to 40% by weight based on 100% by weight of the monomer (excluding the content of the rubber polymer).
  • the vinyl aromatic monomer that can be used may be, for example, styrene or styrene derivative, and in another example, styrene, ⁇ -methylstyrene, o-methylstyrene, o-ethylstyrene, p-ethylstyrene, or vinyl toluene.
  • the vinyl cyan monomer may be, for example, a monomer such as acrylonitrile, methacrylonitrile, or the like.
  • the methacrylic acid ester monomer may be, for example, methyl methacrylate or ethyl methacrylate.
  • the acrylic ester monomer for example, a monomer such as methyl acrylate, ethyl acrylate or butyl acrylate may be used.
  • the method is not particularly limited, but, for example, the monomers 30 to 50 to form the graft copolymer with respect to 50 to 70% by weight of the rubbery polymer
  • the weight percent is administered together with the emulsifier, the molecular weight modifier, the graft adjuvant, and the initiator, and the reaction is continued until the reaction conversion rate is 98-99%.
  • the emulsifiers that can be used herein include, for example, carboxyl salt type adsorption type emulsifiers such as potassium rosin and potassium fatty acids, and sulfonate type adsorption type emulsifiers such as sodium lauryl sulfate, alkyl benzene sulfonates, or reactive emulsifiers. It is possible to be used alone or in combination.
  • a molecular weight regulator such as n-dodecyl mercaptan, n-decyl mercaptan, t-dodecyl mercaptan and alpha methyl styrene dimer may be used. It is preferable to apply 0.2 to 1.0 parts by weight of tertiary dodecyl mercaptan. The weight part at this time is based on 100 weight part of the sum total of a rubbery polymer and a monomer.
  • the initiator may be used in an amount of 0.01 to 1 parts by weight, and the initiator which can be used is not particularly limited but includes, for example, peroxide initiators such as tertiary butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzenehydro peroxide, and the like.
  • peroxide initiators such as tertiary butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzenehydro peroxide, and the like.
  • the use of a redox catalyst together may be advantageous in terms of securing impact resistance and latex stability during graft copolymerization.
  • the addition of monomers may be performed by directly adding each monomer to a reactor, adding a monomer mixture, and adding a monomer emulsion prepared by mixing an emulsifier, water, and an initiator.
  • the initial reaction of 0 to 20% by weight, or 1 to 20% by weight of the monomer based on the total 100% by weight of the monomer is added in a batch input method, the remaining monomers in a continuous input method It is possible to be committed.
  • the graft copolymer is added with an antioxidant and a heat stabilizer, and then aggregated through an acid such as sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, or a metal salt such as calcium chloride, magnesium sulfate, aluminum sulfate, etc., to separate solids. It may be made into a powder form by washing, dehydrating and drying it, and this powder form graft copolymer may be used in combination with a thermoplastic resin copolymer generally made by solution polymerization.
  • an acid such as sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, or a metal salt such as calcium chloride, magnesium sulfate, aluminum sulfate, etc.
  • the graft copolymer prepared by the above method is usually melted and mixed with a thermoplastic resin through an extrusion process to be processed into pellets to form a final rubber-reinforced thermoplastic resin.
  • Resins such as acrylonitrile-styrene copolymer (SAN), acrylonitrile-styrene-methylmethacrylate (MS resin), polycarbonate (PC), polybutylene terephthalate (PBT), polyvinyl chloride (PVC) It may be present, and the resin used is not particularly limited and may be freely used when impact resistance is required.
  • these graft copolymers may be used with additives for lubricants, heat stabilizers, and other processing in the process of melt molding through thermoplastic resin (B) and extrusion and injection processes. There is no big limit.
  • the rubber-reinforced thermoplastic resin composition prepared by the above method has excellent colorability without deteriorating impact resistance, unlike the conventional manufacturing method.
  • ion-exchanged water 50 parts by weight of ion-exchanged water was added to a nitrogen-substituted pressurized reactor, and then 0.5 parts by weight of potassium rosin, 40 parts by weight of 1,3-butadiene, 0.3 part by weight of tertiary dodecyl mercaptan, 1.0 part by weight of potassium carbonate, and potassium per 0.1 parts by weight of sulfate was added at room temperature, stirred for 1 hour, the reaction temperature was raised to 70 ° C. to continue the reaction for 5 hours, and the reaction polymerization conversion rate reached 90% and the particle size of 2000 0.00 0.0005 weight of ferrous sulfide.
  • oxidation-reduction solution A a solution consisting of 0.05 parts by weight of dextrose, 0.04 parts by weight of sodium pyrophosphate and 2 parts by weight of ion-exchanged water (oxidation-reduction solution A) was added through a batch addition method, and 10 parts by weight of styrene monomer was 0.5 parts by weight of potassium rosinate. , 0.2 parts by weight of tertiary butyl hydroperoxide and 5 parts by weight of ion-exchanged water were added to the reactor continuously over 2 hours with an emulsion (initiator emulsion B).
  • ion-exchanged water 50 parts by weight of ion-exchanged water was added to a nitrogen-substituted pressurized reactor, and then 0.5 parts by weight of potassium rosin, 40 parts by weight of 1,3-butadiene, 0.3 part by weight of tertiary dodecyl mercaptan, 1.0 part by weight of potassium carbonate, and potassium per 0.1 parts by weight of sulfate was added at room temperature, stirred for 1 hour, the reaction temperature was raised to 70 ° C. to continue the reaction for 5 hours, and the reaction polymerization conversion rate reached 90% and the particle size of 2000 0.00 0.0005 weight of ferrous sulfide.
  • oxidation-reduction solution A a solution consisting of 0.05 parts by weight of dextrose, 0.04 parts by weight of sodium pyrophosphate and 2 parts by weight of ion-exchanged water
  • oxidation-reduction solution A a solution consisting of 0.05 parts by weight of dextrose, 0.04 parts by weight of sodium pyrophosphate and 2 parts by weight of ion-exchanged water
  • emulsion B emulsion consisting of 0.5 parts by weight of potassium rosinate, 0.2 parts by weight of tertiary butyl hydroperoxide, and 5 parts by weight of ion-exchanged water. I was.
  • ion-exchanged water 50 parts by weight of ion-exchanged water was added to a nitrogen-substituted pressurized reactor, followed by 1.5 parts by weight of potassium rosinate, 80 parts by weight of 1,3-butadiene, 20 parts by weight of styrene, 0.3 parts by weight of tertiary dodecyl mercaptan, and 1.0 of potassium carbonate.
  • Parts by weight, 0.1 parts by weight of potassium persulfate was added at room temperature, stirred for 1 hour, and then the reaction temperature was raised to 70 ° C. to continue the reaction for 5 hours, with 0.5 parts by weight of potassium rosinate and 0.2 parts by weight of potassium persulfate.
  • the additional reaction was continued for 8 hours after the dosing by the batch dosing method. Then, when the polymerization reaction rate reached 80%, the reaction temperature was raised to 80 ° C., 0.5 parts by weight of potassium rosinate and 0.2 parts by weight of potassium persulfate were further added, and the reaction was further proceeded for 8 hours to terminate the reaction. In this case, the polymerization conversion rate was 94%, the particle diameter was 3000 kPa, and the detailed physical properties are shown in Table 1.
  • an emulsion comprising 0.3 parts by weight of alkenyl potassium succinate, 21.6 parts by weight of styrene, 8.4 parts by weight of acrylonitrile, 0.4 parts by weight of tertiary dodecyl mercaptan, 0.1 parts by weight of diisopropyl benzene peroxide, and 20 parts by weight of ion-exchanged water Continuously administered to the reactor for 1 hour.
  • the rubbery polymers, graft copolymers and rubber-reinforced thermoplastic resin compositions prepared according to Examples 1 to 2 and Comparative Examples 1 to 2 are measured by the following methods, and are shown in Table 1 below. .
  • Average particle size The average particle diameter (Nicomp average particle diameter) was measured using a Nicomp instrument.
  • Polymerized coagulated product The latex prepared by emulsion polymerization method is filtered through a 100 mesh wire mesh filter, and the polymer filtered on the wire mesh is dried in a 100 ° C. hot air dryer for 1 hour, and then the theoretical total amount of monomers and additives (emulsifiers, etc.) added to the total is added. It is expressed as a ratio.
  • Refractive index The refractive index of the monomer was measured using an ABBE refractor, and the refractive index of each core and cell was calculated by adding up the product of each monomer fraction with respect to the refractive index of each monomer.
  • Izod impact strength measured in accordance with ASTM D256 method with a 1/4 "thickness of the specimen, the unit is kg ⁇ cm / cm.
  • Colorability Re-extruded by adding a colorant (RED COLOR: RD-31) to the pellet obtained in the extruder, and the obtained sample was measured by COLOR COMPUTER (SUGA) to obtain the L value and a value.
  • RED COLOR when the L value is low and the a value is high, the colorability is judged to be good.
  • Fluidity measured by ASTM D1238 under the condition of 220 ° C. and 10 kg.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Rubbery polymer core Furtherance BD BD BD BD / ST Parts by weight 40 40 100 80/20 Shell Furtherance ST * / BD * / ST / BD SAN * / BD / SAN / BD - - Parts by weight 10/20/10/20 10/20/10/20 93 94 Polymerization Conversion Rate (%) 95 94 93 94 Particle diameter 3200 3100 3100 3000 Rubber reinforced thermoplastic resin composition Impact Strength (1/4 ”) 32 31 30 24 liquidity 21 21 20 22 Glossy (45 degrees) 102 100 100 98 The tensile strength 475 480 470 490 Colorability (L) 31.5 30.2 32.5 32.4 Colorability (a) 46.5 46.2 45.0 45.5
  • the rubber-reinforced thermoplastic resin compositions prepared from the rubbery latexes of Examples 1 to 2 of the present invention have a higher impact strength and colorability than those of the rubber-reinforced thermoplastic resin compositions prepared from the rubbery latexes of Comparative Examples 1 and 2 (Examples 1 and 2). From the low L value and the high a value) and the physical property balance, it was confirmed that it was very excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 디엔계 고무질 중합체 코어와 상기 코어 상에 불포화 이중결합을 가지고 있는 방향족 또는 비방향족 중합체 및 디엔계 중합체가 교차적으로 적층하여 형성된 다층구조의 쉘을 포함하여 이루어지는 것을 특징으로 하는 고무질 라텍스를 이용하여 유화중합 방법을 통해 제조되는 고무 강화 그라프트 공중합체를 제조함으로써 내충격성 및 착색성이 우수한 제품을 구현할 수 있는 고무질 라텍스 및 그 제조방법에 관한 것이다.

Description

고무질 중합체 및 그 제조방법
본 발명은 고무질 중합체 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 코어-쉘 구조로서, 코어와 1 이상의 쉘층으로 구성되고, 최외각의 쉘층은 디엔계 중합체층인 것을 특징으로 하는, 내충격성 및 착색성이 우수한 제품을 구현할 수 있는 고무질 중합체 및 그 제조방법에 관한 것이다.
일반적으로 고무강화 그라프트 공중합체, 특히 유화중합의 방법을 통해 제조되는 고무강화 그라프트 공중합체의 경우 ABS, MBS, ASA, ATM 등이 대표적인 것으로, 이들은 통상 유화중합의 방법을 통해 제조된 고무질 중합체 코어에 매트릭스상의 분산성을 고려한 다양한 모노머를 외각 쉘에 그라프트 공중합시키는 방법을 통해 제조되는 것으로 특히 ABS의 경우, 폴리 부타디엔 라텍스를 코어로 PSAN(스티렌-아크릴로니트릴 공중합체)을 외각 쉘에 그라프트 공중합시키는 방법을 통해 제조된다. 특히 이들 중 ABS 제품은 우수한 내충격성과 광택성, 착색성과 같은 외관특성을 가지는 제품으로 다양한 색상이나 광택이 요구되는 전자 제품이나 자동차 내외장재 및 장난감과 같은 소재에 널리 사용이 되고 있다.
이에 많은 연구자들은 ABS 제품의 내충격성, 착색성 및 광택과 같은 물성의 향상을 위해 많은 노력을 가하고 있는데, 이들 중 대부분은 고무입자의 크기나 분포를 조절한다든지 그라프트율을 조절하기 위해 다양한 개시제나 중합방법을 적용하는 방법들을 통해 내충격성이나 광택 등을 개선하는데 초점이 맞춰진 것으로 착색성의 개선을 위한 연구는 미미한 것이 현실이다. 물론 일부에 있어서는 착색성 개선을 위해 그라프트 효율의 향상을 통한 고무입자의 분산성을 향상시키는 방법 외에 고무입자 내부에 굴절률을 조절하기 위한 이종의 다른 모노머를 도입하는 방법을 취하고는 있으나 이는 대부분 단순한 코어-쉘 구조를 형성한다든지 별도의 코어-쉘 구조 없이 디엔계 단량체와 방향족 단량체를 공중합시키는 방법을 제시하는 것으로 이러한 방법을 적용할 경우 부분적으로 착색성이 개선되는 결과를 얻을 수는 있으나 도입되는 이종의 다른 모노머의 도입에 따른 내충격성의 저하를 극복하는 데는 많은 어려움이 있는 것이 현실이다.
상기와 같은 종래기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 고무질 라텍스의 제조에 있어 내충격성 및 착색성을 동시에 개선할 수 있는 방법을 제시하고자 하는 것으로서 좀 더 구체적으로는 고무강화 그라프트 공중합체의 제조시 코어로 사용되는 고무질 라텍스의 제조에 있어 다층구조의 고무질 중합체를 제조함으로써 이를 해결하고자 한다.
본 발명의 상기 목적은 하기 설명되는 본 발명에 의하여 모두 달성 될 수 있다.
상기 목적을 달성하기 위하여 본 발명은 코어-쉘 구조로서, 코어와 1 이상의 쉘층으로 구성되고, 최외각의 쉘층은 디엔계 중합체층인 것을 특징으로 하는 고무질 중합체를 제공한다.
상기 쉘층은 일례로 총 2 내지 10 층인 것을 특징으로 한다.
상기 코어는 일례로 평균입경이 1000 내지 2000 Å인 것을 특징으로 한다.
상기 코어는 일례로 디엔계 단량체; 또는 디엔계 단량체와 비닐방향족 단량체, 비닐시안계 단량체 및 아크릴레이트계 단량체로 이루어진 군으로부터 선택된 1종 이상;을 포함하여 중합된 것임을 특징으로 한다.
상기 코어와 각각의 쉘층은 일례로 굴절율 차이가 0.02 이하, 0.001 내지 0.02, 혹은 0.01 내지 0.02인 것을 특징으로 한다.
또 다른 일례로, 상기 코어와 쉘층 전체의 굴절율의 차이는 0.02 이하, 0.001 내지 0.02, 혹은 0.01 내지 0.02일 수 있고, 이 범위 내에서 착색성이 우수한 효과가 있다.
상기 쉘층은 일례로 비디엔계 중합체층과 디엔계 중합체층으로 이루어지는 것을 특징으로 한다.
상기 비디엔계 중합체층은 일례로 고무질 중합체 총 100 중량%를 기준으로 한층 당 5 내지 15 중량%, 혹은 5 내지 10 중량%인 것을 특징으로 한다.
상기 디엔계 중합체층은 일례로 고무질 중합체 총 100 중량%를 기준으로 한층 당 15 내지 25 중량%, 혹은 15 내지 20 중량%인 것을 특징으로 한다.
상기 쉘층은 일례로 비디엔계 중합체층과 디엔계 중합체층이 교대로 적층된 것을 특징으로 한다.
상기 고무질 중합체는 일례로 코어 40 내지 70 중량% 및 쉘층 30 내지 60 중량%로 이루어진 것을 특징으로 한다.
상기 코어는 일례로 고무질 중합체 총 100 중량%에 대하여 디엔계 단량체 30 내지 50 중량% 및 비닐 방향족 단량체 10 내지 20 중량%를 포함하여 이루어진 것을 특징으로 한다.
상기 쉘층은 고무질 중합체 일례로 총 100 중량%에 대하여 비디엔계 단량체 10/N1 내지 20/N1 중량%(N1은 비디엔계 중합체층의 갯수이다)를 포함하여 이루어진 것을 특징으로 한다.
또한, 상기 쉘층은 일례로 고무질 중합체 총 100 중량%에 대하여 디엔계 단량체 20/N2 내지 40/N2 중량%(N2는 디엔계 중합체층의 갯수이다)를 포함하여 이루어진 것을 특징으로 한다.
상기 고무질 중합체는 일례로 평균입경이 3000 내지 3300 Å인 것을 특징으로 한다.
또한, 본 발명은 a) 코어 중합체 또는 코어-쉘 공중합체를 중합하는 단계; 및 b) 상기 코어 중합체 또는 코어-쉘 공중합체 존재 하에서 디엔계 단량체를 중합시켜 최외각 쉘층을 형성시키는 단계;를 포함하는 것을 특징으로 하는 고무질 중합체의 제조방법을 제공한다.
상기 고무질 중합체의 제조방법은 일례로 a) 단계의 중합전환율이 70 % 이상일 때, b) 단계의 디엔계 단량체를 투입하여 중합시키는 것을 특징으로 한다.
상기 a) 단계의 중합전환율은 일례로 70 내지 95 %인 것을 특징으로 한다.
상기 b) 단계는 일례로 친수성 개시제 또는 친유성 개시제를 사용하는 것을 특징으로 한다.
상기 친수성 또는 친유성 개시제는 일례로 레독스 촉매(redox catalyst)와 함께 사용될 수 있다.
상기 고무질 중합체의 제조방법은 일례로 1) 코어 중합체를 제조하는 단계; 2) 1) 단계의 중합전환율이 70 % 이상일 때, 상기 코어 중합체에 비디엔계 단량체를 투입하여 1차 쉘층을 제조하는 단계; 및 3) 2) 단계의 중합전환율이 70 % 이상일 때, 디엔계 단량체를 투입하여 최외각 쉘층을 제조하는 단계;를 포함하는 것을 특징으로 한다.
또 다른 일례로, 상기 고무질 중합체의 제조방법은 1) 코어 중합체를 제조하는 단계; 2) 1) 단계의 중합전환율이 70 % 이상일 때, 상기 코어 중합체에 비디엔계 단량체를 투입하여 1차 쉘층을 제조하는 단계; 3) 2) 단계의 중합전환율이 70 % 이상일 때, 디엔계 단량체를 투입하여 2차 쉘층을 제조하는 단계; 4) 3) 단계의 중합전환율이 70 % 이상일 때, 비디엔계 단량체를 추가 투입하여 3차 쉘층을 제조하는 단계; 및 5) 4) 단계의 중합전환율이 70 % 이상일 때, 디엔계 단량체를 추가 투입하여 최외각 쉘층을 제조하는 단계;를 포함하는 것을 특징으로 한다.
본 기재의 디엔계 단량체는 일례로 공액 디엔 단량체를 의미한다.
또한, 본 기재의 비디엔계 단량체는 디엔계 단량체를 제외한 나머지 단량체를 의미하고, 일례로 공액 디엔 단량체 이외의 나머지 단량체일 수 있으며, 또 다른 예로 비닐 방향족 단량체, 비닐시안 단량체, 아크릴레이트계 단량체 등일 수 있다.
상기 비디엔계 단량체를 투입하여 쉘층을 제조하는 단계는 일례로 소수성 하이드로 퍼옥사이드계 개시제를 사용하는 것을 특징으로 한다.
상기 비디엔계 단량체를 투입하여 쉘층을 제조하는 단계는 일례로 단량체 투입 전에, 황산 제1철, 덱스트로즈, 피롤인산나트륨 및 아황산나트륨으로 이루어진 군으로부터 선택되는 1종 이상의 산화 환원 촉매를 투입하는 것을 특징으로 한다.
또한, 본 발명은 상기 고무질 중합체, 비닐 방향족 단량체 및 비닐시안계 단량체를 그라프트 중합시켜 제조된 ABS 수지를 제공한다.
또한, 본 발명은 상기 ABS 수지 및 매트릭스 수지를 포함하는 ABS 수지 조성물을 제공한다.
상기 매트릭스 수지는 일례로 SAN 수지, MS 수지, PC 수지, PBT 수지 및 PVC 수지 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기에서 살펴본 바와 같이, 본 발명에 따른 다층 구조의 고무질 중합체를 제조하여 고무질 그라프트 공중합체에 적용할 경우, 기존의 디엔계 단량체 단독 내지 방향족 단량체와 공중합체를 적용한 경우 대비 내충격성의 저하 없이 착색성 및 광택성이 우수한 제품을 구현할 수 있음을 확인할 수 있다.
고무질 라텍스 및 이의 제조방법에 대한 구성은 다음과 같다.
본 발명에서 제시하는 단계는 명목상으로 제시된 단계에 해당할 뿐 명확히 단계를 구분하여 중합을 실시할 필요는 없으며 연속적인 중합 단계를 통해 중합을 진행하는 것이 가능하다.
이에 본 발명에서는 ABS 본연의 특성인 내충격성의 손실 없이 우수한 착색성 확보가 가능한 기술을 확보하기 위해 많은 연구를 거듭한 결과, 고무질 중합체의 제조에 있어 고무질 중합체를 일정 범위의 굴절률 차이를 가지는 다층 구조로 적층하는 방식을 취할 경우 내충격성이 저하 없이 우수한 착색성을 구현할 수 있음을 발견하고, 이를 토대로 본 발명을 완성하였다.
본 발명의 구성을 좀더 상세히 설명하면 다음과 같다.
A) 고무질 중합체 및 이의 제조
본 발명이 제시하는 다층 구조의 고무질 중합체의 구성 및 제조 방법을 설명하면 다음과 같다.
본 발명에 의한 고무질 중합체는 일례로 평균입경이 1500 내지 2000 Å인 디엔계 고무질 중합체 코어; 및 상기 코어 상에 불포화 이중결합을 가지고 있는 방향족 또는 비방향족 중합체 5 내지 10 중량%와 디엔계 중합체 10 내지 20 중량%가 교차적으로 적층하여 형성된 다층구조의 쉘;을 포함하여 이루어진다.
본 기재의 중량%는 고무질 중합체 총 100 중량%를 기준으로 한다.
본 기재의 고무질 중합체를 구성하는 단량체 총량은 일례로 고무질 중합체의 제조 시 투입된 단량체의 총량 또는 고무질 중합체의 총량을 의미한다.
상기 디엔계 고무질 중합체 코어는 일례로 평균입경 1500 내지 2000 Å일 수 있다.
상기 쉘의 불포화 이중결합을 가지고 있는 방향족 또는 비방향족 중합체는 일례로 10 내지 20 중량%, 혹은 15 내지 25 중량%일 수 있다.
상기 쉘의 디엔계 중합체는 일례로 20 내지 30 중량%, 혹은 30 내지 40 중량%일 수 있다.
상기 다층구조의 쉘은 일례로 2층 이상일 수 있으며, 또 다른 예로 2 내지 10층, 혹은 2 내지 4층일 수 있다.
또 다른 예로, 상기 다층구조의 쉘은 2n개(n= 1~5 또는 1~2)의 층일 수 있다.
또한, 본 발명은 고무질 중합체의 제조방법에 있어서, 디엔계 단량체 40 내지 70 중량부를 중합하여 평균입경 1500 내지 2000 Å인 디엔계 고무질 중합체 코어를 제조하고; 상기 코어에 불포화 이중결합을 가지고 있는 방향족 또는 비방향족 단량체 5 내지 10 중량부를 중합한 쉘층(비디엔계 중합체층)과 디엔계 단량체 10 내지 20 중량부를 중합한 쉘층(디엔계 중합체층)을 교차적으로 적층하여 다층구조의 쉘을 제조하는 것을 특징으로 하는 고무질 중합체의 제조방법을 제공한다.
본 발명의 일 실시예는 디엔계 단량체 40 내지 70 중량부를 중합하여 평균입경 1500 내지 2000 Å인 디엔계 고무질 중합체 코어를 제조하는 단계; 중합전환율이 70% 이상일 때, 상기 코어에 불포화 이중결합을 가지고 있는 방향족 또는 비방향족 단량체 5 내지 10 중량부를 투입하여 1차 쉘을 제조하는 단계; 투입된 단량체의 중합전환율이 70% 이상일 때, 디엔계 단량체 10 내지 20 중량부를 투입하여 2차 쉘을 제조하는 단계; 및 중합전환율이 70% 이상일 때, 불포화 이중결합을 가지고 있는 방향족 또는 비방향족 단량체 5 내지 10 중량부를 추가 투입하여 3차 쉘을 제조하는 단계;를 포함하는 것을 특징으로 하는 고무질 라텍스의 제조방법을 제공한다.
중합전환율이 일례로 75 내지 95% 혹은 80 내지 95%일 때 상기 코어에 불포화 이중결합을 가지고 있는 방향족 또는 비방향족 단량체 5 내지 10 중량부를 투입하여 1차 쉘을 제조할 수 있다.
그리고 투입된 단량체의 중합전환율이 일례로 75 내지 95% 혹은 75 내지 90%일 때 디엔계 단량체 10 내지 20 중량부를 투입하여 2차 쉘을 제조할 수 있다.
또한, 중합전환율이 75 내지 95% 혹은 80 내지 95%일 때, 불포화 이중결합을 가지고 있는 방향족 또는 비방향족 단량체 5 내지 10 중량부를 추가 투입하여 3차 쉘을 제조할 수 있다.
상기 3차 쉘을 제조하는 단계에서 투입된 단량체의 중합전환율이 70% 이상일 때 디엔계 단량체 10 내지 20 중량부를 추가 투입하여 4차 쉘을 제조할 수 있다.
본 기재의 고무질 중합체는 일례로 라텍스 형태로 수득될 수 있다.
상기 라텍스는 일례로 고형분 함량이 35 내지 60 중량%일 수 있다.
상기 디엔계 단량체의 함량, 상기 디엔계 고무질 중합체 코어의 입자경, 상기 코어 상에서 불포화 이중결합을 가지고 있는 방향족 또는 비방향족 중합체의 함량 및 상기 코어 상의 디엔계 중합체의 함량은 상기에서 개시된 내용과 동일하다.
본 발명의 또 다른 일 실시예는 디엔계 단량체 40 내지 70 중량부에 대하여 유화제 0.1 내지 1.5 중량부, 중합개시제 0.01 내지 2.0 중량부, 분자량 조절제 0.01 내지 0.4 중량부, 전해질 0.1 내지 2.0 중량부를 일괄 투입 방법에 의해 투입하고 입자경 1500~2000 Å, 중합전환율 70% 이상 시점에 불포화 이중결합을 가진 방향족 또는 비방향족 단량체 5 내지 10 중량부를 투입하여 1차 쉘을 형성한 뒤 투입된 단량체의 중합전환율이 70% 이상 수준에 도달하였을 때 10 내지 20 중량부의 디엔계 단량체를 추가 투입하여 2차 쉘을 형성한다. 이어 중합전환율 70% 이상 수준에 도달하였을 때 불포화 이중결합을 가진 방향족 또는 비방향족 단량체 5 내지 10 중량부를 추가적으로 투입하여 3차 쉘을 형성한 뒤 중합전환율 70% 이상 지점에 마지막으로 디엔계 단량체 10 내지 20 중량부를 투입하여 반응전환율 90~95 %에 도달할 때까지 반응을 지속한다. 이 때 얻어진 최종적인 중합물을 입자경은 3000~3300 Å으로 중합물에 대한 중합 응고물은 전체 투입 고형분 함량 기준 0.003% 미만이다.
상기에서 일례로 디엔계 단량체과 함께, 고무질 중합체를 구성하는 단량체 총 100 중량부를 기준으로, 유화제 0.5 내지 1.5 중량부, 중합개시제 0.01 내지 1.5 중량부, 분자량 조절제 0.05 내지 0.4 중량부, 전해질 0.5 내지 2.0 중량부를 투입할 수 있거나, 혹은 유화제 0.5 내지 1.0 중량부, 중합개시제 0.01 내지 1.0 중량부, 분자량 조절제 0.1 내지 0.4 중량부, 전해질 1.0 내지 2.0 중량부를 투입할 수 있다.
이 때 초기 디엔계 단량체의 투입 방법은 일괄 투입 방법을 통해 제조하는 것이 바람직하며 이후 진행되는 쉘의 제조단계는 연속적인 투입 방법을 통해 투입되는 것이 바람직하다. 또한 각 단계별로 중합 안정성 및 중합 전환율의 추가적인 향상을 위해 유화제 0.1 내지 0.5 중량부 및 중합 개시제 0.01 내지 0.05 중량부, 이온교환수가 1 내지 5 중량부를 일괄 또는 연속 투입을 통해 투입하는 것이 가능하다.
이 때 사용이 가능한 디엔계 단량체로는 일례로 1,3-부타디엔, 이소프렌, 2-클로로프렌 등과 같은 단량체의 사용이 가능하다.
불포화 이중결합을 가진 방향족 단량체(비닐 방향족 단량체)로는 일례로 스티렌, 알파메틸 스티렌, 클로로 스티렌, 비닐 톨루엔 등과 같은 단량체가 사용가능하다.
비방향족 단량체로는 사용상에 큰 제약은 없으나 일례로 메틸 아크릴레이트, 에틸 아크릴레이트, 부틸 아크릴레이트, 2-에틸헥실 아크릴레이트 등과 같은 아크릴산 에스테르계 단량체; 아크릴로니트릴, 메타 아크릴로니트릴, 말레노니트릴 등과 같은 비닐시안계 단량체; 및 아크릴산, 말레이산, 메타크릴산, 이타콘산, 퓨마릭산 등과 같은 불포화 카르본산계 단량체; 등일 수 있으며, 구체적으로는 메틸 아크릴레이트, 아크릴로니트릴 또는 아크릴산 등이 있다.
본 기재의 아크릴레이트계 단량체는 일례로 (메트)아크릴산 에스테르계 단량체 및 불포화 카르본산계 단량체 등을 포함할 수 있다.
이들 방향족 및 비방향족 단량체는 단독 또는 2종이 혼합되어 사용될 수 있는 것으로 사용상에 제약은 없다.
상기 고무질 중합체는 일례로 코어와 각각의 쉘층의 굴절율 차이가 0.02 이하, 0.001 내지 0.02, 또는 0.01 내지 0.02일 수 있고, 이 범위 내에서 착색성이 우수한 효과가 있다.
또 다른 일례로, 상기 고무질 중합체는 코어와 쉘층 전체의 굴절율의 차이가 0.02 이하, 0.001 내지 0.02, 또는 0.01 내지 0.02일 수 있고, 이 범위 내에서 착색성이 우수한 효과가 있다.
상기 코어와 쉘층의 굴절율은 각각 1.518 내지 1.590, 혹은 1.518 내지 1.560일 수 있고, 이 범위 내에서 착색성이 우수한 효과가 있다.
본 기재의 굴절율은 일례로 하기 수학식 1로 표시되는 식을 이용하여 계산될 있다.
[수학식 1]
굴절률 = (I 성분의 굴절률) * (I 성분의 분율) + (j 성분의 굴절률) * (j 성분의 분율)
상기 성분은 일례로 단량체일 수 있다.
상기 성분의 분율은 투입되는 모든 성분의 전체 함량에 대한 해당 성분의 함량 비율일 수 있다.
본 제조 단계에서 사용이 가능한 유화제는 크게 제약을 두지 않으며 일반적으로 사용되는 설포네이트 말단기를 가지는 유화제 내지 카르복실산 말단을 가지는 유화제의 사용이 가능하며, 비이온성 유화제 내지 반응형 유화제가 단독 또는 혼용되어 사용되는 것도 가능하다.
상기 불포화 이중결합을 가진 방향족 또는 비방향족 단량체를 디엔계 단량체의 중합전환율 70 내지 95%일 때, 연속투입할 수 있다.
추가적으로, 유화제 0.1 내지 1.5 중량부, 중합개시제 0.01 내지 2.0 중량부, 이온교환수 0.1 내지 10 중량부로 구성된 성분들을 유화액의 형태로 단량체 투입시 일괄 또는 연속 투입할 수 있다. 투입되는 중합 개시제 및 유화제, 이온교환수는 각각 별도로 투입되는 것도 무방하나 중합 반응 중의 급열 반응을 완화하며 중합 안정성을 확보하기 위해서는 이들 구성성분을 혼합한 유화액의 형태로 제조되어 연속 투입되는 것이 바람직하다.
상기에서 일례로 유화제 0.5 내지 1.5 중량부, 중합개시제 0.01 내지 1.5 중량부, 이온교환수 0.5 내지 10 중량부를 투입할 수 있거나, 혹은 유화제 0.5 내지 1.0 중량부, 중합개시제 0.01 내지 1.0 중량부, 이온교환수 1 내지 5 중량부를 투입할 수 있다.
상기 중량부는 고무질 중합체의 제조에 사용된 단량체 총 100 중량부를 기준으로 한다.
본 반응에서 사용이 가능한 중합 개시제로는 일례로 친수성 성질이 강한 퍼설페이트계 개시제, 예로 칼륨 퍼설페이트, 암모늄 퍼설페이트, 나트륨 퍼설페이트와 같은 열분해 개시제의 적용이 가능하며, 소수성 성질의 디이소프로필벤젠 하이드로퍼옥사이드, 큐멘 하이드로퍼옥사이드, 3급 부틸 하이드로 퍼옥사이드 등과 같은 하이드로 퍼옥사이드계 개시제가 황산 제1철, 덱스트로즈, 피롤인산나트륨, 아황산나트륨 등과 같은 통상적으로 적용 가능한 산화 환원 촉매와 같이 사용되는 것이 가능하나, 바람직하게는 시드 중합단계 및 디엔계 단량체의 경우 친수성 성질이 강한 개시제를 적용하는 것이 바람직하며, 불포화 이중결합을 가진 방향족 또는 비방향족 단량체를 적용하는 단계에 있어서는 소수성 개시제를 단독 또는 산화-환원 촉매와 같이 사용되는 것이 바람직하다.
상기 불포화 이중결합을 가진 방향족 또는 비방향족 단량체를 투입하는 단계에 있어서, 일례로 디이소프로필벤젠 하이드로퍼옥사이드, 큐멘 하이드로 퍼옥사이드 및 3급 부틸 하이드로 퍼옥사이드로 이루어진 군으로부터 선택되는 소수성 하이드로 퍼옥사이드계 개시제가 사용되고, 디엔계 단량체가 쉘 중합 단계에서 연속 투입되는 경우에는 칼륨 퍼설페이트, 암모늄 퍼설페이트 및 나트륨 퍼설페이트로 이루어진 군으로부터 1종 이상 선택되는 친수성 개시제가 사용될 수 있다.
상기 소수성 개시제를 적용함에 있어서 일례로 황산 제1철, 덱스트로즈, 피롤인산나트륨 및 아황산나트륨으로 이루어진 군으로부터 선택되는 1종 이상의 산화 환원 촉매를 단량체 연속 투입 이전에 일괄 투입하여 중합할 수 있다.
본 고무질 라텍스 제조에 있어 사용이 가능한 전해질로는 일례로 KCl, CHCO3, Na2CO3, NaHSO4 등이 단독 내지 2종 이상 혼용되어 0.1 내지 2 중량부로 사용되는 것이 가능하며, 바람직하게는 0.5 내지 1.5 중량부로 사용되는 것이 바람직하다.
본 중합에 사용이 가능한 분자량 조절제로는 일례로 n-도데실 멀캅탄, n-데실 멀캅탄, t-도데실 멀캅탄 등과 같은 멀캅탄류 및 알파 메틸 스티렌 다이머 등과 같은 통상의 유화중합에서 사용이 가능한 분자량 조절제의 사용이 가능하며, 사용량은 일례로 단량체 총 100 중량부에 대하여 0.1 내지 0.4 중량부 적용하는 것이 바람직하다. 분자량 조절제가 0.1 중량부 미만이 될 경우 중합 속도 저하 및 고무질 중합체의 가교도가 증가되어 내충격성 소재로서 충격강도 저하를 유발할 수 있고, 분자량 조절제가 0.4 중량부를 초과하여 사용될 경우 반응후기 중합 속도의 감소에 의한 생산성 저하 및 잔류되는 분자량 조절제로 인한 불편한 냄새 및 가스 발생 가능성이 있다.
B) 고무강화 그라프트 공중합체 제조
상기와 같은 A)와 같은 방법을 통해 제조된 고무질 중합체에 대하여 유화중합 방법을 통해 고무강화 그라프트 공중합체를 제조하는 것을 상세히 설명하면 다음과 같다.
본 발명의 그라프트 공중합체는 일례로 고무질 중합체 50 내지 70 중량%에 대하여, 비닐 방향족 단량체, 비닐시안계 단량체 및 (메틸)아크릴산 에스테르 단량체로 이루어진 군으로부터 선택된 1종 이상 30 내지 50 중량%로 구성된 단량체를 유화중합의 방법을 통해 제조하는 것이다.
상기 단량체 총 100 중량%(고무질 중합체의 함량은 제외)에 대하여 비닐 시안계 단량체 및/또는 (메타)아크릴산 에스테르 단량체는 일례로 10 내지 40 중량% 사용되는 것이 가능하다.
이 때 사용이 가능한 비닐 방향족 단량체는 일례로 스티렌 또는 스티렌 유도체일 수 있고, 또 다른 예로 스티렌, α-메틸스티렌, o-메틸스티렌, o-에틸스티렌, p-에틸스티렌 또는 비닐 톨루엔 등과 같은 것이 가능하며, 비닐 시안계 단량체로는 일례로 아크릴로니트릴, 메타크릴로니트릴 등과 같은 단량체의 이용이 가능하며, 메타크릴산 에스테르 단량체로는 일례로 메틸 메타아크릴레이트 또는 에틸 메타아크릴레이트 등이 가능하며, 아크릴산 에스테르 단량체로는 일례로 메틸 아크릴레이트, 에틸 아크릴레이트 또는 부틸 아크릴레이트 등과 같은 단량체의 이용이 가능하다.
본 발명의 그라프트 공중합체를 유화중합 방법을 통한 제조에 있어서는 그 방법에 있어 큰 제약을 두는 것은 아니지만, 일례로 고무질 중합체 50 내지 70 중량%에 대하여 그라프트 공중합체를 형성하고자 하는 단량체 30 내지 50 중량%를 유화제 및 분자량 조절제, 그라프트 보조제, 개시제와 함께 투여하고 반응전환율이 98~99 % 수준이 될 때까지 반응을 지속한 뒤 종료하는 것이다.
이때 여기에 사용이 가능한 유화제로는 일례로 로진산 칼륨 및 지방산 칼륨과 같은 카르복실 염 타입의 흡착형 유화제와 소디움 라우릴 설페이트, 알킬 벤젠 설포네이트 등과 같은 설포네이트계 흡착형 유화제, 또는 반응형 유화제가 단독 또는 혼합되어 사용되는 것이 가능하다.
그라프트 공중합체의 제조에 있어 분자량 조절제로는 일례로 n-도데실 멀캅탄, n-데실 멀캅탄, t-도데실 멀캅탄 및 알파 메틸 스티렌 다이머 등과 같은 분자량 조절제가 사용될 수 있으며, 구체적으로는 3급 도데실 머캅탄이 0.2 내지 1.0 중량부 적용하는 것이 좋다. 이 때의 중량부는 고무질 중합체와 단량체의 총합 100 중량부를 기준으로 한다.
개시제는 0.01 내지 1 중량부 사용이 가능한 것으로 이에 사용이 가능한 개시제는 특별히 제한을 두는 것은 아니지만 일례로 3급 부틸 하이드로 퍼옥사이드, 큐멘 하이드로 퍼옥사이드, 디이소 프로필벤젠하이드로 퍼옥사이드 등과 같은 퍼옥사이드 개시제와 산화 환원 촉매가 같이 사용되는 것이 그라프트 공중합시 내충격성과 라텍스 안정성 확보 차원에서 유리하다고 할 수 있다.
아울러, 본 그라프트 공중합체의 제조 시 단량체의 투입은 단량체 각각을 반응기에 직접 투입하는 방법 내지 단량체 혼합물을 투입하는 방법, 유화제 및 물, 개시제를 혼합하여 제조한 단량체 유화액을 투입하는 방법이 선택될 수 있으며, 단량체 투입시 선택적으로, 단량체 총 100 중량%를 기준으로 반응초기 0 내지 20 중량%, 혹은 1 내지 20 중량%의 단량체가 회분식 투입방식으로 투입이 되고, 나머지 단량체에 대해서는 연속 투입 방법으로 투입되는 것이 가능하다. 또한 전량 연속 투입하는 것 내지 회분식 투입방법을 3~4 차례 일정 간격을 두고 투입하는 것 역시 가능하다.
반응이 종료된 그라프트 공중합체는 산화 방지제 및 열안정제를 첨가한 뒤 황산, 염산, 인산, 초산 등과 같은 산, 또는 염화 칼슘, 황산 마그네슘, 황산 알루미늄 등과 같은 금속염을 통해 응집되어 고형분을 분리해 낼 수 있고, 이를 세척, 탈수, 건조하여 파우더 형태로 만들어 질 수 있으며, 이러한 파우더 형태의 그라프트 공중합체는 일반적으로 용액 중합으로 만들어진 열가소성 수지 공중합체와 혼합되어 사용될 수 있다.
C) 고무강화 열가소성 수지 조성물의 제조
위와 같은 방법을 통해 제조된 그라프트 공중합체는 통상적으로 열가소성 수지와 압출 과정을 통해 용융 및 혼합되어 펠렛의 형태로 가공되어 최종적인 고무강화 열가소성 수지로 제조되게 되는데, 이 때 사용되는 일반적인 열가소성 수지는 아크릴로니트릴-스티렌 공중합체(SAN), 아크릴로니트릴-스티렌-메틸메타크릴레이트(MS 수지), 폴리카보네이트(PC), 폴리부틸렌테레프탈레이트(PBT), 폴리염화비닐(PVC)와 같은 수지들이 있을 수 있으며, 사용되는 수지에 있어서는 크게 제한을 두지 않으며 내충격성이 요구되는 경우에 있어서는 자유롭게 사용이 가능하다.
아울러, 이들 그라프트 공중합체는 열가소성 수지(B)와 압출, 사출 과정을 통해 용융 성형되는 과정에 있어 활제, 열안정제 및 기타 다른 가공을 위한 첨가제가 첨가되어 사용되는 것이 가능하며, 이들 종류에 대해서는 크게 제한을 두지 않는다.
상기의 방법으로 제조된 고무강화 열가소성 수지 조성물은 기존 제조 방법과는 달리 내충격성의 저하 없이 착색성이 우수한 특성을 가진다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1: 고무질 라텍스의 제조(A1)
질소 치환된 가압 반응 반응기에 이온교환수 50 중량부를 투입한 후 로진산 칼륨 0.5 중량부, 1,3-부타디엔 40 중량부, 3급 도데실 머캅탄 0.3 중량부, 탄산칼륨 1.0 중량부, 포타슘 퍼설페이트 0.1 중량부를 상온에서 투입하고 1시간 동안 교반을 실시한 후 반응온도를 70 ℃로 승온하여 5 시간 동안 반응을 지속하고 반응중합 전환율이 90%, 입자경 2000 Å에 도달하였을 때 황화 제1철 0.0005 중량부, 덱스트로즈 0.05 중량부, 피롤인산나트륨 0.04 중량부, 이온교환수 2 중량부로 구성된 용액(산화-환원 용액 A)을 일괄 투입 방법을 통해 투입하고 스티렌 단량체 10 중량부를 로진산 칼륨 0.5 중량부, 3급 부틸 하이드로 퍼옥사이드 0.2 중량부, 이온교환수 5 중량부로 구성된 유화액(개시제유화액 B)와 함께 2시간에 걸쳐 연속적으로 반응기에 투입하였다. 이어 모노머의 중합 전환율 90% 시점에 도달하였을 때 1,3-부타디엔 단량체 20 중량부를 4 시간에 걸쳐 연속적으로 투입하여 반응을 지속하고 중합전환율이 80% 시점에 도달하였을 때 동일한 조성의 산화-환원 용액 A를 일괄 투입한 뒤 스티렌 단량체 10 중량부를 개시제 유화액 B와 함께 연속적으로 2시간에 걸쳐 투입하여 중합전환율 90% 시점에 이를 때까지 반응을 지속하였다. 마지막으로 1,3-부타디엔 단량체 20 중량부를 4 시간에 걸쳐 투입한 뒤 반응 온도를 80 ℃로 승온하고 반응을 추가적으로 4시간 유지한 뒤 반응을 종결하였다. 이 때 중합전환율은 95% 수준이며 입자경은 3200 Å이며 자세한 물성은 표 1에 나타내었다.
실시예 2 - 고무질 라텍스의 제조(A2)
질소 치환된 가압 반응 반응기에 이온교환수 50 중량부를 투입한 후 로진산 칼륨 0.5 중량부, 1,3-부타디엔 40 중량부, 3급 도데실 머캅탄 0.3 중량부, 탄산칼륨 1.0 중량부, 포타슘 퍼설페이트 0.1 중량부를 상온에서 투입하고 1시간 동안 교반을 실시한 후 반응온도를 70 ℃로 승온하여 5 시간 동안 반응을 지속하고 반응중합 전환율이 90%, 입자경 2000 Å에 도달하였을 때 황화 제1철 0.0005 중량부, 덱스트로즈 0.05 중량부, 피롤인산나트륨 0.04 중량부, 이온교환수 2 중량부로 구성된 용액(산화-환원 용액 A)을 일괄 투입 방법을 통해 투입하고 스티렌 단량체 7.5 중량부 및 아크릴로니트릴 2.5 중량부를 로진산 칼륨 0.5 중량부, 3급 부틸 하이드로 퍼옥사이드 0.2 중량부, 이온교환수 5 중량부로 구성된 유화액(개시제유화액 B)와 함께 2 시간에 걸쳐 연속적으로 반응기에 투입하였다. 이어 모노머의 중합 전환율 90% 시점에 도달하였을 때 1,3-부타디엔 단량체 20 중량부를 4시간에 걸쳐 연속적으로 투입하여 반응을 지속하고 중합전환율이 80% 시점에 도달하였을 때 동일한 조성의 산화-환원 용액 A를 일괄 투입한 뒤 스티렌 단량체 7.5 중량부 및 아크릴로니트릴 2.5 중량부를 개시제 유화액 B와 함께 연속적으로 2시간에 걸쳐 투입하여 중합전환율 90% 시점에 이를 때까지 반응을 지속하였다. 마지막으로 1,3-부타디엔 단량체 20 중량부를 4 시간에 걸쳐 투입한 뒤 반응 온도를 80℃로 승온하고 반응을 추가적으로 4 시간 유지한 뒤 반응을 종결하였다. 이 때 중합전환율은 94% 수준이며 입자경은 3100 Å이며, 자세한 물성은 표 1에 나타내었다.
비교예 1-고무질 라텍스의 제조(B1)
질소 치환된 가압 반응 반응기에 이온교환수 50 중량부를 투입한 후 로진산 칼륨 1.5 중량부, 1,3-부타디엔 100 중량부, 3급 도데실 머캅탄 0.3 중량부, 탄산칼륨 1.0 중량부, 포타슘 퍼설페이트 0.1 중량부를 상온에서 투입하고 1시간 동안 교반을 실시한 후 반응온도를 70 ℃로 승온하여 5시간 동안 반응을 지속하고 로진산 칼륨 0.5 중량부, 포타슘 퍼설페이트 0.2 중량부와 함께 일괄 투입 방법에 의해 투입한 뒤 8 시간 동안 추가적인 반응을 지속하였다. 이어 중합 전환율 80% 지점에 도달하였을 때 반응온도를 80 ℃로 승온하고 로진산 칼륨 0.5중량부, 포타슘 퍼설페이트 0.2 중량부를 추가적으로 투입하여 8 시간 동안 반응을 더 진행하고 반응을 종결하였다. 이 때 중합전환율은 93%, 입자경은 3100 Å이며, 자세한 물성은 표 1에 나타내었다.
비교예 2-고무질 라텍스의 제조-B2
질소 치환된 가압 반응 반응기에 이온교환수 50 중량부를 투입한 후 로진산 칼륨 1.5 중량부, 1,3-부타디엔 80 중량부, 스티렌 20 중량부, 3급 도데실 머캅탄 0.3 중량부, 탄산칼륨 1.0 중량부, 포타슘 퍼설페이트 0.1 중량부를 상온에서 투입하고 1 시간 동안 교반을 실시한 후 반응온도를 70 ℃로 승온하여 5 시간 동안 반응을 지속하고 로진산 칼륨 0.5 중량부, 포타슘 퍼설페이트 0.2 중량부와 함께 일괄 투입 방법에 의해 투입한 뒤 8 시간 동안 추가적인 반응을 지속하였다. 이어 중합 반응율 80% 지점에 도달하였을 때 반응온도를 80 ℃로 승온하고 로진산 칼륨 0.5 중량부, 포타슘 퍼설페이트 0.2 중량부를 추가적으로 투입하여 8 시간 동안 반응을 더 진행하고 반응을 종결하였다. 이 때 중합전환율은 94%, 입자경은 3000 Å이며, 자세한 물성은 표 1에 나타내었다.
그라프트 공중합체 제조
질소로 치환된 반응기 내에 실시예 1~2 및 비교예 1~2에서 제조된 고무질 중합체 60 중량부, 이온교환수 60 중량부, 알케닐 호박산 칼륨 (상품명: latemul ASK) 0.2 중량부, 스티렌 7.2 중량부, 아크릴로니트릴 2.8 중량부를 투입하고 25 ℃에서 충분히 교반을 실시한 후 50 ℃로 승온을 하였다. 이어 3급 부틸 하이드로 퍼옥사이드 0.08 중량부 및 황화제2철 0.003 중량부, 덱스트로즈 0.005 중량부, 피롤인산나트륨 0.025 중량부, 이온교환수 2.5 중량부를 투입하고 반응온도를 1시간 동안 65 ℃로 승온하면서 반응을 진행하였다. 이어 알케닐 호박산 칼륨 0.3 중량부, 스티렌 21.6 중량부, 아크릴로니트릴 8.4 중량부, 3급 도데실 머캅탄 0.4 중량부, 디이소프로필 벤젠퍼옥사이드 0.1 중량부, 이온교환수 20 중량부로 구성된 유화액을 연속적으로 반응기에 1 시간 동안 투여하였다. 이어 큐멘 하이드로 퍼옥사이드 0.05 중량부 및 황화제1철 0.003 중량부, 덱스트로즈 0.005 중량부, 피롤인산나트륨 0.025 중량부, 이온교환수 2.5 중량부를 추가적으로 투입하고 중합온도를 80 ℃로 승온하여 1 시간 반응을 지속한 뒤 반응을 종료하였다.
고무강화 열가소성 수지 제조
중합 건조 과정을 통해 제조된 그라프트 공중합체 (B-1) 24 중량부에 대하여 스티렌-아크릴로니트릴 공중합체 수지 (92HR-LG화학) 76 중량부, 활제 1.5 중량부, 1차 열안정제 0.2 중량부를 첨가하여 200℃ 온도 조건에서 압출하고, 이어 동일 온도 조건에서 사출하여 물성 평가를 위한 샘플을 제조하였으며 이에 대한 물성을 표 1에 나타내었다.
[시험예]
상기 실시예 1 내지 실시예 2 및 비교예 1 내지 비교예 2에 의해 제조된 고무질 중합체, 그라프트 공중합체 및 고무강화 열가소성 수지 조성물을 다음과 같은 방법에 의해 물성을 측정하여 하기 표 1에 나타내었다.
[물성 측정 방법]
* 평균입경: Nicomp 기기를 이용하여 평균 입자경(Nicomp 평균입자경)을 측정하였다.
* 중합 응고물: 유화중합 방법을 통해 제조된 라텍스를 100메시 철망 필터를 통해 거른 뒤 철망 위에 걸러진 중합물을 100℃ 열풍 건조기에 1시간 동안 건조한 뒤 전체 투입된 단량체 및 첨가제(유화제 등) 이론적 총량에 대한 비율로 나타내었다.
* 중합전환율: 하기 수학식 2를 이용하여 측정하였다.
[수학식 2]
중합 전환율 = (A) × (C/B) - (D)
A: 모노머 100 중량(g)를 기준으로, 중합반응을 위해 첨가된 모든 물질의 총 중량(g)
B: 중합 반응 중에 샘플링 된 라텍스의 중량(g)
C: 상기 B의 샘플링 된 라텍스를 150 ℃ 오븐(oven) 상에서 15분 건조 후 남은 고형분의 중량(g)
D: 상기 A에서 투입된 물질 중 물과 단량체를 제외한 나머지 물질들의 총량(g)
* 굴절율: 단량체의 굴절율은 ABBE 굴절기를 이용하여 측정하였으며, 각 코어 및 셀의 굴절률은 각 단량체의 굴절률에 대해 각 단량체 분율을 곱한 값을 모두 더한 값으로 계산하여 산정하였다.
* 아이조드 충격강도: 시편의 두께 1/4"로 하여 ASTM D256 방법에 의거하여 측정하였으며, 단위는 kg·cm/cm이다.
* 인장강도: ASTM D638 방법에 의거하여 50mm/min 조건하에서 측정하였으며 단위는 kg/cm2이다.
* 광택: 압출기에서 얻어진 펠렛에 대해 200 ℃ 조건에서 사출을 실시하고 얻어진 시편에 대해 20도 광원에 대한 광택을 측정하였다.
* 착색성: 압출기에서 얻어진 펠렛에 착색제(RED COLOR: RD-31)을 첨가하여 재압출하고 이를 통해 얻어진 시편을 COLOR COMPUTER (SUGA사)로 측정하여 L값과 a값을 구하였다. 일반적으로 RED COLOR의 경우 L값이 낮고 a값이 높은 경우 착색성이 양호한 것으로 판단한다.
* 유동성: 220℃, 10kg의 조건하에 ASTM D1238 방법으로 측정하였다.
표 1
실시예 1 실시예 2 비교예 1 비교예 2
고무질 중합체 코어 조성 BD BD BD BD/ST
중량부 40 40 100 80/20
조성 ST*/BD*/ST/BD SAN*/BD/SAN/BD - -
중량부 10/20/10/20 10/20/10/20 93 94
중합전환율(%) 95 94 93 94
입자경 3200 3100 3100 3000
고무강화 열가소성 수지 조성물 충격강도(1/4”) 32 31 30 24
유동성 21 21 20 22
광택(45도) 102 100 100 98
인장강도 475 480 470 490
착색성(L) 31.5 30.2 32.5 32.4
착색성(a) 46.5 46.2 45.0 45.5
* ST: 스티렌
* BD: 1,3-부타디엔
* SAN: 스티렌-아크릴로니트릴
본 발명의 실시예 1 내지 2의 고무질 라텍스로부터 제조된 고무강화 열가소성 수지 조성물은 비교예 1 내지 2의 고무질 라텍스로부터 제조된 고무강화 열가소성 수지 조성물에 비하여, 충격강도, 착색성(실시예 1, 2의 낮은 L값과 높은 a값으로부터) 및 물성 밸런스가 매우 뛰어난 것을 확인할 수 있었다.

Claims (22)

  1. 코어-쉘 구조로서, 코어와 1 이상의 쉘층으로 구성되고, 최외각의 쉘층은 디엔계 중합체층인 것을 특징으로 하는
    고무질 중합체.
  2. 제1항에 있어서,
    상기 쉘층은, 총 2 내지 10 층인 것을 특징으로 하는
    고무질 중합체.
  3. 제1항에 있어서,
    상기 코어는, 평균입경이 1000 내지 2000 Å인 것을 특징으로 하는
    고무질 중합체.
  4. 제1항에 있어서,
    상기 코어는, 디엔계 단량체, 비닐방향족 단량체, 비닐시안계 단량체 및 아크릴레이트계 단량체로 이루어진 군으로부터 선택된 1종 이상을 포함하여 중합된 것임을 특징으로 하는
    고무질 중합체.
  5. 제1항에 있어서,
    상기 코어와 쉘층은, 굴절율 차이가 0.02 이하인 것을 특징으로 하는
    고무질 중합체.
  6. 제1항에 있어서,
    상기 쉘층은, 비디엔계 중합체층과 디엔계 중합체층으로 이루어지는 것을 특징으로 하는
    고무질 중합체.
  7. 제6항에 있어서,
    상기 비디엔계 중합체층은, 고무질 중합체 총 100 중량%를 기준으로 한층 당 5 내지 15 중량%인 것을 특징으로 하는
    고무질 중합체.
  8. 제6항에 있어서,
    상기 디엔계 중합체층은, 고무질 중합체 총 100 중량%를 기준으로 한층 당 15 내지 25 중량%인 것을 특징으로 하는
    고무질 중합체.
  9. 제1항에 있어서,
    상기 쉘층은, 비디엔계 중합체층과 디엔계 중합체층이 교대로 적층된 것을 특징으로 하는
    고무질 중합체.
  10. 제1항에 있어서,
    상기 고무질 중합체는, 코어 40 내지 70 중량% 및 쉘층 30 내지 60 중량%로 이루어진 것을 특징으로 하는
    고무질 중합체.
  11. 제1항에 있어서,
    상기 코어는, 고무질 중합체 총 100 중량%에 대하여 디엔계 단량체 30 내지 50 중량% 및 비닐 방향족 단량체 10 내지 20 중량%를 포함하여 이루어진 것을 특징으로 하는
    고무질 중합체.
  12. 제1항에 있어서,
    상기 쉘층은, 고무질 중합체 총 100 중량%에 대하여 비디엔계 단량체 10/N1 내지 20/N1 중량%(N1은 비디엔계 중합체층의 갯수이다)를 포함하여 이루어진 것을 특징으로 하는
    고무질 중합체.
  13. 제1항에 있어서,
    상기 쉘층은, 고무질 중합체 총 100 중량%에 대하여 디엔계 단량체 20/N2 내지 40/N2 중량%(N2는 디엔계 중합체층의 갯수이다)를 포함하여 이루어진 것을 특징으로 하는
    고무질 중합체.
  14. 제 1항에 있어서,
    상기 고무질 중합체는, 평균입경이 3000 내지 3300 Å인 것을 특징으로 하는
    고무질 중합체.
  15. a) 코어 중합체 또는 코어-쉘 공중합체를 중합하는 단계; 및
    b) 상기 코어 중합체 또는 코어-쉘 공중합체 존재 하에서 디엔계 단량체를 중합시켜 최외각 쉘층을 형성시키는 단계;를 포함하는 것을 특징으로 하는
    고무질 중합체의 제조방법.
  16. 제15항에 있어서,
    상기 고무질 중합체의 제조방법은, a) 단계의 중합전환율이 70 % 이상일 때, b) 단계의 디엔계 단량체를 투입하여 중합시키는 것을 특징으로 하는
    고무질 중합체의 제조방법.
  17. 제15항에 있어서,
    상기 b) 단계는, 친수성 개시제를 사용하는 것을 특징으로 하는
    고무질 중합체의 제조방법.
  18. 제15항에 있어서,
    상기 고무질 중합체의 제조방법은, 1) 코어 중합체를 제조하는 단계; 2) 1) 단계의 중합전환율이 70 % 이상일 때, 상기 코어 중합체에 비디엔계 단량체를 투입하여 1차 쉘층을 제조하는 단계; 및 3) 2) 단계의 중합전환율이 70 % 이상일 때, 디엔계 단량체를 투입하여 최외각 쉘층을 제조하는 단계;를 포함하는 것을 특징으로 하는
    고무질 중합체의 제조방법.
  19. 제15항에 있어서,
    상기 고무질 중합체의 제조방법은, 1) 코어 중합체를 제조하는 단계; 2) 1) 단계의 중합전환율이 70 % 이상일 때, 상기 코어 중합체에 비디엔계 단량체를 투입하여 1차 쉘층을 제조하는 단계; 3) 2) 단계의 중합전환율이 70 % 이상일 때, 디엔계 단량체를 투입하여 2차 쉘층을 제조하는 단계; 4) 3) 단계의 중합전환율이 70 % 이상일 때, 비디엔계 단량체를 추가 투입하여 3차 쉘층을 제조하는 단계; 및 5) 4) 단계의 중합전환율이 70 % 이상일 때, 디엔계 단량체를 추가 투입하여 최외각 쉘층을 제조하는 단계;를 포함하는 것을 특징으로 하는
    고무질 중합체의 제조방법.
  20. 제18항 또는 제19항에 있어서,
    상기 비디엔계 단량체를 투입하여 쉘층을 제조하는 단계는, 소수성 하이드로 퍼옥사이드계 개시제를 사용하는 것을 특징으로 하는
    고무질 중합체의 제조방법.
  21. 제18항 또는 제19항에 있어서,
    상기 비디엔계 단량체를 투입하여 쉘층을 제조하는 단계는, 단량체 투입 전에, 황산 제1철, 덱스트로즈, 피롤인산나트륨 및 아황산나트륨으로 이루어진 군으로부터 선택되는 1종 이상의 산화 환원 촉매를 투입하는 것을 특징으로 하는
    고무질 중합체의 제조방법.
  22. 제1항 내지 제11항 중 어느 한 항의 고무질 중합체, 비닐 방향족 단량체 및 비닐시안계 단량체를 그라프트 중합시켜 제조된 ABS 수지.
PCT/KR2014/003893 2013-05-03 2014-04-30 고무질 중합체 및 그 제조방법 WO2014178668A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/764,559 US9771470B2 (en) 2013-05-03 2014-04-30 Rubber polymer and method of preparing the same
CN201480010975.0A CN105008422B (zh) 2013-05-03 2014-04-30 橡胶聚合物及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0050034 2013-05-03
KR20130050034A KR101442412B1 (ko) 2013-05-03 2013-05-03 고무 강화 그라프트 공중합체용 고무질 중합체 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2014178668A1 true WO2014178668A1 (ko) 2014-11-06

Family

ID=51760615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003893 WO2014178668A1 (ko) 2013-05-03 2014-04-30 고무질 중합체 및 그 제조방법

Country Status (4)

Country Link
US (1) US9771470B2 (ko)
KR (1) KR101442412B1 (ko)
CN (1) CN105008422B (ko)
WO (1) WO2014178668A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102161030B1 (ko) * 2017-09-29 2020-10-05 주식회사 엘지화학 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
CN117682499B (zh) * 2024-02-02 2024-04-19 四川易纳能新能源科技有限公司 一种超疏水改性磷酸焦磷酸铁钠正极材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070021894A (ko) * 2005-08-19 2007-02-23 주식회사 엘지화학 Pvc 수지용 충격 보강제 및 이의 제조 방법
US20070149649A1 (en) * 2005-12-19 2007-06-28 Xiaorong Wang Non-spherical nanoparticles made from living triblock polymer chains
KR20080067438A (ko) * 2007-01-16 2008-07-21 주식회사 엘지화학 투명 열가소성 폴리우레탄 수지용 그라프트 공중합체, 이의제조방법 및 이를 포함하는 폴리우레탄 수지 조성물
JP2009108304A (ja) * 2001-10-04 2009-05-21 Bridgestone Corp ナノ粒子の製造方法及び応用
KR20120040771A (ko) * 2010-10-20 2012-04-30 제일모직주식회사 저온 백화가 발생하지 않는 고투명, 고충격 열가소성 수지 조성물

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475608B2 (en) * 1998-11-16 2002-11-05 Engelhard Corporation Multi-layer iridescent films
DE10260065A1 (de) * 2002-12-19 2004-07-01 Röhm GmbH & Co. KG Kern-Schale-Teilchen zur Schlagzähmodifizierung von Poly(meth)acrylat-Formmassen
DE10260089A1 (de) * 2002-12-19 2004-07-01 Röhm GmbH & Co. KG Verfahren zur Herstellung von wässrigen Dispersionen
KR100512366B1 (ko) * 2003-06-27 2005-09-02 주식회사 엘지화학 스티렌-부타디엔계 라텍스의 제조방법
KR100623850B1 (ko) * 2004-10-08 2006-09-19 주식회사 엘지화학 고무질 라텍스의 제조 방법
DE102005035235A1 (de) * 2005-07-25 2007-02-01 Fachhochschule Gelsenkirchen Nichtwässrige Dispersion von Polyurethan(meth)acrylatpartikeln in Reaktivverdünner
EP1939233A1 (en) * 2005-10-18 2008-07-02 Nippon Kayaku Kabushiki Kaisha Epoxy resin, epoxy resin composition, photosensitive resin composition, and cured object obtained therefrom
DE102005055793A1 (de) * 2005-11-21 2007-05-24 Röhm Gmbh Transparente TPU (thermoplastische Polyurethane)/ PMMA (Polymethyl(meth)acrylat) Abmischungen mit verbesserter Kältesschlagzähigkeit
EP2006326A4 (en) * 2006-03-29 2009-07-22 Mitsui Chemicals Inc OLEFINBLOCKPOLYMER RESIN COMPOSITION AND USE THEREOF
KR100799605B1 (ko) 2006-05-04 2008-01-30 제일모직주식회사 내스크래치성이 우수한 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108304A (ja) * 2001-10-04 2009-05-21 Bridgestone Corp ナノ粒子の製造方法及び応用
KR20070021894A (ko) * 2005-08-19 2007-02-23 주식회사 엘지화학 Pvc 수지용 충격 보강제 및 이의 제조 방법
US20070149649A1 (en) * 2005-12-19 2007-06-28 Xiaorong Wang Non-spherical nanoparticles made from living triblock polymer chains
KR20080067438A (ko) * 2007-01-16 2008-07-21 주식회사 엘지화학 투명 열가소성 폴리우레탄 수지용 그라프트 공중합체, 이의제조방법 및 이를 포함하는 폴리우레탄 수지 조성물
KR20120040771A (ko) * 2010-10-20 2012-04-30 제일모직주식회사 저온 백화가 발생하지 않는 고투명, 고충격 열가소성 수지 조성물

Also Published As

Publication number Publication date
US9771470B2 (en) 2017-09-26
US20160053099A1 (en) 2016-02-25
CN105008422B (zh) 2017-03-22
CN105008422A (zh) 2015-10-28
KR101442412B1 (ko) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2013100448A1 (ko) 내충격성, 내후성, 및 착색성이 우수한 asa 그라프트 공중합체 및 그 제조방법
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2016093616A1 (ko) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 열가소성 수지
WO2014007442A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2013115610A1 (ko) Asa계 그라프트 공중합체 조성물
WO2016093649A1 (ko) 대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2017039157A1 (ko) 열가소성 수지 조성물 및 이의 제조방법
WO2012053693A1 (ko) 저온 백화가 발생하지 않는 고투명, 고충격 열가소성 수지 조성물
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2012087056A2 (en) Graft monomer composition for thermoplastic transparent resin, composition for theremoplastic transparent resin using the same, and theremoplastic transparent resin having good transparency and color with low rubber amounts
WO2019066375A2 (ko) 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
WO2013100439A1 (ko) 내충격성, 내스크래치성 및 투명성이 우수한 투명 abs 수지 조성물
WO2013062170A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2017099409A1 (ko) 열가소성 그라프트 공중합체 수지, 이를 제조하는 방법, 및 이를 포함하는 열가소성 수지 조성물
WO2018139775A1 (ko) 그라프트 공중합체, 이의 제조방법, 이를 포함하는 열가소성 수지 조성물 및 성형품
WO2018124517A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하여 제조되는 성형품
WO2017082649A1 (ko) 저광 특성, 내후성 및 기계적 물성이 우수한 열가소성 수지 조성물 및 이로부터 제조되는 압출 물품
WO2016085222A1 (ko) 열가소성 수지 조성물 및 이를 적용한 성형품
WO2014178668A1 (ko) 고무질 중합체 및 그 제조방법
WO2013022205A2 (ko) 알킬 (메트)아크릴레이트계 열가소성 수지 조성물, 및 내스크래치성과 황색도가 조절된 열가소성 수지
WO2015030415A1 (ko) 투명 abs 수지 및 투명 abs 수지 조성물
WO2015047026A1 (ko) 고무질 중합체, 그라프트 공중합체와 이들의 제조방법, 내충격 내열수지 조성물
WO2017160011A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021080168A1 (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14764559

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791913

Country of ref document: EP

Kind code of ref document: A1