WO2013115610A1 - Asa계 그라프트 공중합체 조성물 - Google Patents

Asa계 그라프트 공중합체 조성물 Download PDF

Info

Publication number
WO2013115610A1
WO2013115610A1 PCT/KR2013/000853 KR2013000853W WO2013115610A1 WO 2013115610 A1 WO2013115610 A1 WO 2013115610A1 KR 2013000853 W KR2013000853 W KR 2013000853W WO 2013115610 A1 WO2013115610 A1 WO 2013115610A1
Authority
WO
WIPO (PCT)
Prior art keywords
graft copolymer
asa
weight
parts
copolymer composition
Prior art date
Application number
PCT/KR2013/000853
Other languages
English (en)
French (fr)
Inventor
김민정
황용연
박춘호
한혜경
이상미
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US14/118,593 priority Critical patent/US9428644B2/en
Priority to ES13743015T priority patent/ES2704279T3/es
Priority to EP13743015.3A priority patent/EP2810965B1/en
Priority to CN201380002195.7A priority patent/CN103649140B/zh
Priority to JP2014512777A priority patent/JP6029029B2/ja
Priority claimed from KR1020130012050A external-priority patent/KR101285494B1/ko
Publication of WO2013115610A1 publication Critical patent/WO2013115610A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/06Vinyl aromatic monomers and methacrylates as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to an ASA-based graft copolymer composition, and more specifically, a heat including a graft copolymer having a minimum triple structure having excellent room temperature and low temperature impact strength and excellent appearance characteristics by controlling refractive index and gel content.
  • the present invention relates to an ASA-based graft copolymer composition having excellent stability.
  • Polycarbonate resin is known as a resin having excellent impact resistance, transparency, strength, flame retardancy, electrical properties and heat resistance, and is widely used in the manufacture of molded articles for electric and electronic products including automobiles, and the demand thereof is increasing day by day.
  • polycarbonate resins have disadvantages such as high melt viscosity, poor moldability, and very large thickness dependence of impact resistance, and poor chemical resistance. Therefore, it may be used as an alloy product with acrylonitrile-butadiene-styrene, acrylonitrile-acrylate, and styrene to compensate for the high melt viscosity of polycarbonate, and polybutylene tere to supplement the chemical resistance of polycarbonate.
  • Some resins such as phthalates may be mixed and used.
  • Core-shell impact modifiers have been used to reinforce the impact resistance, chemical resistance, processability, and weather resistance of thermoplastics, and their use has been limited to impact reinforcement of polyvinyl chloride, but gradually polycarbonate resins, acrylonitrile-butadiene The area of application is widening with alloys of styrene, acrylonitrile-acrylate-styrene, and engineering plastic resins such as polycarbonate-polybutylene terephthalate resins.
  • European Patent Publication No. 465,792 prepares a polymer comprising a rubbery acrylic monomer as a main component which improves impact resistance of polycarbonate and exhibits uniform colorability when used with a pigment, and the polymer is mixed with polycarbonate. Is starting.
  • Korean Patent Laid-Open Publication No. 2004-0057069 is an acrylic impact modifier of a multilayer structure comprising a seed, an alkyl acrylate rubber core, and an alkyl methacrylate shell made from a vinyl aromatic monomer and a hydrophilic monomer, and the impact resistance of engineering plastics.
  • the coloring is reinforced.
  • the impact modifier having the acrylic rubber component as a core material is used in a resin such as polycarbonate having a high refractive index
  • a difference in refractive index between the target matrix resin and the impact modifier is large and reaches several hundred nm. Haze is formed or made opaque on the processed products, and the effect of improving colorability is insufficient and there is a limit in improving the colorability.
  • An object of the present invention is an ASA-based graft having excellent room temperature and low temperature impact strength and excellent external stability and thermal stability, including a graft copolymer having a triple structure in which the refractive index and the gel content are adjusted in consideration of the refractive index of the target matrix polymer. To provide a copolymer composition.
  • the present invention is an ASA-based graft copolymer composition, ASA-based graft copolymer consisting of a seed, a core and a shell; And a matrix polymer; wherein the ASA graft copolymer has a gel content of greater than 85%, a swelling index of less than 8, and a refractive index ( ⁇ ) of the seed and the matrix polymer of the ASA graft copolymer. D 25 ) is less than 0.06, the difference in refractive index ( ⁇ D 25 ) of the core of the ASA graft copolymer and the matrix polymer is characterized in that greater than 0.05.
  • the difference between the refractive index ( ⁇ D 25 ) of the shell and the matrix polymer of the ASA graft copolymer is characterized in that 0.05 or less.
  • the core of the ASA graft copolymer is characterized in that the thickness of 20 to 50nm.
  • the core size of the ASA graft copolymer is characterized in that 150 to 350 nm.
  • the shell of the ASA graft copolymer is characterized in that it comprises a crosslinkable compound.
  • the shell of the ASA graft copolymer is characterized in that it comprises an aromatic vinyl compound, a vinyl cyan compound and a crosslinkable compound.
  • the ASA graft copolymer may include at least one compound of an aromatic vinyl compound, a vinyl cyan compound, and an alkyl (meth) acrylate compound, and may have a refractive index value ( ⁇ D) for a target matrix polymer.
  • the seed and comprise an alkyl acrylate Wrap around the seed and comprise an alkyl acrylate, thickness is 20-50 nm, thickness from center to core is 75-175 nm, and difference from refractive index ( ⁇ D 25 ) of the target matrix polymer is at least 0.07, core; And a shell surrounding the core and comprising an aromatic vinyl compound, a vinyl cyan compound, and a crosslinkable compound, and having a difference from the refractive index value ( ⁇ D 25 ) for the target matrix polymer of 0.05 or less.
  • the gel content of the graft copolymer is 92-98%, and the swelling index 2-7.
  • the matrix polymer may be at least one selected from the group consisting of polycarbonate resins, acrylonitrile-styrene copolymers, polyester resins, and vinyl chloride resins.
  • the matrix polymer may be at least one selected from the above-described polycarbonate, polycarbonate / acrylonitrile-styrene alloy, polycarbonate / polybutylene terephthalate alloy, and vinyl chloride resin.
  • the ASA graft copolymer and the matrix polymer may have a weight ratio of 0.1: 99.9 to 99.9: 0.1, 1:99 to 40:60, 1:99 to 30:70, or 2:98 to 20:80. .
  • the ASA graft copolymer of the present invention is an acrylate-styrene-acrylonitrile graft copolymer, which is a graft comprising an acrylate monomer, a styrene monomer (aromatic vinyl compound), and an acrylonitrile monomer. It means a copolymer.
  • the seed refractive index is made close to the refractive index of the target matrix polymer to reduce the colorability without adjusting the rubber morphology of the core and the refractive index difference is large, the colorability is improved to improve the colorability of the ASA
  • the refractive index of the seed, the core and the shell is controlled, and at the same time, the final gel content and the swelling index are controlled to provide excellent thermal stability.
  • the ASA graft copolymer provided in the present invention comprises a seed comprising at least one compound of an aromatic vinyl compound, a vinyl cyan compound, and an alkyl (meth) acrylate compound; A rubber core surrounding the seed and comprising an alkyl acrylate; And a shell surrounding the core, the shell including an aromatic vinyl compound, a vinyl cyan compound, and a crosslinkable compound.
  • the seeds, cores and shells constituting the acrylic graft copolymer are particularly preferably in a weight ratio in the range of 5 to 40:20 to 60:20 to 60 to improve colorability while maintaining an appropriate impact.
  • a weight ratio in the range of 5 to 40:20 to 60:20 to 60 to improve colorability while maintaining an appropriate impact.
  • the impact reinforcing effect may be reduced as a graft copolymer, and if the rubber content exceeds the above range and the shell content is lowered, the rubber will aggregate together.
  • the compatibility with the resin may be significantly lowered and the desired refractive index may not be obtained with the reduction of the impact reinforcing effect.
  • alkyl acrylate included in the core methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate or 2-ethylhexyl acrylate may be used.
  • -Butyl acrylate or 2-ethylhexyl acrylate can be used.
  • the core may be an acrylic rubber.
  • the core may be a rubber formed by polymerization of an alkyl acrylate and a crosslinking agent.
  • the refractive index of the seed and the refractive index of the shell is preferably within 0.05 of the difference between the refractive index of the matrix polymer ( ⁇ D 25 ) to give transparency to the impact modifier and to consider the color side.
  • the core thickness (shortest distance from the outer surface of the seed to the outer surface of the core) of the graft copolymer is 20 to 50 nm, and the thickness from the center to the core is 75 to 175 nm (thus the seeds and cores are It is preferable that the particle size is 150 to 350 nm) to maintain the impact resistance and colorability balance.
  • the thickness of the seed, core, shell described above the thickness (THICKNESS) of the core portion having a large difference in refractive index and matrix matrix is reduced and the color size is appropriately adjusted to give transparency. The effect of a dramatic improvement was identified.
  • the aromatic vinyl compound that can be used for the seed and the shell is characterized in that at least one member selected from the group consisting of styrene monomer derivatives of styrene, ⁇ -styrene, p-styrene and vinyl toluene.
  • the vinyl cyan compound which can be used for a seed and a shell is characterized by being acrylonitrile, methacrylonitrile, or a mixture thereof.
  • alkyl (meth) acrylate compounds that can be used in the seed include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate propyl methacrylate. It is characterized by one or more selected from the group consisting of latex, 2-ethylhexyl methacrylate, methyl acrylate and ethyl acrylate.
  • alkyl (meth) acrylate compound examples include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, (meth) acrylic acid 2-ethylhexyl ester, and (meth) acrylic acid decyl ester. And at least one selected from the group consisting of (meth) acrylic acid lauryl esters.
  • the present invention is characterized by using at least one crosslinkable compound in the shell.
  • the crosslinkable compound may be included in the seed and / or core described above.
  • the crosslinkable compound is divinylbenzene, 3-butanediol diacrylate, 1,3-butanediol dimethacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, aryl acrylate, aryl Methacrylate, trimethylolpropane triacrylate, tetraethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, tri It may be selected from the group consisting of aryl isocyanurate, triarylamine, and diarylamine.
  • the crosslinkable compound may be, for example, a crosslinkable vinyl compound.
  • the crosslinkable compound may be used in an amount of 0.1 to 10 parts by weight, 0.1 to 7 parts by weight, 0.5 to 6 parts by weight, or 1 to 4 parts by weight based on 100 parts by weight of the total monomers used to prepare the ASA graft polymer.
  • the shell may be included in an amount of 20 to 60 parts by weight, 30 to 50 parts by weight or 30 to 40 parts by weight based on a total of 100 parts by weight of the monomer forming the ASA graft copolymer, for example.
  • the content of the shell is small, the graft efficiency is reduced and the rubber is agglomerated to reduce the impact reinforcement effect due to the reduction of compatibility with the resin.
  • the impact efficiency is decreased due to the reduction of the relative rubber content.
  • the shell may further include one or more selected from the group consisting of alkyl methacrylate, alpha methyl styrene, and the like, in order to adjust polymerization reactivity and refractive index to an appropriate level.
  • the gel content of the ASA graft copolymer is, for example, more than 85%, 86-98%, 92-98%, or 94-97%, the swelling index is less than 8, or satisfies the range 2-7, When the gel content is out of the range, the impact is lowered, the swelling index has the effect of excellent cohesive properties, impact strength and thermal stability within the above range.
  • the refractive index of the seed and the shell is another example.
  • the difference between the refractive index value ( ⁇ D 25 ) of the matrix polymer is 0.05 or less, and the refractive index of the core is another example of the refractive index of the matrix polymer ( ⁇ D).
  • the matrix resin that can be used is, for example, polycarbonate, polycarbonate / acrylonitrile-styrene alloy, polycarbonate / polybutylene tere It may be at least one selected from phthalate alloy and vinyl chloride resin, and as another example, since the refractive index of the triple structure ASA-based graft copolymer according to the present invention is high, it is possible to reduce the difference in refractive index with the target matrix polymer, in particular polycarbonate It is more preferable that it is resin (PC).
  • PC resin
  • the refractive index of the seed and the refractive index of the shell is preferably a difference between the refractive index of the matrix polymer ( ⁇ D 25 ) is less than 0.06 or less than 0.05 when considering the color side by providing transparency to the graft copolymer, the refractive index of the core When the difference from the refractive index ( ⁇ D 25 ) of the silver matrix polymer is greater than 0.05 or 0.07 or more, the effect of improving colorability is remarkable.
  • the ASA graft copolymer of the present invention may be used as an impact modifier for the matrix copolymer, for example.
  • ASA graft copolymer of the present invention is at least one matrix polymer 80 selected from polycarbonate, polycarbonate / acrylonitrile-styrene alloy, polycarbonate / polybutylene terephthalate alloy, and vinyl chloride resin. To 99.5 parts by weight can be used within the range of 0.5 to 20 parts by weight.
  • ASA graft copolymer of the present invention can be prepared through the following three steps as an example.
  • the content at this time is based on 100 parts by weight of the total monomers used to prepare the acrylonitrile-styrene-acrylate copolymer.
  • the seed may be prepared as a first step by polymerizing a monomer mixture including 4 to 30 parts by weight of at least one member selected from the group consisting of an aromatic vinyl compound, a vinyl cyan compound, and an alkyl (meth) acrylate.
  • the monomer in the first step may further include 0.001 to 1 parts by weight of electrolyte, 0.01 to 3 parts by weight of crosslinkable compound, 0.01 to 3 parts by weight of initiator and 0.01 to 5 parts by weight of emulsifier.
  • the core can then be prepared by polymerizing a monomer mixture comprising, for example, 20 to 80 parts by weight of an alkyl acrylate monomer and 0.01 to 3 parts by weight of a crosslinkable compound in the presence of the seed.
  • the monomer mixture in the second step further includes, for example, 0.01 to 3 parts by weight of the initiator and 0.01 to 5 parts by weight of the emulsifier based on 100 parts by weight of the total monomers used to prepare the acrylate-styrene-acrylonitrile copolymer. can do.
  • the shell may contain 10 to 70 parts by weight of at least one selected from the group consisting of an aromatic vinyl compound, a vinyl cyan compound, and an alkyl (meth) acrylate including 0.1 to 5 parts by weight of a crosslinkable compound in the presence of the rubber core. It can manufacture by superposing
  • the monomer mixture in the third step may further include 0.01 to 3 parts by weight of an initiator, 0 to 3 parts by weight of a molecular weight regulator and 0.01 to 5 parts by weight of an emulsifier.
  • ASA graft copolymer and the matrix polymer may further comprise 0.1 to 10 parts by weight based on a total of 100 parts by weight.
  • Molded articles prepared from such ASA-based graft copolymer composition is characterized in that the impact resistance, low temperature impact resistance and colorability is improved to improve the appearance characteristics and excellent thermal stability, but is not limited thereto. It can be suitably used for electrical / electronic parts or building materials.
  • the ASA-based graft copolymer composition according to the present invention is prepared by controlling the refractive index and the seed, core, shell layer, etc. while maintaining the existing impact properties to prepare the seed refractive index close to the refractive index of the target matrix, without reducing the colorability By controlling the content and swelling index properly, it is excellent in appearance characteristics and thermal stability.
  • Example 1 the seed composition was styrene-acrylonitrile-methyl methacrylate (SM 15 parts by weight, AN 3 parts by weight, MMA 2 parts by weight) and the refractive index difference between the seed and the matrix of the acrylic graft copolymer was ⁇ 0.05. Except for the ASA graft copolymer composition was prepared in the same manner. The gel content of the acrylic graft copolymer was 95% and the swelling index was 6.
  • ASA-based graphs were prepared in the same manner as in Example 1 except that the seed composition was styrene-butyl acrylate (17 parts by weight of SM, 3 parts by weight of BA) and the refractive index difference between the seed and the matrix of the acrylic graft copolymer was ⁇ 0.05. Copolymer composition was prepared. The gel content of the acrylic graft copolymer was 96% and the swelling index was 6.
  • ASA graft in the same manner as in Example 1 except that the seed composition is styrene-acrylonitrile (15 parts by weight SM, 15 parts by weight AN) and the refractive index difference between the seed and the matrix of the acrylic graft copolymer is ⁇ 0.05.
  • Copolymer compositions were prepared. The gel content of the acrylic graft copolymer was 97% and the swelling index was 5.
  • Example 1 Except that the seed composition in Example 1 is styrene-acrylonitrile-butylacrylate (15 parts by weight SM, 4 parts by weight AN, 1 part by weight BA) and the refractive index difference between the seed and the matrix of the acrylic graft copolymer ⁇ 0.05 In the same manner to prepare an ASA-based graft copolymer composition.
  • the gel content of the acrylic graft copolymer prepared was 98% and the swelling index was 4.
  • the difference in refractive index between the core and the matrix of the acrylic graft copolymer 0.15
  • the gel content of the prepared acrylic graft copolymer was 92% and the swelling index was 7.
  • An ASA graft copolymer composition was prepared in the same manner except that 0.2 part by weight of the stabilizer and 0.1 part by weight of the pigment were mixed.
  • An ASA graft copolymer composition was prepared in the same manner except that 5 parts by weight of the graft copolymer was mixed.
  • An ASA graft copolymer composition was prepared in the same manner as in Example 1, except that the core size was 300 nm and the core thickness was 30 nm.
  • the gel content of the acrylic graft copolymer prepared was 95% and the swelling index was 5.
  • An ASA graft copolymer composition was prepared in the same manner as in Example 1 except that the acrylic graft copolymer having a core size of 260 nm and a core thickness of 40 nm.
  • the gel content of the prepared acrylic graft copolymer was 95% and the swelling index was 5 .
  • Example 1 4 parts by weight of styrene, 55 parts by weight of butyl acrylate as core, 41 parts by weight of Chloro styrene-acrylonitrile (31 parts by weight of SM, 10 parts by weight of AN) and 5 parts by weight of divinylbenzene
  • the ASA graft copolymer composition was prepared in the same manner except that the size was 270 nm, the core thickness was 70 nm, the gel content of the final acrylic graft copolymer was 97%, and the swelling index was 4.
  • Example 1 it consists of 30 parts by weight of seed styrene, 40 parts by weight of butyl acrylate, 30 parts by weight of Chloro styrene-acrylonitrile (23 parts by weight of SM, 7 parts by weight of AN) and 3 parts by weight of divinylbenzene.
  • ASA graft copolymer compositions were prepared in the same manner except that the core size was 130 nm, the core thickness was 20 nm, the gel content of the final acrylic graft copolymer was 94%, and the swelling index was 6.
  • Example 1 10 parts by weight of butyl acrylate, 50 parts by weight of butyl acrylate, and 40 parts by weight of chloro-acrylonitrile (30 parts by weight of SM, 10 parts by weight of AN) and 4 parts by weight of divinylbenzene in seed.
  • ASA in the same manner except that the core size is 230 nm, the core thickness is 0 nm (the distinction of layers becomes unclear), the gel content of the final acrylic graft copolymer is 96% and the swelling index is 4.
  • the graft copolymer composition was prepared.
  • Example 1 the seed composition was styrene-butyl acrylate (SM 10 parts by weight, BA 10 parts by weight), and the ASA-based method was performed in the same manner except that the refractive index difference between the seed and the matrix of the acrylic graft copolymer was 0.06.
  • a graft copolymer composition was prepared (other property values are the same as in Example 1, and the same applies hereinafter).
  • Example 1 the core composition was butyl acrylate-styrene (12 parts by weight of SM, 8 parts by weight of BA), and the ASA system was used in the same manner except that the refractive index difference between the core and the matrix of the acrylic graft copolymer was 0.05.
  • a graft copolymer composition was prepared.
  • ASA-based graft copolymer compositions were prepared in the same manner, except that divinylbenzene was not used in the shell preparation in Example 1, the gel content of the acrylic graft copolymer was 85%, and the swelling index was 8.
  • Example 1 4 parts by weight of styrene, 55 parts by weight of butyl acrylate, and 41 parts by weight of chloro-acrylonitrile (31 parts by weight of SM, 10 parts by weight of AN) (without divinylbenzene) ASA graft copolymer compositions were prepared in the same manner except that the core size was 270 nm, the core thickness was 40 nm, the gel content of the final acrylic graft copolymer was 87%, and the swelling index was 8.
  • Example 8 4 parts by weight of styrene, 55 parts by weight of butyl acrylate, and 41 parts by weight of chloro-acrylonitrile (31 parts by weight of SM, 10 parts by weight of AN) (without divinylbenzene) ASA graft copolymer composition was prepared in the same manner as in Example 8 except that the core size was 270 nm, the core thickness was 40 nm, the gel content of the final acrylic graft copolymer was 87%, and the swelling index was 8 It was.
  • Example 9 4 parts by weight of styrene, 55 parts by weight of butyl acrylate, and 41 parts by weight of chloro-acrylonitrile (31 parts by weight of SM, 10 parts by weight of AN) (without divinylbenzene) ASA graft copolymer compositions were prepared in the same manner as in Example 9 except that the core size was 270 nm, the core thickness was 40 nm, the gel content of the final acrylic graft copolymer was 87%, and the swelling index was 8 It was.
  • Refractive index The powder was compressed and measured with a refractometer (Metricon 2010).
  • Latex was measured using the NICOMP 380 Particle Size Analyzer by dynamic laser light scattering. In this case, the measurement mode was a Gaussian mode and measured with an intensity value.
  • Examples 1 to 11 are excellent in colorability and excellent thermal stability while maintaining the same or more physical properties of the room temperature and low temperature impact strength compared to the comparative example in consideration of the physical properties of the matrix polymer used all could know.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 방향족 비닐 화합물, 비닐시안 화합물, 및 (메타)아크릴산 알킬 에스테르 화합물 중에서 1종 이상의 화합물을 포함하는 시드; 상기 시드를 감싸며, 알킬 아크릴레이트를 포함하는 코어; 및 상기 코어를 감싸며, 방향족 비닐 화합물, 비닐시안 화합물, 및 가교성 화합물을 포함하는 쉘;의 구조를 갖고 각 층의 두께와 굴절율이 적절하게 조절된 ASA계 그라프트 공중합체, 및 이를 포함하는 ASA계 그라프트 공중합체 조성물을 제공한다.

Description

ASA계 그라프트 공중합체 조성물
본 발명은 ASA계 그라프트 공중합체 조성물에 관한 것으로서, 보다 구체적으로는 굴절율 및 겔 함량 등의 조절로 상온 및 저온 충격강도가 우수하면서도 외관 특성이 뛰어난 최소 삼중 구조의 그라프트 공중합체를 포함하는 열안정성이 우수한 ASA계 그라프트 공중합체 조성물에 관한 것이다.
폴리카보네이트 수지는 내충격성, 투명성, 강도, 난연성, 전기적 특성 그리고 내열성이 우수한 수지로 알려져 있으며 자동차를 비롯하여 전기/전자 제품 성형품의 제조에 널리 사용되고 있고 그 수요가 날로 증가하고 있다. 그러나 폴리카보네이트 수지는 그 자체로 용융점도가 높고 성형성이 불량하며 내충격성의 두께 의존성이 매우 큰 단점을 가지고 있고 내약품성 또한 불량하다. 따라서, 폴리카보네이트의 높은 용융 점도를 보완하기 위해 아크릴로니트릴-부타디엔-스티렌, 아크릴로니트릴-아크릴레이트, 스티렌과의 얼로이 제품으로 사용하기도 하며 폴리카보네이트의 내약품성을 보완하기 위해 폴리 부틸렌테레프탈레이트와 같은 수지를 혼합하여 사용하기도 한다.
코어-쉘 구조의 충격보강제는 열가소성 수지의 내충격, 내화학성, 가공성, 내후성을 보강하기 위해 사용되어 왔고 그 용도는 대부분 폴리염화비닐의 충격보강에 한정되어 있었으나 점차 폴리카보네이트 수지, 아크릴로니트릴-부타디엔-스티렌, 아크릴로니트릴-아크릴레이트-스티렌과의 얼로이 및 폴리카보네이트-폴리 부틸렌테레프탈레이트 수지와 같은 엔지니어링 플라스틱 수지로 사용 영역이 넓어지고 있다.
유럽공개특허공보 제465,792호는 폴리카보네이트의 내충격성을 향상시키고 안료와 함께 사용하였을 때 균일한 착색성을 나타내는 고무질의 아크릴계 단량체를 주성분으로 하는 중합체를 제조하고, 이 중합체를 폴리카보네이트에 혼합한 수지 조성물을 개시하고 있다.
대한민국 공개특허공보 제2004-0057069호는 비닐 방향족 단량체와 친수성 단량체로부터 제조되는 시드, 알킬아크릴레이트계 고무성 코어 및 알킬메타크릴레이트계 쉘을 포함하는 다층 구조의 아크릴계 충격보강제로서 엔지니어링 플라스틱의 내충격성과 착색성을 보강함을 게재하고 있다.
그러나, 상기 아크릴계 고무성분을 코어 물질로 갖는 충격보강제는 굴절율이 높은 폴리카보네이트와 같은 수지에 사용하는 경우 대상 매트릭스 수지와 충격보강제와의 굴절율 차이가 크며, 크기가 수백 nm에 달하기 때문에, 투입시 가공품에 haze가 생기거나 불투명하게 만들어져 착색성 개선 효과가 미흡한 수준이며 착색성 향상에 한계가 있다.
본 발명의 목적은 대상 매트릭스 중합체의 굴절율을 고려하여 굴절율 및 겔 함량 등이 조절된 삼중 구조의 그라프트 공중합체를 포함하는, 상온 및 저온 충격강도가 우수하면서도 외관 특성 및 열안정성이 뛰어난 ASA계 그라프트 공중합체 조성물을 제공하는 것이다.
상기 기술적 과제를 이루기 위하여, 본 발명은 ASA계 그라프트 공중합체 조성물로서, 시드, 코어 및 쉘로 구성된 ASA계 그라프트 공중합체; 및 매트릭스 중합체;를 포함하여 이루어지되, 상기 ASA계 그라프트 공중합체는 겔 함량이 85 % 초과이고, 팽윤지수가 8 미만이며, 상기 ASA계 그라프트 공중합체의 시드와 상기 매트릭스 중합체의 굴절율(μD 25) 차이는 0.06 미만이고, 상기 ASA계 그라프트 공중합체의 코어와 상기 매트릭스 중합체의 굴절율(μD 25) 차이는 0.05 초과인 것을 특징으로 한다.
또한, 상기 ASA계 그라프트 공중합체의 쉘과 상기 매트릭스 중합체의 굴절율(μD 25) 차이는 0.05 이하인 것을 특징으로 한다.
또한, 상기 ASA계 그라프트 공중합체의 코어는 두께가 20 내지 50nm인 것을 특징으로 한다.
또한, 상기 ASA계 그라프트 공중합체의 코어의 크기는 150 내지 350 nm인 것을 특징으로 한다.
또한, 상기 ASA계 그라프트 공중합체의 쉘은 가교성 화합물을 포함하여 이루어지는 것을 특징으로 한다.
또 다른 일례로, 상기 ASA계 그라프트 공중합체의 쉘은 방향족 비닐 화합물, 비닐시안 화합물 및 가교성 화합물을 포함하여 이루어지는 것을 특징으로 한다.
상기 ASA계 그라프트 공중합체는 또 다른 일례로, 방향족 비닐 화합물, 비닐시안 화합물, 및 알킬 (메타)아크릴레이트 화합물 중 1종 이상의 화합물을 포함하여 이루어지고, 대상 매트릭스 중합체에 대한 굴절율값(μD 25)과의 차이가 0.05 이하인, 시드; 상기 시드를 감싸며 알킬 아크릴레이트를 포함하여 이루어지고, 두께가 20 내지 50nm이며, 중심으로부터 코어까지의 두께가 75 내지 175 nm이고, 대상 매트릭스 중합체의 굴절율(μD 25)과의 차이가 0.07 이상인, 코어; 및 상기 코어를 감싸며, 방향족 비닐 화합물, 비닐시안 화합물 및 가교성 화합물을 포함하여 이루어지고, 대상 매트릭스 중합체에 대한 굴절율값(μD 25)과의 차이가 0.05 이하인, 쉘;을 포함하는 ASA계 그라프트 공중합체로서, 상기 그라프트 공중합체의 겔 함량 92-98%, 팽윤 지수 2-7인 것을 특징으로 한다.
또한, 상기 매트릭스 중합체는 일례로 폴리카보네이트 수지, 아크릴로니트릴-스티렌 공중합체, 폴리에스테르 수지 및 염화비닐 수지로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또 다른 일례로, 상기 매트릭스 중합체는 상술한 폴리카보네이트, 폴리카보네이트/아크릴로니트릴-스티렌 얼로이, 폴리카보네이트/폴리부틸렌테레프탈레이트 얼로이 및 염화비닐 수지 중에서 선택된 1종 이상일 수 있다.
상기 ASA계 그라프트 공중합체와 상기 매트릭스 중합체는 그 중량비가 0.1:99.9 내지 99.9:0.1, 1:99 내지 40:60, 1:99 내지 30:70, 혹은 2:98 내지 20:80일 수 있다.
본 발명의 ASA계 그라프트 공중합체는 아크릴레이트-스티렌-아크릴로니트릴계 그라프트 공중합체로, 아크릴레이트계 단량체, 스티렌계 단량체(방향족 비닐 화합물) 및 아크릴로니트릴계 단량체를 포함하여 이루어지는 그라프트 공중합체를 의미한다.
이하, 본 발명에 대하여 보다 상세하게 설명한다.
본 발명에서는 기존 충격물성을 유지하면서 시드 굴절율은 대상 매트릭스 중합체의 굴절율에 근접하게 제조하여 착색성을 저하시키지 않고 매트릭스와 굴절율 차이가 큰 코어의 고무 모폴로지를 조절하여 착색성을 향상시켜 외관 특성이 우수한 상기 ASA계 그라프트 공중합체를 제공하도록, 시드와 코어, 쉘의 굴절율 등이 조절되는 동시에 최종 겔 함량 및 팽윤 지수를 조절함으로써 열안정성이 우수한 것을 기술적 특징으로 한다.
우선, 본 발명에서 제공하는 ASA계 그라프트 공중합체는 방향족 비닐 화합물, 비닐시안 화합물, 및 알킬 (메타)아크릴레이트 화합물 중 1종 이상의 화합물을 포함하는 시드; 상기 시드를 감싸며, 알킬 아크릴레이트를 포함하는 고무 코어; 및 상기 코어를 감싸며, 방향족 비닐 화합물, 비닐시안 화합물 및 가교성 화합물을 포함하는 쉘;을 포함하는 아크릴계 그라프트 공중합체일 수 있다.
상기 아크릴계 그라프트 공중합체를 이루는 시드, 코어 및 쉘은 그 중량비가 5~40: 20~60: 20~60 범위 내인 것이 적정 충격을 유지하면서 착색성을 향상시키는데 특히 바람직하다. 상기 시드의 함량이 작은 경우 외관 특성이 불량한 효과가 있으며, 시드의 함량이 과량이면 충격이 저하되게 된다.
또한, 상기 범위 미만 함량의 코어를 갖게 되면, 고무 함량이 적어져 그라프트 공중합체로서 충격보강효과가 떨어질 수 있고, 상기 범위를 초과하여 고무함량을 포함하고 쉘 함량이 떨어지면 응집시 고무끼리 뭉쳐버릴 수 있고, 수지와의 상용성이 현저히 낮아져 충격보강효과의 감소와 함께 원하는 정도의 굴절율을 얻지 못할 수 있다.
상기 코어에 포함되는 상기 알킬 아크릴레이트는 메틸아크릴레이트, 에틸아크릴레이트, 프로필아크릴레이트, 부틸아크릴레이트, 헥실아크릴레이트, 옥틸아크릴레이트 또는 2-에틸헥실아크릴레이트 등을 사용할 수 있으며, 구체적으로는 n-부틸아크릴레이트 혹은 2-에틸헥실 아크릴레이트 등을 사용할 수 있다.
상기 코어는 아크릴계 고무일 수 있고, 일례로 알킬 아크릴레이트 및 가교제가 중합되어 형성된 고무일 수 있다.
상기 코어를 구성하는 알킬 아크릴레이트의 함량이 작은 경우에는 고무 함량이 낮아져 충격이 감소되고, 상기 알킬 아크릴레이트의 함량이 과량이면 쉘의 함량이 낮아져서 고무가 뭉치게 되어 수지 상용성의 감소로 충격보강효과가 떨어지며 굴절율도 낮아지게 된다.
이때 상기 시드의 굴절율과 쉘의 굴절율은 매트릭스 중합체의 굴절율(μD 25)과의 차이가 0.05 내인 것이 충격 보강제에 투명성을 부여하여 착색적인 측면을 고려할 때 바람직하다.
한편, 상기 그라프트 공중합체의 코어 두께(시드의 외표면에서 코어의 외표면까지의 최단거리)가 20 내지 50 nm이며, 중심으로부터 코어까지의 두께가 75 내지 175 nm인(따라서 시드 및 코어를 포함하는 입자의 크기는 150 내지 350 nm이다) 것이 내충격성과 착색성 밸런스 유지에 바람직하다. 이는 하기 실시예에서도 규명된 것으로, 상술한 시드, 코어, 쉘의 두께를 만족할 경우 매트릭스 부분과 굴절율 차이가 큰 코어 부분의 두께(THICKNESS)가 줄어들고 코어 사이즈를 적절하게 조절하여 투명성을 부여하므로 착색성을 획기적으로 개선되는 효과를 규명하였다.
나아가, 시드와 쉘에 사용될 수 있는 방향족 비닐 화합물은 스티렌, α-스티렌, p-스티렌 및 비닐 톨루엔의 스티렌 단량체 유도체로 이루어지는 군으로부터 선택된 1종 이상인 것을 특징으로 한다.
또한, 시드와 쉘에 사용될 수 있는 비닐시안 화합물은, 아크릴로니트릴, 메타크릴로니트릴, 또는 이들의 혼합물인 것을 특징으로 한다.
또한, 시드에 사용될 수 있는 알킬 (메타)아크릴레이트 화합물은 메틸아크릴레이트, 에틸아크릴레이트, 프로필아크릴레이트, 부틸아크릴레이트, 2-에틸헥실아크릴레이트, 메틸메타크릴레이트, 에틸메타크릴레이트 프로필메타크릴레이트, 2-에틸헥실 메타크릴레이트, 메틸에타크릴레이트 및 에틸에타크릴레이트로 이루어지는 군으로부터 선택된 1종 이상인 것을 특징으로 한다.
상기 알킬 (메타)아크릴레이트 화합물은 또 다른 일례로 (메타)아크릴산 메틸에스테르, (메타)아크릴산 에틸에스테르, (메타)아크릴산 프로필에스테르, (메타)아크릴산 2-에틸헥실 에스테르, (메타)아크릴산 데실 에스테르, 및 (메타)아크릴산 라우릴 에스테르로 이루어지는 군으로부터 선택된 1종 이상일 있다.
특히, 본 발명에서는 상기 쉘에 가교성 화합물을 1종 이상 사용하는 것을 특징으로 한다. 참고로, 상기 가교성 화합물은 상술한 시드, 및/또는 코어에도 포함될 수 있다.
상기 가교성 화합물은 디비닐벤젠, 3-부탄디올 디아크릴레이트, 1,3-부탄디올 디메타크릴레이트, 1,4-부탄디올 디아크릴레이트, 1,4-부탄디올 디메타크릴레이트, 아릴 아크릴레이트, 아릴 메타크릴레이트, 트리메틸올프로판 트리아크릴레이트, 테트라에틸렌글리콜 디아크릴레이트, 에틸렌글리콜 디메타크릴레이트, 디에틸렌글리콜 디메타크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 네오펜틸 글리콜 디메타크릴레이트, 트리아릴 이소시아누레이트, 트리아릴아민, 및 디아릴아민으로 이루어지는 군으로부터 1종 이상 선택될 수 있다.
상기 가교성 화합물은 일례로 가교성 비닐 화합물일 수 있다.
상기 가교성 화합물은 일례로 ASA계 그라프트 중합체 제조에 사용된 단량체 총 100 중량부를 기준으로 0.1∼10 중량부, 0.1~7 중량부, 0.5~6 중량부, 혹은 1~4 중량부를 사용한다.
또한, 상기 쉘은 일례로 ASA계 그라프트 공중합체를 형성하는 단량체 총 100 중량부를 기준으로 20 내지 60 중량부, 30 내지 50 중량부 혹은 30 내지 40 중량부의 함량으로 포함될 수 있다. 상기 쉘의 함량이 작은 경우 그라프트 효율이 떨어져 고무가 뭉치게 되어 수지와 상용성의 감소로 충격 보강 효과가 떨어지며, 상기 쉘의 함량이 과량이면 상대적인 고무 함량의 감소로 충격 효율이 떨어지는 문제가 있다.
혹은 상기 쉘은 중합 반응성 및 굴절율을 적정한 수준으로 조절하기 위해 알킬 메타크릴레이트 및 알파 메틸 스티렌 등으로 이루어진 군으로부터 선택된 1종 이상을 더 포함할 수 있다.
상기 ASA계 그라프트 공중합체의 겔 함량은 일례로 85 % 초과, 86~98 %, 92-98%, 혹은 94~97 %이고, 팽윤 지수는 8 미만, 혹은 2-7 범위를 만족하는 것으로, 겔 함량이 상기 범위를 벗어날 경우 충격이 저하되며, 팽윤 지수는 상기 범위 내에서 응집 특성, 충격강도 및 열안정성이 뛰어난 효과가 있다.
나아가, 본 발명에서 상기 시드와 쉘의 굴절율은 또 다른 일례로 매트릭스 중합체의 굴절율값(μD 25)과의 차이가 각각 0.05 이하이고, 코어의 굴절율은 또 다른 일례로 매트릭스 중합체의 굴절율(μD 25)과의 차이가 0.05 초과 내지 0.15, 혹은 0.07 내지 0.14인 것을 특징으로 하는데, 이때 사용 가능한 매트릭스 수지는 일례로 폴리카보네이트, 폴리카보네이트/아크릴로니트릴-스티렌 얼로이, 폴리카보네이트/폴리부틸렌테레프탈레이트 얼로이 및 염화비닐 수지 중에서 선택된 1종 이상일 수 있으며, 또 다른 일례로 본 발명에 따른 삼중 구조의 ASA계 그라프트 공중합체 굴절율이 높기 때문에 대상 매트릭스 중합체와의 굴절율 차이를 줄일 수 있어 특히 폴리카보네이트 수지(PC)인 것이 보다 바람직하다.
이때 상기 시드의 굴절율과 쉘의 굴절율은 매트릭스 중합체의 굴절율(μD 25)과의 차이가 0.06 미만 혹은 0.05 이하인 것이 그라프트 공중합체에 투명성을 부여하여 착색적인 측면을 고려할 때 바람직하고, 코어의 굴절율은 매트릭스 중합체의 굴절율(μD 25)과의 차이가 0.05 초과 혹은 0.07 이상인 경우 착색성 향상의 효과가 현저하게 나타난다.
본 발명의 ASA계 그라프트 공중합체는 일례로 매트릭스 공중합체에 대한 충격보강제로 사용될 수 있다.
본 발명의 ASA계 그라프트 공중합체는 또 다른 일례로 폴리카보네이트, 폴리카보네이트/아크릴로니트릴-스티렌 얼로이, 폴리카보네이트/폴리부틸렌테레프탈레이트 얼로이 및 염화비닐 수지 중에서 선택된 1종 이상의 매트릭스 중합체 80 내지 99.5 중량부에 0.5 내지 20 중량부 범위 내로 사용될 수 있다.
본 발명의 ASA계 그라프트 공중합체는 일례로 다음과 같은 3 단계를 통해 제조될 수 있다. 이때의 함량은 아크릴로니트릴-스티렌-아크릴레이트 공중합체의 제조에 사용된 총 단량체 100 중량부을 기준으로 한 것이다.
우선, 제1 단계로서 시드는 방향족 비닐 화합물, 비닐시안 화합물 및 알킬 (메타)아크릴레이트로 이루어진 군으로부터 선택된 1종 이상 4 내지 30 중량부를 포함하는 단량체 혼합물을 중합함으로써 제조할 수 있다. 이때 상기 제1 단계 내 단량체에 일례로 전해질 0.001 내지 1 중량부, 가교성 화합물 0.01 내지 3 중량부, 개시제 0.01 내지 3 중량부 및 유화제 0.01 내지 5 중량부를 더욱 포함할 수 있다.
그런 다음 제2 단계로서 코어는 일례로 상기 시드의 존재 하에 알킬 아크릴레이트 단량체 20 내지 80 중량부 및 가교성 화합물 0.01 내지 3 중량부를 포함하는 단량체 혼합물을 중합하여 제조할 수 있다. 또한, 상기 제2 단계 내 단량체 혼합물은 일례로 아크릴레이트-스티렌-아크릴로니트릴 공중합체의 제조에 사용된 총 단량체 100 중량부에 대하여, 개시제 0.01 내지 3 중량부 및 유화제 0.01 내지 5 중량부를 더욱 포함할 수 있다.
이어서 제3 단계로서 쉘은 상기 고무 코어의 존재 하에 가교성 화합물 0.1 내지 5 중량부를 포함하는 방향족 비닐 화합물, 비닐시안 화합물, 알킬 (메타)아크릴레이트로 이루어진 군으로부터 선택된 1종 이상 10 내지 70 중량부를 포함하는 단량체 혼합물을 중합함으로써 제조할 수 있다. 나아가, 상기 제3 단계 내 단량체 혼합물은 일례로 개시제 0.01 내지 3 중량부 및 분자량 조절제 0 내지 3 중량부 및 유화제 0.01 내지 5 중량부를 더욱 포함할 수 있다.
본 발명에 의한 ASA계 그라프트 공중합체 조성물에는 난연제, 활제, 항균제, 이형제, 핵제, 가소제, 열안정제, 산화방지제, 광안정제, 상용화제, 안료, 염료 및 무기물 첨가제로 이루어진 군으로부터 선택된 하나 이상의 첨가제가 ASA계 그라프트 공중합체 및 매트릭스 중합체 총 100 중량부를 기준으로 0.1 내지 10 중량부 더 포함할 수 있다.
이 같은 ASA계 그라프트 공중합체 조성물로부터 제조된 성형품은 내충격성, 저온내충격성 및 착색성이 향상되어 외관 특성이 개선되는 동시에 열안정성이 우수한 것을 특징으로 하는 것으로, 이에 한정하는 것은 아니나, 자동차 부품, 전기/전자 부품 또는 건축용 자재 등에 적절하게 사용될 수 있다.
본 발명에 따른 ASA계 그라프트 공중합체 조성물은 굴절율 및 시드, 코어, 쉘 층 등의 조절로 기존 충격물성을 유지하면서 시드 굴절율을 대상 매트릭스의 굴절율에 근접하게 제조하여 착색성을 저하시키지 않으면서, 겔 함량 및 팽윤 지수를 적절히 조절하여 외관 특성 및 열안정성까지 우수하다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것으로, 본 발명을 이에 한정하려는 것은 아니다.
실시예 1
시드로 스티렌 20 중량부, 코어로 부틸 아크릴레이트 45 중량부, 및 쉘로 스티렌-아크릴로니트릴 35 중량부(SM 26중량부, AN 9중량부) 및 디비닐벤젠 3 중량부로 이루어지며, 코어 사이즈(시드를 포함하는 코어의 입경)가 230 nm이며 코어 두께(시드 외표면에서 코어 외표면까지의 최단거리)가 40 nm인 아크릴계 그라프트 공중합체 3 중량부와 폴리카보네이트 수지 97 중량부, 활제 0.2 중량부, 산화방지제 0.5 중량부, 및 자외선 안정제 0.1 중량부 및 안료 0.1 중량부를 혼합하여 ASA계 그라프트 공중합체 조성물을 제조하였다. 참고로, SM은 스티렌 단량체를, AN은 아크릴로니트릴 단량체를, MMA는 메틸메트아크릴레이트를, BA는 부틸아크릴레이트를, 2-EHA는 2-에틸헥실 아크릴레이트를 의미한다.
이때 아크릴계 그라프트 공중합체의 시드와 쉘은 각각 폴리카보네이트 수지와의 굴절율 차이<0.02 이고, 코어와 매트릭스와의 굴절율 차이=0.13 이며, 아크릴계 그라프트 공중합체의 겔 함량이 96%이고 팽윤 지수가 5이었다.
실시예 2
실시예 1에서 시드 조성이 스티렌-아크릴로니트릴-메틸메타크릴레이트(SM 15 중량부, AN 3 중량부, MMA 2 중량부)이며 아크릴계 그라프트 공중합체의 시드와 매트릭스의 굴절율 차이 <0.05인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다. 아크릴계 그라프트 공중합체의 겔 함량이 95%이고 팽윤 지수가 6이었다.
실시예 3
실시예 1에서 시드 조성이 스티렌-부틸아크리레이트(SM 17 중량부, BA 3 중량부)이며 아크릴계 그라프트 공중합체의 시드와 매트릭스의 굴절율 차이 <0.05인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다. 아크릴계 그라프트 공중합체의 겔 함량이 96%이고 팽윤 지수가 6이었다.
실시예 4
실시예 1에서 시드 조성이 스티렌-아크릴로니트릴(SM 15 중량부, AN 15 중량부)이며 아크릴계 그라프트 공중합체의 시드와 매트릭스의 굴절율 차이 <0.05인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다. 아크릴계 그라프트 공중합체의 겔 함량이 97%이고 팽윤 지수가 5이었다.
실시예 5
실시예 1에서 시드 조성이 스티렌-아크릴로니트릴-부틸아크릴레이트(SM 15 중량부, AN 4 중량부, BA 1 중량부)이며 아크릴계 그라프트 공중합체의 시드와 매트릭스의 굴절율 차이 <0.05인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다. 제조된 아크릴계 그라프트 공중합체의 겔 함량은 98%이고 팽윤 지수가 4이었다.
실시예 6
실시예 1에서 코어 조성이 부틸 아크릴레이트-2-에틸헥실 아크릴레이트(BA 15 중량부, 2-EHA 5 중량부)이며, 아크릴계 그라프트 공중합체의 코어와 매트릭스의 굴절율 차이=0.135인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다. 제조된 아크릴계 그라프트 공중합체의 겔 함량이 92%이고 팽윤 지수가 7이었다.
실시예 7
실시예 1에서 아크릴계 그라프트 공중합체 15 중량부, 폴리카보네이트 수지(굴절율=1.59) 70 중량부 및 아크릴로니트릴-스티렌(굴절율=1.57) 15 중량부에 활제 0.5 중량부, 산화방지제 0.5 중량부 및 자외선 안정제 0.5 중량부와 안료 0.1 중량부를 혼합하는 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다.
실시예 8
실시예 1에서 아크릴계 그라프트 공중합체 7 중량부, 폴리카보네이트/폴리부틸렌테레프탈레이트 얼로이(폴리부틸렌테레프탈레이트의 굴절율=1.58) 93 중량부에 활제 0.2 중량부, 산화방지제 0.2 중량부 및 자외선 안정제 0.2 중량부와 안료 0.1 중량부를 혼합하는 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다.
실시예 9
실시예 1에서 폴리염화비닐 수지(굴절율=1.54) 95 중량부에 활제 2.0 중량부, 탄산칼슘 5 중량부, 열안정제 4 중량부, 가공조제 1 중량부, 산화티타늄 4 중량부로 이루어진 마스터배치에 아크릴계 그라프트 공중합체 5 중량부를 혼합하는 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다.
실시예 10
실시예 1에서 코어 사이즈가 300 nm이며 코어 두께가 30 nm인 아크릴계 그라프트 공중합체인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다. 제조된 아크릴계 그라프트 공중합체의 겔 함량이 95%이고 팽윤 지수가 5이었다.
실시예 11
실시예 1에서 코어 사이즈가 260 nm이며 코어 두께가 40 nm인 아크릴계 그라프트 공중합체인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다. 제조된 아크릴계 그라프트 공중합체의 겔 함량이 95%이고 팽윤 지수가 5이었다.
비교예 1
실시예 1에서 시드로 스티렌 4 중량부, 코어로 부틸 아크릴레이트 55 중량부, 쉘로 스티렌-아크릴로니트릴 41 중량부(SM 31 중량부, AN 10 중량부)와 디비닐벤젠 5 중량부로 이루어지며 코어 사이즈가 270 nm이고 코어 두께가 70 nm이며 최종 아크릴계 그라프트 공중합체의 겔 함량이 97%이며 팽윤 지수가 4인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다.
비교예 2
실시예 1에서 시드로 스티렌 30 중량부, 코어로 부틸 아크릴레이트 40 중량부, 및 쉘로 스티렌-아크릴로니트릴 30 중량부(SM 23 중량부, AN 7 중량부)와 디비닐벤젠 3 중량부로 이루어지며, 코어 사이즈가 130 nm이고 코어 두께가 20 nm이며, 최종 아크릴계 그라프트 공중합체의 겔 함량이 94%이며 팽윤 지수가 6인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다.
비교예 3
실시예 1에서 시드로 부틸 아크릴레이트 10 중량부, 코어로 부틸 아크릴레이트 50 중량부, 및 쉘로 스티렌-아크릴로니트릴 40 중량부(SM 30 중량부, AN 10 중량부)와 디비닐벤젠 4 중량부로 이루어지며, 코어 사이즈가 230 nm이고 코어 두께가 0 nm(층의 구분이 불분명해짐)이며, 최종 아크릴계 그라프트 공중합체의 겔 함량이 96%이며 팽윤 지수가 4인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다.
비교예 4
실시예 1에서 시드 조성이 스티렌-부틸 아크릴레이트(SM 10중량부, BA 10 중량부)이며, 아크릴계 그라프트 공중합체의 시드와 매트릭스와의 굴절율 차이=0.06인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다(다른 물성값은 실시예 1과 같고, 이하 동일하게 적용됨).
비교예 5
실시예 1에서 코어 조성이 부틸 아크릴레이트-스티렌(SM 12중량부, BA 8중량부)이며, 아크릴계 그라프트 공중합체의 코어와 매트릭스와의 굴절율 차이=0.05인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다.
비교예 6
실시예 1에서 쉘 제조시 디비닐벤젠을 미사용하고 아크릴계 그라프트 공중합체의 겔 함량이 85%이며 팽윤 지수가 8인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다.
비교예 7
실시예 1에서 시드로 스티렌 4 중량부, 코어로 부틸 아크릴레이트 55 중량부, 및 쉘로 스티렌-아크릴로니트릴 41 중량부(SM 31중량부, AN 10중량부) (디비닐벤젠 미포함)로 이루어지며 코어 사이즈가 270 nm이고 코어 두께가 40 nm이며 최종 아크릴계 그라프트 공중합체의 겔 함량이 87%이며 팽윤 지수가 8인 것을 제외하고는 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다.
비교예 8
실시예 8에서 시드로 스티렌 4 중량부, 코어로 부틸 아크릴레이트 55 중량부, 및 쉘로 스티렌-아크릴로니트릴 41 중량부(SM 31중량부, AN 10중량부)(디비닐벤젠 미포함)로 이루어지며 코어 사이즈가 270 nm이고 코어 두께가 40 nm이며 최종 아크릴계 그라프트 공중합체의 겔 함량이 87%이며 팽윤 지수가 8인 것을 제외하고는 실시예 8과 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다.
비교예 9
실시예 9에서 시드로 스티렌 4 중량부, 코어로 부틸 아크릴레이트 55 중량부, 및 쉘로 스티렌-아크릴로니트릴 41 중량부(SM 31중량부, AN 10중량부) (디비닐벤젠 미포함)로 이루어지며 코어 사이즈가 270 nm이고 코어 두께가 40 nm이며 최종 아크릴계 그라프트 공중합체의 겔 함량이 87%이며 팽윤 지수가 8인 것을 제외하고는 실시예 9와 동일한 방법으로 ASA계 그라프트 공중합체 조성물을 제조하였다.
상기의 ASA계 그라프트 공중합체 조성물의 특징은 아래와 같은 방법들을 통하여 측정하였다:
(1)굴절율: 분말을 압축가공하여 refractometer(Metricon 2010)로 측정하였다.
(2)시드/코어/쉘의 평균 입경: 라텍스를 다이나믹 레이져 라이트 스케터링법으로 NICOMP 380 Particle Size Analyzer를 이용하여 측정하였다. 이때 측정모드는 가우시안(Gaussian) 모드로 인텐서티(intensity)값으로 측정하였다.
(3) Izod 충격 강도(1/8' notched at 23 ℃, kgf·cm/cm): ASTM D-256 방법에 의해 측정하였다.
(4) 수지 착색성: 수지 가공시 0.1 wt% 카본블랙을 첨가하여 색차계를 이용하여 착색성 측정 시편의 L값을 측정하였다. L값이 낮을수록 진한 흑색을 띠게 되어 안료 착색성이 좋음을 의미한다.
(5) 열안정성: 가공온도보다 40 ℃ 높은 온도에서 20분간 체류하여 변화된 정도를 판별하기 위해 색차계로 변색 정도(△E)를 측정하였다. 여기서 △E는 내후성 실험 전후의 CIE Lab 값의 산술 평균값이며, 0에 가까울수록 열안정성이 좋음을 나타낸다.
(6) 겔 함량 및 팽윤지수: ASA계 그라프트 공중합체 분말 1g에 아세톤을 가한 후 상온에서 24 hr 동안 교반한 후에 원심분리하여 아세톤에 녹지 않는 부분만 채취 후에 건조 전/후의 무게를 측정하여 아래의 식으로 겔 함량 및 팽윤지수를 측정하였다.
* 겔 함량(%)=원심분리 후 건조 후 무게/시료무게 *100
* 팽윤지수=원심분리 후 건조 전 무게/원심분리 후 건조 후 무게
표 1
구분 충격강도(23℃) 충격강도(-30℃) 착색성 열안정성
실시예 1 90 25 26.1 2.7
실시예 2 89 23 26.5 2.7
실시예 3 92 28 26.8 2.5
실시예 4 91 26 26.4 2.8
실시예 5 90 27 26.9 2.4
실시예 6 93 32 26.9 2.5
실시예 7 78 35 27.0 3.1
실시예 8 68 40 26.5 2.4
실시예 9 140 74 - 3.5
실시예 10 93 27 26.3 2.8
실시예 11 95 29 26.2 2.7
비교예 1 95 28 28.8 2.9
비교예 2 65 11 26.3 3.3
비교예 3 92 28 29.6 2.6
비교예 4 89 27 28.5 2.7
비교예 5 52 7 26.3 2.6
비교예 6 76 16 27.6 5.2
비교예 7 65 28 30.3 5.9
비교예 8 62 36 28.9 4.7
비교예 9 129 61 - 6.6
상기 표 1로부터 보듯이, 실시예 1 내지 11은 모두 사용된 매트릭스 중합체의 물성을 감안하여 상온 및 저온 충격강도의 물성을 비교예와 비교해 볼 때 동등 이상을 유지하면서도 착색성이 뛰어나며 열 안정성도 우수함을 알 수 있었다.
한편, 표 1에서 보듯이, 비교예 3, 4의 경우는 시드와 매트릭스의 굴절율이 부적절한 경우 착색성이 떨어졌으며, 비교예 5의 경우는 코어로 굴절율이 높은 스티렌을 사용한 경우 충격이 저하됨을 알 수 있었다.
또한, 쉘 중합 시에 가교성 화합물을 사용하지 않아 겔 함량이 부적절한 경우(비교예 6~9) 충격강도와 열안정성이 저하됨을 알 수 있었다.

Claims (14)

  1. 시드, 코어 및 쉘로 구성된 ASA계 그라프트 공중합체; 및 매트릭스 중합체;를 포함하여 이루어지되,
    상기 ASA계 그라프트 공중합체는 겔 함량이 85 % 초과이고, 팽윤지수가 8 미만이며,
    상기 ASA계 그라프트 공중합체의 시드와 상기 매트릭스 중합체의 굴절율(μD 25) 차이는 0.06 미만이고,
    상기 ASA계 그라프트 공중합체의 코어와 상기 매트릭스 중합체의 굴절율(μD 25) 차이는 0.05 초과인 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  2. 제1항에 있어서,
    상기 쉘과 상기 매트릭스 중합체의 굴절율(μD 25) 차이는 0.05 이하인 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  3. 제1항에 있어서,
    상기 코어는 두께가 20 내지 50nm인 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  4. 제1항에 있어서,
    상기 코어의 크기는 150 내지 350 nm인 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  5. 제1항에 있어서,
    상기 쉘은 가교성 화합물을 포함하여 이루어지는 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  6. 제1항에 있어서,
    상기 쉘은 방향족 비닐 화합물, 비닐시안 화합물 및 가교성 화합물을 포함하여 이루어지는 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  7. 제1항에 있어서,
    상기 시드 대 코어 대 쉘의 중량비가 5~40: 20~60: 20~60 범위 내인 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  8. 제5항에 있어서,
    상기 가교성 화합물은 디비닐벤젠, 3-부탄디올 디아크릴레이트, 1,3-부탄디올 디메타크릴레이트, 1,4-부탄디올 디아크릴레이트, 1,4-부탄디올 디메타크릴레이트, 아릴 아크릴레이트, 아릴 메타크릴레이트, 트리메틸올프로판 트리아크릴레이트, 테트라에틸렌글리콜 디아크릴레이트, 에틸렌글리콜 디메타크릴레이트, 디에틸렌글리콜 디메타크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 네오펜틸 글리콜 디메타크릴레이트, 트리알릴 이소시아누레이트, 트리아릴아민, 및 디알릴아민으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  9. 제5항에 있어서,
    상기 가교성 화합물은 ASA계 그라프트 공중합체의 단량체 총 100 중량부를 기준으로 0.1 내지 10 중량부로 포함되는 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  10. 제1항에 있어서,
    상기 매트릭스 중합체는 폴리카보네이트 수지, 아크릴로니트릴-스티렌 공중합체, 폴리에스테르 수지 및 염화비닐 수지 중에서 선택된 1종 이상인 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  11. 제1항에 있어서,
    상기 ASA계 그라프트 공중합체 대 매트릭스 중합체의 중량비는 0.1:99.9 내지 99.9:0.1인 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  12. 제11항에 있어서,
    상기 ASA계 그라프트 공중합체 조성물은 난연제, 활제, 항균제, 이형제, 핵제, 가소제, 열안정제, 산화방지제, 광안정제, 상용화제, 안료, 염료 및 무기물 첨가제로 이루어진 군으로부터 선택된 하나 이상의 첨가제를 더 포함하는 것을 특징으로 하는
    ASA계 그라프트 공중합체 조성물.
  13. 제1항 내지 제12항 중 어느 한 항의 ASA계 그라프트 공중합체 조성물로 제조됨을 특징으로 하는
    성형품.
  14. 제13항에 있어서,
    상기 성형품은 자동차 부품, 전기/전자 부품 또는 건축용 자재인 것을 특징으로 하는
    성형품.
PCT/KR2013/000853 2012-02-03 2013-02-01 Asa계 그라프트 공중합체 조성물 WO2013115610A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/118,593 US9428644B2 (en) 2012-02-03 2013-02-01 ASA graft copolymer composition
ES13743015T ES2704279T3 (es) 2012-02-03 2013-02-01 Composición de copolímero de injerto a base de ASA
EP13743015.3A EP2810965B1 (en) 2012-02-03 2013-02-01 Asa-based graft copolymer composition
CN201380002195.7A CN103649140B (zh) 2012-02-03 2013-02-01 基于asa的接枝共聚物组合物
JP2014512777A JP6029029B2 (ja) 2012-02-03 2013-02-01 Asa系グラフト共重合体組成物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20120011513 2012-02-03
KR10-2012-0011513 2012-02-03
KR1020120093568A KR20130090307A (ko) 2012-02-03 2012-08-27 아크릴계 충격보강제 및 이를 포함하는 열가소성 수지 조성물
KR10-2012-0093568 2012-08-27
KR10-2013-0012050 2013-02-01
KR1020130012050A KR101285494B1 (ko) 2012-02-03 2013-02-01 Asa계 그라프트 공중합체 조성물

Publications (1)

Publication Number Publication Date
WO2013115610A1 true WO2013115610A1 (ko) 2013-08-08

Family

ID=49215983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000853 WO2013115610A1 (ko) 2012-02-03 2013-02-01 Asa계 그라프트 공중합체 조성물

Country Status (8)

Country Link
US (1) US9428644B2 (ko)
EP (1) EP2810965B1 (ko)
JP (1) JP6029029B2 (ko)
KR (1) KR20130090307A (ko)
CN (1) CN103649140B (ko)
DE (1) DE202013012700U1 (ko)
ES (1) ES2704279T3 (ko)
WO (1) WO2013115610A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530957A (ja) * 2012-10-11 2014-11-20 エルジー・ケム・リミテッド 低温衝撃強度が向上したアルキルアクリレート−芳香族ビニル化合物−シアン化ビニル化合物共重合体及びそれを含むポリカーボネート組成物

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101425754B1 (ko) * 2012-08-27 2014-08-05 주식회사 엘지화학 아크릴로니트릴―아크릴레이트―스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
KR101687441B1 (ko) * 2013-11-25 2016-12-19 주식회사 엘지화학 아크릴계 그라프트 공중합체 조성물 및 이를 포함하는 에폭시 수지 조성물
KR101706471B1 (ko) * 2014-10-07 2017-02-13 주식회사 엘지화학 내열성 수지의 제조방법, 내열성 수지 및 내열 abs 수지 조성물
EP3115846A1 (en) * 2015-07-06 2017-01-11 Betek Boya ve Kimya Sanayi A.S. Core-shell type binder and a method for preparation thereof
KR101956735B1 (ko) * 2015-12-10 2019-03-11 주식회사 엘지화학 열가소성 그라프트 공중합체 수지, 이를 제조하는 방법, 및 이를 포함하는 열가소성 수지 조성물
KR101759718B1 (ko) * 2016-01-06 2017-07-20 한화케미칼 주식회사 염화비닐 공중합체의 제조 방법
KR102049869B1 (ko) * 2016-03-15 2019-11-28 주식회사 엘지화학 아크릴레이트-스티렌-아크릴로니트릴계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
US10106678B2 (en) 2016-06-14 2018-10-23 Lg Chem, Ltd. Acrylic processing aid and vinyl chloride resin composition comprising the same
KR102001483B1 (ko) * 2016-12-30 2019-07-18 롯데첨단소재(주) 아크릴계 그라프트 공중합체, 이의 제조 방법, 및 이를 포함하는 열가소성 수지 조성물.
KR102075613B1 (ko) 2017-03-20 2020-02-11 주식회사 엘지화학 Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
KR102074489B1 (ko) 2017-12-14 2020-02-06 주식회사 엘지화학 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품
KR102253835B1 (ko) 2018-12-28 2021-05-20 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품
CN109971086A (zh) 2019-02-14 2019-07-05 山东东临新材料股份有限公司 一种pvc易加工不透明高抗冲mbs及其制备方法
WO2020195798A1 (ja) * 2019-03-26 2020-10-01 株式会社カネカ 熱可塑性樹脂組成物及び成形体
US20220356340A1 (en) * 2020-07-07 2022-11-10 Lg Chem, Ltd. Thermoplastic resin and method of preparing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465792A2 (en) 1990-05-11 1992-01-15 Takeda Chemical Industries, Ltd. Multi-layer polymer, thermoplastic resin composition containing the same, and shaped article produced using the composition
KR20040057069A (ko) 2002-12-24 2004-07-02 주식회사 엘지화학 다층구조를 갖는 충격보강제와 이의 제조방법 및 이를포함하는 열가소성 수지
JP2004244518A (ja) * 2003-02-14 2004-09-02 Techno Polymer Co Ltd 熱可塑性樹脂組成物及び成形体
KR20050071873A (ko) * 2004-01-05 2005-07-08 주식회사 엘지화학 대전방지성이 우수한아크릴레이트-스티렌-아크릴로니트릴계 수지 조성물
KR20070019411A (ko) * 2005-08-12 2007-02-15 주식회사 엘지화학 그라프트 공중합체의 제조방법
KR20070117315A (ko) * 2006-06-08 2007-12-12 제일모직주식회사 저온 및 상온 내충격성과 착색성 및 내후성이 우수한asa 그라프트 공중합체 및 이를 포함한 열가소성 수지조성물

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699247A (en) 1980-01-11 1981-08-10 Mitsubishi Rayon Co Ltd Resin composition for noncoated cladding
JPS5736146A (en) * 1980-08-13 1982-02-26 Mitsubishi Rayon Co Ltd Resin composition for exterior use without coating
JPS62181312A (ja) * 1986-02-06 1987-08-08 Mitsubishi Rayon Co Ltd 耐衝撃性、耐候性および成形性に優れるグラフト共重合体樹脂の製造方法
JPS62235349A (ja) * 1986-04-03 1987-10-15 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
JPH02292351A (ja) * 1989-05-01 1990-12-03 Mitsubishi Rayon Co Ltd 無塗装外装用樹脂組成物
JP2980735B2 (ja) 1990-05-11 1999-11-22 武田薬品工業株式会社 多層構造重合体、これを含む熱可塑性樹脂組成物及びその成形品
JP2998310B2 (ja) 1990-07-25 2000-01-11 武田薬品工業株式会社 ポリカーボネート樹脂組成物及びその成形品
US5835174A (en) 1995-10-12 1998-11-10 Rohm And Haas Company Droplets and particles containing liquid crystal and films and apparatus containing the same
ATE458787T1 (de) * 1999-09-16 2010-03-15 Rohm & Haas Modifizierte san-harzzusammensetzungen und daraus hergestellte gegenstände
KR100426123B1 (ko) * 2001-07-04 2004-04-08 주식회사 엘지화학 내후성 열가소성 수지의 제조방법
KR100484722B1 (ko) * 2002-01-25 2005-04-20 주식회사 엘지화학 다단계 중합에 의해 제조된 아크릴 충격보강제 및 그의제조방법
KR100528771B1 (ko) 2003-08-02 2005-11-15 주식회사 엘지화학 아크릴-실리콘계 복합 충격보강제, 이의 제조방법 및 이를함유하는 염화비닐 수지 조성물
KR100512367B1 (ko) * 2003-08-05 2005-09-05 주식회사 엘지화학 그라프트 공중합체 라텍스 및 그의 건조 분말 제조방법
KR100771355B1 (ko) * 2005-08-29 2007-10-29 주식회사 엘지화학 열가소성 수지 조성물
KR100785612B1 (ko) 2005-08-29 2007-12-12 주식회사 엘지화학 외관 특성이 우수한 난연성 스티렌계 수지용 충격보강제의제조방법
JP5144892B2 (ja) * 2005-12-27 2013-02-13 テクノポリマー株式会社 ランプハウジング用成形材料の製造方法
KR101040827B1 (ko) * 2006-10-30 2011-06-14 주식회사 엘지화학 무광택 그라프트 공중합체, 이의 제조방법, 및 이를포함하는 열가소성 수지 조성물
KR20100113841A (ko) 2009-04-14 2010-10-22 주식회사 엘지화학 열가소성 폴리에스테르 수지용 충격 보강제 및 이를 포함하는 열가소성 수지 조성물
KR101127342B1 (ko) 2009-06-09 2012-03-29 주식회사 엘지화학 무광택 열가소성 수지 조성물 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465792A2 (en) 1990-05-11 1992-01-15 Takeda Chemical Industries, Ltd. Multi-layer polymer, thermoplastic resin composition containing the same, and shaped article produced using the composition
KR20040057069A (ko) 2002-12-24 2004-07-02 주식회사 엘지화학 다층구조를 갖는 충격보강제와 이의 제조방법 및 이를포함하는 열가소성 수지
JP2004244518A (ja) * 2003-02-14 2004-09-02 Techno Polymer Co Ltd 熱可塑性樹脂組成物及び成形体
KR20050071873A (ko) * 2004-01-05 2005-07-08 주식회사 엘지화학 대전방지성이 우수한아크릴레이트-스티렌-아크릴로니트릴계 수지 조성물
KR20070019411A (ko) * 2005-08-12 2007-02-15 주식회사 엘지화학 그라프트 공중합체의 제조방법
KR20070117315A (ko) * 2006-06-08 2007-12-12 제일모직주식회사 저온 및 상온 내충격성과 착색성 및 내후성이 우수한asa 그라프트 공중합체 및 이를 포함한 열가소성 수지조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530957A (ja) * 2012-10-11 2014-11-20 エルジー・ケム・リミテッド 低温衝撃強度が向上したアルキルアクリレート−芳香族ビニル化合物−シアン化ビニル化合物共重合体及びそれを含むポリカーボネート組成物
US9790308B2 (en) * 2012-10-11 2017-10-17 Lg Chem, Ltd. Alkyl acrylate-aromatic vinyl compound-vinyl cyanide compound copolymer with improved low-temperature impact strength and polycarbonate composition comprising the same

Also Published As

Publication number Publication date
JP2014516104A (ja) 2014-07-07
EP2810965A1 (en) 2014-12-10
US20140107276A1 (en) 2014-04-17
JP6029029B2 (ja) 2016-11-24
ES2704279T3 (es) 2019-03-15
CN103649140A (zh) 2014-03-19
CN103649140B (zh) 2015-07-15
EP2810965A4 (en) 2015-08-26
EP2810965B1 (en) 2018-10-03
KR20130090307A (ko) 2013-08-13
DE202013012700U1 (de) 2018-08-24
US9428644B2 (en) 2016-08-30

Similar Documents

Publication Publication Date Title
WO2013115610A1 (ko) Asa계 그라프트 공중합체 조성물
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2014035055A1 (ko) 아크릴로니트릴-아크릴레이트-스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2016052832A1 (ko) 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2014007442A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018038573A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2017099409A1 (ko) 열가소성 그라프트 공중합체 수지, 이를 제조하는 방법, 및 이를 포함하는 열가소성 수지 조성물
WO2017039157A1 (ko) 열가소성 수지 조성물 및 이의 제조방법
WO2012086901A1 (ko) 아크릴계 수지 조성물 및 이를 이용한 성형품
WO2013062170A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018124517A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하여 제조되는 성형품
WO2021020741A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2017082649A1 (ko) 저광 특성, 내후성 및 기계적 물성이 우수한 열가소성 수지 조성물 및 이로부터 제조되는 압출 물품
KR101285494B1 (ko) Asa계 그라프트 공중합체 조성물
WO2022186484A1 (ko) 열가소성 수지 조성물 및 이의 외장재
WO2012091295A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2018043930A1 (ko) 방향족 비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020130400A1 (ko) 열가소성 수지 조성물
WO2017111337A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2017160011A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021045429A1 (ko) 열가소성 수지 조성물 및 이의 성형품
WO2022146043A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2020091371A1 (ko) 열가소성 수지 조성물
WO2021221367A1 (ko) 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013743015

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14118593

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014512777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE