WO2014173229A1 - 合成气制低碳烯烃的费托合成催化剂、改性分子筛载体及制备方法 - Google Patents

合成气制低碳烯烃的费托合成催化剂、改性分子筛载体及制备方法 Download PDF

Info

Publication number
WO2014173229A1
WO2014173229A1 PCT/CN2014/074974 CN2014074974W WO2014173229A1 WO 2014173229 A1 WO2014173229 A1 WO 2014173229A1 CN 2014074974 W CN2014074974 W CN 2014074974W WO 2014173229 A1 WO2014173229 A1 WO 2014173229A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
cerium salt
salt
catalyst
fischer
Prior art date
Application number
PCT/CN2014/074974
Other languages
English (en)
French (fr)
Inventor
杨伟光
刘倩倩
宋德臣
李昌元
詹晓东
金家琪
张岩丰
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Priority to EP14787521.5A priority Critical patent/EP2990103A4/en
Publication of WO2014173229A1 publication Critical patent/WO2014173229A1/zh
Priority to US14/923,404 priority patent/US10220375B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0356Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0358Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7065CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/783CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/334Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/03Catalysts comprising molecular sieves not having base-exchange properties
    • C07C2529/035Crystalline silica polymorphs, e.g. silicalites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • C07C2529/072Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/76Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)

Definitions

  • Fischer-Tropsch synthesis catalyst for preparing low-carbon olefins from syngas, modified molecular sieve carrier and preparation method
  • the invention relates to a Fischer-Tropsch synthesis catalyst for preparing a low-carbon olefin from syngas, a modified molecular sieve carrier and a preparation method thereof, in particular to a catalyst for producing a low-carbon olefin by a synthesis process of a synthesis gas through a Fischer-Tropsch synthesis reaction.
  • Low-carbon olefins are important basic organic chemical raw materials. Often low-carbon olefins are produced by steam cracking of crude oil-derived naphtha, but there is an urgent need for alternative raw materials and processes to overcome supply constraints and environmental issues. At present, the synthesis of olefins from syngas by methanol has been industrialized, but there are problems such as complicated processes, long process routes, and large one-time investment. The Fischer-Tropsch synthesis of one-step olefins can better solve the above problems, but the selectivity of low-carbon olefins tends to be low, which limits its industrial application.
  • the patent CN1040397C uses a Fe-Mn catalyst system supported by a Group A alkaline earth metal oxide such as MgO or a high silica zeolite molecular sieve (or aluminophosphate), which is good under the action of a strong base (Group IA metal) K or Cs ion aid.
  • a strong base Group IA metal
  • K or Cs ion aid The synthesis of low-carbon olefins is selective, the reaction rate is 90% at 300 ⁇ 400 °C, and the low-carbon olefins account for more than 66% of the gas content of the gas phase products, but the CH 4 selectivity in the gas phase products is higher. .
  • the patent CN101219384A uses a vacuum impregnation preparation method to highly disperse the main catalyst component Fe and the auxiliary agent onto the supported activated carbon, thereby obtaining high catalytic activity and good catalytic effect. Under the process conditions of 300 ⁇ 400 °C, pressure l ⁇ 2MPa and syngas space velocity O lOOOh- 1 , the CO conversion rate is 95%, and the low carbon olefins account for 68% or more of the gas phase product hydrocarbon content, but at high temperature. Under the easy accumulation of carbon inactivation.
  • Patent CN1065026A discloses a catalyst for preparing ethylene from syngas and a preparation method thereof, and adds more than ten kinds of chemical elements such as Nb, Ga, Pr, Sc, In, Yb, Ce, La, etc., and the selectivity of ethylene is over 90%, but the CO conversion rate At a lower level, the syngas cycle is bound to increase equipment and operating costs.
  • the object of the present invention is to provide a Fischer-Tropsch synthesis catalyst, a modified molecular sieve carrier and a preparation method for synthesizing low-carbon olefins, which are specifically modified by bismuth salts and/or strontium salts for industrial applications.
  • the preparation method of the molecular sieve carrier and the catalyst significantly improves the catalytic activity and stability of the catalyst.
  • a Fischer-Tropsch synthesis catalyst for synthesizing gaseous low-carbon olefins according to the invention wherein the component is a molecular sieve carrier and an active component, and the molecular sieve is silicon modified by a cerium salt and/or a cerium salt.
  • the active component comprises Fe as a main component, and further comprises active components Mn and Cu and a basic auxiliary agent, wherein the basic auxiliary agent is selected from K; the mass percentage of each component is Fe: 10% ⁇ 35 Wt %, Mn: 1% to 20 wt %, Cu: 1% to 20 wt %, K: 1% to 10 wt %, and the modified molecular sieve is 40% to 80 wt%.
  • the cerium salt and/or cerium salt accounts for 1% to 20% by mass of the cerium salt and/or cerium salt on the modified molecular sieve.
  • the cerium salt and/or cerium salt comprises 10% to 20% by mass of the cerium salt and/or cerium salt on the modified molecular sieve.
  • the preparation method of the cerium salt and/or cerium salt modified molecular sieve carrier of the invention is as follows:
  • the hydrogen type molecular sieve obtained in the step 1) is immersed in the cerium salt and/or the cerium salt solution, and the concentration of the cerium salt and/or the cerium salt solution is 0.1 to 1 mol/L at a temperature of 25 to 85 ° C. Immersed for 15 ⁇ 30h under the condition of lO ⁇ lO ⁇ Pa;
  • step 2) The molecular sieve impregnated in step 2) is dried at a temperature of 70 to 150 ° C for 15 to 30 hours, and calcined at a temperature of 400 to 700 ° C for 1 to 8 hours to prepare a cerium and/or cerium modified molecular sieve.
  • the onium or phosphonium salt is a carbonate or formate.
  • the modified molecular sieve has a drying temperature of 80 to 130 ° C; and the drying time is 20 to 30 hours.
  • the modified molecular sieve roasting treatment temperature is 500 to 700 ° C; and the baking time is 4 to 8 h.
  • the preparation method of the Fischer-Tropsch synthesis catalyst for synthesizing gaseous low-carbon olefin of the present invention comprises the following steps:
  • Fe 10% ⁇ 35 wt% by mass percentage
  • Mn l% ⁇ 20wt%
  • Cu l% ⁇ 20wt%
  • K l% ⁇ 10wt%
  • the base or salt containing the auxiliary K element is completely dissolved in the quantitative water solvent, and a certain amount of the surfactant sodium lauryl sulfate is added while stirring, and the mixture is further stirred to obtain a uniform solution, and the degree of vacuum is 10 - 1 to 10 - 4 Pa.
  • the cerium salt and/or cerium salt modified molecular sieve is immersed in the obtained homogeneous solution under the condition;
  • the iron salt is iron nitrate, iron oxalate or iron citrate; and the manganese salt, copper salt and alkali metal auxiliary salt are oxalate, acetate and carbonate.
  • step 2) the solution drying temperature is 50 to 65 ° C; the drying time is 6 to 8 h; and the baking temperature is 500 to 600 ° C. ; roasting time is 6 ⁇ 8h.
  • step 1) mass percentage is Fe: 10% to 35 wt%, Mn: 1% to 10 wt%, Cu: 1% to 10 wt% %, K: l% ⁇ 10wt%, controlling the modified molecular sieve in the catalyst is 60% ⁇ 80 wt%.
  • the carrier modification means is simple and convenient, and the cost is low; the preparation of the catalyst by the impregnation method requires preparation in a high temperature furnace relative to the molten iron, and the energy consumption is reduced; the preparation process is simple and easy, and industrial production is easy.
  • the catalytic activity and stability of the catalyst during the Fischer-Tropsch synthesis of olefins are significantly improved, and the CO conversion rate is over 93%.
  • the selectivity of low-carbon olefins and the ratio of olefins in the product are increased, and the low-carbon olefins account for C2 ⁇ C4. More than 85% of the hydrocarbon content; at the same time inhibiting the selectivity of formazan.
  • the molecular sieve carrier of the Fischer-Tropsch synthesis catalyst of the synthesis gas low-carbon olefin of the present invention is one or both of Ce and Pr.
  • the preparation of the modified molecular sieve includes the following steps: (1) SSZ-13, SAPO-34 silica-alumina molecular sieve or ZSM-5 and other high-silicon molecular sieves and one selected from the group consisting of ammonium sulfate, ammonium nitrate, ammonium chloride and acetic acid at a temperature of 26 to 99 ° C Under reflux for 3 ⁇ 6h, the concentration of the acid solution is 0.05 ⁇ 5mol/L, filtered, washed, dried, and calcined at 700 ° C for 6 h to obtain a molecular sieve of hydrogen type;
  • the hydrogen type molecular sieve obtained in the step (1) is thoroughly mixed with the solution of 0.1 to 1 mol/L of the cerium salt (or cerium salt) at a temperature of 25 to 85 ° C, and the degree of vacuum is 10 -1 ⁇ 10 to 30 h under 10 - 4 Pa conditions;
  • the molecular sieve obtained in the step (2) is dried at a temperature of 70 to 150 ° C for 15 to 30 hours, and calcined at a temperature of 400 to 700 ° C for 1 to 8 hours.
  • the cerium salt accounts for a mass percentage of the modified molecular sieve: 1% to 20%, more preferably 10 to 20%.
  • the cerium salt (or cerium salt) is a nitrate, a formate, a carbonate and a sulfate, more preferably a carbonate or a formic acid, and the modified molecular sieve has a drying temperature of 70 to 150 ° C, more preferably 80 to 130 ° C; drying time is 15 to 30 h, more preferably 20 to 30 h.
  • the modified molecular sieve baking treatment temperature is 400 to 700 ° C, more preferably 500 to 700 ° C; and the baking time is 1 to 8 h, more preferably 4 to 8 h.
  • the Fischer-Tropsch synthesis catalyst of the present invention comprises Fe as a main component, and further comprises active components Mn and Cu and a basic auxiliary agent and a structural auxiliary agent, wherein the basic auxiliary agent is selected from K, and the structural auxiliary agent is selected from the group consisting of K. Ce (or Pr) modified SSZ-13, SAPO-34, ZSM-5 or a mixture thereof.
  • the catalyst of the present invention may employ a conventional preparation method in the art, preferably a dipping method.
  • the preparation process of the catalyst of the present invention is carried out as follows:
  • the iron salt is iron nitrate, iron oxalate, iron citrate, iron sulfate or the like, and more preferably iron nitrate, iron oxalate or iron citrate.
  • the manganese salt, copper salt and alkali metal auxiliary salt are oxalate, acetate, citrate, nitrate, sulfate,
  • the carbonate is more preferably an oxalate, an acetate or a carbonate.
  • the solution drying temperature is 30 to 70 ° C, more preferably 50 to 65 ° C ; the drying time is 3 to 8 h, more preferably 6 to 8 h ; the calcination temperature is 400 to 600 ° C, more preferably 500 to 600 ° C. The calcination time is 3 to 8 h, more preferably 6 to 8 h.
  • the catalyst is characterized in that the mass percentage of each component is Fe: 10% to 35 wt%, Mn: 1% to 10 wt%, Cu: 1% to 10 wt%, K: 1% to 10 wt%, Molecular sieve: 40% ⁇ 80 wt%.
  • step 1) mass percentage is Fe: 10% ⁇ 35 wt%, Mn: l% ⁇ 10 wt%, Cu: 1% ⁇ 10 wt%, K: 1% ⁇ 10 wt%, more favorable for controlling the catalyst
  • the medium modified molecular sieve has a preferred ratio of 60% to 80 wt%.
  • the catalyst is applied to the reaction of syngas to produce light olefins as follows:
  • the specific composition of the catalyst is shown in Table 1.
  • the FTO catalyst A was tableted, crushed and sieved, and then 1 ml of a catalyst of 30 to 60 mesh was charged into a fixed bed reactor, and reduced at a space velocity of 15011 ⁇ 1 hydrogen for 8 hours at 380 ° C, and then switched to
  • the synthesis gas with a space velocity of lOOOh- 1 (volume ratio H 2 :CO 2:1) was continuously reacted at 340 ° C and 2.0 MPa.
  • the gas phase product was detected on-line by gas chromatography every hour, and C5+, oxygenates and C0 2 were not included in product selectivity.
  • the results of the catalyst A reaction are shown in Table 2, wherein the CO conversion was 96.1%, and the selectivity of the lower olefin in the lower hydrocarbon (excluding formazan) was 90.1%.
  • the specific composition of the catalyst B is shown in Table 1.
  • the activity evaluation process of the catalyst was the same as in Example 1.
  • the results of the reaction of Catalyst B are shown in Table 2, wherein the CO conversion was 95.6%, and the selectivity of the lower olefins in the lower hydrocarbons (excluding formazan) was 86.9%.
  • the specific composition of the catalyst C is shown in Table 1.
  • the activity evaluation process of the catalyst was the same as in Example 1.
  • the results of the reaction of Catalyst C are shown in Table 2, wherein the CO conversion was 94.7%, and the selectivity of the lower olefin in the lower hydrocarbon (excluding formazan) was 84.7%.
  • Pr: molecular sieve 1: 4 weighed cerium nitrate, SAPO-34 silica-alumina molecular sieve, molecular sieve and O. lmol / L ammonium sulfate solution at 80 ° C reflux for 5h, filtered, washed, dried, at 700 After calcination at °C for 6 h, the obtained hydrogen type molecular sieve and the cerium nitrate solution were uniformly mixed, immersed at 60 ° C, 10 - 3 Pa vacuum for 22 h, then dried at 100 ° C for 24 h, and finally calcined at 500 ° C for 5 h. A modified molecular sieve is obtained.
  • the specific composition of the catalyst D is shown in Table 1.
  • the activity evaluation process of the catalyst was the same as in Example 1.
  • the results of the reaction of Catalyst D are shown in Table 2, wherein the CO conversion was 94.9%, and the selectivity of the lower olefins in the lower hydrocarbons (excluding formazan) was 88.8%.
  • Pr: molecular sieve 1: 9 weighed cerium nitrate, ZSM-5 molecular sieve, the molecular sieve and O. lmol / L ammonium nitrate solution were refluxed at 80 ° C for 5 h, filtered, washed, dried, at 700 ° C calcined 6h, and the resulting hydrogen-type molecular sieve praseodymium nitrate solution was mixed at 70 ° C, 10- 2 Pa immersed for 20 h, 22h and then dried at 120 ° C, 3h and finally calcined at 600 ° C, to obtain a modified Molecular sieves.
  • the activity evaluation process of the catalyst was the same as in Example 1.
  • the results of the reaction of Catalyst E are shown in Table 2, wherein the CO conversion was 93.3%, and the selectivity of the light olefin in the lower hydrocarbon (excluding formazan) was 87.2%.
  • Pr: molecular sieve 1: 19, cerium nitrate, ZSM-5 molecular sieve, weighed molecular sieve and O. lmol / L ammonium sulfate solution at 80 ° C for 5 h, filtered, washed, dried, at 700 ° C After calcination for 6 h, the obtained hydrogen type molecular sieve and the cerium nitrate solution were uniformly mixed, immersed at 40 ° C, lO ⁇ Pa vacuum for 28 h, then dried at 80 ° C for 26 h, and finally calcined at 700 ° C for 1 h to obtain a change. Molecular sieves.
  • the activity evaluation process of the catalyst was the same as in Example 1.
  • the results of the reaction of Catalyst F are shown in Table 2, wherein the CO conversion was 94.5%, and the selectivity of the lower olefin in the lower hydrocarbon (excluding formazan) was 85.6%.
  • Catalyst G The specific composition of Catalyst G is shown in Table 1.
  • the activity evaluation process of the catalyst was the same as in Example 1.
  • the results of the reaction of Catalyst G are shown in Table 2, wherein the CO conversion was 95.2%, and the selectivity of the lower olefin in the lower hydrocarbon (excluding formazan) was 88.5%.
  • the specific composition of the catalyst H is shown in Table 1.
  • the activity evaluation process of the catalyst was the same as in Example 1.
  • the results of the catalyst H reaction are shown in Table 2, wherein the CO conversion was 96.3%, and the selectivity of the lower olefin in the lower hydrocarbon (excluding formazan) was 89.3%.
  • Fe: molecular sieve 1: 8 quantitatively weighed the Pr-modified SAPO-34 silica-alumina molecular sieve, under the vacuum condition, the solution was immersed in the molecular sieve, mixed and stirred uniformly, and dried at 60 ° C for 6 h. Then, it was calcined at 550 ° C for 4 hours to obtain a powdery FTO catalyst J.
  • the specific composition of the catalyst J is shown in Table 1.
  • the activity evaluation process of the catalyst was the same as in Example 1.
  • the results of the reaction of Catalyst J are shown in Table 2, wherein the CO conversion was 95%, and the selectivity of the lower olefin in the lower hydrocarbon (excluding formazan) was 85.8%.
  • Pr: molecular sieve 1: 99, cerium nitrate, ZSM-5 molecular sieve, weighed molecular sieve and O. lmol / L ammonium nitrate solution at 80 ° C for 5 h, filtered, washed, dried, at 700 ° C calcined 6h, and the resulting hydrogen-type molecular sieve praseodymium nitrate solution was mixed at 70 ° C, 10- 2 Pa immersed for 20 h, 22h and then dried at 120 ° C, 3h and finally calcined at 600 ° C, to obtain a modified Molecular sieves.
  • the specific composition of the catalyst ruthenium is shown in Table 1.
  • the activity evaluation process of the catalyst was the same as in Example 1.
  • the results of the reaction of the catalyst ruthenium are shown in Table 2, wherein the CO conversion rate was 94.2%, and the selectivity of the lower olefin in the low carbon hydrocarbon (excluding formazan) was 86.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种合成气制低碳烯烃的费托合成催化剂、所用改性分子筛载体及其制备方法,费托合成催化剂组分为分子筛载体和活性组分,分子筛为经铈盐和/或镨盐改性的硅铝分子筛和/或高硅分子筛载体,活性组分以Fe为主要成分,还包含活性组分Mn和Cu以及碱性助剂,改性分子筛为40% ~ 80wt%。改性分子筛上铈盐和/或镨盐的质量百分比为分子筛的1% ~ 20%。铈盐和/或镨盐改性分子筛载体是将硅铝分子筛和/或高硅分子筛经酸溶液处理得到氢型的分子筛,将氢型的分子筛在铈盐和/或镨盐溶液中浸渍,然后干燥、焙烧后得到铈和/或镨改性分子筛。将铈盐和/或镨盐改性分子筛在活性组分的盐溶液中浸渍;然后干燥、焙烧得到合成气制低碳烯烃的费托合成催化剂。

Description

合成气制低碳烯烃的费托合成催化剂、 改性分子筛载体及制备方法 技术领域
本发明涉及一种合成气制低碳烯烃的费托合成催化剂、改性分子筛载体及制备方法, 特别是由合成气通过费托合成反应一步法生产低碳烯烃的催化剂及制备方法。 背景技术
低碳烯烃是重要的基本有机化工原料。 通常低碳烯烃由原油衍生的石脑油经蒸汽裂 解生产, 但是目前迫切需要有替代原料及过程以突破供应限制和环境问题。 目前, 合成 气经甲醇两步法制烯烃已经实现工业化应用, 但存在流程复杂, 工艺路线长, 一次性投 资大等问题。 费托合成一步法制烯烃可以较好的解决上述问题, 但低碳烯烃选择性往往 较低, 限制了其工业化应用。
多年来, 一些研究团队已经尝试开发高温熔铁催化剂, 用于提高费托合成直接生产 低碳烯烃 (FTO) 的产品的选择性, 并且已经取得可喜的成果。 但是, 熔铁催化剂在高 温下的机械性能不佳, 可能会导致固定床操作中催化剂床层的堵塞, 或造成流化床过程 分离设备的积垢, 限制了熔铁催化剂在费托合成生产低碳烯烃反应过程的应用。
专利 CN1040397C采用 MgO等Π A族碱土金属氧化物或高硅沸石分子筛 (或磷铝 沸石) 负载的 Fe— Mn催化剂体系, 在强碱( I A族金属) K或 Cs离子助剂作用下, 具 有良好的合成低碳烯烃选择性, 反应在 300~400°C的条件下, CO转化率 90%, 低碳烯烃 占气相产物烃类质量含量的 66%以上, 但气相产物中 CH4选择性较高。
专利 CN101219384A使用真空浸渍的制备方法, 使主催化剂组分 Fe以及助剂高度 分散到载体活性炭上, 从而获得很高的催化活性和良好的催化效果。 在 300~400°C, 压 力 l~2MPa, 合成气空速 O lOOOh—1的工艺条件下, CO转化率达 95%, 低碳烯烃占气 相产物烃类质量含量的 68%以上, 但在高温下易积碳失活。
专利 CN1065026A公开了合成气制乙烯的催化剂及制备方法, 添加 Nb, Ga, Pr, Sc, In, Yb, Ce, La等十余种化学元素, 乙烯选择性可达 90%以上, 但 CO转化率较低, 合成气的循环势必增加设备和运行成本。
De Jong等 (Krijn P. de Jong et al. Science, 2012, 335,835. ) 将铁纳米颗粒均匀分散在 弱性交互式 α—氧化铝或碳纳米纤维载体上, 使合成气直接转化制取 C2~C4轻烯烃, 在 CO转化率 80%时, 低碳烯烃占烃类产物质量含量 50%, 并拥有相对良好的抗结焦性能。 但制备过程复杂难以实现工业化应用。 发明内容
为了解决上述技术问题, 本发明的目的是给出一种合成气制低碳烯烃的费托合成催 化剂、 改性分子筛载体及制备方法, 具体为能工业化应用的铈盐和 /或镨盐改性分子筛载 体和催化剂的制备方法, 使催化剂的催化活性和稳定性明显改善。
本发明采用的技术方案如下: 本发明的一种合成气制低碳烯烃的费托合成催化剂, 其组分为分子筛载体和活性组分, 分子筛为经铈盐和 /或镨盐改性的硅铝分子筛和 /或高 硅分子筛载体。
所述的活性组分以 Fe为主要成分, 还包含活性组分 Mn和 Cu以及碱性助剂, 所述 的碱性助剂选自 K; 各组分的质量百分比为 Fe: 10%〜35 wt %, Mn: l%〜20 wt %, Cu: l%〜20 wt %, K: l%〜10 wt %, 改性分子筛为 40%~80 wt %。
所述铈盐和 /或镨盐占改性分子筛上铈盐和 /或镨盐质量百分比为分子筛的 1%〜 20%。
优选地, 所述铈盐和 /或镨盐占改性分子筛上铈盐和 /或镨盐质量百分比为分子筛的 10%〜20%。
本发明的铈盐和 /或镨盐改性分子筛载体的制备方法, 步骤如下:
1 ) 将硅铝分子筛 SSZ-13、 SAPO-34和 /或高硅分子筛 ZSM-5置于选自硫酸铵、 硝 酸铵、 氯化铵、 醋酸中的一种酸溶液中在温度为 26〜99°C的条件下回流 3〜6h, 酸溶液 的浓度为 0.05〜5mol/L, 然后过滤, 洗涤, 干燥后, 在温度 400〜700°C焙烧 l〜8h, 得 到氢型的分子筛;
2) 将步骤 1 ) 中得到的氢型分子筛浸渍在铈盐和 /或镨盐溶液中, 铈盐和 /或镨盐溶 液浓度为 0.1〜lmol/L ,在温度为 25〜85 °C,真空度为 lO^ lO^Pa条件下浸渍 15〜30h;
3 ) 将步骤 2) 中浸渍得到的分子筛在温度在为 70〜150°C下干燥 15〜30h, 在温度 为 400〜700°C下焙烧 l〜8h, 制备得铈和 /或镨改性分子筛。
优选地, 所述铈盐或镨盐为碳酸盐或甲酸盐。 优选地, 所述的改性分子筛干燥温度为 80〜130°C; 干燥时间为 20〜30h。所述的改 性分子筛焙烧处理温度为 500〜700°C; 焙烧时间为 4〜8h。
本发明的一种合成气制低碳烯烃的费托合成催化剂的制备方法, 包括以下步骤:
1) 按质量百分比为 Fe:10%〜35 wt%, Mn: l%〜20wt%, Cu: l%〜20wt%, K: l%〜10wt%, 称取 Fe、 Mn、 Cu的无机盐及含助剂 K元素的碱或盐, 完全溶于定量水 溶剂中, 边搅拌边加入一定量表面活性剂月桂醇硫酸钠, 继续搅拌得均匀溶液, 在真空 度为 10―1〜 10—4Pa条件下将铈盐和 /或镨盐改性分子筛浸渍于所得均匀溶液中;
2) 在 30〜70°C下干燥混合溶液 l〜8h, 将干燥后的物质在 400〜600°C温度进行焙 烧 3〜8h;
优选地, 所述的铁盐为硝酸铁、 草酸铁、 柠檬酸铁; 所述的锰盐、 铜盐、 碱金属助 剂盐为为草酸盐、 醋酸盐、 碳酸盐。
优选地, 所述的合成气制低碳烯烃的费托合成催化剂的制备方法中步骤 2) 溶液干 燥温度为 50〜65°C; 干燥时间为为 6〜8h; 焙烧温度为 500〜600°C; 焙烧时间为 6〜8h。
优选地, 所述的合成气制低碳烯烃的费托合成催化剂的制备方法中步骤 1) 质量百 分比为 Fe:10%〜35 wt%, Mn: l%〜10wt%, Cu: l%〜10wt%, K: l%〜10wt%, 控制催化剂中改性分子筛为 60%~80 wt %。
本发明的优点是:
通过载体改性手段简单方便, 成本低; 本发明通过浸渍法制备催化剂相对于熔铁需 要在高温炉中制备, 降低了能耗; 制备过程简单易行, 易工业化生产。
该催化剂在费托合成制取烯烃的反应过程中, 催化活性和稳定性明显改善, CO 转 化率达到 93%以上; 产物中低碳烯烃选择性和烯垸比提高,低碳烯烃占 C2~C4烃含量的 85%以上; 同时抑制甲垸选择性。 具体实施方式
以下用具体实施例来说明本发明的技术方案, 但本发明的保护范围不限于此: 本发明的合成气制低碳烯烃的费托合成催化剂的分子筛载体为 Ce、Pr的一种或两种 改性的硅铝分子筛 (SSZ-13、 SAPO-34), 高硅分子筛 (ZSM-5) 或它们的混合物。
改性分子筛的制备, 包括以下步骤: ( 1 )将 SSZ-13、 SAPO-34硅铝分子筛或 ZSM-5等高硅分子筛与选自硫酸铵、 硝酸 铵、 氯化铵、 醋酸中的一种在温度为 26〜99°C的条件下回流 3〜6h, 酸溶液的浓度为 0.05〜5mol/L, 过滤, 洗涤, 干燥后, 在温度 700°C焙烧 6h, 得到氢型的分子筛;
(2) 将步骤 (1 ) 中得到的氢型分子筛与浓度为 0.1〜lmol/L铈盐 (或镨盐) 溶液 充分混合均匀, 在温度为 25〜85 °C, 真空度为 10―1〜 10—4Pa条件下浸渍 15〜30h;
( 3. ) 将步骤 (2) 中得到的分子筛在温度为 70〜150°C下, 干燥 15〜30h, 在温度 为 400〜700°C下, 焙烧 l〜8h。 制备得所需的铈 (或镨) 改性分子筛;
所述铈盐 (或镨盐) 占改性分子筛质量百分比为: 1%〜20%, 更优选为 10〜20%。 所述铈盐 (或镨盐) 为硝酸盐、 甲酸盐、 碳酸盐和硫酸盐, 更优选为碳酸盐、 甲酸 所述的改性分子筛干燥温度为 70〜150°C, 更优选为 80〜130°C ; 干燥时间为 15〜 30h, 更优选为 20〜30h。
所述的改性分子筛焙烧处理温度为 400〜700°C,更优选为 500〜700°C ;焙烧时间为 l〜8h, 更优选为 4〜8h。
本发明的费托合成催化剂以 Fe为主要成分, 还包含活性组分 Mn和 Cu以及碱性助 剂和结构助剂,所述的碱性助剂选自 K,所述的结构助剂选自 Ce (或 Pr)改性的 SSZ-13、 SAPO-34、 ZSM-5或它们的混合物。
本发明的催化剂可采用本领域的常规制备方法, 优选浸渍法。
本发明的催化剂的制备过程按下述步骤进行:
① .制备 Ce、 Pr改性分子筛载体;
② .按一定质量比称取 Fe、 Mn、 Cu的无机盐及含助剂 K元素的碱或盐, 溶于定量水 溶剂中, 边搅拌边加入一定量表面活性剂, 继续搅拌, 得均匀溶液。 在真空度为 10―1〜 10"4Pa条件下将所得均匀溶液浸渍于步骤①中制得的改性分子筛上。
③ .在 30〜70°C下干燥混合溶液 l〜8h,将干燥后的物质在 400〜600°C温度进行焙烧 3〜8h;
所述的铁盐为硝酸铁、 草酸铁、 柠檬酸铁、 硫酸铁等, 更优选为硝酸铁、 草酸铁、 柠檬酸铁。
所述的锰盐、 铜盐、 碱金属助剂盐为草酸盐、 醋酸盐、 柠檬酸盐、 硝酸盐、 硫酸盐、 碳酸盐, 更优选为草酸盐、 醋酸盐、 碳酸盐。
溶液干燥温度为 30〜70°C, 更优选为 50〜65°C ; 干燥时间为 3〜8h, 更优选为 6〜 8h; 焙烧温度为 400〜600°C, 更优选为 500〜600°C ; 焙烧时间为 3〜8h, 更优选为 6〜 8h。
此催化剂的特点在于其各组分的质量百分比为 Fe: 10%〜35 wt %,Mn: 1%〜10 wt%, Cu: l%〜10 wt%, K: l%〜10 wt%, 改性分子筛: 40%〜80 wt%。
优选地, 步骤 1 ) 质量百分比为 Fe: 10%〜35 wt %, Mn: l%〜10 wt %, Cu: 1%〜 10 wt %, K: 1%〜10 wt %,更有利于控制催化剂中改性分子筛为优选比例 60%~80 wt %。
将催化剂按如下方法应用于合成气制低碳烯烃的反应中:
在内径为 8mm的固定床反应器中加入 lml催化剂于恒温区,反应前用空速为 15001 ·1 氢气在 380°C下将催化剂还原 8h。 还原完成后, 在 340°C, 2MPa的条件下, 以 lOOOh—1 的空速向反应器中连续通入氢碳体积比为 2的合成气进行反应。
实施例 1 :
按质量比 Ce: 分子筛 =1 : 9称取硝酸铈和 SSZ-13硅铝分子筛,将分子筛与 0.1mol/L 硝酸铵溶液在 80°C下回流 5h, 过滤、 洗涤、 干燥后, 在 700°C焙烧 6h, 将所得氢型分子 筛与硝酸铈溶液混合均匀,在 85 °C、 10—4Pa真空度下浸渍 24h,然后在 130°C下干燥 20h, 最后在 550°C下焙烧 6h, 制得改性分子筛。
按质量比 Fe: Mn: Cu: K=28: 5: 5: 5称取草酸铁、 硝酸锰、 柠檬酸铜和碳酸钾, 以水作为溶剂配成溶液, 加入占溶液质量 0.1%的表面活性剂月桂醇硫酸钠, 搅拌。 按质 量比 Fe: 分子筛 =7: 15定量称取 Ce改性的 SSZ-13硅铝分子筛, 在真空条件下, 将溶 液浸入分子筛, 混合搅拌均匀, 在 65 °C条件下干燥 4h, 然后在 600°C下焙烧 3h, 得到粉 末状的 FTO催化剂 A, 催化剂的具体组成见表 1。 将 FTO催化剂 A经压片成型, 破碎 过筛, 然后取 30〜60目的催化剂 lml, 装入固定床反应器中, 在 380°C条件下用空速为 150011·1氢气还原 8h,而后切换为空速 lOOOh—1的合成气(体积比 H2:CO =2: 1 ),在 340°C、 2.0MPa的条件下连续反应。 每小时在气相色谱在线检测一次气相产物, C5+、 含氧化合 物和 C02不计入产物选择性。 催化剂 A的反应结果见表 2, 其中, CO转化率为 96.1%, 低碳烯烃在低碳烃 (不包括甲垸) 中选择性为 90.1%。
实施例 2: 按质量比 Ce: 分子筛 =1 : 19称取硝酸铈, SSZ-13硅铝分子筛,将分子筛与 0.1mol/L 硫酸铵溶液在 80°C下回流 5h, 过滤、 洗涤、 干燥后, 在 700°C焙烧 6h, 将所得氢型分子 筛与硝酸铈溶液混合均匀,在 25 °C、 lO^Pa真空度下浸渍 30h,然后在 150°C下干燥 15h, 最后在 700°C下焙烧 6h, 制得改性分子筛。
按质量比 Fe: Mm Cu: K=22: 6: 6: 2称取硝酸铁、 硝酸锰、 硝酸铜和硝酸钾, 以水作为溶剂配成溶液, 加入占溶液质量 0.1%的表面活性剂月桂醇硫酸钠, 搅拌。 按质 量比 Fe: 分子筛 =22: 65定量称 Ce改性的 SSZ-13硅铝分子筛, 在真空条件下, 将溶液 浸入分子筛, 混合搅拌均匀, 30°C条件下干燥 8h。 然后在 500°C下焙烧 5h, 得到粉末状 的 FTO催化剂 B, 催化剂 B的具体组成见表 1。 催化剂的活性评价过程同实施例 1。 催 化剂 B的反应结果见表 2,其中, CO转化率为 95.6%,低碳烯烃在低碳烃(不包括甲垸) 中选择性为 86.9%。
实施例 3 :
按质量比 Ce:分子筛 =1 : 99称取硝酸铈, SAPO-34硅铝分子筛,将分子筛与 0.1mol/L 硝酸铵溶液在 80°C下回流 5h, 过滤、 洗涤、 干燥后, 在 700°C焙烧 6h, 将所得氢型分子 筛与硝酸铈溶液混合均匀, 在 50°C、 10—3Pa真空度下浸渍 26h, 然后在 70°C下干燥 30h, 最后在 650°C下焙烧 2h, 制得改性分子筛。
按质量比 Fe: Mm Cu: K=18: 6: 3: 1称取柠檬酸铁、 草酸锰、 硫酸铜和碳酸钾, 以水作为溶剂配成溶液, 加入占溶液质量 0.1%的表面活性剂月桂醇硫酸钠, 搅拌。 按质 量比 Fe: 分子筛 =1 : 4定量称 Ce改性的 SAPO-34硅铝分子筛, 在真空条件下, 将溶液 浸入分子筛, 混合搅拌均匀, 40°C条件下干燥 7h。 然后在 400°C下焙烧 8h, 得到粉末状 的 FTO催化剂 C, 催化剂 C的具体组成见表 1。 催化剂的活性评价过程同实施例 1。 催 化剂 C的反应结果见表 2,其中, CO转化率为 94.7%,低碳烯烃在低碳烃(不包括甲垸) 中选择性为 84.7%。
实施例 4:
按质量比 Pr:分子筛 =1 : 4称取硝酸镨, SAPO-34硅铝分子筛,将分子筛与 O. lmol/L 硫酸铵溶液在 80°C下回流 5h, 过滤、 洗涤、 干燥后, 在 700°C焙烧 6h, 将所得氢型分子 筛与硝酸镨溶液混合均匀,在 60°C、 10—3Pa真空度下浸渍 22h,然后在 100°C下干燥 24h, 最后在 500°C下焙烧 5h, 制得改性分子筛。 按质量比 Fe: Mm Cu: K=39: 10: 9: 2称取草酸铁、硫酸锰、柠檬酸铜和碳酸钾, 以水作为溶剂配成溶液, 加入占溶液质量 0.1%的表面活性剂月桂醇硫酸钠, 搅拌。 按质 量比 Fe: 分子筛 =39: 40定量称取 Pr改性的 SAPO-34硅铝分子筛, 在真空条件下, 将 溶液浸入分子筛, 混合搅拌均匀, 60°C条件下干燥 6h。 然后在 550°C下焙烧 4h, 得到粉 末状的 FTO催化剂 D,催化剂 D的具体组成见表 1。催化剂的活性评价过程同实施例 1。 催化剂 D的反应结果见表 2, 其中, CO转化率为 94.9%, 低碳烯烃在低碳烃(不包括甲 垸) 中选择性为 88.8%。
实施例 5 :
按质量比 Pr: 分子筛 =1 : 9称取硝酸铈, ZSM-5分子筛, 将分子筛与 O. lmol/L硝酸 铵溶液在 80°C下回流 5h, 过滤、 洗涤、 干燥后, 在 700°C焙烧 6h, 将所得氢型分子筛与 硝酸镨溶液混合均匀, 在 70°C、 10—2Pa下浸渍 20h, 然后在 120°C下干燥 22h, 最后在 600°C下焙烧 3h, 制得改性分子筛。
按质量比 Fe: Mm Cu: K=l l : 3: 2: 1称取柠檬酸铁、 硝酸锰、 草酸铜和碳酸钾, 以水作为溶剂配成溶液, 加入占溶液质量 0.1%的表面活性剂月桂醇硫酸钠, 搅拌。 按质 量比 Fe: 分子筛 =1 : 3定量称取 Pr改性的 ZSM-5分子筛, 在真空条件下, 将溶液浸入 分子筛, 混合搅拌均匀, 50°C条件下干燥 5h。 然后在 600°C下焙烧 7h, 得到粉末状的 FTO催化剂 E, 催化剂 E的具体组成见表 1。 催化剂的活性评价过程同实施例 1。 催化 剂 E的反应结果见表 2, 其中, CO转化率为 93.3%, 低碳烯烃在低碳烃 (不包括甲垸) 中选择性为 87.2%。
实施例 6:
按质量比 Pr: 分子筛 =1 : 19称取硝酸铈, ZSM-5分子筛, 将分子筛与 O. lmol/L硫 酸铵溶液在 80°C下回流 5h, 过滤、 洗涤、 干燥后, 在 700°C焙烧 6h, 将所得氢型分子筛 与硝酸镨溶液混合均匀, 在 40°C、 lO^Pa真空度下浸渍 28h, 然后在 80°C下干燥 26h, 最后在 700°C下焙烧 lh, 制得改性分子筛。
按质量比 Fe: Mm Cu: K=18: 6: 3: 1称取硫酸铁、 硝酸锰、 柠檬酸铜和碳酸钾, 以水作为溶剂配成溶液, 加入占溶液质量 0.1%的表面活性剂月桂醇硫酸钠, 搅拌。 按质 量比 Fe: 分子筛 =1 : 4定量称取 Pr改性的 ZSM-5分子筛, 在真空条件下, 将溶液浸入 分子筛, 混合搅拌均匀, 70°C条件下干燥 3h。 将干燥后得到的物质在 450°C下焙烧 6h, 得到粉末状的 FTO催化剂 F, 催化剂 F的具体组成见表 1。 催化剂的活性评价过程同实 施例 1。催化剂 F的反应结果见表 2,其中, CO转化率为 94.5%,低碳烯烃在低碳烃(不 包括甲垸) 中选择性为 85.6%。
实施例 7
按质量比 Ce: Pr: 分子筛 =0.5 : 0.5: 99称取硝酸铈, 硝酸镨和 SSZ-13硅铝分子筛, 将分子筛与 O. lmol/L硝酸铵溶液在 80°C下回流 5h, 过滤、 洗涤、 干燥后, 在 700°C焙烧 6h, 将所得氢型分子筛与硝酸铈溶液混合均匀, 在 85 °C、 10—4Pa真空度下浸渍 24h, 然 后在 130°C下干燥 20h, 最后在 550°C下焙烧 6h, 制得改性分子筛。
按质量比 Fe: Mm Cu: K=15 : 10: 5: 5称取草酸铁、 硝酸锰、柠檬酸铜和碳酸钾, 以水作为溶剂配成溶液, 加入占溶液质量 0.1%的表面活性剂月桂醇硫酸钠, 搅拌。 按质 量比 Fe: 分子筛 =3 : 13定量称取 Ce改性的 SSZ-13硅铝分子筛, 在真空条件下, 将溶 液浸入分子筛, 混合搅拌均匀, 在 65 °C条件下干燥 4h, 然后在 600°C下焙烧 3h, 得到粉 末状的 FTO催化剂 G, 催化剂的具体组成见表 1。 催化剂 G的具体组成见表 1。 催化剂 的活性评价过程同实施例 1。催化剂 G的反应结果见表 2,其中, CO转化率为 95.2%, 低 碳烯烃在低碳烃 (不包括甲垸) 中选择性为 88.5%。
实施例 8
按质量比 Ce: Pr: 分子筛 =1 : 1: 18称取硝酸铈, 硝酸镨和 SSZ-13硅铝分子筛, 将分子筛与 O. lmol/L硫酸铵溶液在 80°C下回流 5h, 过滤、 洗涤、 干燥后, 在 700°C焙烧 6h, 将所得氢型分子筛与硝酸铈溶液混合均匀, 在 25 °C、 lO^Pa真空度下浸渍 30h, 然 后在 150°C下干燥 15h, 最后在 700°C下焙烧 6h, 制得改性分子筛。
按质量比 Fe: Mm Cu: K=35 : 1: 5: 4称取硝酸铁、 硝酸锰、 硝酸铜和硝酸钾, 以水作为溶剂配成溶液, 加入占溶液质量 0.1%的表面活性剂月桂醇硫酸钠, 搅拌。 按质 量比 Fe: 分子筛 =7: 11定量称 Ce改性的 SSZ-13硅铝分子筛, 在真空条件下, 将溶液 浸入分子筛, 混合搅拌均匀, 30°C条件下干燥 8h。 然后在 500°C下焙烧 5h, 得到粉末状 的 FTO催化剂 H, 催化剂 H的具体组成见表 1。 催化剂的活性评价过程同实施例 1。 催 化剂 H的反应结果见表 2,其中, CO转化率为 96.3%,低碳烯烃在低碳烃(不包括甲垸) 中选择性为 89.3%。
实施例 9: 按质量比 Ce: Pr: 分子筛 =1 : 1: 8称取硝酸铈, 硝酸镨和 SAPO-34硅铝分子筛, 将分子筛与 O. lmol/L硝酸铵溶液在 80°C下回流 5h, 过滤、 洗涤、 干燥后, 在 700°C焙烧 6h, 将所得氢型分子筛与硝酸铈溶液混合均匀, 在 50°C、 10—3Pa真空度下浸渍 26h, 然 后在 70°C下干燥 30h, 最后在 650°C下焙烧 2h, 制得改性分子筛。
按质量比 Fe: Mm Cu: K=20: 10: 5: 2称取柠檬酸铁、 草酸锰、硫酸铜和碳酸钾, 以水作为溶剂配成溶液, 加入占溶液质量 0.1%的表面活性剂月桂醇硫酸钠, 搅拌。 按质 量比 Fe: 分子筛 =20: 63定量称 Ce改性的 SAPO-34硅铝分子筛, 在真空条件下, 将溶 液浸入分子筛, 混合搅拌均匀, 40°C条件下干燥 7h。 然后在 400°C下焙烧 8h, 得到粉末 状的 FTO催化剂 I, 催化剂 I的具体组成见表 1。 催化剂的活性评价过程同实施例 1。 催 化剂 I的反应结果见表 2, 其中, CO转化率为 96.3%, 低碳烯烃在低碳烃(不包括甲垸) 中选择性为 87.6%。
实施例 10:
按质量比 Ce:分子筛 =1 : 4称取硝酸铈, SAPO-34硅铝分子筛,将分子筛与 0.1mol/L 硫酸铵溶液在 80°C下回流 5h, 过滤、 洗涤、 干燥后, 在 700°C焙烧 6h, 将所得氢型分子 筛与硝酸镨溶液混合均匀,在 60°C、 10—3Pa真空度下浸渍 22h,然后在 100°C下干燥 24h, 最后在 500°C下焙烧 5h, 制得改性分子筛。
按质量比 Fe: Mm Cu: K=10: 5: 3: 2称取草酸铁、 硫酸锰、 柠檬酸铜和碳酸钾, 以水作为溶剂配成溶液, 加入占溶液质量 0.1%的表面活性剂月桂醇硫酸钠, 搅拌。 按质 量比 Fe: 分子筛 =1 : 8定量称取 Pr改性的 SAPO-34硅铝分子筛, 在真空条件下, 将溶 液浸入分子筛, 混合搅拌均匀, 60°C条件下干燥 6h。 然后在 550°C下焙烧 4h, 得到粉末 状的 FTO催化剂 J, 催化剂 J的具体组成见表 1。催化剂的活性评价过程同实施例 1。催 化剂 J的反应结果见表 2, 其中, CO转化率为 95%, 低碳烯烃在低碳烃 (不包括甲垸) 中选择性为 85.8%。
实施例 11 :
按质量比 Pr: 分子筛 =1 : 99称取硝酸铈, ZSM-5分子筛, 将分子筛与 O. lmol/L硝 酸铵溶液在 80°C下回流 5h, 过滤、 洗涤、 干燥后, 在 700°C焙烧 6h, 将所得氢型分子筛 与硝酸镨溶液混合均匀, 在 70°C、 10—2Pa下浸渍 20h, 然后在 120°C下干燥 22h, 最后在 600°C下焙烧 3h, 制得改性分子筛。 按质量比 Fe: Mm Cu: K=23 : 1: 9: 7称取柠檬酸铁、 硝酸锰、 草酸铜和碳酸钾, 以水作为溶剂配成溶液, 加入占溶液质量 0.1%的表面活性剂月桂醇硫酸钠, 搅拌。 按质 量比 Fe: 分子筛 =23 : 60定量称取 Pr改性的 ZSM-5分子筛, 在真空条件下, 将溶液浸 入分子筛, 混合搅拌均匀, 50°C条件下干燥 5h。 然后在 600°C下焙烧 7h, 得到粉末状的 FTO催化剂 K, 催化剂 Κ的具体组成见表 1。 催化剂的活性评价过程同实施例 1。 催化 剂 Κ的反应结果见表 2, 其中, CO转化率为 94.2%, 低碳烯烃在低碳烃 (不包括甲垸) 中选择性为 86.3%。
表 1 催化剂 A~F具体组成
Figure imgf000011_0001
表 2 催化剂的反应性能评价结果
Figure imgf000011_0002
Figure imgf000012_0001

Claims

权利要求书
1.一种合成气制低碳烯烃的费托合成催化剂, 组分为分子筛载体和活性组分, 其特 征在于: 分子筛为经铈盐和 /或镨盐改性的硅铝分子筛和 /或高硅分子筛载体。
2.根据权利要求 1所述的合成气制低碳烯烃的费托合成催化剂, 其特征在于: 活性 组分以 Fe为主要成分, 还包含活性组分 Mn和 Cu以及碱性助剂, 所述的碱性助剂选自 K; 各组分的质量百分比为 Fe:10%〜35 wt %, Mn: l%〜20 wt %, Cu: 1%~20 wt %, K: l%〜10 wt %, 改性分子筛为 40%~80 wt %。
3.根据权利要求 1或 2所述的合成气制低碳烯烃的费托合成催化剂, 其特征在于: 所述铈盐和 /或镨盐占改性分子筛上铈盐和 /或镨盐质量百分比为分子筛的 1%〜20%。
4.根据权利要求 1或 2所述的合成气制低碳烯烃的费托合成催化剂, 其特征在于: 所述铈盐和 /或镨盐占改性分子筛上铈盐和 /或镨盐质量百分比为分子筛的 10%〜20%。
5.—种铈盐和 /或镨盐改性分子筛载体的制备方法, 步骤如下:
1 ) 将硅铝分子筛 SSZ-13、 SAPO-34和 /或高硅分子筛 ZSM-5置于选自硫酸铵、 硝 酸铵、 氯化铵、 醋酸中的一种酸溶液中在温度为 26〜99°C的条件下回流 3〜6h, 酸溶液 的浓度为 0.05〜5mol/L, 然后过滤, 洗涤, 干燥后, 在温度 400〜700°C焙烧 l〜8h , 得 到氢型的分子筛;
2) 将步骤 1 ) 中得到的氢型分子筛浸渍在铈盐和 /或镨盐溶液中, 铈盐和 /或镨盐溶 液浓度为 0.1〜lmol/L ,在温度为 25〜85°C,真空度为 lO^ lO^Pa条件下浸渍 15〜30h;
3 ) 将步骤 2) 中浸渍得到的分子筛在温度在为 70〜150°C下干燥 15〜30h, 在温度 为 400〜700°C下焙烧 l〜8h, 制备得铈和 /或镨改性分子筛。
6.根据权利要求 5所述的铈盐和 /或镨盐改性分子筛载体的制备方法, 其特征在于: 所述铈盐或镨盐为碳酸盐或甲酸盐。
7. 根据权利要求 5或 6所述的铈盐和 /或镨盐改性分子筛载体的制备方法,其特征在 于: 所述的改性分子筛干燥温度为 80〜130°C; 干燥时间为 20〜30h。所述的改性分子筛 焙烧处理温度为 500〜700°C; 焙烧时间为 4〜8h。
8. 一种合成气制低碳烯烃的费托合成催化剂的制备方法, 包括以下步骤:
1) 按质量百分比为 Fe:10%〜35 wt%, Mn: l%〜20wt%, Cu: l%〜20wt%, K: l%〜10wt%, 称取 Fe、 Mn、 Cu的无机盐及含助剂 K元素的碱或盐, 完全溶于定量水 溶剂中, 边搅拌边加入一定量表面活性剂月桂醇硫酸钠, 继续搅拌得均匀溶液, 在真空 度为 lO^ lO^Pa条件下将铈盐和 /或镨盐改性分子筛浸渍于所得均匀溶液中;
2) 在 30〜70°C下干燥混合溶液 l〜8h, 将干燥后的物质在 400〜600°C温度进行焙 烧 3〜8h;
9.根据权利要求 8所述的一种合成气制低碳烯烃的费托合成催化剂的制备方法, 其 特征在于: 所述的铁盐为硝酸铁、 草酸铁、 柠檬酸铁; 所述的锰盐、 铜盐、 碱金属助剂 盐为为草酸盐、 醋酸盐、 碳酸盐。
10. 根据权利要求 8或 9所述的一种合成气制低碳烯烃的费托合成催化剂的制备方 法, 其特征在于: 步骤 2) 溶液干燥温度为 50〜65°C; 干燥时间为为 6〜8h; 焙烧温度 为 500〜600°C; 焙烧时间为 6〜8h。
11.根据权利要求 8或 9所述的一种合成气制低碳烯烃的费托合成催化剂的制备方 法, 其特征在于: 步骤 1) 质量百分比为 Fe:10%〜35 wt %, Mn: 1%〜10 wt %, Cu: l%〜10wt%, K: l%〜10wt%, 控制催化剂中改性分子筛为 60%~80wt%。
PCT/CN2014/074974 2013-04-25 2014-04-09 合成气制低碳烯烃的费托合成催化剂、改性分子筛载体及制备方法 WO2014173229A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14787521.5A EP2990103A4 (en) 2013-04-25 2014-04-09 Fischer-tropsch synthesis catalyst for syngas to low carbon olefins, modified molecular sieve carrier and preparation method thereof
US14/923,404 US10220375B2 (en) 2013-04-25 2015-10-26 Catalyst for fischer-tropsch synthesis and method for preparing the same, and method for preparing modified molecular sieve carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310147608.2 2013-04-25
CN201310147608.2A CN103230810B (zh) 2013-04-25 2013-04-25 合成气制低碳烯烃的费托合成催化剂、改性分子筛载体及制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/923,404 Continuation-In-Part US10220375B2 (en) 2013-04-25 2015-10-26 Catalyst for fischer-tropsch synthesis and method for preparing the same, and method for preparing modified molecular sieve carrier

Publications (1)

Publication Number Publication Date
WO2014173229A1 true WO2014173229A1 (zh) 2014-10-30

Family

ID=48878918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074974 WO2014173229A1 (zh) 2013-04-25 2014-04-09 合成气制低碳烯烃的费托合成催化剂、改性分子筛载体及制备方法

Country Status (4)

Country Link
US (1) US10220375B2 (zh)
EP (1) EP2990103A4 (zh)
CN (1) CN103230810B (zh)
WO (1) WO2014173229A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106540702A (zh) * 2016-11-25 2017-03-29 厦门大学 一氧化碳加氢制液态烃的Co基催化剂及其制备方法
CN113617296A (zh) * 2020-05-08 2021-11-09 北京机械设备研究所 一种二氧化碳催化加氢系统及方法
CN115041221A (zh) * 2022-06-30 2022-09-13 扬州晨化新材料股份有限公司 一种用于连续合成聚氨酯用叔胺类催化剂的含NaY分子筛组合物及其制备方法
CN116351463A (zh) * 2021-12-28 2023-06-30 中国石油天然气股份有限公司 用于甲醇脱氢制备无水甲醛的催化剂及其制备方法和应用

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103230810B (zh) * 2013-04-25 2015-11-04 武汉凯迪工程技术研究总院有限公司 合成气制低碳烯烃的费托合成催化剂、改性分子筛载体及制备方法
CN104437532B (zh) * 2013-09-24 2017-03-15 中国石油化工股份有限公司 固定床制低碳烯烃催化剂、制备方法及其用途
CN103896305A (zh) * 2013-12-24 2014-07-02 天津众智科技有限公司 一种提高sapo-34分子筛比表面积的方法
CN105536853B (zh) * 2016-02-01 2020-06-26 辽宁恒顺达新材料有限公司 一种用于由合成气制备低碳混合醇的分子筛催化剂
CN107837818B (zh) * 2016-09-19 2020-06-09 中国科学院大连化学物理研究所 一种二氧化碳加氢直接制取汽油馏分烃的方法
CN108568313B (zh) * 2017-03-07 2020-12-22 中国科学院大连化学物理研究所 一种催化剂及一氧化碳加氢直接转化制低碳烯烃的方法
CN109304216B (zh) * 2017-07-28 2021-06-22 中国石油化工股份有限公司 合成气一步法生产低碳烯烃的催化剂
CN109304219B (zh) * 2017-07-28 2021-06-18 中国石油化工股份有限公司 合成气制低碳烯烃的催化剂
CN109304215B (zh) * 2017-07-28 2021-06-22 中国石油化工股份有限公司 合成气一步法制低碳烯烃的催化剂
CN109317192B (zh) * 2018-09-30 2021-04-27 宁夏大学 一种co2加氢耦合制取低碳烯烃的核壳催化剂及其制备
CN111068741B (zh) * 2018-10-18 2023-04-07 中国石油化工股份有限公司 一步法合成低碳烯烃的催化剂及其应用
CN111068742B (zh) * 2018-10-18 2023-04-07 中国石油化工股份有限公司 一步法合成低碳烯烃的催化剂和其应用
JP7181161B2 (ja) * 2019-07-03 2022-11-30 Eneos株式会社 触媒、反応装置、及び、炭化水素を製造する方法
CN111672537B (zh) * 2020-06-05 2023-07-14 北京石油化工学院 一种负载型Fe-X/NaY催化剂及其制备方法与应用
CN114380658B (zh) * 2020-10-22 2023-04-11 中国科学院大连化学物理研究所 一种Pr掺杂氧化铈催化异丁烯-甲醇制备异戊二烯的方法
CN112960680B (zh) * 2021-04-09 2022-09-30 陕西延长石油(集团)有限责任公司 一种提升zsm-5分子筛水热稳定性的改性方法
CN114192157B (zh) * 2021-12-29 2023-11-21 上海兖矿能源科技研发有限公司 一种纳米铁基费托合成催化剂及其制备方法和应用
CN115430459B (zh) * 2022-10-13 2024-03-15 大唐南京环保科技有限责任公司 一种协同脱硝脱VOCs催化剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040397C (zh) 1992-09-03 1998-10-28 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
US20040149628A1 (en) * 2003-02-05 2004-08-05 Ou John D. Y. Combined cracking and selective hydrogen combustion for catalytic cracking
CN101219384A (zh) 2007-01-08 2008-07-16 北京化工大学 一种用于合成气一步转化为低碳烯烃反应的催化剂
CN101411988A (zh) * 2008-11-21 2009-04-22 福州大学 一种Ce掺杂于介孔硅基分子筛为载体的Co基费托合成催化剂的制备及其应用
CN101559372A (zh) * 2008-01-23 2009-10-21 亚申科技研发中心(上海)有限公司 用于费托合成的铁/锰催化剂及其制备方法
CN102451749A (zh) * 2010-10-27 2012-05-16 中国科学院大连化学物理研究所 一种用于甲醇转化制烯烃的催化剂及其制备和应用
CN103230810A (zh) * 2013-04-25 2013-08-07 武汉凯迪工程技术研究总院有限公司 合成气制低碳烯烃的费托合成催化剂、改性分子筛载体及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993015836A1 (en) * 1992-02-18 1993-08-19 The Broken Hill Proprietary Company Limited Praseodymium containing cobalt catalysts for the fischer-tropsch process
US7452844B2 (en) * 2001-05-08 2008-11-18 Süd-Chemie Inc High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis
CN1282632C (zh) * 2002-01-03 2006-11-01 埃克森美孚化学专利公司 酸催化剂的稳定方法
CN101265149B (zh) * 2008-04-25 2011-04-20 北京化工大学 一种以合成气为原料两段法制备低碳烯烃的方法
KR101026536B1 (ko) * 2009-06-12 2011-04-01 한국화학연구원 피셔-트롭쉬 합성 반응용 철계열의 촉매와 이의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040397C (zh) 1992-09-03 1998-10-28 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
US20040149628A1 (en) * 2003-02-05 2004-08-05 Ou John D. Y. Combined cracking and selective hydrogen combustion for catalytic cracking
CN101219384A (zh) 2007-01-08 2008-07-16 北京化工大学 一种用于合成气一步转化为低碳烯烃反应的催化剂
CN101559372A (zh) * 2008-01-23 2009-10-21 亚申科技研发中心(上海)有限公司 用于费托合成的铁/锰催化剂及其制备方法
CN101411988A (zh) * 2008-11-21 2009-04-22 福州大学 一种Ce掺杂于介孔硅基分子筛为载体的Co基费托合成催化剂的制备及其应用
CN102451749A (zh) * 2010-10-27 2012-05-16 中国科学院大连化学物理研究所 一种用于甲醇转化制烯烃的催化剂及其制备和应用
CN103230810A (zh) * 2013-04-25 2013-08-07 武汉凯迪工程技术研究总院有限公司 合成气制低碳烯烃的费托合成催化剂、改性分子筛载体及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KRIJN P. DE JONG ET AL., SCIENCE, vol. 335, 2012, pages 835
See also references of EP2990103A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106540702A (zh) * 2016-11-25 2017-03-29 厦门大学 一氧化碳加氢制液态烃的Co基催化剂及其制备方法
CN113617296A (zh) * 2020-05-08 2021-11-09 北京机械设备研究所 一种二氧化碳催化加氢系统及方法
CN113617296B (zh) * 2020-05-08 2023-08-25 北京机械设备研究所 一种二氧化碳催化加氢系统及方法
CN116351463A (zh) * 2021-12-28 2023-06-30 中国石油天然气股份有限公司 用于甲醇脱氢制备无水甲醛的催化剂及其制备方法和应用
CN115041221A (zh) * 2022-06-30 2022-09-13 扬州晨化新材料股份有限公司 一种用于连续合成聚氨酯用叔胺类催化剂的含NaY分子筛组合物及其制备方法
CN115041221B (zh) * 2022-06-30 2023-03-24 扬州晨化新材料股份有限公司 一种用于连续合成聚氨酯用叔胺类催化剂的含NaY分子筛组合物及其制备方法

Also Published As

Publication number Publication date
EP2990103A1 (en) 2016-03-02
EP2990103A4 (en) 2017-01-25
CN103230810A (zh) 2013-08-07
CN103230810B (zh) 2015-11-04
US20160045903A1 (en) 2016-02-18
US10220375B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
WO2014173229A1 (zh) 合成气制低碳烯烃的费托合成催化剂、改性分子筛载体及制备方法
CN104437504B (zh) 一种co2高效转化制低碳烯烃的催化剂
CN102941093B (zh) 萘加氢制备十氢萘的催化剂及制备方法和应用
CN104624196B (zh) 一种高比表面积费托合成催化剂及其制备方法与应用
CN104826633A (zh) 一种草酸二甲酯加氢合成乙二醇用催化剂及其制备方法
JP7320532B2 (ja) 合成ガスから航空灯油を合成する際に使用される触媒の製造方法、その方法により得られた触媒、及びその使用
CN106466611A (zh) 共沉淀-熔融法制备的铁基催化剂、其制备方法及应用
CN106588758A (zh) 一种2‑肼基吡啶衍生物的合成工艺
WO2008071059A1 (fr) Catalyseur à suspension et son procédé de préparation
CN110433802B (zh) 一种加氢催化剂及其制备方法和该催化剂用于α,β-不饱和醛加氢制备饱和醛的方法
CN105294409A (zh) 一种丁香酚合成方法
CN113908840A (zh) 一种Fe基多功能催化剂及其制备方法和应用
CN103143381B (zh) 一种碳氮材料固载杂多酸催化剂及烯烃环氧化合成的方法
CN114984946A (zh) 一种镓基低碳烷烃脱氢催化剂及其制备方法和应用
CN112552140B (zh) 过渡金属氧化物-氧化硅分子筛催化剂催化丙烷脱氢方法
CN104707646B (zh) 一种二甲醚氧化脱氢制备甲苯的催化剂及其制备方法和应用
CN102211036A (zh) 一种改性分子筛催化剂和其前体及其制备方法
CN103831129B (zh) 一种经乙烯和苯液相法合成乙苯的催化剂及其制备和应用
CN114804997A (zh) 环己基苯的制备方法及相应的金属催化剂
CN105669453B (zh) 一种制备甲酸甲酯并联产二甲醚的方法
CN110028375B (zh) 一种逆水煤气变换耦合甲基环己烷脱氢的方法
CN108503518A (zh) 一种复合海泡石基催化剂的制备及其应用
CN107774298A (zh) 多孔金属/分子筛复合催化剂、其制备方法及在合成气制备低碳烯烃中的用途
CN102513146B (zh) 用于合成2,6-二甲基萘的催化剂及其制备方法
CN113200554A (zh) 一种纳米丝光沸石分子筛及其制备方法与应用

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787521

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014787521

Country of ref document: EP