WO2014157412A1 - シクロアルキルアルキルエーテル化合物の製造方法 - Google Patents

シクロアルキルアルキルエーテル化合物の製造方法 Download PDF

Info

Publication number
WO2014157412A1
WO2014157412A1 PCT/JP2014/058679 JP2014058679W WO2014157412A1 WO 2014157412 A1 WO2014157412 A1 WO 2014157412A1 JP 2014058679 W JP2014058679 W JP 2014058679W WO 2014157412 A1 WO2014157412 A1 WO 2014157412A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ion exchange
substituent
exchange resin
acidic ion
Prior art date
Application number
PCT/JP2014/058679
Other languages
English (en)
French (fr)
Inventor
中野 靖之
貴 笹沼
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201480017659.6A priority Critical patent/CN105050994A/zh
Priority to JP2015508627A priority patent/JP6168141B2/ja
Priority to EP14775478.2A priority patent/EP2980056B1/en
Priority to KR1020157030810A priority patent/KR102190665B1/ko
Priority to US14/780,316 priority patent/US9586882B2/en
Publication of WO2014157412A1 publication Critical patent/WO2014157412A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated

Definitions

  • the present invention relates to a cycloalkyl alkyl useful as a cleaning solvent for electronic parts and precision machine parts, a solvent for chemical reaction, a solvent for extraction, a solvent for crystallization, a chromatographic eluent, a solvent for electronic and electrical materials, and a release agent.
  • the present invention relates to a method for producing an ether compound in an industrially advantageous manner.
  • Patent Document 1 discloses a method using crystalline aluminosilicate as a catalyst
  • Patent Document 2 discloses a method using a special aluminosilicate having a large number of acid points on the outer surface
  • Patent Document 3 discloses a catalyst as a catalyst.
  • a method of using an oxide of tungsten in which water of crystallization of a heteropoly acid is adjusted to an average of 3.0 molecules or less per molecule of the heteropoly acid is disclosed in Patent Document 4 as an acid having a water content of 5% by mass or less as a catalyst.
  • Patent Document 4 A method using an ion exchange resin is disclosed.
  • this method has the following problems, that is, when a cycloalkyl alkyl ether is produced on an industrial scale using these solid acid catalysts and an alicyclic olefin as a starting material, the process is continued for a long time.
  • the catalyst activity decreases with time during operation. For this reason, it has been necessary to frequently regenerate a catalyst with reduced activity or to replenish or replace it.
  • Patent Document 5 discloses a method using a raw material alicyclic olefin having a chain conjugated diene compound content of 10 ppm or less
  • Patent Document 6 discloses a raw material alicyclic olefin.
  • the olefin a method using a chain conjugated diene compound and a cyclic conjugated diene compound both containing 10 ppm or less has been proposed.
  • these methods can suppress a decrease in catalyst activity over time, they have not been sufficiently satisfactory in terms of reaction efficiency and productivity.
  • the present invention has been made in view of the above-described prior art, and the object thereof is to reduce the catalytic activity with time, and to achieve a high reaction efficiency even when the raw material supply is increased. It is to provide a method by which alkyl ethers can be produced.
  • a cyclopentene or a cyclohexene and an alcohol in the presence of an acidic ion exchange resin having a specific surface area, an average pore diameter, and a total exchange capacity in a specific range. It has been found that when a compound is reacted in a gaseous state, a cycloalkyl alkyl ether can be stably produced with high reaction efficiency even when the amount of raw material supply is increased, and the present invention has been completed.
  • the cycloalkyl alkyl ether can be produced with high reaction efficiency even when the catalyst activity is less likely to decrease with time and the raw material supply is increased.
  • the target cycloalkyl alkyl ether compound can be produced industrially advantageously.
  • FIG. 1 It is a schematic diagram of the reaction apparatus for enforcing the manufacturing method of this invention. It is a schematic diagram of the apparatus which combined the reaction apparatus and the distillation apparatus for enforcing the manufacturing method of this invention.
  • Space velocity feed gas inflow rate per unit volume of reaction tube (h ⁇ 1 ), hereinafter referred to as “GHSV (h ⁇ 1 )”.
  • GHSV feed gas inflow rate per unit volume of reaction tube
  • the method for producing a cycloalkyl alkyl ether compound of the present invention comprises a cyclopentene which may have a substituent in the presence of an acidic ion exchange resin, or a cyclohexene which may have a substituent, and the formula (2).
  • the acidic ion exchange resin has a specific surface area of 20 to 50 m 2 / g, an average pore size of 20 to 70 nm, and a total exchange capacity of 4.8 to 6.0 eq / What is characterized by using an LR wet resin.
  • an alcohol compound (2) is reacted with an optionally substituted group (cyclopentene or cyclohexene).
  • substituent cyclopentene or cyclohexene
  • substituent used in the present invention include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, a sec- Alkyl groups having 1 to 4 carbon atoms such as butyl group and isobutyl group; carbon numbers such as methoxy group, ethoxy group, n-propoxy group, sec-propoxy group, n-butoxy group, t-butoxy group and sec-butoxy group 1 to 4 alkoxy groups; alkylthio groups having 1 to 4 carbon atoms such as methylthio, ethylthio, n-propylthio, sec-butylthio, and t-
  • cyclopentenes which may have a substituent
  • cyclopentenes include cyclopentene; 1-methylcyclopentene, 2-methylcyclopentene, 3-methylcyclopentene, 3-ethylcyclopentene.
  • Alkylcyclopentene such as 3-sec-butylcyclopentene, 2-t-butylcyclopentene, 1,3-dimethylcyclopentene; 3-methoxycyclopentene, 3-ethoxycyclopentene, 2-sec-butoxycyclopentene, 3-t-butoxycyclopentene, etc.
  • Alkoxycyclopentenes such as 3-methylthiocyclopentene, 3-ethylthiocyclopentene, 2-sec-butylthiocyclopentene, and 3-t-butylthiocyclopentene; Le Orosi black pentene, 2-chloro-cyclopentene, 3-chloro-cyclopentene, 2-bromo-cyclopentene cyclopentene halides such as 3-bromo-cyclopentene; 1-phenyl-cyclopentene such aryl cyclopentene; and the like.
  • cyclohexenes include cyclohexene; 1-methylcyclohexene, 4-methylcyclohexene, 3-ethylcyclohexene, 3-ethyl alkylcyclohexene such as sec-butylcyclohexene, 2-t-butylcyclohexene, 1,3-dimethylcyclohexene; alkoxycyclohexene such as 3-methoxycyclohexene, 3-ethoxycyclohexene, 2-sec-butoxycyclohexene, 3-t-butoxycyclohexene Alkylthiocyclohexene such as 3-methylthiocyclohexene, 3-ethylthiocyclohexene, 2-sec-butylthiocyclohexene, 3-t-butylthiocyclohexene, etc .; 1-fluor
  • the alcohol compound (2) used in the present invention is a compound represented by the formula (2): R 1 OH, wherein R 1 is an alkyl having 1 to 10 carbon atoms which may have a substituent. Or a cycloalkyl group having 3 to 8 carbon atoms which may have a group or a substituent.
  • Examples of the optionally substituted alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n -C1-C10 alkyl groups such as pentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl; methoxymethyl, 1-methoxyethyl Groups, alkoxyalkyl groups such as 2-ethoxy-tert-butyl group, 2-ethoxy-n-hexyl group; methylthiomethyl group, 1-methylthioethyl group, 2-methylthio-tert-butyl group, 4-methylthio-n- Alkylthioalkyl groups such as hexyl group; chloromethyl group, bromomethyl group
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms which may have a substituent include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like.
  • Alkyl groups alkoxycycloalkyl groups such as 2-methoxy-cyclopropyl group and 3-ethoxy-cyclohexyl group; alkylthiocycloalkyl groups such as 2-methylthio-cyclopropyl group and 3-ethylthio-cyclohexyl group; 2-chloro-cyclo And halogenated cycloalkyl groups such as propyl group and 3-bromo-cyclohexyl group.
  • the alcohol compound (2) examples include methanol, ethanol, 2-methoxyethanol, n-propanol, 2-chloro-n-propanol, isopropanol, n-butanol, 3-methylthio-n-butanol, 2-bromo- In the above formula (2) such as n-butanol, sec-butanol, isobutanol, tert-butanol, n-pentanol, n-hexanol, cyclopropyl alcohol, etc., R 1 may have a substituent.
  • cyclopentene or cyclohexene and an alcohol compound in which R 1 is an alkyl group having 1 to 10 carbon atoms in the above formula (2) are used. It is preferable to use cyclopentene and an alcohol compound in which R 1 in the formula (2) is an alkyl group having 1 to 10 carbon atoms.
  • the amount of the alcohol compound (2) used is usually 0.002 to 11 mol, preferably 0.02 to 7 mol, relative to 1 mol of cyclopentenes (cyclohexenes).
  • the reaction temperature is usually in the range of 50 to 150 ° C., preferably 80 to 120 ° C.
  • a specific acidic ion exchange resin is used as a reaction catalyst.
  • the acidic ion exchange resin is composed of an insoluble and porous synthetic resin having an acidic ion exchange group on a fine three-dimensional network polymer base, and is generally called a cation exchange resin.
  • acidic ion exchange resins can be broadly classified into gel type, porous type, and high porous type as classified from the geometrical structure, but any type can be used in the present invention. .
  • the acidic ion exchange resin a strongly acidic cation ion exchange resin having a sulfonic acid group as an ion exchange group on a styrene-based polymer substrate; an acrylic acid group or methacryl as an ion exchange group on an acrylic or methacrylic polymer substrate.
  • a weakly acidic cation exchange resin having an acid group and the like.
  • the acidic ion exchange resin used in the present invention has a specific surface area of 20 to 50 m 2 / g, preferably 30 to 50 m 2 / g, more preferably 35 to 45 m 2 / g, and an average pore size of 20 to 70 nm, preferably 20 to 40 nm, more preferably 22 to 30 nm, and the total exchange capacity is 4.8 to 6.0 eq / LR wet resin, preferably 5.0 to 5.5 eq / LR wet resin, more preferably Is a 5.2 to 5.4 eq / LR wet resin.
  • the specific surface area refers to the surface area (m 2 ) per unit mass (g). It can be said that the larger the specific surface area, the better the function as a catalyst. However, when the specific surface area is large, the object becomes unstable in the system.
  • the average pore diameter means an average value of pore diameters (nm).
  • the total exchange capacity refers to the total number of ion exchange groups involved in ion exchange per unit resin amount in a wet state (resin is usually commercially available in this state). In the present application, the equivalent per 1 L of acidic ion exchange resin, that is, “eq / LR” (R represents a wet resin).
  • the apparent density (g / LR) of the acidic ion exchange resin A is usually 500 to 1000, preferably 600 to 900.
  • the apparent density is generally the density when the solid itself and the internal voids are in volume.
  • the specific surface area, average pore diameter, total exchange capacity, and apparent density of the acidic ion exchange resin can be measured and determined by known methods.
  • the acidic ion exchange resin A is usually used in a proton type, and can be used repeatedly by performing a normal regeneration treatment.
  • the specific surface area is 20 to 50 m 2 / g
  • the average pore diameter is 20 to 70 nm
  • the total exchange capacity is 4.8 to 6.
  • a resin that is a 0 eq / LR wet resin Preferable specific examples of the acidic ion exchange resin used in the present invention include trade name: CT276 (manufactured by Purolite), trade names: Amberist 35, Amberlist 36 (manufactured by Organo), and the like.
  • the acidic ion exchange resin A is preferably used after dehydration.
  • the water content is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less.
  • an acidic ion exchange resin A having a water content of 5% by mass or less it may be dried in advance before use to remove moisture.
  • the method for drying the acidic ion exchange resin A is not particularly limited as long as it is a method that can be dried to obtain the acidic ion exchange resin A having a water content of 5% by mass or less.
  • a normal heat dehydration operation can be employed.
  • the heat dehydration operation include: (i) a method in which the acidic ion exchange resin A is accommodated in a normal dryer and heated at 50 to 120 ° C., preferably 80 to 100 ° C. for several minutes to several hours; (ii) acidic ions A method in which the exchange resin A is heated and dried at a predetermined temperature (room temperature to about 100 ° C.) for several minutes to several hours under inert gas flow conditions; and (iii) a combination of the methods (i) and (ii); Is mentioned.
  • Examples of the inert gas used in the latter method include air, nitrogen, argon, helium, hydrogen, aliphatic hydrocarbons, and aromatic hydrocarbons.
  • the flow rate of the inert gas is not particularly limited, but the space velocity in the apparatus is usually 1 to 200 h ⁇ 1 in terms of gas volume at the heating temperature.
  • the method for bringing the cyclopentenes (cyclohexenes) into contact with the alcohol compound (2) in the presence of the acidic ion exchange resin A is not particularly limited.
  • a method of adding acidic ion exchange resin A to a mixture of cyclopentenes (cyclohexenes) and alcohol compound (2) (hereinafter also referred to as “mixture”) and stirring the mixture (batch type), acidic ion exchange A method (flow type) in which the resin A is packed in a column and the mixture is circulated in the column (hereinafter referred to as “reaction column”) can be used.
  • a flow type in which the resin A is packed in a column and the mixture is circulated in the column
  • reaction column it is more preferable to adopt a flow type from the viewpoint of working efficiency and continuous purification of the reaction product.
  • cyclopentenes (cyclohexenes) and alcohol compound (2) may be mixed at a predetermined ratio.
  • a liquid mixture of cyclopentenes (cyclohexenes) and alcohol compound (2) can be prepared in advance, stored in a tank, and sent from the tank to the reaction column in a gaseous state.
  • Cyclopentenes (Cyclohexenes) and the alcohol compound (2) are stored in separate tanks, from which the cyclopentenes (cyclohexenes) and the alcohol compound (2) are separately fed and immediately before entering the reaction column. Both can be mixed to form a gas state.
  • the water content of the resulting mixture is preferably as low as possible in order to obtain the target product more efficiently, but is preferably 1% by mass or less, particularly preferably 500 ppm or less.
  • a predetermined amount of acidic ion exchange resin A, cyclopentenes (cyclohexenes) and alcohol compound (2) are added to the reactor, and the reaction mixture is stirred at a predetermined temperature and a predetermined pressure.
  • the amount of acidic ion exchange resin A used in this case is usually 0.01 to 200 parts by weight, preferably 0.1 to 150 parts by weight, more preferably 1 to 1 part by weight per 100 parts by weight of cyclopentenes (cyclohexenes). The range is 100 parts by weight.
  • the use ratio of the cyclopentenes (cyclohexenes) and the alcohol compound (2) is not particularly limited, but it is preferable to use the alcohol compound (2) in excess.
  • the use ratio of the cyclopentenes (cyclohexenes) and the alcohol compound (2) is usually 1/1 to 1/50, preferably in a molar ratio of [(cyclopentenes (cyclohexenes)) / (alcohol compound (2)). Is 1/1 to 1/30, more preferably 1/1 to 1/20.
  • the mixture is circulated in the reaction column.
  • a column having a heating device is used, and the mixture is circulated in a gaseous state in the reaction column heated to a predetermined temperature (reaction temperature).
  • the mixed solution is fed from the mixed solution storage tank 1a, and the mixed solution is gasified by the heating / vaporization device 2a. And a method of feeding the reaction column 3a in a gaseous state.
  • the size of the column to be used is not particularly limited, and various sizes can be selected and used depending on the reaction scale.
  • the acidic ion exchange resin A filled in each column may be the same or different.
  • a down flow type in which the mixture is circulated from the upper part of the reaction columns 3b and 3c.
  • the up-flow type (not shown) may be used for circulating the mixture from the lower side of the reaction column. From the viewpoint of obtaining the desired product with a higher conversion and selectivity, the down flow method is preferred.
  • the pressure when the mixture passes through the reaction column is usually in the range of normal pressure to 30 MPa, preferably normal pressure to 10 MPa, more preferably normal pressure to 5 MPa.
  • the space velocity of the mixture in the case of employing a flow-type is generally 50 ⁇ 1000h -1, preferably in the range of 200 ⁇ 800h -1.
  • reaction temperature, a distribution rate, etc. can be changed for every reaction column.
  • the use ratio of the cyclopentenes (cyclohexenes) and the alcohol compound (2) is not particularly limited, but it is preferable to use the cyclopentenes (cyclohexenes) excessively.
  • the cyclopentenes (cyclohexenes) do not polymerize.
  • the alcohol compound (2) is used in excess, the amount of by-produced dialkyl ether is reduced. This is because it increases.
  • the use ratio of cyclopentenes (cyclohexenes) to alcohol compound (2) is usually 1/3 to 20/1, preferably [cyclopentenes (cyclohexenes)] / (alcohol compound (2)) in a molar ratio. It is 1/3 to 10/1, more preferably 1/3 to 5/1, still more preferably 1/3 to 3/1.
  • the target cycloalkyl alkyl ether compound can be isolated by a usual separation / purification method such as solvent extraction and distillation of the reaction solution. Distillation may be performed multiple times.
  • the distillation apparatus for example, a known distillation apparatus such as a continuous rectification apparatus having a rectification column can be used. Further, as shown in FIG. 2, after the mixed liquid was circulated through the reaction column 3g filled with the acidic ion exchange resin A, the obtained reaction liquid was passed through the reaction column 3h, for example, filled with Raschig rings. Distillation can be carried out continuously by the distillation device 4. According to this method, the unreacted cyclopentenes (cyclohexenes) and the alcohol compound (2) can be returned to the reaction column 3g via the pipe 5 and used again for the reaction, and the target product can be obtained at a higher conversion rate. it can.
  • cyclopentenes cyclohexenes
  • the alcohol compound (2) can be returned to the reaction column 3g via the pipe 5 and used again for the reaction, and the target product can be obtained at a higher conversion rate. it can.
  • the reaction can be carried out in the absence of a solvent, or can be carried out by dissolving the starting cyclopentenes or cyclohexenes and diluting with an inert solvent that is not mixed with water.
  • solvent used examples include aliphatic saturated hydrocarbons such as n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; benzene, toluene, ethylbenzene, xylene , Aromatic hydrocarbons such as anisole, cumene, nitrobenzene; cyclopentane, alkyl-substituted cyclopentanes, alkoxy-substituted cyclopentanes, nitro-substituted cyclopentanes, cyclohexane, alkyl-substituted cyclohexanes, alkoxy-substituted cyclohexanes, nitro-substituted cyclohexane , Cycloheptane, alkyl-substituted cycloheptanes,
  • the amount of the diluent used is not particularly limited, and any amount can be selected as long as the reaction is not inhibited.
  • the amount of the solvent used is usually 10 to 90% by volume, preferably 20 to 80% by volume, based on the total amount of the reaction solution.
  • the target formula (1) can be obtained with high reaction efficiency even when there is little decrease in the catalyst activity over time and the raw material supply is increased.
  • a cycloalkyl alkyl ether represented by R 1 —O—R 2 can be produced.
  • R 1 represents the same meaning as described above, and R 2 has a cyclopentyl group or a substituent which may have a substituent derived from the used cyclopentenes or cyclohexenes. It is a cyclohexyl group that may be used.
  • cyclopentyl group or cyclohexyl group alkylcyclopentyl group such as 2-methyl-cyclopentyl group, 3-ethyl-cyclohexyl group, 3-sec-butyl-cyclopentyl group, 2-t-butyl-cyclohexyl group, or alkylcyclohexyl A group; an alkoxycyclopentyl group or an alkoxycyclohexyl group such as a 3-methoxy-cyclopentyl group, a 3-ethoxy-cyclohexyl group, a 2-sec-butoxy-cyclopentyl group, a 3-t-butoxy-cyclohexyl group; a 3-methylthio-cyclopentyl group; Alkylthiocyclopentyl group such as 3-ethylthio-cyclohexyl group, 2-sec-butylthio-cyclopentyl group, 3-t-butylthio-cyclohexyl
  • the water content was measured by the Karl Fischer coulometric titration method using a Hiranuma moisture measuring device (manufactured by Hiranuma Sangyo Co., Ltd., product number: AQ-7), and Hydranal R (manufactured by Sigma Aldrich) and Aqua Wright RS-A was used as a counter electrode solution using Aqualite CN (manufactured by Kanto Chemical Co., Inc.).
  • Acidic ion exchange resin B (manufactured by Organo, trade name: Amberlyst Amberlyst-35, water content 55% by mass) Water content after dehydration 1.8% by mass Acidic ion exchange resin C (manufactured by Organo Corporation, trade name: Amberlyst Amberlyst-36, water content 55% by mass) Water content after dehydration 1.8% by mass Acidic ion exchange resin D (Mitsubishi Chemical Co., Ltd., trade name: Diaion RCP-160M, water content 47% by mass) Water content after dehydration 1.5% by mass Acidic ion exchange resin E (Made by Mitsubishi Chemical Co., Ltd., trade name: Diaion PK-228, water content 40% by mass) Water content after dehydration 1.3% by mass Acidic ion-exchange resin F (manufactured by LANXESS, trade name: Le
  • Example 1 (Examples 2 and 3, Comparative Examples 1 to 3)
  • the reaction was carried out in the same manner as in Example 1 except that the dehydrated acidic ion exchange resin used was changed to that shown in Table 1 below.
  • the STY (kg / hr / m 3 ) of cyclopentyl methyl ether produced by each GHSV (h ⁇ 1 ) is shown in Table 1 below as in Example 1.
  • FIG. 3 is a graph showing the relationship between GHSV (h ⁇ 1 ) and STY (kg / hr / m 3 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、酸性イオン交換樹脂の存在下に、置換基を有していてもよいシクロペンテン、又は置換基を有していてもよいシクロヘキセンと、式(2):ROH(Rは、置換基を有していてもよい炭素数1~10のアルキル基、又は置換基を有していてもよい炭素数3~8のシクロアルキル基を表す。)で表されるアルコール化合物を気体状態で反応させる、式(1):R-O-R(式中、Rは前記と同じ意味を表し、Rは、置換基を有していてもよいシクロペンチル基又は置換基を有していてもよいシクロヘキシル基を表す。)で表されるシクロアルキルアルキルエーテル化合物の製造方法において、酸性イオン交換樹脂として、比表面積が20~50m/gであり、平均孔径が20~70nmであり、且つ総交換容量が4.8~6.0eq/L-R湿潤樹脂であるものを用いるシクロアルキルアルキルエーテル化合物の製造方法である。

Description

シクロアルキルアルキルエーテル化合物の製造方法
 本発明は、電子部品・精密機械部品の洗浄用溶剤、化学反応用溶剤、抽出用溶剤、結晶化用溶剤、クロマトグラフィー溶離液、電子・電気材料の溶剤及び剥離剤等として有用なシクロアルキルアルキルエーテル化合物を工業的に有利に製造する方法に関する。
 従来、固体酸触媒の存在下、オレフィンとアルコールの付加反応によりエーテル類を製造する方法が知られている。例えば、特許文献1には、触媒として結晶性アルミノシリケートを用いる方法が、特許文献2には、触媒として外表面酸点の多い特殊なアルミノシリケートを用いる方法が、特許文献3には、触媒としてヘテロポリ酸の有する結晶水を該ヘテロポリ酸1分子あたり平均3.0分子以下に調整されたタングステンの酸化物を用いる方法が、特許文献4には、触媒として、含水量が5質量%以下の酸性イオン交換樹脂を用いる方法が開示されている。
 しかしながら、この方法には次のような問題があった、すなわち、これらの固体酸触媒を用い、脂環式オレフィンを出発原料としてシクロアルキルアルキルエーテルを工業的規模で製造する場合、長時間の連続運転時に触媒活性が経時的に低下する。そのため、活性の低下した触媒を頻繁に再生させたり、新たに補充や交換をしたりしなければならなかった。
 この問題を解決する方法として、特許文献5には、原料脂環式オレフィンとして、鎖状共役ジエン化合物の含有量が10ppm以下であるものを用いる方法が、特許文献6には、原料脂環式オレフィンとして、鎖状共役ジエン化合物と環状共役ジエン化合物の含有量が共に10ppm以下であるものを用いる方法が提案されている。
 しかしながら、これらの方法は、触媒活性の経時的な低下を抑制できる方法ではあるものの、反応効率や生産性の面で十分に満足のいく製造方法とはいえなかった。
特開昭59-25345号公報 特開昭61-249945号公報 特開平5-163188号公報 国際公開2003-2500号パンフレット 特開2004-292358号公報 国際公開2007-58251号パンフレット
 本発明は、上記した従来技術に鑑みてなされたものであり、その目的は、触媒活性の経時的な低下が少なく、かつ、原料供給を大きくした場合であっても、高い反応効率でシクロアルキルアルキルエーテルを製造することができる方法を提供することである。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、比表面積、平均孔径、及び、総交換容量が特定の範囲にある酸性イオン交換樹脂の存在下に、シクロペンテン類又はシクロヘキセン類とアルコール化合物とを気体状態で反応させると、原料供給量を大きくした場合でも、高い反応効率でシクロアルキルアルキルエーテルを安定して製造できることを見出し、本発明を完成させるに至った。
 かくして本発明によれば、〔1〕~〔4〕のシクロアルキルアルキルエーテル化合物の製造方法が提供される。
〔1〕酸性イオン交換樹脂の存在下に、置換基を有していてもよいシクロペンテン、又は置換基を有していてもよいシクロヘキセンと、式(2):ROH(式中、Rは置換基を有していてもよい炭素数1~10のアルキル基、又は置換基を有していてもよい炭素数3~8のシクロアルキル基を表す。)で表されるアルコール化合物を気体状態で反応させる、式(1):R-O-R(式中、Rは前記と同じ意味を表し、Rは、置換基を有していてもよいシクロペンチル基又は置換基を有していてもよいシクロヘキシル基を表す。)で表されるシクロアルキルアルキルエーテル化合物の製造方法において、
酸性イオン交換樹脂として、比表面積が20~50m/gであり、平均孔径が20~70nmであり、且つ総交換容量が4.8~6.0eq/L-R湿潤樹脂であるものを用いるシクロアルキルアルキルエーテル化合物の製造方法。
〔2〕前記式(1)におけるRが炭素数1~10のアルキル基であり、Rがシクロペンチル基である〔1〕に記載のシクロアルキルアルキルエーテル化合物の製造方法。
〔3〕前記イオン交換樹脂の比表面積が35~45m/gである〔1〕又は〔2〕に記載のシクロアルキルアルキルエーテル化合物の製造方法。
〔4〕前記イオン交換樹脂の総交換容量が5.0~5.5eq/L-R湿潤樹脂である〔1〕~〔3〕いずれかに記載のシクロアルキルアルキルエーテル化合物の製造方法。
 本発明の製造方法によれば、触媒活性の経時的な低下が少なく、かつ、原料供給を大きくした場合であっても、高い反応効率でシクロアルキルアルキルエーテルを製造することができる。
 本発明の製造方法によれば、目的とするシクロアルキルアルキルエーテル化合物を工業的に有利に製造することができる。
本発明の製造方法を実施するための反応装置の模式図である。 本発明の製造方法を実施するための反応装置と蒸留装置を組み合わせた装置の模式図である。 空間速度〔反応管単位容積当たりの原料ガス流入速度(h-1)、以下「GHSV(h-1)」と記載する場合がある。〕と、酸性イオン交換樹脂 1m当たりの反応時間1時間におけるシクロペンチルメチルエーテル生成量(kg)〔以下、「STY(kg/hr/m)」と記載する場合がある。〕との関係を示すグラフ図である。
 以下、本発明を詳細に説明する。
 本発明のシクロアルキルアルキルエーテル化合物の製造方法は、酸性イオン交換樹脂の存在下に、置換基を有していてもよいシクロペンテン、又は置換基を有していてもよいシクロヘキセンと、式(2):ROHで表されるアルコール化合物(以下、「アルコール化合物(2)」ということがある。)とを気体状態で反応させる、式(1):R-O-Rで表されるシクロアルキルアルキルエーテル化合物の製造方法において、酸性イオン交換樹脂として、比表面積が20~50m/gであり、平均孔径が20~70nmであり、且つ総交換容量が4.8~6.0eq/L-R湿潤樹脂であるものを用いることを特徴とする。
 本発明の製造方法は、置換基を有していてもよい(シクロペンテン又はシクロヘキセン)と、アルコール化合物(2)とを反応させるものである。
 本発明に用いる置換基を有していてもよい(シクロペンテン又はシクロヘキセン)の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、sec-ブチル基、イソブチル基等の炭素数1~4のアルキル基;メトキシ基、エトキシ基、n-プロポキシ基、sec-プロポキシ基、n-ブトキシ基、t-ブトキシ基、sec-ブトキシ基等の炭素数1~4のアルコキシ基;メチルチオ基、エチルチオ基、n-プロピルチオ基、sec-ブチルチオ基、t-ブチルチオ基等の炭素数1~4のアルキルチオ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;フェニル基等のアリール基;等が挙げられる。これらの中でも、炭素数1~4のアルキル基が好ましく、メチル基又はエチル基が特に好ましい。
 置換基を有していてもよいシクロペンテン(以下、「シクロペンテン類」ということがある。)の具体例としては、シクロペンテン;1-メチルシクロペンテン、2-メチルシクロペンテン、3-メチルシクロペンテン、3-エチルシクロペンテン、3-sec-ブチルシクロペンテン、2-t-ブチルシクロペンテン、1,3-ジメチルシクロペンテン等のアルキルシクロペンテン;3-メトキシシクロペンテン、3-エトキシシクロペンテン、2-sec-ブトキシシクロペンテン、3-t-ブトキシシクロペンテン等のアルコキシシクロペンテン;3-メチルチオシクロペンテン、3-エチルチオシクロペンテン、2-sec-ブチルチオシクロペンテン、3-t-ブチルチオシクロペンテン等のアルキルチオシクロペンテン;1-フルオロシクロペンテン、2-クロロシクロペンテン、3-クロロシクロペンテン、2-ブロモシクロペンテン、3-ブロモシクロペンテン等のハロゲン化シクロペンテン;1-フェニルシクロペンテン等のアリールシクロペンテン;等が挙げられる。
 置換基を有していてもよいシクロヘキセン(以下、「シクロへキセン類」ということがある。)の具体例としては、シクロヘキセン;1-メチルシクロヘキセン、4-メチルシクロヘキセン、3-エチルシクロヘキセン、3-sec-ブチルシクロヘキセン、2-t-ブチルシクロヘキセン、1,3-ジメチルシクロヘキセン等のアルキルシクロヘキセン;3-メトキシシクロヘキセン、3-エトキシシクロヘキセン、2-sec-ブトキシシクロヘキセン、3-t-ブトキシシクロヘキセン等のアルコキシシクロヘキセン;3-メチルチオシクロヘキセン、3-エチルチオシクロヘキセン、2-sec-ブチルチオシクロヘキセン、3-t-ブチルチオシクロヘキセン等のアルキルチオシクロヘキセン;1-フルオロシクロヘキセン、2-クロロシクロヘキセン、3-クロロシクロヘキセン、4-クロロシクロヘキセン、2-ブロモシクロヘキセン、3-ブロモシクロヘキセン等のハロゲン化シクロヘキセン;1-フェニルシクロヘキセン、4-フェニルシクロヘキセン等のアリールシクロヘキセン;等が挙げられる。
 これらの中でも、シクロペンテン又はシクロヘキセンが好ましく、シクロペンテンが特に好ましい。
 本発明に用いるアルコール化合物(2)は、式(2):ROHで表される化合物であり、式中、Rは、置換基を有していてもよい炭素数1~10のアルキル基、又は置換基を有していてもよい炭素数3~8のシクロアルキル基を表す。
 置換基を有していてもよい炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~10のアルキル基;メトキシメチル基、1-メトキシエチル基、2-エトキシ-tert-ブチル基、2-エトキシ-n-ヘキシル基等のアルコキシアルキル基;メチルチオメチル基、1-メチルチオエチル基、2-メチルチオ-tert-ブチル基、4-メチルチオ-n-ヘキシル基等のアルキルチオアルキル基;クロロメチル基、ブロモメチル基、1-クロロエチル基、2-ブロモ-tert-ブチル基、2-クロロ-n-ヘキシル基等のハロゲン化アルキル基;等が挙げられる。
 置換基を有していてもよい炭素数3~8のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の炭素数3~8のシクロアルキル基;2-メトキシ-シクロプロピル基、3-エトキシ-シクロヘキシル基等のアルコキシシクロアルキル基;2-メチルチオ-シクロプロピル基、3-エチルチオ-シクロヘキシル基等のアルキルチオシクロアルキル基;2-クロロ-シクロプロピル基、3-ブロモ-シクロヘキシル基等のハロゲン化シクロアルキル基;等が挙げられる。
 アルコール化合物(2)の具体例としては、メタノール、エタノール、2-メトキシエタノール、n-プロパノール、2-クロロ-n-プロパノール、イソプロパノール、n-ブタノール、3-メチルチオ-n-ブタノール、2-ブロモ-n-ブタノール、sec-ブタノール、イソブタノール、tert-ブタノール、n-ペンタノール、n-ヘキサノール、シクロプロピルアルコール等の前記式(2)においてRが置換基を有していてもよい炭素数1~10のアルキル基であるアルコール化合物;シクロペンチルアルコール、2-クロロシクロペンチルアルコール、シクロヘキシルアルコール、シクロヘプタノール、シクロオクタノール等の前記式(2)においてRが置換基を有していてもよい炭素数3~8のシクロアルキル基であるアルコール化合物が挙げられる。
 これらの中でも、本発明の効果がより効果的に得られることから、シクロペンテン又はシクロへキセンと、前記式(2)においてRが炭素数1~10のアルキル基であるアルコール化合物とを用いるのが好ましく、シクロペンテンと、前記式(2)においてRが炭素数1~10のアルキル基であるアルコール化合物を用いるのがより好ましい。
 アルコール化合物(2)の使用量は、シクロペンテン類(シクロヘキセン類)1モルに対して、通常0.002~11モル、好ましくは0.02~7モルである。また、反応温度は、通常50~150℃、好ましくは80~120℃の範囲である。
 本発明においては、反応触媒として、特定の酸性イオン交換樹脂を用いる。
 酸性イオン交換樹脂は、微細な三次元網目構造の高分子基体に酸性のイオン交換基を有する不溶性で多孔質の合成樹脂からなり、一般的に陽イオン交換樹脂と称されるものである。
 また、酸性イオン交換樹脂は、幾何学的構造面からの分類としてゲル型、ポーラス型、ハイポーラス型に大別することができるが、本発明においてはいずれの型のものも使用することができる。
 酸性イオン交換樹脂としては、スチレン系の高分子基体に、イオン交換基としてスルホン酸基を有する強酸性カチオンイオン交換樹脂;アクリル系やメタクリル系の高分子基体にイオン交換基としてアクリル酸基又はメタクリル酸基を有する弱酸性陽イオン交換樹脂;等が挙げられる。
 本発明において用いる酸性イオン交換樹脂は、比表面積が20~50m/g、好ましくは30~50m/g、より好ましくは35~45m/gであり、平均孔径が20~70nm、好ましくは20~40nm、より好ましくは22~30nmであり、且つ総交換容量が4.8~6.0eq/L-R湿潤樹脂、好ましくは5.0~5.5eq/L-R湿潤樹脂、より好ましくは5.2~5.4eq/L-R湿潤樹脂であるものである。
 このような酸性イオン交換樹脂(以下、「酸性イオン交換樹脂A」ということがある。)を用いることで、触媒活性の経時的な低下が少なく、かつ、原料供給を大きくした場合であっても、高い反応効率で目的とするシクロアルキルアルキルエーテルを製造することができる。
 ここで、比表面積とは、単位質量(g)あたりの表面積(m)をいう。比表面積は大きいほうが触媒としての機能がよいといえるが、比表面積が大きいとその物体は系内で不安定となる。
 平均孔径とは、細孔の孔径(nm)の平均値をいう。
 総交換容量とは、湿潤状態(樹脂はこの状態での市販が普通)の単位樹脂量あたりのイオン交換にかかわる全部のイオン交換基数をいう。本願においては、酸性イオン交換樹脂1Lあたりの当量、すなわち「eq/L-R」で表す(Rは湿潤樹脂を示す。)。
 また、酸性イオン交換樹脂Aの見かけ密度(g/L-R)は、通常500~1000、好ましくは600~900である。見かけ密度とは、一般的には、固体自身と内部空隙を体積とした場合の密度のことである。
 酸性イオン交換樹脂の、比表面積、平均孔径、総交換容量、及び見かけ密度は、公知の方法で測定し、求めることができる。
 酸性イオン交換樹脂Aは、通常プロトン型で使用され、通常の再生処理を行なうことにより繰り返して使用することができる。
 本発明においては、酸性イオン交換樹脂として市販されているものの中から、比表面積が20~50m/gであり、平均孔径が20~70nmであり、且つ総交換容量が4.8~6.0eq/L-R湿潤樹脂であるものを用いることも好ましい。
 本発明に用いる酸性イオン交換樹脂の好ましい具体例としては、商品名:CT276(ピューロライト社製)、商品名:アンバリスト35、アンバリスト36(オルガノ社製)等が挙げられる。
 また、酸性イオン交換樹脂Aは脱水して用いるのが好ましい。水含有量は、5質量%以下とするのが好ましく、3質量%以下とするのがより好ましく、2質量%以下とするのが特に好ましい。水含有量が5質量%以下の酸性イオン交換樹脂Aを用いることにより、高い選択率及び転化率で目的とするシクロアルキルアルキルエーテル化合物を得ることができる。
 水含有量が5質量%以下の酸性イオン交換樹脂Aを得るには、使用前に予め乾燥して水分を除去すればよい。酸性イオン交換樹脂Aを乾燥する方法は、乾燥して水含有量が5質量%以下の酸性イオン交換樹脂Aが得られる方法であれば特に制約されない。
 乾燥する方法としては、通常の加熱脱水操作を採用できる。加熱脱水操作としては、例えば、(i)通常の乾燥機内に酸性イオン交換樹脂Aを収容し、50~120℃、好ましくは80~100℃で数分から数時間加熱する方法;(ii)酸性イオン交換樹脂Aを不活性な気体流通条件下に、所定温度(室温から100℃程度)で数分から数時間加熱乾燥する方法;及び(iii)前記(i)と(ii)の方法の組み合わせ;等が挙げられる。
 後者の方法において用いる不活性な気体としては、例えば、空気、窒素、アルゴン、ヘリウム、水素、脂肪族炭化水素、芳香族炭化水素等が挙げられる。また、不活性な気体の流通速度は特に限定されないが、加熱温度での気体体積換算で装置内空間速度として、通常、1~200h-1である。
 酸性イオン交換樹脂Aの存在下に、シクロペンテン類(シクロヘキセン類)と、アルコール化合物(2)とを接触させる方法は特に制限されない。例えば、シクロペンテン類(シクロヘキセン類)とアルコール化合物(2)との混合物(以下、「混合物」ともいう。)に、酸性イオン交換樹脂Aを添加して撹拌する方法(バッチ式)や、酸性イオン交換樹脂Aをカラム内に充填し、該カラム(以下、「反応カラム」という。)中に混合物を流通させる方法(流通式)等を用いることができる。これらの中でも、作業効率及び連続的に反応生成物の精製を行なうことができる観点から、流通式を採用するのがより好ましい。
 前記混合物を調製するには、シクロペンテン類(シクロヘキセン類)とアルコール化合物(2)とを所定割合で混合すればよい。この場合、シクロペンテン類(シクロヘキセン類)とアルコール化合物(2)との混合液を予め調製しておき、それをタンクに貯蔵し、該タンクから反応カラムに気体状態で送り込むこともできるし、シクロペンテン類(シクロヘキセン類)とアルコール化合物(2)とを別々のタンクに貯蔵しておき、そこからシクロペンテン類(シクロヘキセン類)とアルコール化合物(2)とを別々に送液し、反応カラム内に入る直前に両者を混合して気体状態とすることもできる。得られる混合物の含水量は、より効率よく目的物を得るためには少ない方が好ましいが、好ましくは1質量%以下、特に好ましくは500ppm以下である。
 バッチ式を採用する場合には、反応器に酸性イオン交換樹脂A、シクロペンテン類(シクロヘキセン類)とアルコール化合物(2)とを所定量添加して、所定温度、所定圧力で反応混合物を撹拌する。この場合の酸性イオン交換樹脂Aの使用量は、通常、シクロペンテン類(シクロヘキセン類)100重量部に対し、0.01~200重量部、好ましくは0.1~150重量部、より好ましくは1~100重量部の範囲である。
 バッチ式の場合、シクロペンテン類(シクロヘキセン類)とアルコール化合物(2)との使用割合は特に制約されないが、アルコール化合物(2)を過剰に用いるのが好ましい。バッチ式の場合には、混合物が加熱されている時間が長くなるため、シクロペンテン類(シクロヘキセン類)が過剰の状態で反応させると、シクロペンテン類(シクロヘキセン類)の重合物が生成するおそれがあるからである。シクロペンテン類(シクロヘキセン類)とアルコール化合物(2)との使用割合は、〔(シクロペンテン類(シクロヘキセン類))/(アルコール化合物(2))のモル比で、通常1/1~1/50、好ましくは1/1~1/30、より好ましくは1/1~1/20である。
 流通式を採用する場合には、混合物を反応カラム中に流通させる。この場合、用いるカラムは加熱装置を有するものを使用し、所定温度(反応温度)に加熱した反応カラム中に混合物を気体状態で流通させる。
 この気相-固相反応を実施する方法としては、例えば、図1(a)に示すように、混合液の貯蔵タンク1aから混合液を送液し、加熱・気化装置2aにより混合液を気体状態とし、気体状態で反応カラム3aに送り込む方法が挙げられる。複数の反応カラムを使用する場合には、反応カラムのみならず、反応カラム間を連結する連結管も所定温度に保温しておくのが好ましい。
 流通式により実施するより具体的な方法としては、図1(a)に示す、酸性イオン交換樹脂Aを充填した反応カラム3aを単独で用いる方法の他、図1(b)に示すように、複数の酸性イオン交換樹脂Aを充填した複数の反応カラム3b、3cを直列に連結させて反応を行なう方法、図1(c)に示すように、複数の反応カラム3d、3e、3fを直列と並列に連結して反応を行う方法等が挙げられる。複数の反応カラムを組み合わせる場合には、シクロペンテン類〔(シクロヘキセン類)又はアルコール化合物(2)〕の転化率をさらに向上させることができる。
 用いるカラムの大きさは特に限定されず、反応規模に応じて種々の大きさのものを選択して使用できる。複数の反応カラムを組み合わせて用いる場合には、それぞれのカラムに充填する酸性イオン交換樹脂Aは同じであっても、異なる種類のものであってもよい。
 また、混合物を酸性イオン交換樹脂Aを充填した反応カラム中を流通させる方法としては、図1(b)に示すごとく、反応カラム3b、3cの上部から混合物を流通させるダウンフロー式であっても、反応カラムの下部側から混合物を流通させるアップフロー式(図示を省略)であってもよい。より高い転化率及び選択率で目的物が得られる観点から、ダウンフロー方式が好ましい。
 混合物が反応カラム中を通過するときの圧力は、通常、常圧から30MPa、好ましくは常圧から10MPa、より好ましくは常圧から5MPaの範囲である。また、流通式を採用する場合における混合物の空間速度は、通常50~1000h-1、好ましくは200~800h-1の範囲である。また、複数の反応カラムを使用する場合には、反応温度、流通速度などを反応カラム毎に変化させることができる。
 流通式の場合、シクロペンテン類(シクロヘキセン類)とアルコール化合物(2)との使用割合は特に制約されないが、シクロペンテン類(シクロヘキセン類)を過剰に用いるのが好ましい。流通式の場合は、混合物が加熱されている時間が短いので、シクロペンテン類(シクロヘキセン類)が重合することがない一方で、アルコール化合物(2)を過剰に用いると、ジアルキルエーテルの副生量が増大するからである。シクロペンテン類(シクロヘキセン類)とアルコール化合物(2)との使用割合は、〔シクロペンテン類(シクロヘキセン類)〕/(アルコール化合物(2))のモル比で、通常1/3~20/1、好ましくは1/3~10/1、より好ましくは1/3~5/1、さらに好ましくは1/3~3/1である。
 反応終了後は、反応液を溶媒抽出、蒸留等の通常の分離・精製方法によって、目的とするシクロアルキルアルキルエーテル化合物を単離することができる。蒸留は複数回行なってもよい。
 蒸留装置としては、例えば、精留塔を有する連続精留装置などの公知の蒸留装置を使用することができる。また、図2に示すように、酸性イオン交換樹脂Aを充填した反応カラム3g中に混合液を流通させた後、得られた反応液を反応カラム3h中に通過させ、例えば、ラシヒリングを充填した蒸留装置4により連続的に蒸留することもできる。この方法によれば、未反応のシクロペンテン類(シクロヘキセン類)及びアルコール化合物(2)を配管5により反応カラム3gに戻し、再度反応に供することができ、より高い転化率で目的物を得ることができる。
 反応は無溶媒で行うこともできるし、原料のシクロペンテン類又はシクロヘキセン類を溶解し、水と混合しない不活性な溶媒で希釈して行なうこともできる。
 用いる溶媒としては、例えば、n-ブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカンなどの脂肪族飽和炭化水素類;ベンゼン、トルエン、エチルベンゼン、キシレン、アニソール、クメン、ニトロベンゼンなどの芳香族炭化水素類;シクロペンタン、アルキル置換シクロペンタン類、アルコキシ置換シクロペンタン類、ニトロ置換シクロペンタン類、シクロヘキサン、アルキル置換シクロヘキサン類、アルコキシ置換シクロヘキサン類、ニトロ置換シクロヘキサン類、シクロヘプタン、アルキル置換シクロヘプタン類、アルコキシ置換シクロヘプタン類、ニトロ置換シクロヘプタン類、シクロオクタン、アルキル置換シクロオクタン類、アルコキシ置換シクロオクタン類、ニトロ置換シクロオクタン類などの脂環式飽和炭化水素類;窒素、アルゴン、空気、ヘリウムなどが挙げられる。前記希釈剤の使用量は特に制限されず、反応を阻害しない範囲で任意の量を選択できる。溶媒の使用量は、通常、全反応液量の10~90容量%、好ましくは20~80容量%である。
 本発明においては、このような操作を行うことにより、触媒活性の経時的な低下が少なく、かつ、原料供給を大きくした場合であっても、高い反応効率で、目的とする式(1):R-O-Rで表されるシクロアルキルアルキルエーテルを製造することができる。
 なお、式(1)中、Rは前記と同じ意味を表し、Rは、用いたシクロペンテン類又はシクロヘキセン類由来の、置換基を有していてもよいシクロペンチル基又は置換基を有していてもよいシクロヘキシル基である。
 具体的には、シクロペンチル基又はシクロヘキシル基;2-メチル-シクロペンチル基、3-エチル-シクロヘキシル基、3-sec-ブチル-シクロペンチル基、2-t-ブチル-シクロヘキシル基等のアルキルシクロペンチル基又はアルキルシクロヘキシル基;3-メトキシ-シクロペンチル基、3-エトキシ-シクロヘキシル基、2-sec-ブトキシ-シクロペンチル基、3-t-ブトキシ-シクロヘキシル基等のアルコキシシクロペンチル基又はアルコキシシクロヘキシル基;3-メチルチオ-シクロペンチル基、3-エチルチオ-シクロヘキシル基、2-sec-ブチルチオ-シクロペンチル基、3-t-ブチルチオ-シクロヘキシル基等のアルキルチオシクロペンチル基又はアルキルチオシクロヘキシル基;2-クロロ-シクロペンチル基、3-クロロ-シクロペンチル基、2-ブロモ-シクロヘキシル基、3-ブロモ-シクロヘキシル基等のハロゲン化シクロペンチル基又はハロゲン化シクロヘキシル基;等である。
 以下、本発明を実施例により、さらに詳細に説明する。但し、本発明は実施例により何ら制限されるものではない。
(製造例1) 酸性イオン交換樹脂の脱水
 市販の酸性イオン交換樹脂A(ピューロライト社製、商品名:CT276、含水量55質量%)500mLをガラスカラムに充填し、水含有量50ppmの脱水メチルアルコール5LをLHSV〔触媒単位容積当たりの液体流入速度〕2h-1で、ガラスカラムにダウンフローで流通させてイオン交換樹脂を洗浄した。さらに純窒素1Lをガラスカラムにダウンフローで流通させて樹脂粒子間に滞留しているメチルアルコールを除去した。この脱水したイオン交換樹脂の含水量をカールフィッシャー電量滴定法で測定したところ、1.8質量%であった。得られた酸性イオン交換樹脂(以下、「脱水酸性イオン交換樹脂A」という。)を反応に使用した。
 なお、カールフィッシャー電量滴定法による含水量の測定は、平沼水分測定装置(平沼産業社製、品番号:AQ-7)を使用し、発生液として、ハイドラナールR(シグマアルドリッチ社製)及びアクアライトRS-Aを、対極液として、アクアライトCN(関東化学社製)をそれぞれ使用して行った。
 同様にして、下記の強酸性イオン交換樹脂についても脱水を行い、「脱水酸性イオン交換樹脂B~F」とした。
・酸性イオン交換樹脂B(オルガノ社製、商品名:アンバリストAmberlyst-35、含水量55質量%)脱水処理後の含水量1.8質量%
・酸性イオン交換樹脂C(オルガノ社製、商品名:アンバリストAmberlyst-36、含水量55質量%)脱水処理後の含水量1.8質量%
・酸性イオン交換樹脂D(三菱化学社製、商品名:ダイヤイオンRCP-160M、含水量47質量%)脱水処理後の含水量1.5質量%

・酸性イオン交換樹脂E(三菱化学社製、商品名:ダイヤイオンPK-228、含水量40質量%)脱水処理後の含水量1.3質量%
・酸性イオン交換樹脂F(ランクセス社製、商品名:レバチットK 2621、含水量50質量%(旧バイエル社製、商品名:SPC118))脱水処理後の含水量1.6質量%
 酸性イオン交換樹脂A~Fの比表面積(m/g)、平均孔径(nm)及び総交換容量(eq/L-R)は、カタログの値を表1に纏めた。
(実施例1)
 図1(a)に示す反応装置を使用して、次の実験を行った。
 直径2.54cm、長さ20cmのSUS製の反応カラム3aに、製造例1で得られた脱水酸性イオン交換樹脂Aを72ml充填し、カラム3aの全体を90℃に保温した。
 一方、シクロペンテン及びメタノールの混合液(混合モル比:シクロペンテン/メタノール=1.6/1)を貯蔵したタンク1から送液し、加熱・気化装置2aにより90℃に加熱・気化させて、常圧、90℃、GHSVが220~460hで、反応カラム3a内に連続的に送りこんだ。反応開始から1時間経過後、反応カラム3aの一方の出口から流出する反応液を、ガスクロマトグラフィーにより分析した。
 GHSV(h-1)を変化させて生成した、シクロペンチルメチルエーテルのSTY(kg/hr/m)を下記表1に示す。
(実施例2、3、比較例1~3)
 実施例1において、使用する脱水酸性イオン交換樹脂を下記表1に記載のものに変更した他は、実施例1と同様にして反応を行った。各GHSV(h-1)により生成した、シクロペンチルメチルエーテルのSTY(kg/hr/m)を実施例1と同様に下記表1に示す。
 また、GHSV(h-1)とSTY(kg/hr/m)との関係を示すグラフ図を図3に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、次のことが分かる。
 実施例1~3では、GHSV(h-1)が大きくなっても高い反応性を示す(STY(kg/hr/m)の値は75~154)ことが分かる。
 一方、本発明の要件を満たしていない酸性イオン交換樹脂を使用した比較例では、比較例1は、流速が小さいときの反応性に差はないが、流速が大きくなると反応性が小さくなり、比較例2及び3は、流速が小さいときでも反応性が小さいことが分かる。
1a、1b、1c、1d・・・貯蔵タンク
2a、2b、2c、2d・・・加熱・気化装置
3a、3b、3c、3d、3e、3f、3g、3h・・・反応カラム
4・・・蒸留装置
5・・・配管

Claims (5)

  1.  酸性イオン交換樹脂の存在下に、置換基を有していてもよいシクロペンテン、又は置換基を有していてもよいシクロヘキセンと、式(2):ROH(式中、Rは置換基を有していてもよい炭素数1~10のアルキル基、又は置換基を有していてもよい炭素数3~8のシクロアルキル基を表す。)で表されるアルコール化合物を気体状態で反応させる、式(1):R-O-R(式中、Rは前記と同じ意味を表し、Rは置換基を有していてもよいシクロペンチル基又は置換基を有していてもよいシクロヘキシル基を表す。)で表されるシクロアルキルアルキルエーテル化合物の製造方法において、
    酸性イオン交換樹脂として、比表面積が20~50m/gであり、平均孔径が20~70nmであり、且つ総交換容量が4.8~6.0eq/L-R湿潤樹脂であるものを用いるシクロアルキルアルキルエーテル化合物の製造方法。
  2.  前記式(1)におけるRが炭素数1~10のアルキル基であり、Rがシクロペンチル基である請求項1記載のシクロアルキルアルキルエーテル化合物の製造方法。
  3.  前記酸性イオン交換樹脂の比表面積が、35~45m/gである請求項1に記載のシクロアルキルアルキルエーテル化合物の製造方法。
  4.  前記酸性イオン交換樹脂の総交換容量が、5.0~5.5eq/L-R湿潤樹脂である請求項1に記載のシクロアルキルアルキルエーテル化合物の製造方法。
  5.  前記酸性イオン交換樹脂の水含有量が、5質量%以下である請求項1に記載のシクロアルキルアルキルエーテル化合物の製造方法。
PCT/JP2014/058679 2013-03-29 2014-03-26 シクロアルキルアルキルエーテル化合物の製造方法 WO2014157412A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480017659.6A CN105050994A (zh) 2013-03-29 2014-03-26 环烷基烷基醚化合物的制造方法
JP2015508627A JP6168141B2 (ja) 2013-03-29 2014-03-26 シクロアルキルアルキルエーテル化合物の製造方法
EP14775478.2A EP2980056B1 (en) 2013-03-29 2014-03-26 Method for producing cycloalkyl alkyl ether compound
KR1020157030810A KR102190665B1 (ko) 2013-03-29 2014-03-26 시클로알킬알킬에테르 화합물의 제조 방법
US14/780,316 US9586882B2 (en) 2013-03-29 2014-03-26 Method for producing cycloalkyl alkyl ether compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013075151 2013-03-29
JP2013-075151 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157412A1 true WO2014157412A1 (ja) 2014-10-02

Family

ID=51624375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058679 WO2014157412A1 (ja) 2013-03-29 2014-03-26 シクロアルキルアルキルエーテル化合物の製造方法

Country Status (6)

Country Link
US (1) US9586882B2 (ja)
EP (1) EP2980056B1 (ja)
JP (1) JP6168141B2 (ja)
KR (1) KR102190665B1 (ja)
CN (2) CN105050994A (ja)
WO (1) WO2014157412A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105481660B (zh) * 2015-12-01 2017-09-26 浙江阿尔法化工科技有限公司 一种环戊基甲醚的连续化生产系统及合成方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925345A (ja) 1982-08-02 1984-02-09 Mitsubishi Gas Chem Co Inc 第三級エ−テルの製造法
JPS61249945A (ja) 1985-04-26 1986-11-07 Asahi Chem Ind Co Ltd エ−テルの製造法
JPH05163188A (ja) 1991-12-16 1993-06-29 Mitsui Toatsu Chem Inc エーテル類の製造方法
WO2003002500A1 (fr) 2001-06-28 2003-01-09 Zeon Corporation Solvants contenant des cycloalkyl alkyl ethers et procede de production de ces ethers
JP2004292358A (ja) 2003-03-27 2004-10-21 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
JP2004300076A (ja) * 2003-03-31 2004-10-28 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
JP2005002067A (ja) * 2003-06-13 2005-01-06 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
JP2005082510A (ja) * 2003-09-05 2005-03-31 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
JP2006206536A (ja) * 2005-01-31 2006-08-10 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
WO2007058251A1 (ja) 2005-11-17 2007-05-24 Zeon Corporation シクロアルキルアルキルエーテルの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100342A (ja) * 1997-09-29 1999-04-13 Petroleum Energy Center Found ジブチルエーテルの製造方法
KR100419309B1 (ko) 2001-06-29 2004-02-19 주식회사농심 고온열풍건조를 이용한 저지방 감자칩의 제조 방법
KR101197512B1 (ko) 2005-12-02 2012-11-09 페어차일드코리아반도체 주식회사 안정기 집적회로

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925345A (ja) 1982-08-02 1984-02-09 Mitsubishi Gas Chem Co Inc 第三級エ−テルの製造法
JPS61249945A (ja) 1985-04-26 1986-11-07 Asahi Chem Ind Co Ltd エ−テルの製造法
JPH05163188A (ja) 1991-12-16 1993-06-29 Mitsui Toatsu Chem Inc エーテル類の製造方法
WO2003002500A1 (fr) 2001-06-28 2003-01-09 Zeon Corporation Solvants contenant des cycloalkyl alkyl ethers et procede de production de ces ethers
JP2004292358A (ja) 2003-03-27 2004-10-21 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
JP2004300076A (ja) * 2003-03-31 2004-10-28 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
JP2005002067A (ja) * 2003-06-13 2005-01-06 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
JP2005082510A (ja) * 2003-09-05 2005-03-31 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
JP2006206536A (ja) * 2005-01-31 2006-08-10 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
WO2007058251A1 (ja) 2005-11-17 2007-05-24 Zeon Corporation シクロアルキルアルキルエーテルの製造方法

Also Published As

Publication number Publication date
US20160052848A1 (en) 2016-02-25
JP6168141B2 (ja) 2017-07-26
KR20150135492A (ko) 2015-12-02
EP2980056A1 (en) 2016-02-03
US9586882B2 (en) 2017-03-07
EP2980056A4 (en) 2016-11-09
JPWO2014157412A1 (ja) 2017-02-16
CN111732499A (zh) 2020-10-02
EP2980056B1 (en) 2018-08-29
KR102190665B1 (ko) 2020-12-14
CN105050994A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
JP4178483B2 (ja) シクロアルキルアルキルエーテル化合物の製造方法
EP3150588B1 (en) Apparatus and method for producing cyclic carbonate
EP3218348A1 (en) Reducing hydrogen iodide content in carbonylation processes
Li et al. Sequential Ruthenium (II)-Acetate Catalyzed C–H Bond Diarylation in NMP or Water and Hydrosilylation of Imines
JP6168141B2 (ja) シクロアルキルアルキルエーテル化合物の製造方法
KR101134659B1 (ko) 프로필렌 글리콜 모노메틸 에테르 아세테이트의 제조방법
JPWO2007058251A1 (ja) シクロアルキルアルキルエーテルの製造方法
TWI646077B (zh) 羥烷基(甲基)丙烯酸酯及其製造方法
TW201945328A (zh) 用於改進乙二醇的製備的方法
TWI530479B (zh) 烷基酚製造方法
JP6225788B2 (ja) 1,1,1,5,5,5−ヘキサフルオロアセチルアセトンの製造方法
WO2015147035A1 (ja) シクロペンチルアルキルエーテル化合物の製造方法
JP4609642B2 (ja) シクロアルキルアルキルエーテルの製造方法
JP2019131557A (ja) 平衡制限反応のための反応クロマトグラフィープロセス
TWI740870B (zh) 環戊基烷基醚化合物之製造方法
CN106673947A (zh) 一种异丁烯的制备方法
TW201643151A (zh) 環狀碳酸酯之製造裝置及製造方法
TW201945349A (zh) 用於製備乙二醇的方法
JP2016516831A5 (ja)
TW202237553A (zh) 氟烷化合物之製造方法
JP5601859B2 (ja) 高純度(メタ)アクリロイル基含有イミダゾール系化合物の製造方法
JP2006282558A (ja) シクロアルキルアルキルエーテルの製造方法
JP2008201729A (ja) ボラジン化合物の製造方法
JP2002037748A (ja) 第3級ブチルアルコールおよびメタノールの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017659.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508627

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14780316

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014775478

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157030810

Country of ref document: KR

Kind code of ref document: A