WO2014156861A1 - 不織布、シートまたはフィルム、多層シート、成形品および不織布の製造方法 - Google Patents

不織布、シートまたはフィルム、多層シート、成形品および不織布の製造方法 Download PDF

Info

Publication number
WO2014156861A1
WO2014156861A1 PCT/JP2014/057477 JP2014057477W WO2014156861A1 WO 2014156861 A1 WO2014156861 A1 WO 2014156861A1 JP 2014057477 W JP2014057477 W JP 2014057477W WO 2014156861 A1 WO2014156861 A1 WO 2014156861A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
nonwoven fabric
resin
fiber
sheet
Prior art date
Application number
PCT/JP2014/057477
Other languages
English (en)
French (fr)
Inventor
渡邊 泰
秀治 城野
信彦 松本
三田寺 淳
治也 久保
Original Assignee
Art&Tech株式会社
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Art&Tech株式会社, 三菱瓦斯化学株式会社 filed Critical Art&Tech株式会社
Priority to CN201480018043.0A priority Critical patent/CN105102705A/zh
Priority to US14/779,814 priority patent/US20160052234A1/en
Priority to RU2015145508A priority patent/RU2015145508A/ru
Priority to EP14774395.9A priority patent/EP2980292A4/en
Priority to KR1020157028448A priority patent/KR20150133754A/ko
Priority to BR112015024448A priority patent/BR112015024448A2/pt
Publication of WO2014156861A1 publication Critical patent/WO2014156861A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14786Fibrous material or fibre containing material, e.g. fibre mats or fibre reinforced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14811Multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2467/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Definitions

  • the present invention relates to a nonwoven fabric including thermoplastic resin fibers and carbon fibers. Moreover, it is related with the sheet
  • Patent Document 1 a carbon fiber non-woven fabric is manufactured by a hydroentanglement method. More specifically, in the hydroentanglement method, carbon fibers randomly arranged are stacked and subjected to a high-pressure water stream to form a nonwoven fabric.
  • Patent Document 2 discloses a nonwoven fabric composed of carbon fibers and thermoplastic resin fibers.
  • Patent Document 3 discloses a fiber length decorating sheet in which a high brightness layer having a metallic luster is formed on the surface of a nonwoven fabric such as polyethylene terephthalate resin.
  • the first object of the present invention is to solve this problem, and is a nonwoven fabric containing thermoplastic resin fibers and carbon fibers, and when such a nonwoven fabric is made into a resin molded product, it has excellent mechanical strength. It aims at providing a nonwoven fabric. Furthermore, it aims at providing the nonwoven fabric from which the thing excellent in the molded article external appearance at the time of shape
  • the second object of the present invention is to solve such problems, and is a multilayer sheet containing a resin having a textile layer, which is excellent in mechanical strength and has little warpage. The purpose is to provide.
  • thermoplastic resin fiber (A) and the carbon fiber (B) are converted into a thermoplastic resin having a glass transition temperature lower than that of the thermoplastic resin fiber (A)
  • the nonwoven fabric which has a thermoplastic resin fiber and a carbon fiber as a main component can be provided by combining using C)
  • the above problem has been solved by the following means ⁇ 1>, preferably ⁇ 2> to ⁇ 26>.
  • thermoplastic fiber (A) has an average fiber length of 1 to 15 mm.
  • thermoplastic resin (C) is a fiber.
  • thermoplastic resin (C) is a fiber having an average fiber length of 1 to 15 mm.
  • thermoplastic resin (C) is a fiber having an average fiber length of 1 to 15 mm.
  • thermoplastic resin fiber (A) is selected from a polyester resin, a polyamide resin, a polyolefin resin, a polypropylene resin, a polyethylene resin, an acrylic resin, a polyacetal resin, and a polycarbonate resin
  • thermoplastic resin fiber (A) is selected from a polyester resin, a polyamide resin, a polyolefin resin, a polypropylene resin, a polyethylene resin, an acrylic resin, a polyacetal resin, and a polycarbonate resin
  • thermoplastic resin (D) is a thermoplastic resin film.
  • thermoplastic resin (D) is a thermoplastic resin film.
  • E thermoplastic resin
  • thermoplastic resin (D) in addition to the nonwoven fabric and the textile layer.
  • thermoplastic resin (D) is a resin film.
  • the nonwoven fabric according to any one of ⁇ 1> to ⁇ 8>, the sheet or film according to any one of ⁇ 9> to ⁇ 11>, or any one of ⁇ 12> to ⁇ 16> A molded product made by insert molding a thermoplastic resin (E) into a multilayer sheet.
  • thermoplastic resin fiber (A), a carbon fiber (B), and a thermoplastic resin (C) having a glass transition temperature lower than that of the thermoplastic resin fiber (A), and the thermoplastic resin (C) A method for producing a nonwoven fabric, comprising: making a composition containing 1 to 50% by weight of the total amount of the thermoplastic resin fibers (A) and the thermoplastic resin (C) in a liquid.
  • the method for producing a nonwoven fabric according to ⁇ 18> further comprising a step of heating at a temperature equal to or higher than the glass transition temperature of the thermoplastic resin (C) after papermaking in the liquid.
  • thermoplastic fiber (A) has an average fiber length of 1 to 15 mm.
  • thermoplastic resin (C) is a fiber.
  • ⁇ 24> The method for producing a nonwoven fabric according to any one of ⁇ 18> to ⁇ 23>, wherein the difference between the average fiber length of the thermoplastic resin fibers (A) and the average fiber length of the carbon fibers (B) is 10 mm or less.
  • ⁇ 25> The nonwoven fabric according to any one of ⁇ 18> to ⁇ 24>, wherein the blending ratio (weight ratio) of the thermoplastic resin fiber (A) and the carbon fiber (B) is 99: 1 to 25:75. Production method.
  • thermoplastic resin fiber (A) is selected from polyester resin, polyamide resin, polyolefin resin, polypropylene resin, polyethylene resin, acrylic resin, polyacetal resin, and polycarbonate resin, any one of ⁇ 18> to ⁇ 25>
  • a nonwoven fabric containing thermoplastic resin fibers and carbon fibers when such a nonwoven fabric is made into a resin molded product, it has become possible to provide a nonwoven fabric excellent in mechanical strength. Furthermore, it has become possible to provide a non-woven fabric from which such a non-woven fabric having an excellent appearance of a molded product can be obtained. Furthermore, it has become possible to provide a multilayer sheet having a textile layer and excellent mechanical strength and less warpage.
  • FIG. 2 is a cross-sectional view showing an example of a cross section taken along line II-II in FIG. 1.
  • FIG. 3 is a cross-sectional view showing an example of a cross section taken along line III-III in FIG. 1. ⁇ It is the schematic which showed the process of insert molding.
  • the main component in the present invention refers to a component having the largest content.
  • the nonwoven fabric which has a thermoplastic resin fiber (A) and a carbon fiber (B) as a main component etc., this is a thermoplastic resin fiber (A) and a carbon fiber (B ) Is the largest in the nonwoven fabric.
  • the nonwoven fabric of the present invention comprises a thermoplastic resin fiber (A), a carbon fiber (B), and a thermoplastic resin (C) having a glass transition temperature lower than that of the thermoplastic resin fiber (A), and the thermoplastic resin ( C) is contained in a proportion of 1 to 50% by weight of the total amount of the thermoplastic resin fibers (A) and the thermoplastic resin (C). That is, the value of (C) / ((A) + (C)) (wt%) is in the range of 1 to 50 (wt%).
  • thermoplastic resin fibers (A) and carbon fibers (B) by bonding using a thermoplastic resin (C) having a glass transition temperature lower than that of the thermoplastic resin fibers (A), A thermoplastic resin fiber (A) and a carbon fiber (B) can be combined appropriately. Furthermore, since the thermoplastic resin (C) has a glass transition temperature lower than that of the thermoplastic resin fiber (A), the thermoplastic resin fiber (A) can be made into a nonwoven fabric while remaining in a fibrous form. By setting it as such a nonwoven fabric, it is excellent in mechanical strength and can be used as a material of the resin molded product which has various shapes.
  • the cloth-like composite material containing the thermoplastic resin fiber (A) and the carbon fiber (B) for example, a mixed fiber mainly composed of the thermoplastic resin fiber (A) and the carbon fiber (B) is manufactured,
  • a blended yarn may be a woven fabric or the like.
  • the mixed yarn has a problem that a large-scale device is required for production.
  • the nonwoven fabric of the present invention can be produced with a simple apparatus as described later in the method for producing a nonwoven fabric.
  • the thickness of the non-woven fabric (before hot pressing) used in the present invention is not particularly limited, but is preferably 0.05 to 30 mm, more preferably 0.1 to 10 mm, and still more preferably about 0.5 to 5 mm. .
  • thermoplastic resin fiber (A) used in the present invention is not particularly defined as long as it is a thermoplastic resin fiber, and a known one can be adopted. Usually, a thermoplastic resin fiber bundle is processed into an arbitrary length. Is used.
  • the average fiber length of the thermoplastic resin fiber (A) used in the present invention is preferably 1 to 20 mm, more preferably 1 to 15 mm, further preferably 3 to 15 mm, and particularly preferably 3 to 12 mm. By setting the average fiber length to 1 mm or more, the mechanical strength of the molded product using the nonwoven fabric can be improved.
  • the average fiber length can be determined by taking out about 20 thermoplastic resin fibers (A) from the nonwoven fabric, measuring the length, and arithmetically averaging them.
  • the thermoplastic resin fiber (A) used in the present invention is usually produced using a thermoplastic resin fiber bundle (multifilament) in which thermoplastic resin fibers are bundled.
  • the total fineness per hit is preferably 37 to 600D, more preferably 50 to 500D, and still more preferably 150 to 400D.
  • the number of fibers constituting such a thermoplastic resin fiber bundle is preferably 1 to 200f, more preferably 1 to 100f, still more preferably 5 to 80f, and particularly preferably 20 to 70f. preferable.
  • the thermoplastic resin fiber (A) used in the present invention preferably has a tensile strength of 2 to 10 gf / d.
  • the glass transition temperature of the thermoplastic resin fiber (A) used in the present invention is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, more preferably 55 ° C. or higher, and more preferably 60 ° C. or higher, although it depends on the type of resin. preferable.
  • the glass transition temperature of the thermoplastic resin fiber (A) used by this invention is based also on the kind of resin, 200 degrees C or less is preferable, 150 degrees C or less is more preferable, 100 degrees C or less is further more preferable.
  • the melting point of the thermoplastic resin fiber (A) used in the present invention is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and more preferably 200 ° C. or higher, although it depends on the type of resin. Further, the melting point of the thermoplastic resin fiber (A) used in the present invention is preferably 320 ° C.
  • thermoplastic resin fiber (A) when a polyamide resin is used as the thermoplastic resin fiber (A), the effect of the present invention is more effectively exhibited by setting the range to such a range.
  • the fiber used for the thermoplastic resin fiber (A) used in the present invention is preferably selected from polyamide resin, polyester resin, polyolefin resin, polypropylene resin, polyethylene resin, acrylic resin, polyacetal resin and polycarbonate resin. Among these, a polyester resin and a polyamide resin are preferable. These may be used alone or in combination of two or more.
  • the thermoplastic resin fiber (A) used in the present invention is a fiber obtained from a thermoplastic resin composition mainly composed of a thermoplastic resin.
  • the thermoplastic resin composition may consist only of a thermoplastic resin.
  • the thermoplastic resin fiber (A) used in the present invention is more preferably a polyester resin, nylon 6, nylon 66, nylon 666, or a polyamide resin in which 50 mol% or more of diamine structural units are derived from xylylenediamine, More preferably, at least 50 mol% of the diamine structural unit is a polyamide resin derived from xylylenediamine, the number average molecular weight (Mn) is 6,000 to 30,000, and 0.5 to 5 mass% thereof
  • a polyamide resin composition which is a polyamide resin having a molecular weight of 1,000 or less, is made into a fibrous form.
  • a polyamide resin derived from both paraxylylenediamine and metaxylylenediamine is formed into a fibrous form as a diamine structural unit.
  • the polyamide resin used in the present invention is preferably a xylylenediamine-based polyamide resin in which 50 mol% or more of the diamine is derived from xylylenediamine and polycondensed with a dicarboxylic acid.
  • 70 mol% or more, more preferably 80 mol% or more of the diamine structural unit is derived from metaxylylenediamine and / or paraxylylenediamine, and preferably a dicarboxylic acid structural unit (a structural unit derived from dicarboxylic acid).
  • a dicarboxylic acid structural unit a structural unit derived from dicarboxylic acid.
  • diamines other than metaxylylenediamine and paraxylylenediamine that can be used as raw material diamine components for xylylenediamine polyamide resins include tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, and heptamethylene.
  • Aliphatic diamines such as diamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,3- Bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) meta 2,2-bis (4-aminocyclohexyl) propane, bis (aminomethyl) decalin, bis (aminomethyl) tricyclodecane, and other alicyclic diamines, bis (4-aminophenyl) ether, paraphenylenediamine, bis Examples thereof include diamines having an aromatic ring such as (aminomethyl) naphthalene, and one
  • a diamine other than xylylenediamine is used as the diamine component, it is preferably 50 mol% or less of the diamine structural unit, more preferably 30 mol% or less, still more preferably 1 to 25 mol%, particularly Preferably, it is used at a ratio of 5 to 20 mol%.
  • Preferred ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 4 to 20 carbon atoms for use as a raw material dicarboxylic acid component of polyamide resin include, for example, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid Examples thereof include aliphatic dicarboxylic acids such as sebacic acid, undecanedioic acid, dodecanedioic acid and the like, and one or a mixture of two or more can be used. Among these, the melting point of the polyamide resin is suitable for molding processing. Since it becomes a range, adipic acid or sebacic acid is preferable and sebacic acid is especially preferable.
  • dicarboxylic acid component other than the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms examples include phthalic acid compounds such as isophthalic acid, terephthalic acid and orthophthalic acid, 1,2-naphthalenedicarboxylic acid, 3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3- Examples thereof include naphthalenedicarboxylic acids such as naphthalenedicarboxylic acid, isomers such as 2,6-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid, and one or a mixture of two or more can be used.
  • phthalic acid compounds such as isophthalic acid, terephthal
  • isophthalic acid is preferably used from the viewpoint of moldability and barrier properties.
  • the proportion of isophthalic acid is preferably 30 mol% or less, more preferably 1 to 30 mol%, particularly preferably 5 to 20 mol% of the dicarboxylic acid structural unit.
  • lactams such as ⁇ -caprolactam and laurolactam
  • aliphatics such as aminocaproic acid and aminoundecanoic acid, as long as the effects of the present invention are not impaired.
  • Aminocarboxylic acids can also be used as copolymerization components.
  • the most preferred polyamide resin is polymetaxylylene sebacamide resin, polyparaxylylene sebacamide resin, and mixed xylylenediamine of metaxylylenediamine and paraxylylenediamine with polycondensation with sebacic acid. This is a polymetaxylylene / paraxylylene mixed sebacamide resin. These polyamide resins tend to have particularly good moldability.
  • the polyamide resin has a number average molecular weight (Mn) of 6,000 to 30,000, of which 0.5 to 5% by mass is a polyamide resin having a molecular weight of 1,000 or less. More preferred.
  • the number average molecular weight (Mn) is in the range of 6,000 to 30,000, the strength of the resulting nonwoven fabric or molded product tends to be further improved.
  • the number average molecular weight (Mn) is preferably 8,000 to 28,000, more preferably 9,000 to 26,000, still more preferably 10,000 to 24,000, and particularly preferably 11,000. ⁇ 22,000, particularly preferably 12,000 ⁇ 20,000. Within such a range, the heat resistance, elastic modulus, dimensional stability, and moldability become better.
  • the polyamide resin preferably contains 0.5 to 5% by mass of a component having a molecular weight of 1,000 or less.
  • a component having a molecular weight of 1,000 or less By containing such a low molecular weight component in such a range, the polyamide resin is impregnated. Since the fluidity between the reinforcing fibers of the polyamide resin is improved and the generation of voids can be suppressed during the molding process, the strength and low warpage of the resulting nonwoven fabric and its molded product are improved. Better. If it exceeds 5% by mass, this low molecular weight component may bleed to deteriorate the strength and the surface appearance may deteriorate.
  • the preferred content of the component having a molecular weight of 1,000 or less is 0.6 to 4.5% by mass, more preferably 0.7 to 4% by mass, and still more preferably 0.8 to 3.5% by mass. %, Particularly preferably 0.9 to 3% by mass, most preferably 1 to 2.5% by mass.
  • the content of the low molecular weight component having a molecular weight of 1,000 or less can be adjusted by adjusting melt polymerization conditions such as temperature and pressure during polyamide resin polymerization, and a dropping rate of diamine.
  • melt polymerization conditions such as temperature and pressure during polyamide resin polymerization, and a dropping rate of diamine.
  • the inside of the reaction apparatus can be depressurized at the latter stage of the melt polymerization to remove low molecular weight components and adjusted to an arbitrary ratio.
  • the polyamide resin produced by melt polymerization may be subjected to hot water extraction to remove low molecular weight components, or after melt polymerization, the low molecular weight components may be removed by solid phase polymerization under reduced pressure.
  • the low molecular weight component can be controlled to an arbitrary content by adjusting the temperature and the degree of vacuum. It can also be adjusted by adding a low molecular weight component having a molecular weight of 1,000 or less to the polyamide resin later.
  • the amount of the component having a molecular weight of 1,000 or less was measured from the standard polymethylmethacrylate (PMMA) converted value by gel permeation chromatography (GPC) measurement using “HLC-8320GPC” manufactured by Tosoh Corporation. Can be sought.
  • PMMA polymethylmethacrylate
  • GPC gel permeation chromatography
  • HFIP hexafluoroisopropanol
  • RI refractive index detector
  • the polyamide resin composition 0.01 to 1% by mass of the polyamide resin is preferably a cyclic compound (polyamide resin).
  • the cyclic compound refers to a compound in which a salt composed of a diamine component and a dicarboxylic acid component, which are raw materials for polyamide resin, forms a ring, and can be quantified by the following method.
  • the polyamide resin pellets are pulverized by an ultracentrifugation mill, passed through a sieve of ⁇ 0.25 mm, and 10 g of a powder sample of ⁇ 0.25 mm or less is measured on a cylindrical filter paper.
  • Soxhlet extraction is performed with 120 ml of methanol for 9 hours, and the obtained extract is concentrated to 10 ml with care not to dry out with an evaporator. At this time, if the oligomer is precipitated, it is removed by appropriately passing through a PTFE filter.
  • a solution obtained by diluting the obtained extract 50-fold with methanol is used for measurement, and quantitative analysis is performed by high performance liquid chromatographic HPLC manufactured by Hitachi High-Technology Corporation to determine the cyclic compound content.
  • a more preferable content of the cyclic compound is 0.05 to 0.8% by mass of the polyamide resin, and more preferably 0.1 to 0.5% by mass.
  • the polyamide resin produced by melt polymerization often contains a considerable amount of cyclic compounds, and these are usually removed by hot water extraction or the like. By adjusting the degree of hot water extraction, the amount of cyclic compound can be adjusted. It is also possible to adjust the pressure during melt polymerization.
  • the polyamide resin used in the present invention preferably has a molecular weight distribution (weight average molecular weight / number average molecular weight (Mw / Mn)) of 1.8 to 3.1.
  • the molecular weight distribution is more preferably 1.9 to 3.0, still more preferably 2.0 to 2.9.
  • the molecular weight distribution of the polyamide resin can be adjusted, for example, by appropriately selecting the polymerization reaction conditions such as the type and amount of the initiator and catalyst used in the polymerization, and the reaction temperature, pressure, and time. It can also be adjusted by mixing a plurality of types of polyamide resins having different average molecular weights obtained under different polymerization conditions or by separately precipitating the polyamide resins after polymerization.
  • the molecular weight distribution of the weight average molecular weight can be determined by GPC measurement. Specifically, two “SLCHgel Super HM-H” manufactured by Tosoh Corporation and two “TSK gel Super HM-H” manufactured by Tosoh Corporation are used as a device. And eluent of hexafluoroisopropanol (HFIP) having a sodium trifluoroacetate concentration of 10 mmol / l, a resin concentration of 0.02% by mass, a column temperature of 40 ° C., a flow rate of 0.3 ml / min, and a refractive index detector (RI). It can be measured and obtained as a standard polymethyl methacrylate equivalent value. A calibration curve is prepared by dissolving 6 levels of PMMA in HFIP.
  • the polyamide resin has a melt viscosity of 50 to 1200 Pa ⁇ s when measured under the conditions of a melting point of the polyamide resin + 30 ° C., a shear rate of 122 sec ⁇ 1 , and a moisture content of the polyamide resin of 0.06% by mass or less. It is preferable. By making melt viscosity into such a range, the process to the film or fiber of a polyamide resin becomes easy. When the polyamide resin has two or more melting points as described later, the measurement is performed with the temperature at the peak top of the endothermic peak on the high temperature side as the melting point. A more preferable range of the melt viscosity is 60 to 500 Pa ⁇ s, and more preferably 70 to 100 Pa ⁇ s.
  • the melt viscosity of the polyamide resin can be adjusted, for example, by appropriately selecting the charging ratio of the raw material dicarboxylic acid component and the diamine component, the polymerization catalyst, the molecular weight regulator, the polymerization temperature, and the polymerization time.
  • the polyamide resin preferably has a terminal amino group concentration ([NH 2 ]) of less than 100 ⁇ equivalent / g, more preferably 5 to 75 ⁇ equivalent / g, and still more preferably 10 to 60 ⁇ equivalent / g.
  • concentration ([COOH]) is preferably less than 150 ⁇ eq / g, more preferably 10 to 120 ⁇ eq / g, and still more preferably 10 to 100 ⁇ eq / g.
  • the ratio of the terminal amino group concentration to the terminal carboxyl group concentration is preferably 0.7 or less, more preferably 0.6 or less, particularly preferably 0. .5 or less. When this ratio is larger than 0.7, it may be difficult to control the molecular weight when polymerizing the polyamide resin.
  • the terminal amino group concentration can be measured by dissolving 0.5 g of polyamide resin in 30 ml of a phenol / methanol (4: 1) mixed solution with stirring at 20-30 ° C. and titrating with 0.01 N hydrochloric acid.
  • 0.1 g of polyamide resin is dissolved in 30 ml of benzyl alcohol at 200 ° C., and 0.1 ml of phenol red solution is added in the range of 160 ° C. to 165 ° C.
  • the solution was titrated with a titration solution (KOH concentration 0.01 mol / l) in which 0.132 g of KOH was dissolved in 200 ml of benzyl alcohol, and when the color change changed from yellow to red, the end point was reached. Can be calculated.
  • the polyamide resin of the present invention has a molar ratio of reacted diamine units to reacted dicarboxylic acid units (number of moles of reacted diamine units / number of moles of reacted dicarboxylic acid units, hereinafter sometimes referred to as “reaction molar ratio”). Is preferably 0.97 to 1.02. By setting it as such a range, it becomes easy to control the molecular weight and molecular weight distribution of a polyamide resin to arbitrary ranges.
  • the reaction molar ratio is more preferably less than 1.0, further preferably less than 0.995, particularly less than 0.990, and the lower limit is more preferably 0.975 or more, and further preferably 0.98 or more. .
  • M1 and M2 are calculated according to the blending ratio (molar ratio) of the monomers blended as raw materials. . If the inside of the synthesis kettle is a complete closed system, the molar ratio of the charged monomers and the reaction molar ratio are the same, but the actual synthesis apparatus cannot be a complete closed system. The ratio and the reaction molar ratio do not always coincide. Since the charged monomer does not always react completely, the charged molar ratio and the reaction molar ratio are not always the same. Therefore, the reaction molar ratio means the molar ratio of the actually reacted monomer obtained from the end group concentration of the finished polyamide resin.
  • the reaction molar ratio of the polyamide resin is adjusted by appropriately adjusting the reaction conditions such as the charged molar ratio of the raw dicarboxylic acid component and the diamine component, the reaction time, the reaction temperature, the xylylenediamine dripping rate, the pressure in the kettle, and the pressure reduction start timing. It is possible by making it a value. Specifically, the description of JP2012-153749A can be referred to, and the contents thereof are incorporated in the present specification.
  • the melting point is the temperature at the peak top of the endothermic peak at the time of temperature rise observed by the DSC (Differential Scanning Calorimetry) method.
  • the glass transition point refers to a glass transition point measured by heating and melting a sample once to eliminate the influence on crystallinity due to thermal history and then raising the temperature again.
  • the sample amount is about 5 mg
  • nitrogen is flowed at 30 ml / min as the atmospheric gas
  • the heating rate is 10 ° C./min.
  • the melting point can be determined from the temperature at the peak top of the endothermic peak observed when the mixture is heated from room temperature to a temperature higher than the expected melting point.
  • the melted polyamide resin is rapidly cooled with dry ice, and the temperature is raised again to a temperature equal to or higher than the melting point at a rate of 10 ° C./min, whereby the glass transition point can be obtained.
  • the polyamide resin is preferably a polyamide resin having at least two melting points.
  • Polyamide resins having at least two melting points are preferred because they tend to improve heat resistance and molding processability when molding nonwoven fabrics.
  • the polyamide resin having at least two melting points is a polyamide resin in which 70 mol% or more of diamine structural units are derived from xylylenediamine and 50 mol% or more of dicarboxylic acid structural units are derived from sebacic acid,
  • the amine unit contains 50 to 100 mol% of paraxylylenediamine-derived units, 0 to 50 mol% of metaxylylenediamine-derived units, has a number average molecular weight (Mn) of 6,000 to 30,000, a melting point
  • Mn number average molecular weight
  • the two or more melting points are usually in the range of 250 to 330 ° C., preferably 260 to 320 ° C., more preferably 270 to 310 ° C., and particularly preferably 275 to 305 ° C.
  • the two or more melting points are usually in the range of 250 to 330 ° C., preferably 260 to 320 ° C., more preferably 270 to 310 ° C., and particularly preferably 275 to 305 ° C.
  • JP 2012-153749 A As a method for obtaining a polyamide resin having at least two melting points, the description in JP 2012-153749 A can be referred to, and the contents thereof are incorporated in the present specification.
  • a resin other than the thermoplastic resin may be blended.
  • other polyamide resins that may be used in combination with the polyamide resin include polyamide 66, polyamide 6, polyamide 46, polyamide 6/66, polyamide 10, polyamide 612, polyamide 11, polyamide 12, hexamethylenediamine, and adipine.
  • examples thereof include polyamide 66 / 6T made of acid and terephthalic acid, polyamide 6I / 6T made of hexamethylenediamine, isophthalic acid and terephthalic acid.
  • These blending amounts are preferably 5% by mass or less of the polyamide resin composition, and more preferably 1% by mass or less.
  • an elastomer may be blended in the resin composition constituting the thermoplastic resin fiber used in the present invention.
  • the elastomer component for example, known elastomers such as polyolefin elastomers, diene elastomers, polystyrene elastomers, polyamide elastomers, polyester elastomers, polyurethane elastomers, fluorine elastomers, and silicon elastomers can be used. Elastomers and polystyrene-based elastomers.
  • elastomers are modified with ⁇ , ⁇ -unsaturated carboxylic acid and its acid anhydride, acrylamide, and derivatives thereof in the presence or absence of a radical initiator in order to impart compatibility with polyamide resin. Modified elastomers are also preferred.
  • the content of such other resins and elastomer components is usually 30% by mass or less, preferably 20% by mass or less, particularly 10% by mass or less in the thermoplastic resin composition.
  • thermoplastic resin composition used in the present invention includes a stabilizer such as an antioxidant and a heat stabilizer, a hydrolysis resistance improver, a weather resistance stabilizer, a gloss, and the like within a range that does not impair the purpose and effect of the present invention.
  • Additives such as quenching agents, ultraviolet absorbers, nucleating agents, plasticizers, dispersants, flame retardants, antistatic agents, anti-coloring agents, anti-gelling agents, coloring agents, mold release agents and the like can be added. Details of these can be referred to the description of paragraph numbers 0130 to 0155 of Japanese Patent No. 4894982, the contents of which are incorporated herein.
  • the content of the thermoplastic resin fiber (A) used in the present invention is preferably 20 to 98% by weight, more preferably 25 to 80% by weight, and further preferably 30 to 70% by weight in the nonwoven fabric. Only one type of thermoplastic resin fiber (A) may be used, or two or more types may be used. When using 2 or more types, it is preferable that the total amount becomes the said range.
  • the type of carbon fiber (B) used in the present invention is not particularly defined, but is preferably selected from PAN-based carbon fibers obtained by carbonizing polyacrylonitrile and pitch-based carbon fibers using pitch systems. It is more preferable to use a PAN-based carbon fiber.
  • the carbon fiber (B) used in the present invention is usually obtained by processing a carbon fiber bundle in which a plurality of carbon fibers (B) are bundled into an arbitrary length.
  • the average fiber length of the carbon fiber (B) used in the present invention is preferably 1 to 20 mm, more preferably 1 to 15 mm, further preferably 2 to 15 mm, particularly preferably 3 to 15 mm, and 4 to 15 mm. More preferably.
  • the average fiber length is preferably 1 mm or more, the mechanical strength of the molded product using the nonwoven fabric can be improved.
  • the average fiber length is set to 20 mm or less, particularly 15 mm or less, the degree of dispersion in the nonwoven fabric is further improved. .
  • the carbon fiber bundle used in the present invention has a fineness of preferably 100 to 50000D, more preferably 500 to 40000D, further preferably 1000 to 10000D, and particularly preferably 1000 to 3000D. . By setting it as such a range, the elasticity modulus and intensity
  • the carbon fiber bundle used in the present invention preferably has a fiber number of 500 to 60000f, more preferably 500 to 50000f, further preferably 1000 to 30000f, and particularly preferably 1500 to 20000f. preferable.
  • the average tensile elastic modulus of the carbon fiber bundle contained in the nonwoven fabric of the present invention is preferably 50 to 1000 GPa, more preferably 200 to 700 GPa. By setting it as such a range, the tensile elasticity modulus of a nonwoven fabric becomes more favorable.
  • the carbon fiber (B) used in the present invention is preferably surface-treated with a treatment agent.
  • a treatment agent preferably has a function of converging the carbon fiber (B) to form a fiber bundle.
  • an epoxy resin such as a bisphenol A type epoxy resin, an epoxy acrylate resin having an acrylic group or a methacryl group in one molecule, a bisphenol A type vinyl ester resin, a novolac type vinyl ester resin, Preferred examples include vinyl ester resins such as brominated vinyl ester resins. Further, it may be a urethane-modified resin such as epoxy resin or vinyl ester resin.
  • the amount of the treatment agent is preferably 0.001 to 1.5% by mass of the carbon fiber (B), more preferably 0.008 to 1.0% by mass, and 0.1 to 0.00%. More preferably, it is 8 mass%. By setting it as such a range, the effect of this invention is exhibited more effectively.
  • the content of the carbon fiber (B) used in the present invention is preferably 1% by weight or more and less than 80% by weight in the nonwoven fabric, more preferably more than 20% by weight and 70% by weight or less, and further preferably 25 to 60% by weight. . Only one type of carbon fiber (B) may be used, or two or more types may be used. When using 2 or more types, it is preferable that the total amount becomes the said range.
  • thermoplastic resin fiber (A) and carbon fiber (B) ⁇ Relationship between thermoplastic resin fiber (A) and carbon fiber (B)>
  • the difference between the average fiber length of the thermoplastic resin fibers (A) and the average fiber length of the carbon fibers (B) is preferably 10 mm or less, more preferably 5 mm or less, and 1 mm or less. More preferably.
  • the thermoplastic resin fibers (A) and the carbon fibers (B) are more uniformly dispersed in the nonwoven fabric, and a more excellent nonwoven fabric is obtained.
  • the blending ratio (weight ratio) of the thermoplastic resin fiber (A) and the carbon fiber (B) is preferably 99: 1 to 25:75, more preferably 80:20 to 30:70. Preferably, it is 70:30 to 40:60. By making the blend ratio in such a range, the effect of the present invention is more effectively exhibited. In the present invention, it is particularly preferable that the total amount of the thermoplastic resin fibers (A) and the carbon fibers (B) occupy 90% by weight or more of the nonwoven fabric.
  • thermoplastic resin (C) used in the present invention has a glass transition temperature (Tg) lower than that of the thermoplastic resin fiber (A). In the nonwoven fabric, the thermoplastic resin fiber (A) and the thermoplastic resin (C 1) to 50% by weight of the total amount.
  • the glass transition temperature (Tg) of the thermoplastic resin (C) used in the present invention is preferably 10 to 50 ° C., more preferably 20 to 30 ° C. lower than the glass transition temperature of the thermoplastic resin fiber (A). .
  • the glass transition temperature of the thermoplastic resin (C) used in the present invention is preferably 20 to 80 ° C., and more preferably 30 to 60 ° C.
  • the melting point of the thermoplastic resin (C) used in the present invention is preferably 100 to 250 ° C, more preferably 120 to 230 ° C. An amorphous resin that does not exhibit a melting point is also preferably used.
  • thermoplasticity is achieved.
  • Resin fiber (A) and carbon fiber (B) can be combined appropriately, and it can be set as the nonwoven fabric with the state of the fiber of thermoplastic resin fiber (A) maintained.
  • the fibrous thermoplastic resin (C) used in the present invention is usually produced using a thermoplastic resin fiber bundle in which thermoplastic resin fibers are bundled.
  • the total fineness is preferably 37 to 600D, more preferably 50 to 500D, and even more preferably 150 to 400D.
  • the number of fibers constituting the fiber bundle of the thermoplastic resin (C) is preferably 1 to 200f, more preferably 1 to 100f, still more preferably 5 to 80f, and more preferably 20 to 70f. It is particularly preferred. By setting it as such a range, the dispersion state of the thermoplastic resin (C) fiber bundle in the nonwoven fabric obtained becomes more favorable.
  • the fiber bundle of the thermoplastic resin (C) used in the present invention preferably has a tensile strength of 2 to 10 gf / d. By setting it as such a range, it exists in the tendency for the effect of this invention to be exhibited more effectively.
  • the difference between the average fiber length of the thermoplastic resin fibers (A) and the average fiber length of the thermoplastic resin (C) is preferably 10 mm or less, more preferably 5 mm or less, and 1 mm. More preferably, it is as follows. By making the difference in average fiber length in such a range, the effect of the present invention is more effectively exhibited.
  • thermoplastic resin (C) used in the present invention is appropriately determined in relation to the glass transition temperature of the thermoplastic resin fiber (A).
  • the thermoplastic resin (C) may be composed only of the above-mentioned resin, but may contain an additive that is generally added to a resin molded product.
  • an additive that is generally added to a resin molded product.
  • the elastomer and other additives described in the column of the thermoplastic resin composition are exemplified, and the blending amount and the like are preferably in the same range.
  • thermoplastic resin (C) used in the present invention may be a synthetic product or a commercial product.
  • NOVADURAN polybutylene terephthalate, (made by Mitsubishi Engineering Plastics)
  • the content of the thermoplastic resin (C) used in the present invention is preferably 2 to 40% by weight based on the total amount of the thermoplastic resin fibers (A) and the thermoplastic resin (C), and 3 to 30% by weight. %, More preferably 5 to 20% by weight. Only one type of thermoplastic resin (C) may be used, or two or more types may be used. When using 2 or more types, it is preferable that the total amount becomes the said range.
  • thermoplastic resin fiber (A), a carbon fiber (B), and a thermoplastic resin (C) having a glass transition temperature lower than that of the thermoplastic resin fiber (A) are converted into the thermoplastic resin. It comprises making a composition containing 1 to 50% by weight of the resin fiber (A) in a liquid. Since the method for producing a nonwoven fabric of the present invention can be produced by a method of making paper in a liquid, a so-called wet papermaking method, the nonwoven fabric can be produced without a special apparatus.
  • making paper in a liquid means that fibers dispersed in a liquid (preferably in water) are scooped up on a net to remove the liquid (for example, dehydration) to form a film or a sheet.
  • the method for producing a nonwoven fabric of the present invention prepares a slurry containing thermoplastic resin fibers (A), carbon fibers (B), and thermoplastic resins (C).
  • the solvent of the slurry is usually water.
  • the solid content concentration of the liquid (slurry) is preferably 0.1 to 5% by weight.
  • the dispersant include a surfactant and a viscosity modifier.
  • the flocculant include aluminum sulfate, a cationic polymer, and an anionic polymer.
  • the layer after scooping up the slurry on the net remains as a single layer, or a plurality of layers are laminated and dried. Drying can be performed by heat treatment or pressure treatment.
  • the heat treatment is preferably performed at a temperature equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin (C), preferably Tg to Tg + 40 ° C., more preferably Tg to Tg + 30 ° C. of the thermoplastic resin (C). It is more preferable to carry out at Tg + 5 to Tg + 20 ° C.
  • thermoplastic resin (C) By heating the thermoplastic resin (C) at a temperature equal to or higher than its glass transition temperature, the solvent in the nonwoven fabric can be removed, and at the same time, the thermoplastic resin fiber (A) and the carbon fiber (B) can be appropriately bonded. Moreover, it can be set as the nonwoven fabric with the state of the fiber of a thermoplastic resin fiber (A) maintained.
  • a means for the heat treatment a known means can be adopted, and for example, it can be performed by a cylinder dryer, a Yankee dryer or the like.
  • the functional substrate is subjected to a hot press or a thermal calendar. Even if it uses and pressurizes and heat-processes, it does not matter.
  • the nonwoven fabric of the present invention preferably has a basis weight of 20 to 1000 g / m 2 , more preferably 30 to 500 g / m 2 , further preferably 30 to 200 g / m 2 , and more preferably 30 to 150 g / m 2. m 2 is even more preferable, and 30 to 80 g / m 2 is particularly preferable. This range is preferable because the nonwoven fabric can be easily handled.
  • the nonwoven fabric of the present invention preferably has a tensile strength after hot pressing of 10 to 100 MPa, more preferably 10 to 70 MPa, and further preferably 15 to 60 MPa.
  • the nonwoven fabric of the present invention has a tensile modulus measured by JIS K7162 after hot pressing of preferably 2000 to 6000 MPa, more preferably 2500 to 5500 MPa, and further preferably 2900 to 5000 MPa.
  • the nonwoven fabric of this invention can be used for various uses.
  • the nonwoven fabric of the present invention can be hot-pressed and used as the sheet or film of the present invention.
  • the nonwoven fabric of the present invention may be hot-pressed by itself, but may be hot-pressed with another resin (thermoplastic resin (D)).
  • the nonwoven fabric of the present invention may be provided with a textile layer. That is, a multilayer sheet obtained by hot pressing the nonwoven fabric and the textile layer, or a multilayer sheet obtained by superposing the nonwoven fabric and the textile layer and injection molding the thermoplastic resin (E) from the nonwoven fabric side is exemplified.
  • thermoplastic resin (D) in addition to the nonwoven fabric and the textile layer, another resin (thermoplastic resin (D)) is hot-pressed, or in addition to the nonwoven fabric and the textile layer, another resin (thermoplastic resin (D)) is stacked.
  • the thermoplastic resin (E) may be injection molded from the nonwoven fabric side.
  • the sheet or film of the present invention is obtained by hot pressing the nonwoven fabric of the present invention.
  • the nonwoven fabric of the present invention and the thermoplastic resin (D) are hot pressed, the nonwoven fabric of the present invention and the thermoplastic resin (D) Can be fused and fixed.
  • the non-woven fabric and the thermoplastic resin (D) are hot-pressed, each may be one by one, but two or more may be alternately laminated.
  • the thickness of the sheet or film of the present invention is preferably 0.05 to 1 mm, more preferably 0.08 to 0.50 mm, and further preferably 0.1 to 0.30 mm after hot pressing.
  • the hot pressing can be performed using a known hot pressing apparatus or the like.
  • the pressing conditions of the hot press apparatus vary depending on the nonwoven fabric and the thermoplastic resin (D) used. However, when the nonwoven fabric is hot-pressed alone, the melting point of the thermoplastic resin fiber (A) + (5 to 100) ° C. The melting point of the thermoplastic resin fiber (A) + (10 to 50) ° C. is more preferable. On the other hand, when the nonwoven fabric and the thermoplastic resin (D) are hot-pressed, the melting point of the thermoplastic resin (D) + (5 to 100) ° C. is preferable, and the melting point of the thermoplastic resin (D) + (10-50) ° C. is preferable. More preferred.
  • the pressure at the time of hot pressing is preferably from 0.1 to 10 MPa, more preferably from 1 to 5 MPa. Within such a temperature / pressure range, the resin and the carbon fiber are present uniformly, and the molded product is excellent in strength.
  • the resin used for the thermoplastic resin (D) is preferably selected from polyester resin, polyamide resin, polyolefin resin, polypropylene resin, polyethylene resin, acrylic resin, polyacetal resin and polycarbonate resin. Among these, a polyester resin and a polyamide resin are preferable. These may be used alone or in combination of two or more.
  • the thermoplastic resin fiber (A) and the resin as a main component thereof are preferably the same, and more preferably 90% by weight or more in common. By setting it as such a structure, it exists in the tendency for a nonwoven fabric and a thermoplastic resin (D) to adhere more favorably.
  • the thermoplastic resin (D) may be composed of only the above resin, but may contain an additive that is generally added to a resin molded product.
  • an additive that is generally added to a resin molded product.
  • the elastomer and other additives described in the column of the thermoplastic resin composition are exemplified, and the blending amount and the like are preferably in the same range.
  • the difference between the SP value of the thermoplastic resin (D) and the SP value of the thermoplastic resin fiber (A) is preferably 10 (cal / ml) 0.5 or less, more preferably 7 (cal / ml) 0.5 or less, and 5 ( cal / ml) is more preferably 0.5 or less. Within this range, the adhesiveness between the thermoplastic resin (D) and the thermoplastic resin fiber (A) becomes good and the strength of the resulting molded product is excellent, which is preferable.
  • the SP value is a solubility parameter, and a value calculated by the Small method or the fedors method is known. Further, it can be calculated using various calculation software.
  • polyethylene terephthalate is 9.644 (cal / ml) 0.5
  • polyamide XD10 is 11. 775 (cal / ml) 0.5
  • polyamide MXD6 has a value of 12.666 (cal / ml) 0.5
  • nylon 6 has a value of 12.261 (cal / ml) 0.5, etc.
  • thermoplastic resin (D) is not particularly defined.
  • a powdery or liquid resin may be applied to the nonwoven fabric surface, but a thermoplastic resin film is preferable.
  • the multilayer sheet of the present invention can be obtained by hot pressing a nonwoven fabric and a textile layer, and fusing and fixing the nonwoven fabric and the textile layer.
  • the nonwoven fabric and the textile layer can be obtained by fusing and fixing the nonwoven fabric and the textile layer by injection molding the thermoplastic resin (E) in a state where the nonwoven fabric and the textile layer are overlapped.
  • These multilayer sheets may have layers other than a nonwoven fabric and a textile layer.
  • the thermoplastic resin (D) may be formed in addition to the nonwoven fabric and the textile layer.
  • the thermoplastic resin (D) is the same as that described in the above-mentioned sheet or film, and the preferred range is also the same.
  • the multilayer sheet of the present invention has a textile layer.
  • a textile layer consists of textiles containing textiles, such as a textile fabric, knitting, a nonwoven fabric, and a lace, A textile fabric or a knitting is preferable, and a textile fabric is more preferable.
  • the thing which has a synthetic fiber or a natural fiber as a main component is preferable, The thing which has a synthetic fiber as a main component is more preferable, The thing which has a polyester as a main component is still more preferable.
  • This textile allows various designs to be easily obtained, and the three-dimensional feeling of the fiber fabric appears as it is. Further, by using the textile, the degree of freedom in design of the housing can be increased, and in addition, the mechanical strength of the housing can be increased.
  • the textile layer may be dyed or printed.
  • a known technique such as screen printing, rotary printing, ink jet printing, transfer printing or the like can be used using dyes or pigments.
  • Adhesive layer for bonding between a nonwoven fabric and a textile layer.
  • the adhesive layer is a layer that has thermoplasticity and facilitates adhesion of the textile layer and the nonwoven fabric to each other.
  • the adhesive used in the adhesive layer used in the present invention preferably contains a polyvinyl acetal resin.
  • the adhesive used for the adhesive layer has a low viscosity to the extent that bubbles can escape during molding of the housing. For example, it may be about 1 to 100,000 mPa ⁇ s.
  • the polyvinyl acetal resin is preferably a polyvinyl alcohol (PVA) resin acetalized with aldehyde, and more preferably a polyvinyl butyral (PVB) resin acetalized with butyraldehyde.
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • the acetalized PVA resin is preferably polyvinyl acetate having a saponification degree of 80.0 to 99.9 mol%, and the average degree of polymerization of polyvinyl butyral is preferably 500 to 3000, and preferably 1000 to 2000. More preferred.
  • the viscosity does not become too low when re-softening by heating during molding of the casing, and a better casing can be formed.
  • the degree By setting the degree to 3000 or less, when the PVB resin is re-softened by heating at the time of molding the casing, the viscosity does not remain high, and air bubbles are easily released, so that a better casing can be formed. Become.
  • the acetalized PVB resin may contain a plasticizer for the purpose of imparting flexibility to the adhesive layer.
  • the type of plasticizer is not particularly limited.
  • monobasic organic acids such as triethylene glycol di-2-ethylhexylate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-n-octylate, etc.
  • polybasic organic acid esters such as esters, dibutyl sebacic acid esters and dioctyl azelaic acid esters
  • polyglycerin derivatives such as polyoxypropylene polyglyceryl ether and polyethylene glycol polyglyceryl ether.
  • the adhesive layer is made of polyvinyl acetal resin, ethylene / vinyl acetate copolymer resin, ethylene / acrylic copolymer resin, propylene resin, propylene / 1-butene copolymer resin, propylene / isobutene copolymer resin.
  • Good is made of polyvinyl acetal resin, ethylene / vinyl acetate copolymer resin, ethylene / acrylic copolymer resin, propylene resin, propylene / 1-butene copolymer resin, propylene / isobutene copolymer resin.
  • the multilayer sheet of the present invention can be obtained by hot pressing a nonwoven fabric and a textile layer.
  • hot press temperature it can set suitably according to the material etc. of the nonwoven fabric and textile layer to be used.
  • thermoplastic resin (D) it is also preferable to heat press the thermoplastic resin (D) in addition to the nonwoven fabric and the textile layer.
  • the nonwoven fabric and the thermoplastic resin (D) may be hot pressed and then the textile layer may be hot pressed, or the nonwoven fabric, the thermoplastic resin (D) layer and the textile layer may be laminated and hot pressed.
  • the adhesive layer be cured by hot pressing together.
  • Each of the nonwoven fabric and the thermoplastic resin (D) layer may be one layer or two or more layers may be alternately laminated.
  • the hot pressing can be performed using a known hot pressing apparatus or the like. As press conditions of a hot press apparatus, it can determine suitably by the kind of the nonwoven fabric and thermoplastic resin (D) to be used. For example, when the nonwoven fabric containing the thermoplastic resin fiber (A) and the textile layer are hot-pressed, the melting point of the thermoplastic resin fiber (A) + (5 to 50) ° C. is preferable, and the melting point of the thermoplastic resin fiber (A) + (10-30) ° C. is more preferred.
  • the pressure at the time of hot pressing is preferably from 0.1 to 10 MPa, more preferably from 1 to 5 MPa.
  • the thickness of the multilayer sheet of the present invention is preferably 0.05 to 2.0 mm, more preferably 0.08 to 1.5 mm, further preferably 0.1 to 1.0 mm, and 0.15 to 0.5 mm. Is particularly preferred.
  • the molded article of the present invention is characterized by being formed by insert-molding a thermoplastic resin (E) on the nonwoven fabric of the present invention. Moreover, it is also preferable to insert-mold a thermoplastic resin (E) into the multilayer sheet of the present invention.
  • the multilayer sheet obtained by overlapping the nonwoven fabric of the present invention and the textile layer and injection-molding (usually insert molding) the thermoplastic resin (E) from the nonwoven fabric side is also in accordance with the method for producing the molded product of the present invention. Can be manufactured.
  • the nonwoven fabric of the present invention is placed in advance in the cavity of an injection mold, and the thermoplastic resin (E) is injection molded (injection filling) into the outer space (usually the nonwoven fabric side). ) To form a molded product. Furthermore, a thermoplastic resin (D) or an adhesive layer may be included. By performing insert molding, it is possible to improve the strength of the molded product or to form fine irregularities. Moreover, the nonwoven fabric of this invention and a textile layer can be arrange
  • thermoplastic resin (E) is further injection-molded and used as an insert molded product. Also good.
  • the thermoplastic resin (E) used for forming the multilayer sheet and the thermoplastic resin (E) used for insert molding may be the same or different.
  • the thermoplastic resin (E) is preferably composed of the same resin as the thermoplastic resin (D) or the thermoplastic resin fiber (A) because the adhesiveness is good, and the composition of 90% by weight or more is common. It is more preferable. This will be specifically described below.
  • FIG. 1 An example of a molded product by insert molding of the present invention is shown in FIG.
  • the example shown in FIG. 1 is a case 1, which has an inverted basin structure, and has one protrusion 11 and one opening 12 at the bottom of the inverted basin structure.
  • 2 is a cross-sectional view taken along line II-II in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • the casing 1 includes a textile layer 2 bonded to each other through an adhesive layer 3 and a nonwoven fabric (preferably a film or sheet 4 obtained by hot pressing a nonwoven fabric and a thermoplastic resin (D)) (hereinafter also simply referred to as a sheet 4). ) And a thermoplastic resin (E) layer 5 fixed to the sheet 4 while infiltrating into the gaps between the fibers of the sheet 4 depending on the case.
  • D thermoplastic resin
  • the thermoplastic resin (E) layer is mainly composed of the thermoplastic resin (E).
  • the raw material of the thermoplastic resin (E) layer is, for example, heated and melted with an injection molding machine and injected into a female mold mounted with the nonwoven fabric side facing up. And it adheres in the clearance gap between each fiber of a sheet
  • the sheet 4 is contracted, so that the adhesion to the thermoplastic resin (E) layer can be made stronger.
  • the thermoplastic resin (E) is preferably selected from polyester resins, polyamide resins, polyolefin resins, polypropylene resins, polyethylene resins, acrylic resins, polyacetal resins and polycarbonate resins. Among these, a polyester resin and a polyamide resin are preferable. These may be used alone or in combination of two or more.
  • the thermoplastic resin (E) may be composed of only the above resin, but may contain other components. Specifically, an additive generally added to a resin molded product can be included.
  • an additive generally added to a resin molded product can be included.
  • the elastomer and other additives described in the column of the thermoplastic resin composition are exemplified, and the blending amount and the like are preferably in the same range.
  • the thermoplastic resin fiber (A) and the resin as a main component thereof are preferably the same, more preferably 90% by weight or more in common. Moreover, it is also preferable that it is reinforced with a filler such as glass filler or carbon filler. Further, the difference between the SP value of the thermoplastic resin (E) and the SP value of the thermoplastic resin fiber (A) is preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less. Within this range, the adhesiveness between the thermoplastic resin (E) and the thermoplastic resin fiber (A) becomes good, and the strength of the resulting molded product is excellent, which is preferable.
  • the casing 1 shown as an example in FIG. 1 to FIG. 3 has the thermoplastic resin (E) fixed to the sheet 4 while infiltrating the gaps between the fibers of the sheet. Adhesiveness to the resin (E) layer 5 is excellent. Moreover, generation
  • the housing 1 in FIG. 1 has an inverted bonnet structure with the sheet 4 as a front, but it goes without saying that it may have other shapes.
  • the sheet 4 side of the multilayer sheet composed of the textile layer 2, the adhesive layer 3 and the sheet 4 is faced up, and the upper side of the female die 20 (fixed die) of the press machine. Placed on.
  • the multilayer sheet may be cut into a predetermined shape in advance.
  • the male die 21 (movable die) of the press machine is moved to the female die so that the multilayer sheet placed on the female die 20 is pushed into the female die 20. Move towards 20.
  • the multilayer sheet of the present invention is formed into a shape defined by the female mold 20 and the male mold 21. Molding is usually performed by hot pressing.
  • the formed multilayer sheet of the present invention is taken out from the press. At this time, the periphery of the formed multilayer sheet of the present invention may be deburred by cutting with a laser cutter or a cutting die (cutting unit).
  • a multilayer sheet formed by a press machine is mounted in the mold die 22 with the sheet 4 side facing up.
  • the injection molding male mold 23 injection molding mold
  • the injection hole 24a of the injection machine 24 is pressed against the injection molding hole 23a of the injection molding male mold 23, and the injection screw 25 is rotated so that the thermoplastic resin (E) raw material 27 in the tank 26 is injection molded with the multilayer sheet. Injection into a space defined by the male mold 23.
  • thermoplastic resin (E) raw material 27 infiltrates into the gaps between the fibers of the sheet, and the sheet 4 and the thermoplastic resin (E) raw material 27 contract due to the shrinkage of the thermoplastic resin (E) raw material 27 during cooling and solidification. Adhesion with 4 becomes stronger.
  • the surface of the multilayer sheet may be protected by the protective sheet 7.
  • a protective sheet is a polyethylene terephthalate (PET) sheet.
  • PET polyethylene terephthalate
  • An example of such an adhesive film 6 is a PVA film.
  • the PVA film is preferably water-soluble, and is made of, for example, Solvron (registered trademark) manufactured by Aicello Chemical Co., Ltd.
  • the PVA-based film 6 may be a PVA coating agent that is coated on the PET sheet 7.
  • the female mold 20 and the male mold 21 constitute a press machine, and the female mold 22, the injection molding male mold 23, and the injection machine 24 constitute an injection molding machine.
  • the press machine and the injection molding machine may be integrated, and the female mold 20 may be used as the female mold 22.
  • the injection molding male mold 23 is moved toward the multilayer sheet of the present invention molded in the female mold 20.
  • thermoplastic resin (E) raw material 27 infiltrates into the gaps between the fibers of the sheet, and when the thermoplastic resin (E) raw material 27 is cooled and solidified, the sheet 4 and the thermosetting resin (E) layer. 5 contracts. As a result, the adhesion between the thermoplastic resin (E) layer 5 and the sheet 4 becomes stronger.
  • thermosetting resin (E) layer 5 in addition to improving the adhesion of the multilayer sheet of the present invention to the thermosetting resin (E) layer 5 and eliminating wrinkles and distortion of the pattern, the mechanical strength of the housing 1 can be improved and the housing 1 can be prevented from warping.
  • the insert-molded molded article of the present invention can be, for example, a molded article having a thickness of 0.1 to 2 mm and an area of 10 cm 2 or more.
  • the housing is described only as a general molded article.
  • an in-mold molding having a surface coating layer is added. It is intended for decoration, specifically, miscellaneous goods including containers and stationery, housings for electronic devices and home appliances including mobile phones and laptop computers, housings for interior and exterior products of buildings and automobiles, aircraft, Examples include railway vehicles and ship interior casings.
  • ⁇ Synthesis Example 1 Synthesis of polymetaxylylene sebacamide (MXD10)>
  • sebacic acid TA grade manufactured by Ito Oil Co., Ltd.
  • metaxylylenediamine manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the temperature was raised to 240 ° C. while gradually dropping to a ratio of 1: 1.
  • the temperature was raised to 260 ° C.
  • the contents were taken out in a strand shape and pelletized with a pelletizer.
  • the obtained pellets were charged into a tumbler and subjected to solid phase polymerization under reduced pressure to obtain a polyamide (MXD10) having a molecular weight adjusted.
  • the melting point of the polyamide resin (MXD10) was 191 ° C.
  • the glass transition temperature (Tg) was 60 ° C.
  • the number average molecular weight was 30,000.
  • Production of film made of MPXD10> MXD10 was changed to MPXD10, and others were obtained in the same manner as in Production Example 1 to obtain a film.
  • Production of a film made of PET> MXD10 was set to PET, the cylinder temperature was set to 280 ° C., and a film was obtained in the same manner as in Production Example 1.
  • Example 1 The polyamide resin MPXD10 obtained above was melt-spun to obtain a multifilament having 34 filaments and a fineness of 210D. The obtained fiber was cut to obtain a fiber having an average fiber length of 12 mm. Polybutylene terephthalate (Novaduran manufactured by Mitsubishi Engineering Plastics Co., Ltd., melting point 224 ° C., Tg 40 ° C.) was melt-spun to obtain a multifilament having 34 filaments and a fineness of 210D. The obtained fiber was cut to obtain a fiber having an average fiber length of 12 mm. Carbon fiber (TR50S manufactured by Mitsubishi Rayon) was cut to obtain a fiber having an average fiber length of 12 mm.
  • Example 1 Example 1 with the exception that the types of thermoplastic resin fibers (A), carbon fibers (B), and thermoplastic resins (C), their average fiber lengths and blending amounts were changed as shown in the following table.
  • a nonwoven fabric was produced in the same manner.
  • PET Polyethylene terephthalate (Nihon Unipet, grade 1101, melting point 252 ° C. Tg 83 ° C.)
  • the average fiber book of the thermoplastic resin fibers (A) and the carbon fibers (B) was adjusted by changing the length to be cut.
  • Comparative Example 1 the above PET was used as the thermoplastic resin (C).
  • the tensile properties of the film were tested according to JIS K7127 and K7161, and the tensile modulus (MPa) was determined.
  • the apparatus used the Toyo Seiki Co., Ltd. strograph, the test piece width was 10 mm, the distance between chuck
  • thermoplastic resin fiber (A), a carbon fiber (B), and a thermoplastic resin (C) is shown by these compounding ratios (weight ratio).
  • “(C) / ((A) + (C)) (% by weight)” of the thermoplastic resin (C) is the heat to the total amount of the thermoplastic resin fiber (A) and the thermoplastic resin (C). This is the ratio (% by weight) of the plastic resin (C) (the same applies to Table 4 described later).
  • Examples 1 to 10 which are nonwoven fabrics of the present invention, were excellent in appearance and excellent in mechanical strength when formed into a hot-pressed film. However, in Example 10, the nonwoven fabric fibers were slightly frayed.
  • Comparative Example 1 In Comparative Example 1 in which the glass transition temperature of the thermoplastic resin (C) is higher than the glass transition temperature of the thermoplastic resin fiber (A), the nonwoven fabric fibers are extremely frayed, and as a result, the strength of the hot press film is inferior. . In Comparative Examples 2 and 3, which are resin films alone, the mechanical strength was inferior.
  • Example 11 A film (thickness 50 ⁇ m) made of polyamide MXD10 is laminated on the nonwoven fabric obtained in Example 1, and after being hot-pressed at a temperature of 260 ° C. and a pressure of 1 MPa, it is cooled to have a nonwoven fabric and a thermoplastic resin (D). A sheet was obtained. The obtained sheet was reheated with an IR heater and molded in a mold. The tensile strength and tensile modulus of the obtained sheet were measured in the same manner as the nonwoven fabric.
  • Example 12 The nonwoven fabric obtained in Example 1 is laminated with a film made of polyamide MPXD10 (thickness 50 ⁇ m), hot pressed at a temperature of 290 ° C. and a pressure of 1 MPa, and then cooled to have a nonwoven fabric and a thermoplastic resin (D). A sheet was obtained. The obtained sheet was reheated with an IR heater and molded in a mold. The tensile strength and tensile modulus of the obtained sheet were measured in the same manner as the nonwoven fabric.
  • a film made of polyamide MPXD10 thickness 50 ⁇ m
  • D thermoplastic resin
  • Example 13 The nonwoven fabric obtained in Example 1 and a film (50 ⁇ m) made of polyamide MPXD10 were alternately laminated, hot pressed at a temperature of 280 ° C. and a pressure of 2 MPa, and then cooled to obtain a 0.7 mm thick sheet. The obtained sheet was reheated with an IR heater and molded in a mold. The obtained molded product was set in a mold of an injection molding machine, and polyamide MPXD10 was insert molded. It confirmed that it was adhere
  • Example 1 with the exception that the types of thermoplastic resin fibers (A), carbon fibers (B), and thermoplastic resins (C), their average fiber lengths and blending amounts were changed as shown in the following table.
  • a nonwoven fabric was produced in the same manner. Each nonwoven fabric obtained above and the thermoplastic resin (D) film produced above are alternately laminated in the combinations shown in Table 4, and a textile layer (a plain woven fabric made of polyester, basis weight 164.5 g / m 2 ). This was hot-pressed at a pressure of 2 MPa with a mold temperature on the thermoplastic resin (D) side of 280 ° C. to obtain a 10 cm ⁇ 10 cm multilayer sheet.
  • Example 1 with the exception that the types of thermoplastic resin fibers (A), carbon fibers (B), and thermoplastic resins (C), their average fiber lengths and blending amounts were changed as shown in the following table.
  • a nonwoven fabric was produced in the same manner. Each nonwoven fabric obtained above and the thermoplastic resin (D) film produced above are alternately laminated in the combinations shown in Table 4, and a textile layer (a plain woven fabric made of polyester, basis weight 164.5 g / m 2 ).
  • Were laminated with an adhesive (polyvinyl acetal resin) the mold temperature on the thermoplastic resin (D) side was 280 ° C., and hot pressing was performed at a pressure of 2 MPa to obtain a 10 cm ⁇ 10 cm multilayer sheet.
  • a film (thickness is the thickness described in the following table) using the resin described in the following table as a raw material was used.
  • the resin obtained as a raw material and a textile layer (a plain woven cloth made of polyester, basis weight 164.5 g / m 2 )
  • the mold temperature on the film side using the resin as a raw material is 280 ° C.
  • the pressure is 2 MPa.
  • the multilayer sheet of the present invention had no warp and high mechanical strength. On the other hand, even if the multilayer sheet of the present invention was produced with a thin resin film without using a nonwoven fabric, sufficient strength could not be obtained. Furthermore, a thin resin film was attempted to be produced using a material obtained by compounding 50% by weight of carbon fiber with respect to MPXD10, but it was actually difficult to produce.
  • Example 18 The non-woven fabric and the textile layer of Production Example 3 were set in an injection molding machine mold with the non-woven fabric as the hot runner side, and polyamide MPXD10 was injection-molded from the non-woven fabric side to form a multilayer sheet.
  • the polyamide MPXD10, the nonwoven fabric, and the textile layer were well bonded.
  • Example 19 Insert Molding
  • the multilayer sheet obtained in Example 15 was reheated with an IR heater and molded in a mold.
  • the obtained molded product was set in a mold of an injection molding machine, and polyamide MPXD10 was insert molded. Polyamide MPXD10 adhered well to the multilayer sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 熱可塑性樹脂繊維と炭素繊維を主成分とする不織布であって、かかる不織布を樹脂成形品とした際に、機械的強度に優れ、かつ、成形品外観に優れたものが得られる不織布、ならびに、前記不織布とテキスタイル層を有し機械的強度に優れ、かつ、反りの少ない多層シートの提供。 熱可塑性樹脂繊維(A)と炭素繊維(B)と、前記熱可塑性樹脂繊維(A)よりもガラス転移温度が低い熱可塑性樹脂(C)を含み、前記熱可塑性樹脂(C)を、熱可塑性樹脂繊維(A)と熱可塑性樹脂(C)の合計量の1~50重量%の割合で含む不織布。

Description

不織布、シートまたはフィルム、多層シート、成形品および不織布の製造方法
 本発明は、熱可塑性樹脂繊維と炭素繊維を含む不織布に関する。また、かかる不織布を熱プレスして得られるシートまたはフィルムに関する。さらに、前記不織布とテキスタイル層を熱プレスして得られる多層シートに関する。加えて、前記不織布等をインサート成形して得られる成形品に関する。
 従来から不織布を作製することが検討されている。例えば、特許文献1には、水流交絡法によって炭素繊維の不織布を製造している。より具体的には、水流交絡法では、炭素繊維をランダム配列させたものを積層させ、高圧水流をかけて不織布としている。
 また、特許文献2には、炭素繊維と熱可塑性樹脂繊維からなる不織布が開示されている。
 一方、近年、電子機器や家電等の筐体および自動車内装品の筐体の技術分野において、その筐体の外面に加飾材を積層することが広く検討されている。かかる筐体は、通常、樹脂を主要構成成分とする成形品によって作製されている場合が多い。このような樹脂成形品では、その表面に施されるさまざまな加飾材が他の製品からの差別化に欠かせない要素となっている。このような状況において、一部の企業では、同一製品でも、樹脂成形品に多様な加飾材を施すことで顧客が自由に製品の加飾デザインを選択することができるようになっている。例えば、特許文献3には、ポリエチレンテレフタレート樹脂等不織布の表面に金属光沢を有する高輝度層が形成された繊維長加飾シートが開示されている。また、上記分野に関連した技術として、接着樹脂層を介して互いに接着された透明アクリルフィルム層およびテキスタイル層の積層体と、このテキスタイル層の各繊維の隙間に浸潤しつつテキスタイル層に固着された基盤樹脂層とを備えるテキスタイル/樹脂積層構造の筐体が提案されている(例えば、特許文献4および特許文献5参照)。特許文献4および特許文献5によれば、テキスタイル層の基盤樹脂層に対する密着性及びテキスタイル層の表面の耐衝撃性及び擦過性が優れ、加えてテキスタイル層の皺の発生や絵柄のゆがみをなくすことができる。
特開2002-266217号公報 特開2011-190549号公報 特開2004-34527号公報 国際公開2012/105664号パンフレット 国際公開2012/105665号パンフレット
 従来、薄い成形品、例えば樹脂フィルムや樹脂シート程度の厚みを有する成形品の強度を、炭素繊維を用いて向上させようとした場合、あらかじめ炭素繊維と樹脂をコンパウンドした後に射出成型しようとしても、結晶化速度、流動性の観点から射出時に非常に高い圧力が必要とされるため、射出成型品で大きな面積を有する薄肉の成形品を製造するのは実質的に困難であった。また、炭素繊維と樹脂からなるコンパウンド品をフィルム化あるいはシート化して薄い成形品を得ようとしても、コンパウンド時あるいはその後の溶融押出時に炭素繊維長が短くなりすぎてしまい、意図した強度が得られないという問題があった。
 一方、特許文献2は、熱可塑性樹脂繊維と炭素繊維を含む不織布を開示しているが、本願発明者が検討したところ、機械的強度が不十分であることが分かった。さらに用途によっては、外観にも優れていることも求められるが、外観も良好ではないことが分かった。
 本発明の第一の目的は、かかる課題を解決することであって、熱可塑性樹脂繊維と炭素繊維を含む不織布であって、かかる不織布を樹脂成形品とした際に、機械的強度に優れた不織布を提供することを目的とする。さらには、かかる不織布を成形した際の成形品外観に優れたものが得られる不織布を提供することを目的とする。
また、前記のような不織布にテキスタイル層を設けた多層シートについて本願発明者が検討したところ、反りが生じてしまう場合があることが分かった。
 本発明の第二の目的は、かかる課題を解決することを目的とするものであって、テキスタイル層を有する樹脂を含む多層シートであって、機械的強度に優れ、かつ、反りの少ない多層シートを提供することを目的とする。
 かかる状況のもと、本願発明者が検討を行った結果、熱可塑性樹脂繊維(A)と炭素繊維(B)を、前記熱可塑性樹脂繊維(A)よりもガラス転移温度が低い熱可塑性樹脂(C)を用いて結合することにより、熱可塑性樹脂繊維と炭素繊維を主成分とする不織布を提供できることを見出し、本発明を完成させるに至った。具体的には、以下の手段<1>により、好ましくは<2>~<26>により、上記課題は解決された。
<1>熱可塑性樹脂繊維(A)と炭素繊維(B)と、前記熱可塑性樹脂繊維(A)よりもガラス転移温度が低い熱可塑性樹脂(C)を含み、前記熱可塑性樹脂(C)を、熱可塑性樹脂繊維(A)と熱可塑性樹脂(C)の合計量の1~50重量%の割合で含む不織布。
<2>炭素繊維(B)の平均繊維長が1~15mmである、<1>に記載の不織布。
<3>熱可塑性樹脂繊維(A)の平均繊維長が1~15mmである、<1>または<2>に記載の不織布。
<4>前記熱可塑性樹脂(C)が繊維である、<1>~<3>のいずれかに記載の不織布。
<5>前記熱可塑性樹脂(C)が平均繊維長1~15mmの繊維である、<1>~<3>のいずれかに記載の不織布。
<6>熱可塑性樹脂繊維(A)の平均繊維長と炭素繊維(B)の平均繊維長の差が10mm以下である、<1>~<5>のいずれかに記載の不織布。
<7>熱可塑性樹脂繊維(A)と炭素繊維(B)の配合比(重量比)が、99:1~25:75である、<1>~<6>のいずれかに記載の不織布。
<8>熱可塑性樹脂繊維(A)が、ポリエステル樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、アクリル樹脂、ポリアセタール樹脂およびポリカーボネート樹脂から選択される、<1>~<7>のいずれかに記載の不織布。
<9><1>~<8>のいずれかに記載の不織布を熱プレスして得られるシートまたはフィルム。
<10><1>~<8>のいずれかに記載の不織布と熱可塑性樹脂(D)を熱プレスして得られるシートまたはフィルム。
<11>前記熱可塑性樹脂(D)が、熱可塑性樹脂フィルムである、<10>に記載のシートまたはフィルム。
<12><1>~<8>のいずれかに記載の不織布とテキスタイル層を熱プレスして得られる多層シート、または、<1>~<8>のいずれかに記載の不織布とテキスタイル層と重ね、不織布側から熱可塑性樹脂(E)を射出成形して得られる多層シート。
<13>不織布とテキスタイル層の間に接着層を有する、<12>に記載の多層シート。
<14>前記接着層が、ポリビニルアセタール系樹脂を含む、<13>に記載の多層シート。
<15>前記不織布とテキスタイル層に加え、さらに、熱可塑性樹脂(D)を含む、<12>~<14>のいずれかに記載の多層シート。
<16>前記熱可塑性樹脂(D)が樹脂フィルムである、<15>に記載の多層シート。
<17><1>~<8>のいずれかに記載の不織布、<9>~<11>のいずれかに記載のシートもしくはフィルム、または、<12>~<16>のいずれかに記載の多層シートに熱可塑性樹脂(E)をインサート成形してなる成形品。
<18>熱可塑性樹脂繊維(A)と、炭素繊維(B)と、前記熱可塑性樹脂繊維(A)よりもガラス転移温度が低い熱可塑性樹脂(C)を含み、前記熱可塑性樹脂(C)を、熱可塑性樹脂繊維(A)と熱可塑性樹脂(C)の合計量の1~50重量%の割合で含む組成物を、液体中で抄くことを含む、不織布の製造方法。
<19>さらに、前記液体中で抄いた後、前記熱可塑性樹脂(C)のガラス転移温度以上の温度で加熱する工程を含む、<18>に記載の不織布の製造方法。
<20>炭素繊維(B)の平均繊維長が1~15mmである、<18>または<19>に記載の不織布の製造方法。
<21>熱可塑性樹脂繊維(A)の平均繊維長が1~15mmである、<18>~<20>のいずれかに記載の不織布の製造方法。
<22>前記熱可塑性樹脂(C)が繊維である、<18>~<21>のいずれかに記載の不織布の製造方法。
<23>前記熱可塑性樹脂(C)が平均繊維長1~15mmの繊維である、<18>~<22>のいずれかに記載の不織布の製造方法。
<24>熱可塑性樹脂繊維(A)の平均繊維長と炭素繊維(B)の平均繊維長の差が10mm以下である、<18>~<23>のいずれかに記載の不織布の製造方法。
<25>熱可塑性樹脂繊維(A)と炭素繊維(B)の配合比(重量比)が、99:1~25:75である、<18>~<24>のいずれかに記載の不織布の製造方法。
<26>熱可塑性樹脂繊維(A)が、ポリエステル樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、アクリル樹脂、ポリアセタール樹脂およびポリカーボネート樹脂から選択される、<18>~<25>のいずれかに記載の不織布の製造方法。
 熱可塑性樹脂繊維と炭素繊維を含む不織布であって、かかる不織布を樹脂成形品とした際に、機械的強度に優れた不織布を提供可能になった。さらには、かかる不織布を成形した際の成形品外観に優れたものが得られる不織布を提供可能になった。
 さらに、テキスタイル層を有し機械的強度に優れ、かつ、反りの少ない多層シートを提供可能になった。
本発明における筐体の一例を示した斜視図である。 図1中のII-II線の断面の一例を示した断面図である。 図1中のIII-III線の断面の一例を示した断面図である。 インサート成形する工程を示した概略図である。
 以下において、本発明の内容について詳細に説明する。尚、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。本発明における主成分とは、含有量が最も多い成分をいう。また、本明細書では、「熱可塑性樹脂繊維(A)と炭素繊維(B)を主成分とする不織布」等の記載があるが、これは、熱可塑性樹脂繊維(A)と炭素繊維(B)の合計量が不織布中に最も多いことを意味する。
 本発明の不織布は、熱可塑性樹脂繊維(A)と炭素繊維(B)と、前記熱可塑性樹脂繊維(A)よりもガラス転移温度が低い熱可塑性樹脂(C)を含み、前記熱可塑性樹脂(C)を、熱可塑性樹脂繊維(A)と熱可塑性樹脂(C)の合計量の1~50重量%の割合で含むことを特徴とする。すなわち、(C)/((A)+(C))(重量%)の値が1~50(重量%)の範囲内であることを特徴とする。熱可塑性樹脂繊維(A)と炭素繊維(B)を主成分とする不織布において、前記熱可塑性樹脂繊維(A)よりもガラス転移温度が低い熱可塑性樹脂(C)を用いて結合することにより、熱可塑性樹脂繊維(A)と炭素繊維(B)を適切に結合させることができる。さらに、熱可塑性樹脂(C)が熱可塑性樹脂繊維(A)よりもガラス転移温度が低いので、熱可塑性樹脂繊維(A)については、繊維状のまま不織布とすることができる。このような不織布とすることにより、機械的強度に優れ、種々の形状を有する樹脂成形品の材料として用いることができる。
 熱可塑性樹脂繊維(A)と炭素繊維(B)を含む布状の複合材料としては、例えば、熱可塑性樹脂繊維(A)と炭素繊維(B)を主成分とする混繊糸を製造し、かかる混繊糸を織物等にしたものも考えられる。しかしながら、混繊糸は作製に大掛かりな装置が必要である等の問題がある。本発明の不織布は後述する不織布の製造方法でも述べるとおり、簡易な装置で製造が可能である。
 本発明で用いる不織布(熱プレス前)の厚さは、特に制限はないがとしては、例えば0.05~30mmが好ましく、0.1~10mmがより好ましく、0.5~5mm程度がさらに好ましい。
<熱可塑性樹脂繊維(A)>
 本発明で用いる熱可塑性樹脂繊維(A)は、熱可塑性樹脂繊維である限り特に定めるものではなく、公知のものを採用でき、通常は、熱可塑性樹脂繊維束を任意の長さに加工したものを用いる。
 本発明で用いる熱可塑性樹脂繊維(A)の平均繊維長は、1~20mmが好ましく、1~15mmがより好ましく、3~15mmがさらに好ましく、3~12mmが特に好ましい。平均繊維長を1mm以上とすることで、不織布を用いた成形品の力学的強度を向上させることができ、20mm以下、特に、15mm以下とすることで、不織布中により均一に分散させることが可能になる。なお、平均繊維長は不織布から熱可塑性樹脂繊維(A)を20本程度取り出し、その長さを測定し相加平均して求めることができる。
 本発明で用いる熱可塑性樹脂繊維(A)は、通常、熱可塑性樹脂繊維が束状になった熱可塑性樹脂繊維束(マルチフィラメント)を用いて製造するが、かかる熱可塑性樹脂繊維束1本の当たりの合計繊度が、37~600Dであることが好ましく、50~500Dであることがより好ましく、150~400Dであることがさらに好ましい。かかる熱可塑性樹脂繊維束を構成する繊維数は、1~200fであることが好ましく、1~100fであることがより好ましく、5~80fであることがさらに好ましく、20~70fであることが特に好ましい。
 本発明で用いる熱可塑性樹脂繊維(A)は、引張強度が2~10gf/dであるものが好ましい。
 本発明で用いる熱可塑性樹脂繊維(A)のガラス転移温度は、樹脂の種類にもよるが、40℃以上が好ましく、50℃以上がより好ましく、55℃以上がより好ましく、60℃以上がさらに好ましい。また、本発明で用いる熱可塑性樹脂繊維(A)のガラス転移温度は、樹脂の種類にもよるが、200℃以下が好ましく、150℃以下がより好ましく、100℃以下がさらに好ましい。特に、熱可塑性樹脂繊維(A)としてポリアミド樹脂を用いたときに、このような範囲とすることにより本発明の効果がより効果的に発揮される。
 本発明で用いる熱可塑性樹脂繊維(A)の融点は、樹脂の種類にもよるが、150℃以上が好ましく、180℃以上がより好ましく、200℃以上がより好ましい。また、本発明で用いる熱可塑性樹脂繊維(A)の融点は、樹脂の種類にもよるが、320℃以下が好ましく、310℃以下がより好ましく、300℃以下がより好ましく、280℃以下がさらに好ましい。特に、熱可塑性樹脂繊維(A)としてポリアミド樹脂を用いたときに、このような範囲とすることにより本発明の効果がより効果的に発揮される。
 本発明で用いる熱可塑性樹脂繊維(A)に用いる繊維としては、ポリアミド樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、アクリル樹脂、ポリアセタール樹脂およびポリカーボネート樹脂から選択されることが好ましい。これらの中でも、ポリエステル樹脂、ポリアミド樹脂が好ましい。これらは単独で用いてもよく、2種以上を用いてもよい。
 本発明で用いる熱可塑性樹脂繊維(A)は、熱可塑性樹脂を主成分とする熱可塑性樹脂組成物を繊維状にしたものである。ここで、前記熱可塑性樹脂組成物は、熱可塑性樹脂のみからなっていても良い。
 本発明で用いる熱可塑性樹脂繊維(A)は、より好ましくは、ポリエステル樹脂、ナイロン6、ナイロン66、ナイロン666または、ジアミン構成単位の50モル%以上がキシリレンジアミンに由来するポリアミド樹脂であり、さらに好ましくはジアミン構成単位の50モル%以上がキシリレンジアミンに由来するポリアミド樹脂であって、数平均分子量(Mn)が6,000~30,000であり、その0.5~5質量%が、分子量が1,000以下のポリアミド樹脂であるポリアミド樹脂組成物を繊維状にしたものである。
 本発明では、ジアミン構成単位として、パラキシリレンジアミンおよびメタキシリレンジアミンの両方に由来するポリアミド樹脂を繊維状にしたものであることがより好ましい。特に、本発明で用いるポリアミド樹脂としては、ジアミンの50モル%以上がキシリレンジアミンに由来し、ジカルボン酸と重縮合されたキシリレンジアミン系ポリアミド樹脂であることが好ましい。
 好ましくは、ジアミン構成単位の70モル%以上、より好ましくは80モル%以上がメタキシリレンジアミンおよび/またはパラキシリレンジアミンに由来し、ジカルボン酸構成単位(ジカルボン酸に由来する構成単位)の好ましくは50モル%以上、より好ましくは70モル%以上、特には80モル%以上が、炭素原子数が好ましくは4~20の、α,ω-直鎖脂肪族ジカルボン酸に由来するキシリレンジアミン系ポリアミド樹脂である。
 キシリレンジアミン系ポリアミド樹脂の原料ジアミン成分として用いることが出来るメタキシリレンジアミンおよびパラキシリレンジアミン以外のジアミンとしては、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン、ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン等を例示することができ、1種又は2種以上を混合して使用できる。
 ジアミン成分として、キシリレンジアミン以外のジアミンを用いる場合は、ジアミン構成単位の50モル%以下であることが好ましく、30モル%以下であることがより好ましく、さらに好ましくは1~25モル%、特に好ましくは5~20モル%の割合で用いる。
 ポリアミド樹脂の原料ジカルボン酸成分として用いるのに好ましい炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸としては、例えばコハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示でき、1種又は2種以上を混合して使用できるが、これらの中でもポリアミド樹脂の融点が成形加工するのに適切な範囲となることから、アジピン酸またはセバシン酸が好ましく、セバシン酸が特に好ましい。
 上記炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸成分としては、イソフタル酸、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸といった異性体等のナフタレンジカルボン酸等を例示することができ、1種又は2種以上を混合して使用できる。
 ジカルボン酸成分として、炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸を用いる場合は、成形加工性、バリア性の点から、イソフタル酸を用いることが好ましい。イソフタル酸の割合は、好ましくはジカルボン酸構成単位の30モル%以下であり、より好ましくは1~30モル%、特に好ましくは5~20モル%の範囲である。
 さらに、ジアミン成分、ジカルボン酸成分以外にも、ポリアミド樹脂を構成する成分として、本発明の効果を損なわない範囲でε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類も共重合成分として使用できる。
 ポリアミド樹脂として、最も好ましいものは、ポリメタキシリレンセバカミド樹脂、ポリパラキシリレンセバカミド樹脂、及び、メタキシリレンジアミンとパラキシリレンジアミンの混合キシリレンジアミンをセバシン酸と重縮合してなるポリメタキシリレン/パラキシリレン混合セバカミド樹脂である。これらのポリアミド樹脂は成形加工性が特に良好となる傾向にある。
 本発明において、ポリアミド樹脂としては、数平均分子量(Mn)が6,000~30,000であり、そのうちの0.5~5質量%が、分子量が1,000以下のポリアミド樹脂であることがより好ましい。
 数平均分子量(Mn)を6,000~30,000の範囲とすることにより、得られる不織布またはその成形品の強度がより向上する傾向にある。好ましい数平均分子量(Mn)は8,000~28,000であり、より好ましくは9,000~26,000であり、さらに好ましくは10,000~24,000であり、特に好ましくは11,000~22,000であり、特に好ましくは12,000~20,000である。このような範囲であると、耐熱性、弾性率、寸法安定性、成形加工性がより良好となる。
 なお、ここでいう数平均分子量(Mn)とは、ポリアミド樹脂の末端アミノ基濃度[NH2](μ当量/g)と末端カルボキシル基濃度[COOH](μ当量/g)から、次式で算出される。
数平均分子量(Mn)=2,000,000/([COOH]+[NH2])
 また、ポリアミド樹脂は、分子量が1,000以下の成分を0.5~5質量%含有することが好ましいが、このような低分子量成分をこのような範囲で含有することにより、ポリアミド樹脂の含浸性が良好となるため、すなわちポリアミド樹脂の強化繊維間での流動性が良好となり、成形加工時にボイドの発生を抑制することができることから、得られる不織布及びその成形品の強度や低そり性がより良好となる。5質量%を超えると、この低分子量成分がブリードして強度が悪化し、表面外観が悪くなる場合がある。
 分子量が1,000以下の成分の好ましい含有量は、0.6~4.5質量%であり、より好ましくは0.7~4質量%であり、さらに好ましくは0.8~3.5質量%であり、特に好ましくは0.9~3質量%であり、最も好ましくは1~2.5質量%である。
 分子量が1,000以下の低分子量成分の含有量の調整は、ポリアミド樹脂重合時の温度や圧力、ジアミンの滴下速度などの溶融重合条件を調節して行うことができる。特に溶融重合後期に反応装置内を減圧して低分子量成分を除去し、任意の割合に調節することができる。また、溶融重合により製造されたポリアミド樹脂を熱水抽出して低分子量成分を除去してもよいし、溶融重合後さらに減圧下で固相重合して低分子量成分を除去してもよい。固相重合に際しては、温度や減圧度を調節して、低分子量成分を任意の含有量に制御することができる。また、分子量が1,000以下の低分子量成分を後からポリアミド樹脂に添加することでも調節可能である。
 なお、分子量1,000以下の成分量の測定は、東ソー社(TOSOH CORPORATION)製「HLC-8320GPC」を用いて、ゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート(PMMA)換算値より求めることができる。なお、測定用カラムとしては「TSKgel SuperHM-H」を2本用い、溶媒にはトリフルオロ酢酸ナトリウム濃度10mmol/lのヘキサフルオロイソプロパノール(HFIP)を用い、樹脂濃度0.02質量%、カラム温度は40℃、流速0.3ml/分、屈折率検出器(RI)にて測定することができる。また、検量線は6水準のPMMAをHFIPに溶解させて測定し作成する。
 ポリアミド樹脂組成物では、上記ポリアミド樹脂の0.01~1質量%が、環状の化合物(ポリアミド樹脂)であることが好ましい。本発明において環状化合物とは、ポリアミド樹脂の原料であるジアミン成分とジカルボン酸成分からなる塩が環を形成してなる化合物をいい、以下の方法により定量することができる。
 ポリアミド樹脂のペレットを超遠心粉砕機にて粉砕し、φ0.25mmのふるいにかけ、φ0.25mm以下の粉末試料10gを円筒ろ紙に測りとる。その後メタノール120mlにて9時間ソックスレー抽出を行い、得られた抽出液をエバポレータにて乾固しないように注意しながら10mlに濃縮する。なお、その際、オリゴマーが析出する場合は、適宜PTFEフィルターに通液して取り除く。得られた抽出液をメタノールにて50倍希釈した液を測定に供し、日立ハイテクノロジー社(Hitachi High-Technologies Corporation)製高速液体クロマトグラフHPLCによる定量分析を実施して環状化合物含有量を求める。
 環状化合物をこのような範囲で含有することにより、得られる不織布及びその成形品の強度が良好となり、さらにそりが少なくなり、寸法安定性がより向上しやすい傾向にある。
 環状化合物のより好ましい含有量は、上記ポリアミド樹脂の0.05~0.8質量%であり、さらに好ましくは0.1~0.5質量%である。
 溶融重合により製造されたポリアミド樹脂中には、環状化合物が相当量含まれている場合が多く、通常、熱水抽出等を行ってこれらは除去されている。この熱水抽出の程度を調整することにより、環状化合物量を調整することができる。また、溶融重合時の圧力を調整することでも可能である。
 本発明で用いるポリアミド樹脂は、分子量分布(重量平均分子量/数平均分子量(Mw/Mn))が、好ましくは1.8~3.1である。分子量分布は、より好ましくは1.9~3.0、さらに好ましくは2.0~2.9である。分子量分布をこのような範囲とすることにより、機械特性に優れた不織布が得られやすい傾向にある。
 ポリアミド樹脂の分子量分布は、例えば、重合時に使用する開始剤や触媒の種類、量及び反応温度、圧力、時間等の重合反応条件などを適宜選択することにより調整できる。また、異なる重合条件によって得られた平均分子量の異なる複数種のポリアミド樹脂を混合したり、重合後のポリアミド樹脂を分別沈殿させることにより調整することもできる。
 重量平均分子量の分子量分布は、GPC測定により求めることができ、具体的には、装置として東ソー社製「HLC-8320GPC」、カラムとして、東ソー社製「TSK gel Super HM-H」2本を使用し、溶離液トリフルオロ酢酸ナトリウム濃度10mmol/lのヘキサフルオロイソプロパノール(HFIP)、樹脂濃度0.02質量%、カラム温度40℃、流速0.3ml/分、屈折率検出器(RI)の条件で測定し、標準ポリメチルメタクリレート換算の値として求めることができる。また、検量線は6水準のPMMAをHFIPに溶解させて測定し作成する。
 また、ポリアミド樹脂は、溶融粘度が、ポリアミド樹脂の融点+30℃、せん断速度122sec-1、ポリアミド樹脂の水分率が0.06質量%以下の条件で測定したときに、50~1200Pa・sであることが好ましい。溶融粘度を、このような範囲とすることにより、ポリアミド樹脂のフィルムまたは繊維への加工が容易となる。なお、後述するような、ポリアミド樹脂が融点を2つ以上有する場合は、高温側の吸熱ピークのピークトップの温度を融点とし、測定を行う。
 溶融粘度のより好ましい範囲は、60~500Pa・s、さらに好ましくは70~100Pa・sである。
 ポリアミド樹脂の溶融粘度は、例えば、原料ジカルボン酸成分およびジアミン成分の仕込み比、重合触媒、分子量調節剤、重合温度、重合時間を適宜選択することにより調整できる。
 また、ポリアミド樹脂は、末端アミノ基濃度([NH2])が好ましくは100μ当量/g未満、より好ましくは5~75μ当量/g、さらに好ましくは10~60μ当量/gであり、末端カルボキシル基濃度([COOH])は、好ましくは150μ当量/g未満、より好ましくは10~120μ当量/g、さらに好ましくは10~100μ当量/gのものが好適に用いられる。このような末端基濃度のポリアミド樹脂を用いることにより、ポリアミド樹脂をフィルム状又は繊維状に加工する際に粘度が安定しやすく、また、カルボジイミド化合物との反応性が良好となる傾向にある。
 また、末端カルボキシル基濃度に対する末端アミノ基濃度の比([NH2]/[COOH])は、0.7以下であるものが好ましく、0.6以下であるものがより好ましく、特に好ましくは0.5以下である。この比が0.7よりも大きいものは、ポリアミド樹脂を重合する際に、分子量の制御が難しくなる場合がある。
 末端アミノ基濃度は、ポリアミド樹脂0.5gを30mlのフェノール/メタノール(4:1)混合溶液に20~30℃で攪拌溶解し、0.01Nの塩酸で滴定して測定することができる。また、末端カルボキシル基濃度は、ポリアミド樹脂0.1gを30mlのベンジルアルコールに200℃で溶解し、160℃~165℃の範囲でフェノールレッド溶液を0.1ml加える。その溶液を0.132gのKOHをベンジルアルコール200mlに溶解させた滴定液(KOH濃度として0.01mol/l)で滴定を行い、色の変化が黄~赤となり色の変化がなくなった時点を終点とすることで算出することができる。
 本発明のポリアミド樹脂は、反応したジカルボン酸単位に対する反応したジアミン単位のモル比(反応したジアミン単位のモル数/反応したジカルボン酸単位のモル数、以下「反応モル比」という場合がある。)が、0.97~1.02であることが好ましい。このような範囲とすることにより、ポリアミド樹脂の分子量や分子量分布を、任意の範囲に制御しやすくなる。
 反応モル比は、より好ましくは1.0未満、さらに好ましくは0.995未満、特には0.990未満であり、下限は、より好ましくは0.975以上、さらに好ましくは0.98以上である。
 ここで、反応モル比(r)は次式で求められる。
r=(1-cN-b(C-N))/(1-cC+a(C-N))
式中、
a:M1/2
b:M2/2
c:18.015 (水の分子量(g/mol))
M1:ジアミンの分子量(g/mol)
M2:ジカルボン酸の分子量(g/mol)
N:末端アミノ基濃度(当量/g)
C:末端カルボキシル基濃度(当量/g)
 なお、ジアミン成分、ジカルボン酸成分として分子量の異なるモノマーからポリアミド樹脂を合成する際は、M1およびM2は原料として配合するモノマーの配合比(モル比)に応じて計算されることはいうまでもない。なお、合成釜内が完全な閉鎖系であれば、仕込んだモノマーのモル比と反応モル比とは一致するが、実際の合成装置は完全な閉鎖系とはなりえないことから、仕込みのモル比と反応モル比が一致するとは限らない。仕込んだモノマーが完全に反応するとも限らないことから、仕込みのモル比と反応モル比が一致するとは限らない。したがって、反応モル比とは出来上がったポリアミド樹脂の末端基濃度から求められる実際に反応したモノマーのモル比を意味する。
 ポリアミド樹脂の反応モル比の調整は、原料ジカルボン酸成分およびジアミン成分の仕込みモル比、反応時間、反応温度、キシリレンジアミンの滴下速度、釜内の圧力、減圧開始タイミング等の反応条件を適当な値にすることにより、可能である。具体的には、特開2012-153749号公報の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 なお、融点とは、DSC(示差走査熱量測定)法により観測される昇温時の吸熱ピークのピークトップの温度である。また、ガラス転移点とは、試料を一度加熱溶融させ熱履歴による結晶性への影響をなくした後、再度昇温して測定されるガラス転移点をいう。測定には、例えば、島津製作所社(SHIMADZU CORPORATION)製「DSC-60」を用い、試料量は約5mgとし、雰囲気ガスとしては窒素を30ml/分で流し、昇温速度は10℃/分の条件で室温から予想される融点以上の温度まで加熱し溶融させた際に観測される吸熱ピークのピークトップの温度から融点を求めることができる。次いで、溶融したポリアミド樹脂を、ドライアイスで急冷し、10℃/分の速度で融点以上の温度まで再度昇温し、ガラス転移点を求めることができる。
 また、ポリアミド樹脂は、融点を少なくとも2つ有するポリアミド樹脂であることも好ましい。融点を少なくとも2つ有するポリアミド樹脂は、耐熱性と不織布を成形する際の成形加工性が良くなる傾向にあり好ましい。
 融点を少なくとも2つ有するポリアミド樹脂としては、ジアミン構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸構成単位の50モル%以上がセバシン酸に由来するポリアミド樹脂であって、キシリレンジアミン単位は、パラキシリレンジアミン由来単位を50~100モル%、メタキシリレンジアミン由来単位を0~50モル%含有し、数平均分子量(Mn)が6,000~30,000であり、融点を少なくとも2つ有するポリアミド樹脂を、好ましく挙げることができる。
 この際、2つ以上の融点は、通常250~330℃の範囲にあって、好ましくは260~320℃、より好ましくは270~310℃、特に好ましくは275~305℃にある。融点を2つ以上、好ましくはこのような温度範囲に有することで、良好な耐熱性と不織布を成形する際の成形加工性を有するポリアミド樹脂となる。
 このような融点を少なくとも2つ有するポリアミド樹脂を得る方法としては、特開2012-153749号公報の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 本発明で用いる熱可塑性樹脂繊維を構成する樹脂組成物には、上記熱可塑性樹脂以外の樹脂を配合してもよい。特に、上記ポリアミド樹脂と併用してもよい、他のポリアミド樹脂としては、ポリアミド66、ポリアミド6、ポリアミド46、ポリアミド6/66、ポリアミド10、ポリアミド612、ポリアミド11、ポリアミド12、ヘキサメチレンジアミン、アジピン酸およびテレフタル酸からなるポリアミド66/6T、ヘキサメチレンジアミン、イソフタル酸およびテレフタル酸からなるポリアミド6I/6Tなどが挙げられる。これらの配合量はポリアミド樹脂組成物の5質量%以下であることが好ましく、1質量%以下であることがより好ましい。
 また、本発明で用いる熱可塑性樹脂繊維を構成する樹脂組成物には、エラストマーを配合してもよい。エラストマー成分としては、例えば、ポリオレフィン系エラストマー、ジエン系エラストマー、ポリスチレン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマー、フッ素系エラストマー、シリコン系エラストマー等公知のエラストマーが使用でき、好ましくはポリオレフィン系エラストマー及びポリスチレン系エラストマーである。これらのエラストマーとしては、ポリアミド樹脂に対する相溶性を付与するため、ラジカル開始剤の存在下または非存在下で、α,β-不飽和カルボン酸及びその酸無水物、アクリルアミド並びにそれらの誘導体等で変性した変性エラストマーも好ましい。
 このような他の樹脂やエラエストマー成分の含有量は、熱可塑性樹脂組成物中の通常30質量%以下、好ましくは20質量%以下、特には10質量%以下である。
 さらに、本発明の目的・効果を損なわない範囲で、本発明で用いる熱可塑性樹脂組成物には、酸化防止剤、熱安定剤等の安定剤、耐加水分解性改良剤、耐候安定剤、艶消剤、紫外線吸収剤、核剤、可塑剤、分散剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤、着色剤、離型剤等の添加剤等を加えることができる。これらの詳細は、特許第4894982号公報の段落番号0130~0155の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 本発明で用いる熱可塑性樹脂繊維(A)の含有量としては、不織布中に20~98重量%が好ましく、25~80重量%がより好ましく、30~70重量%がさらに好ましい。熱可塑性樹脂繊維(A)は1種類のみを用いても良く、2種類以上用いても良い。2種類以上用いた場合は、その合計量が上記範囲となることが好ましい。
<炭素繊維(B)>
 本発明で用いる炭素繊維(B)は、その種類等特に定めるものではないが、ポリアクリロニトリルを炭化して得られるPAN系炭素繊維およびピッチ系を用いたピッチ系炭素繊維から選択されることが好ましく、PAN系炭素繊維を用いることがより好ましい。
 本発明で用いる炭素繊維(B)は、通常、複数の炭素繊維(B)が束状になった炭素繊維束を任意の長さに加工したものである。
 本発明で用いる炭素繊維(B)の平均繊維長は、1~20mmであることが好ましく、1~15mmがより好ましく、2~15mmがさらに好ましく、3~15mmが特に好ましく、4~15mmであることがさらに好ましい。平均繊維長を1mm以上とすることで、不織布を用いた成形品の力学的強度を向上させることができ、20mm以下、特に、15mm以下とすることで、不織布中での分散度がより向上する。
 本発明で用いる炭素繊維束は、繊度が、100~50000Dであることが好ましく、500~40000Dであることがより好ましく、1000~10000Dであることがさらに好ましく、1000~3000Dであることが特に好ましい。このような範囲とすることにより、得られる不織布の弾性率・強度がより優れたものとなる。
 本発明で用いる炭素繊維束は、繊維数が、500~60000fであることが好ましく、500~50000fであることがより好ましく、1000~30000fであることがさらに好ましく、1500~20000fであることが特に好ましい。
 本発明の不織布中に含まれる炭素繊維束の平均引張弾性率は、50~1000GPaであることが好ましく、200~700GPaであることがより好ましい。このような範囲とすることにより、不織布の引張弾性率がより良好となる。
 本発明で用いる炭素繊維(B)は、処理剤で表面処理されていることが好ましい。かかる処理剤は、炭素繊維(B)を収束させて繊維束とする機能を有するものであることが好ましい。
 具体的には、ビスフェノールA型のエポキシ樹脂等のエポキシ系樹脂、1分子中にアクリル基またはメタクリル基を有するエポキシアクリレート樹脂であって、ビスフェノールA型のビニルエステル樹脂、ノボラック型のビニルエステル樹脂、臭素化ビニルエステル樹脂等のビニルエステル系樹脂が好ましく挙げられる。またエポキシ系樹脂やビニルエステル系樹脂のウレタン変性樹脂であってもよい。
 前記処理剤の量は、炭素繊維(B)の0.001~1.5質量%であることが好ましく、0.008~1.0質量%であることがより好ましく、0.1~0.8質量%であることがさらに好ましい。このような範囲とすることにより、本発明の効果がより効果的に発揮される。
 本発明で用いる炭素繊維(B)の含有量としては、不織布中に1重量%以上80重量%未満が好ましく、20重量%を超え70重量%以下がより好ましく、25~60重量%がさらに好ましい。炭素繊維(B)は1種類のみを用いても良く、2種類以上用いても良い。2種類以上用いた場合は、その合計量が上記範囲となることが好ましい。
<熱可塑性樹脂繊維(A)と炭素繊維(B)の関係>
 本発明の不織布は、熱可塑性樹脂繊維(A)の平均繊維長と炭素繊維(B)の平均繊維長との差が10mm以下であることが好ましく、5mm以下であることがより好ましく、1mm以下であることがさらに好ましい。平均繊維長の差をこのような範囲にすることにより、不織布中で、熱可塑性樹脂繊維(A)と炭素繊維(B)がより均一に分散され、より優れた不織布が得られる。
 本発明では、熱可塑性樹脂繊維(A)と炭素繊維(B)の配合比(重量比)が、99:1~25:75あることが好ましく、80:20~30:70であることがより好ましく、70:30~40:60であることがさらに好ましい。配合比をこのような範囲にすることにより、本発明の効果がより効果的に発揮される。本発明では特に、熱可塑性樹脂繊維(A)と炭素繊維(B)の合計量が不織布の90重量%以上を占めることが好ましい。
<熱可塑性樹脂(C)>
 本発明で用いる熱可塑性樹脂(C)は、熱可塑性樹脂繊維(A)よりもガラス転移温度(Tg)が低いものであり、不織布中に、熱可塑性樹脂繊維(A)と熱可塑性樹脂(C)の合計量の1~50重量%の割合で含まれる。
 本発明で用いる熱可塑性樹脂(C)のガラス転移温度(Tg)は、熱可塑性樹脂繊維(A)のガラス転移温度よりも10~50℃低いことが好ましく、20~30℃低いことがより好ましい。
 本発明で用いる熱可塑性樹脂(C)のガラス転移温度は、20~80℃であることが好ましく、30~60℃であることがより好ましい。
 本発明で用いる熱可塑性樹脂(C)の融点は、100~250℃であることが好ましく、120~230℃であることがより好ましい。また、融点を示さない非晶性樹脂も好ましく用いられる。
 本発明で用いる熱可塑性樹脂(C)の含有量を所定の範囲とし、熱可塑性樹脂(C)のガラス転移温度を熱可塑性樹脂繊維(A)のガラス転移温度よりも低くすることで、熱可塑性樹脂繊維(A)と炭素繊維(B)を適切に結合させることができ、また、熱可塑性樹脂繊維(A)の繊維の状態を保ったままの不織布とすることができる。
 本発明で用いる繊維状の熱可塑性樹脂(C)は、通常、熱可塑性樹脂繊維が束状になった熱可塑性樹脂繊維束を用いて製造するが、かかる熱可塑性樹脂繊維束1本の当たりの合計繊度が、37~600Dであることが好ましく、50~500Dであることがより好ましく、150~400Dであることがさらに好ましい。かかる熱可塑性樹脂(C)の繊維束を構成する繊維数は、1~200fであることが好ましく、1~100fであることがより好ましく、5~80fであることがさらに好ましく、20~70fであることが特に好ましい。このような範囲とすることにより、得られる不織布中での熱可塑性樹脂(C)繊維束の分散状態がより良好となる。
 本発明で用いる熱可塑性樹脂(C)の繊維束は、引張強度が2~10gf/dであるものが好ましい。このような範囲とすることにより、本発明の効果がより効果的に発揮される傾向にある。
 本発明の不織布は、熱可塑性樹脂繊維(A)の平均繊維長と熱可塑性樹脂(C)の平均繊維長との差が10mm以下であることが好ましく、5mm以下であることがより好ましく、1mm以下であることがさらに好ましい。平均繊維長の差をこのような範囲にすることにより、本発明の効果がより効果的に発揮される。
 本発明で用いる熱可塑性樹脂(C)としては、熱可塑性樹脂繊維(A)のガラス転移温度との関係で適宜定められるが、例えば、ポリカーボネート樹脂、ポリフェニレンオキサイド樹脂、ポリアミド樹脂、ポリブチレンテレフタレート樹脂やポリエチレンテレフタレート樹脂等のポリエステル樹脂、ポリプロピレン樹脂、ポリフェニレンスルフィド樹脂、液晶ポリマー、ポリスチレン樹脂、ゴム強化ポリスチレン樹脂、アクリロニトリル/スチレン共重合体、アクリロニトリル/ブタジエン/スチレン共重合体(ABS)等があげられ、ポリエステル樹脂が好ましい。
 熱可塑性樹脂(C)は、上記の樹脂のみからなっていてもよいが、樹脂成形品に一般的に添加される添加剤を含んでいてもよい。例えば、上記熱可塑性樹脂組成物の欄で述べた、エラストマーやその他の添加剤が例示され、配合量等も同様の範囲が好ましい。
 本発明で用いる熱可塑性樹脂(C)は、合成品であってもよく、市販品であってもよい。市販品としては、例えば、ノバデュラン(ポリブチレンテレフタレート、(三菱エンジニアリングプラスチックス社製))等の商品名で市販されている熱可塑性樹脂(C)を用いてもよい。
 本発明で用いる熱可塑性樹脂(C)の含有量は、熱可塑性樹脂繊維(A)と熱可塑性樹脂(C)の合計量に対し、2~40重量%であることが好ましく、3~30重量%であることがより好ましく、5~20重量%がさらに好ましい。熱可塑性樹脂(C)は1種類のみを用いても良く、2種類以上用いても良い。2種類以上用いた場合は、その合計量が上記範囲となることが好ましい。
<不織布の製造方法>
 本発明の不織布の製造方法は、熱可塑性樹脂繊維(A)と、炭素繊維(B)と、前記熱可塑性樹脂繊維(A)よりもガラス転移温度が低い熱可塑性樹脂(C)を前記熱可塑性樹脂繊維(A)の1~50重量%の割合で含む組成物を、液体中で抄くことを含むことを特徴とする。本発明の不織布の製造方法は、液体中で抄くこと、いわゆる湿式抄紙法の手法で製造可能であるため、特別な装置等が無くても不織布を製造可能となる。ここで、液体中で抄くとは、液体中(好ましくは水中)に分散させた繊維を網上にすくいあげて液体を除去(例えば、脱水)し、フィルムまたはシート状にすることを意味する。
 より具体的には、本発明の不織布の製造方法は、熱可塑性樹脂繊維(A)、炭素繊維(B)、および熱可塑性樹脂(C)を含むスラリーを調製する。スラリーの溶媒は、通常は、水である。スラリー中でのより均一な分散を達成するためには、液体(スラリー)の固形分濃度は0.1~5重量%とすることが好ましい。さらに、スラリーには、分散剤や凝集剤を配合してもよい。分散剤としては、界面活性剤、粘度調整剤等が例示される。また、凝集剤としては、硫酸アルミニウム、カチオンポリマー、アニオンポリマー等が例示される。
 スラリーを網上にすくいあげた後の層を、単層のまま、あるいは複数層積層させた後、乾燥させる。乾燥は、加熱処理や加圧処理によって行うことができる。加熱処理は、熱可塑性樹脂(C)のガラス転移温度(Tg)以上の温度で行うことが好ましく、熱可塑性樹脂(C)のTg~Tg+40℃が好ましく、Tg~Tg+30℃で行うことがより好ましく、Tg+5~Tg+20℃で行うことがさらに好ましい。熱可塑性樹脂(C)をそのガラス転移温度以上の温度で加熱することで、不織布中の溶媒を除去すると同時に、熱可塑性樹脂繊維(A)と炭素繊維(B)を適切に結合させることができ、また、熱可塑性樹脂繊維(A)の繊維の状態を保ったままの不織布とすることができる。加熱処理の手段は、公知の手段を採用でき、例えば、シリンダドライヤー、ヤンキードライヤーなどで行うことができる。さらに、本発明の不織布の一層の強度アップや、加熱再生式有機系ローター部材の圧力損失を低下させるべく機能性基材の圧密化を目的として、機能性基材を熱プレスや熱カレンダーなどを用いて加圧加熱処理しても何ら構わない。
 本発明の不織布は、目付が20~1000g/m2であることが好ましく、30~500g/m2であることがより好ましく、30~200g/m2であることがさらに好ましく、30~150g/m2であることがよりさらに好ましく、30~80g/m2であることが特に好ましい。この範囲であると不織布の取り扱いが容易であり好ましい。
 本発明の不織布は、熱プレス後の引張強度が10~100MPaであることが好ましく、10~70MPaであることがより好ましく、15~60MPaであることがさらに好ましい。
 本発明の不織布は、熱プレス後のJIS K7162により測定した引張弾性率が2000~6000MPaであることが好ましく、2500~5500MPaであることがより好ましく、2900~5000MPaであることがさらに好ましい。
<不織布の用途>
 本発明の不織布は、様々な用途に使用することができる。
 一例をあげると、本発明の不織布を熱プレスして、本発明のシートまたはフィルムとして用いることができる。また、本発明の不織布は、不織布単独で熱プレスしてもよいが、他の樹脂(熱可塑性樹脂(D))と熱プレスしてもよい。
 さらに、本発明の不織布には、テキスタイル層を設けても良い。すなわち、不織布とテキスタイル層を熱プレスして得られる多層シート、または、不織布とテキスタイル層と重ね、不織布側から熱可塑性樹脂(E)を射出成形して得られる多層シートが例示される。これらの場合にも、不織布とテキスタイル層に加え、他の樹脂(熱可塑性樹脂(D))を熱プレスしたり、不織布とテキスタイル層に加え、他の樹脂(熱可塑性樹脂(D))を重ね、不織布側から熱可塑性樹脂(E)を射出成形してもよい。
 このようなシートまたはフィルム、並びに、多層シートは、そのまま用いてもよいが、インサート成形することで種々の形状の成形品を得ることができる。
 以下、本発明のシートまたはフィルム、並びに、多層シートについて詳細に説明する。
<<シートまたはフィルム>>
 本発明のシートまたはフィルムは、本発明の不織布を熱プレスして得られるが、本発明の不織布と熱可塑性樹脂(D)とを熱プレスすると、本発明の不織布と熱可塑性樹脂(D)とを融着、固着させることができる。不織布と熱可塑性樹脂(D)とを熱プレスする場合、それぞれ、1枚ずつであってもよいが、2枚ずつ以上を交互に積層してもよい。
 本発明のシートまたはフィルムの厚さとしては、熱プレス後で、0.05~1mmが好ましく、0.08~0.50mmがより好ましく、0.1~0.30mmがさらに好ましい。
 熱プレスは、公知の熱プレス装置などを用いて行うことができる。熱プレス装置のプレス条件としては、使用する不織布や熱可塑性樹脂(D)により加熱温度が異なるが、不織布単独で熱プレスする場合、熱可塑性樹脂繊維(A)の融点+(5~100)℃が好ましく、熱可塑性樹脂繊維(A)の融点+(10~50)℃がより好ましい。一方、不織布と熱可塑性樹脂(D)を熱プレスする場合、熱可塑性樹脂(D)の融点+(5~100)℃が好ましく、熱可塑性樹脂(D)の融点+(10~50)℃がより好ましい。熱プレスの際の圧力としては、0.1~10MPaであることが好ましく、1~5MPaであることがより好ましい。このような温度・圧力の範囲であると、樹脂と炭素繊維が均質に存在し、強度に優れた成形品となる。
 熱可塑性樹脂(D)に用いる樹脂としては、ポリエステル樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、アクリル樹脂、ポリアセタール樹脂およびポリカーボネート樹脂から選択されることが好ましい。これらの中でも、ポリエステル樹脂、ポリアミド樹脂が好ましい。これらは単独で用いてもよく、2種以上を用いてもよい。
 熱可塑性樹脂(D)は、前記熱可塑性樹脂繊維(A)と、その主成分となる樹脂が同一であることが好ましく、90重量%以上の組成が共通することがより好ましい。このような構成とすることにより、不織布と熱可塑性樹脂(D)がより良好に固着する傾向にある。
 熱可塑性樹脂(D)は、上記の樹脂のみからなっていてもよいが、樹脂成形品に一般的に添加される添加剤を含んでいてもよい。例えば、上記熱可塑性樹脂組成物の欄で述べた、エラストマーやその他の添加剤が例示され、配合量等も同様の範囲が好ましい。
 熱可塑性樹脂(D)のSP値と熱可塑性樹脂繊維(A)のSP値との差は、10(cal/ml)0.5以下が好ましく、7(cal/ml)0.5以下がより好ましく、5(cal/ml)0.5以下がさらに好ましい。この範囲であると、熱可塑性樹脂(D)と熱可塑性樹脂繊維(A)の接着性が良好になり、得られる成形品の強度が優れるため好ましい。SP値は溶解パラメーターであり、Small法やfedors法などによって計算された値が公知である。また、各種の計算ソフトを用いて計算可能であり、例えばJ-OCTA を用いて、構造物性推算機能 Krevelen式より算出すると、ポリエチレンテレフタレートは9.644(cal/ml)0.5、ポリアミドXD10は11.775(cal/ml)0.5、ポリアミドMXD6は12.666(cal/ml)0.5、ナイロン6は12.261(cal/ml)0.5等の値となる。
 熱可塑性樹脂(D)は、その形状等を特に定めるものではなく、例えば、粉状や液状のものを不織布表面に適用してもよいが、熱可塑性樹脂フィルムであることが好ましい。
<<多層シート>>
 本発明の多層シートは、不織布とテキスタイル層とを熱プレスし、不織布とテキスタイル層とを融着、固着させることで得られる。または、不織布とテキスタイル層を重ねた状態で、熱可塑性樹脂(E)を射出成形することによって、不織布とテキスタイル層を融着、固着させることで得られる。これらの多層シートは、不織布とテキスタイル層以外の層を有していてもよい。本発明の多層シートでは、不織布とテキスタイル層に加え、熱可塑性樹脂(D)を含んで成形されていても良い。ここで、熱可塑性樹脂(D)は上述のシートまたはフィルムで述べたものと同様であり、好ましい範囲も同様である。また、不織布とテキスタイル層の間に接着層を有していても良い。 このような構成とすることにより、機械的強度に優れ、かつ、反りが生じにくい多層シートが得られる。以下、これらの詳細を説明する。
<<<テキスタイル層>>>
 本発明の多層シートは、テキスタイル層を有する。テキスタイル層は、織物、編み物、不織布、レース等の繊維製品を含むテキスタイルからなり、織物または編み物が好ましく、織物がより好ましい。またテキスタイルとしては、合成繊維または天然繊維を主成分とするものが好ましく、合成繊維を主成分とするものがより好ましく、ポリエステルを主成分とするものがさらに好ましい。
 このテキスタイルは、さまざまなデザインが容易に得られると共に繊維生地の立体感がそのまま現出される。また、テキスタイルを使用することによって、筐体のデザイン性の自由度を高めることができるのに加えて、筐体の力学的強度を高める効果を有する。
 また、テキスタイル層は、染色あるいは印刷されていてもよい。テキスタイル層への印刷は染料または顔料を用いて、スクリーン印刷、ロータリー印刷、インクジェットプリント、転写プリント等の公知の技術を利用できる。
<<<接着層>>>
 本発明では、不織布とテキスタイル層の間を貼り合わせるための接着層を有することが好ましい。
 接着層は、熱可塑性を有するとともに、テキスタイル層と不織布を互いに接着し易くする層である。本発明で用いる接着層に用いる接着剤は、ポリビニルアセタール系樹脂を含むことが好ましい。また、接着層に用いる接着剤は、筐体の成形時において、気泡を逃すことができる程度に粘度が低いことが好ましい。例えば、1~100000mPa・s程度とすることができる。
 ポリビニルアセタール系樹脂としては、アルデヒドによりアセタール化したポリビニルアルコール(PVA)樹脂であることが好ましく、ブチルアルデヒドによりアセタール化したポリビニルブチラール(PVB)樹脂がより好ましい。
 上記アセタール化したPVA樹脂は、鹸化度が80.0~99.9モル%のポリ酢酸ビニルであることが好ましく、また、ポリビニルブチラールの平均重合度は、500~3000が好ましく、1000~2000がより好ましい。
 アセタール化したPVB樹脂の平均重合度を500以上とすることにより、筐体成形時の加熱による再軟化の際に、粘度が低くなり過ぎず、より良好な筐体を形成可能であり、平均重合度を3000以下とすることにより、筐体成形時の加熱によるPVB樹脂の再軟化の際に、粘度が高い状態のままとならず、気泡を逃しやすくなり、より良好な筐体を形成可能となる。
 上記アセタール化したPVB樹脂は、接着層に柔軟性を付与する目的で可塑剤を含んでもよい。可塑剤の種類については特に制限はないが、例えば、トリエチレングリコールジ2-エチルヘキシル酸エステル、トリエチレングリコールジ2-エチル酪酸エステル、トリエチレングリコールジn-オクチル酸エステル等の一塩基性有機酸エステル、ジブチルセバシン酸エステル、ジオクチルアゼライン酸エステル等の多塩基性有機酸エステル、ポリオキシプロピレンポリグリセルエーテル、ポリエチレングリコールポリグリセリルエーテル等のポリグリセリン誘導体が挙げられる。
 また、接着層は、ポリビニルアセタール系樹脂、エチレン/酢酸ビニル共重合体系樹脂、エチレン/アクリル系共重合体系樹脂、プロピレン系樹脂、プロピレン/1-ブテン共重合体系樹脂、プロピレン/イソブテン共重合体系樹脂、スチレン/プロピレン/イソブテン共重合体系樹脂、スチレン/イソプレン共重合体系樹脂、スチレン/イソプレン/イソブテン共重合体系樹脂、スチレン/イソプレン/ブテン共重合体系樹脂の群から選択された樹脂からなっていてもよい。
<<<熱プレスの方法>>>
 本発明の多層シートは、不織布とテキスタイル層を熱プレスして得ることができる。熱プレス温度については、用いる不織布およびテキスタイル層の材料等に応じて適宜定めることができる。
 また、本発明では、不織布とテキスタイル層に加えて、熱可塑性樹脂(D)も熱プレスすることも好ましい。この場合、不織布と熱可塑性樹脂(D)を熱プレスしてから、テキスタイル層を熱プレスしてもよいし、不織布と熱可塑性樹脂(D)層とテキスタイル層を積層して熱プレスしてもよい。さらに上記接着層も一緒に熱プレスして硬化させることが好ましい。
 不織布、熱可塑性樹脂(D)層は、それぞれ、1層ずつでもよいし、2層以上を交互に積層してもよい。
 熱プレスは、公知の熱プレス装置などを用いて行うことができる。
 熱プレス装置のプレス条件としては、使用する不織布や熱可塑性樹脂(D)の種類により適宜定めることができる。
 例えば、上記熱可塑性樹脂繊維(A)を含む不織布とテキスタイル層を熱プレスする場合、熱可塑性樹脂繊維(A)の融点+(5~50)℃が好ましく、熱可塑性樹脂繊維(A)の融点+(10~30)℃がより好ましい。
 熱プレスの際の圧力としては、0.1~10MPaであることが好ましく、1~5MPaであることがより好ましい。
 本発明の多層シートの厚さとしては、0.05~2.0mmが好ましく、0.08~1.5mmがより好ましく、0.1~1.0mmがさらに好ましく、0.15~0.5mmが特に好ましい。
<<成形品および射出成形によって多層シートを製造する方法>>
 本発明の成形品は、本発明の不織布に熱可塑性樹脂(E)をインサート成形してなることを特徴とする。また、本発明の多層シートに熱可塑性樹脂(E)をインサート成形してなることも好ましい。また、本発明の不織布とテキスタイル層と重ね、不織布側から熱可塑性樹脂(E)を射出成形(通常は、インサート成形)して得られる多層シートも、本発明の成形品の製造方法にならって製造することができる。以下これらの詳細について説明する。
 インサート成形とは、例えば、射出成形用金型のキャビティ内に、本発明の不織布等をあらかじめ配置し、その外側(通常、不織布側)の空間に熱可塑性樹脂(E)を射出成形(射出充填)して、成形品とする方法である。さらに、熱可塑性樹脂(D)や接着層を含んでいてもよい。インサート成形を行うことにより、成形品の強度を向上させたり、細かな凹凸を形成可能となる。
 また、本発明の不織布とテキスタイル層をあらかじめ配置し、その外側(通常、不織布側)の空間に熱可塑性樹脂(E)を射出成形(射出充填)して、多層シートとすることもできる。さらに、本発明の不織布とテキスタイル層と重ね、不織布側から熱可塑性樹脂(E)を射出成形して得られる多層シートにおいて、さらに、熱可塑性樹脂(E)を射出成形して、インサート成形品としても良い。この場合、多層シートの形成に用いる熱可塑性樹脂(E)とインサート成形に用いる熱可塑性樹脂(E)は同一であってもよいし、異なっていても良い。
 熱可塑性樹脂(E)は、熱可塑性樹脂(D)または熱可塑性樹脂繊維(A)と同一の樹脂が主成分であると接着性が良好になるため好ましく、90重量%以上の組成が共通することがより好ましい。 以下、具体的に説明する。
 本発明のインサート成形による成形品の一例を図1に示す。図1に示す例は、筐体1であって、逆盆構造であり、逆盆構造の底部に1つの突出部11と1つの開口部12を有する形態である。図2は、図1の線II-IIの断面図であり、図3は、図1の線III-IIIの断面図である。
 筐体1は、接着層3を介して互いに接着されたテキスタイル層2と、不織布(好ましくは、不織布と熱可塑性樹脂(D)を熱プレスしたフィルムまたはシート4)(以下、単にシート4ともいう)と、前記シート4の各繊維の隙間に場合によっては浸潤しつつシート4に固着された熱可塑性樹脂(E)層5とを有する。
 熱可塑性樹脂(E)層は、熱可塑性樹脂(E)を主成分とする。熱可塑性樹脂(E)層の原料は、例えば、射出成形機で加熱溶融され、不織布側を表にして装着されたメス金型の中に射出される。そして、シートの各繊維の隙間に場合によっては浸潤しながら固着される。熱可塑性樹脂(E)層の冷却固化時には、シート4が収縮することにより熱可塑性樹脂(E)層との固着をより強固なものとすることができる。
 熱可塑性樹脂(E)としては、ポリエステル樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、アクリル樹脂、ポリアセタール樹脂およびポリカーボネート樹脂から選択されることが好ましい。これらの中でも、ポリエステル樹脂、ポリアミド樹脂が好ましい。これらは単独で用いてもよく、2種以上を用いてもよい。
 熱可塑性樹脂(E)は、上記の樹脂のみからなっていてもよいが、他の成分を含んでいてもよい。具体的には、樹脂成形品に一般的に添加される添加剤を含むことができる。例えば、上記熱可塑性樹脂組成物の欄で述べた、エラストマーやその他の添加剤が例示され、配合量等も同様の範囲が好ましい。
 熱可塑性樹脂(E)は、前記熱可塑性樹脂繊維(A)と、その主成分となる樹脂が同一であることが好ましく、90重量%以上の組成が共通することがより好ましい。また、ガラスフィラーやカーボンフィラー等の充填剤で強化されていることも好ましい。
 また、熱可塑性樹脂(E)のSP値と熱可塑性樹脂繊維(A)のSP値との差は、10以下が好ましく、7以下がより好ましく、5以下がさらに好ましい。この範囲であると、熱可塑性樹脂(E)と熱可塑性樹脂繊維(A)の接着性が良好になり、得られる成形品の強度が優れるため好ましい。
 図1~図3に一例として示した筐体1は、熱可塑性樹脂(E)がシートの各繊維の隙間に浸潤しつつシート4に固着されているので、アンカー効果により、シート4の熱可塑性樹脂(E)層5に対する密着性が優れている。また、テキスタイル層2の皺の発生や絵柄のゆがみの発生を抑制できる。さらに、筐体1の力学的強度が優れ且つ筐体1に反りが生じないものとすることができる。もちろん、筐体1の表面の模様をテキスタイルの変更によりさまざまに選択することができる。
 図1中の筐体1は、シート4を表とする逆盆形構造としているが、これら以外の形状であってもよいことは言うまでもない。
 以下、インサート成形の一例について、述べる。
 インサート成形では、図4aに一例を示すように、テキスタイル層2、接着層3、およびシート4からなる多層シートのシート4側を表にしてプレス機のメス金型20(固定金型)の上に載置する。多層シートは、予め所定の形状に切断されていてもよい。
 次いで、図4bに一例を示すように、メス金型20上に載置された多層シートをメス金型20の中に押し込むようにプレス機のオス金型21(可動金型)をメス金型20に向かって移動する。これにより、本発明の多層シートをメス金型20及びオス金型21により規定される形状に成形する。成形は通常熱プレスにより行う。
 この成形された本発明の多層シートはプレス機から取り出される。このとき、成形された本発明の多層シートの周囲をレーザカッタや切断用金型(切断ユニット)で切断してバリ取りを行ってもよい。
 続いて、図4cに一例を示すように、プレス機で成形された多層シートをシート4側を表にして金型ダイ22内に装着する。次に、金型ダイ22内に受容された多層シートに向けて射出成形オス金型23(射出成形金型)を移動する。そして、射出機24の射出孔24aを射出成形オス金型23の射出成形孔23aに押し当て、射出スクリュー25を回転させてタンク26内の熱可塑性樹脂(E)原料27を多層シートと射出成形オス金型23とで規定される空間に射出する。このとき、熱可塑性樹脂(E)原料27はシートの各繊維の隙間に浸潤し、熱可塑性樹脂(E)原料27の冷却固化時におけるシート4及び熱可塑性樹脂(E)原料27の収縮によりシート4との固着がより強固になる。
 最後に、図4dに一例を示すように、射出成形された熱可塑性樹脂(E)原料27が冷却固化した後、射出機24及び射出成形オス金型23が金型ダイ22から離間されて、筐体(本発明の成形品)1が取り出される。
 なお、インサート成形において、多層シートの表面を、保護シート7で保護しておいてもよい。このような保護シートとしては、ポリエチレンテレフタレート(PET)シートが例示される。さらに、保護シート7と多層シートの貼り合わせは、接着性フィルム6によることが好ましい。このような接着性フィルム6としては、PVAフィルムが例示される。PVAフィルムは、水溶性であることが好ましく、例えばアイセロ化学株式会社製のソルブロン(登録商標)からなる。PVA系フィルム6は、PETシート7上に塗布されるPVA塗布剤であってもよい。
 メス金型20及びオス金型21はプレス機を構成すると共に、メス金型22、射出成形オス金型23、及び射出機24は射出成形機を構成する。変形例として、プレス機と射出成形機とが一体となっていて、メス金型20がメス金型22として使用されてもよい。この場合は、メス金型20の中で成形された本発明の多層シートに向けて射出成形オス金型23が移動される。
 図4cによれば、熱可塑性樹脂(E)原料27がシートの各繊維の隙間に浸潤し、熱可塑性樹脂(E)原料27の冷却固化時において、シート4と熱硬化性樹脂(E)層5が収縮する。結果として、熱可塑性樹脂(E)層5とシート4との固着がより強固になる。
 また、図4a~図4dによれば、本発明の多層シートの熱硬化性樹脂(E)層5に対する密着性を向上させ且つ皺の発生や絵柄のゆがみをなくすことができるのに加えて、筐体1の力学的強度を向上させ且つ筐体1に反りを無くすことができる。
 本発明のインサート成形した成形品は、例えば、厚さが0.1~2mmで面積10cm2以上の領域を有する成形品とすることができる。
 本発明の実施の形態において、筐体は、単に一般的な成形品として記載されているが、本発明の実施の形態の適用技術分野としては、例えば、表面コーティング層を有するインモールド成形による加飾品が対象であり、具体的には、容器やステーショナリを含む雑貨品、携帯電話やノートパソコンを含む電子機器や家電製品等の筐体、建築物や自動車の内外装品の筐体、航空機、鉄道車両、船舶の内装筐体が挙げられる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
<合成例1:ポリメタキシリレンセバカミド(MXD10)の合成>
 反応缶内でセバシン酸(伊藤製油製TAグレード)を170℃にて加熱し溶融した後、内容物を攪拌しながら、メタキシリレンジアミン(三菱ガス化学(株)製)をセバシン酸とのモル比が1:1になるように徐々に滴下しながら、温度を240℃まで上昇させた。滴下終了後、260℃まで昇温した。反応終了後、内容物をストランド状に取り出し、ペレタイザーにてペレット化した。得られたペレットをタンブラーに仕込み、減圧下で固相重合し、分子量を調整したポリアミド(MXD10)を得た。
 ポリアミド樹脂(MXD10)の融点は191℃、ガラス転移温度(Tg)は60℃、数平均分子量は30,000であった。
<合成例2:ポリメタ/パラキシリレンセバカミド(MPXD10)の合成>
 特開2012-021062号公報の実施例の記載にならって、ポリアミドMPXD10(MXDA(メタキシレンジアミン)/PXDA(パラキシレンジアミン)=70:30とセバシン酸からなるポリアミド樹脂を合成した。得られたポリアミド樹脂は、融点215℃、Tg63℃、相対粘度2.3であった。
<製造例1:MXD10からなるフィルムの作製>
 上記で得られたMXD10を、シリンダー径30mmのTダイ付き単軸押出機(プラスチック工学研社製、PTM-30)に供給した。シリンダー温度260℃、スクリュー回転数30rpmの条件で溶融混練を行った後、Tダイを通じてフィルム状物を押出し冷却ロール上で固化し、所定の厚さのフィルムを得た。
<製造例2:MPXD10からなるフィルムの作製>
 製造例1において、MXD10をMPXD10とし、他は製造例1と同様にしてフィルムを得た。
<製造例3:PETからなるフィルムの作製>
 製造例1において、MXD10をPETとし、シリンダー温度を280℃とし、他は製造例1と同様にしてフィルムを得た。
<不織布の作製>
(実施例1)
 上記で得られたポリアミド樹脂MPXD10を溶融紡糸し、フィラメント数34、繊度210Dのマルチフィラメントを得た。得られた繊維を切断し、平均繊維長12mmの繊維を得た。
 ポリブチレンテレフタレート(三菱エンジニアリングプラスチックス社製ノバデュラン、融点224℃、Tg40℃)を溶融紡糸し、フィラメント数34、繊度210Dのマルチフィラメントを得た。得られた繊維を切断し、平均繊維長12mmの繊維を得た。
 炭素繊維(三菱レイヨン製TR50S)を切断し、平均繊維長12mmの繊維を得た。
 これら3種類の繊維を表記載の重量比で水中に分散させ、十分に混合した後、金網上にすくいあげてシート状とした。得られたシートを80℃で熱風乾燥し、目付が80g/m2の不織布を得た。
(実施例2~10および比較例1)
 熱可塑性樹脂繊維(A)、炭素繊維(B)、および熱可塑性樹脂(C)の種類、その平均繊維長および配合量を、それぞれ、下記表に記載のように変えた以外は実施例1と同様にして不織布を作製した。
 PET: ポリエチレンテレフタレート(日本ユニペット製、グレード1101、融点252℃Tg83℃)
 熱可塑性樹脂繊維(A)および炭素繊維(B)の平均繊維帳は、切断する長さを変えて調整した。
 比較例1では、熱可塑性樹脂(C)として上記PETを用いた。
(比較例2、3)
 不織布に代えて、下記表に記載の樹脂を原料とするフィルム(厚さは、下記表に記載の厚さのもの)を用いた。
<不織布の評価>
(外観(ムラ))
 得られた不織布の外観を目視にて観察した。
良好:全体的に均質な外観有している
やや不良:炭素繊維の塊が多少観察され、色むらが多少観察される。
不良:炭素繊維の塊が明らかに観察され、色むらが多く観察される。
<熱プレスフィルムの作製>
 各実施例および比較例で得られた不織布を温度290℃、圧力1MPaにて熱プレスし、熱プレスフィルムを得た。但し、比較例2および3については、熱プレスを行わなかった。
<熱プレスフィルムの評価>
(引張強度)
 ISO 527-1およびISO 527-2に記載の方法に従って、測定温度23℃、チャック間距離50mm、引張速度50mm/minの条件で引張強度を測定した。
(引張弾性率)
 フィルムの引張特性をJIS K7127およびK7161に準じて試験し、引張弾性率(MPa)を求めた。なお、装置は東洋精機株式会社製ストログラフを使用し、試験片幅を10mm、チャック間距離を50mm、引張速度を50mm/minとし、測定温度を23℃、測定湿度を50%RHとして測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表1および表2において、熱可塑性樹脂繊維(A)、炭素繊維(B)、熱可塑性樹脂(C)の配合量は、これらの配合比(重量比)で示している。また、熱可塑性樹脂(C)の「(C)/((A)+(C))(重量%)」は、熱可塑性樹脂繊維(A)と熱可塑性樹脂(C)の合計量に対する、熱可塑性樹脂(C)の割合(重量%)である(後述する表4についても同じ)。
 表から、本発明の不織布である実施例1~10は、外観に優れ、熱プレスしたフィルムとしたときの機械的強度に優れていた。ただし、実施例10は不織布の繊維がややほつれやすいものであった。熱可塑性樹脂(C)のガラス転移温度が熱可塑性樹脂繊維(A)のガラス転移温度よりも高い比較例1は、不織布の繊維が極めてほつれやすく、その結果として熱プレスフィルムの強度が劣っていた。樹脂フィルム単体である、比較例2および3では、機械的強度が劣っていた。
<成形品の作製>
(実施例11)
 実施例1で得られた不織布に、ポリアミドMXD10からなるフィルム(厚さ50μm)を積層し、温度260℃、圧力1MPaにて熱プレスした後に冷却して、不織布と熱可塑性樹脂(D)を有するシートを得た。得られたシートをIRヒータで再加熱し金型内で成形した。得られたシートの引張強度および引張弾性率を不織布と同様に測定した。
(実施例12)
 実施例1で得られた不織布に、ポリアミドMPXD10からなるフィルム(厚さ50μm)を積層し、温度290℃、圧力1MPaにて熱プレスした後に冷却して、不織布と熱可塑性樹脂(D)を有するシートを得た。得られたシートをIRヒータで再加熱し金型内で成形した。得られたシートの引張強度および引張弾性率を不織布と同様に測定した。
Figure JPOXMLDOC01-appb-T000003
 表から、本発明の不織布と、樹脂フィルムを積層し、熱プレスしてなるフィルムは、引張強度および引張弾性率に優れることが分かった。
(実施例13)
 実施例1で得られた不織布と、ポリアミドMPXD10からなるフィルム(50μm)を交互に積層し、温度280℃、圧力2MPaにて熱プレスした後に冷却して、0.7mm厚みのシートを得た。得られたシートをIRヒータで再加熱し金型内で成形した。得られた成形品を射出成型機の金型にセットし、ポリアミドMPXD10をインサート成形した。良好に接着していることを確認した。
<多層シートの製造>
(実施例14および15)
 熱可塑性樹脂繊維(A)、炭素繊維(B)、および熱可塑性樹脂(C)の種類、その平均繊維長および配合量を、それぞれ、下記表に記載のように変えた以外は実施例1と同様にして不織布を作製した。
 上記で得られた各不織布と上記で製造した熱可塑性樹脂(D)フィルムを、表4に示す組み合わせで交互積層し、テキスタイル層(ポリエステルからなる平織の布、目付量164.5g/m2)を、熱可塑性樹脂(D)側の金型温度を280℃とし、圧力2MPaで熱プレスして、10cm×10cmの多層シートを得た。
(実施例16および17)
 熱可塑性樹脂繊維(A)、炭素繊維(B)、および熱可塑性樹脂(C)の種類、その平均繊維長および配合量を、それぞれ、下記表に記載のように変えた以外は実施例1と同様にして不織布を作製した。
 上記で得られた各不織布と上記で製造した熱可塑性樹脂(D)フィルムを、表4に示す組み合わせで交互積層し、テキスタイル層(ポリエステルからなる平織の布、目付量164.5g/m2)を、接着剤(ポリビニルアセタール系樹脂)を介して積層させ、熱可塑性樹脂(D)側の金型温度を280℃とし、圧力2MPaで熱プレスして、10cm×10cmの多層シートを得た。
(比較例4)
 不織布に代えて、下記表に記載の樹脂を原料とするフィルム(厚さは、下記表に記載の厚さのもの)を用いた。
 上記で得られた樹脂を原料とするフィルムとテキスタイル層(ポリエステルからなる平織の布、目付量164.5g/m2)を樹脂を原料とするフィルム側の金型温度を280℃とし、圧力2MPaで熱プレスして、10cm×10cmの多層シートを得た。
<多層シートの評価>
<<反り>>
 得られた多層シートを平板上に置き、端部の4つの頂点の浮き上がり高さを測定した。その合計値が2mm以上なら反りがあると判定した。
<<引張強度>>
 ISO 527-1およびISO 527-2に記載の方法に従って、測定温度23℃、チャック間距離50mm、引張速度50mm/minの条件で引張強度を測定した。
Figure JPOXMLDOC01-appb-T000004
 本発明の多層シートは、反りが無く、機械的強度が高かった。
 これに対し、不織布を用いずに薄い樹脂フィルムで、本発明の多層シートを製造しても、十分な強度が得られなかった。また、さらに、炭素繊維をMPXD10に対して50重量%コンパウンドした材料を用いて薄い樹脂フィルムの製造を試みたが、現実的に製造が困難であった。
実施例18
 製造例3の不織布とテキスタイル層と重ねたものを、不織布をホットランナー側にして射出成型機金型内にセットし、不織布側からポリアミドMPXD10を射出成形して多層シートを成形した。ポリアミドMPXD10と不織布とテキスタイル層は良好に接着していた。
実施例19
インサート成形
 実施例15で得られた多層シートをIRヒータで再加熱し金型内で成形した。得られた成形品を射出成型機の金型にセットし、ポリアミドMPXD10をインサート成形した。ポリアミドMPXD10は多層シートに良好に接着していた。
1   筐体
11  突出部
12  開口部
2   テキスタイル層
3   接着層
4   不織布を有するシート
5   熱可塑性樹脂(E)層
6   保護シート
7   接着シート
20  メス金型
21  オス金型
22  金型ダイ
23  射出成形オス金型
23a 射出成形孔
24  射出機
24a 射出孔
25  射出スクリュー
26  タンク
27  熱可塑性樹脂(E)原料

Claims (26)

  1. 熱可塑性樹脂繊維(A)と炭素繊維(B)と、前記熱可塑性樹脂繊維(A)よりもガラス転移温度が低い熱可塑性樹脂(C)を含み、前記熱可塑性樹脂(C)を、熱可塑性樹脂繊維(A)と熱可塑性樹脂(C)の合計量の1~50重量%の割合で含む不織布。
  2. 炭素繊維(B)の平均繊維長が1~15mmである、請求項1に記載の不織布。
  3. 熱可塑性樹脂繊維(A)の平均繊維長が1~15mmである、請求項1または2に記載の不織布。
  4. 前記熱可塑性樹脂(C)が繊維である、請求項1~3のいずれか1項に記載の不織布。
  5. 前記熱可塑性樹脂(C)が平均繊維長1~15mmの繊維である、請求項1~3のいずれか1項に記載の不織布。
  6. 熱可塑性樹脂繊維(A)の平均繊維長と炭素繊維(B)の平均繊維長の差が10mm以下である、請求項1~5のいずれか1項に記載の不織布。
  7. 熱可塑性樹脂繊維(A)と炭素繊維(B)の配合比(重量比)が、99:1~25:75である、請求項1~6のいずれか1項に記載の不織布。
  8. 熱可塑性樹脂繊維(A)が、ポリエステル樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、アクリル樹脂、ポリアセタール樹脂およびポリカーボネート樹脂から選択される、請求項1~7のいずれか1項に記載の不織布。
  9. 請求項1~8のいずれか1項に記載の不織布を熱プレスして得られるシートまたはフィルム。
  10. 請求項1~8のいずれか1項に記載の不織布と熱可塑性樹脂(D)を熱プレスして得られるシートまたはフィルム。
  11. 前記熱可塑性樹脂(D)が、熱可塑性樹脂フィルムである、請求項10に記載のシートまたはフィルム。
  12. 請求項1~8のいずれか1項に記載の不織布とテキスタイル層を熱プレスして得られる多層シート、または、請求項1~8のいずれか1項に記載の不織布とテキスタイル層と重ね、不織布側から熱可塑性樹脂(E)を射出成形して得られる多層シート。
  13. 不織布とテキスタイル層の間に接着層を有する、請求項12に記載の多層シート。
  14. 前記接着層が、ポリビニルアセタール系樹脂を含む、請求項13に記載の多層シート。
  15. 前記不織布とテキスタイル層に加え、さらに、熱可塑性樹脂(D)を含む、請求項12~14のいずれか1項に記載の多層シート。
  16. 前記熱可塑性樹脂(D)が樹脂フィルムである、請求項15に記載の多層シート。
  17. 請求項1~8のいずれか1項に記載の不織布、請求項9~11のいずれか1項に記載のシートもしくはフィルム、または、請求項12~16のいずれか1項に記載の多層シートに熱可塑性樹脂(E)をインサート成形してなる成形品。
  18. 熱可塑性樹脂繊維(A)と、炭素繊維(B)と、前記熱可塑性樹脂繊維(A)よりもガラス転移温度が低い熱可塑性樹脂(C)を含み、前記熱可塑性樹脂(C)を、熱可塑性樹脂繊維(A)と熱可塑性樹脂(C)の合計量の1~50重量%の割合で含む組成物を、液体中で抄くことを含む、不織布の製造方法。
  19. さらに、前記液体中で抄いた後、前記熱可塑性樹脂(C)のガラス転移温度以上の温度で加熱する工程を含む、請求項18に記載の不織布の製造方法。
  20. 炭素繊維(B)の平均繊維長が1~15mmである、請求項18または19に記載の不織布の製造方法。
  21. 熱可塑性樹脂繊維(A)の平均繊維長が1~15mmである、請求項18~20のいずれか1項に記載の不織布の製造方法。
  22. 前記熱可塑性樹脂(C)が繊維である、請求項18~21のいずれか1項に記載の不織布の製造方法。
  23. 前記熱可塑性樹脂(C)が平均繊維長1~15mmの繊維である、請求項18~22のいずれか1項に記載の不織布の製造方法。
  24. 熱可塑性樹脂繊維(A)の平均繊維長と炭素繊維(B)の平均繊維長の差が10mm以下である、請求項18~23のいずれか1項に記載の不織布の製造方法。
  25. 熱可塑性樹脂繊維(A)と炭素繊維(B)の配合比(重量比)が、99:1~25:75である、請求項18~24のいずれか1項に記載の不織布の製造方法。
  26. 熱可塑性樹脂繊維(A)が、ポリエステル樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、アクリル樹脂、ポリアセタール樹脂およびポリカーボネート樹脂から選択される、請求項18~25のいずれか1項に記載の不織布の製造方法。
PCT/JP2014/057477 2013-03-25 2014-03-19 不織布、シートまたはフィルム、多層シート、成形品および不織布の製造方法 WO2014156861A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480018043.0A CN105102705A (zh) 2013-03-25 2014-03-19 无纺布、片或薄膜、多层片、成型品和无纺布的制造方法
US14/779,814 US20160052234A1 (en) 2013-03-25 2014-03-19 Non-weave fabric, sheet or film, multi-layered sheet, molded article and method for manufacturing non-weave fabric
RU2015145508A RU2015145508A (ru) 2013-03-25 2014-03-19 Нетканое полотно, лист или пленка, многослойный лист, формованное изделие и способ получения нетканого полотна
EP14774395.9A EP2980292A4 (en) 2013-03-25 2014-03-19 NONWOVEN TEXTILE, SHEET, FILM, MULTILAYER SHEET, MOLDED ARTICLE, AND METHOD FOR PRODUCING NONWOVEN TEXTILE
KR1020157028448A KR20150133754A (ko) 2013-03-25 2014-03-19 부직포, 시트 또는 필름, 다층시트, 성형품 및 부직포의 제조방법
BR112015024448A BR112015024448A2 (pt) 2013-03-25 2014-03-19 tecido não tecido, folha ou película, artigo moldado, e, método para fabricar um tecido não tecido

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013081582 2013-03-25
JP2013-081582 2013-03-25
JP2013-097926 2013-04-17
JP2013097926 2013-04-17
JP2013152418A JP6239297B2 (ja) 2013-03-25 2013-07-23 不織布、シートまたはフィルム、成形品および不織布の製造方法
JP2013-152418 2013-07-23
JP2013-152419 2013-07-23
JP2013152419A JP6239298B2 (ja) 2013-03-25 2013-07-23 多層シートおよび成形品

Publications (1)

Publication Number Publication Date
WO2014156861A1 true WO2014156861A1 (ja) 2014-10-02

Family

ID=52122865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057477 WO2014156861A1 (ja) 2013-03-25 2014-03-19 不織布、シートまたはフィルム、多層シート、成形品および不織布の製造方法

Country Status (9)

Country Link
US (1) US20160052234A1 (ja)
EP (1) EP2980292A4 (ja)
JP (2) JP6239297B2 (ja)
KR (1) KR20150133754A (ja)
CN (1) CN105102705A (ja)
BR (1) BR112015024448A2 (ja)
RU (1) RU2015145508A (ja)
TW (1) TW201508117A (ja)
WO (1) WO2014156861A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101145A1 (ja) * 2016-11-30 2018-06-07 三菱瓦斯化学株式会社 チョップドストランドマット及びそれを用いた樹脂繊維複合材料

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6460815B2 (ja) * 2015-02-02 2019-01-30 キヤノン株式会社 光沢部材の製造方法
US20180371655A1 (en) * 2015-12-21 2018-12-27 Sabic Global Technologies B.V. Flame resistant polycarbonate composites for semi-structural panels
CN108495958B (zh) * 2016-01-26 2021-06-11 富士胶片株式会社 纳米纤维及无纺布
JP6587577B2 (ja) * 2016-05-27 2019-10-09 株式会社クラレ 加飾用積層シート、加飾用成形体及び加飾成形体
JP6576899B2 (ja) * 2016-10-21 2019-09-18 Nissha株式会社 加飾層/樹脂積層構造ハウジング及びその製造装置
US11059209B1 (en) * 2017-04-13 2021-07-13 Gramercy Products, Llc Process of over-molding a thermoplastic elastomer over fabric pieces
US11718001B2 (en) 2017-04-13 2023-08-08 Gramercy Products, Llc Process of over-molding a thermoplastic elastomer over fabric pieces
WO2018195033A1 (en) * 2017-04-17 2018-10-25 Coats Group Plc Vehicle component based on selective comingled fiber bundle positioning form
KR102184463B1 (ko) * 2017-05-10 2020-12-01 (주)엘지하우시스 열가소성 복합재의 제조방법 및 이에 의해 제조된 열가소성 복합재
EP3636819B1 (en) * 2017-06-08 2022-11-09 Kuraray Kuraflex Co., Ltd. Fiber structure, molded body and sound-absorbing material
JP2019035163A (ja) * 2017-08-15 2019-03-07 三菱製紙株式会社 炭素短繊維不織布の製造方法
JP7139336B2 (ja) * 2017-08-21 2022-09-20 日本エイアンドエル株式会社 樹脂繊維およびその製造方法
DE102017219020A1 (de) * 2017-10-25 2019-04-25 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines fertigen Bauteils umfassend ein Elektronikelement
EP3587099A1 (en) * 2018-06-29 2020-01-01 SABIC Global Technologies B.V. Skin-core composite and method of making
WO2020158233A1 (ja) * 2019-01-29 2020-08-06 日信工業株式会社 多層シート及び多層シートの製造方法
EP3936650B1 (en) * 2019-03-07 2024-02-21 Kuraray Co., Ltd. Continuous long-fiber non-woven fabric, layered body, and composite material and production method therefor
EP3984717A4 (en) * 2019-06-12 2022-07-27 Mitsubishi Gas Chemical Company, Inc. PROCESS FOR MAKING A MOLDED ARTICLE
CN110743381B (zh) * 2019-11-08 2023-03-14 株洲时代华先材料科技有限公司 膜基材、分离膜及其制备方法
JP7257948B2 (ja) * 2019-12-27 2023-04-14 ユニ・チャーム株式会社 積層不織布
WO2021229985A1 (ja) 2020-05-15 2021-11-18 三菱瓦斯化学株式会社 繊維強化複合材の製造方法
KR102194090B1 (ko) * 2020-08-18 2020-12-23 (주)지앤티클린 다용도 사용이 가능한 물티슈의 제조장치
JP7223187B1 (ja) 2022-03-22 2023-02-15 大日本印刷株式会社 転写シート、外装部材の製造方法および外装部材

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811863B2 (ja) * 1988-03-15 1996-02-07 チッソ株式会社 繊維マット及びその製造方法
JPH0911374A (ja) * 1995-06-27 1997-01-14 Asahi Fiber Glass Co Ltd 繊維集合体及び断熱吸音材
JP2002266217A (ja) 2001-03-08 2002-09-18 Mitsubishi Rayon Co Ltd 炭素繊維不織布およびその製造方法
JP2004034527A (ja) 2002-07-04 2004-02-05 Nissha Printing Co Ltd 繊維調加飾シート、繊維調加飾成形品とその製造方法
JP2006524755A (ja) * 2003-04-25 2006-11-02 フレンツェリート−ヴェルケ ゲーエムベーハー ウントゥ コー.カーゲー 不織マット、該不織マットの製造方法、及びファイバ複合材料
JP2011190549A (ja) 2010-03-12 2011-09-29 Mitsubishi Plastics Inc 繊維混抄マット状成形体及び繊維強化成形体
JP2012021062A (ja) 2010-07-13 2012-02-02 Mitsubishi Gas Chemical Co Inc 複合材の製造方法および成形品
JP4894982B1 (ja) 2011-04-12 2012-03-14 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
WO2012037225A2 (en) * 2010-09-14 2012-03-22 Sabic Innovative Plastics Ip B.V. Reinforced thermoplastic articles, compositions for the manufacture of the articles, methods of manufacture, and articles formed therefrom
WO2012105664A1 (ja) 2011-01-31 2012-08-09 Art&Tech株式会社 テキスタイル/樹脂積層構造ハウジング及びその製造装置
JP2012153749A (ja) 2011-01-24 2012-08-16 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂およびその製造方法
JP2012206446A (ja) * 2011-03-30 2012-10-25 Teijin Ltd 裏打ち付き繊維強化複合材料の製造方法
WO2014021084A1 (ja) * 2012-07-30 2014-02-06 株式会社クラレ 耐熱性樹脂複合体およびその製造方法、ならびに耐熱性樹脂複合体用不織布

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29710980U1 (de) * 1997-05-05 1997-08-21 Christian Heinrich Sandler GmbH & Co. KG, 95126 Schwarzenbach a d Saale Bewitterungsstabiler Vliesstoff
EP2642007B1 (en) * 2010-12-24 2018-10-24 Toray Industries, Inc. Method for producing carbon fiber aggregate, and method for producing carbon fiber-reinforced plastic

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811863B2 (ja) * 1988-03-15 1996-02-07 チッソ株式会社 繊維マット及びその製造方法
JPH0911374A (ja) * 1995-06-27 1997-01-14 Asahi Fiber Glass Co Ltd 繊維集合体及び断熱吸音材
JP2002266217A (ja) 2001-03-08 2002-09-18 Mitsubishi Rayon Co Ltd 炭素繊維不織布およびその製造方法
JP2004034527A (ja) 2002-07-04 2004-02-05 Nissha Printing Co Ltd 繊維調加飾シート、繊維調加飾成形品とその製造方法
JP2006524755A (ja) * 2003-04-25 2006-11-02 フレンツェリート−ヴェルケ ゲーエムベーハー ウントゥ コー.カーゲー 不織マット、該不織マットの製造方法、及びファイバ複合材料
JP2011190549A (ja) 2010-03-12 2011-09-29 Mitsubishi Plastics Inc 繊維混抄マット状成形体及び繊維強化成形体
JP2012021062A (ja) 2010-07-13 2012-02-02 Mitsubishi Gas Chemical Co Inc 複合材の製造方法および成形品
WO2012037225A2 (en) * 2010-09-14 2012-03-22 Sabic Innovative Plastics Ip B.V. Reinforced thermoplastic articles, compositions for the manufacture of the articles, methods of manufacture, and articles formed therefrom
JP2012153749A (ja) 2011-01-24 2012-08-16 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂およびその製造方法
WO2012105664A1 (ja) 2011-01-31 2012-08-09 Art&Tech株式会社 テキスタイル/樹脂積層構造ハウジング及びその製造装置
WO2012105665A1 (ja) 2011-01-31 2012-08-09 Art&Tech株式会社 テキスタイル/樹脂積層構造ハウジング及びその製造装置
JP2012206446A (ja) * 2011-03-30 2012-10-25 Teijin Ltd 裏打ち付き繊維強化複合材料の製造方法
JP4894982B1 (ja) 2011-04-12 2012-03-14 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
WO2014021084A1 (ja) * 2012-07-30 2014-02-06 株式会社クラレ 耐熱性樹脂複合体およびその製造方法、ならびに耐熱性樹脂複合体用不織布

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980292A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101145A1 (ja) * 2016-11-30 2018-06-07 三菱瓦斯化学株式会社 チョップドストランドマット及びそれを用いた樹脂繊維複合材料

Also Published As

Publication number Publication date
JP6239297B2 (ja) 2017-11-29
EP2980292A4 (en) 2016-12-21
TW201508117A (zh) 2015-03-01
US20160052234A1 (en) 2016-02-25
CN105102705A (zh) 2015-11-25
JP2014224333A (ja) 2014-12-04
KR20150133754A (ko) 2015-11-30
RU2015145508A (ru) 2017-05-12
JP2014223780A (ja) 2014-12-04
BR112015024448A2 (pt) 2017-07-18
EP2980292A1 (en) 2016-02-03
JP6239298B2 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6239298B2 (ja) 多層シートおよび成形品
EP3284570B1 (en) Manufacturing method for molded body
TWI682079B (zh) 混纖紗之製造方法、混纖紗、捲繞體及織物
CA2781741C (en) Polyamide resin-type composite material and method of producing same
JP5913520B2 (ja) ポリアミドベースの複合物品の製造方法
CA2904496C (en) Commingled yarn, method for manufacturing the commingled yarn, and, woven fabric
JP6376122B2 (ja) 複合繊維、織物、編み物および複合材料
TWI582143B (zh) A fabric and a shaped product obtained by molding the fabric
CN105658705B (zh) 制备塑料复合部件(ck)的方法
JP5842824B2 (ja) ポリアミド樹脂フィルム及びその製造方法
WO2017033746A1 (ja) 長繊維強化複合材料および成形品
JP2013532757A (ja) 天然繊維を含有する複合材料
JP6443218B2 (ja) 複合シートの製造方法
JP2011102360A (ja) 繊維強化ポリアミド樹脂組成物
JP2010514901A (ja) エチレンコポリマー及びポリアミドを含む組成物
US20200231767A1 (en) Fibre-reinforced composite with reduced surface waviness
JP6922519B2 (ja) 樹脂組成物、成形品、繊維およびフィルム
JP6066028B1 (ja) 長繊維強化複合材料および成形品
JP6597131B2 (ja) 長繊維強化複合材料の製造方法および長繊維強化複合材料
CN111356724A (zh) 制备纤维增强复合材料的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018043.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14779814

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014774395

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157028448

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015145508

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024448

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024448

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150923