WO2014148015A1 - ステンレス鋼板 - Google Patents

ステンレス鋼板 Download PDF

Info

Publication number
WO2014148015A1
WO2014148015A1 PCT/JP2014/001424 JP2014001424W WO2014148015A1 WO 2014148015 A1 WO2014148015 A1 WO 2014148015A1 JP 2014001424 W JP2014001424 W JP 2014001424W WO 2014148015 A1 WO2014148015 A1 WO 2014148015A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
content
steel plate
steel sheet
Prior art date
Application number
PCT/JP2014/001424
Other languages
English (en)
French (fr)
Inventor
光幸 藤澤
太田 裕樹
尾形 浩行
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020157023247A priority Critical patent/KR20150108932A/ko
Priority to JP2014525646A priority patent/JP5700172B2/ja
Priority to KR1020187009773A priority patent/KR101930860B1/ko
Priority to EP14770563.6A priority patent/EP2947170B1/en
Priority to CN201480016506.XA priority patent/CN105189801A/zh
Priority to US14/778,291 priority patent/US20160281189A1/en
Priority to ES14770563T priority patent/ES2715387T3/es
Publication of WO2014148015A1 publication Critical patent/WO2014148015A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0008Ferro
    • F16D2200/0021Steel

Definitions

  • the present invention relates to a stainless steel sheet in which a martensite structure is formed by quenching.
  • the stainless steel plate of the present invention can be preferably used for manufacturing brake discs.
  • stainless steel plates (hereinafter referred to as “stainless steel plates”) in which a martensite structure is formed by quenching are used for brake disks of motorcycles and bicycles.
  • stainless steel sheets that are excellent in temper softening resistance after quenching by optimizing the steel components as stainless steel sheets applicable to motorcycles and bicycle brake disks are disclosed. It is disclosed.
  • the stainless steel plate is superior in heat resistance to cast iron, the use of the stainless steel plate can reduce the size of the brake disc material and reduce the weight of the automobile (weight saving).
  • stainless steel sheets also have high corrosion resistance and are less susceptible to rust. For this reason, it is thought that the brake disc comprised from a stainless steel plate is excellent also in aesthetics.
  • the present invention has been made to solve the above-mentioned problems, and its object is to provide a stainless steel plate that can be manufactured even by an automobile brake disk formed by severe processing by improving formability. It is in.
  • the present inventors have made extensive studies focusing on the steel structure of the stainless steel plate being manufactured and the steel structure of the stainless steel plate after manufacture.
  • the steel structure of the stainless steel sheet being manufactured is a dual-phase structure of a ferrite structure (ferrite structure) and an austenite structure (austenite structure) at the time of manufacturing at a high temperature such as casting and hot rolling. is there.
  • the steel structure of the stainless steel plate after manufacture is a ferrite structure.
  • the former cracks are likely to occur at the grain boundaries particularly during hot rolling due to the difference in high-temperature strength and deformability of each phase of the two-phase structure.
  • the addition of B has a problem that the formability in the ferrite structure state is lowered.
  • the inventors have added a specific amount of V to B, thereby maintaining the effect of preventing cracking in a two-phase structure state of a ferrite structure and an austenite structure by adding B, while in the ferrite structure state.
  • the inventors have found that high moldability can be obtained by suppressing the decrease in moldability due to B, and have completed the present invention. More specifically, the present invention provides the following.
  • the stainless steel plate of the present invention is excellent in formability. Therefore, if the stainless steel plate of the present invention is used, even an automobile brake disk formed by severe processing can be manufactured.
  • the stainless steel plate of the present invention is, in mass%, C: 0.015% or more and less than 0.100%, Si: 0.01% or more and 1.00% or less, Mn: 0.01% or more and 2.00% or less, P: 0.040% or less, S: 0.030% or less, Cr: 10.0% or more and less than 14.0%, Ni: 0.01% or more and 0.70% or less, Al: 0.001% or more and 0 200% or less, N: 0.005% or more and 0.080% or less, O: 0.0060% or less, B: 0.0002% or more and 0.0030% or less, V: (10 ⁇ B content (% ))% Or more and 0.300% or less, and the balance is Fe and inevitable impurities.
  • % which is a unit of content of components shown below, means “mass%”, respectively.
  • C 0.015% or more and less than 0.100%
  • the hardness required as a brake disk cannot be obtained after quenching, and the brake disk is likely to be worn or deformed during use.
  • the C content is 0.100% or more, it becomes too hard after quenching, and a brake squeal occurs when the brake disc is used. Therefore, the C content is in the range of 0.015% or more and less than 0.100%. Preferably they are 0.020% or more and 0.083% or less.
  • Si 0.01% or more and 1.00% or less Si is useful as a deoxidizing agent.
  • the effect can be obtained by making the Si content 0.01% or more.
  • the Si content is in the range of 0.01% to 1.00%. More preferably, it is 0.10% or more and 0.50% or less. More preferably, it is 0.10% or more and 0.43% or less. Most preferably, it is 0.25% or more and 0.30% or less.
  • Mn 0.01% or more and 2.00% or less Mn is useful as a deoxidizing material. The effect is acquired by making Mn content 0.01% or more. Moreover, by containing Mn, the formation of an austenite structure at a high temperature is promoted, and the hardenability is improved. However, if the Mn content exceeds 2.00%, the corrosion resistance decreases. Therefore, the Mn content is in the range of 0.01% to 2.00%. More preferably, it is 0.20% or more and 1.80% or less.
  • P 0.040% or less
  • the P content is 0.040% or less.
  • it is 0.030% or less.
  • Corrosion resistance is reduced when S is contained in a certain amount or more. Preferably it is 0.010% or less.
  • Cr 10.0% or more and less than 14.0% Cr is an element that contributes to the improvement of corrosion resistance. In order to obtain this effect, the Cr content needs to be 10.0% or more. However, if the Cr content is 14.0% or more, a sufficient amount of martensite structure cannot be obtained after quenching heat treatment. Therefore, the Cr content is in the range of 10.0% or more and less than 14.0%. More preferably, it is 10.5% or more and 13.0% or less.
  • Ni 0.01% to 0.70% Ni improves corrosion resistance and improves toughness after quenching. The effect can be obtained by making the Ni content 0.01% or more. However, Ni is an expensive element, and if it exceeds 0.70%, these effects are saturated. Therefore, the Ni content is in the range of 0.01% to 0.70%. Preferably, the range is 0.01% or more and 0.40% or less. More preferably, the content is in the range of 0.01% to 0.20%.
  • Al 0.001% or more and 0.200% or less
  • Al is useful as a deoxidizing material. The effect is acquired by making Al content 0.001% or more. However, when the Al content exceeds 0.200%, the hardenability decreases. Therefore, the Al content is in the range of 0.001% to 0.200%. More preferably, it is 0.001% or more and 0.008% or less.
  • N 0.005% or more and 0.080% or less N, like C, contributes to improvement in hardness after quenching. If the N content is less than 0.005%, the hardness required for a brake disk cannot be obtained after quenching. Brake discs with insufficient hardness are prone to deformation during use. On the other hand, if the N content exceeds 0.080%, blowholes are generated inside the steel during casting, and surface defects are generated. Therefore, the N content is in the range of 0.005% to 0.080%.
  • O 0.0060% or less Inclusion is formed in the steel when O is contained. When inclusions are formed, the formability of the stainless steel sheet is lowered. Therefore, the O content is set to 0.0060% or less. Preferably it is 0.0045% or less.
  • B 0.0002% to 0.0030%
  • B is an element effective for improving hot workability during casting and hot rolling.
  • B segregates at the grain boundary between the ferrite structure crystal grains and the austenite structure crystal grains. This segregation increases the grain boundary strength and prevents cracking during hot working.
  • the B content is set to be 0.0002% or more and 0.0030% or less. More preferably, it is 0.0002% or more and 0.0020% or less.
  • V (10 ⁇ B (B content (%)))% or more and 0.300% or less
  • B improves the hot workability and increases the strength of the steel.
  • B reduces the ductility.
  • V is an important element that alleviates the adverse effect of B on the moldability.
  • the content of V is more preferably (20 ⁇ B)% or more.
  • VN is considered to improve the formability because BN that adversely affects the formability of the stainless steel sheet is reduced.
  • V exceeds 0.300%, the steel is hardened and the formability is rather lowered. Therefore, the V amount is in the range of 10 ⁇ B to 0.300%. More preferably, it is 20 ⁇ B to 0.200%. More preferably, it is 20 ⁇ B to 0.050%.
  • Nb 0.01% to 0.40%
  • Nb is an element that improves the temper softening resistance after quenching of steel. The effect is acquired by making Nb content 0.01% or more. However, if the Nb content exceeds 0.40%, the hardness after quenching decreases. Therefore, when Nb is added, the Nb content is 0.01% or more and 0.40% or less. More preferably, it is 0.01% or more and 0.10% or less.
  • Ti 0.01% or more and 0.40% or less Ti is an element that improves the corrosion resistance of steel after quenching. The effect is acquired by making content of Ti 0.01% or more. However, when the Ti content exceeds 0.40%, the hardness after quenching decreases. Therefore, when adding Ti, the content of Ti is set to 0.01% or more and 0.40% or less. More preferably, it is 0.01% or more and 0.10% or less.
  • Mo 0.01% or more and 0.30% or less
  • Mo is an element that improves corrosion resistance. This effect is obtained by making the Mo content 0.01% or more. However, if the Mo content exceeds 0.30%, the formation of an austenite structure at a high temperature is suppressed, and the hardenability decreases. Therefore, when Mo is added, the Mo content is in the range of 0.01% to 0.30%. Preferably they are 0.01% or more and 0.20% or less. More preferably, it is 0.01 to 0.10%.
  • Cu 0.01% or more and 1.20% or less
  • Cu is an element that improves temper softening resistance after quenching of steel. The effect is acquired by making Cu content 0.01% or more. However, if the Cu content exceeds 1.20%, the corrosion resistance decreases. Therefore, when Cu is added, the Cu content is in the range of 0.01% to 1.20%.
  • Co 0.01% or more and 0.20% or less Co is an element that improves toughness. This effect can be obtained by setting the Co content to 0.01% or more. On the other hand, if the Co content exceeds 0.20%, the formability of the stainless steel sheet is lowered. Therefore, when Co is added, the Co content is in the range of 0.01% to 0.20%.
  • Ca 0.0003% or more and 0.0030% or less Ca forms CaS in the molten steel, and suppresses clogging of the nozzle due to TiS generated when casting steel containing Ti.
  • the effect is acquired by making Ca content 0.0003% or more.
  • the Ca content exceeds 0.0030%, the corrosion resistance decreases. Therefore, when adding Ca, the content of Ca is set to a range of 0.0003% to 0.0030%.
  • the balance other than the essential components and the optional components is Fe and inevitable impurities.
  • molten steel having the above composition is manufactured in a converter or an electric furnace.
  • the molten steel is secondarily refined by VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization), and is made into a steel material by a known casting method.
  • the steel material is heated to 1100-1300 ° C. Subsequently, the heated steel material is hot-rolled to obtain a hot-rolled steel sheet having a predetermined thickness.
  • This hot-rolled steel sheet corresponds to the stainless steel sheet of the present invention. In general, a hot-rolled steel sheet having a thickness of about 3 to 8 mm is used for manufacturing a brake disk.
  • the steel material exhibits a ferrite structure of 10 to 50% by volume and a balance austenite structure when heated at 1100 to 1300 ° C.
  • intergranular cracking is likely to occur due to the difference in high-temperature strength and deformability of each phase.
  • it is considered effective to form an austenite single phase structure by hot rolling by heating at 900 to 1100 ° C.
  • the working temperature in hot rolling is low, the deformation resistance is large and the rolling reduction is unavoidable, so a 3-8 mm hot rolled steel sheet is obtained. I can't.
  • the hot-rolled steel sheet is subjected to hot-rolled sheet annealing at a temperature of 700 to 900 ° C. for 5 to 15 hours, if necessary, as a stainless steel sheet. Further, if necessary, descaling may be performed by pickling or shot blasting.
  • the steel structure of the stainless steel plate (hot rolled steel plate or cold rolled steel plate) obtained as described above is a ferrite structure at room temperature. Molding becomes easy due to the ferrite structure. A small amount of phases other than the ferrite structure may be contained. For example, in addition to the ferrite structure, a martensite structure and an austenite structure may be included in a total amount of 10% by volume or less.
  • the steel material since the steel material has the above-described two-phase structure in a high temperature state, intergranular cracking is likely to occur during the hot rolling.
  • intergranular cracking since a certain amount or more of B is contained in the specific component composition, intergranular cracking can be suppressed.
  • a stainless steel plate (cold-rolled steel plate or hot-rolled steel plate) is formed into a desired shape by punching or the like.
  • a stainless steel sheet containing a certain amount of B or more (amount that can suppress the above-mentioned grain boundary cracking) is low in formability. This is probably because BN is generated. In the present invention, since a certain amount or more of V is contained, VN is generated and the generation of BN is suppressed, so that it is considered that the stainless steel plate has excellent formability.
  • the stainless steel plate of the present invention has excellent formability, even if it is subjected to severe processing, it is difficult to form defects. For example, even a hat type brake disc applied to an automobile can be molded.
  • a hat-type brake disc is composed of an overhanging portion at the center and a bowl-shaped portion with a constant width on the outer periphery thereof. It is fixed to the axis of rotation at the center overhang, and the brake pad is pressed against the hook-shaped part.
  • the hat-type brake disk is manufactured by processing an inner periphery of a disk-shaped stainless steel plate so as to extend vertically.
  • the stainless steel plate of the present invention can be formed into a shape in which the inner end portion extends vertically after forming a circular stainless steel plate regardless of the application.
  • the brake disk molded as described above is subjected to a quenching process in which the brake disk is heated and cooled to a predetermined quenching temperature by high-frequency induction heating or the like, and adjusted to a desired hardness. It becomes hard because the steel structure becomes a martensite structure by quenching treatment.
  • the degree of hardness varies depending on the application, but in the case of a brake disc for an automobile, the hardness after quenching is preferably HRC (Rockwell Hardness C-Scale) 20-45.
  • the quenching process is performed by heating to a predetermined temperature selected from the range of 900 to 1100 ° C., holding at this temperature for 30 to 600 seconds, and cooling at 1 to 100 ° C./sec or less. It is preferable that the treatment is cooled at a speed.
  • the scale generated on the surface of the brake disc by the above quenching process is removed by shot blasting etc., and if necessary, the part other than the place where the brake pad is pressed and the punched shear surface (punching In general, the friction part is mechanically ground to obtain a product (brake disc) in order to obtain mechanical accuracy.
  • Tensile test A JIS No. 5 test piece with a gauge length of 50 mm was prepared from the hot-rolled annealed plate, and the elongation at break (crosshead speed 10 mm / min was used) fracture elongation value) was measured. The measurement results are shown in Table 2. In the present invention, it is considered good if the elongation at break is 30% or more.
  • Hot workability test A slab having a plate thickness of 100 mm and a plate width of 100 mm was heated at 1200 ° C. for 1 h, then hot-rolled in 3 passes to a plate thickness of 20 mm, and the cracking state of the side surface (20 mm thickness and 200 mm long range) was investigated. Steel with 3 or more cracks having a length of 5 mm or more was confirmed as “ ⁇ (failed)”, and less than 3 steels as “ ⁇ (passed)”.
  • Corrosion resistance test The hot-rolled steel sheet was heated at 1000 ° C for 1 minute, then air-cooled, and a pitting potential measurement with 0.5% NaCl (35 ° C) was performed. A pitting corrosion potential of 100 (mV vs. SCE) was evaluated as “ ⁇ (passed)”, and a pitting potential of 100 (mV vs. SCE) as “ ⁇ (failed)”.
  • the inventive example is superior to the comparative example in breaking elongation, r value, and hole expansion rate ( ⁇ ), and has good moldability. If it is an example of this invention, even if it is a hat-type brake disc, it can manufacture. Therefore, a hat-type brake disk can be obtained by forming the hot-rolled annealing plate into the shape of a hat-type brake disk and quenching.
  • the present invention relates to a stainless steel plate having good formability.
  • Fields of application include brake discs etc. that are quenched after molding and used in a martensitic structure. It is suitable as a material for brake discs that are difficult to be molded, such as hat shapes not only for motorcycles and bicycles, but also for automobiles (including electric vehicles and hybrid automobiles).
  • a hot rolling annealed plate or a cold rolled annealed plate exhibits a sufficient effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 成形性の改良により、過酷な加工により形成される自動車用ブレーキディスクであっても製造できるステンレス鋼板を提供する。 ステンレス鋼板が、質量%で、C:0.015%以上0.100%未満、Si:0.01%以上1.00%以下、Mn:0.01%以上2.00%以下、P:0.040%以下、S:0.030%以下、Cr:10.0%以上14.0%未満、Ni:0.01%以上0.70%以下、Al:0.001%以上0.200%以下、N:0.005%以上0.080%以下、O:0.0060%以下、B:0.0002%以上0.0030%以下、V:(10×Bの含有量(%))%以上0.300%以下を含有し、残部Feおよび不可避的不純物からなる。

Description

ステンレス鋼板
 本発明は、焼入れ(quenching)によりマルテンサイト組織(martensite structure)が形成されるステンレス鋼板(stainless steel sheet)に関する。本発明のステンレス鋼板はブレーキディスク(brake disc)の製造に好ましく使用可能である。
 近年、焼入れによりマルテンサイト組織が形成されるステンレス鋼板(以下「ステンレス鋼板」という)は、自動二輪車(motorcycles)や自転車(bicycles)のブレーキディスクに使用されている。例えば、特許文献1、2には、自動二輪車や自転車のブレーキディスクに適用可能なステンレス鋼板として、鋼成分を最適化することにより焼入れ後の焼戻し軟化抵抗(temper softening resistance)に優れたステンレス鋼板が開示されている。
  しかし、現在、自動車用ブレーキディスク材としては、ステンレス鋼板ではなく鋳鉄(cast iron)が用いられている。自動車用は自動二輪用や自転車用と形状が異なり、板材から自動車用ブレーキディスクを製造する場合は、過酷な加工(例えば、変形量の大きい加工)を行わなければならない。そのため、特許文献1や2に記載されるようなステンレス鋼板では加工性が不足して用いることができないからである。
  ところが、ステンレス鋼板は鋳鉄よりも耐熱性に優れるため、ステンレス鋼板を用いればブレーキディスク材を小型化して、自動車を軽量化(weight saving)することができる。また、ステンレス鋼板は、鋳鉄よりも優れた耐熱性を有することに加えて、耐食性(corrosion resistance)も高く錆が発生しづらい。このため、ステンレス鋼板から構成されるブレーキディスクは美観にも優れると考えられている。
特開2002-146489号公報 特開2004-346425号公報
 本発明は上記課題を解決するためになされたものであり、その目的は、成形性を改良して、過酷な加工により形成される自動車用ブレーキディスクであっても製造できるステンレス鋼板を提供することにある。
 本発明者らは、上記課題を解決するために、製造中のステンレス鋼板の鋼組織と製造後のステンレス鋼板の鋼組織に着目して鋭意研究を重ねた。ここで、製造中のステンレス鋼板の鋼組織とは、鋳造、熱延などの高温での製造時におけるフェライト組織(ferrite structure)とオーステナイト組織(austenite structure)の二相組織(dual-phase microstructure)である。また、製造後のステンレス鋼板の鋼組織とはフェライト組織である。前者においては、二相組織の各相の高温強度と変形能の差のため、特に熱延時に粒界(grain boundary)で割れ(crack)が生じやすい。この割れを抑えるために、ステンレス鋼板にBを添加して粒界を強化する方法がある。しかし、Bの添加により、フェライト組織状態での成形性(formability)が低下する問題がある。
 本発明者らは、Bに対して特定量のVを添加することで、B添加によりフェライト組織とオーステナイト組織との二相組織状態での割れを防ぐ効果を維持しながら、フェライト組織状態でのBによる成形性の低下を抑制して高い成形性が得られることを知見し、本発明を完成するに至った。より具体的には本発明は以下のものを提供する。
 (1)焼入れによりマルテンサイト組織を形成可能なステンレス鋼板であって、質量%で、C:0.015%以上0.100%未満、Si:0.01%以上1.00%以下、Mn:0.01%以上2.00%以下、P:0.040%以下、S:0.030%以下、Cr:10.0%以上14.0%未満、Ni:0.01%以上0.70%以下、Al:0.001%以上0.200%以下、N:0.005%以上0.080%以下、O:0.0060%以下、B:0.0002%以上0.0030%以下、V:(10×Bの含有量(%))%以上0.300%以下を含有し、残部Feおよび不可避的不純物からなるステンレス鋼板。
 (2) 前記Vの含有量は、(20×Bの含有量(%))以上0.200%以下である(1)に記載のステンレス鋼板。
 (3) 前記Vの含有量は、(20×Bの含有量(%))以上0.050%以下である(1)に記載のステンレス鋼板。
 (4) さらに、質量%で、Nb:0.01%以上0.40%以下、及びTi:0.010%以上0.40%以下、から選択される少なくとも1種を含む(1)~(3)のいずれか1項に記載のステンレス鋼板。
 (5) さらに、質量%で、Mo:0.01%以上0.30%以下、Cu:0.01%以上1.20%以下、及びCo:0.01%以上0.20%以下、から選択される少なくとも1種を含む(1)~(4)のいずれか1項に記載のステンレス鋼板。
 (6) さらに、質量%で、Ca:0.0003%以上0.0030%以下を含む(1)~(5)のいずれか1項に記載のステンレス鋼板。
 本発明のステンレス鋼板は成形性に優れる。したがって、本発明のステンレス鋼板を用いれば、過酷な加工により形成される自動車用ブレーキディスクであっても製造できる。
 本発明のステンレス鋼板は、質量%で、C:0.015%以上0.100%未満、Si:0.01%以上1.00%以下、Mn:0.01%以上2.00%以下、P:0.040%以下、S:0.030%以下、Cr:10.0%以上14.0%未満、Ni:0.01%以上0.70%以下、Al:0.001%以上0.200%以下、N:0.005%以上0.080%以下、O:0.0060%以下、B:0.0002%以上0.0030%以下、V:(10×Bの含有量(%))%以上0.300%以下を含有し、残部Feおよび不可避的不純物からなる。以下、各成分について説明する。なお、以下に示す成分の含有量の単位である「%」は、それぞれ「質量%」を意味するものとする。
 C:0.015%以上0.100%未満
 Cが0.015%未満では、焼入れ後ブレーキディスクとして必要な硬さが得られず、使用中にブレーキディスクが磨耗したり変形したりしやすくなる。また、C含有量が0.100%以上では焼入れ後に硬くなりすぎて、ブレーキディスクの使用時にブレーキの鳴きが発生する。したがって、Cの含有量は0.015%以上0.100%未満の範囲とする。好ましくは0.020%以上0.083%以下である。
 Si:0.01%以上1.00%以下
 Siは脱酸材(deoxidizing agent)として有用である。その効果はSiの含有量を0.01%以上にすることで得られる。しかし、Siの含有量が1.00%を超えると成形性が損なわれる。したがって、Siの含有量は0.01%以上1.00%以下の範囲とする。より好ましくは0.10%以上0.50%以下である。さらに好ましくは0.10%以上0.43%以下である。最も好ましくは0.25%以上0.30%以下である。
 Mn:0.01%以上2.00%以下
 Mnは脱酸材として有用である。その効果はMnの含有量を0.01%以上にすることで得られる。また、Mnを含有することで、高温でのオーステナイト組織の生成を促進して焼入れ性(hardenability)が向上する。しかし、Mnの含有量が2.00%を超えると耐食性が低下する。したがって、Mnの含有量は0.01%以上2.00%以下の範囲とする。より好ましくは0.20%以上1.80%以下である。
 P:0.040%以下
 Pを一定量以上含有すると、熱間加工性(hot workability)が低下しやすい傾向にある。熱間加工性が低下すると、ブレーキディスクの製造が困難になる。そこで、Pの含有量は0.040%以下とする。好ましくは0.030%以下である。
 S:0.030%以下
 Sを一定量以上含有すると、耐食性が低下するので、Sの含有量は0.030%以下とする。好ましくは0.010%以下である。
 Cr:10.0%以上14.0%未満
 Crは耐食性の向上に寄与する元素である。この効果を得るために、Crの含有量を10.0%以上にすることが必要である。しかしながら、Crの含有量が14.0%以上では、焼入れ熱処理後にマルテンサイト組織が十分な量得られない。したがって、Cr量は10.0%以上14.0%未満の範囲とする。より好ましくは10.5%以上13.0%以下である。
 Ni:0.01%以上0.70%以下
 Niは耐食性を向上させるとともに、焼入れ後の靭性(toughness)を向上させる。その効果はNiの含有量を0.01%以上にすることで得られる。しかし、Niは高価な元素であるとともに0.70%を超えるとこれらの効果が飽和する。したがって、Ni量は0.01%以上0.70%以下の範囲とする。好ましくは、0.01%以上0.40%以下の範囲とする。さらに好ましくは、0.01%以上0.20%以下の範囲とする。
 Al:0.001%以上0.200%以下
 Alは脱酸材として有用である。その効果はAlの含有量を0.001%以上にすることで得られる。しかし、Alの含有量が0.200%を超えると、焼入れ性が低下する。したがって、Alの含有量は0.001%以上0.200%以下の範囲とする。より好ましくは、0.001%以上0.008%以下である。
 N:0.005%以上0.080%以下
 NはCと同様に焼入れ後の硬さの向上に寄与する。Nの含有量が0.005%未満では、焼入れ後にブレーキディスクとして必要な硬さが得られない。硬さが不十分なブレーキディスクは、使用中に変形しやすい。また、Nの含有量が0.080%を超えると鋳造時に鋼内部に気泡(blowhole)が生成して表面欠陥(surface defect)が発生する。したがって、Nの含有量は0.005%以上0.080%以下の範囲とする。
 O:0.0060%以下
 Oを含有すると鋼中に介在物(inclusion)が形成される。介在物が形成されるとステンレス鋼板の成形性が低下する。そこで、Oの含有量を0.0060%以下とする。好ましくは0.0045%以下である。
 B:0.0002%以上0.0030%以下
 Bは鋳造時、熱延時の熱間加工性の向上に有効な元素である。0.0002%以上のBを含有することにより、フェライト組織結晶粒とオーステナイト組織結晶粒の粒界にBが偏析する。この偏析により粒界強度(grain boundary strength)が高まり、熱間加工時に割れが生じるのを防げる。しかし、0.0030%を超えてBを含有すると、ステンレス鋼板の成形性と靭性が低下するので好ましくない。したがって、Bの含有量は0.0002%以上0.0030%以下とする。より好ましくは0.0002%以上0.0020%以下である。
 V:(10×B(Bの含有量(%)))%以上0.300%以下
 通常、Bの添加により熱間加工性は向上し、また、鋼の強度が上がる。しかし、Bの添加により延性が低下する。このため、ブレーキディスクを室温で成形する際の、ステンレス鋼板の成形性は低い傾向にある。Vはこのような成形性におよぼすBの悪影響を緩和する重要な元素である。Vを(10×B)%以上含有することにより、ステンレス鋼板の成形性が向上する。Vの含有量は(20×B)%以上がさらに好適である。Bを添加すると、粒界および粒内でBNが形成される。このBNが室温で加工する場合の成形性を低下させていると考えられる。Vの添加により、VNが形成する。このVNにより、ステンレス鋼板の成形性に悪影響を及ぼすBNが減少するため成形性が向上すると考えられる。一方、0.300%を超えたVの含有は鋼を硬質化し、成形性がむしろ低下する。そのため、V量は10×B~0.300%の範囲とする。より好ましくは20×B~0.200%である。さらに好ましくは、20×B~0.050%である。
 上記必須成分以外に、本発明のステンレス鋼板には、Nb及びTiから選択される少なくとも一種を添加することが好ましい。
 Nb:0.01%以上0.40%以下
 Nbは鋼の焼入れ後の焼戻し軟化抵抗を向上させる元素である。その効果はNbの含有量を0.01%以上にすることで得られる。しかし、Nbの含有量が0.40%を超えると焼入れ後の硬さが低下する。したがって、Nbを添加する場合、Nbの含有量は0.01%以上0.40%以下とする。より好ましくは0.01%以上0.10%以下である。
 Ti:0.01%以上0.40%以下
 Tiは鋼の焼入れ後の耐食性を向上させる元素である。その効果はTiの含有量を0.01%以上にすることで得られる。しかし、Tiの含有量が0.40%を超えると焼入れ後の硬さが低下する。したがって、Tiを添加する場合、Tiの含有量は0.01%以上0.40%以下とする。より好ましくは0.01%以上0.10%以下である。
 上記成分以外に、本発明のステンレス鋼板には、さらに、Mo、Cu及びCoから選択される少なくとも一種を添加することが好ましい。
 Mo:0.01%以上0.30%以下
 Moは耐食性を向上させる元素である。この効果はMoの含有量を0.01%以上にすることで得られる。しかし、Moの含有量が0.30%を超えると高温でのオーステナイト組織の生成が抑制されて焼入れ性が低下する。したがって、Moを添加する場合、Moの含有量は0.01%以上0.30%以下の範囲とする。好ましくは0.01%以上0.20%以下である。より好ましくは0.01~0.10%である。
 Cu:0.01%以上1.20%以下
 Cuは鋼の焼入れ後の焼戻し軟化抵抗を向上させる元素である。その効果はCuの含有量を0.01%以上にすることで得られる。しかし、Cuの含有量が1.20%を超えると耐食性が低下する。したがって、Cuを添加する場合、Cuの含有量は0.01%~1.20%の範囲とする。
 Co:0.01%以上0.20%以下
 Coは靭性を向上させる元素である。この効果はCoの含有量を0.01%以上にすることで得られる。一方、Coの含有量が0.20%を超えると、ステンレス鋼板の成形性が低下する。そのため、Coを添加する場合、Coの含有量は0.01%以上0.20%以下の範囲とする。
 上記成分以外に、本発明のステンレス鋼板には、さらに、Caを添加することが好ましい。
 Ca:0.0003%以上0.0030%以下
 Caは溶鋼中でCaSを形成し、Tiを含有する鋼を鋳造する際に発生するTiSによるノズルの詰りを抑制する。その効果はCaの含有量を0.0003%以上にすることで得られる。しかし、Caの含有量が0.0030%を超えると耐食性が低下する。したがって、Caを添加する場合、Caの含有量は0.0003%以上0.0030%以下の範囲とする。
 残部Feおよび不可避的不純物
 上記必須成分、上記任意成分以外の残部は、Fe及び不可避的不純物である。
 次いで、ステンレス鋼板の製造方法を説明する。
 例えば、上記成分組成を有する溶鋼を、転炉あるいは電気炉等で製造する。次いで、その溶鋼を、VOD(Vacuum Oxygen Decarburization)あるいはAOD(Argon Oxygen Decarburization)等で2次精錬し、公知の鋳造方法で鋼素材とする。
 その後、上記鋼素材を1100~1300℃に加熱する。次いで、加熱後の鋼素材を熱間圧延して所定の板厚の熱延鋼板とする。なお、この熱延鋼板は本発明のステンレス鋼板に当たる。一般に、板厚3~8mm程度の熱延鋼板がブレーキディスクの製造に用いられる。
 上記鋼素材は1100~1300℃の加熱において、体積%で10~50%のフェライト組織と残部オーステナイト組織を呈する。上記二相組織を有する場合、各相の高温強度と変形能の差から、粒界割れ(intercrystalline crack)が生じやすい。このような粒界割れを防ぐには、900~1100℃での加熱により熱間圧延でオーステナイト単相組織とすることが有効と考えられる。しかし、熱間圧延での加工温度(working temperature)が低いと、変形抵抗(deformation resistance)が大きく、圧下率(rolling reduction)を低くせざるを得ないため、3~8mmの熱延鋼板が得られない。
 しかし、本発明では特定の成分組成中にBが一定量以上含まれているため、1100~1300℃の加熱後、熱間圧延を行う場合においても、粒界が強化され、粒界割れを防ぐことができる。
 この熱延鋼板に、必要に応じて、700~900℃の温度で5~15時間保持する熱延板焼鈍を施したものをステンレス鋼板とするのが好ましい。さらに必要に応じて、酸洗(pickling)やショットブラスト(shot blasting)等を行い、脱スケールを行ってもよい。
 なお、上記熱延鋼板を、冷間圧延したのち、600~800℃の焼鈍と、必要に応じて酸洗処理を施してなるものをステンレス鋼板としてもよい。
 上記のようにして得られるステンレス鋼板(熱延鋼板や冷延鋼板)の鋼組織は、常温でフェライト組織である。フェライト組織であることで、成形が容易になる。フェライト組織以外の相が少量含まれていてもよい。例えば、フェライト組織以外にマルテンサイト組織およびオーステナイト組織を合計で10体積%以下含んでもよい。
 なお、鋼素材が高温状態で上記の二相組織を有するため、上記熱間圧延の際にも、粒界割れが発生しやすい。本発明では、上記の通り、特定の成分組成中にBが一定量以上含まれているため、粒界割れを抑えることができる。
 次に、ステンレス鋼板から、ブレーキディスクを製造する方法について説明する。ステンレス鋼板(冷延鋼板又は熱延鋼板)を、打ち抜き加工(punching)等により所望の形状に成形する。
 一般的にBを一定量(上記粒界割れを抑制できる程度の量)以上含有するステンレス鋼板は成形性が低い。これはBNが発生するためと考えられる。本発明では、Vを一定量以上含有するためVNが発生し、BNの発生が抑えられるため、成形性に優れたステンレス鋼板になっていると考えられる。
 上記の通り、本発明のステンレス鋼板は優れた成形性を有するため、過酷な加工を施す場合であっても、成形不良が生じにくい。例えば、自動車に適用される、ハット型(hat type)のブレーキディスクであっても成形可能である。
 ハット(hat)型のブレーキディスクは、中心部の張り出し部分とその外周に一定幅の鍔状部分で構成される。中心部の張り出し部分で回転軸(axis of rotation)に固定され、鍔状の部分にブレーキパッドが押し当てられる。ハット型のブレーキディスクは、円盤状(disk-shaped)のステンレス鋼板の内周部を垂直に延びるように加工して製造される。本発明のステンレス鋼板は、用途によらず、環状(circularity)のステンレス鋼板とした後に内側端部が垂直に延びる形状に成形できる。
 次いで、上記のようにして成形されたブレーキディスクを、高周波誘導加熱(high-frequency induction heating)等により所定の焼入れ温度まで加熱し冷却する焼入れ処理を施し、所望の硬さに調整する。焼入れ処理により、鋼組織がマルテンサイト組織になることで硬くなる。
 硬さの程度は、用途に応じて異なるが、自動車用のブレーキディスクの場合、焼入れ後の硬さがHRC(Rockwell Hardness C-Scale)20~45であることが好ましい。
 自動車用のブレーキディスクの場合、上記焼入れ処理は、900~1100℃の範囲から選択される所定の温度まで加熱し、この温度で30~600秒保持して、1~100℃/sec以下の冷却速度で冷却する処理であることが好ましい。
 なお、上記焼入れ処理により、ブレーキディスクの表面に生成したスケール(scale)をショットブラスト等により除去し、さらに必要に応じて、ブレーキパッドが押し当てられる箇所以外の部分や打抜き剪断面(punching shear surface)に塗装を施し、最後に、機械的精度(mechanical accuracy)を出すために上記摩擦部を機械研削(machining operations)して製品(ブレーキディスク)とするのが一般的である。
 以下、本発明を実施例により具体的に説明する。なお、本発明は以下の実施例に限定されない。
 表1に示す成分の鋼を溶製し、鋼組織がフェライト組織になるように、1200℃で加熱後、熱間圧延により板厚5mmの熱延鋼板を作製した。830℃で10時間の焼鈍を行い徐冷した。これらの熱延焼鈍板について以下の評価試験を行った。
Figure JPOXMLDOC01-appb-T000001
 引張試験
 上記熱延焼鈍板から、標点間距離(gauge length)50mmのJIS5号試験片を作製し、この試験片を用いてクロスヘッドスピード(crosshead speed)10mm/minの条件で破断伸び値(fracture elongation value)を測定した。測定結果を表2に示した。なお、本発明においては、破断伸びが30%以上であれば、良好であるとする。
 ランクフォード値(Lankford value)(r値)の測定
 上記引張試験の方法と同様に行い、15%歪み(strain)で終了し、平行部(parallel portion)の板幅変化、板厚変化を測定し、r値を算出した。算出結果を表2に示した。なお、本発明においては、ランクフォード値が1.0以上であれば良好とする。
 穴広げ試験
 先端角(point angle)60度のポンチ(punch)を、直径10mmの打ち抜き穴(punching hole)に押し込み、亀裂が発生したときの穴広げ率(hole expansion ratio)(λ)を測定した。穴広げ率は以下の式で求めた。測定結果を表2に示した。なお、本発明においては、λが140%以上であれば良好とする。
λ(%)={(d-d)/d}×100
上記式中のdは亀裂が発生したときの穴の直径(mm)、dは初期の穴の直径(mm)を表す。
 熱間加工性試験
 板厚100mm、板幅100mmの鋳片を1200℃で1h加熱後、板厚20mmまで3パスで熱延し、側面(20mm厚200mm長範囲)の割れ状況を調査した。長さ5mm以上の割れが3個以上確認された鋼を「×(不合格)」、3個未満のものを「○(合格)」とした。
 耐食性試験
 上記熱延鋼板を1000℃で1分間加熱後、空冷し、0.5%NaCl(35℃)での孔食電位の測定(pitting potential measurement)を行った。孔食電位が100(mV vs.SCE)のものを「○(合格)」とし、100(mV vs.SCE)のものを「×(不合格)」とした。
Figure JPOXMLDOC01-appb-T000002
 本発明例は比較例に対して、破断伸び、r値、穴広げ率(λ)が優れており、良好な成形性を有している。本発明例であれば、ハット型のブレーキディスクであっても製造可能である。したがって、上記熱延焼鈍板をハット型のブレーキディスクの形状に成形し、焼入れを行えば、ハット型のブレーキディスクが得られる。
 本発明は成形性が良好なステンレス鋼板に関する。用途分野は、成形後に焼入れしマルテンサイト組織の状態で用いられるブレーキディスクなどである。自動二輪車、自転車のみならず、自動車用(電気自動車(electric vehicle)、ハイブリッド車(hybrid automobile)など含む)のハット形状など成形が困難なブレーキディスクの素材として好適である。熱延焼鈍板もしくは冷延焼鈍板のいずれでも十分な効果を発揮する。
 

Claims (6)

  1.  焼入れによりマルテンサイト組織を形成可能なステンレス鋼板であって、
     質量%で、C:0.015%以上0.100%未満、Si:0.01%以上1.00%以下、Mn:0.01%以上2.00%以下、P:0.040%以下、S:0.030%以下、Cr:10.0%以上14.0%未満、Ni:0.01%以上0.70%以下、Al:0.001%以上0.200%以下、N:0.005%以上0.080%以下、O:0.0060%以下、B:0.0002%以上0.0030%以下、V:(10×Bの含有量(%))%以上0.300%以下を含有し、残部Feおよび不可避的不純物からなるステンレス鋼板。
  2.  前記Vの含有量は、(20×Bの含有量(%))以上0.200%以下である請求項1に記載のステンレス鋼板。
  3.  前記Vの含有量は、(20×Bの含有量(%))以上0.050%以下である請求項1に記載のステンレス鋼板。
  4.  さらに、質量%で、Nb:0.01%以上0.40%以下、及びTi:0.01%以上0.40%以下、から選択される少なくとも1種を含む請求項1~3のいずれか1項に記載のステンレス鋼板。
  5.  さらに、質量%で、Mo:0.01%以上0.30%以下、Cu:0.01%以上1.20%以下、及びCo:0.01%以上0.20%以下、から選択される少なくとも1種を含む請求項1~4のいずれか1項に記載のステンレス鋼板。
  6.  さらに、質量%で、Ca:0.0003%以上0.0030%以下を含む請求項1~5のいずれか1項に記載のステンレス鋼板。
     
     
PCT/JP2014/001424 2013-03-19 2014-03-13 ステンレス鋼板 WO2014148015A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157023247A KR20150108932A (ko) 2013-03-19 2014-03-13 스테인리스 강판
JP2014525646A JP5700172B2 (ja) 2013-03-19 2014-03-13 ステンレス鋼板
KR1020187009773A KR101930860B1 (ko) 2013-03-19 2014-03-13 스테인리스 열연 강판
EP14770563.6A EP2947170B1 (en) 2013-03-19 2014-03-13 Stainless steel sheet
CN201480016506.XA CN105189801A (zh) 2013-03-19 2014-03-13 不锈钢板
US14/778,291 US20160281189A1 (en) 2013-03-19 2014-03-13 Stainless steel sheet
ES14770563T ES2715387T3 (es) 2013-03-19 2014-03-13 Chapa de acero inoxidable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013056715 2013-03-19
JP2013-056715 2013-03-19

Publications (1)

Publication Number Publication Date
WO2014148015A1 true WO2014148015A1 (ja) 2014-09-25

Family

ID=51579713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001424 WO2014148015A1 (ja) 2013-03-19 2014-03-13 ステンレス鋼板

Country Status (8)

Country Link
US (1) US20160281189A1 (ja)
EP (1) EP2947170B1 (ja)
JP (1) JP5700172B2 (ja)
KR (2) KR101930860B1 (ja)
CN (1) CN105189801A (ja)
ES (1) ES2715387T3 (ja)
TW (1) TWI604072B (ja)
WO (1) WO2014148015A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117925A (ja) * 2014-12-19 2016-06-30 日新製鋼株式会社 ステンレス製4輪用ディスクブレーキロータおよびその製造方法
EP3287536A4 (en) * 2015-04-21 2018-02-28 JFE Steel Corporation Martensitic stainless steel
JP2020152959A (ja) * 2019-03-20 2020-09-24 日鉄ステンレス株式会社 ブレーキマルテンサイト系ステンレス鋼板およびその製造方法、ブレーキディスク、ならびにマルテンサイト系ステンレス鋼スラブ
WO2020195915A1 (ja) * 2019-03-28 2020-10-01 日鉄ステンレス株式会社 自動車ブレーキディスクローター用フェライト系ステンレス鋼板、自動車ブレーキディスクローター及び自動車ブレーキディスクローター用ホットスタンプ加工品

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118342B1 (en) * 2014-05-14 2018-12-26 JFE Steel Corporation Ferritic stainless steel
CN106460112A (zh) * 2014-05-14 2017-02-22 杰富意钢铁株式会社 铁素体系不锈钢
ES2750684T3 (es) 2015-07-02 2020-03-26 Jfe Steel Corp Material para chapas de acero inoxidable laminadas en frío y método de fabricación para el mismo
KR102244174B1 (ko) 2016-10-18 2021-04-26 제이에프이 스틸 가부시키가이샤 마텐자이트계 스테인리스 강판
US10994379B2 (en) * 2019-01-04 2021-05-04 George H. Lambert Laser deposition process for a self sharpening knife cutting edge
CN113235011B (zh) * 2021-04-15 2022-05-20 首钢集团有限公司 减少550MPa级低合金高强钢表面发黑缺陷的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192735A (ja) * 1999-11-02 2001-07-17 Kawasaki Steel Corp 延性、加工性および耐リジング性に優れたフェライト系Cr含有冷延鋼板およびその製造方法
JP2001220654A (ja) * 1999-11-30 2001-08-14 Nippon Steel Corp 焼戻し軟化抵抗の高いディスクブレーキ用ステンレス鋼
JP2001355049A (ja) * 2000-04-13 2001-12-25 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス鋼板とその製造方法
JP2002129292A (ja) * 2000-10-30 2002-05-09 Kawasaki Steel Corp 耐食性および耐水垢付着性に優れたジャーポット容器用フェライト系ステンレス冷延鋼板およびジャーポット用フェライト系ステンレス鋼製容器
JP2002146488A (ja) * 2000-08-31 2002-05-22 Kawasaki Steel Corp 加工性に優れたマルテンサイト系ステンレス鋼
JP2002146489A (ja) 2000-08-31 2002-05-22 Kawasaki Steel Corp 耐熱性に優れた低炭素マルテンサイト系ステンレス鋼板
JP2003268507A (ja) * 2002-03-14 2003-09-25 Sumitomo Metal Ind Ltd ブラウン管インナーフレームと、そのためのフェライト系ステンレス鋼板と、その製造方法
JP2004346425A (ja) 2003-04-28 2004-12-09 Jfe Steel Kk ディスクブレーキ用マルテンサイト系ステンレス鋼
JP2005126735A (ja) * 2003-10-21 2005-05-19 Jfe Steel Kk 耐焼戻し軟化性に優れたブレーキディスクおよびその製造方法
JP2006322071A (ja) * 2005-04-21 2006-11-30 Jfe Steel Kk 焼戻し軟化抵抗の大きいブレーキディスク
JP2007247027A (ja) * 2006-03-17 2007-09-27 Jfe Steel Kk ブレーキディスク用高耐熱Cr含有鋼
JP2011012343A (ja) * 2009-06-01 2011-01-20 Jfe Steel Corp ブレーキディスク用鋼板およびブレーキディスク
WO2012157680A1 (ja) * 2011-05-16 2012-11-22 新日鐵住金ステンレス株式会社 自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413332B1 (en) * 1999-09-09 2002-07-02 Kawasaki Steel Corporation Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
US6464803B1 (en) * 1999-11-30 2002-10-15 Nippon Steel Corporation Stainless steel for brake disc excellent in resistance to temper softening
KR100765661B1 (ko) * 2000-08-31 2007-10-10 제이에프이 스틸 가부시키가이샤 저탄소 마르텐사이트계 스테인레스 강판 및 이의 제조방법
JP3491030B2 (ja) * 2000-10-18 2004-01-26 住友金属工業株式会社 ディスクブレ−キロ−タ−用ステンレス鋼
JP4502519B2 (ja) * 2001-01-15 2010-07-14 新日鐵住金ステンレス株式会社 マルテンサイト系快削ステンレス鋼
JP5796398B2 (ja) * 2010-10-26 2015-10-21 Jfeスチール株式会社 熱疲労特性と高温疲労特性に優れたフェライト系ステンレス鋼
KR101656980B1 (ko) * 2013-02-08 2016-09-12 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 스테인리스강제 브레이크 디스크와 그 제조 방법

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192735A (ja) * 1999-11-02 2001-07-17 Kawasaki Steel Corp 延性、加工性および耐リジング性に優れたフェライト系Cr含有冷延鋼板およびその製造方法
JP2001220654A (ja) * 1999-11-30 2001-08-14 Nippon Steel Corp 焼戻し軟化抵抗の高いディスクブレーキ用ステンレス鋼
JP2001355049A (ja) * 2000-04-13 2001-12-25 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス鋼板とその製造方法
JP2002146488A (ja) * 2000-08-31 2002-05-22 Kawasaki Steel Corp 加工性に優れたマルテンサイト系ステンレス鋼
JP2002146489A (ja) 2000-08-31 2002-05-22 Kawasaki Steel Corp 耐熱性に優れた低炭素マルテンサイト系ステンレス鋼板
JP2002129292A (ja) * 2000-10-30 2002-05-09 Kawasaki Steel Corp 耐食性および耐水垢付着性に優れたジャーポット容器用フェライト系ステンレス冷延鋼板およびジャーポット用フェライト系ステンレス鋼製容器
JP2003268507A (ja) * 2002-03-14 2003-09-25 Sumitomo Metal Ind Ltd ブラウン管インナーフレームと、そのためのフェライト系ステンレス鋼板と、その製造方法
JP2004346425A (ja) 2003-04-28 2004-12-09 Jfe Steel Kk ディスクブレーキ用マルテンサイト系ステンレス鋼
JP2005126735A (ja) * 2003-10-21 2005-05-19 Jfe Steel Kk 耐焼戻し軟化性に優れたブレーキディスクおよびその製造方法
JP2006322071A (ja) * 2005-04-21 2006-11-30 Jfe Steel Kk 焼戻し軟化抵抗の大きいブレーキディスク
JP2007247027A (ja) * 2006-03-17 2007-09-27 Jfe Steel Kk ブレーキディスク用高耐熱Cr含有鋼
JP2011012343A (ja) * 2009-06-01 2011-01-20 Jfe Steel Corp ブレーキディスク用鋼板およびブレーキディスク
WO2012157680A1 (ja) * 2011-05-16 2012-11-22 新日鐵住金ステンレス株式会社 自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117925A (ja) * 2014-12-19 2016-06-30 日新製鋼株式会社 ステンレス製4輪用ディスクブレーキロータおよびその製造方法
EP3287536A4 (en) * 2015-04-21 2018-02-28 JFE Steel Corporation Martensitic stainless steel
US10655195B2 (en) 2015-04-21 2020-05-19 Jfe Steel Corporation Martensitic stainless steel
JP2020152959A (ja) * 2019-03-20 2020-09-24 日鉄ステンレス株式会社 ブレーキマルテンサイト系ステンレス鋼板およびその製造方法、ブレーキディスク、ならびにマルテンサイト系ステンレス鋼スラブ
JP7300859B2 (ja) 2019-03-20 2023-06-30 日鉄ステンレス株式会社 ブレーキマルテンサイト系ステンレス鋼板およびその製造方法、ブレーキディスク、ならびにマルテンサイト系ステンレス鋼スラブ
WO2020195915A1 (ja) * 2019-03-28 2020-10-01 日鉄ステンレス株式会社 自動車ブレーキディスクローター用フェライト系ステンレス鋼板、自動車ブレーキディスクローター及び自動車ブレーキディスクローター用ホットスタンプ加工品
JPWO2020195915A1 (ja) * 2019-03-28 2021-12-23 日鉄ステンレス株式会社 自動車ブレーキディスクローター用フェライト系ステンレス鋼板、自動車ブレーキディスクローター及び自動車ブレーキディスクローター用ホットスタンプ加工品
JP7179966B2 (ja) 2019-03-28 2022-11-29 日鉄ステンレス株式会社 自動車ブレーキディスクローター用フェライト系ステンレス鋼板、自動車ブレーキディスクローター及び自動車ブレーキディスクローター用ホットスタンプ加工品

Also Published As

Publication number Publication date
TWI604072B (zh) 2017-11-01
EP2947170B1 (en) 2019-02-13
EP2947170A1 (en) 2015-11-25
TW201444985A (zh) 2014-12-01
KR20150108932A (ko) 2015-09-30
US20160281189A1 (en) 2016-09-29
KR101930860B1 (ko) 2018-12-19
JPWO2014148015A1 (ja) 2017-02-16
ES2715387T3 (es) 2019-06-04
CN105189801A (zh) 2015-12-23
KR20180039748A (ko) 2018-04-18
JP5700172B2 (ja) 2015-04-15
EP2947170A4 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5700172B2 (ja) ステンレス鋼板
JP5863785B2 (ja) 自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板およびその製造方法
US10577671B2 (en) High-hardness hot-rolled steel product, and a method of manufacturing the same
US8607941B2 (en) Steel sheet for brake disc, and brake disc
CA2969200C (en) Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
JP4381355B2 (ja) 耐遅れ破壊特性に優れた引張強さ1600MPa級以上の鋼およびその成型品の製造方法
CN105008570A (zh) 厚壁高韧性高张力钢板及其制造方法
JP6819198B2 (ja) 冷間鍛造調質品用圧延棒線
WO2015022932A1 (ja) 耐摩耗性と耐食性に優れるマルテンサイト系ステンレス鋼及びその製造方法
KR20180068983A (ko) 강철, 상기 강철로 제조된 제품, 및 그 제조 방법
JP4983082B2 (ja) 高強度鋼材及びその製造方法
WO2015146174A1 (ja) 高炭素熱延鋼板およびその製造方法
JP6537659B1 (ja) マルテンサイト系ステンレス熱延鋼板、当該鋼板を用いたディスクブレーキロータの製造方法
JP4496908B2 (ja) 耐焼戻し軟化性に優れるブレーキディスクおよびその製造方法
JP2006104526A (ja) 高強度部品の製造方法と高強度部品
JPWO2018061101A1 (ja)
EP3633060A1 (en) Steel sheet and production method therefor
JP5278889B2 (ja) ディスクブレーキ用マルテンサイト系ステンレス鋼
JP6361279B2 (ja) 中高炭素鋼材
WO2016187577A1 (en) High manganese 3rd generation advanced high strength steels
JP2022069229A (ja) オーステナイト系ステンレス鋼およびその製造方法
JP3371952B2 (ja) 酸洗工程を省略できる軟質な加工用高炭素鋼板の製造法
US11512375B2 (en) Case hardening steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016506.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014525646

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770563

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014770563

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157023247

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14778291

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE