WO2014147909A1 - 内燃機関の点火制御装置および点火制御方法 - Google Patents

内燃機関の点火制御装置および点火制御方法 Download PDF

Info

Publication number
WO2014147909A1
WO2014147909A1 PCT/JP2013/083619 JP2013083619W WO2014147909A1 WO 2014147909 A1 WO2014147909 A1 WO 2014147909A1 JP 2013083619 W JP2013083619 W JP 2013083619W WO 2014147909 A1 WO2014147909 A1 WO 2014147909A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
overlap
exhaust gas
gas recirculation
internal combustion
Prior art date
Application number
PCT/JP2013/083619
Other languages
English (en)
French (fr)
Inventor
泰介 白石
竜也 矢口
洋史 前田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/777,857 priority Critical patent/US9951742B2/en
Priority to BR112015024230-8A priority patent/BR112015024230B1/pt
Priority to EP13878757.7A priority patent/EP2977592B1/en
Priority to CN201380074816.2A priority patent/CN105164391B/zh
Priority to JP2015506556A priority patent/JP5843047B2/ja
Priority to RU2015145057A priority patent/RU2614310C1/ru
Priority to MX2015013099A priority patent/MX343177B/es
Publication of WO2014147909A1 publication Critical patent/WO2014147909A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • F02D2021/083Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine controlling exhaust gas recirculation electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to ignition of an internal combustion engine using an ignition coil including a primary coil and a secondary coil, and in particular, an ignition control device and an ignition control for performing a multiple discharge by applying a multiple voltage so as to compensate for the deterioration of combustion due to exhaust gas recirculation. Regarding the method.
  • a primary discharge current is applied to the primary coil, and then the primary current is cut off at a predetermined ignition timing, thereby generating a high discharge voltage in the secondary coil and A discharge is generated between the electrodes of the connected spark plug.
  • the discharge voltage and discharge energy generated in the secondary coil basically correspond to the energization time to the primary coil.
  • Patent Document 1 discloses a technique for applying a superimposed voltage by another booster circuit to a spark plug in the discharge period after the ignition timing in order to increase the discharge period and obtain reliable ignition. In this case, after the discharge between the electrodes is started by the secondary voltage by the ignition coil, the discharge current is continued by the overlap voltage, and a larger amount of energy is given to the air-fuel mixture.
  • the purpose of the present invention is to improve the ignitability during exhaust gas recirculation using the above-mentioned multi-discharge technology, and at the same time, appropriately switch over between execution and stop of multi-discharge in the transient state where the presence or absence of exhaust gas recirculation or the magnitude changes. This is to suppress misfire and wasteful energy consumption during a transition in which exhaust gas recirculation is switched.
  • the present invention provides an ignition control device for an internal combustion engine that generates a discharge voltage between electrodes of an ignition plug connected to a secondary coil by energizing and interrupting a primary current to the primary coil of the ignition coil.
  • a superimposed voltage generating circuit for continuing a discharge current by applying a superimposed voltage in the same direction as the discharge voltage between the electrodes of the spark plug after the start of discharge by the secondary coil;
  • an overlap discharge execution region in which the overlap voltage is supplied by the overlap voltage generation circuit, an overlap discharge stop region in which the overlap voltage is not supplied, Is set, At the time of transition from one of the two regions to the other, a predetermined delay period is given to the switching between the execution and stop of the overlap discharge.
  • the overlap discharge execution region and the overlap discharge stop region are set corresponding to the presence or absence of exhaust gas recirculation, and the exhaust discharge recirculation when the engine operating condition is in the overlap discharge execution region.
  • the exhaust gas recirculation is stopped (or at a low exhaust gas recirculation rate).
  • the exhaust discharge is also stopped at the same time.
  • the control state of the exhaust gas recirculation is immediately switched.
  • the switching between the execution and the stop of the overlap discharge is performed after a predetermined delay period.
  • the entire exhaust gas recirculation transient period required for the exhaust gas recirculation state in the combustion chamber to reach a steady state corresponding to the operating condition after the transition can be set as the delay period.
  • the delay period may end in the middle of the exhaust gas recirculation transient period.
  • the present invention it is possible to compensate for the decrease in ignitability due to exhaust gas recirculation by overlap discharge, and in particular, operating conditions between the overlap discharge execution region and the overlap discharge stop region corresponding to the presence or absence of exhaust gas recirculation As a result of this change, misfire can be avoided more reliably and wasteful discharge energy consumption can be suppressed.
  • FIG. 6 is a time chart showing an example of switching at the time of area transition in FIG. 5.
  • FIG. 6 is a time chart showing a second example of switching at the time of region transition in FIG. 5.
  • FIG. 6 The characteristic view explaining the example from which the transfer of the area
  • the time chart which shows an example of the switching in the case of the area
  • region transfer of FIG. The characteristic view explaining an example of the transfer of the area
  • region transfer of FIG. The characteristic view explaining the example from which the transfer of the area
  • region transfer of FIG. The time chart which shows the 2nd example of the switching in the case of the area
  • FIG. 1 is a configuration explanatory view showing the entire configuration of an internal combustion engine 1 equipped with an ignition control device according to the present invention.
  • An air cleaner 3 and an air flow meter are arranged in an intake passage 2 of the internal combustion engine 1 in order from the upstream side. 4 and the throttle valve 5 are respectively arranged.
  • an upstream catalytic converter 7, a downstream catalytic converter 8, and a silencer 9 are arranged in order from the upstream side.
  • An upstream air-fuel ratio sensor 10 and a downstream air-fuel ratio sensor 11 are disposed before and after the upstream catalytic converter 7, respectively.
  • An exhaust gas recirculation passage 13 branches from between the upstream side catalytic converter 7 and the downstream side catalytic converter 8 of the exhaust passage 6, and the tip of the exhaust gas recirculation passage 13 is downstream of the throttle valve 5 in the intake passage 2. Specifically, it is connected to the collector section 2a.
  • the collector part 2a has a relatively large volume, and a plurality of downstream branch parts 2b branched for each cylinder are gathered in the collector part 2a.
  • the exhaust gas recirculation passage 13 is provided with an exhaust gas recirculation control valve 14 for controlling the exhaust gas recirculation amount.
  • an exhaust gas recirculation control valve 14 for controlling the exhaust gas recirculation amount.
  • hot exhaust gas is heated with cooling water or outside air.
  • An EGR gas cooler 15 that cools by replacement is provided.
  • FIG. 2 shows the configuration of the ignition device of the internal combustion engine 1.
  • a piston 23 is disposed in each of the plurality of cylinders 22 of the internal combustion engine 1, and an intake port 25 that is opened and closed by an intake valve 24 and an exhaust port 27 that is opened and closed by an exhaust valve 26 are connected to each other.
  • the intake passage 2 and the exhaust passage 6 are connected to the intake port 25 and the exhaust port 27, respectively.
  • the internal combustion engine 1 also includes a fuel injection valve 28 that supplies fuel into the cylinder.
  • the fuel injection timing and fuel injection amount of the fuel injection valve 28 are controlled by an engine control unit (ECU) 30.
  • ECU engine control unit
  • a spark plug 29 is arranged at the center of the ceiling surface.
  • the illustrated example is configured as an in-cylinder direct injection internal combustion engine. However, a port injection type configuration in which a fuel injection valve is disposed in the intake port 25 may be used.
  • the engine control unit 30 includes an air flow meter 4 for detecting the amount of intake air, air-fuel ratio sensors 10 and 11 (see FIG. 1), a crank angle sensor 32 for detecting engine rotation speed, a temperature sensor 33 for detecting cooling water temperature, Detection signals from a number of sensors such as are input.
  • the ignition plug 29 is connected to an ignition unit 41 that outputs a discharge voltage to the ignition plug 29 in response to an ignition signal from the engine control unit 30.
  • an overlap voltage control unit 42 that controls the overlap voltage by the ignition unit 41 in response to the overlap voltage request signal from the engine control unit 30 is provided.
  • engine control unit 30, ignition unit 41, and overlap voltage control unit 42 are connected to an in-vehicle 14-volt battery 43.
  • the ignition unit 41 controls an ignition coil 45 including a primary coil and a secondary coil (not shown), and energization / cutoff of a primary current to the primary coil of the ignition coil 45.
  • An igniter 46 and a superimposed voltage generation circuit 47 including a booster circuit are included, and a spark plug 29 is connected to the secondary coil of the ignition coil 45.
  • the overlap voltage generation circuit 47 boosts the voltage of the battery 43 to a predetermined overlap voltage, and then overlaps the spark plug 29 after starting the discharge of the spark plug 29 based on the control signal of the overlap voltage control unit 42. Output voltage.
  • the superimposed voltage generation circuit 47 generates a superimposed voltage in the direction of the same potential as the original discharge voltage generated between the electrodes of the spark plug 29 when the primary current to the primary coil is interrupted.
  • FIG. 4 illustrates changes in the secondary current (discharge current) depending on the presence or absence of a superposed voltage.
  • the primary current primary coil energization signal
  • superposed voltage The waveforms of voltage and secondary current are collectively shown.
  • the operation is the same as that of a general ignition device. That is, the primary current is passed through the primary coil of the ignition coil 45 through the igniter 46 for a predetermined energization time. Along with the interruption of the primary current, a high discharge voltage is generated in the secondary coil, and a discharge is generated between the electrodes of the spark plug 29 with dielectric breakdown of the air-fuel mixture.
  • the secondary current flowing between the electrodes decreases relatively abruptly in the form of a triangular wave with the passage of time from the start of discharge.
  • the supply of the overlap voltage is started almost simultaneously with the interruption of the primary current, and a constant overlap voltage is superimposed for a predetermined period.
  • the secondary current is maintained at a high level for a relatively long period from the start of the discharge, and the discharge continues for a longer time as the overlap discharge.
  • whether or not to supply the overlap voltage in a form corresponding to the exhaust gas recirculation is determined by the operation region determined from the load and the rotational speed of the internal combustion engine 1.
  • the low, medium speed and medium load areas are the overlap discharge execution areas where the overlap voltage is supplied, and other high load areas, low load areas and high speed areas are overlap discharges.
  • This is an overlapped discharge stop region where no supply is performed.
  • the overlapped discharge stop region corresponds to an operation region where exhaust gas recirculation (so-called external EGR) through the exhaust gas recirculation passage 13 is not performed or an operation region where the exhaust gas recirculation rate is set low.
  • the overlap discharge execution region corresponds to an operation region in which exhaust gas recirculation is performed with a relatively high exhaust gas recirculation rate.
  • the fuel consumption rate can be improved by reducing the pumping loss.
  • the ignitability is reduced by the reflux exhaust.
  • the exhaust gas recirculation is performed at a high exhaust gas recirculation rate as described above, a good ignitability can be obtained by performing the superposed discharge by supplying the superposed voltage.
  • the target exhaust gas recirculation is performed.
  • the rate changes from a high exhaust gas recirculation rate to a low exhaust gas recirculation rate (or 0), and at the same time, switching between execution and stop of overlap discharge is performed.
  • a predetermined delay period is given to the switching between the execution and stop of the overlap discharge.
  • FIG. 6 is a time chart showing the load, the exhaust gas recirculation rate, and the ON / OFF (supply / execution) of the overlap voltage when the engine operating condition transitions from point A to point B in FIG. It is.
  • the operating condition changes from the overlap discharge execution region to the overlap discharge stop region at time t1
  • the opening degree of the exhaust gas recirculation control valve 14 decreases rapidly. That is, the target exhaust gas recirculation rate changes stepwise.
  • the actual exhaust gas recirculation rate changes relatively slowly, and reaches the target exhaust gas recirculation rate at point B after the transition at time t2.
  • the period TL from time t1 to t2 that is, the period TL required for the exhaust gas recirculation state to reach a steady state corresponding to the operating condition after the transition to the region is referred to as an “exhaust gas recirculation transient period”.
  • a delay period ⁇ T substantially equal to the exhaust gas recirculation transient period TL is given to the switching of the overlap voltage ON / OFF. That is, the overlap discharge is continued until the delay period ⁇ T has elapsed, and the overlap discharge is stopped when the delay period ⁇ T has elapsed (substantially equal to the time t2).
  • FIG. 7 shows an example in which the delay period ⁇ T is set differently.
  • the delay period ⁇ T is set slightly shorter than the exhaust gas recirculation transient period TL. That is, the overlap discharge ends at a time t3 earlier than the time t2 at which the exhaust gas recirculation rate becomes a steady state corresponding to the operating condition after the transition.
  • the delay period ⁇ T in this case is set corresponding to the time when the actual exhaust gas recirculation rate is reduced to a level at which no misfire occurs even when the overdischarge is terminated.
  • the setting of the discharge energy of the overlap discharge applied during the delay period ⁇ T may be set to be the same level as the discharge energy before time t1, or the exhaust gas recirculation rate may be increased.
  • a level higher than the discharge energy before time t1 may be set so as to more reliably avoid the accompanying misfire. A specific method for changing the discharge energy will be described later.
  • the target exhaust gas recirculation rate changes from the low exhaust gas recirculation rate (or 0) to the high exhaust gas recirculation rate with the shift of the operation region at time t1, but the actual change in the exhaust gas recirculation rate in the combustion chamber is As shown in FIGS. 9 and 10, it occurs slowly and reaches the target high exhaust gas recirculation rate at time t2. Therefore, if overlap discharge is started at time t1, overlap discharge is performed unnecessarily, resulting in wasted discharge energy.
  • a delay period ⁇ T that is substantially equal to the exhaust gas recirculation transient period TL from time t1 to t2 is given to ON / OFF switching of the overlap voltage. That is, overlap discharge is not performed until time t2, and overlap discharge is started at time t2 when the exhaust gas recirculation rate is actually high.
  • the delay period ⁇ T is set to be slightly shorter than the exhaust gas recirculation transient period TL as in the above-described example of FIG. 7, and the exhaust gas recirculation rate corresponds to the operating condition after the transition.
  • Overlap discharge is started at time t3 that is earlier than time t2.
  • the discharge energy can be reduced to the maximum.
  • misfire at the stage where the exhaust gas recirculation rate approaches the high exhaust gas recirculation rate under the operating conditions after the transition can be reliably avoided while suppressing the discharge energy.
  • the setting of the discharge energy of the overlap discharge applied between the times t3 and t2 may be set so as to be the same level as the discharge energy after the time t2, or the discharge energy. It may be set to a level lower than the discharge energy after time t2 so that no waste occurs.
  • the target exhaust gas recirculation rate changes from the low exhaust gas recirculation rate (or 0) to the high exhaust gas recirculation rate with the shift of the operation region at time t1, but the actual change in the exhaust gas recirculation rate in the combustion chamber is As shown in FIGS. 12 and 13, it occurs slowly and reaches the target high exhaust gas recirculation rate at time t2.
  • the actual exhaust gas recirculation rate in the combustion chamber temporarily decreases further and then gradually increases. Therefore, if overlap discharge is started at time t1, overlap discharge is performed unnecessarily, resulting in wasted discharge energy.
  • a delay period ⁇ T substantially equal to the exhaust gas recirculation transient period TL from time t1 to t2 is given to ON / OFF switching of the overlap voltage. That is, overlap discharge is not performed until time t2, and overlap discharge is started at time t2 when the exhaust gas recirculation rate is actually high.
  • the delay period ⁇ T is set slightly shorter than the exhaust gas recirculation transient period TL, and the exhaust gas recirculation rate corresponds to the operating condition after the transition.
  • Overlap discharge is started at time t3 that is earlier than time t2.
  • the discharge energy can be reduced to the maximum.
  • misfire at the stage where the exhaust gas recirculation rate approaches the high exhaust gas recirculation rate under the operating condition after the transition can be reliably avoided while suppressing the discharge energy.
  • the setting of the discharge energy of the overlap discharge applied between the times t3 and t2 is set to the same level as the discharge energy after the time t2, as in the case of FIG. It may be set, or may be set to a level lower than the discharge energy after time t2 so as not to waste the discharge energy.
  • the target exhaust gas recirculation rate changes from the high exhaust gas recirculation rate to the low exhaust gas recirculation rate (or 0) with the shift of the operation region at time t1, but the actual change in the exhaust gas recirculation rate in the combustion chamber is As shown in FIGS. 15 and 16, it occurs slowly and reaches the target low exhaust gas recirculation rate at time t2. Since the fresh air increases as the load increases, the temporary exhaust gas recirculation rate does not increase as described with reference to FIGS. 6 and 7. However, the exhaust gas recirculation rate decreases slowly. Therefore, if overlap discharge is started at time t1, there is still a fear of misfire.
  • a delay period ⁇ T that is substantially equal to the exhaust gas recirculation transient period TL from time t1 to t2 is given to ON / OFF switching of the overlap voltage. That is, the overlap discharge is continued until time t2, and the overlap discharge is stopped at time t2 when the exhaust gas recirculation rate is actually low.
  • the delay period ⁇ T is set slightly shorter than the exhaust gas recirculation transient period TL, as in the above-described example of FIG. 7, and the exhaust gas recirculation rate corresponds to the operating condition after the transition. Overlap discharge is stopped at time t3 that is earlier than time t2.
  • misfire can be avoided more reliably as in the example of FIG.
  • the discharge energy can be suppressed as compared with the example of FIG.
  • the setting of the discharge energy of the overlapping discharge applied during the delay period ⁇ T may be set so as to be the same level as the discharge energy before the time t1, as described above. You may make it set to a level higher than the discharge energy before t1.
  • the setting of the discharge energy in each of the embodiments described above can be changed by changing the time for supplying the overlap voltage or the voltage value of the applied overlap voltage, as shown in FIG.
  • FIG. 17 shows the waveforms of the primary current (primary coil energization signal), the superimposed voltage, the secondary voltage, and the secondary current, as in FIG. This shows the characteristics of the superposed discharge.
  • the center column is an example in which the supply time of the superposed voltage is lengthened, whereby the secondary current continues at a high level for a longer time. Accordingly, the discharge energy input to the air-fuel mixture becomes large.
  • the right column is an example in which the voltage value of the overlap voltage is increased compared to the basic characteristics, and thereby the secondary current can be obtained at a higher level. Therefore, the discharge energy input to the air-fuel mixture is also large.
  • the example which increases discharge energy is demonstrated here, it is the same also when changing discharge energy to a low level in the example of FIG.
  • the delay period ⁇ T in each of the above embodiments may be a fixed fixed period (a constant time or a constant crank angle, etc.), or in consideration of engine operating conditions (load and rotational speed). The period determined optimally for each operating condition may be used.
  • the exhaust gas recirculation rate is high or the exhaust gas recirculation is different depending on, for example, the temperature condition of the internal combustion engine 1, the overlap discharge execution region and the overlap discharge stop region are also actually exhausted in consideration of the temperature condition and the like. It is set to correspond to the reflux setting.
  • a so-called external exhaust gas recirculation device including the exhaust gas recirculation passage 13 is used to introduce the recirculated exhaust gas.
  • so-called internal exhaust gas recirculation control by valve overlap amount control of the intake valve 24 and the exhaust valve 26 is used.
  • the present invention can be similarly applied to the case where exhaust gas recirculation is performed by the above method.
  • the external exhaust gas recirculation device has a larger influence on the volume downstream of the exhaust gas recirculation control valve 14, and requires a longer delay period ⁇ T, for example, to prevent misfire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

 内燃機関(1)の点火装置は、二次コイルによる放電開始後に点火プラグ(29)の電極間に放電電圧と同方向の重ね電圧を加えて放電電流を継続させる重ね電圧生成回路(47)を有し、高排気還流率に対応した重ね放電実行領域で重ね放電を行う。機関負荷が低下して高排気還流率の重ね放電実行領域から低排気還流率の重ね放電停止領域へ移行したときに、重ね放電の停止に遅れ期間ΔTを与える。排気還流制御弁が閉じた後に新気の減少により排気還流率が一時的に上昇するが、遅れ期間ΔTの間、重ね放電が引き続き実行されるので、失火を防止できる。

Description

内燃機関の点火制御装置および点火制御方法
 この発明は、一次コイルおよび二次コイルを含む点火コイルを用いた内燃機関の点火に関し、特に、排気還流に伴う燃焼悪化を補うように重ね電圧の印加による重ね放電を行う点火制御装置および点火制御方法に関する。
 点火コイルを用いた点火装置にあっては、一次コイルに一次電流を通電した後、所定の点火時期に一次電流を遮断することで、二次コイルに高い放電電圧を生成し、二次コイルに接続された点火プラグの電極間に放電を生じさせる。二次コイルに生じる放電電圧ならびに放電エネルギは、基本的には一次コイルへの通電時間に応じたものとなる。
 特許文献1には、放電期間を長くして確実な着火を得るために、点火時期後の放電期間に重ねて、別の昇圧回路による重ね電圧を点火プラグに与える技術が開示されている。このものでは、点火コイルによる二次電圧によって電極間の放電が開始した後、重ね電圧によって放電電流が継続され、より大きなエネルギが混合気に与えられる。
 排気系から吸気系に至る排気還流通路を用いた外部排気還流(外部EGR)あるいは吸気弁と排気弁のバルブオーバラップ量制御による内部排気還流(内部EGR)として、燃焼室内に比較的大量の還流排気の導入を行うことで、ポンピングロスの低減などによる燃料消費率の向上が得られることが知られている。しかし、このような排気還流は、同時に点火プラグによる着火性の低下を招来する。
特許第2554568号公報
 本発明の目的は、上記重ね放電技術を利用して排気還流時の着火性の改善を図ると同時に、排気還流の有無もしくは大小が切り換わる過渡時に、重ね放電の実行・停止の切換を適切に行うことで、排気還流が切り換わる過渡時の失火や無駄なエネルギ消費を抑制することにある。
 本発明は、点火コイルの一次コイルに一次電流を通電しかつ遮断することで、二次コイルに接続された点火プラグの電極間に放電電圧を発生させる内燃機関の点火制御装置において、
 上記二次コイルによる放電開始後に上記点火プラグの電極間に上記放電電圧と同方向の重ね電圧を加えて放電電流を継続させる重ね電圧生成回路を有し、
 内燃機関の運転条件に対し、排気還流の有無もしくは大小に対応して、上記重ね電圧生成回路による重ね電圧の供給を行う重ね放電実行領域と、重ね電圧の供給を行わない重ね放電停止領域と、が設定されており、
 上記の2つの領域の一方から他方へ移行する過渡時に、重ね放電の実行・停止の切換に所定の遅れ期間を与える。
 すなわち、本発明では、排気還流の有無もしくは大小に対応して、重ね放電実行領域と重ね放電停止領域とが設定されており、機関運転条件が重ね放電実行領域内にある場合には、排気還流の実行(あるいは高い排気還流率での排気還流)に併せて重ね放電が行われ、他方、機関運転条件が重ね放電停止領域内にある場合には、排気還流の停止(あるいは低い排気還流率での排気還流)とともに重ね放電も停止される。
 ここで、重ね放電実行領域から重ね放電停止領域へと運転条件が変化したとき、あるいは逆に重ね放電停止領域から重ね放電実行領域へと運転条件が変化したときには、排気還流の制御状態が直ちに切り換えられるのに対し、重ね放電の実行・停止の切換は、所定の遅れ期間の後に行われる。
 例えば、一方の領域から他方の領域への移行に伴い高排気還流率から低排気還流率へ(あるいは排気還流有りから排気還流無しへ)切り換わる場合、燃焼室内における実際の還流排気の減少は緩慢であり、直ちに重ね放電を停止すると、失火の懸念がある。特に、負荷低下に伴って重ね放電実行領域から重ね放電停止領域へ移行(つまり高排気還流率から低排気還流率へ移行)する場合には、燃焼室内に導入される新気が減少するため、緩慢に減少する還流排気によって一時的に排気還流率が上昇することがあり、失火が生じやすくなる。
 これに対し、本発明では、所定の遅れ期間の間、重ね放電が引き続き行われるので、失火が防止される。
 また、領域の移行に伴い低排気還流率から高排気還流率へ(あるいは排気還流無しから排気還流有りへ)切り換わる場合、燃焼室内における実際の還流排気の増加は緩慢であり、従って、直ちに重ね放電を開始すると、放電エネルギを無駄に消費することとなる。
 これに対し、本発明では、所定の遅れ期間の後、重ね放電が開始されるので、放電エネルギの無駄が抑制される。
 好ましい一つの態様では、燃焼室における排気還流の状態が移行後の運転条件に対応した定常状態に達するまでに要する排気還流過渡期間の全体を、上記の遅れ期間とすることができる。
 また他の好ましい一つの態様では、上記の排気還流過渡期間の途中で遅れ期間が終了するようにしてもよい。
 本発明によれば、排気還流に伴う着火性の低下を重ね放電によって補うことができ、特に、排気還流の有無もしくは大小に対応した重ね放電実行領域と重ね放電停止領域との間での運転条件の変化に対し、失火をより確実に回避できるとともに、無駄な放電エネルギの消費を抑制することができる。
この発明が適用される内燃機関全体の構成説明図。 点火装置の構成を示す構成説明図。 その要部を示す構成説明図。 重ね電圧の非供給時および供給時における二次電圧等の波形図。 負荷低下に伴う領域の移行の一例を説明する特性図。 図5の領域移行の際の切換の一例を示すタイムチャート。 図5の領域移行の際の切換の第2の例を示すタイムチャート。 負荷低下に伴う領域の移行の異なる例を説明する特性図。 図8の領域移行の際の切換の一例を示すタイムチャート。 図8の領域移行の際の切換の第2の例を示すタイムチャート。 負荷上昇に伴う領域の移行の一例を説明する特性図。 図11の領域移行の際の切換の一例を示すタイムチャート。 図11の領域移行の際の切換の第2の例を示すタイムチャート。 負荷上昇に伴う領域の移行の異なる例を説明する特性図。 図14の領域移行の際の切換の一例を示すタイムチャート。 図14の領域移行の際の切換の第2の例を示すタイムチャート。 重ね電圧の供給時間および電圧を可変制御したときの二次電圧等の波形図。
 以下、この発明の一実施例を図面に基づいて詳細に説明する。
 図1は、この発明に係る点火制御装置を備えた内燃機関1全体の構成を示す構成説明図であって、この内燃機関1の吸気通路2には、上流側から順に、エアクリーナ3、エアフロメータ4、スロットル弁5、がそれぞれ配置されている。内燃機関1の排気通路6には、上流側から順に、上流側触媒コンバータ7、下流側触媒コンバータ8、消音器9、がそれぞれ配置されている。上記上流側触媒コンバータ7の前後には、上流側空燃比センサ10および下流側空燃比センサ11がそれぞれ配置されている。そして、上記排気通路6の上流側触媒コンバータ7と下流側触媒コンバータ8との間から排気還流通路13が分岐しており、この排気還流通路13の先端が、吸気通路2のスロットル弁5下流側、詳しくはコレクタ部2aに接続されている。上記コレクタ部2aは、比較的大きな容積を有し、各気筒毎に分岐した下流側の複数本のブランチ部2bがこのコレクタ部2aに集合している。
 上記排気還流通路13には、排気還流量を制御するために排気還流制御弁14が介装されており、その上流側(排気系側)には、高温の排気を冷却水や外気との熱交換により冷却するEGRガスクーラ15が設けられている。
 図2は、上記内燃機関1の点火装置の構成を示している。内燃機関1の複数のシリンダ22の各々には、ピストン23が配置されているとともに、吸気弁24によって開閉される吸気ポート25および排気弁26によって開閉される排気ポート27がそれぞれ接続されている。上記の吸気通路2および排気通路6は上記吸気ポート25および排気ポート27にそれぞれ接続されている。また、内燃機関1は、筒内に燃料を噴射供給する燃料噴射弁28を備えている。この燃料噴射弁28の燃料噴射時期および燃料噴射量は、エンジンコントロールユニット(ECU)30によって制御される。そして、上記燃料噴射弁28によって筒内に生成された混合気の点火を行うために、例えば天井面中央に点火プラグ29が配置されている。なお、図示例は、筒内直接噴射式内燃機関として構成されているが、吸気ポート25に燃料噴射弁を配置したポート噴射型の構成であってもよい。
 上記エンジンコントロールユニット30には、吸入空気量を検出するエアフロメータ4や空燃比センサ10,11(図1参照)、機関回転速度を検出するクランク角センサ32、冷却水温を検出する温度センサ33、などの多数のセンサ類からの検出信号が入力されている。
 上記点火プラグ29には、エンジンコントロールユニット30からの点火信号に応答して点火プラグ29に放電電圧を出力する点火ユニット41が接続されている。また、エンジンコントロールユニット30からの重ね電圧要求信号に応答して点火ユニット41による重ね電圧を制御する重ね電圧制御ユニット42が設けられている。これらのエンジンコントロールユニット30、点火ユニット41、および重ね電圧制御ユニット42は、車載の14ボルトのバッテリ43に接続されている。
 上記点火ユニット41は、図3に詳細を示すように、一次コイルおよび二次コイル(図示せず)を含む点火コイル45と、この点火コイル45の一次コイルに対する一次電流の通電・遮断を制御するイグナイタ46と、昇圧回路を含む重ね電圧生成回路47と、を含んでおり、上記点火コイル45の二次コイルに点火プラグ29が接続されている。重ね電圧生成回路47は、バッテリ43の電圧を所定の重ね電圧の電圧まで昇圧した上で、重ね電圧制御ユニット42の制御信号に基づいて、点火プラグ29の放電開始後に該点火プラグ29に対し重ね電圧を出力する。なお、重ね電圧生成回路47は、一次コイルへの一次電流遮断時に点火プラグ29の電極間に生じる本来の放電電圧と同じ電位の方向に重ね電圧を生成する。
 図4は、重ね電圧の有無による二次電流(放電電流)の変化を説明するものであり、重ね電圧の非供給時と供給時について、一次電流(一次コイル通電信号)、重ね電圧、二次電圧、二次電流、のそれぞれの波形をまとめて図示している。
 重ね電圧の非供給時には、一般的な点火装置と同様の作用となる。すなわち、点火コイル45の一次コイルに、イグナイタ46を介して所定の通電時間の間、一次電流が通電される。この一次電流の遮断に伴って、二次コイルには高い放電電圧が発生し、混合気の絶縁破壊を伴って点火プラグ29の電極間で放電が生じる。そして、電極間に流れる二次電流は、放電開始から時間経過に伴って三角波状に比較的急激に減少していく。
 これに対し、重ね電圧の供給時には、一次電流の遮断とほぼ同時に重ね電圧の供給が開始され、かつ所定の期間、一定の重ね電圧が重畳される。これにより、図示するように、放電開始から比較的長い期間、二次電流が高いレベルに維持され、重ね放電として、より長く放電が継続する。
 本発明の実施例においては、内燃機関1の負荷および回転速度から定まる運転領域によって、排気還流に対応した形で、重ね電圧を供給するか否かが決定される。図5に模式的に示すように、低中速・中負荷域が重ね電圧の供給を行う重ね放電実行領域となっており、これ以外の高負荷域、低負荷域および高速域は、重ね放電の供給を行わない重ね放電停止領域となっている。上記重ね放電停止領域は、排気還流通路13を介した排気還流(いわゆる外部EGR)を行わない運転領域もしくは排気還流率が低く設定されている運転領域に相当する。これに対し、上記重ね放電実行領域は、相対的に高い排気還流率でもって排気還流が行われる運転領域に相当する。
 スロットル弁5を具備した火花点火内燃機関では、燃焼室内に比較的大量の還流排気の導入を行うことで、ポンピングロスの低減などによる燃料消費率の向上が得られるが、その反面、不活性ガスである還流排気により着火性が低下する。しかし、上記のように高排気還流率での排気還流を行う際に重ね電圧の供給による重ね放電を行うことで、良好な着火性が得られる。
 ところで、図5に矢印で示すように、運転者のアクセルペダル操作などにより重ね放電実行領域内のA点から重ね放電停止領域内のB点へと機関の負荷が低下すると、目標とする排気還流率が高排気還流率から低排気還流率(あるいは0)へと変化し、かつこれと併せて、重ね放電の実行・停止の切換が行われる。このとき、本発明では、重ね放電の実行・停止の切換に所定の遅れ期間が与えられる。
 図6は、機関運転条件が図5のA点からB点へと移行した過渡時における、負荷、排気還流率、および重ね電圧のON・OFF(供給・実行)を対比して示したタイムチャートである。この例では、時間t1において重ね放電実行領域から重ね放電停止領域へと運転条件が変化し、排気還流制御弁14の開度が急激に減少する。つまり、目標とする排気還流率がステップ的に変化する。しかし、実際の排気還流率は、比較的緩慢に変化し、時間t2において、移行後のB点の目標排気還流率に到達する。なお、本発明では、この時間t1からt2までの期間TL、つまり排気還流の状態が領域移行後の運転条件に対応した定常状態に達するまでに要する期間TLを、「排気還流過渡期間」と呼ぶ。
 ここで、特に図5に示す態様の過渡変化においては、上記の排気還流過渡期間TLの初期に実際の排気還流率が逆に増加する現象が生じる。つまり、図1に例示したように、排気還流制御弁14よりも下流に排気還流通路13の一部やコレクタ部2a等の比較的大きな容積があり、ここに存在していた排気が排気還流制御弁14の開度減少(あるいは閉弁)後に遅れて燃焼室内に流入する。そして、同時に負荷低下(換言すればスロットル弁5開度の減少)に伴って新気量が減少するので、燃焼室内の排気還流率が一時的に高くなる。従って、仮に領域の移行と同時に時間t1において重ね放電を停止したとすると、過大な排気還流率によって失火に至る懸念がある。
 このような失火を回避するために、図6に示す実施例では、上記の排気還流過渡期間TLと実質的に等しい遅れ期間ΔTが重ね電圧のON・OFFの切換に与えられる。つまり、遅れ期間ΔTが経過するまで重ね放電が継続され、遅れ期間ΔTの経過時(実質的に時間t2と等しい時期)に重ね放電が停止される。
 また、図7は、遅れ期間ΔTの設定の異なる実施例を示しており、この例では、遅れ期間ΔTが排気還流過渡期間TLよりも多少短く設定される。つまり、排気還流率が移行後の運転条件に対応した定常状態となる時間t2よりも早い時間t3において、重ね放電が終了する。この場合の遅れ期間ΔTは、重ね放電を終了しても失火が生じないレベルまで実際の排気還流率が低下する時期に対応して設定される。
 従って、図6の例では、より確実に失火が回避される。また、図7の例では、過渡初期の失火を回避しつつ図6の例に比べて放電エネルギを抑制することができる。
 ここで、上記の遅れ期間ΔTの間に加えられる重ね放電の放電エネルギの設定としては、時間t1以前の放電エネルギと同レベルとなるように設定してもよく、あるいは、排気還流率の上昇に伴う失火をより確実に回避するように時間t1以前の放電エネルギよりも高いレベルに設定するようにしてもよい。この放電エネルギの具体的な変更方法については後述する。
 次に、図8~図10に基づき、負荷低下に伴って重ね放電停止領域内のC点から重ね放電実行領域内のD点へと移行(図8の矢印参照)したときの作用を説明する。
 このような場合、時間t1における運転領域の移行に伴って目標排気還流率が低排気還流率(もしくは0)から高排気還流率へと変化するが、燃焼室内における実際の排気還流率の変化は図9,10に示すように緩慢に生じ、時間t2において目標とする高排気還流率に達する。従って、仮に時間t1において重ね放電を開始すると、不必要に重ね放電を行うこととなり、放電エネルギの無駄が生じる。
 そのため、図9の例では、前述した図6の例と同様に、時間t1~t2の排気還流過渡期間TLと実質的に等しい遅れ期間ΔTが重ね電圧のON・OFFの切換に与えられる。つまり、時間t2まで重ね放電を行わず、実際に高排気還流率となる時間t2において重ね放電が開始される。
 また、図10の例では、前述した図7の例と同様に、遅れ期間ΔTが排気還流過渡期間TLよりも多少短く設定されており、排気還流率が移行後の運転条件に対応した定常状態となる時間t2よりも早い時間t3において、重ね放電が開始される。
 従って、図9の例では、放電エネルギの削減が最大限に図れる。また、図10の例では、放電エネルギを抑制しつつ、排気還流率が移行後の運転条件下での高排気還流率に近付いた段階での失火を確実に回避することができる。
 ここで、図10の例において時間t3~t2の間に加えられる重ね放電の放電エネルギの設定としては、時間t2以後の放電エネルギと同レベルとなるように設定してもよく、あるいは、放電エネルギの無駄が生じないように時間t2以後の放電エネルギよりも低いレベルに設定するようにしてもよい。
 次に、図11~図13に基づき、負荷上昇に伴って重ね放電停止領域内のB点から重ね放電実行領域内のA点へと移行(図11の矢印参照)したときの作用を説明する。
 このような場合、時間t1における運転領域の移行に伴って目標排気還流率が低排気還流率(もしくは0)から高排気還流率へと変化するが、燃焼室内における実際の排気還流率の変化は図12,13に示すように緩慢に生じ、時間t2において目標とする高排気還流率に達する。特に、負荷上昇に伴い新気量が増大するので、燃焼室内の実際の排気還流率は一時的にさらに低下し、その後、徐々に高くなっていく。従って、仮に時間t1において重ね放電を開始すると、不必要に重ね放電を行うこととなり、放電エネルギの無駄が生じる。
 そのため、図12の例では、前述した図9の例と同様に、時間t1~t2の排気還流過渡期間TLと実質的に等しい遅れ期間ΔTが重ね電圧のON・OFFの切換に与えられる。つまり、時間t2まで重ね放電を行わず、実際に高排気還流率となる時間t2において重ね放電が開始される。
 また、図13の例では、前述した図10の例と同様に、遅れ期間ΔTが排気還流過渡期間TLよりも多少短く設定されており、排気還流率が移行後の運転条件に対応した定常状態となる時間t2よりも早い時間t3において、重ね放電が開始される。
 従って、図12の例では、放電エネルギの削減が最大限に図れる。また、図13の例では、放電エネルギを抑制しつつ、排気還流率が移行後の運転条件下での高排気還流率に近付いた段階での失火を確実に回避することができる。
 ここで、図13の例において時間t3~t2の間に加えられる重ね放電の放電エネルギの設定としては、前述した図10の場合と同様に、時間t2以後の放電エネルギと同レベルとなるように設定してもよく、あるいは、放電エネルギの無駄が生じないように時間t2以後の放電エネルギよりも低いレベルに設定するようにしてもよい。
 次に、図14~図16に基づき、負荷上昇に伴って重ね放電実行領域内のD点から重ね放電停止領域内のC点へと移行(図14の矢印参照)したときの作用を説明する。
 このような場合、時間t1における運転領域の移行に伴って目標排気還流率が高排気還流率から低排気還流率(もしくは0)へと変化するが、燃焼室内における実際の排気還流率の変化は図15,16に示すように緩慢に生じ、時間t2において目標とする低排気還流率に達する。なお、負荷上昇に伴い新気が増えるので図6,図7で説明したような一時的な排気還流率の上昇は生じないが、それでも、排気還流率の低下は緩慢である。従って、仮に時間t1において重ね放電を開始すると、やはり失火の懸念がある。
 そのため、図15の例では、前述した図6の例と同様に、時間t1~t2の排気還流過渡期間TLと実質的に等しい遅れ期間ΔTが重ね電圧のON・OFFの切換に与えられる。つまり、時間t2まで重ね放電が継続され、実際に低排気還流率となる時間t2において重ね放電が停止される。
 また、図16の例では、前述した図7の例と同様に、遅れ期間ΔTが排気還流過渡期間TLよりも多少短く設定されており、排気還流率が移行後の運転条件に対応した定常状態となる時間t2よりも早い時間t3において、重ね放電が停止される。
 従って、図15の例では、図6の例と同じくより確実に失火が回避される。また、図16の例では、図7の例と同じく、過渡初期の失火を回避しつつ図15の例に比べて放電エネルギを抑制することができる。
 ここで、上記の遅れ期間ΔTの間に加えられる重ね放電の放電エネルギの設定としては、前述したように、時間t1以前の放電エネルギと同レベルとなるように設定してもよく、あるいは、時間t1以前の放電エネルギよりも高いレベルに設定するようにしてもよい。
 上述した各実施例での放電エネルギの設定は、図17に示すように、重ね電圧を供給する時間あるいは印加される重ね電圧の電圧値を変更することによって変更することができる。
 図17は、図4と同様に、一次電流(一次コイル通電信号)、重ね電圧、二次電圧、二次電流、のそれぞれの波形を対比して示したものであり、左列は、基本的な重ね放電の特性を示している。これに対し、中央列は、重ね電圧の供給時間を長くした例であり、これにより、二次電流がより長い時間、高いレベルで継続する。従って、混合気に投入される放電エネルギが大となる。右列は、基本的な特性に比較して重ね電圧の電圧値を高くした例であり、これにより、二次電流がより高いレベルに得られる。従って、やはり混合気に投入される放電エネルギが大となる。なお、ここでは放電エネルギを増大する例を説明しているが、図10の例などで放電エネルギを低いレベルに変更する場合も同様である。
 なお、上記の各実施例における遅れ期間ΔTは、固定的に定めた一定期間(一定時間もしくは一定クランク角など)であってもよく、あるいは、機関運転条件(負荷および回転速度)を考慮して、各運転条件毎に最適に定めた期間であってもよい。
 また、排気還流率の高低や排気還流の有無が例えば内燃機関1の温度条件等によって異なる場合には、重ね放電実行領域および重ね放電停止領域は、やはり温度条件等を考慮して、実際の排気還流の設定に対応するように設定される。
 さらに、上記実施例では、還流排気導入のために、排気還流通路13を含むいわゆる外部排気還流装置を用いているが、吸気弁24と排気弁26のバルブオーバラップ量制御によるいわゆる内部排気還流制御によって排気還流を行う場合にも、本発明は同様に適用可能である。なお、外部排気還流装置の方が、排気還流制御弁14下流の容積の影響が大であり、例えば失火防止のためにより長い遅れ期間ΔTが必要となる。

Claims (12)

  1.  点火コイルの一次コイルに一次電流を通電しかつ遮断することで、二次コイルに接続された点火プラグの電極間に放電電圧を発生させる内燃機関の点火制御装置において、
     上記二次コイルによる放電開始後に上記点火プラグの電極間に上記放電電圧と同方向の重ね電圧を加えて放電電流を継続させる重ね電圧生成回路を有し、
     内燃機関の運転条件に対し、排気還流の有無もしくは大小に対応して、上記重ね電圧生成回路による重ね電圧の供給を行う重ね放電実行領域と、重ね電圧の供給を行わない重ね放電停止領域と、が設定されており、
     上記の2つの領域の一方から他方へ移行する過渡時に、重ね放電の実行・停止の切換に所定の遅れ期間を与える、内燃機関の点火制御装置。
  2.  燃焼室における排気還流の状態が移行後の運転条件に対応した定常状態に達するまでに要する排気還流過渡期間の全体を、上記の遅れ期間とした、請求項1に記載の内燃機関の点火制御装置。
  3.  燃焼室における排気還流の状態が移行後の運転条件に対応した定常状態に達するまでに要する排気還流過渡期間の途中で、上記の遅れ期間が終了するようにした、請求項1に記載の内燃機関の点火制御装置。
  4.  負荷低下に伴って重ね放電実行領域から重ね放電停止領域へと移行するときに、上記遅れ期間の間における重ね放電の放電エネルギを、移行前の重ね放電の放電エネルギと同レベルとする、請求項1~3のいずれかに記載の内燃機関の点火制御装置。
  5.  負荷低下に伴って重ね放電実行領域から重ね放電停止領域へと移行するときに、上記遅れ期間の間における重ね放電の放電エネルギを、移行前の重ね放電の放電エネルギよりも高いレベルとする、請求項1~3のいずれかに記載の内燃機関の点火制御装置。
  6.  負荷低下に伴って重ね放電停止領域から重ね放電実行領域へと移行するときに、上記排気還流過渡期間の途中で開始される重ね放電の放電エネルギを、移行後の重ね放電の放電エネルギと同レベルとする、請求項3に記載の内燃機関の点火制御装置。
  7.  負荷低下に伴って重ね放電停止領域から重ね放電実行領域へと移行するときに、上記排気還流過渡期間の途中で開始される重ね放電の放電エネルギを、移行後の重ね放電の放電エネルギよりも低いレベルとする、請求項3に記載の内燃機関の点火制御装置。
  8.  負荷上昇に伴って重ね放電停止領域から重ね放電実行領域へと移行するときに、上記排気還流過渡期間の途中で開始される重ね放電の放電エネルギを、移行後の重ね放電の放電エネルギと同レベルとする、請求項3に記載の内燃機関の点火制御装置。
  9.  負荷上昇に伴って重ね放電停止領域から重ね放電実行領域へと移行するときに、上記排気還流過渡期間の途中で開始される重ね放電の放電エネルギを、移行後の重ね放電の放電エネルギよりも低いレベルとする、請求項3に記載の内燃機関の点火制御装置。
  10.  負荷上昇に伴って重ね放電実行領域から重ね放電停止領域へと移行するときに、上記遅れ期間の間における重ね放電の放電エネルギを、移行前の重ね放電の放電エネルギと同レベルとする、請求項1~3のいずれかに記載の内燃機関の点火制御装置。
  11.  負荷上昇に伴って重ね放電実行領域から重ね放電停止領域へと移行するときに、上記遅れ期間の間における重ね放電の放電エネルギを、移行前の重ね放電の放電エネルギよりも低いレベルとする、請求項1~3のいずれかに記載の内燃機関の点火制御装置。
  12.  点火コイルの一次コイルに一次電流を通電しかつ遮断することで、二次コイルに接続された点火プラグの電極間に放電電圧を発生させる内燃機関の点火制御方法において、
     内燃機関の運転条件に対し、排気還流の有無もしくは大小に対応して、重ね電圧の供給を行う重ね放電実行領域と重ね電圧の供給を行わない重ね放電停止領域とを設定し、
     上記重ね放電実行領域では、上記二次コイルによる放電開始後に上記点火プラグの電極間に上記放電電圧と同方向の重ね電圧を加えて放電電流を継続させる重ね放電を行い、
     上記の2つの領域の一方から他方へ移行する過渡時には、重ね放電の停止・実行の切換に所定の遅れ期間を与える、内燃機関の点火制御方法。
PCT/JP2013/083619 2013-03-21 2013-12-16 内燃機関の点火制御装置および点火制御方法 WO2014147909A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/777,857 US9951742B2 (en) 2013-03-21 2013-12-16 Ignition control system for internal combustion engine and ignition control method
BR112015024230-8A BR112015024230B1 (pt) 2013-03-21 2013-12-16 Sistema de controle de ignição para motor de combustão interna e método de controle de ignição
EP13878757.7A EP2977592B1 (en) 2013-03-21 2013-12-16 Ignition control system for internal combustion engine and ignition control method
CN201380074816.2A CN105164391B (zh) 2013-03-21 2013-12-16 内燃机的点火控制装置以及点火控制方法
JP2015506556A JP5843047B2 (ja) 2013-03-21 2013-12-16 内燃機関の点火制御装置および点火制御方法
RU2015145057A RU2614310C1 (ru) 2013-03-21 2013-12-16 Система и способ управления зажиганием для двигателя внутреннего сгорания
MX2015013099A MX343177B (es) 2013-03-21 2013-12-16 Sistema de control de encendido para motor de combustión interna y método de control de encendido.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013057494 2013-03-21
JP2013-057494 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014147909A1 true WO2014147909A1 (ja) 2014-09-25

Family

ID=51579620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083619 WO2014147909A1 (ja) 2013-03-21 2013-12-16 内燃機関の点火制御装置および点火制御方法

Country Status (8)

Country Link
US (1) US9951742B2 (ja)
EP (1) EP2977592B1 (ja)
JP (1) JP5843047B2 (ja)
CN (1) CN105164391B (ja)
BR (1) BR112015024230B1 (ja)
MX (1) MX343177B (ja)
RU (1) RU2614310C1 (ja)
WO (1) WO2014147909A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007445A (ja) * 2017-06-27 2019-01-17 三菱自動車工業株式会社 エンジンの制御装置
JP2020165352A (ja) * 2019-03-28 2020-10-08 ダイハツ工業株式会社 内燃機関の制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146686A1 (en) * 2016-02-23 2017-08-31 GM Global Technology Operations LLC Systems and methods of controlling pre-primary ignition of an internal combustion engine
JP6753327B2 (ja) * 2017-02-06 2020-09-09 株式会社デンソー 点火制御システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164072A (ja) * 1985-01-11 1986-07-24 Hitachi Ltd 重ね放電形点火装置
JP2554568B2 (ja) 1991-12-13 1996-11-13 阪神エレクトリック株式会社 内燃機関用の低圧配電重ね放電式点火装置
JPH10184510A (ja) * 1996-12-27 1998-07-14 Kokusan Denki Co Ltd 内燃機関点火装置
JP2000240542A (ja) * 1999-02-18 2000-09-05 Hanshin Electric Co Ltd 内燃機関用の重ね放電式点火装置
JP2008121462A (ja) * 2006-11-09 2008-05-29 Nissan Motor Co Ltd 内燃機関の点火装置
JP2011080381A (ja) * 2009-10-05 2011-04-21 Hanshin Electric Co Ltd 内燃機関用点火装置

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859228A (ja) * 1971-11-29 1973-08-20
CH565944A5 (ja) * 1973-07-25 1975-08-29 Hartig Gunter
US4349008A (en) * 1979-11-09 1982-09-14 Wainwright Basil E Apparatus for producing spark ignition of an internal combustion engine
JPS5882037A (ja) * 1981-11-11 1983-05-17 Honda Motor Co Ltd 内燃エンジンの排気還流制御機能を有する電子式燃料供給制御装置
JPS59103968A (ja) * 1982-12-06 1984-06-15 Nissan Motor Co Ltd 内燃機関用点火装置
US4493306A (en) * 1982-12-20 1985-01-15 Ford Motor Company Enhanced spark energy distributorless ignition system (B)
US4631451A (en) * 1983-11-18 1986-12-23 Ford Motor Company Blast gap ignition system
JPS60169675A (ja) * 1984-02-13 1985-09-03 Nissan Motor Co Ltd 内燃機関用点火装置
SE448645B (sv) * 1986-09-05 1987-03-09 Saab Scania Ab Forfarande och arrangemang for att alstra tendgnistor i en forbrenningsmotor
JPH06100139B2 (ja) * 1988-02-08 1994-12-12 トヨタ自動車株式会社 内燃機関の燃料供給量補正装置
JPH01240761A (ja) * 1988-03-22 1989-09-26 Honda Motor Co Ltd 内燃エンジンの排気還流制御方法
US4915087A (en) * 1988-09-29 1990-04-10 Ford Motor Company Ignition system with enhanced combustion and fault tolerance
US5383126A (en) * 1991-10-24 1995-01-17 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines with exhaust gas recirculation systems
JPH07174063A (ja) * 1993-12-20 1995-07-11 Hanshin Electric Co Ltd 重ね放電型点火装置
JP2657941B2 (ja) * 1994-02-18 1997-09-30 阪神エレクトリック株式会社 内燃機関の重ね放電型点火装置
EP0677651B1 (en) * 1994-04-14 2003-05-14 Honda Giken Kogyo Kabushiki Kaisha EGR rate estimation system for internal combustion engine
US5777216A (en) * 1996-02-01 1998-07-07 Adrenaline Research, Inc. Ignition system with ionization detection
WO1997048905A1 (en) * 1996-06-20 1997-12-24 Mecel Ab Method for ignition control in combustion engines
DE19720535C2 (de) * 1997-05-16 2002-11-21 Conti Temic Microelectronic Verfahren zur Erkennung klopfender Verbrennung bei einer Brennkraftmaschine mit einer Wechselspannungszündanlage
US6026792A (en) * 1997-06-20 2000-02-22 Outboard Marine Corporation Method of operating a fuel injected engine
US5913302A (en) * 1997-09-19 1999-06-22 Brunswick Corporation Ignition coil dwell time control system
DE19742987B4 (de) * 1997-09-29 2006-04-13 Siemens Ag Verfahren zur Steuerung der Abgasrückführung bei einer Brennkraftmaschine
DE19840765C2 (de) * 1998-09-07 2003-03-06 Daimler Chrysler Ag Verfahren und integrierte Zündeinheit für die Zündung einer Brennkraftmaschine
JP4259717B2 (ja) * 1999-08-02 2009-04-30 株式会社日本自動車部品総合研究所 火花点火装置
JP4243416B2 (ja) * 2000-06-07 2009-03-25 本田技研工業株式会社 内燃機関の燃料供給制御装置
DE10031875A1 (de) * 2000-06-30 2002-01-10 Bosch Gmbh Robert Zündverfahren und entsprechende Zündvorrichtung
JP4462747B2 (ja) * 2000-10-31 2010-05-12 日本特殊陶業株式会社 内燃機関用点火装置
JP2003184592A (ja) * 2001-12-12 2003-07-03 Honda Motor Co Ltd 内燃機関の制御装置
JP4497027B2 (ja) * 2004-07-30 2010-07-07 株式会社デンソー エンジン点火装置
JP2006299831A (ja) * 2005-04-15 2006-11-02 Toyota Motor Corp 内燃機関及び内燃機関の運転制御装置
WO2006128031A2 (en) * 2005-05-26 2006-11-30 Southwest Research Institute Extended duration high-energy ignition circuit
US7801665B2 (en) * 2007-07-13 2010-09-21 Ford Global Technologies, Llc Controlling cylinder mixture and turbocharger operation
JP4924275B2 (ja) * 2007-08-02 2012-04-25 日産自動車株式会社 非平衡プラズマ放電式の点火装置
JP4442659B2 (ja) * 2007-08-09 2010-03-31 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5119879B2 (ja) * 2007-11-16 2013-01-16 日産自動車株式会社 内燃機関の非平衡プラズマ放電制御装置及び非平衡プラズマ放電制御方法
CN101910615A (zh) * 2008-01-08 2010-12-08 日本特殊陶业株式会社 等离子流火花塞点火控制
RU2384728C2 (ru) * 2008-04-21 2010-03-20 ОАО "Улан-Удэнский авиационный завод" Устройство зажигания двигателей внутреннего сгорания
JP5287265B2 (ja) * 2009-01-08 2013-09-11 トヨタ自動車株式会社 アンモニア燃焼内燃機関
US7966992B2 (en) * 2009-02-15 2011-06-28 Ford Global Technologies, Llc Combustion control using ion sense feedback and multi-strike spark to manage high dilution and lean AFR
JP2010216351A (ja) * 2009-03-16 2010-09-30 Toyota Motor Corp 車両およびその制御方法
US7934486B1 (en) * 2010-04-02 2011-05-03 Ford Global Technologies, Llc Internal and external LP EGR for boosted engines
US8191514B2 (en) * 2010-04-08 2012-06-05 Ford Global Technologies, Llc Ignition control for reformate engine
US8078384B2 (en) * 2010-06-25 2011-12-13 Ford Global Technologies, Llc Engine control using spark restrike/multi-strike
US8627804B2 (en) * 2010-11-16 2014-01-14 GM Global Technology Operations LLC Transient control strategy in spark-assisted HCCI combustion mode
US20120330534A1 (en) * 2011-06-27 2012-12-27 Cleeves James M Enhanced efficiency and pollutant control by multi-variable engine operation control
US8904787B2 (en) * 2011-09-21 2014-12-09 Ford Global Technologies, Llc Fixed rate EGR system
WO2014103555A1 (ja) * 2012-12-26 2014-07-03 日産自動車株式会社 内燃機関の点火装置および点火方法
WO2014112197A1 (ja) * 2013-01-18 2014-07-24 日産自動車株式会社 内燃機関の点火装置および点火方法
JP2015017540A (ja) * 2013-07-10 2015-01-29 日立オートモティブシステムズ株式会社 内燃機関用点火装置、及びそれに用いられる点火制御装置、並びに放電ユニット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164072A (ja) * 1985-01-11 1986-07-24 Hitachi Ltd 重ね放電形点火装置
JP2554568B2 (ja) 1991-12-13 1996-11-13 阪神エレクトリック株式会社 内燃機関用の低圧配電重ね放電式点火装置
JPH10184510A (ja) * 1996-12-27 1998-07-14 Kokusan Denki Co Ltd 内燃機関点火装置
JP2000240542A (ja) * 1999-02-18 2000-09-05 Hanshin Electric Co Ltd 内燃機関用の重ね放電式点火装置
JP2008121462A (ja) * 2006-11-09 2008-05-29 Nissan Motor Co Ltd 内燃機関の点火装置
JP2011080381A (ja) * 2009-10-05 2011-04-21 Hanshin Electric Co Ltd 内燃機関用点火装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007445A (ja) * 2017-06-27 2019-01-17 三菱自動車工業株式会社 エンジンの制御装置
JP7013691B2 (ja) 2017-06-27 2022-02-01 三菱自動車工業株式会社 エンジンの制御装置
JP2020165352A (ja) * 2019-03-28 2020-10-08 ダイハツ工業株式会社 内燃機関の制御装置
JP7341601B2 (ja) 2019-03-28 2023-09-11 ダイハツ工業株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP5843047B2 (ja) 2016-01-13
CN105164391A (zh) 2015-12-16
US9951742B2 (en) 2018-04-24
EP2977592A4 (en) 2016-05-04
MX2015013099A (es) 2016-01-22
JPWO2014147909A1 (ja) 2017-02-16
EP2977592B1 (en) 2017-10-25
RU2614310C1 (ru) 2017-03-24
EP2977592A1 (en) 2016-01-27
MX343177B (es) 2016-10-27
CN105164391B (zh) 2017-03-08
BR112015024230A2 (pt) 2017-07-18
US20160341172A1 (en) 2016-11-24
BR112015024230B1 (pt) 2021-07-13

Similar Documents

Publication Publication Date Title
JP5765493B2 (ja) 内燃機関の点火装置および点火方法
JP5843047B2 (ja) 内燃機関の点火制御装置および点火制御方法
JP6350972B2 (ja) エンジンの制御装置
JP2008303841A (ja) 内燃機関及び内燃機関の制御装置
JP6081248B2 (ja) 内燃機関の点火制御装置
JP5995613B2 (ja) 内燃機関の制御装置
JP2017133395A (ja) エンジンの吸気温度制御装置
JP6314614B2 (ja) 筒内噴射式内燃機関の噴射制御装置
JP2008025405A (ja) 内燃機関の制御装置
JP6476102B2 (ja) 内燃機関の制御装置
WO2015122003A1 (ja) 内燃機関の点火装置および点火方法
JP4894846B2 (ja) 内燃機関の放電異常検出装置及び点火制御システム
JP6192404B2 (ja) 火花点火式内燃機関の制御装置
JP6622513B2 (ja) 点火装置
JP6411951B2 (ja) 内燃機関の制御装置
JP7251900B2 (ja) 内燃機関の制御装置
JP6426365B2 (ja) 内燃機関の点火制御装置
JP2010144592A (ja) 内燃機関の点火制御装置,制御方法および点火装置
JP7341601B2 (ja) 内燃機関の制御装置
JP2011058376A (ja) 内燃機関のグロープラグ制御方法および内燃機関
JP6252324B2 (ja) 内燃機関の制御装置
JP6494190B2 (ja) 内燃機関の制御装置
JP2016114039A (ja) 内燃機関の点火装置
JP2022131765A (ja) 点火制御装置
JP2016183659A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074816.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506556

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201505706

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/013099

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14777857

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013878757

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013878757

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015145057

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024230

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024230

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150921