WO2014141488A1 - 現像剤補給容器 - Google Patents

現像剤補給容器 Download PDF

Info

Publication number
WO2014141488A1
WO2014141488A1 PCT/JP2013/060407 JP2013060407W WO2014141488A1 WO 2014141488 A1 WO2014141488 A1 WO 2014141488A1 JP 2013060407 W JP2013060407 W JP 2013060407W WO 2014141488 A1 WO2014141488 A1 WO 2014141488A1
Authority
WO
WIPO (PCT)
Prior art keywords
developer
supply container
developer supply
drive
rotational
Prior art date
Application number
PCT/JP2013/060407
Other languages
English (en)
French (fr)
Inventor
崇 江野口
学 神羽
礼知 沖野
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201380075685.XA priority Critical patent/CN105122146B/zh
Publication of WO2014141488A1 publication Critical patent/WO2014141488A1/ja
Priority to US14/850,004 priority patent/US9348261B2/en
Priority to US15/098,528 priority patent/US20160223981A1/en
Priority to US15/685,412 priority patent/US10295956B2/en
Priority to US16/407,454 priority patent/US10747167B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/16Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements
    • G03G21/1642Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements for connecting the different parts of the apparatus
    • G03G21/1647Mechanical connection means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0865Arrangements for supplying new developer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0865Arrangements for supplying new developer
    • G03G15/0867Arrangements for supplying new developer cylindrical developer cartridges, e.g. toner bottles for the developer replenishing opening
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0865Arrangements for supplying new developer
    • G03G15/0867Arrangements for supplying new developer cylindrical developer cartridges, e.g. toner bottles for the developer replenishing opening
    • G03G15/087Developer cartridges having a longitudinal rotational axis, around which at least one part is rotated when mounting or using the cartridge
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0877Arrangements for metering and dispensing developer from a developer cartridge into the development unit
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0865Arrangements for supplying new developer
    • G03G15/0867Arrangements for supplying new developer cylindrical developer cartridges, e.g. toner bottles for the developer replenishing opening
    • G03G15/087Developer cartridges having a longitudinal rotational axis, around which at least one part is rotated when mounting or using the cartridge
    • G03G15/0872Developer cartridges having a longitudinal rotational axis, around which at least one part is rotated when mounting or using the cartridge the developer cartridges being generally horizontally mounted parallel to its longitudinal rotational axis

Definitions

  • the present invention relates to an image forming apparatus using an electrophotographic method or an electrostatic recording method, and a developer supply container used therefor, and more particularly, to an image forming apparatus such as a copying machine, a printer, and a FAX, and a developing used therefor.
  • the present invention relates to an agent supply container.
  • a fine powder developer is used in an electrophotographic image forming apparatus such as a copying machine.
  • Such an image forming apparatus is configured to replenish the developer that is consumed in the image formation from the developer replenishing container.
  • Various methods have been proposed and put to practical use for developer replenishment, and a method is often employed in which the developer is replenished by driving the developer receiving device and rotating the developer replenishment container.
  • a method of detecting the phase (rotation speed) of the developer supply container there is a method of detecting the phase (rotation speed) of the developer supply container.
  • a method for detecting the phase (number of rotations) of such a conventional developer supply container for example, there is one disclosed in JP-A-2005-148238.
  • the developer supply container rotates by applying a driving force from the image forming apparatus main body to a drive receiving portion provided on the outer periphery of the substantially cylindrical developer supply container.
  • An encoder provided on the image forming apparatus main body side is configured to detect the rotational speed.
  • a roller is provided on the developer receiving apparatus side in order to reduce friction during rotation of the developer supply container. By rotating this roller in contact with the substantially cylindrical developer supply container, the developer supply container can rotate smoothly. Accordingly, the developer supply is appropriately performed, and the rotation speed of the developer supply container during that time can be detected.
  • the drive receiving portion and the roller of the substantially cylindrical developer supply container are located in a position away from each other in the thrust direction of the developer supply container.
  • a spiral groove for transporting the developer is formed at a position in contact with the roller.
  • an object of the present invention is to provide a developer supply container that reduces the rotational shake of the developer supply container at the time of developer supply and reduces the influence on the phase (rotation) detection of the developer supply container. .
  • the present invention provides a storage unit that stores a developer, a discharge port that discharges the developer stored in the storage unit from a developer supply container, and a developer that transports the developer in the storage unit toward the discharge port.
  • the rotatable driving receiving section that receives the rotational driving force
  • the drive transmitting section that transmits the rotational driving force received by the driving receiving section to the conveying section, and the rotation of the driving receiving section.
  • the developer supply container detachably attached to the developer receiving device, the drive receiving portion and the detected portion, and a contact surface that contacts a rotating member provided in the developer receiving device.
  • the developer supply container is provided integrally with the contact surface.
  • the influence of the driving force received by the drive receiving part on the detected part can be reduced.
  • FIG. 1 is a schematic sectional view of an image forming apparatus main body (copier).
  • FIG. 2 is a perspective view of the image forming apparatus main body.
  • FIG. 3 is a perspective view showing a state in which the developer supply container replacement cover of the image forming apparatus main body is opened and the developer supply container is attached to the image forming apparatus main body.
  • FIG. 4 is a partial perspective view of the developer receiving apparatus according to the first embodiment.
  • FIG. 5 is a partial perspective view showing a state in which the developer supply container is inserted into the developer receiving apparatus in the first embodiment.
  • FIG. 6 is a cross-sectional perspective view of the developer supply container of the first embodiment.
  • FIG. 7 is a perspective view of the container body of the first embodiment.
  • FIG. 8 is a perspective view of the flange portion of the first embodiment.
  • FIG. 9 is the flange part of Example 1, (a) front view, (b) EE sectional drawing, (c) right side view, (d) FF side view.
  • 10A is a front view and FIG. 10B is a perspective view of the shutter according to the first embodiment.
  • FIG. 11 is a front view of the pump unit of the first embodiment.
  • FIG. 12 is a perspective view of the reciprocating member according to the first embodiment.
  • FIG. 13 is a perspective view of the cover of the first embodiment.
  • FIGS. 14A to 14C are partial cross-sectional views showing step by step how the developer supply container in the first embodiment is inserted into the developer receiving apparatus.
  • FIG. 15 is a block diagram illustrating a functional configuration of the control device according to the first and second embodiments.
  • FIG. 16 is a flowchart for explaining the flow of the replenishment operation in the first and second embodiments.
  • FIG. 17 is a partially enlarged view of the developer supply container of Comparative Example 1.
  • FIG. 18 is a partially enlarged view of the developer supply container of the first modification.
  • FIG. 19 is a partially enlarged view of the developer supply container of Modification 2.
  • FIG. 20 is a partially enlarged view of the developer supply container of Modification 3.
  • FIG. 21 is a partially enlarged view of the developer supply container of the fourth modification.
  • FIG. 22 is a partially enlarged view of the developer supply container of Modification 5.
  • FIG. 23 is a partially enlarged view of the developer supply container of the first embodiment.
  • FIG. 24 is a partially enlarged view of the developer supply container excluding the cover of the first embodiment.
  • FIG. 25 is a cross-sectional perspective view of the developer supply container of the second embodiment.
  • FIG. 26 is a cross-sectional perspective view showing a state in which the developer supply container in Example 2 is inserted into the developer receiving apparatus.
  • FIG. 27 is a partial cross-sectional view showing stepwise how the developer supply container of Example 2 is inserted into the developer receiving apparatus and the sealing member is opened.
  • FIG. 28 is a perspective view of the sealing member of Example 2.
  • FIG. 29 is the (a) front view of the sealing member of Example 2, (b) Left side view, (c) Right side view, (d) Top view, (e) CC sectional drawing.
  • FIG. 30 is a partial perspective view of the developer supply container of the second embodiment.
  • FIG. 31 is a partially enlarged view of the developer supply container of the second embodiment.
  • FIG. 32 is a perspective view of a developer supply container of another embodiment.
  • a developer replenishing system mounted on the image forming apparatus that is, a configuration of a developer receiving apparatus (developer replenishing apparatus) and a developer replenishing container will be described in order.
  • image forming device As an example of an image forming apparatus equipped with a developer receiving device in which a developer supply container (so-called toner cartridge) is detachably mounted (removable), a copying machine (electrophotographic image forming apparatus) adopting an electrophotographic system is used. ) Will be described with reference to FIG. In FIG. In FIG.
  • reference numeral 100 denotes a copying machine main body (hereinafter referred to as “image forming apparatus main body” or “apparatus main body”).
  • image forming apparatus main body or “apparatus main body”.
  • a document 101 is placed on the document glass 102.
  • an electrostatic image is formed by forming an optical image corresponding to the image information of the original on an electrophotographic photosensitive member 104 (hereinafter referred to as “photosensitive drum”) by a plurality of mirrors M and lenses Ln of the optical unit 103. Form an image.
  • This electrostatic latent image is visualized by the developing device 201b using toner as a developer.
  • Reference numerals 105 to 108 denote cassettes for storing recording media (hereinafter also referred to as “sheets”) S.
  • an optimum cassette is selected based on information input by an operator (user) from the operation unit 100a of the copying machine shown in FIG. .
  • the recording medium is not limited to paper, and can be appropriately used and selected, for example, an OHP sheet.
  • one sheet S conveyed by the feeding / separating devices 105A to 108A is conveyed to the registration roller 110 via the conveying unit 109, and the rotation timing of the photosensitive drum 104 and the scanning timing of the optical unit 103 are set.
  • Transport in synchronization.
  • Reference numerals 111 and 112 denote a transfer charger and a separation charger.
  • an image formed by the developer formed on the photosensitive drum 104 is transferred to the sheet S by the transfer charger 111. Then, the sheet S to which the developer image (toner image) is transferred is separated from the photosensitive drum 104 by the separation charger 112. Thereafter, the sheet S conveyed by the conveying unit 113 is fixed on the developer image on the sheet by heat and pressure in the fixing unit 114, and then passes through the discharge reversing unit 115 in the case of single-sided copying. The paper is discharged to the discharge tray 117 by the roller 116. In the case of duplex copying, the sheet S passes through the discharge reversing unit 115 and is once discharged out of the apparatus by the discharge roller 116.
  • the trailing edge of the sheet S passes through the flapper 118, and is controlled by the flapper 118 at the timing when it is still nipped by the discharge roller 116, and is reversely rotated to be conveyed into the apparatus again. . Further, after being conveyed to the registration roller 110 via the re-feed conveyance units 119 and 120, the sheet is discharged to the discharge tray 117 along the same path as in the case of single-sided copying. In the case of multiple copying, the sheet S passes through the discharge reversing unit 115 and is once discharged out of the apparatus by the discharge roller 116.
  • the trailing edge of the sheet S passes through the flapper 118, and is controlled by the flapper 118 at the timing when it is still nipped by the discharge roller 116, and the discharge roller 116 is rotated in the reverse direction, thereby being conveyed again into the apparatus main body 100. Is done. Thereafter, the sheet is conveyed to the registration roller 110 via the re-feed conveyance units 119 and 120, and then discharged to the discharge tray 117 along the same path as in the case of single-sided copying.
  • an image forming process device such as a developing device 201 as a developing unit, a cleaner device 202 as a cleaning unit, and a primary charger 203 as a charging unit around the photosensitive drum 104.
  • the developing device 201 develops, using a developer (toner), an electrostatic latent image formed by exposing the photosensitive drum 104 uniformly charged based on the image information of the document 101 by the optical unit 103.
  • a developer supply container 1 for supplying toner as a developer to the developing device 201 is detachably attached to the apparatus main body 100 by a user.
  • the developing device 201 includes a developer hopper 201a and a developing device 201b as storage means.
  • the developer hopper 201a has a stirring member 201c for stirring the developer replenished from the developer replenishing container 1.
  • the developer stirred by the stirring member 201c is sent to the developing device 201b by the magnet roller 201d.
  • the developing device 201b includes a developing roller 201f and a conveying member 201e.
  • the developer sent from the developer hopper 201a by the magnet roller 201d is sent to the developing roller 201f by the conveying member 201e, and is supplied to the photosensitive drum 104 by the developing roller 201f.
  • the cleaner device 202 is for removing the developer remaining on the photosensitive drum 104.
  • the primary charger 203 is for uniformly charging the surface of the photosensitive drum 104 in order to form a desired electrostatic image on the photosensitive drum 104.
  • the developer supply container 1 is placed on the container cradle 50.
  • the container receiving base 50 is pulled out, and the developer supply container 1 placed on the container receiving base 50 is taken out.
  • the pre-replacement cover 15 is a dedicated cover for attaching / detaching (replacing) the developer supply container 1 and is opened / closed only for attaching / detaching the developer supply container 1.
  • the maintenance of the apparatus main body 100 is performed by opening and closing the front cover 100c.
  • the developer supply container 1 may be directly mounted on the apparatus main body 100 or removed from the apparatus main body 100 without using the container cradle 50.
  • FIG. 4 is a partial perspective view of the developer receiving apparatus 200 according to the first embodiment.
  • the developer receiving device 200 is rotationally driven mainly by a bottle receiving roller 23 that comes into contact with a rotational shake restricting portion 1 ⁇ / b> A ⁇ b> 4 of the developer supply container 1, which will be described later, and a drive receiving portion 1 ⁇ / b> A ⁇ b> 5 of the developer supply container 1.
  • a drive gear 25 for transmitting force (both support portions are omitted) is provided.
  • the developer receiving apparatus 200 includes a phase detection flag 62 and a phase detection flag for detecting the phase (rotation) of the developer supply container 1 by contacting the phase detection unit (detected part) 1A6 of the developer supply container 1.
  • a phase detection sensor 61 for detecting 62 is provided.
  • the phase detection flag 62 is urged vertically downward by an elastic member (not shown), and can rotate about the rotation axis Q (FIG. 17).
  • the developer receiving device 200 includes a developer hopper 201a that is discharged from the developer supply container 1 and temporarily stores the developer, a developer hopper communicating portion 200h that communicates with the developer hopper 201a, and a developer hopper.
  • a screw member 27 is provided for conveying the developer in 201a to the developing device 201 (see FIG.
  • the developer receiving device 200 develops the cover abutting portion 200g that abuts the developer receiving device abutting portion 53c of the cover 53 (FIG. 13A) of the developer replenishing container 1 and the developer replenishing container 1.
  • the insertion guide 200e restricts displacement in the arrow T direction by contacting the guide groove 53a of the cover 53, and the stopper portion 52b (52c) of the shutter 52 (FIG. 10A).
  • a mating shutter stopper portion 200a (200b) is provided.
  • FIG. 6 is a cross-sectional perspective view of the developer supply container 1. As shown in FIG.
  • the developer supply container 1 mainly includes a container body 1 ⁇ / b> A, a flange portion 41, a shutter 52, a pump portion 54, a reciprocating member 51, and a cover 53.
  • the developer supply container 1 supplies the developer in the developer supply container 1 to the developer hopper portion 201a (see FIG. 5) by developer supply means described later.
  • developer supply means described later.
  • each element which comprises the developer supply container 1 is demonstrated in detail.
  • FIG. 7 is a perspective view of the container body 1A.
  • the container main body 1A includes a developer accommodating portion 1A2 that accommodates the developer therein, and the container main body 1A rotates in the R direction with respect to the axis P so that the developer in the developer accommodating portion 1A2 is moved in the direction of arrow A (FIG. 6) Helical projections (developer transport unit) 1A1 transported to 6).
  • the container main body 1A detects the phase of the drive receiving portion 1A5 that receives the rotational driving force from the driving gear 25 of the developer receiving device 200 and the storage portion 1A2 that rotates by the rotational driving force input to the drive receiving portion 1A5.
  • Phase detector 1A6 Phase detector 1A6.
  • the container main body 1A has a rotational shake restricting portion 1A4 for suppressing the rotational shake of the phase detecting portion 1A6 and the drive receiving portion 1A5 when the accommodating portion 1A2 rotates. Furthermore, the container body 1A of the first embodiment is different from the container of the second embodiment described later in that a cam groove 1A3 is provided. In the first embodiment, the rotational shake restricting portion 1A4, the drive receiving portion 1A5, and the phase detecting portion 1A6 are integrally formed with the container main body 1A.
  • FIG. 6B shows the configuration of the terms.
  • one resin material made of plastic or the like (drive receiving component in the present embodiment) is provided with the rotational shake restricting portion 1A4 for suppressing the rotational shake of the phase detecting portion 1A6 and the drive receiving portion 1A5. .
  • the drive transmission portion 1A7 provided at the end of the drive receiving component is connected to the developer accommodating portion 1A2.
  • the drive transmission unit 1A7 and the developer storage unit 1A2 rotate together to transmit the driving force received by the drive receiving unit 1A5 to the developer storage unit 1A2.
  • the conveyance unit for conveying the toner can be rotated.
  • the configuration FIG.
  • the present invention is not limited to this.
  • the cam groove 1A3, the rotational shake restricting portion 1A4, the drive receiving portion 1A5, and the phase detecting portion 1A6 may be integrally formed and may be integrally attached to the container body 1A.
  • the accommodating portion 1A2 is a combination of not only the container main body 1A but also the internal space of the container main body 1A, a flange portion 41 (see FIG. 8) and a pump portion 54 (see FIG. 11) described later.
  • the shape of the phase detector 1A6 is concave with respect to the rotational shake restricting portion 1A4.
  • the shape of the phase detector 1A6 may be convex with respect to the rotational shake restricting portion 1A4. Absent.
  • the roundness of the rotational shake restricting portion 1A4 is set to 0.05. The closer the rotational run-out restricting portion 1A4 is to a perfect circle, the higher the effect of preventing radial play can be expected.
  • the rotational shake restricting portion has a cylindrical shape.
  • the rotational shake restricting portion 1A4 and the bottle receiving roller (rotating member) 23 having a shape close to a perfect circle. makes it possible to suppress the rotational shake of both the phase detector 1A6 and the drive receiver 1A5.
  • the rotational shake restricting portion functions as a contact surface that contacts the rotating member. As a result, improvement in accuracy of both drive transmission and phase detection can be expected.
  • the drive receiving component has a configuration in which the drive receiving portion 1A5 and the phase detection portion 1A6 are arranged adjacent to the rotational shake restricting portion 1A4.
  • the rotational shake of both the phase detection part 1A6 and the drive receiving part 1A5 can be suppressed more.
  • FIG. 6 is a partial cross-sectional perspective view of the developer supply container 1 according to the first embodiment.
  • the baffle member 40 of the first embodiment is different from the second embodiment described later in the point where the developer is finally conveyed. Specifically, the developer is finally different from the second embodiment in that the developer is conveyed to the storage portion 41f (FIG. 9B) so as to slide down the inclined protrusion 40a as the baffle member 40 rotates.
  • FIG. 6 is a cross-sectional perspective view of the developer supply container 1. As shown in FIG. 6, the flange unit portion 60 includes a flange portion 41, a reciprocating member 51, a pump portion 54, a cover 53, and a shutter 52.
  • the flange unit 60 is attached to the container main body 1A so as to be rotatable relative to the container main body 1A.
  • the part 60 is held in a state where the rotation around the axis P is restricted.
  • the pump portion 54 is screwed to one end of the flange portion 41, and the container main body 1A is joined to the other end via a seal member (not shown).
  • the reciprocating member 51 is disposed so as to sandwich the pump portion 54 in the thrust direction, and the engaging protrusion 51b (FIG. 12A) provided on the reciprocating member 51 is the cam groove 1A3 (FIG. 7) of the container body 1A. It is inserted in.
  • FIG. 8A shows perspective views of the flange portion 41.
  • FIG. 9A is a front view of the flange portion 41
  • FIG. 9B is an EE sectional view
  • FIG. 9C is a right side view
  • FIG. 9D is an FF sectional view. .
  • the flange portion 41 is conveyed from a pump joint portion 41d to which the pump portion 54 (FIG. 11) is screwed, a container body joint portion 41e to which the container body 1A is joined, and the container body 1A and the baffle member 40 (FIG. 6).
  • a storage portion 41f (FIG. 9B) is provided for storing the developed developer.
  • the flange portion 41 includes a shutter push-out rib 41k (FIG. 9D) that pushes the shutter 52 in the direction of arrow B (FIG. 14) when the developer supply container 1 is replaced, and a shutter insertion portion 41c. Further, as shown in FIG.
  • the flange portion 41 includes an opening seal 41g in which a circular seal hole 41j for discharging the developer in the storage portion 41f described above is formed.
  • the opening seal 41g is affixed to the lower surface of the flange portion 41 with double-sided tape, and is sandwiched between the shutter 52 and the flange portion 41, which will be described later, in a compressed state.
  • the flange portion 41 is elastically deformed by a support portion 52d (FIG. 10A) of the shutter 52, which will be described later, as the developer supply container 1 is attached to the developer receiving device 200 or taken out from the developer receiving device 200.
  • the regulating rib 41i is provided with a regulating rib 41i (FIG. 9D).
  • the regulating rib 41i protrudes vertically upward from the insertion surface of the shutter insertion portion 41c (FIG. 9D), and the developer supply container 1 Further, the flange portion 41 is provided with a protection portion 41h (FIG. 8B) that protects the shutter 52 from damage caused by physical distribution and erroneous operation by the user. (Shutter) Next, the shutter 52 will be described with reference to FIG. 10A is a front view of the shutter 52, and FIG. 10B is a perspective view.
  • the shutter 52 is provided so as to be relatively movable with respect to the developer supply container 1 (FIG. 6), and the discharge port 1a provided in the shutter 52 is opened and closed as the developer supply container 1 is attached and detached.
  • the shutter 52 is sealed with a developer that prevents leakage of the developer from the seal hole 41j (FIG. 8B) of the flange portion 41.
  • the sliding surface 52i that slides on the shutter insertion portion 41c (FIG. 9D) of the flange portion 41 is provided on the back side of the portion 52a and the developer sealing portion 52a.
  • the shutter 52 is provided with the shutter stoppers 200a and 200b (of the developer receiving device 200) in accordance with the attaching / detaching operation of the developer supply container 1 so that the developer supply container 1 can move relative to the shutter 52.
  • the stopper portions 52b and 52c are held in FIG.
  • the shutter 52 has a support portion 52d that supports the stopper portions 52b and 52c so that they can be displaced.
  • the shutter 52 extends from the developer sealing portion 52a and is elastically deformable.
  • the developer sealing portion 52a has a lock protrusion 52e. Is provided.
  • the developer is unnecessarily discharged as the shutter 52 is opened and closed when the developer supply container 1 is attached to and detached from the developer receiving apparatus 200, and the periphery thereof is contaminated with the developer.
  • the diameter of the discharge port 1a is set to about ⁇ 2 mm.
  • the seal hole 41j and the discharge port 1a are provided on the lower surface side of the developer supply container 1, that is, on the lower surface side of the flange portion 41 (FIG. 8B).
  • Example 1 shows that the container 1 is provided on the upstream side (in the direction of arrow B in FIG. 6) or the downstream side (in the direction of arrow A in FIG. 6) in the direction of insertion into the developer receiving apparatus 200. Connection configuration can be applied. (Pump part) Next, the pump unit 54 will be described with reference to FIG. FIG. 11 is a front view of the pump unit 54.
  • the pump unit 54 operates so as to periodically change the internal pressure of the developer accommodating unit 1A2 (FIG. 7) by the rotational driving force received by the drive receiving unit 1A5 (FIG. 7) from the drive gear 25 (FIG. 5). It is.
  • a joint portion 54b is provided so as to be joinable with the flange portion 41 (FIG. 8A).
  • a configuration in which a screw is formed as the joint portion 54b is illustrated.
  • a reciprocating member engaging portion 54 c that engages with the reciprocating member 51 to displace in synchronization with a reciprocating member 51 described later is provided on the other end side of the pump portion 54.
  • the pump portion 54 in order to stably discharge the developer from the small discharge port 1a (FIG. 10A), the pump portion 54 is provided in the developer supply container 1 (FIG. 6).
  • the pump unit 54 is a volume change type pump whose volume changes.
  • the pressure in the developer supply container 1 is changed by the expansion / contraction operation of the pump unit 54, and the developer is discharged using the pressure.
  • the pump portion 54 is provided with a bellows-like stretchable portion 54a in which “mountain fold” portions and “valley fold” portions are periodically formed.
  • the stretchable part 54a can be folded or stretched using the fold as a base point.
  • a polypropylene resin (hereinafter abbreviated as PP) is used as the material of the pump portion 54, but the material is not limited to this.
  • PP polypropylene resin
  • any material may be used as long as it is capable of changing the internal pressure of the developer accommodating unit 1A2 (FIG. 7) by exhibiting an expansion / contraction function and changing the volume.
  • ABS acrylonitrile / butadiene / styrene copolymer
  • polystyrene polyester, polyethylene or the like may be formed with a thin wall. It is also possible to use rubber or other stretchable materials.
  • the role of the pump portion 54 is to change the internal pressure of the developer accommodating portion 1A2 (FIG.
  • FIG. 12A and 12B are perspective views of the reciprocating member 51.
  • the reciprocating member 51 includes a pump portion engaging portion 51 a that engages with a reciprocating member engaging portion 54 c (FIG. 11) provided in the pump portion 54 in order to change the volume of the pump portion 54 described above.
  • the reciprocating member 51 includes an engaging protrusion 51b that is fitted into the cam groove 1A3 (FIG. 7) when assembled.
  • the engaging protrusion 51b is provided at the tip of an arm 51c extending from the vicinity of the pump engaging portion 51a.
  • the reciprocating member 51 is slidably held only in the directions of arrows A and B (FIG. 6) by a reciprocating member holding portion 53b (FIG. 13B) of the cover 53 described later. Therefore, when the drive receiving portion 1A5 (FIG. 7) receives a rotational driving force from the drive gear 25 (FIG. 5) and the container main body 1A rotates, the cam groove 1A3 also rotates in synchronization with the container main body 1A, and the cam groove 1A3 ( The reciprocating member 51 reciprocates in the directions of arrows A and B by the cam action of the engaging protrusion 51b fitted in FIG. 7 and the action of the reciprocating member holding portion 53b (FIG. 14B) of the cover 53 (FIG. 6). ).
  • the pump unit 54 expands and contracts. That is, the reciprocating member 51 converts the rotational driving force input to the drive receiving portion 1A5 together with the cam groove 1A3 into a force for operating the pump portion 54.
  • the cover 53 will be described with reference to FIG. 13A and 13B show perspective views of the cover 53.
  • FIG. 13A and 13B show perspective views of the cover 53.
  • the cover 53 is used as shown in FIG. 6 for the purpose of preventing the user from touching the developer supply container 1 to prevent unexpected injury and protecting the reciprocating member 51 and the pump unit 54.
  • the cover 53 is provided integrally with the flange portion 41 so as to cover the entire flange portion 41, the pump portion 54, and the reciprocating member 51.
  • the cover 53 has a guide groove 53 a that supports insertion of the developer supply container 1 into the developer receiving device 200 by engaging with an insertion guide 200 e (FIG. 4) provided in the developer receiving device 200. Is provided. Further, the cover 53 is provided with a reciprocating member holding portion 53b for restricting the rotational displacement of the reciprocating member 51 with respect to the axis P (FIG. 6). When the developer supply container 1 is inserted into the developer receiving device 200, the developer supply container 1 is attached to the cover 53 by contacting the cover abutting portion 200g (FIG. 5) of the developer receiving device 200. Is provided with a developer receiving device abutting portion 53c.
  • a detailed method for inserting / removing the developer supply container 1 into / from the developer receiving apparatus 200 will be described later.
  • (Developer discharge principle) Next, the developer discharging principle will be described with reference to FIG.
  • a spiral projection 1A1 formed on the container body 1A by rotation of the developer supply container 1 around the axis P (in the direction of arrow R) causes the developer to flow from the upstream side to the downstream side (in the direction of arrow A) of the container body 1A. Transport to. Then, the developer conveyed by the spiral protrusion 1A1 eventually reaches the baffle member 40.
  • the developer scraped by the baffle member 40 that rotates integrally with the developer supply container 1 slides down on the surface of the baffle member 40 and is conveyed to the storage portion 41f of the flange portion 41 by the inclined protrusion 40a.
  • the developer inside the developer supply container 1 is sequentially stirred and transported and stored in the storage portion 41f (FIG. 9B) of the flange portion 41.
  • the pump portion 54 performs an expansion / contraction motion. More specifically, when the pump portion 54 is contracted, the inside of the developer supply container 1 is in a pressurized state, and the developer stored in the storage portion 41f (FIG.
  • FIG. 14A shows a state in the middle of inserting the developer supply container 1 into the developer receiving apparatus 200.
  • FIG. 14B the insertion of the developer supply container 1 further proceeds, and a stopper portion 52b (FIG. 10A) provided at the tip of the shutter 52 and a shutter stopper portion provided in the developer receiving device 200.
  • the state locked to 200a (FIG. 4) is shown.
  • FIG. 14C shows the mounting of the developer supply container 1 by abutting the developer receiving device abutting portion 53c (FIG. 13A) of the developer supply container 1 to the cover abutting portion 200g (FIG. 4). Indicates a completed state.
  • FIG. 14D is a cross-sectional view taken along a line GG in FIG.
  • the flange unit 60 cannot rotate with respect to the axis P (FIG. 5) with respect to the developer receiving device 200. To be held. At this point, the seal hole 41j (FIG. 8B) is sealed by the developer sealing portion 52a (FIG. 10B) of the shutter 52.
  • the shutter 52 is engaged with the shutter stopper portion 200a (FIG. 4) and the stopper portion 52b (FIG. 10A), and the shutter 52 is further moved in the direction of arrow A.
  • the drive motor (FIG. 5) is driven in this state, the rotational driving force is transmitted from the drive gear 25 to the drive receiving portion 1A5, the container body 1A rotates, and the developer is conveyed and discharged. ing. 5 and 14C, the developer supply container 1 is rotatably supported by the contact between the bottle receiving roller 23 provided in the developer receiving apparatus 200 and the rotational shake restricting portion 1A4. It is possible to rotate smoothly even with a slight driving torque.
  • the bottle receiving roller 23 is rotatably provided in the developer receiving device 200. As described above, the developer stored in the developer supply container 1 is sequentially discharged from the discharge port 1a, so that the developer is temporarily stored in the developer hopper 201a (FIG. 14).
  • the replacement of the developer supply container 1 is performed by the user himself, and the procedure is as follows. First, the replacement front cover 15 in the closed state is opened to the position shown in FIG. Next, the user slides the developer supply container 1 in the state of FIG. At this time, the seal hole 41j (FIG. 8 (b)) provided in the flange portion 41 communicates with the discharge port 1a (FIG. 10 (a)) provided in the shutter 52, thereby supplying the developer. Is possible.
  • the shutter push-out rib 41k (FIGS. 9D and 14D) of the flange portion 41 eventually becomes the stopper portion 52b of the shutter 52 (FIG. 10A).
  • FIG. 15 is a block diagram showing the functional configuration of the control device 600
  • FIG. 16 is a flowchart for explaining the flow of the replenishment operation.
  • the phase detection flag 62 is brought into contact with the phase detection unit 1A6 (FIG.
  • the control device 600 controls whether the drive motor 500 is operated or not according to the output of the phase detection sensor 61, thereby quantitatively discharging the developer in the developer supply container 1 into the developer hopper 201a ( Supply).
  • the amount of developer temporarily stored in the developer hopper 201a (the height of the developer surface) is limited. Therefore, a developer sensor 24k (not shown) that detects the amount of developer accommodated in the developer hopper 201a is provided.
  • the control device 600 controls whether the drive motor 500 is activated / deactivated in accordance with the output of the developer sensor 24k, so that a predetermined amount or more of developer is not accommodated in the developer hopper 201a. is doing.
  • the control flow will be described.
  • the developer sensor 24k checks the remaining amount of developer in the developer hopper 201a (S100). When it is determined that the developer storage amount detected by the developer sensor 24k is less than a predetermined value, that is, when the developer sensor 24k does not detect the developer, the drive motor 500 is driven to Replenishment is executed (S101). Next, it is checked whether the phase detection flag 62 has passed the phase detection sensor 61 (S102).
  • the developer replenishment operation can be quantitatively executed by detecting the phase (rotation) of the developer replenishment container 1 and operating / deactivating the developer replenishment operation. Further, by detecting the phase (rotation) of the developer supply container 1, the remaining amount of developer in the developer supply container 1 can be predicted to some extent.
  • a cam groove 1A3 (FIG. 24) is added as compared with the second embodiment described later, and the cam groove 1A3 is preferably arranged on the most downstream side in the container insertion direction. This is because the reciprocating member 51 can be reduced in size by arranging the cam groove 1A3 on the most downstream side in the container insertion direction.
  • 17 is a partially enlarged view of Comparative Example 1
  • FIG. 18 is a partially enlarged view of Modified Example 1 FIG.
  • FIG. 19 is a partially enlarged view of Modified Example 2
  • FIG. 20 is a partially enlarged view of Modified Example 3
  • FIG. FIG. 22 is a partially enlarged view of the fifth modification
  • FIG. 23 is a partially enlarged view of the first embodiment
  • FIG. 24 is a partially enlarged view of the first embodiment with the cover 53 removed.
  • Table 1 shows the results of verifying “replenishment accuracy”, “image quality”, and “rotational drive load” of the developer replenishing container 1 at the time of developer replenishment due to differences in each configuration.
  • the replenishment accuracy of 20% is a replenishment accuracy of the target value ⁇ 20%.
  • the detection accuracy of the phase detection flag 62 and the phase detection sensor 61 is improved by arranging the phase detection unit and the rotation shake regulating unit adjacent to each other and regulating the vibration caused by the rotation shake of the phase detection unit.
  • the phase of the baffle member 40 and the cam groove 1A3 is accurately determined when the toner is discharged, so that the amount of developer stored in the storage portion 41f and the expansion / contraction amount of the pump portion 54 are stabilized, thereby improving the replenishment accuracy. it can.
  • the replenishment accuracy of 30% is a replenishment accuracy of the target value ⁇ 30%.
  • the vibration due to the rotational shake of the phase detection unit can be regulated by the rotational shake regulation unit, and the replenishment accuracy can be improved.
  • the replenishment accuracy of 40% is a replenishment accuracy of target value ⁇ 40%. Since the rotational shake restricting portion is not provided, the replenishment accuracy is inferior compared to the replenishment accuracy of 30% due to the vibration caused by the rotational shake of the phase detector.
  • the drive receiving portion and the rotational shake restricting portion are disposed adjacent to each other, so that the vibration due to the rotational shake of the drive receiving portion can be restricted, and the rotational drive transmission is improved, so that the image quality can be improved.
  • the image quality ⁇ can be controlled by the rotational shake restricting portion to suppress the vibration caused by the rotational shake of the drive receiving portion, and the drive transmission is improved, so that an improvement in the image quality can be expected.
  • the vibration restricting effect is low and the image quality is inferior as compared with ⁇ . Since the image quality ⁇ is not provided with the rotational shake restricting portion, the image quality is inferior to that of ⁇ due to the vibration caused by the rotational shake of the drive receiving portion.
  • the phase detection unit 1A6, the rotation shake regulation unit 1A4, and the drive receiving unit 1A5 provided in the container main body 1A are phase detection flags provided in the developer receiving device 200 when the developer supply container 1 is inserted into the developer receiving device 200.
  • the bottle receiving roller 23 and the drive gear 25 are in contact with or meshing with each other (FIG. 23). Therefore, in consideration of user operability when the developer supply container 1 is inserted into the developer receiving apparatus 200, the outer circumferential shapes of the “phase detection unit”, “rotational run-out restricting unit”, and “drive receiving unit” are containers. An arrangement configuration that gradually increases from the downstream side in the insertion direction is desirable.
  • Rotational drive load ⁇ is the outer diameter of the drive receiving part by arranging the drive receiving part on the most upstream side in the container insertion direction among the “phase detection part”, “rotational run-out restricting part”, and “drive receiving part”. Can be made the largest, the rotational drive load can be minimized.
  • the rotational driving load ⁇ is the second of the “phase detection unit”, “rotational run-out regulating unit”, and “drive receiving unit” arranged from the upstream side in the container insertion direction. Since the outer diameter can be increased second, the rotational driving load of the drive receiving portion can be reduced, but the rotational driving load is increased compared to ⁇ .
  • the rotational drive load ⁇ is the third of the “phase detection unit”, “rotational run-out regulating unit”, and “drive receiving unit” arranged from the upstream side in the container insertion direction. Since the outer diameter is the smallest, the rotational drive load becomes larger compared to ⁇ .
  • the arrangement of the drive receiving portion 1A5, the phase detecting portion 1A6 and the rotation detecting portion 1A4 (without the rotational shake restricting portion 1A4), the driving gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 provided in the container main body 1A The configuration is different from the first embodiment, and other configurations are the same as the first embodiment. Specifically, the phase detection unit 1A6 and the drive receiving unit 1A5 are arranged in this order from the downstream side in the insertion direction of the developer supply container 1 (arrow A direction).
  • the arrangement of the drive receiving portion 1A5, the rotational shake restricting portion 1A4, the phase detecting portion 1A6, the drive gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 provided in the container main body 1A is an embodiment. 1 and other configurations are the same as those of the first embodiment. Specifically, the cam groove 1A3, the drive receiving portion 1A5, the phase detecting portion 1A6, and the rotational shake restricting portion 1A4 are arranged in this order from the downstream side (arrow A direction) of the developer supply container 1 in the insertion direction.
  • the phase detection unit and the rotation shake restricting unit are arranged adjacent to each other, and the vibration due to the rotation shake of the phase detection unit is efficiently regulated, so that the rotation shake restriction unit 1A4 is not provided.
  • the replenishment accuracy can be improved, and the replenishment accuracy is approximately the target value ⁇ 20%.
  • the image quality by controlling the vibration caused by the rotational shake of the drive receiving portion by the rotational shake restricting portion, the drive transmission is improved, and the improvement of the image quality can be expected as compared with the comparative example 1 in which the rotational shake restricting portion 1A4 is not provided. .
  • the drive receiving portion and the rotational shake restricting portion are not disposed adjacent to each other, the vibration restricting effect is low and the image quality is inferior compared with the case where the drive receiving portion and the rotational shake restricting portion are disposed adjacent to each other.
  • the rotational drive load among the “phase detection part (detected part)”, “rotational run-out restricting part (contact part)”, and “drive receiving part”, the drive receiving part is the third from the upstream side in the container insertion direction. Since the outer diameter of the drive receiving portion is minimized by being arranged, the rotational drive load is compared with the case where the drive receiving portion is arranged first or second from the upstream side in the container insertion direction. Will become bigger.
  • Modification 2 A second modification of the first embodiment will be described with reference to FIG.
  • the arrangement of the drive receiving portion 1A5, the rotational shake restricting portion 1A4, the phase detecting portion 1A6, the driving gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 provided in the container main body 1A is an embodiment. 1 and other configurations are the same as those of the first embodiment.
  • the cam groove 1A3, the phase detection unit 1A6, the drive receiving unit 1A5, and the rotational shake restricting unit 1A4 are arranged in this order from the downstream side (arrow A direction) of the developer supply container 1 in the insertion direction.
  • the vibration due to the rotational shake of the phase detector can be restricted by the rotational shake restricting portion, and improvement in replenishment accuracy can be expected as compared with Comparative Example 1 in which the rotational shake restricting portion 1A4 is not provided.
  • the vibration regulating effect is low compared with the case where the phase detection unit and the rotational shake restricting unit are arranged adjacent to each other, and the target value ⁇ The replenishment accuracy is 30%.
  • the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the vibration due to the rotational shake of the drive receiving portion is efficiently restricted, thereby improving the drive transmission and providing the rotational shake restricting portion 1A4.
  • Image quality can be improved as compared with Comparative Example 1 that does not exist.
  • the rotational drive load among the “phase detection part (detected part)”, “rotational run-out restricting part (contact part)”, and “drive receiving part”, the drive receiving part is the second from the upstream side in the container insertion direction. Since the outer diameter of the drive receiving portion can be increased second by being arranged, the rotational driving load of the drive receiving portion can be reduced.
  • the modified example 4 includes an arrangement of the drive receiving portion 1A5, the rotation shake restricting portion 1A4, the phase detecting portion 1A6, the driving gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 provided on the flange portion 41. 1 and other configurations are the same as those of the first embodiment.
  • the cam groove 1A3, the rotation shake restricting portion 1A4, the drive receiving portion 1A5, and the phase detecting portion 1A6 are arranged in this order from the downstream side (arrow A direction) of the developer supply container 1 in the insertion direction.
  • the vibration due to the rotational shake of the phase detector can be restricted by the rotational shake restricting portion, and improvement in replenishment accuracy can be expected as compared with Comparative Example 1 in which the rotational shake restricting portion 1A4 is not provided.
  • the phase detection unit and the rotational shake restricting unit are not arranged adjacent to each other, the vibration regulating effect is low compared with the case where the phase detection unit and the rotational shake restricting unit are arranged adjacent to each other, and the target value ⁇ The replenishment accuracy is 30%.
  • the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the vibration due to the rotational shake of the drive receiving portion is efficiently restricted, thereby improving the drive transmission and providing the rotational shake restricting portion 1A4.
  • Image quality can be improved as compared with Comparative Example 1 that does not exist.
  • the rotational drive load among the “phase detection part (detected part)”, “rotational run-out restricting part (contact part)”, and “drive receiving part”, the drive receiving part is the second from the upstream side in the container insertion direction. Since the outer diameter of the drive receiving portion can be increased second by being arranged, the rotational driving load of the drive receiving portion can be reduced.
  • the cam groove 1A3, the rotation shake restricting portion 1A4, the phase detecting portion 1A6, and the drive receiving portion 1A5 are arranged in this order from the downstream side (arrow A direction) of the developer supply container 1 in the insertion direction.
  • the phase detection unit and the rotation shake restricting unit are arranged adjacent to each other, and the vibration due to the rotation shake of the phase detection unit is efficiently regulated, so that the rotation shake restriction unit 1A4 is not provided.
  • the replenishment accuracy can be improved, and the replenishment accuracy is approximately the target value ⁇ 20%.
  • the vibration due to the rotational shake of the drive receiving portion can be restricted by the rotational shake restricting portion, and an improvement in the image quality can be expected as compared with Comparative Example 1 in which the rotational shake restricting portion 1A4 is not provided.
  • the vibration restricting effect is low and the image quality is inferior compared with the case where the drive receiving portion and the rotational shake restricting portion are disposed adjacent to each other.
  • the drive receiving portion is arranged on the most upstream side in the container insertion direction, so that the outer diameter of the drive receiving portion can be increased by the largest, so that the rotational drive load can be minimized.
  • the phase detection unit and the rotation shake restricting unit are arranged adjacent to each other, and the vibration due to the rotation shake of the phase detection unit is efficiently regulated, so that the rotation shake restriction unit 1A4 is not provided.
  • the improvement in replenishment accuracy can be expected, and the replenishment accuracy is approximately the target value ⁇ 20%.
  • the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the vibration due to the rotational shake of the drive receiving portion is efficiently restricted, thereby improving the drive transmission and providing the rotational shake restricting portion 1A4. Image quality can be improved as compared with Comparative Example 1 that does not exist.
  • the drive receiving part is the third from the upstream side in the container insertion direction. Since the outer diameter of the drive receiving portion is minimized by being arranged, the rotational drive load is compared with the case where the drive receiving portion is arranged first or second from the upstream side in the container insertion direction. Will become bigger. (Example 1) Example 1 will be described with reference to FIGS.
  • the arrangement of the drive receiving portion 1A5, the rotational shake restricting portion 1A4, and the phase detecting portion 1A6 provided in the container main body 1A according to the first embodiment is the cam groove 1A3 and the phase detecting from the downstream side (arrow A direction) of the developer supply container 1
  • the phase detection unit and the rotation shake restricting unit are arranged adjacent to each other, and the vibration due to the rotation shake of the phase detection unit is efficiently regulated, so that the rotation shake restriction unit 1A4 is not provided.
  • the improvement in replenishment accuracy can be expected, and the replenishment accuracy is approximately the target value ⁇ 20%.
  • the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the vibration due to the rotational shake of the drive receiving portion is efficiently restricted, thereby improving the drive transmission and providing the rotational shake restricting portion 1A4.
  • the improvement in image quality can be expected as compared with Comparative Example 1 that does not.
  • the drive receiving portion is arranged on the most upstream side in the container insertion direction, so that the outer diameter of the drive receiving portion can be increased by the largest, so that the rotational drive load can be minimized.
  • drive receiving portion 1A5 “rotational runout” It is possible to arrange the restricting portion 1A4 "and the" phase detecting portion 1A6 "in any way. However, when the three evaluation items of replenishment accuracy, image quality, and rotational driving load are compared, each evaluation item is arranged according to the arrangement configuration of “drive receiving portion 1A5”, “rotational shake restricting portion 1A4”, and “phase detection portion 1A6”. Superiority is determined. In the following, preferred arrangement configurations of “drive receiving portion 1A5”, “rotational shake restricting portion 1A4”, and “phase detection portion 1A6” and the reasons thereof will be described.
  • the outer diameter of the driving receiving portion can be made the largest by arranging the driving receiving portion 1A5 on the most upstream side in the container insertion direction, so that the rotational driving load can be minimized.
  • the replenishment accuracy by arranging the phase detection unit and the rotation shake restricting unit adjacent to each other, it is possible to efficiently regulate the vibration caused by the rotation shake of the phase detection unit, and the phase detection flag 62 and the phase detection sensor 61 Detection accuracy is improved.
  • the replenishment accuracy can be improved as compared with the comparative example 1 in which the rotational shake restricting portion 1A4 is not provided, and the replenishment accuracy is approximately the target value ⁇ 20%.
  • the drive receiving portion and the rotational shake restricting portion adjacent to each other, vibration due to the rotational shake of the drive receiving portion can be efficiently restricted, drive transmission is improved, and the rotational shake restricting portion 1A4.
  • An improvement in image quality can be expected as compared with Comparative Example 1 in which no is provided.
  • the most preferable configuration is the configuration in which the cam groove 1A3, the phase detection unit 1A6, the rotational shake regulating unit 1A4, and the drive receiving unit 1A5 are arranged from the downstream side in the container insertion direction, that is, the configuration of “Example 1”.
  • the rotational shake of the developer supply container at the time of developer supply is restricted by the rotational shake restricting portion, so that the rotational shakes of both the phase detector and the drive receiving portion can be reduced.
  • both drive transmission and phase detection accuracy can be improved.
  • the vibration due to the rotation of the developer supply container can be reduced, the image quality can be improved.
  • the amount of rotation and the rotation stop position of the container body 1A and the baffle member 40 disposed in the container body 1A are controlled by the phase detection result of the phase detector 1A6.
  • the regulating portion 1A4 adjacent to each other, it is possible to easily and accurately control the transport amount and timing of the developer in the container.
  • the present embodiment employs a configuration in which the pump portion 54 that contributes to the developer discharge is operated by the rotation of the container body 1A4. Therefore, accurate detection by the phase detector 1A6 leads to accurate control of the discharge amount from the developer supply container 1. From the above, the arrangement of the phase detection unit 1A6, the rotation shake regulating unit 1A4, and the drive receiving unit 1A5 is particularly effective in the developer supply container having the baffle member 40 and the pump unit 54 shown in the present embodiment.
  • Example 2 will be described.
  • the configuration of the developer supply container 1 is partially different, and accordingly, the configuration of the developer receiving device 200 and the attaching / detaching operation of the developer supply container 1 to the developer receiving device 200 are partially different. Yes.
  • Other configurations are almost the same as those of the first embodiment. Therefore, in the second embodiment, the same reference numerals are used for the same configurations as those in the first embodiment, and the detailed description is omitted.
  • the description of the basic configuration of the image forming apparatus is omitted, and the developer replenishment system mounted on the image forming apparatus, that is, the configuration of the developer receiving apparatus (developer replenishing apparatus) and the developer replenishing container. These will be described in order.
  • FIG. 26 is a cross-sectional perspective view showing a state in the middle of inserting the developer supply container 1 (FIG. 25) in the direction of arrow A into the developer receiving apparatus 200 in the second embodiment.
  • the developer receiving device 200 mainly includes a bottle receiving roller 23 that contacts a rotational shake restricting portion (contact portion) 1A4 of the developer supply container 1 described later, and driving of the developer supply container 1.
  • a driving gear 25 that transmits a rotational driving force to the receiving portion 1A5 is provided.
  • the developer receiving apparatus 200 includes a phase detection flag 62 and a phase detection flag for detecting the phase (rotation) of the developer supply container 1 by contacting the phase detection unit (detected part) 1A6 of the developer supply container 1.
  • a phase detection sensor 61 for detecting 62 is provided.
  • the developer hopper 201a that is discharged from the developer supply container 1 and temporarily stores the developer, and the developer in the developer hopper 201a is conveyed to the developing device 201 (FIG. 1).
  • a screw member 27 is provided.
  • the developer receiving apparatus 200 is provided with a sealing member engaging portion 20 that engages with a sealing member 2 of the developer supply container 1 described later, and a partition wall 200f that communicates with the developer hopper portion 201a.
  • the partition wall 200f is provided with a seal member (not shown) that rotatably supports a part of the developer supply container 1 and seals the developer hopper 201a.
  • the phase detection flag 62 is urged vertically downward by an elastic member (not shown), and can rotate about the rotation axis Q (FIG. 17).
  • FIG. 25 is a partial perspective view of the developer supply container 1 according to the first embodiment.
  • FIG. 26 is a partial perspective view showing a state in which the developer supply container is being inserted into the developer receiving apparatus 200 in the direction of arrow A.
  • the developer supply container 1 mainly includes a container body 1A, a flange portion 41, a baffle member 40, and a sealing member 2.
  • the developer supply container 1 is formed in a substantially cylindrical shape, and a discharge port 1a having a smaller diameter than the cylindrical portion of the container main body 1A protrudes from the center of one end surface of the developer supply container 1.
  • the discharge port 1a is provided with a sealing member 2 that closes the discharge port 1a.
  • the sealing member 2 is used as a developer.
  • the developer supply container 1 has a substantially cylindrical shape, is disposed substantially horizontally on the developer receiving apparatus 200, receives a rotational driving force from the developer receiving apparatus 200, and has an arrow about the axis P. It is configured to rotate in the R direction.
  • a baffle member 40 for conveying the developer is disposed inside the developer supply container 1.
  • the developer supply container 1 rotates, the developer conveyed from the upstream side to the downstream side (in the direction of arrow A) of the developer supply container 1 by the spiral protrusion 1A1 eventually reaches the baffle member 40.
  • One end of the inclined projection 40a is provided so as to be connected to the discharge port 1a, and finally the developer is conveyed to the discharge port 1a so as to slide down the projection 40a as the baffle member 40 rotates.
  • the internal configuration and configuration of the developer supply container 1 are particularly preferable. It is not intended to be limited.
  • the internal configuration of the developer supply container 1 may be a configuration in which a generally well-known spiral protrusion 1A1 is formed as in the first embodiment or other configurations.
  • Container body The container body 1A will be described with reference to FIG. As shown in FIG. 25, the container main body 1A has a developer containing portion 1A2 for containing the developer therein, and the developer in the developer containing portion 1A2 as the container main body 1A rotates in the R direction with respect to the axis P. Is formed of a spiral projection 1A1 that conveys in the direction of arrow A.
  • the flange part 41 is demonstrated using FIG. 25, FIG. As shown in FIG.
  • the flange portion 41 is attached to the container main body 1 ⁇ / b> A, and the flange portion 41 and the container main body 1 ⁇ / b> A rotate integrally in the direction of the arrow R around the rotation axis P.
  • the flange portion 41 is formed in a substantially hollow cylindrical shape, and a cylindrical portion projects from the center of one end surface of the flange portion 41 so that the tip of the cylindrical portion discharges the developer to the developer hopper 201a (FIG. 26). It becomes the discharge port 1a. As shown in FIG.
  • the drive receiving portion (drive input portion) 1A5 that receives the rotational driving force from the developer receiving device 200, the bottle receiving roller 23, and the entire circumference on the outer peripheral side of the other end surface of the flange portion 41
  • a rotational shake restricting portion 1A4 for restricting rotational shake of the developer supply container 1 by abutting and a phase detecting portion 1A6 for detecting the rotational phase are formed integrally with a part of the peripheral surface.
  • the example in which the drive receiving portion 1A5, the rotational shake restricting portion 1A4, and the phase detecting portion 1A6 are integrally formed with the flange portion 41 is shown, but the present invention is not limited to this.
  • the drive receiving portion 1A5, the rotational shake restricting portion 1A4, and the phase detection portion 1A6 may be formed as separate bodies and integrally attached to the flange portion 41.
  • the developer accommodating portion 1A2 is a combination of not only the container main body 1A but also the internal space of the container main body 1A and the flange portion 41.
  • the shape of the phase detector 1A6 is concave with respect to the rotational shake restricting portion 1A4.
  • the shape of the phase detector 1A6 may be convex with respect to the rotational shake restricting portion 1A4. Absent.
  • the developer supply container 1 rotates in the R direction and replenishes the developer (FIG.
  • the roundness of the rotational shake restricting portion 1A4 is set to 0.05.
  • the roundness is set to 0.05.
  • the drive receiving portion 1A5 and the phase detection portion 1A6 are arranged adjacent to the rotational shake restricting portion 1A4. By setting it as such a structure, compared with the structure which has arrange
  • baffle member 40 The baffle member 40 will be described with reference to FIG. As shown in FIG. 25, the baffle member 40 is attached to the container main body 1A, and the baffle member 40 and the container main body 1A rotate integrally around the axis P in the direction of arrow R.
  • the baffle member 40 is provided with a plurality of inclined protrusions 40a inclined on both the front and back surfaces, and one end of the inclined protrusion 40a reaches the discharge port 1a.
  • FIGS. 28A and FIG. 28B are perspective views of the sealing member 2.
  • FIG. 29A is a front view
  • FIG. 29B is a left side view
  • FIG. 29C is a right side view
  • FIG. 29D is a top view
  • FIG. 29E is a cross-sectional view taken along CC.
  • FIG. 30 is a cross-sectional perspective view showing a state where the developer supply container 1 according to the second embodiment is engaged with the sealing member engaging portion 20 of the developer receiving apparatus 200 and the developer is supplied.
  • the sealing member 2 includes a sealing portion 2b that seals the discharge port 1a of the developer supply container 1 so that it can be opened. Further, the sealing part 2b is provided with a seal part 2a set to an appropriate amount larger than the inner diameter of the discharge port 1a.
  • the sealing member 2 includes a plurality of elastic deformation portions 2c.
  • Each of the plurality of elastic deformation portions 2 c of the sealing member 2 is provided with one engagement protrusion 3.
  • the elastic deformation portion 2c can be easily elastically deformed.
  • a release protrusion 4 is provided as a pair with the engagement protrusion 3, and the engagement protrusion 3 and the release protrusion 4 are integrated with each other via an elastic deformation portion 2 c.
  • the locking hole 20 h of the sealing member engaging portion 20 provided in the developer receiving device 200 is configured to lock with the locking surface 3 b of the sealing member 2.
  • the engagement protrusion 3 protrudes outward in the radial direction from the cylindrical surface of the elastic deformation portion 2c.
  • the engaging projection 3 engages the sealing member 2 with the developer receiving device 200 when the developer supply container 1 and the sealing member 2 are separated (the discharge port 1a is changed from the closed state to the open state).
  • the sealing member 2 includes a slit groove 2e for assisting and promoting elastic deformation.
  • the engaging projection 3 is engaged with the sealing member to open and close the discharge port 1a by relatively sliding the developer supply container 1 and the sealing member 2 (in the direction of arrow A).
  • the elastic deformation portion 2c and the locking surface 3b perform a locking function (a retaining function) that is locked with the joint portion 20.
  • the engaging protrusion 3 has a tapered surface 3c so that it can be inserted smoothly. As shown in FIG. 26, when the developer supply container 1 is inserted into the developer receiving apparatus 200 in the direction of arrow A, the engagement between the sealing member engaging portion 20 and the sealing member 2 is eventually started.
  • the taper surface 3c and the engagement protrusion 3 receive a pressing force from the inner surface of the sealing member 2, and the elastic deformation portion 2c is displaced radially inward.
  • the elastic deformation portion 2c returns from the elastically displaced state, and the locking between the sealing member (locking portion) 2 and the developer receiving device (locked portion) 200 is completed.
  • the discharge port 1a is closed by sliding the sealing member 2 in the direction of arrow A in order to relatively separate the sealing member 2 and the developer supply container 1 from each other. To the open state, and the developer can be discharged.
  • Example 2 the sealing member 2 is moved forward in the state where the flange portion 41 fixed to the container main body 1A is engaged with the developer receiving device 200 to restrict the movement in the sliding direction (FIG. 30, direction A). ), The discharge port 1a is opened and sealed by retreating (direction B in FIG. 30).
  • the container body 1A is moved forward (direction A in FIG. 30) and moved backward (direction B in FIG. 30).
  • the structure which opens and seals the discharge port 1a may be used.
  • Release protrusion Next, the release protrusion 4 provided in a pair with the engagement protrusion 3 will be described with reference to FIGS.
  • the release protrusion 4 is a protrusion for releasing the locking state of the sealing member 2 engaged with the sealing member engaging portion 20 when the developer supply container 1 is replaced. Then, the old developer supply container 1 is taken out and replaced with a new developer supply container 1.
  • the release protrusion 4 is elastically deformed radially inward by the release protrusion 4 being pressed by the slide operation (direction B in FIG. 30) of the release member 21 of the developer receiving device 200, It plays the role of releasing the locked state of the mating protrusion 3 and the sealing member engaging portion 20.
  • the engagement protrusion 3 and the release protrusion 4 are provided as a pair at positions divided into four in the circumferential direction.
  • the flange locking portion 5 includes a protruding portion 5b protruding outward in the radial direction.
  • This protrusion 5b has a snap-fit structure as shown in FIG. 28 (b), and is engaged with the step surface 41b (FIG. 30) of the inner wall 1b forming the discharge port described above to be separated from the sealing member 2. Plays a role in regulating.
  • the flange locking portion 5 has a snap-fit structure, when the flange locking portion 5 is inserted into the flange portion 41 (in the direction of arrow B in FIG. 30), the flange locking portion 5 can be easily moved in the radial direction. Since it is inserted while bending inward, it can be inserted smoothly and is not easily removed. What is important here is that the configuration of the protrusion 5b and the flange locking portion 5 provided on the flange locking portion 5 in this way has a snap-fit structure. The advantage of the snap fit is that even a slight step surface 41b can exert a very strong locking force in the thrust direction (direction of FIG. 30A).
  • the sealing member 2 and the flange portion 41 can be formed by forming a slight step surface 41b within the thickness range.
  • the locking force required for locking can be realized by the snap-fit structure.
  • the sealing member 2 as described above is preferably manufactured by injection molding a resin such as plastic, but other materials and manufacturing methods may be arbitrarily divided and joined. Moreover, since the function which press-fits to the discharge port 1a and seals this is requested
  • low density polyethylene, polypropylene, linear polyamide such as nylon, high density polyethylene, polyester, ABS (acrylonitrile butadiene styrene copolymer), HIPS (impact polystyrene), etc. can be preferably used.
  • a relatively soft material such as an elastomer and the sealing member 2 as a resin material as described above.
  • Such a configuration is more preferable because the seal portion is a soft elastomer, so that the adhesion is improved and a better sealing property can be obtained, and the force when the sealing member 2 is opened can be reduced.
  • the sealing member 2 main body is molded in two colors using ABS resin and only the seal portion 2a as an elastomer is shown.
  • the developer receiving apparatus 200 includes a sealing member engaging portion 20 that is connected to the developer supply container 1 and opens and closes the sealing member 2.
  • the sealing member engaging portion 20 is rotatably supported by a bearing (not shown) or the like, and is configured to slide in the arrow A direction or the arrow B direction by a driving mechanism (not shown) provided in the developer receiving apparatus 200. Yes.
  • FIG. 27A shows a state where the developer supply container 1 is being inserted into the developer receiving apparatus 200 in the direction of arrow A. At this time, the discharge port 1a (see FIG. 30) is still sealed by the sealing member 2.
  • FIG. 27B the insertion of the developer supply container 1 further proceeds in the direction of arrow A, and the engagement protrusion 3 (FIG. 28B) provided on the sealing member 2 is formed on the sealing member engaging portion 20.
  • the locked state is shown. Since the locking method of the engaging protrusion 3 and the sealing member engaging portion 20 has been described above, it is omitted here.
  • the sealing member 2 has a locking surface 3b (FIG.
  • FIG. 27 (c) shows that after the sealing member 2 and the sealing member engaging portion 20 are engaged, the sealing member 2 is relatively separated from the flange portion 41 (FIG. 30) and the discharge port 1a (FIG. 30). Is opened, and a state where the developer can be replenished is shown.
  • the rotational driving force is transmitted from the drive gear 25 to the drive receiving portion 1A5, and the developer supply container 1 rotates to convey and discharge the developer. It has become.
  • the sealing member 2 is configured to idle with respect to the flange portion 41.
  • the developer supply container 1 is supported by the bottle receiving roller 23 provided in the developer receiving apparatus 200 and the rotation shake restricting portion 1A4 so as to be rotatable. It can rotate smoothly even with torque.
  • the bottle receiving roller 23 is rotatably provided in the developer receiving device 200. As described above, the developer stored in the developer supply container 1 is sequentially discharged from the discharge port 1a (FIG. 30), so that the developer is temporarily stored in the developer hopper 201a (FIG. 27).
  • the replacement front cover 15 in the closed state is opened to the position shown in FIG.
  • the sealing member engaging portion 20 is slid in the direction of arrow B (FIG. 27) under the control of the developer receiving apparatus 200, and the state shown in FIG.
  • the sealing member 2 located in is slid in the direction of arrow B (FIG. 27).
  • the sealing member 2 that has been in a state of opening the discharge port 1a is press-fitted into the discharge port 1a, and the discharge port 1a is closed, whereby the state shown in FIG. 27B is obtained.
  • the sealing member 2 maintains the locked state with the sealing member engaging portion 20.
  • the release member 21 (FIG.
  • FIG. 31 shows a partially enlarged view of the second embodiment.
  • Table 2 shows the result of verifying “replenishment accuracy”, “image quality”, and “rotational driving load” of the developer replenishment container 1 at the time of replenishment of developer due to the difference in each configuration.
  • the meaning of the numerical value and symbol in Table 2 is as follows.
  • the replenishment accuracy of 20% is a replenishment accuracy of the target value ⁇ 20%.
  • the detection accuracy of the phase detection flag 62 and the phase detection sensor 61 is improved by arranging the phase detection unit and the rotation shake regulating unit adjacent to each other and regulating the vibration caused by the rotation shake of the phase detection unit.
  • the replenishment accuracy of 30% is a replenishment accuracy of the target value ⁇ 30%.
  • the vibration due to the rotational shake of the phase detection unit can be regulated by the rotational shake regulation unit, and the replenishment accuracy can be improved.
  • the replenishment accuracy of 40% is a replenishment accuracy of target value ⁇ 40%. Since the rotational shake restricting portion is not provided, the replenishment accuracy is inferior compared to the replenishment accuracy of 30% due to the vibration caused by the rotational shake of the phase detector.
  • the drive receiving portion and the rotational shake restricting portion are disposed adjacent to each other, so that the vibration due to the rotational shake of the drive receiving portion can be restricted and the drive transmission is improved, so that the image quality can be improved.
  • the image quality ⁇ can be controlled by the rotational shake restricting portion to suppress the vibration caused by the rotational shake of the drive receiving portion, and the rotational drive transmission is improved, so that the improvement of the image quality can be expected.
  • the vibration restricting effect is low and the image quality is inferior as compared with ⁇ . Since the image quality ⁇ is not provided with the rotational shake restricting portion, the image quality is inferior to that of ⁇ due to the vibration caused by the rotational shake of the drive receiving portion.
  • phase detection unit 1A6, the rotation shake regulating unit 1A4, and the drive receiving unit 1A5 provided on the flange portion 41 are phase detection flags provided on the developer receiving device 200 when the developer supply container 1 is inserted into the developer receiving device 200.
  • the bottle receiving roller 23 and the drive gear 25 are in contact with or meshing with each other (FIG. 31). Therefore, in consideration of user operability when the developer supply container 1 is inserted into the developer receiving apparatus 200, “phase detection portion (detected portion)”, “rotational shake restricting portion (contact portion)”, “ It is desirable that the circumferential shape of the “drive receiving portion” be gradually increased from the downstream side in the container insertion direction.
  • Rotational drive load ⁇ is the outer diameter of the drive receiving part by arranging the drive receiving part on the most upstream side in the container insertion direction among the “phase detection part”, “rotational run-out restricting part”, and “drive receiving part”. Can be made the largest, the rotational drive load can be minimized.
  • the rotational driving load ⁇ is the second of the “phase detection unit”, “rotational run-out regulating unit”, and “drive receiving unit” arranged from the upstream side in the container insertion direction. Since the outer diameter can be increased second, the rotational driving load of the drive receiving portion can be reduced, but the rotational driving load is increased compared to ⁇ .
  • the rotational drive load ⁇ is the third of the “phase detection unit”, “rotational run-out regulating unit”, and “drive receiving unit” arranged from the upstream side in the container insertion direction. Since the outer diameter is the smallest, the rotational drive load becomes larger compared to ⁇ . (Comparative Example 2) Comparative example 2 will be described (not shown).
  • the drive receiving portion 1A5, the phase detecting portion 1A6 and the rotation detecting portion 1A4 (without the rotation shake restricting portion 1A4) provided on the flange portion 41, the drive gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 are arranged.
  • the second embodiment is different from the second embodiment, and other configurations are the same as the second embodiment.
  • the cam groove 1A3, the phase detection unit 1A6, and the drive receiving unit 1A5 are arranged in this order from the downstream side in the insertion direction of the developer supply container 1.
  • the arrangement of the drive receiving portion 1A5, the rotation shake restricting portion 1A4, the phase detecting portion 1A6, the driving gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 provided on the flange portion 41 is an embodiment. 2 and the other configuration is the same as that of the second embodiment.
  • the drive receiving portion 1A5, the phase detecting portion 1A6, and the rotational shake restricting portion 1A4 are arranged in this order from the downstream side in the insertion direction of the developer supply container 1.
  • the phase detection unit and the rotation shake restricting unit are arranged adjacent to each other, and the vibration due to the rotation shake of the phase detection unit is efficiently regulated, so that the rotation shake restriction unit 1A4 is not provided.
  • the improvement in replenishment accuracy can be expected, and the replenishment accuracy is approximately the target value ⁇ 20%.
  • the image quality by controlling the vibration caused by the rotational shake of the drive receiving portion by the rotational shake restricting portion, the drive transmission is improved, and the improvement of the image quality can be expected as compared with the comparative example 2 in which the rotational shake restricting portion 1A4 is not provided. .
  • the vibration restricting effect is low and the image quality is inferior compared with the case where the drive receiving portion and the rotational shake restricting portion are disposed adjacent to each other. End up.
  • the drive receiving part is the third from the upstream side in the container insertion direction. Since the outer diameter of the drive receiving portion is minimized by being arranged, the rotational drive load is compared with the case where the drive receiving portion is arranged first or second from the upstream side in the container insertion direction. Will become bigger. (Modification 7) A seventh modification of the second embodiment will be described (not shown).
  • the modified example 7 is an embodiment in which the drive receiving portion 1A5, the rotation shake restricting portion 1A4, the phase detecting portion 1A6 provided on the flange portion 41, the drive gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 are arranged. 2 and the other configuration is the same as that of the second embodiment. Specifically, the phase detection unit 1A6, the drive receiving unit 1A5, and the rotational shake regulating unit 1A4 are arranged in this order from the downstream side in the insertion direction of the developer supply container 1.
  • the vibration due to the rotational shake of the phase detector can be restricted by the rotational shake restricting portion, and improvement in replenishment accuracy can be expected as compared with Comparative Example 2 in which the rotational shake restricting portion 1A4 is not provided.
  • the vibration regulating effect is low compared with the case where the phase detection unit and the rotational shake restricting unit are arranged adjacent to each other, and the target value ⁇ The replenishment accuracy is 30%.
  • the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the vibration due to the rotational shake of the drive receiving portion is efficiently restricted, thereby improving the drive transmission and providing the rotational shake restricting portion 1A4.
  • the image quality can be improved as compared with Comparative Example 2 that does not exist.
  • the rotational drive load among the “phase detection part (detected part)”, “rotational run-out restricting part (contact part)”, and “drive receiving part”, the drive receiving part is the second from the upstream side in the container insertion direction. Since the outer diameter of the drive receiving portion can be increased second by being arranged, the rotational driving load of the drive receiving portion can be reduced.
  • the vibration due to the rotational shake of the phase detector can be restricted by the rotational shake restricting portion, and improvement in replenishment accuracy can be expected as compared with Comparative Example 2.
  • the vibration regulating effect is low compared with the case where the phase detection unit and the rotational shake restricting unit are arranged adjacent to each other, and the target value ⁇ The replenishment accuracy is 30%.
  • the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the vibration due to the rotational shake of the drive receiving portion is efficiently restricted, thereby improving the drive transmission and providing the rotational shake restricting portion 1A4.
  • the image quality can be improved as compared with Comparative Example 2 that does not exist.
  • the drive receiving part is the second from the upstream side in the container insertion direction. Since the outer diameter of the drive receiving portion can be increased second by being arranged, the rotational driving load of the drive receiving portion can be reduced. However, compared with the case where the drive receiving portion is arranged first from the upstream side in the container insertion direction, the rotational drive load becomes large. (Modification 9) A modification 9 of the second embodiment will be described (not shown).
  • the arrangement of the drive receiving portion 1A5, the rotation shake restricting portion 1A4, the phase detecting portion 1A6, the driving gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 provided in the flange portion 41 is an embodiment. 2 and the other configuration is the same as that of the second embodiment.
  • the rotational shake restricting portion 1A4, the phase detecting portion 1A6, and the drive receiving portion 1A5 are arranged in this order from the downstream side in the insertion direction of the developer supply container 1.
  • the phase detection unit and the rotation shake restricting unit are arranged adjacent to each other, and the vibration due to the rotation shake of the phase detection unit is efficiently regulated, so that the rotation shake restriction unit is not provided.
  • the replenishment accuracy can be improved, and the replenishment accuracy is approximately the target value ⁇ 20%.
  • the image quality by controlling the vibration due to the rotational shake of the drive receiving portion by the rotational shake restricting portion, the drive transmission is improved, and the improvement of the image quality can be expected as compared with the comparative example 2 in which the rotational shake restricting portion is not provided.
  • the vibration restricting effect is low and the image quality is inferior compared with the case where the drive receiving portion and the rotational shake restricting portion are disposed adjacent to each other. End up.
  • the drive receiving portion is arranged on the most upstream side in the container insertion direction, so that the outer diameter of the drive receiving portion can be increased by the largest, so that the rotational drive load can be minimized.
  • Modification 10 A modification 10 of the second embodiment will be described (not shown).
  • the arrangement of the drive receiving portion 1A5, the rotational shake restricting portion 1A4, the phase detecting portion 1A6, the driving gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 provided in the flange portion 41 is an embodiment. 2 and the other configuration is the same as that of the second embodiment.
  • the drive receiving portion 1A5, the rotational shake restricting portion 1A4, and the phase detecting portion 1A6 are arranged in this order from the downstream side in the insertion direction of the developer supply container 1.
  • the phase detection unit and the rotation shake restricting unit are arranged adjacent to each other, and the vibration due to the rotation shake of the phase detection unit is efficiently regulated, so that the rotation shake restriction unit 1A4 is not provided.
  • the replenishment accuracy can be improved, and the replenishment accuracy is approximately the target value ⁇ 20%.
  • the drive receiving part and the rotational shake restricting part are arranged adjacent to each other, and the vibration due to the rotational shake of the drive receiving part is efficiently regulated, so that drive transmission is improved and no rotational shake restricting part is provided.
  • Image quality can be improved as compared with Comparative Example 2.
  • the drive receiving part is the third from the upstream side in the container insertion direction. Since the outer diameter of the drive receiving portion is minimized by being arranged, the rotational drive load is compared with the case where the drive receiving portion is arranged first or second from the upstream side in the container insertion direction. Will become bigger. (Example 2)
  • Example 2 will be described with reference to FIG.
  • the arrangement of the drive receiving portion 1A5, the rotational shake restricting portion 1A4, and the phase detecting portion 1A6 provided in the flange portion 41 of the second embodiment is arranged from the downstream side in the insertion direction of the developer supply container 1 to the phase detecting portion 1A6, the rotational shake restricting portion 1A4, It is the structure arranged in order of the drive receiving part 1A5.
  • the phase detection unit and the rotation shake restricting unit are arranged adjacent to each other, and the vibration due to the rotation shake of the phase detection unit is efficiently regulated, so that the rotation shake restriction unit is not provided. Improvement in replenishment accuracy can be expected, and the replenishment accuracy is approximately the target value ⁇ 20%.
  • the drive receiving part and the rotational shake restricting part are arranged adjacent to each other, and the vibration due to the rotational shake of the drive receiving part is efficiently regulated, so that drive transmission is improved and no rotational shake restricting part is provided.
  • An improvement in image quality can be expected as compared with Comparative Example 2.
  • the drive receiving portion is arranged on the most upstream side in the container insertion direction, so that the outer diameter of the drive receiving portion can be increased by the largest, so that the rotational drive load can be minimized. From the above comparison results, the superiority and inferiority of the replenishment accuracy, image quality, and rotational drive load of Comparative Example 2, Modifications 6 to 10, and Example 2 were described.
  • drive receiving portion 1A5”, “rotational shake restricting portion” 1A4 ”and“ phase detector 1A6 ” can be arranged in any manner.
  • each evaluation item is arranged according to the arrangement configuration of “drive receiving portion 1A5”, “rotational shake restricting portion 1A4”, and “phase detection portion 1A6”. Superiority is determined.
  • preferred arrangement configurations of “drive receiving portion 1A5”, “rotational shake restricting portion 1A4”, and “phase detection portion 1A6” and the reasons thereof will be described.
  • the outer diameter of the driving receiving portion can be made the largest by arranging the driving receiving portion 1A5 on the most upstream side in the container insertion direction, so that the rotational driving load can be minimized.
  • the replenishment accuracy by arranging the phase detection unit and the rotation shake restricting unit adjacent to each other, it is possible to efficiently regulate the vibration caused by the rotation shake of the phase detection unit, and the phase detection flag 62 and the phase detection sensor 61 Detection accuracy is improved.
  • the replenishment accuracy can be improved as compared with the comparative example 2 in which the rotational shake restricting portion 1A4 is not provided, and the replenishment accuracy is approximately the target value ⁇ 20%.
  • the drive receiving portion and the rotational shake restricting portion adjacent to each other, vibration due to the rotational shake of the drive receiving portion can be efficiently restricted, drive transmission is improved, and the rotational shake restricting portion 1A4.
  • An improvement in image quality can be expected as compared with Comparative Example 2 in which no is provided.
  • the most preferable configuration is the configuration in which the phase detection unit 1A6, the rotation shake regulating unit 1A4, and the drive receiving unit 1A5 are arranged from the downstream side in the container insertion direction, that is, the configuration of “Example 2”.
  • the rotational shake of the developer supply container at the time of developer supply is restricted by the rotational shake restricting portion, so that the rotational shake of both the phase detection portion and the drive receiving portion can be prevented. Can be reduced. As a result, both drive transmission and phase detection accuracy can be improved. Further, since the vibration due to the rotation of the developer supply container can be reduced, the image quality can be improved.
  • the configuration in which the phase detection unit 1A6 is a concave portion (or a convex portion) is exemplified, but the present invention is not limited to this.
  • the phase detector 1A6 may be configured as a reflective surface such as silver paper provided on the same surface as the rotational shake restricting portion 1A4.
  • the phase detection sensor 63 on the apparatus side that detects the phase detection unit 1A6 is an optical sensor. Even if comprised in this way, the effect similar to the Example mentioned above is acquired.
  • the printer is exemplified as the image forming apparatus, but the present invention is not limited to this.
  • the image forming apparatus may be another image forming apparatus such as a copying machine or a facsimile machine, or another image forming apparatus such as a multi-function machine combining these functions.
  • the same effect can be obtained by applying the present invention to a developer supply container or developer supply system used in these image forming apparatuses.
  • the influence of the driving force received by the drive receiving part on the detected part can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

現像剤を収容する収容部と、前記収容部に収容された現像剤を現像剤補給容器から排出する排出口と、前記収容部の現像剤を前記排出口に向かって搬送する現像剤搬送部と、回転駆動力を受ける回転可能な駆動受け部と、前記駆動受け部が受けた回転駆動力を前記搬送部に伝達する駆動伝達部と、前記駆動受け部の回転を検知するための被検知部と、現像剤受入れ装置に設けられた回転部材と当接する当接面と、を有する現像剤受入れ装置に着脱可能な現像剤補給容器において、前記駆動受け部と前記被検知部と前記当接面とは一体で形成されている。

Description

現像剤補給容器
 本発明は、電子写真方式や静電記録方式を用いた画像形成装置、及びこれに用いられる現像剤補給容器に関し、特に、複写機、プリンタ、FAX等の画像形成装置、及びこれに用いられる現像剤補給容器に関する。
 従来、複写機等の電子写真式の画像形成装置には微粉末の現像剤が使用されている。このような画像形成装置では、画像形成に伴い消費されてしまう現像剤を、現像剤補給容器から補給する構成となっている。
 尚、現像剤補給については様々な方式が提案、実用されており、現像剤受入れ装置から駆動を与え、現像剤補給容器を回転させることで現像剤を補給する方式が多く採用されている。
 さらに、現像剤補給容器内の現像剤残量を知る手段の1つとして、現像剤補給容器の位相(回転数)を検知する方法がある。
 こうした従来の現像剤補給容器の位相(回転数)を検知する方法としては、例えば、特開2005−148238号公報のものがある。
 特開2005−148238号公報に記載の装置では、略円筒状の現像剤補給容器の外周に設けられた駆動受け部に画像形成装置本体から駆動力を与えることで現像剤補給容器が回転し、画像形成装置本体側に設けたエンコーダにより、回転数を検知する構成となっている。
 さらに特開2005−148238号公報に記載の装置では、現像剤補給容器の回転時の摩擦を低減させるために現像剤受入れ装置側にコロが設けられている。このコロが略円筒状の現像剤補給容器と当接しながら回転することにより、現像剤補給容器は滑らかに回転することができる。従って、現像剤補給が適切に行われ、その間の現像剤補給容器の回転数を検知できる。
 しかしながら、特開2005−148238号公報に記載の装置では、略円筒状の現像剤補給容器の駆動受け部とコロが現像剤補給容器のスラスト方向に離れた位置にあり、さらに、現像剤補給容器のコロと当接する箇所には現像剤搬送用の螺旋溝が形成されている。そのため、現像剤補給時における現像剤補給容器の回転振れが発生する恐れがある。そして、現像剤補給容器の回転数の検知に限らず現像座補給容器の停止位置の検知をするような場合において、このような現像剤補給容器の挙動は小さくなる方が好ましい。
 そこで、本発明の目的は、現像剤補給時における現像剤補給容器の回転振れを低減させ、現像剤補給容器の位相(回転)検知への影響を小さくする現像剤補給容器を提供することである。
 本発明は、現像剤を収容する収容部と、前記収容部に収容された現像剤を現像剤補給容器から排出する排出口と、前記収容部の現像剤を前記排出口に向かって搬送する現像剤搬送部と、回転駆動力を受ける回転可能な駆動受け部と、前記駆動受け部が受けた回転駆動力を前記搬送部に伝達する駆動伝達部と、前記駆動受け部の回転を検知するための被検知部と、現像剤受入れ装置に設けられた回転部材と当接する当接面と、を有する現像剤受入れ装置に着脱可能な現像剤補給容器において、前記駆動受け部と前記被検知部と前記当接面とは一体で形成されている現像剤補給容器を提供する。
 本発明によれば、駆動受け部と被検知部とが近い構成の場合に、駆動受け部で受ける駆動力の被検知部への影響を小さくすることができる。
 図1は画像形成装置本体(複写機)の概略断面図である。
 図2は上記画像形成装置本体の斜視図である。
 図3は上記画像形成装置本体の現像剤補給容器交換用カバーを開いて現像剤補給容器を画像形成装置本体に装着する様子を示す斜視図である。
 図4は実施例1の現像剤受入れ装置の部分斜視図である。
 図5は実施例1における現像剤受入れ装置に現像剤補給容器を挿入した様子を示す部分斜視図である。
 図6は実施例1の現像剤補給容器の断面斜視図である。
 図7は実施例1の容器本体の斜視図である。
 図8は実施例1のフランジ部の斜視図である。
 図9は実施例1のフランジ部の(a)正面図、(b)E−E断面図、(c)右側面図、(d)F−F面図である。
 図10は実施例1のシャッタの(a)正面図、(b)斜視図である。
 図11は実施例1のポンプ部の正面図である。
 図12は実施例1の往復部材の斜視図である。
 図13は実施例1のカバーの斜視図である。
 図14の(a)~(c)は実施例1における現像剤補給容器を現像剤受入れ装置に挿入する様子を段階的に示した、部分断面図である。(d)現像剤補給容器を現像剤受入れ装置に挿入途中の様子を示した図である。
 図15は実施例1および実施例2の制御装置の機能構成を示すブロック図である。
 図16は実施例1および実施例2の補給動作の流れを説明するフローチャートである。
 図17は比較例1の現像剤補給容器の部分拡大図である。
 図18は変形例1の現像剤補給容器の部分拡大図である。
 図19は変形例2の現像剤補給容器の部分拡大図である。
 図20は変形例3の現像剤補給容器の部分拡大図である。
 図21は変形例4の現像剤補給容器の部分拡大図である。
 図22は変形例5の現像剤補給容器の部分拡大図である。
 図23は実施例1の現像剤補給容器の部分拡大図である。
 図24は実施例1のカバーを除いた現像剤補給容器の部分拡大図である。
 図25は実施例2の現像剤補給容器の断面斜視図である。
 図26は実施例2における現像剤補給容器を現像剤受入れ装置に挿入している様子を示す断面斜視図である。
 図27は実施例2の現像剤補給容器を現像剤受入れ装置に挿入して、封止部材を開放する様子を段階的に示す部分断面図である。
 図28は実施例2の封止部材の斜視図である。
 図29は実施例2の封止部材の(a)正面図、(b)左側面図、(c)右側面図、(d)上面図、(e)C−C断面図である。
 図30は実施例2の現像剤補給容器の部分斜視図である。
 図31は実施例2の現像剤補給容器の部分拡大図である。
 図32は他の実施例の現像剤補給容器の斜視図である。
 以下、図面を参照して、本発明の好適な実施の形態を例示的に詳しく説明する。ただし、以下の実施形態に記載されている構成部品の寸法、材質、形状、それらの相対配置などは、本発明が適用される装置の構成や各種条件により適宜変更されるべきものである。従って、特に特定的な記載がない限りは、本発明の範囲をそれらのみに限定する趣旨のものではない。
 まず、画像形成装置の基本構成について説明し、続いて、この画像形成装置に搭載される現像剤補給システム、つまり、現像剤受入れ装置(現像剤補給装置)と現像剤補給容器の構成について順に説明する。
(画像形成装置)
 現像剤補給容器(所謂、トナーカートリッジ)が着脱可能(取り外し可能)に装着される現像剤受入れ装置が搭載された画像形成装置の一例として、電子写真方式を採用した複写機(電子写真画像形成装置)の構成について図1を用いて説明する。
 図1において、100は複写機本体(以下、「画像形成装置本体」もしくは「装置本体」という)である。また、101は原稿であり、原稿台ガラス102の上に置かれる。そして、原稿の画像情報に応じた光像を光学部103の複数のミラーMとレンズLnにより、電子写真感光体104(以下、「感光体ドラム」という)上に結像させることにより静電潜像を形成する。この静電潜像は現像器201bにより現像剤としてのトナーを用いて可視化される。
 105~108は記録媒体(以下、「シート」ともいう)Sを収容するカセットである。これらカセット105~108に積載されたシートSのうち、図2に示す複写機の操作部100aから操作者(ユーザ)が入力した情報もしくは原稿101のシートサイズを基に最適なカセットが選択される。ここで記録媒体としては用紙に限定されずに、例えばOHPシート等適宜使用、選択できる。
 そして、給送分離装置105A~108Aにより搬送された1枚のシートSを、搬送部109を経由してレジストローラ110まで搬送し、感光体ドラム104の回転と、光学部103のスキャンのタイミングを同期させて搬送する。
 111、112は転写帯電器、分離帯電器である。ここで、転写帯電器111によって、感光体ドラム104上に形成された現像剤による像をシートSに転写する。そして、分離帯電器112によって、現像剤像(トナー像)の転写されたシートSを感光体ドラム104から分離する。
 この後、搬送部113により搬送されたシートSは、定着部114において熱と圧によりシート上の現像剤像を定着させた後、片面コピーの場合には、排出反転部115を通過し、排出ローラ116により排出トレイ117へ排出される。
 また、両面コピーの場合には、シートSは排出反転部115を通り、一度排出ローラ116により一部が装置外へ排出される。そして、この後、シートSの終端がフラッパ118を通過し、排出ローラ116にまだ挟持されているタイミングでフラッパ118を制御すると共に排出ローラ116を逆回転させることにより、再度装置内へ搬送される。さらに、この後、再給送搬送部119,120を経由してレジストローラ110まで搬送された後、片面コピーの場合と同様の経路をたどって排出トレイ117へ排出される。
 また、多重コピーの場合には、シートSは排出反転部115を通り、一度排出ローラ116により一部が装置外へ排出される。そして、この後、シートSの終端がフラッパ118を通過し、排出ローラ116にまだ挟持されているタイミングでフラッパ118を制御すると共に排出ローラ116を逆回転させることにより、再度装置本体100内へ搬送される。更にこの後、再給送搬送部119,120を経由してレジストローラ110まで搬送された後、片面コピーの場合と同様の経路をたどって排出トレイ117へ排出される。
 上記構成の装置本体100において、感光体ドラム104の回りには現像手段としての現像装置201、クリーニング手段としてのクリーナ装置202、帯電手段としての一次帯電器203等の画像形成プロセス機器(プロセス手段)が配置されている。現像装置201は、原稿101の画像情報に基づいて一様に帯電された感光体ドラム104上を光学部103により露光して形成された静電潜像を、現像剤(トナー)を用いて現像するものである。そして、この現像装置201へ現像剤としてのトナーを補給するための現像剤補給容器1が使用者によって装置本体100に着脱可能に装着されている。なお、現像剤補給容器1からトナーのみを画像形成装置側へ補給する場合や、トナー及びキャリアを補給する場合であっても本発明を適用できる。本実施形態では前者の例についての説明である。
 また、現像装置201は、収容手段としての現像剤ホッパ部201aと現像器201bとを有している。現像剤ホッパ部201aは、現像剤補給容器1から補給された現像剤を撹拌するための撹拌部材201cを有している。そして、この撹拌部材201cにより撹拌された現像剤は、マグネットローラ201dにより現像器201bに送られる。現像器201bは、現像ローラ201fと、搬送部材201eを有している。そして、マグネットローラ201dにより現像剤ホッパ部201aから送られた現像剤は、搬送部材201eにより現像ローラ201fに送られて、この現像ローラ201fにより感光体ドラム104に供給される。なお、クリーナ装置202は、感光体ドラム104に残留している現像剤を除去するためのものである。また、一次帯電器203は、感光体ドラム104上に所望の静電像を形成するために感光体ドラム104の表面を一様に帯電するためのものである。
 図2に示す外装カバーの一部である現像剤補給容器交換用前カバー15(以下、「交換用前カバー」という)を図3に示すように使用者が開けると、装着手段の一部である容器受け台50が、駆動系(不図示)によって所定の位置まで引き出される。そして、この容器受け台50上に現像剤補給容器1を載置する。使用者が現像剤補給容器1を装置本体100から取り出す際には、容器受け台50を引き出し、容器受け台50に載っている現像剤補給容器1を取り出す。ここで、交換用前カバー15は現像剤補給容器1を着脱(交換)するための専用カバーであって、現像剤補給容器1を着脱するためだけに開閉される。尚、装置本体100のメンテナンスは、前面カバー100cを開閉することによって行われる。尚、容器受け台50を介することなく、現像剤補給容器1を装置本体100に直接装着し、又、装置本体100から取り外してもよい。
(現像剤受入れ装置)
 現像剤受入れ装置(現像剤補給装置)の構成について図4を用いて説明する。図4は実施例1における現像剤受入れ装置200の部分斜視図である。
 図4に示すように、現像剤受入れ装置200は、主に後述する現像剤補給容器1の回転振れ規制部1A4と当接するボトル受けローラ23、現像剤補給容器1の駆動受け部1A5に回転駆動力を伝達する駆動ギア25(何れも支持部は省略)が設けられている。さらに現像剤受入れ装置200には、現像剤補給容器1の位相検知部(被検知部)1A6と当接することにより現像剤補給容器1の位相(回転)を検知する位相検知フラグ62、位相検知フラグ62を検知する位相検知センサ61が設けられている。尚、位相検知フラグ62は弾性部材(不図示)により鉛直下方向に付勢されており、回転軸Q(図17)を中心に回転可能となっている。
 また現像剤受入れ装置200には、現像剤補給容器1から排出され現像剤を一時的に貯留する現像剤ホッパ部201a、現像剤ホッパ部201aへ連通する現像剤ホッパ連通部200h、現像剤ホッパ部201a内の現像剤を現像装置201(図1参照)へ搬送するスクリュー部材27が設けられている。さらに現像剤受入れ装置200には、現像剤補給容器1が有するカバー53(図13(a))の現像剤受入れ装置突き当て部53cと当接するカバー突き当て部200g、現像剤補給容器1を現像剤受入れ装置200に挿入する際、カバー53のガイド溝53aと当接することにより矢印T方向の変位を規制する挿入ガイド200e、シャッタ52(図10(a))のストッパ部52b(52c)と係合するシャッタストッパ部200a(200b)が設けられている。
(現像剤補給容器)
 現像剤補給容器1について図6を用いて説明する。図6は現像剤補給容器1の断面斜視図である。
 図6に示すように、現像剤補給容器1は、主に容器本体1A、フランジ部41、シャッタ52、ポンプ部54、往復部材51、カバー53から構成される。そして現像剤補給容器1は後述する現像剤補給手段により、現像剤補給容器1内の現像剤を現像剤ホッパ部201a(図5参照)へ補給する。以下に、現像剤補給容器1を構成する各要素について、詳細に説明する。
(容器本体)
 容器本体1Aについて、図7を用いて説明する。図7は容器本体1Aの斜視図である。
 容器本体1Aは、内部に現像剤を収容する現像剤収容部1A2と、容器本体1Aが軸Pに対してR方向に回転することによって現像剤収容部1A2内の現像剤を矢印A方向(図6)へ搬送する螺旋状の突起(現像剤搬送部)1A1から構成される。
 容器本体1Aは、現像剤受入れ装置200の駆動ギア25より回転駆動力を受ける駆動受け部1A5と、前記駆動受け部1A5に入力する回転駆動力により回転する前記収容部1A2の位相を検知するための位相検知部1A6を有している。さらに容器本体1Aは、前記収容部1A2が回転する際、前記位相検知部1A6と前記駆動受け部1A5の回転振れを抑制するための回転振れ規制部1A4を有している。さらに本実施例1の容器本体1Aは、後述する実施例2の容器に対し、カム溝1A3が設けられている点が異なる。本実施例1では、回転振れ規制部1A4、駆動受け部1A5、位相検知部1A6が、容器本体1Aと一体的に形成されている。図6(b)に項の構成を示す。本実施例では、プラスチック等からなる一つの樹脂材料(本実施例では駆動受け部品)に位相検知部1A6と駆動受け部1A5の回転振れを抑制するための回転振れ規制部1A4が設けられている。そして、駆動受け部品の端部に設けられている駆動伝達部1A7が現像剤収容部1A2と接続する。駆動伝達部1A7と現像剤収容部1A2とが一体で回転することで、駆動受け部1A5が受けた駆動力を現像剤収容部1A2に伝達する。その結果、トナーを搬送する搬送部が回転可能となっている。
 尚、本実施例1では、回転振れ規制部1A4と駆動受け部1A5と位相検知部1A6が容器本体1Aとが一体的に一つの部品に形成されている構成(図6(b))を例示したが、これに限定されるものではない。例えば、カム溝1A3と回転振れ規制部1A4と駆動受け部1A5と位相検知部1A6とが一体に形成され、容器本体1Aに一体的に取り付ける構成等であってもよい。
 また、前記収容部1A2は、容器本体1Aだけではなく、容器本体1Aと後述するフランジ部41(図8参照)とポンプ部54(図11参照)の内部スペースを合わせたものとなる。
 また、本実施例1では、回転振れ規制部1A4に対して位相検知部1A6の形状を凹形状としたが、回転振れ規制部1A4に対して位相検知部1A6の形状を凸形状にしてもかまわない。
 実施例1では、現像剤補給容器1がR方向に回転して現像剤を補給する際(図6)、駆動受け部1A5と位相検知部1A6の双方のラジアル方向のガタ防止効果の向上を目的として、回転振れ規制部1A4の真円度を0.05とした。回転振れ規制部1A4は真円に近いほど、より高いラジアル方向のガタ防止効果が期待できるが、必要以上の幾何公差を設けるとコストアップにつながるため、真円度を0.05とした。このように回転振れ規制部は円筒部の形状となっている。
 このような構成とすることで、現像剤補給時に現像剤補給容器1が図6の矢印R方向に回転する際、真円に近い形状の回転振れ規制部1A4とボトル受けローラ(回転部材)23が当接することで位相検知部1A6と駆動受け部1A5の双方の回転振れを抑制できる。このように、回転振れ規制部は回転部材と当接する当接面としての機能を有する。その結果、駆動伝達と位相検知の双方の精度向上が期待できる。さらに、現像剤補給容器1の回転による振動も低減できるため、画質の向上が期待できる。
 また、駆動受け部品は駆動受け部1A5及び位相検知部1A6を回転振れ規制部1A4に隣接して配置した構成である。このような構成とすることで、駆動受け部1A5と位相検知部1Aとを離れた位置に配置した構成に比べて、位相検知部1A6と駆動受け部1A5の双方の回転振れをより抑制できる。その結果、駆動伝達と位相検知の双方の精度向上や、画質の向上がより期待できる。
(バッフル部材)
 バッフル部材40について図6を用いて説明する。図6は実施例1における現像剤補給容器1の部分断面斜視図である。
 実施例1のバッフル部材40は、最終的に現像剤を搬送する箇所が後述する実施例2とは異なる。具体的には、最終的に現像剤はバッフル部材40の回転に伴って、傾斜突起40aを滑り落ちるように貯留部41f(図9(b))へ搬送される点が実施例2とは異なる。
(フランジユニット部)
 続いて、フランジユニット部60について図6を用いて説明する。図6は現像剤補給容器1の断面斜視図である。
 図6に示すように、フランジユニット部60は、フランジ部41、往復部材51、ポンプ部54、カバー53、シャッタ52より構成される。
 フランジユニット部60は容器本体1Aと相対回転可能に取り付けられ、現像剤補給容器1が現像剤受入れ装置200に装着されると、図5に示すように、現像剤受入れ装置200に対してフランジユニット部60は軸P回りの回転が規制された状態で保持される。フランジ部41の一端にはポンプ部54がネジ接合され、他端には容器本体1Aがシール部材(不図示)を介して接合される。また、往復部材51はポンプ部54をスラスト方向に挟み込むようにして配置され、往復部材51に設けられた係合突起51b(図12(a))が容器本体1Aのカム溝1A3(図7)に嵌め込まれる。さらに、フランジ部41のシャッタ挿入部41c(図8(a))にはシャッタ52(図10)が組み込まれる。また、ユーザーが現像剤補給容器1に触れて予期せぬケガが発生するのを防止する目的と、往復部材51やポンプ部54の保護を目的として、カバー53(図13)が設けられている。
(フランジ部)
 次に、フランジ部41について図8、図9を用いて説明する。図8(a)と図8(b)はフランジ部41の斜視図を示している。図9(a)はフランジ部41の正面図、図9(b)はE−E断面図、図9(c)は右側面図、図9(d)はF−F断面図を示している。
 フランジ部41は、ポンプ部54(図11)がネジ接合されるポンプ接合部41dと、容器本体1Aが接合される容器本体接合部41eと、容器本体1Aとバッフル部材40(図6)から搬送された現像剤を貯め込む貯留部41f(図9(b))を備えている。さらにフランジ部41は、現像剤補給容器1の交換時にシャッタ52を矢印B方向(図14)へ押すシャッタ押出しリブ41k(図9(d))と、シャッタ挿入部41cを備えている。
 また図8(b)に示すように、フランジ部41は、前述した貯留部41f内の現像剤を排出する円形のシール穴41jを形成した開口シール41gを備えている。ここで、開口シール41gは両面テープでフランジ部41の下面に貼り付けられ、後述するシャッタ52とフランジ部41に圧縮された状態で挟持されている。
 またフランジ部41は、現像剤補給容器1を現像剤受入れ装置200に装着又は現像剤受入れ装置200から取り出す操作に伴い、後述するシャッタ52が有する支持部52d(図10(a))の弾性変形を規制する規制リブ41i(図9(d)を備えている。尚、規制リブ41iは、シャッタ挿入部41c(図9(d))の挿入面より鉛直上方向に突出し、現像剤補給容器1の装着方向に沿って形成されている。さらにフランジ部41には、物流による破損や、ユーザーによる誤操作からシャッタ52を保護する保護部41h(図8(b))が設けられている。
(シャッタ)
 次に図10を用いてシャッタ52について説明する。図10(a)はシャッタ52の正面図、10(b)は斜視図である。
 シャッタ52は、現像剤補給容器1(図6)に対して相対移動可能に設けられ、現像剤補給容器1の着脱動作に伴い、シャッタ52に設けられた排出口1aが開閉される。なお、現像剤補給容器1の着脱動作と排出口1aの開閉の詳しい方法は後述する。シャッタ52には、現像剤補給容器1が現像剤受入れ装置200に装着されていないときに、フランジ部41のシール穴41j(図8(b))からの現像剤の漏れを防ぐ現像剤封止部52aと、現像剤封止部52aの背面側にフランジ部41のシャッタ挿入部41c(図9(d))上を摺動する摺動面52iが設けられている。シャッタ52は、現像剤補給容器1がシャッタ52に対して相対移動することが可能となるように、現像剤補給容器1の着脱動作に伴い、現像剤受入れ装置200のシャッタストッパ部200a,200b(図4)に保持されるストッパ部52b,52cを有している。
 また、シャッタ52は、前記ストッパ部52b,52cが変位可能となるように支持する支持部52dを有しており、現像剤封止部52aより延設されて弾性変形可能に設けられている。
 さらに、現像剤補給容器1が現像剤受入れ装置200に非装着時に、シャッタ52が現像剤補給容器1に対して相対移動するのを防止する目的として、現像剤封止部52aにはロック突起52eが設けられている。
 ここで、現像剤補給容器1を現像剤受入れ装置200へ着脱する際のシャッタ52の開閉に伴って現像剤が不用に排出されてしまい、その周辺が現像剤で汚れてしまうのを可及的に防止する目的で、排出口1aの直径は極力小さくすることが望ましく、実施例1では約Φ2mmに設定されている。また、実施例1では現像剤補給容器1の下面側に、すなわちフランジ部41(図8(b))の下面側にシール穴41jと排出口1aを設けたが、基本的には現像剤補給容器1の現像剤受入れ装置200への挿入方向の上流側(図6矢印B方向)端面もしくは下流側(図6矢印A方向)端面位以外の側面に設けられていれば、実施例1で示す接続構成を適用することができる。
(ポンプ部)
 次に図11を用いてポンプ部54について説明する。図11はポンプ部54の正面図である。
 ポンプ部54は駆動ギア25(図5)より駆動受け部1A5(図7)が受けた回転駆動力により現像剤収容部1A2(図7)の内圧を周期的に変化させるように動作するポンプ部である。
 ポンプ部54の開口端側には、フランジ部41(図8(a))と接合可能なように接合部54bが設けられている。実施例1では、接合部54bとしてネジが形成された構成を例示している。さらに、ポンプ部54の他端側には、後述する往復部材51と同期して変位するために往復部材51と係合する往復部材係合部54cを備えている。
 実施例1では上述したように小さな排出口1a(図10(a))から現像剤を安定的に排出させるために、現像剤補給容器1にポンプ部54を設けている(図6)。ポンプ部54はその容積が変化する容積変化型ポンプとなっている。このポンプ部54の伸縮動作により現像剤補給容器1内の圧力を変化させ、その圧力を利用して現像剤の排出を行っている。
 ポンプ部54は、「山折り」部と「谷折り」部が周期的に形成された蛇腹状の伸縮部54aが設けられている。その折り目を基点として、伸縮部54aは折り畳まれたり、伸びたりすることができる。
 また、実施例1ではポンプ部54の材料としてはポリプロピレン樹脂(以下、PPと略す)を採用したが、これに限定されるものではない。ポンプ部54の材料に関しては、伸縮機能を発揮し容積変化によって現像剤収容部1A2(図7)の内圧を変化させることができる前提の材料であれば何でもよい。例えば、ABS(アクリロニトリル・ブタジエン・スチレン共重合体)、ポリスチレン、ポリエステル、ポリエチレン等を薄肉で形成したものでも構わない。また、ゴムやその他の伸縮性材料などを使用することも可能である。さらに、ポンプ部54の役割は現像剤収容部1A2(図7)の内圧を変化させることであるため、ポンプの代わりにピストンを使用することも可能である。
(往復部材)
 次に、図12を用いて往復部材51について説明する。図12(a)、図12(b)は往復部材51の斜視図を示している。
 往復部材51は前述したポンプ部54の容積を変化させるために、ポンプ部54に設けられた往復部材係合部54c(図11)に係合するポンプ部係合部51aを備えている。さらに往復部材51は組み立てられた際に、前述したカム溝1A3(図7)に嵌め込まれる係合突起51bを備えている。係合突起51bはポンプ部係合部51a近傍より延在するアーム51cの先端部に設けられている。また、往復部材51は、後述するカバー53の往復部材保持部53b(図13(b))によって矢印A、B方向(図6)にのみスライド可能に保持される。したがって、駆動受け部1A5(図7)が駆動ギア25(図5)から回転駆動力を受け、容器本体1Aが回転すると、カム溝1A3も容器本体1Aに同期して回転し、カム溝1A3(図7)に嵌め込まれた係合突起51bのカム作用とカバー53の往復部材保持部53b(図14(b))の作用により、往復部材51は矢印A、B方向へ往復運動する(図6)。その往復運動に同期して、ポンプ部54が伸縮運動をする。すなわち、往復部材51は、カム溝1A3とともに、駆動受け部1A5に入力する回転駆動力をポンプ部54を動作させる力へ変換する。
(カバー)
 次に図13を用いてカバー53について説明する。図13(a)、図13(b)はカバー53の斜視図を示している。
 上述したように、カバー53は、ユーザーが現像剤補給容器1に触れて予期せぬケガが発生するのを防止する目的と、往復部材51やポンプ部54の保護を目的として、図6のように設けられている。詳しくは、カバー53は、フランジ部41、ポンプ部54、往復部材51の全体を覆うようにフランジ部41と一体的に設けられている。
 また、カバー53には、現像剤受入れ装置200が備える挿入ガイド200e(図4)と係合することで、現像剤補給容器1を現像剤受入れ装置200に挿入するのをサポートするガイド溝53aが設けられている。さらに、カバー53には、軸P(図6)に対して往復部材51の回転変位を規制するための往復部材保持部53bが設けられている。
 そして、カバー53には、現像剤補給容器1を現像剤受入れ装置200に挿入する際、現像剤受入れ装置200のカバー突き当て部200g(図5)と当接することで現像剤補給容器1の装着を完了させるための現像剤受入れ装置突き当て部53cが設けられている。現像剤補給容器1を現像剤受入れ装置200に挿脱着する詳しい方法は後述する。
(現像剤排出原理)
 次に、現像剤排出原理について、図6を用いて説明する。軸Pを中心とした、現像剤補給容器1の回転(矢印R方向)によって容器本体1Aに形成された螺旋状の突起1A1が現像剤を容器本体1Aの上流側から下流側(矢印A方向)へ搬送する。そして、螺旋状の突起1A1によって搬送された現像剤はやがてバッフル部材40に達する。次に現像剤補給容器1と一体的に回転するバッフル部材40で掻き揚げられた現像剤がバッフル部材40の表面上を滑り落ち、傾斜突起40aによってフランジ部41の貯留部41fへ搬送される。この動作を繰り返すことによって、現像剤補給容器1内部の現像剤は順次、撹拌・搬送されてフランジ部41の貯留部41f(図9(b))へ貯留される。
 そして、上述したように、往復部材51の往復運動と同期して、ポンプ部54は伸縮運動をする。詳しく説明すると、ポンプ部54を縮める際には、現像剤補給容器1内が加圧状態となり、その圧力に押し出される形で貯留部41f(図9(b))に貯留された現像剤が排出口1a(図10(a))から排出される。またポンプ部54を伸ばす際には、現像剤補給容器1内が減圧状態になり、外部から排出口1a(図10(a))を介してエアが取り込まれる。この取り込まれたエアにより排出口1a(図10(a))や貯留部41f(図9(b))付近の現像剤が解れ、次の排出がスムーズに行われるようになっている。以上のようにポンプ部54が伸縮運動を繰り返し行うことで現像剤の排出が行われる。
(現像剤補給容器の挿入動作)
 次に実施例1における現像剤補給容器の挿入動作(装着動作)について図14(a)~(d)を用いて説明する。
 図14(a)には、現像剤補給容器1を現像剤受入れ装置200に挿入させる途中の状態が示されている。
 図14(b)には、現像剤補給容器1の挿入が更に進み、シャッタ52の先端部に設けたストッパ部52b(図10(a))と現像剤受入れ装置200に設けられたシャッタストッパ部200a(図4)に係止された状態が示されている。
 図14(c)は、現像剤補給容器1の現像剤受入れ装置突き当て部53c(図13(a))をカバー突き当て部200g(図4)まで突き当てることによって現像剤補給容器1の装着が完了した状態を示している。
 図14(d)は図14(b)の部分G−G断面図である。
 まず、現像剤補給容器1を現像剤受入れ装置200に矢印A方向へ装着し始めると、フランジユニット部60は現像剤受入れ装置200に対して軸P(図5)に対して回転が不可となるように保持される。この時点では、シール穴41j(図8(b))はシャッタ52の現像剤封止部52a(図10(b))によって封止された状態にある。
 そのまま現像剤補給容器1を矢印A方向に挿入すると、シャッタ52はシャッタストッパ部200a(図4)とストッパ部52b(図10(a))との係止により、シャッタ52はこれ以上矢印A方向に変位不可となり、その状態で現像剤補給容器1のみが矢印A方向へ動くため、シャッタ52は現像剤補給容器1に対して相対的に矢印B方向にスライドしていく(図14(b)、図14(d))。
 さらに現像剤補給容器1を矢印A方向にスライドさせ、現像剤補給容器1の現像剤受入れ装置突き当て部53cをカバー突き当て部200gまで突き当てることによって、現像剤補給容器1の装着が完了する(図14(c))。このとき、フランジ部41に設けているシール穴41j(図8(b))がシャッタ52に設けられている排出口1a(図10(a))と重なることで連通し、現像剤補給が可能となる。
 この状態での駆動モータ(図5)を駆動させると、回転駆動力は、駆動ギア25から駆動受け部1A5へと伝達され、容器本体1Aが回転し、現像剤を搬送、排出する構成になっている。
 また、図5、図14(c)において、現像剤補給容器1は現像剤受入れ装置200に設けられたボトル受けローラ23と回転振れ規制部1A4の当接により回転可能に支持されているため、わずかな駆動トルクでもスムーズに回転することが可能である。尚、ボトル受けローラ23は現像剤受入れ装置200に回転自在に設けてある。上述したように、現像剤補給容器1の内部に収容されている現像剤が排出口1aから順次排出されることで、現像剤は現像剤ホッパ部201a(図14)に一時的に貯留され、さらにスクリュー部材27(図14)により現像器201b(図1)へ搬送され、現像剤補給が行われる。以上が、現像剤補給容器1の挿入動作である。
(現像剤補給容器の交換動作)
 次に、現像剤補給容器1の交換動作について図14(a)~(d)を用いて説明する。画像形成のプロセスに伴い、現像剤補給容器1内の現像剤が略全量消費されると、現像剤受入れ装置200に設けられた現像剤補給容器空検知手段(不図示)によって現像剤補給容器1内の現像剤が無くなったことが検知され、その旨が液晶等の表示手段100b(図3)によりユーザーに知らされる。
 現像剤補給容器1の交換はユーザー自身が行い、その手順は以下の通りである。
 まず、閉じられた状態の交換用前カバー15を図3の位置まで開く。次にユーザーが図14(c)の状態の現像剤補給容器1を矢印B方向にスライドさせる。このとき、フランジ部41に設けているシール穴41j(図8(b))がシャッタ52に設けられている排出口1a(図10(a))と重なることで連通しており、現像剤補給が可能な状態である。
 そのまま現像剤補給容器1を矢印B方向にスライドさせると、やがてフランジ部41のシャッタ押出しリブ41k(図9(d)、図14(d))がシャッタ52のストッパ部52b(図10(a))を矢印B方向(図15)へ押し始める。
 さらに現像剤補給容器1を矢印B方向へスライドさせていくと、現像剤受入れ装置200のシャッタストッパ部200b(図4)とシャッタ52のストッパ部52c(図10(a))の係合により支持部52d(図10(a))を基点にシャッタストッパ部52b,52cは矢印H方向(図14(d))に撓み、シャッタ52は矢印B方向へ進む(図14(b)、図14(d))。
 さらに現像剤補給容器1を矢印B方向にスライドすると、シャッタの支持部52d(図10)は自らの弾性力によって復帰し、挿入ガイド200eによるシャッタストッパ部52bとストッパ部52cの係止が解除され、フランジ部41に設けているシール穴41j(図8(b))とシャッタ52に設けられている現像剤封止部52a(図10(b))が重なることでシール穴41j(図8(b))が封鎖される(図14(a))。
 次にユーザーは、空の現像剤補給容器1を図14(a)に示す矢印B方向に引き出し、現像剤受入れ装置200から取り出す。この後、ユーザーは新しい現像剤補給容器1を現像剤受入れ装置200に矢印A方向へ挿入した後(図14(c))、交換用前カバー15(図3)を閉じる。そして、上述したようにシール穴41j(図8(b))とシャッタ52の排出口1a(図10(a))が重なることで連通し、現像剤補給が可能な状態となる。以上が、現像剤補給容器の交換動作である。
〔現像剤受入れ装置による現像剤補給制御〕
 次に、実施形態1の現像剤受入れ装置200による現像剤補給制御について、図15、図16を用いて説明する。図15は制御装置600の機能構成を示すブロック図であり、図16は補給動作の流れを説明するフローチャートである。
 実施例1では、軸Pを中心に回転する位相検知部1A6(図23)に位相検知フラグ62を当接させ、位相検知フラグ62が位相検知センサ61を通過することで、現像剤供給容器1の位相(回転数)を検知している。位相検知センサ61の出力に応じて制御装置600が駆動モータ500を作動/非作動の制御を行うことにより、現像剤補給容器1内の現像剤を定量的に現像剤ホッパ部201a内に排出(補給)している。
 また、実施例1では、現像剤ホッパ部201a内に一時的に貯留される現像剤の量(現像剤面の高さ)を制限している。そこで、現像剤ホッパ部201a内に収容されている現像剤の量を検知する現像剤センサ24k(不図示)を設けている。そして、その現像剤センサ24kの出力に応じて制御装置600が駆動モータ500を作動/非作動の制御を行うことにより、現像剤ホッパ部201a内に一定量以上の現像剤が収容されないように構成している。
 その制御フローについて説明する。まず図16に示すように、現像剤センサ24kが現像剤ホッパ部201a内の現像剤残量をチェックする(S100)。そして、現像剤センサ24kにより検出された現像剤収容量が所定未満であると判断された場合、つまり現像剤センサ24kにより現像剤が検出されなかった場合、駆動モータ500を駆動し、現像剤の補給を実行する(S101)。
 次に、位相検知フラグ62が位相検知センサ61を通過したかをチェックする(S102)。位相検知フラグ62が位相検知センサ61を通過していない場合、現像剤の補給は継続される(S103)。一方、位相検知フラグ62が位相検知センサ61を通過した場合、駆動モータ500の駆動をオフし(S105)、再度現像剤ホッパ部201a内の現像剤残量をチェックする(S100)。このように、現像剤補給容器1の位相(回転)を検知して現像剤の補給動作を作動/非作動することで、定量的に現像剤補給を実行できる。更に、現像剤補給容器1の位相(回転)を検知することで、現像剤補給容器1内の現像剤残量をある程度予測することもできる。
 次に、現像剤センサ24kにより検出された現像剤収容量が所定量に達したと判断された場合、つまり、現像剤センサ24kにより現像剤が検出された場合、駆動モータ500の駆動をオフし、現像剤の補給動作を停止する(S106)。この補給動作の停止により、一連の現像剤補給工程が終了する。
 このような、現像剤補給工程は、画像形成に伴い現像剤が消費されて現像剤ホッパ部201a内の現像剤収容量が所定未満になると、繰り返し実行される構成となっている。
〔補給精度、画質、回転駆動負荷の比較〕
 次に、図17~図24を用いて、比較例1、変形例1~5、実施例1の補給精度、画質、回転駆動負荷の比較について説明する。ここでは、本発明の作用効果を最もよく表す駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の配置の違いによる補給精度、画質、回転駆動負荷の優劣を比較した。実施例1では、後述する実施例2に比べて、カム溝1A3(図24)が追加されており、カム溝1A3は容器挿入方向最下流側に配置するのが望ましい。なぜならば、カム溝1A3を容器挿入方向最下流側に配置することで、往復部材51を小型化できるからである。図17は比較例1の部分拡大図、図18は変形例1の部分拡大図、図19は変形例2の部分拡大図、図20は変形例3の部分拡大図、図21は変形例4の部分拡大図、図22は変形例5の部分拡大図、図23は実施例1の部分拡大図、図24は実施例1においてカバー53を外した状態の部分拡大図を示している。
 表1は各構成の違いによる、現像剤補給時における現像剤補給容器1の「補給精度」、「画質」、「回転駆動負荷」を検証した結果を示す。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中の数値と記号の意味は、以下の通りである。
 補給精度20%は、目標値±20%の補給精度である。位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を規制することで、位相検知フラグ62と位相検知センサ61の検知精度が向上する。その結果、トナー排出時にバッフル部材40とカム溝1A3の位相決めが正確に行われることで、貯留部41fに貯まる現像剤の量やポンプ部54の伸縮量も安定するため、補給精度の向上ができる。
 補給精度30%は、目標値±30%の補給精度である。補給精度20%の場合同様、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、補給精度の向上ができる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、補給精度20%と比較すると、振動規制効果が低く、補給精度が劣ってしまう。
 補給精度40%は、目標値±40%の補給精度である。回転振れ規制部を設けていないため、位相検知部の回転振れ起因による振動によって、補給精度30%と比較すると補給精度が劣ってしまう。
 画質◎は、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を規制することができ、回転駆動伝達が向上するため、画質の向上ができる。
 画質○は、◎の場合同様、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することができ、駆動伝達が向上するため、画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、◎と比較すると振動規制効果が低く、画質が劣ってしまう。
 画質△は、回転振れ規制部を設けていないため、駆動受け部の回転振れ起因による振動によって、○と比較すると画質が劣ってしまう。
 容器本体1Aに設けられる位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5は、現像剤補給容器1を現像剤受入れ装置200へ挿入する際、現像剤受入れ装置200に設けられる位相検知フラグ62、ボトル受けローラ23、駆動ギア25と当接または噛み合う構成である(図23)。したがって、現像剤補給容器1を現像剤受入れ装置200へ挿入する際のユーザーの操作性を考慮すると、「位相検知部」、「回転振れ規制部」、「駆動受け部」の周方向外形は容器挿入方向下流側から徐々に大きくなる配置構成が望ましい。よって、「位相検知部」、「回転振れ規制部」、「駆動受け部」の配置構成で駆動受け部の周方向外形が制限されるため、現像剤補給容器1が回転する際の駆動負荷に影響する。以下に「位相検知部」、「回転振れ規制部」、「駆動受け部」の配置構成の違いによる駆動負荷への影響と表1の記号の意味を説明する。
 回転駆動負荷◎は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。
 回転駆動負荷○は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができるが、◎と比べると回転駆動負荷が大きくなる。
 回転駆動負荷△は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、○と比較すると回転駆動負荷が大きくなってしまう。
(比較例1)
 図17を用いて比較例1について説明する。比較例1は容器本体1Aに設けられる駆動受け部1A5、位相検知部1A6と(回転振れ規制部1A4はなし)、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例1とは異なっており、その他の構成は実施例1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)から位相検知部1A6、駆動受け部1A5の順に並ぶ配置である。
 この配置だと、回転振れ規制部を設けていないため、位相検知部の回転振れ起因による振動によって補給精度が悪くなり、おおよそ目標値±40%の補給精度となる。
 画質に関しては、回転振れ規制部を設けていないため、回転振れ規制部を設けた場合と比較すると、駆動受け部の回転振れ起因による振動によって画質が劣ってしまう。
 回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。
(変形例1)
 図18を用いて実施例1の変形例1について説明する。変形例1は容器本体1Aに設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例1とは異なっており、その他の構成は実施例1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、駆動受け部1A5、位相検知部1A6、回転振れ規制部1A4の順に並ぶ配置である。
 この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。
 画質に関しては、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、駆動受け部と回転振れ規制部が隣接して配置されている場合と比較すると、振動規制効果が低く、画質が劣ってしまう。
 回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、駆動受け部が容器挿入方向上流側から1番目に配置された場合や2番目に配置された場合と比較すると、回転駆動負荷が大きくなってしまう。
(変形例2)
 図19を用いて実施例1の変形例2について説明する。変形例2は容器本体1Aに設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例1とは異なっており、その他の構成は実施例1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、位相検知部1A6、駆動受け部1A5、回転振れ規制部1A4の順に並ぶ配置である。
 この配置だと、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上が期待できる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、位相検知部と回転振れ規制部が隣接して配置される場合と比較すると、振動規制効果が低く、おおよそ目標値±30%の補給精度となる。
 画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上ができる。
 回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができる。しかし、駆動受け部を容器挿入方向上流側から1番目に配置した場合と比べると、回転駆動負荷が大きくなる。
(変形例3)
 図20を用いて実施例1の変形例4について説明する。変形例4はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例1とは異なっており、その他の構成は実施例1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、回転振れ規制部1A4、駆動受け部1A5、位相検知部1A6の順に並ぶ配置である。
 この配置だと、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上が期待できる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、位相検知部と回転振れ規制部が隣接して配置される場合と比較すると、振動規制効果が低く、おおよそ目標値±30%の補給精度となる。
 画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上ができる。
 回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができる。しかし、駆動受け部を容器挿入方向上流側から1番目に配置した場合と比べると、回転駆動負荷が大きくなる。
(変形例4)
 図21を用いて実施例1の変形例4について説明する。変形例4は容器本体1Aに設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例1とは異なっており、その他の構成は実施例1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、回転振れ規制部1A4、位相検知部1A6、駆動受け部1A5の順に並ぶ構成である。
 この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。
 画質に関しては、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することができ、回転振れ規制部1A4を設けていない比較例1よりも画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、駆動受け部と回転振れ規制部が隣接して配置されている場合と比較すると、振動規制効果が低く、画質が劣ってしまう。
 回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。
(変形例5)
 図22を用いて実施例1の変形例5について説明する。変形例5は容器本体1Aに設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施形態1とは異なっており、その他の構成は実施形態1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の順に並ぶ構成である。
 この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上が期待でき、おおよそ目標値±20%の補給精度となる。
 画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上ができる。
 回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、駆動受け部が容器挿入方向上流側から1番目に配置された場合や2番目に配置された場合と比較すると、回転駆動負荷が大きくなってしまう。
(実施例1)
 図23、図24を用いて実施例1について説明する。実施例1の容器本体1Aに設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の配置は現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5の順に並ぶ構成である。
 この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上が期待でき、おおよそ目標値±20%の補給精度となる。
 画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上が期待できる。
 回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。
 上述の比較結果では、比較例1、変形例1~5、実施例1の補給精度、画質、回転駆動負荷の優劣を述べているが、本発明においては「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」をどのように配置することも可能である。
 しかし、補給精度、画質、回転駆動負荷の3つの評価項目を比較した場合、「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」の配置構成により、各評価項目の優劣が決まる。以下に「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」の好適な配置構成とその理由を述べる。
 回転駆動負荷に関しては、駆動受け部1A5を容器挿入方向最上流側に配置することで駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。
 補給精度に関しては、位相検知部と回転振れ規制部を隣接して配置することで、位相検知部の回転振れ起因による振動を効率よく規制することができ、位相検知フラグ62と位相検知センサ61の検知精度が向上する。その結果、トナー排出時にバッフル部材40の位相決めが精確に行われるため、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。
 画質に関しては、駆動受け部と回転振れ規制部を隣接して配置することで、駆動受け部の回転振れ起因による振動を効率よく規制することができ、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上が期待できる。
 以上より、最も好適な構成は容器挿入方向下流側からカム溝1A3、位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5と配置する構成、つまり「実施例1」の構成である。
 本実施例によれば、現像剤補給時における現像剤補給容器の回転振れを回転振れ規制部で規制することによって、位相検知部と駆動受け部の双方の回転振れを低減できる。その結果、駆動伝達と位相検知の双方の精度向上ができる。さらに、現像剤補給容器の回転による振動も低減できるため、画質の向上ができる。
 特に本実施例においては、位相検知部1A6の位相検知結果により、容器本体1A、及び容器本体1A内に配置されるバッフル部材40の回転量や回転停止位置が制御されることから、前記回転振れ規制部1A4を隣接配置することで容器内での現像剤の搬送量及びタイミングの制御が容易且つ正確に行える。
 更に前述したように本実施の形態では、容器本体1A4の回転により、現像剤の排出に寄与するポンプ部54を作動させる構成を採用している。そのため前記位相検知部1A6による検知が正確に行えることは、現像剤補給容器1からの排出量が正確に制御できることに繋がる。
 以上から位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5の配置については、本実施例で示したバッフル部材40やポンプ部54を有する現像剤補給容器においては特に有効である。
 次に実施例2について説明する。実施例2では現像剤補給容器1の構成が一部異なっており、それに伴い、現像剤受入れ装置200の構成、及び現像剤補給容器1の現像剤受入れ装置200への着脱動作が一部異なっている。その他の構成に関しては実施例1とほぼ同等である。したがって、本実施例2では上述した実施例1と同様な構成に関しては同符号を用いることで詳細な説明を省略する。
 以下の説明では、画像形成装置の基本構成についての説明を省略し、画像形成装置に搭載される現像剤補給システム、つまり、現像剤受入れ装置(現像剤補給装置)と現像剤補給容器の構成について順に説明する。
(現像剤受入れ装置)
 まず、現像剤受入れ装置200について図26を用いて説明する。図26は実施例2における現像剤受入れ装置200に現像剤補給容器1(図25)を矢印A方向に挿入する途中の様子を示す断面斜視図である。
 図26に示すように、現像剤受入れ装置200には、主に後述する現像剤補給容器1の回転振れ規制部(当接部)1A4と当接するボトル受けローラ23、現像剤補給容器1の駆動受け部1A5に回転駆動力を伝達する駆動ギア25が設けられている。また現像剤受入れ装置200には、現像剤補給容器1の位相検知部(被検知部)1A6と当接することにより現像剤補給容器1の位相(回転)を検知する位相検知フラグ62、位相検知フラグ62を検知する位相検知センサ61が設けられている。さらに現像剤受入れ装置200には、現像剤補給容器1から排出され現像剤を一時的に貯留する現像剤ホッパ部201a、現像剤ホッパ部201a内の現像剤を現像装置201(図1)へ搬送するスクリュー部材27が設けられている。さらに現像剤受入れ装置200には、後述する現像剤補給容器1の封止部材2と係合する封止部材係合部20、現像剤ホッパ部201aに連通する隔壁200fが設けられている。この隔壁200fには現像剤補給容器1の一部を回転可能に支持し、かつ現像剤ホッパ部201aを密封する不図示のシール部材が設けられている。尚、位相検知フラグ62は弾性部材(不図示)により鉛直下方向に付勢されており、回転軸Q(図17)を中心に回転可能となっている。
(現像剤補給容器)
 続いて、実施例2の現像剤補給容器1について図25、図26、図27を用いて説明する。図25は実施例1における現像剤補給容器1の部分斜視図である。図26は現像剤補給容器を現像剤受入れ装置200に対して矢印A方向へ挿入途中の様子を表す部分斜視図である。図27(a)~(c)は現像剤補給容器1を現像剤受入れ装置200に対して矢印A方向に挿入完了するまでの様子を段階的に表す部分断面図である。
 図25に示すように、現像剤補給容器1は主に容器本体1A、フランジ部41、バッフル部材40、封止部材2から構成される。
 現像剤補給容器1は略円筒形状に形成され、その一端面のほぼ中央に容器本体1Aの円筒部より小径の排出口1aが突設されている。排出口1aには排出口1aを閉じる封止部材2が設けてあり、図27(a)~(c)に関連した後述する説明にて理解されるように、この封止部材2が現像剤補給容器1に対して相対的にスライド移動(図25矢印Aもしくは矢印B方向)することにより、排出口1aの開閉動作を行う構成になっている。
 現像剤補給容器1の内部構成について図25を用いて説明する。上述のように、現像剤補給容器1は略円筒形状をしており、現像剤受入れ装置200に略水平に配置され、現像剤受入れ装置200から回転駆動力を受けて、軸Pを中心に矢印R方向に回転する構成になっている。
 そして現像剤補給容器1の内部には現像剤を搬送するためのバッフル部材40が配置される。現像剤補給容器1が回転することにより、螺旋状の突起1A1によって現像剤補給容器1の上流側から下流側へ(矢印A方向)搬送されてきた現像剤はやがてバッフル部材40に到達する。傾斜突起40aの一端は、排出口1aに接続するように設けられており、最終的に現像剤はバッフル部材40の回転に伴って、この突起40aを滑り落ちるように排出口1aへ搬送される。
 現像剤補給容器1の内部構成は、現像剤補給容器1が現像剤受入れ装置200から回転駆動力を受けることにより、現像剤を排出する機能を有するものであれば、特にその内部の形状や構成について限定するものではない。つまり、現像剤補給容器1の内部構成については、実施形態1のように一般的によく知られている螺旋状の突起1A1を形成したものや、その他の構成であっても構わない。
(容器本体)
 容器本体1Aについて、図25を用いて説明する。図25に示すように、容器本体1Aは内部に現像剤を収容する現像剤収容部1A2と、容器本体1Aが軸Pに対してR方向に回転することによって現像剤収容部1A2内の現像剤を矢印A方向へ搬送する螺旋状の突起1A1から構成される。
(フランジ部)
 フランジ部41について図25、図26を用いて説明する。図25に示すように、フランジ部41は、容器本体1Aに取り付けられ、フランジ部41と容器本体1Aは回転軸Pを中心にして矢印R方向に一体的に回転する。フランジ部41は、略中空円筒形状に形成され、その一端面のほぼ中央に円筒部が突設されており、この円筒部先端側が現像剤を現像剤ホッパ部201a(図26)へ排出するための排出口1aとなっている。
 図26に示すように、フランジ部41の他端面の外周側の全周に渡って、現像剤受入れ装置200からの回転駆動力を受ける駆動受け部(駆動入力部)1A5、ボトル受けローラ23と当接することにより現像剤補給容器1の回転振れを規制する回転振れ規制部1A4、周面の一部に回転位相を検知する位相検知部1A6が、一体的に形成されている。
 尚、本実施例2では、駆動受け部1A5と回転振れ規制部1A4と位相検知部1A6がフランジ部41と一体的に形成されている例を示したが、これに限定されるものではない。例えば、駆動受け部1A5と回転振れ規制部1A4と位相検知部1A6を別体として成形し、フランジ部41に一体的に取り付ける構成等であってもよい。
 また、現像剤収容部1A2は、容器本体1Aだけではなく、容器本体1Aとフランジ部41の内部スペースを合わせたものとなる。
 また、本実施例2では、回転振れ規制部1A4に対して位相検知部1A6の形状を凹形状としたが、回転振れ規制部1A4に対して位相検知部1A6の形状を凸形状にしてもかまわない。
 実施例2では、現像剤補給容器1がR方向に回転して現像剤を補給する際(図30)、駆動受け部1A5と位相検知部1A6の双方のラジアル方向のガタ防止効果の向上を目的として、回転振れ規制部1A4の真円度を0.05とした。回転振れ規制部1A4は真円に近いほど、より高いラジアル方向のガタ防止効果が期待できるが、必要以上の幾何公差を設けるとコストアップにつながるため、真円度を0.05とした。
 このような構成とすることで、現像剤補給時に現像剤補給容器1が図30の矢印R方向に回転する際、真円に近い形状の回転振れ規制部1A4とボトル受けローラ23が当接することで位相検知部1A6と駆動受け部1A5の双方の回転振れを抑制できる。その結果、駆動伝達と位相検知の双方の精度向上が期待できる。さらに、現像剤補給容器1の回転による振動も低減できるため、画質の向上が期待できる。
 また、駆動受け部1A5及び位相検知部1A6を回転振れ規制部1A4に隣接して配置した構成としている。このような構成とすることで、駆動受け部1A5と位相検知部1A6とを離れた位置に配置した構成に比べて、位相検知部1A6と駆動受け部1A5の双方の回転振れをより抑制できる。その結果、駆動伝達と位相検知の双方の精度向上や、画質の向上がより期待できる。
(バッフル部材)
 バッフル部材40について図25を用いて説明する。図25に示すように、バッフル部材40は容器本体1Aに取り付けられ、バッフル部材40と容器本体1Aは軸Pを中心にして一体的に矢印R方向に回転する。バッフル部材40には表裏両面に傾斜した傾斜突起40aが複数設けられ、傾斜突起40aの一端は排出口1aに達している。
(封止部材)
 次に、実施例2における封止部材2の構成について図28~図30を用いて更に説明する。図28(a)と図28(b)は封止部材2の斜視図である。図29は封止部材2の(a)正面図、(b)左側面図、(c)右側面図、(d)上面図、(e)C−C断面図である。図30は実施例2における現像剤補給容器1が現像剤受入れ装置200の封止部材係合部20と係合し、現像剤を供給している状態の断面斜視図である。
 図28~図30において、封止部材2は現像剤補給容器1の排出口1aを開封可能に封止する封止部2bを備えている。また、封止部2bは排出口1aの内径よりも適当量大きく設定されたシール部2aを備えている。シール部2aは排出口1aを形成する内壁1bと圧入することにより密着してシールしていることから、適度な弾性を有することが好ましい。
(弾性変形部)
 次に、弾性変形部2cについて図28~図30を用いて説明する。封止部材2は複数の弾性変形部2cを備えている。
 封止部材2の複数の弾性変形部2cには、それぞれ1つの係合突起3が設けられている。この係合突起3が封止部材係合部20によって半径方向内側(図29(e)矢印D方向)へ押圧されることで、弾性変形部2cは容易に弾性変形可能である。更に、係合突起3と対となって解除突起4が設けられており、係合突起3と解除突起4は弾性変形部2cを介して一体となっている。
 一方、現像剤受入れ装置200に設けた封止部材係合部20の係止穴20hは封止部材2の係止面3bと係止するように構成されている。
(係合突起)
 係合突起3は弾性変形部2cの円筒面よりも半径方向外側に向かって突出している。この係合突起3は、現像剤補給容器1と封止部材2とを離間させる(排出口1aを閉状態から開状態にする)際に、封止部材2を現像剤受入れ装置200の被係止部としての係止穴20hにスナップフィット的に係止させるための係止部として作用する係止面3bを有している。また、封止部材2は弾性変形を補助、促進するためのスリット溝2eを備えている。そして、係合突起3及び解除突起4は、半径方向内側(矢印D方向)に押圧された場合には半径方向内側(矢印D方向)に弾性変形し、半径方向内側(矢印D方向)の押圧を解除した場合には、半径方向外側(矢印Dと逆方向)に弾性変形が回復する構成となっている。
 すなわち、図30に示すように、係合突起3は現像剤補給容器1と封止部材2とを相対的にスライド移動(矢印A方向)させて排出口1aを開閉するために封止部材係合部20と係止される係止機能(抜け止め機能)を、弾性変形部2c、係止面3bで果たしている。
 また、封止部材2を現像剤受入れ装置200の封止部材係合部20に挿入する際に、スムーズに挿入されるように、係合突起3はテーパ面3cを有している。
 図26に示すように、現像剤補給容器1を現像剤受入れ装置200に対して矢印A方向に挿入していくと、やがて封止部材係合部20と封止部材2の係合が開始され、テーパ面3cと係合突起3は封止部材2の内面から押圧力を受け、弾性変形部2cが半径方向内側に変位する。更に現像剤補給容器1の挿入を進めると、テーパ面3cと係合突起3が封止部材係合部20の内面から受けていた押圧力が解除される。すると、弾性変形部2cは弾性変位した状態から復帰し、封止部材(係止部)2と現像剤受入れ装置(被係止部)200との係止が完了する。
 そして、係止が完了した後、封止部材2と現像剤補給容器1とを相対的に離間させるために、封止部材2を矢印A方向へスライド移動させることで、排出口1aが閉状態から開状態とされ、現像剤排出可能状態となる。尚、実施例2では、容器本体1Aに固定されたフランジ部41を現像剤受入れ装置200に係止させてスライド方向の移動を規制した状態において、封止部材2を前進(図30、A方向)、後退(図30、B方向)させることで排出口1aの開封、密封を行っている。もちろん、封止部材2を現像剤受入れ装置200に係止させてスライド方向の移動を規制した状態において、容器本体1Aを前進(図30、A方向)、後退(図30、B方向)させることで排出口1aの開封、密封を行う構成であってもよい。
(解除突起)
 次に係合突起3と対を成して設けている解除突起4について図28~図30を用いて説明する。この解除突起4は、現像剤補給容器1を交換する際に封止部材係合部20に係合した封止部材2の係止状態を解除するための突起であって、この係止を解除して古い現像剤補給容器1を取り出して新しい現像剤補給容器1に交換するためのものである。
 この解除突起4は、現像剤受入れ装置200の解除部材21のスライド動作(図30のB方向)により、解除突起4が押圧されることで弾性変形部2cが半径方向内側に弾性変形し、係合突起3と封止部材係合部20の係止状態を解除する役割を果たしている。
 尚、本例では、係合突起3及び解除突起4を円周方向に4分割した位置にそれぞれペアとなるように設けたが、2箇所あるいは3箇所などその位置や数については任意に設定してもかまわない。
(フランジ係止部)
 次に封止部材2のもう一つの機能である、フランジ部41と係止するフランジ係止部5(図28(b))について説明する。
 フランジ係止部5は半径方向外側に突出した突起部5bを備えている。この突起部5bは、図28(b)のようなスナップフィット構造を有し、上述した排出口を形成する内壁1bの段差面41b(図30)と係止して封止部材2の離間距離を規制するための役割を果たしている。
 さらに、このフランジ係止部5はスナップフィット構造であることから、フランジ部41に対してフランジ係止部5を挿入する(図30矢印B方向)際はフランジ係止部5が容易に半径方向内側に撓みながら挿入されるためにスムーズに挿入でき、且つ抜けにくい構成になっている。
 ここで重要なのは、このようにフランジ係止部5に設けた突起部5b及びフランジ係止部5の構成がスナップフィット構造を有しているという点である。スナップフィットの利点は僅かな段差面41bでもスラスト方向(図30A方向)に対しては極めて強い係止力を発揮できる点である。したがって、排出口を形成する内壁1bのような比較的肉厚の薄いような箇所においても、その肉厚の範囲内で僅かな段差面41bを形成することにより封止部材2とフランジ部41を係止するために必要な係止力を、スナップフィット構造によって実現できるのである。
 以上説明してきたような封止部材2はプラスチック等の樹脂を射出成型して製造するのが好ましいが、他の材料及び製造方法であっても、任意に分割、接合しても構わない。また、排出口1aに圧入嵌合してこれを密封する機能が要求されるため、適度な強度と弾性が必要とされる。
 そのような材料としては低密度ポリエチレン、ポリプロピレン、直鎖状ポリアミド、例えば商品名ナイロン、高密度ポリエチレン、ポリエステル、ABS(アクリロニトリルブタジエンスチレン共重合体)、HIPS(耐衝撃性ポリスチレン)等が好ましく利用できる。
 また、シール部のみをエラストマーなどの比較的軟らかい材料にし、封止部材2を先に述べたような樹脂材料にして2色成形するということも、もちろん可能である。このような構成にすると、シール部が軟らかいエラストマーなので密着性が高まりより良いシール性が得られることと、封止部材2の開封時の力を低減でき、より好ましい。尚、実施例2においては封止部材2本体をABS樹脂、シール部2aのみをエラストマーとした2色成形した例を示している。
(現像剤補給容器の挿入動作)
 図26、図27(a)~図27(c)、図30を用いて実施例2における現像剤補給容器1の挿入動作について説明する。
 図26に示すように、現像剤受入れ装置200には、現像剤補給容器1と連結して封止部材2を開閉する封止部材係合部20が具備されている。封止部材係合部20は不図示のベアリング等によって回転可能に支持され、現像剤受入れ装置200内に設けた不図示の駆動機構により、矢印A方向もしくは矢印B方向にスライドする構成になっている。
 図27(a)には、現像剤補給容器1を現像剤受入れ装置200に矢印A方向へ挿入している途中の状態が示されている。この時点ではまだ、排出口1a(図30参照)は封止部材2により封止された状態にある。
 図27(b)には、現像剤補給容器1の挿入が更に矢印A方向へ進み、封止部材2に設けた係合突起3(図28(b))が封止部材係合部20に係止(抜け止め)された状態が示されている。係合突起3と封止部材係合部20の係止方法については上述しているため、ここでは省略する。
 この時、封止部材2は、係合突起3に設けた係止部としての係止面3b(図28(a))が被係止部としての係止穴20h(図30)にスラスト方向(図30軸P方向)に係止されているため、この係止を解除しない限り、封止部材2は封止部材係合部20に固定された状態にある(多少のガタがあっても良い)。
 図27(c)は、封止部材2と封止部材係合部20が係合した後、封止部材2がフランジ部41(図30)から相対的に離れて排出口1a(図30)が開き、現像剤補給が可能となった状態が示されている。
 この状態での駆動モータ(図26)を駆動させると、回転駆動力は、駆動ギア25から駆動受け部1A5へと伝達され、現像剤補給容器1が回転し、現像剤を搬送、排出する構成になっている。尚、封止部材2はフランジ部41に対して空回転する構成になっている。
 また、図27(c)において、現像剤補給容器1は現像剤受入れ装置200に設けられたボトル受けローラ23と回転振れ規制部1A4の当接により回転可能に支持されているため、わずかな駆動トルクでもスムーズに回転することが可能である。尚、ボトル受けローラ23は現像剤受入れ装置200に回転自在に設けてある。上述したように、現像剤補給容器1の内部に収容されている現像剤が排出口1a(図30)から順次排出されることで、現像剤は現像剤ホッパ部201a(図27)に一時的に貯留され、さらにスクリュー部材27(図27)により現像器201b(図1)へ搬送され、現像剤補給が行われる。以上が、現像剤補給容器1の挿入動作である。
(現像剤補給容器の交換動作)
 次に、現像剤補給容器1の交換動作について説明する。画像形成のプロセスに伴い、現像剤補給容器1内の現像剤が略全量消費されると、現像剤受入れ装置200に設けられた現像剤補給容器空検知手段(不図示)によって現像剤補給容器1内の現像剤が無くなったことが検知される。そして、その旨が液晶等の表示手段100b(図3)によりユーザーに知らされる。
 現像剤補給容器1の交換はユーザー自身が行い、その手順は以下の通りである。
 まず、閉じられた状態の交換用前カバー15を図3の位置まで開く。次に、現像剤受入れ装置200の制御によって封止部材係合部20を矢印B方向(図27)にスライドさせ、封止部材係合部20のスライド動作に伴い、図27(c)の状態にある封止部材2は矢印B方向(図27)へスライドする。すると、排出口1aを開放する状態にあった封止部材2が排出口1aに圧入嵌合され、排出口1aが閉止されることで、上記図27(b)に示す状態となる。このとき、封止部材2は封止部材係合部20と係止状態を維持している。
 次に、現像剤受入れ装置200の制御により、解除部材21(図30)が矢印B方向(図27)にスライドする。解除部材21のスライドが進むと、やがて、解除部材21の内面が解除突起4を半径方向内側に押圧し始める。すると、弾性変形部2cが半径方向内側に撓むことにより、封止部材2と封止部材係合部20の係止が解除される。
 次にユーザーは、現像剤受入れ装置200との係止が解除された空の現像剤補給容器1を矢印B(図27)方向に引き出し、現像剤受入れ装置200から取り出す。この後、ユーザーは新しい現像剤補給容器1を現像剤受入れ装置200に矢印A方向へ挿入し(図27(b))、交換用前カバー15を閉じる。そして、上述のように現像剤排出口開閉手段により封止部材係合部20に係止された状態の封止部材2が現像剤補給容器1から離間され、排出口1aが開口される(図27(c))。以上が、トナー補給容器の交換手順である。
〔現像剤受入れ装置による現像剤補給制御〕
 実施例2における現像剤受入れ装置200による現像剤補給制御は実施例1と同様であるため、省略する。
〔補給精度、画質、回転駆動負荷の比較〕
 次に、比較例2、変形例6~10、実施例2(図31)の補給精度、画質、回転駆動負荷の比較について説明する。ここでは、本発明の作用効果を最もよく表す駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の配置の違いによる補給精度、画質、回転駆動負荷の優劣を比較した。実施例2では、実施例1のカム溝1A3が省かれている。尚、図31は実施例2の部分拡大図を示している。
 表2は各構成の違いによる、現像剤補給時における現像剤補給容器1の「補給精度」、「画質」、「回転駆動負荷」を検証した結果を示す。
Figure JPOXMLDOC01-appb-T000002
 なお、表2中の数値と記号の意味は、以下の通りである。
 補給精度20%は、目標値±20%の補給精度である。位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を規制することで、位相検知フラグ62と位相検知センサ61の検知精度が向上する。その結果、トナー排出時にバッフル部材40の位相決めが精確に行われるため、補給精度の向上ができる。
 補給精度30%は、目標値±30%の補給精度である。補給精度20%の場合同様、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、補給精度の向上ができる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、補給精度20%と比較すると、振動規制効果が低く、補給精度が劣ってしまう。
 補給精度40%は、目標値±40%の補給精度である。回転振れ規制部を設けていないため、位相検知部の回転振れ起因による振動によって、補給精度30%と比較すると補給精度が劣ってしまう。
 画質◎は、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を規制することができ、駆動伝達が向上するため、画質の向上ができる。
 画質○は、◎の場合同様、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することができ、回転駆動伝達が向上するため、画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、◎と比較すると振動規制効果が低く、画質が劣ってしまう。
 画質△は、回転振れ規制部を設けていないため、駆動受け部の回転振れ起因による振動によって、○と比較すると画質が劣ってしまう。
 フランジ部41に設けられる位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5は、現像剤補給容器1を現像剤受入れ装置200へ挿入する際、現像剤受入れ装置200に設けられる位相検知フラグ62、ボトル受けローラ23、駆動ギア25と当接または噛み合う構成である(図31)。したがって、現像剤補給容器1を現像剤受入れ装置200へ挿入する際のユーザーの操作性を考慮すると、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」の周方向外形は容器挿入方向下流側から徐々に大きくなる配置構成が望ましい。よって、「位相検知部」、「回転振れ規制部」、「駆動受け部」の配置構成で駆動受け部の周方向外形が制限されるため、現像剤補給容器1が回転する際の駆動負荷に影響する。以下に「位相検知部」、「回転振れ規制部」、「駆動受け部」の配置構成の違いによる駆動負荷への影響と表2の記号の意味を説明する。
 回転駆動負荷◎は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。
 回転駆動負荷○は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができるが、◎と比べると回転駆動負荷が大きくなる。
 回転駆動負荷△は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、○と比較すると回転駆動負荷が大きくなってしまう。
(比較例2)
 比較例2について説明する(不図示)。比較例2はフランジ部41に設けられる駆動受け部1A5、位相検知部1A6と(回転振れ規制部1A4はなし)、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例2とは異なっており、その他の構成は実施例2と同様である。具体的には、現像剤補給容器1の挿入方向下流側からカム溝1A3、位相検知部1A6、駆動受け部1A5の順に並ぶ配置である。
 この配置だと、回転振れ規制部を設けていないため、位相検知部の回転振れ起因による振動によって補給精度が悪くなり、おおよそ目標値±40%の補給精度となる。
 画質に関しては、回転振れ規制部を設けていないため、回転振れ規制部を設けた場合と比較すると、駆動受け部の回転振れ起因による振動によって画質が劣ってしまう。
 回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。
(変形例6)
 実施例2の変形例6について説明する(不図示)。変形例6はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例2とは異なっており、その他の構成は実施例2と同様である。具体的には、現像剤補給容器1の挿入方向下流側から駆動受け部1A5、位相検知部1A6、回転振れ規制部1A4の順に並ぶ配置である。
 この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例2よりも補給精度の向上が期待でき、おおよそ目標値±20%の補給精度となる。
 画質に関しては、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例2よりも画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、駆動受け部と回転振れ規制部が隣接して配置されている場合と比較すると、振動規制効果が低く、画質が劣ってしまう。
 回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、駆動受け部が容器挿入方向上流側から1番目に配置された場合や2番目に配置された場合と比較すると、回転駆動負荷が大きくなってしまう。
(変形例7)
 実施例2の変形例7について説明する(不図示)。変形例7はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施形態2とは異なっており、その他の構成は実施形態2と同様である。具体的には、現像剤補給容器1の挿入方向下流側から位相検知部1A6、駆動受け部1A5、回転振れ規制部1A4の順に並ぶ配置である。
 この配置だと、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、回転振れ規制部1A4を設けていない比較例2よりも補給精度の向上が期待できる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、位相検知部と回転振れ規制部が隣接して配置される場合と比較すると、振動規制効果が低く、おおよそ目標値±30%の補給精度となる。
 画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例2よりも画質の向上ができる。
 回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができる。しかし、駆動受け部を容器挿入方向上流側から1番目に配置した場合と比べると、回転駆動負荷が大きくなる。
(変形例8)
 実施例2の変形例8について説明する(不図示)。変形例8はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例2とは異なっており、その他の構成は実施例2と同様である。具体的には、現像剤補給容器1の挿入方向下流側から回転振れ規制部1A4、駆動受け部1A5、位相検知部1A6の順に並ぶ配置である。
 この配置だと、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、比較例2よりも補給精度の向上が期待できる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、位相検知部と回転振れ規制部が隣接して配置される場合と比較すると、振動規制効果が低く、おおよそ目標値±30%の補給精度となる。
 画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例2よりも画質の向上ができる。
 回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができる。しかし、駆動受け部を容器挿入方向上流側から1番目に配置した場合と比べると、回転駆動負荷が大きくなる。
(変形例9)
 実施例2の変形例9について説明する(不図示)。変形例9はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例2とは異なっており、その他の構成は実施例2と同様である。具体的には、現像剤補給容器1の挿入方向下流側から回転振れ規制部1A4、位相検知部1A6、駆動受け部1A5の順に並ぶ構成である。
 この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部を設けていない比較例2よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。
 画質に関しては、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することで、駆動伝達が向上し、回転振れ規制部を設けていない比較例2よりも画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、駆動受け部と回転振れ規制部が隣接して配置されている場合と比較すると、振動規制効果が低く、画質が劣ってしまう。
 回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。
(変形例10)
 実施例2の変形例10について説明する(不図示)。変形例10はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例2とは異なっており、その他の構成は実施例2と同様である。具体的には、現像剤補給容器1の挿入方向下流側から駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の順に並ぶ構成である。
 この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例2よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。
 画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部を設けていない比較例2よりも画質の向上ができる。
 回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、駆動受け部が容器挿入方向上流側から1番目に配置された場合や2番目に配置された場合と比較すると、回転駆動負荷が大きくなってしまう。
(実施例2)
 図31を用いて実施例2について説明する。実施例2のフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の配置は現像剤補給容器1の挿入方向下流側から位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5の順に並ぶ構成である。
 この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部を設けていない比較例2よりも補給精度の向上が期待でき、おおよそ目標値±20%の補給精度となる。
 画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部を設けていない比較例2よりも画質の向上が期待できる。
 回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。
 上述の比較結果より、比較例2、変形例6~10、実施例2の補給精度、画質、回転駆動負荷の優劣を述べたが、本発明では「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」をどのような配置とすることも可能である。
 しかし、補給精度、画質、回転駆動負荷の3つの評価項目を比較した場合、「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」の配置構成により、各評価項目の優劣が決まる。以下に「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」の好適な配置構成とその理由を述べる。
 回転駆動負荷に関しては、駆動受け部1A5を容器挿入方向最上流側に配置することで駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。
 補給精度に関しては、位相検知部と回転振れ規制部を隣接して配置することで、位相検知部の回転振れ起因による振動を効率よく規制することができ、位相検知フラグ62と位相検知センサ61の検知精度が向上する。その結果、トナー排出時にバッフル部材40の位相決めが正確に行われるため、回転振れ規制部1A4を設けていない比較例2よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。
 画質に関しては、駆動受け部と回転振れ規制部を隣接して配置することで、駆動受け部の回転振れ起因による振動を効率よく規制することができ、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例2よりも画質の向上が期待できる。
 以上より、最も好適な構成は容器挿入方向下流側から位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5と配置する構成、つまり「実施例2」の構成である。
 本実施例によっても、前述した実施例と同様に、現像剤補給時における現像剤補給容器の回転振れを回転振れ規制部で規制することによって、位相検知部と駆動受け部の双方の回転振れを低減できる。その結果、駆動伝達と位相検知の双方の精度向上ができる。さらに、現像剤補給容器の回転による振動も低減できるため、画質の向上ができる。
〔他の実施例〕
 前述した実施例では、位相検知部1A6が凹部(又は凸部)である構成を例示したが、これに限定されない。例えば、図32に示すように、位相検知部1A6を回転振れ規制部1A4と同じ面上に設けた銀紙などの反射面とする構成でも良い。この構成の場合、位相検知部1A6を検知する装置側の位相検知センサ63を光学センサとする。このように構成しても、前述した実施例と同様の効果が得られる。
 また前述した実施例では、画像形成装置としてプリンタを例示したが、本発明はこれに限定されるものではない。例えば複写機、ファクシミリ装置等の他の画像形成装置や、或いはこれらの機能を組み合わせた複合機等の他の画像形成装置であっても良い。これらの画像形成装置に用いられる現像剤補給容器或いは現像剤補給システムに本発明を適用することにより同様の効果を得ることができる。
 本発明によれば、駆動受け部と被検知部とが近い構成の場合に、駆動受け部で受ける駆動力の被検知部への影響を小さくすることができる。

Claims (7)

  1. 現像剤を収容する収容部と、前記収容部に収容された現像剤を現像剤補給容器から排出する排出口と、前記収容部の現像剤を前記排出口に向かって搬送する現像剤搬送部と、回転駆動力を受ける回転可能な駆動受け部と、前記駆動受け部が受けた回転駆動力を前記搬送部に伝達する駆動伝達部と、前記駆動受け部の回転を検知するための被検知部と、現像剤受入れ装置に設けられた回転部材と当接する当接面とを有し、現像剤受入れ装置に着脱可能な現像剤補給容器であって、前記駆動受け部と前記被検知部と前記当接面とは一体で形成されている現像剤補給容器。
  2. 前記被検知部と前記駆動受け部の間に前記当接面を有することを特徴とする請求項1に記載の現像剤補給容器。
  3. 前記現像剤補給容器の前記現像剤受入れ装置に対する挿入方向下流側から前記被検知部、前記当接面、前記駆動受け部の順に配置することを特徴とする請求項1または請求項2に記載の現像剤補給容器。
  4. 前記収容部の圧力を周期的に変化させることで現像剤補給容器の現像剤を排出するポンプ部を有することを特徴とする請求項1乃至請求項3のいずれか1項に記載に記載の現像剤補給容器。
  5. 前記駆動受け部に入力する回転駆動力を前記ポンプ部を動作させる力へ変換する往復部材とカム溝を有することを特徴とする請求項4に記載の現像剤補給容器。
  6. 前記現像剤補給容器の前記現像剤受入れ装置に対する挿入方向下流側から前記往復部材、前記ポンプ部、前記カム溝、前記被検知部、前記当接面、前記駆動受け部の順に配置することを特徴とする請求項5に記載の現像剤補給容器。
  7. 前記駆動受け部及び前記被検知部を前記当接面に隣接して配置することを特徴とする請求項1乃至請求項6のいずれか1項に記載の現像剤補給容器。
PCT/JP2013/060407 2013-03-11 2013-03-29 現像剤補給容器 WO2014141488A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380075685.XA CN105122146B (zh) 2013-03-11 2013-03-29 显影剂供应容器
US14/850,004 US9348261B2 (en) 2013-03-11 2015-09-10 Developer supply container
US15/098,528 US20160223981A1 (en) 2013-03-11 2016-04-14 Developer supply container
US15/685,412 US10295956B2 (en) 2013-03-11 2017-08-24 Developer supply container
US16/407,454 US10747167B2 (en) 2013-03-11 2019-05-09 Developer supply container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-047971 2013-03-11
JP2013047971A JP6137882B2 (ja) 2013-03-11 2013-03-11 現像剤補給容器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/850,004 Continuation US9348261B2 (en) 2013-03-11 2015-09-10 Developer supply container

Publications (1)

Publication Number Publication Date
WO2014141488A1 true WO2014141488A1 (ja) 2014-09-18

Family

ID=51536181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060407 WO2014141488A1 (ja) 2013-03-11 2013-03-29 現像剤補給容器

Country Status (5)

Country Link
US (4) US9348261B2 (ja)
JP (1) JP6137882B2 (ja)
CN (1) CN105122146B (ja)
TW (6) TWI598706B (ja)
WO (1) WO2014141488A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240056A (zh) * 2018-11-12 2019-01-18 珠海天威飞马打印耗材有限公司 显影剂供给容器

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137882B2 (ja) * 2013-03-11 2017-05-31 キヤノン株式会社 現像剤補給容器
JP6021699B2 (ja) 2013-03-11 2016-11-09 キヤノン株式会社 現像剤補給容器及び現像剤補給システム
JP6180140B2 (ja) 2013-03-19 2017-08-16 キヤノン株式会社 現像剤補給容器
JP6385251B2 (ja) 2014-11-10 2018-09-05 キヤノン株式会社 現像剤補給容器、現像剤補給装置、及び、画像形成装置
JP6429597B2 (ja) 2014-11-10 2018-11-28 キヤノン株式会社 現像剤補給容器
JP2016090932A (ja) 2014-11-10 2016-05-23 キヤノン株式会社 現像剤補給容器、現像剤補給装置、及び、画像形成装置
TWI820495B (zh) 2015-02-27 2023-11-01 日商佳能股份有限公司 滾筒單元、卡匣
JP6639156B2 (ja) * 2015-08-31 2020-02-05 キヤノン株式会社 画像形成装置及び現像剤補給容器
JP6948119B2 (ja) * 2016-09-30 2021-10-13 キヤノンファインテックニスカ株式会社 回転検知機構及び画像形成装置
JP7005250B2 (ja) 2017-09-21 2022-01-21 キヤノン株式会社 現像剤補給容器
JP7000091B2 (ja) 2017-09-21 2022-01-19 キヤノン株式会社 現像剤補給容器及び現像剤補給システム
JP7039226B2 (ja) 2017-09-21 2022-03-22 キヤノン株式会社 現像剤補給容器及び現像剤補給システム
JP7005249B2 (ja) 2017-09-21 2022-01-21 キヤノン株式会社 現像剤補給容器及び現像剤補給システム
JP7009133B2 (ja) 2017-09-21 2022-01-25 キヤノン株式会社 現像剤補給容器
CN111183016A (zh) * 2017-10-05 2020-05-19 惠普发展公司,有限责任合伙企业 用于分配构建材料的供应站
CN108469720B (zh) * 2018-01-30 2020-07-14 中山市汇佳复印设备科技有限公司 显影剂供应组件以及显影剂供给容器
JP6862388B2 (ja) 2018-04-19 2021-04-21 キヤノン株式会社 現像剤補給容器
JP7255163B2 (ja) * 2018-12-18 2023-04-11 富士フイルムビジネスイノベーション株式会社 収納容器の取付構造、画像形成ユニット、画像形成装置
PL3982200T3 (pl) 2019-09-17 2024-01-03 Canon Kabushiki Kaisha Wkład z tonerem i urządzenie tworzące obraz

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720707A (ja) * 1993-07-06 1995-01-24 Ricoh Co Ltd トナー保持方法
JP2004280064A (ja) * 2003-02-28 2004-10-07 Ricoh Co Ltd 現像剤収容器、現像剤供給装置及び画像形成装置
JP2009265369A (ja) * 2008-04-25 2009-11-12 Toshiba Corp 画像形成装置、プロセスカートリッジ、トナー残量検知装置およびトナー残量検知手段。
JP2013015826A (ja) * 2011-06-06 2013-01-24 Canon Inc 現像剤補給容器及び現像剤補給システム

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991584A (en) * 1998-10-07 1999-11-23 Katun Coporation Toner cartridge assembly
JP4731735B2 (ja) * 2001-06-11 2011-07-27 キヤノン株式会社 画像形成装置
US6785479B2 (en) * 2001-12-28 2004-08-31 Canon Kabushiki Kaisha Image forming apparatus having a control section for detecting an amount of developer and an amount detection method of developer of image forming apparatus
JP3854893B2 (ja) * 2002-04-25 2006-12-06 キヤノン株式会社 現像剤容器
CN1754132B (zh) * 2003-02-28 2013-01-30 株式会社理光 显影剂容器,显影剂供给装置及成像装置
US7050728B2 (en) 2003-04-25 2006-05-23 Canon Kabushiki Kaisha Developer supply container detachably mountable to image forming apparatus detecting the amount of developer remaining in the container
JP4097591B2 (ja) 2003-11-12 2008-06-11 株式会社リコー 画像形成装置
JP2005181475A (ja) 2003-12-17 2005-07-07 Murata Mach Ltd トナーボトルの判別装置及び判別方法
JP4532986B2 (ja) 2004-05-19 2010-08-25 キヤノン株式会社 トナー補給容器及び画像形成装置
JP4615916B2 (ja) * 2004-07-12 2011-01-19 株式会社東芝 画像形成装置
JP2006091074A (ja) 2004-09-21 2006-04-06 Murata Mach Ltd トナー補給装置及びトナー補給方法
JP4579655B2 (ja) * 2004-11-12 2010-11-10 キヤノン株式会社 トナーカートリッジおよび画像形成装置
JP4603905B2 (ja) 2005-02-24 2010-12-22 キヤノン株式会社 現像剤補給容器及び現像剤補給システム
JP2007093931A (ja) 2005-09-28 2007-04-12 Brother Ind Ltd 現像カートリッジおよび画像形成装置
JP2007148277A (ja) 2005-11-30 2007-06-14 Ricoh Co Ltd 粉体供給装置及び画像形成装置
JP2009116120A (ja) 2007-11-07 2009-05-28 Ricoh Co Ltd トナー補給装置及び画像形成装置
US8068748B2 (en) * 2008-04-16 2011-11-29 Xerox Corporation Methods and systems for sensing an amount of material in a toner cartridge
JP5376291B2 (ja) * 2008-10-08 2013-12-25 株式会社リコー 画像形成装置
JP5311029B2 (ja) 2009-02-16 2013-10-09 村田機械株式会社 画像形成装置
CN103869665B (zh) 2009-03-30 2018-02-02 佳能株式会社 显影剂供给容器和显影剂供给系统
JP5300599B2 (ja) * 2009-06-01 2013-09-25 キヤノン株式会社 現像剤供給装置
JP5483101B2 (ja) * 2009-09-04 2014-05-07 株式会社リコー トナー容器及び画像形成装置
US8965250B2 (en) * 2010-03-17 2015-02-24 Ricoh Company, Limited Cap, powder container, developer supply device, and image forming apparatus
US8953986B2 (en) 2010-04-27 2015-02-10 Ricoh Company, Limited Powder container, powder conveying apparatus, and image forming apparatus
WO2011136129A1 (ja) 2010-04-27 2011-11-03 株式会社リコー 粉体収容器、粉体搬送装置及び画像形成装置
JP5569241B2 (ja) * 2010-08-09 2014-08-13 株式会社リコー トナー補給装置、及び、画像形成装置
JP2012252178A (ja) * 2011-06-03 2012-12-20 Ricoh Co Ltd トナー容器、及び、画像形成装置
JP2013020035A (ja) 2011-07-11 2013-01-31 Ricoh Co Ltd 粉体収納容器、及び、画像形成装置
JP6137882B2 (ja) * 2013-03-11 2017-05-31 キヤノン株式会社 現像剤補給容器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720707A (ja) * 1993-07-06 1995-01-24 Ricoh Co Ltd トナー保持方法
JP2004280064A (ja) * 2003-02-28 2004-10-07 Ricoh Co Ltd 現像剤収容器、現像剤供給装置及び画像形成装置
JP2009265369A (ja) * 2008-04-25 2009-11-12 Toshiba Corp 画像形成装置、プロセスカートリッジ、トナー残量検知装置およびトナー残量検知手段。
JP2013015826A (ja) * 2011-06-06 2013-01-24 Canon Inc 現像剤補給容器及び現像剤補給システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240056A (zh) * 2018-11-12 2019-01-18 珠海天威飞马打印耗材有限公司 显影剂供给容器
CN109240056B (zh) * 2018-11-12 2024-04-23 珠海天威飞马打印耗材有限公司 显影剂供给容器

Also Published As

Publication number Publication date
TWI598706B (zh) 2017-09-11
CN105122146A (zh) 2015-12-02
JP2014174387A (ja) 2014-09-22
US9348261B2 (en) 2016-05-24
US10747167B2 (en) 2020-08-18
TW201804268A (zh) 2018-02-01
TW201818164A (zh) 2018-05-16
TW201435521A (zh) 2014-09-16
US20170351212A1 (en) 2017-12-07
TW201631419A (zh) 2016-09-01
TWI525403B (zh) 2016-03-11
JP6137882B2 (ja) 2017-05-31
TW202006484A (zh) 2020-02-01
US20190265640A1 (en) 2019-08-29
US20160004185A1 (en) 2016-01-07
US20160223981A1 (en) 2016-08-04
CN105122146B (zh) 2020-05-08
US10295956B2 (en) 2019-05-21
TW201921183A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
JP6137882B2 (ja) 現像剤補給容器
EP1533664B1 (en) Developer supply container
US10133211B2 (en) Developer supplying container and developer supplying system
JP3884973B2 (ja) トナー補給容器及びトナー補給装置
JP4422956B2 (ja) 現像剤補給機構
JP7009133B2 (ja) 現像剤補給容器
JP6091270B2 (ja) 現像剤補給装置
JP6532498B2 (ja) 現像剤補給容器
JP4006426B2 (ja) 現像剤補給装置及び画像形成装置
JP2015152769A (ja) 現像剤の補給容器
JP4621019B2 (ja) 現像剤補給容器
JP2016090935A (ja) 現像剤の補給容器及び画像形成装置
JP2003295591A (ja) 現像剤補給装置、画像形成装置及び現像剤補給容器
JP2019152877A (ja) 現像剤補給容器
CN109426116B (zh) 显影剂收容容器以及具备该显影剂收容容器的图像形成装置
JP4040304B2 (ja) トナー補給容器
JP7175678B2 (ja) 現像剤補給容器
JP2022043332A (ja) 現像剤補給容器及び現像剤補給システム
JP2018128611A (ja) 現像剤補給容器
JP2011123338A (ja) 現像剤補給容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877787

Country of ref document: EP

Kind code of ref document: A1