WO2014136712A1 - ゴム組成物及び加硫成形体 - Google Patents

ゴム組成物及び加硫成形体 Download PDF

Info

Publication number
WO2014136712A1
WO2014136712A1 PCT/JP2014/055249 JP2014055249W WO2014136712A1 WO 2014136712 A1 WO2014136712 A1 WO 2014136712A1 JP 2014055249 W JP2014055249 W JP 2014055249W WO 2014136712 A1 WO2014136712 A1 WO 2014136712A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rubber composition
rubber
parts
peroxide
Prior art date
Application number
PCT/JP2014/055249
Other languages
English (en)
French (fr)
Inventor
怜 碇
阿部 靖
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CN201480012735.4A priority Critical patent/CN105026483A/zh
Priority to JP2015504289A priority patent/JP6225165B2/ja
Publication of WO2014136712A1 publication Critical patent/WO2014136712A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene

Definitions

  • the present invention relates to a rubber composition mainly composed of chloroprene rubber and chlorinated polyethylene, and a vulcanized molded product obtained by vulcanization molding of the rubber composition. More specifically, when vulcanized and molded, a rubber composition that can be used as an industrial rubber part such as a sealing material for automobiles, a hose material, a rubber mold, a gasket, and the rubber composition is vulcanized and molded. And the vulcanizate obtained.
  • Patent Documents 1 to 3 disclose chloroprene rubber technology with improved heat resistance.
  • patent document 4 the technique of the chloroprene rubber which improved ozone resistance is disclosed.
  • the main object of the present invention is to provide a rubber composition having excellent heat resistance and ozone resistance when vulcanized and a vulcanized molded product obtained by vulcanizing and molding the rubber composition. .
  • a blend rubber composed of 30 to 95% by mass of chloroprene rubber and 5 to 70% by mass of chlorinated polyethylene, 0.1 to 20 parts by mass of a vulcanization accelerator, and 0.2 to 5 of a crosslinking aid.
  • a rubber composition having a mass part.
  • the rubber composition may further contain 0.1 to 2 parts by mass of phenothiazine.
  • the chlorinated polyethylene may have a chlorination rate of 20 to 50%.
  • the vulcanization accelerator may be a peroxide.
  • the peroxide was substituted with dicumyl peroxide, valerate peroxide, C1-C8 alkyl peroxide, and C1-C8 alkyl group optionally substituted with chloro group. It can be at least one selected from aromatic peroxides.
  • the crosslinking aid may be at least one compound selected from a bifunctional ester compound and a trifunctional ester compound.
  • the crosslinking assistant may be at least one selected from trimethylolpropane, ethylene glycol dimethacrylate, triallyl isocyanate, and phenylene dimaleimide.
  • the chloroprene rubber may be at least one selected from mercaptan-modified chloroprene rubber and xanthogen-modified chloroprene rubber.
  • a vulcanized molded body can be obtained by vulcanizing and molding the rubber composition described above.
  • This vulcanized molded product can be used as industrial rubber parts such as automotive sealing materials, hose materials, rubber molds, and gaskets.
  • a rubber composition excellent in heat resistance and ozone resistance when vulcanized and a vulcanized molded product obtained by vulcanizing and molding the rubber composition are obtained.
  • the rubber composition according to this embodiment comprises (1-1) 30 to 95% by mass of chloroprene rubber and (1-2) 100 parts by mass of blended rubber consisting of 5 to 70% by mass of chlorinated polyethylene, and (2 ) 0.1 to 20 parts by mass of a vulcanization accelerator and (3) 0.2 to 5 parts by mass of a crosslinking aid.
  • the rubber composition may have (4) 0.1-2 parts by mass of phenothiazine.
  • Chloroprene rubber is mainly composed of a chloroprene polymer.
  • the chloroprene polymer is a homopolymer of 2-chloro-1,3-butadiene (hereinafter referred to as chloroprene) or a copolymer of chloroprene and other monomers.
  • examples of monomers copolymerizable with chloroprene include esters of acrylic acid such as methyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, butyl methacrylate, and methacrylic acid 2 -Esters of methacrylic acid such as ethylhexyl, hydroxy (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxymethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2,3 -Dichloro-1,3-butadiene, 1-chloro-1,3-butadiene, butadiene, isoprene, ethylene, styrene, acrylonitrile and the like.
  • esters of acrylic acid such as methyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, butyl methacrylate,
  • the monomer copolymerized with chloroprene is not limited to one type, for example, it may be a copolymer of three or more types of monomers including chloroprene. Further, the polymer structure of the chloroprene polymer is not particularly limited.
  • the chloroprene rubber can be classified into a mercaptan-modified type, a xanthogen-modified type, and a sulfur-modified type according to the type of molecular weight regulator added after polymerizing the monomer.
  • the chloroprene rubber contained in the rubber composition of the present embodiment uses mercaptan-modified chloroprene rubber and / or xanthogen-modified chloroprene rubber among these chloroprene rubbers.
  • Mercaptan-modified chloroprene rubber is obtained by adjusting the molecular weight of chloroprene rubber using alkyl mercaptans such as n-dodecyl mercaptan, t-dodecyl octyl mercaptan, octyl mercaptan, and the like.
  • Mercaptan-modified chloroprene rubber has the property of being superior in adhesion to metal compared to other modified types. For this reason, the rubber composition and vulcanization molding which improved adhesiveness with a metal can be obtained by using mercaptan modification chloroprene rubber.
  • Xanthogen-modified chloroprene rubber is obtained by adjusting the molecular weight of chloroprene rubber using an alkylxanthogen compound.
  • Xanthogen-modified chloroprene rubber has characteristics such as excellent mechanical properties such as tensile strength and elongation at break as compared with other modified types. Therefore, by using xanthogen-modified chloroprene rubber, it is possible to obtain a rubber composition and a vulcanized molded body with improved mechanical properties.
  • the mercaptan-modified chloroprene rubber and xanthogen-modified chloroprene rubber can be used in combination according to the properties of the intended rubber composition and vulcanizate.
  • the chloroprene rubber of this embodiment is obtained by emulsion polymerization of a raw material monomer containing chloroprene as a main component using rosin or the like as an emulsifying dispersant.
  • polymerization reaction catalyst examples include inorganic peroxides such as potassium sulfate, organic peroxides such as ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, and diacyl peroxides. It is done.
  • catalyst activator examples include sodium sulfite, potassium sulfite, iron (II) oxide, anthraquinone, sodium ⁇ -sulfonate, formamidine sulfonic acid, L-ascorbic acid and the like.
  • the polymerization initiator is not particularly limited, and those used for usual emulsion polymerization of chloroprene can be used. Specifically, persulfates such as potassium persulfate and organic peroxides such as 3-butyl hydroperoxide are preferably used.
  • the chain transfer agent is not particularly limited, and those used for usual emulsion polymerization of chloroprene can be used. Specifically, long chain alkyl mercaptans such as n-dodecyl mercaptan, t-dodecyl mercaptan and n-octyl mercaptan, dialkylxanthogen disulfides such as diisopropylxanthogen disulfide and diethylxanthogen disulfide, and known chain transfer agents such as iodoform are used. Can be used.
  • long chain alkyl mercaptans such as n-dodecyl mercaptan, t-dodecyl mercaptan and n-octyl mercaptan
  • dialkylxanthogen disulfides such as diisopropylxanthogen disulfide and diethylxanthogen disulfide
  • the polymerization terminator added when the polymerization is terminated is not particularly limited, and a commonly used one can be used. Specifically, phenothiazine, para-t-butylcatechol, hydroquinone, hydroquinone monomethyl ether, diethylhydroxylamine, thiodiphenylamine, 1,3,5-trihydroxybenzene and the like can be used.
  • the polymerization temperature of the chloroprene latex is not particularly limited, and can generally be within a range where emulsion polymerization is performed. Further, the final polymerization rate of the chloroprene polymer (chloroprene rubber) obtained in the above-described polymerization step is not particularly limited, but is preferably adjusted arbitrarily within the range of 30 to 100%.
  • the unreacted monomer is removed (demonomer) from the polymerization solution obtained in the polymerization step.
  • the method is not particularly limited, and a known method such as heating under reduced pressure can be applied.
  • the final polymerization rate of the chloroprene polymer is preferably 30% or more.
  • (1-2) Chlorinated polyethylene The chlorinated polyethylene contained in the rubber composition of the present embodiment is added to improve the heat resistance and ozone resistance of the obtained rubber composition and vulcanized molded article.
  • the chlorinated polyethylene is obtained by treating polyethylene with trichloroethane or carbon tetrachloride containing chlorine and substituting a part of hydrogen in the molecule with chlorine.
  • a chlorinated polyethylene having a chlorination rate of 20 to 50% because the effect of improving the heat resistance of the resulting rubber composition and vulcanizate is high. More preferably, it is 25% or more. Further, it is more preferably 45% or less.
  • the chlorinated polyethylene for example, commercially available products such as Eraslen (registered trademark) manufactured by Showa Denko KK and Tyrin (registered trademark) manufactured by Dow Chemical Japan Co., Ltd. can be specifically used.
  • this chlorination rate refers to the mass ratio of chlorine atoms in chlorinated polyethylene.
  • the chlorination rate can be quantified by an oxygen flask method in accordance with JIS-K7229.
  • Blend rubber The blend rubber contained in the rubber composition of the present embodiment is obtained by kneading the above-mentioned (1-1) chloroprene rubber and (1-2) chlorinated polyethylene.
  • the blending ratio of chloroprene rubber and chlorinated polyethylene in the blend rubber is 30 to 95% by mass of chloroprene rubber and 5 to 70% by mass of chlorinated polyethylene.
  • the chloroprene rubber is preferably in the range of 50 to 90% by mass and chlorinated polyethylene in the range of 10 to 50% by mass.
  • the ratio of the chloroprene rubber is higher than this range, the heat resistance and ozone resistance of the resulting vulcanized molded product are lowered.
  • the ratio of chlorinated polyethylene becomes higher than this range, the tensile strength of the obtained vulcanized molded body will fall.
  • Examples of an apparatus for kneading chloroprene rubber and chlorinated polyethylene include a closed mixer and a biaxial open roll.
  • Vulcanization accelerator contained in the rubber composition of the present embodiment is added to accelerate the vulcanization of the resulting rubber composition.
  • a peroxide as the vulcanization accelerator.
  • the addition amount of the vulcanization accelerator is 0.1 to 20 parts by mass, preferably 0.5 parts by mass or more with respect to 100 parts by mass of the blend rubber in the rubber composition. Moreover, it is preferable that it is 15 mass parts or less. When the addition amount of the vulcanization accelerator is less than 0.1 parts by mass, the rubber composition is not vulcanized. Moreover, when the addition amount of a vulcanization accelerator exceeds 20 mass parts, the hardness of the obtained vulcanization molded object will be high, and the heat resistance after heat aging will also fall.
  • the vulcanization accelerator contained in the rubber composition of the present embodiment may be substituted with dicumyl peroxide, valerate peroxide, C1-C8 alkyl peroxide, or chloro group.
  • Aromatic peroxides substituted with C1-C8 alkyl groups are used alone or in combination.
  • the dicumyl peroxide is not particularly limited as long as it is a peroxide containing two cumyl groups, and examples thereof include dicumyl peroxide.
  • valerate peroxide is not particularly limited as long as it is a valerate peroxide containing a valerate group, and examples thereof include n-butyl 4,4-di (t-butylperoxy) valerate.
  • the alkyl peroxide is not particularly limited as long as it is a peroxide containing a C1 to C8 alkyl group.
  • the aromatic peroxide substituted with an alkyl group which may be substituted with a chloro group includes an aromatic group substituted with a C1-C8 alkyl group which may be substituted with a chloro group.
  • examples thereof include t-butylcumyl peroxide, ⁇ , ⁇ ′-di (t-butylperoxy) diisopropylbenzene, benzoyl peroxide, 2,4-dichloro-benzoyl peroxide, and the like. .
  • crosslinking aid contained in the rubber composition of this embodiment is added to improve the vulcanization speed and vulcanization density of the rubber composition.
  • the crosslinking aid it is preferable to use at least one compound selected from a bifunctional ester compound or a trifunctional ester compound.
  • the addition amount of the crosslinking aid is 0.2 to 5 parts by mass, preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the blend rubber in the rubber composition. Moreover, it is preferable that it is 4 mass parts or less. If the addition amount of the crosslinking aid is less than 0.2 parts by mass, the rubber composition is not vulcanized. When the addition amount of the crosslinking aid exceeds 5 parts by mass, the resulting vulcanizate has high hardness, and the heat resistance after heat aging also decreases.
  • crosslinking aid specifically, trimethylolpropane, ethylene glycol dimethacrylate, triallyl isocyanate, triallyl cyanate, maleimide compound and the like are used alone or in combination.
  • maleimide compounds include N-cyclohexylmaleimide, N-methylmaleimide, N-ethylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, 2-methyl-N-phenylmaleimide, 2,3-dimethylmaleimide, 2-ethylmaleimide, 2-n-butylmaleimide, N-benzylmaleimide, N, N′-1,2-ethylbismaleimide, N, N′-1,2-hexylbismaleimide, N-propionic acid maleimide, 4 , 4'-bismaleimide diphenylmethane, 6,7-methylenedioxy-4-methyl-3-coumaric acid maleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, N-bromomethyl-2,3 -Dichloromaleimide, N- (3-maleimidobenzoyloxy) succinic acid N- (3-maleimide,
  • Phenothiazine in addition to these compounds, phenothiazine can also be added to the rubber composition of this embodiment. Phenothiazine is added in order to improve the processing stability of the resulting rubber composition and vulcanized molded article.
  • the addition amount of phenothiazine is preferably in the range of 0.1 to 2 parts by mass with respect to 100 parts by mass of the blend rubber. Moreover, the addition amount of phenothiazine is more preferably 0.3 parts by mass or more. The addition amount of phenothiazine is more preferably 1.5 parts by mass or less. By adding phenothiazine within this range, the effect of improving the processing stability of the resulting rubber composition and vulcanized molded article is high.
  • the rubber composition is obtained by kneading the above compound at a temperature lower than the vulcanization temperature of the blend rubber.
  • the kneading apparatus include a mixer, a Banbury mixer, a kneader mixer, and a two-roller.
  • carbon black In the rubber composition, carbon black, a plasticizer, a vulcanizing agent, a filler other than carbon black, a reinforcing agent, a processing aid, an antiaging agent, and the like may be added as long as the effects of the present invention are not impaired.
  • the addition amount of the vulcanization accelerator, the crosslinking aid, and phenothiazine described above with respect to 100 parts by mass of the blend rubber is substantially the same as the content of each compound with respect to 100 parts by mass of the blend rubber. It is synonymous.
  • the rubber composition of the present embodiment has a blend rubber composed of a specific ratio of chloroprene rubber and chlorinated polyethylene, and a specific amount of a vulcanization accelerator and a cross-linking auxiliary agent.
  • the heat resistance and ozone resistance can be improved.
  • this rubber composition can also improve processing stability by having further a specific amount of phenothiazine.
  • the vulcanized molded body of this embodiment is vulcanized after molding the rubber composition of the first embodiment described above into various desired shapes, or molded into various shapes after vulcanizing the rubber composition. It is obtained by doing.
  • Examples of methods for molding a vulcanized molded body from a rubber composition include methods such as press molding, extrusion molding, and calendar molding.
  • the temperature for vulcanizing the rubber composition may be appropriately set according to the composition of the rubber composition, and is usually in the range of 140 to 220 ° C., preferably 150 to 180 ° C. Further, the time for vulcanization may be set as appropriate depending on the composition and shape of the rubber composition, and is usually in the range of 10 minutes to 60 minutes.
  • the vulcanized molded body of the present embodiment is excellent in heat resistance and ozone resistance because it is obtained by vulcanizing and molding the specific rubber composition described in the first embodiment.
  • Example 1 Manufacture of rubber composition
  • DOS registered trademark
  • Tables 1 to 3 show the evaluation of the vulcanized molded body obtained by the above-described method. The evaluation in Tables 1 to 3 was performed by the following method.
  • Elongation at cutting was performed by molding a sheet-like vulcanized molded body into a 2 mm-thick dumbbell-shaped No. 3 test piece in accordance with JIS K6251, and vulcanized rubber manufactured by Shimadzu Corporation. Measurement was performed at a tensile speed of 500 mm / min using a long stroke tensile test system. What showed the value of 400% or more was set as the pass.
  • Durometer hardness (Type-A) In the durometer hardness (Type-A) test, a sheet-like vulcanizate was measured using a durometer hardness meter according to JIS K6253. What showed the value of 60 or more and 70 or less was set as the pass.
  • Rate of change in elongation after cutting after heat aging is the same as described above after heat-treating a sheet-like vulcanizate at 130 ° C. for 70 hours.
  • the change rate of the value before and after the heat treatment is calculated by the following formula 1 (where A is the value of elongation at break of the measurement sample before heat treatment, B is the value of elongation at break of the measurement sample after heat treatment) Calculated). Those showing values of -15% or more and 0% or less were regarded as acceptable.
  • Rate of change in elongation after heat aging (BA) / A ⁇ 100 (Formula 1) (4) Change in durometer hardness (Type-A) after heat aging The test of change in durometer hardness after heat aging is performed by heat treating a sheet-like vulcanized molded body at 130 ° C. for 70 hours and then durometer hardness. (Type-A) is measured by the same method as described above, and is a value obtained by subtracting the value of durometer hardness (Type-A) before heat treatment from the value of durometer hardness (Type-A) after heat treatment. Those showing a value of 15 or less were considered acceptable. (5) Ozone resistance The ozone resistance test was measured according to JIS K6259. Measurement conditions were as follows. In an atmosphere of 40 ° C. and ozone concentration of 50 pphm, the sample was stretched by 20% and the state after 216 hours was observed. A sample in which there was no change was marked as ⁇ .
  • the rubber compositions and vulcanized molded bodies in Examples 2 to 18 and Comparative Examples 1 to 8 were produced in the same manner as in Example 1 except that the conditions for producing the rubber composition were changed as follows. It was evaluated in the same manner as 1.
  • Example 2 In the vulcanized molded bodies of Examples 2 to 6, the types of vulcanization accelerators used in Example 1 were changed to those described in Table 1, respectively.
  • vulcanization accelerator B is Perhexa (registered trademark) C-40 manufactured by NOF Corporation
  • vulcanization accelerator C is Park Mill (registered trademark) D-40 manufactured by NOF Corporation
  • D is perbutyl (registered trademark) P-40 manufactured by NOF Corporation
  • vulcanization accelerator E is perhexa (registered trademark) 25B manufactured by NOF Corporation
  • vulcanization accelerator F is perbutyl (manufactured by NOF Corporation).
  • (Registered trademark) C C.
  • Example 7 In the vulcanized molded body of Example 7, the addition amounts of magnesium oxide, vulcanization accelerator, and crosslinking aid used in Example 1 were changed to the amounts shown in Table 1, respectively, and 1 part by mass of zinc oxide was further added. It is added.
  • Example 8 In the vulcanized molded body of Example 8, the addition amounts of the vulcanization accelerator and the crosslinking aid used in Example 1 were changed to the amounts shown in Table 1, respectively.
  • Example 9 In the vulcanized molded body of Example 9, the amount of the crosslinking aid used in Example 1 was changed to the amount described in Table 1.
  • Example 10 to 12 In the vulcanized moldings of Examples 10 to 12, the types of crosslinking aids used in Example 1 were changed to those shown in Table 2, respectively.
  • crosslinking aid B is ethylene glycol dimethacrylate
  • crosslinking aid C is triallyl isocyanate
  • crosslinking aid D is N, N'-1,3-phenylene dimaleimide.
  • Example 13 The vulcanized molded body of Example 13 is obtained by adding 0.1 part by mass of phenothiazine to the formulation of Example 1.
  • Example 14 In the vulcanized molded body of Example 14, the amount of phenothiazine added in Example 13 was changed to the amount described in Table 2.
  • Example 15 The vulcanized molded body of Example 15 is obtained by changing the type of chloroprene rubber of Example 1 to those described in Table 2.
  • Example 16 The vulcanized molded body of Example 16 was obtained by changing the addition amounts of chloroprene rubber, chlorinated polyethylene and magnesium oxide of Example 1 to the amounts shown in Table 2, and further adding 3 parts by mass of zinc oxide. .
  • Example 17 The vulcanized molded body of Example 17 is obtained by changing the addition amounts of the chloroprene rubber and chlorinated polyethylene of Example 1 to the amounts described in Table 2 and further adding 0.5 parts by mass of phenothiazine.
  • Example 18 The vulcanized molded body of Example 18 was changed to Eraslene (registered trademark) 303A manufactured by Showa Denko KK as chlorinated polyethylene B as the chlorinated polyethylene of Example 1, and 0.5 parts by mass of phenothiazine was further added. Is.
  • Comparative Example 1 The vulcanized molded body of Comparative Example 1 is obtained by adding 1 part by mass of ethylenethiourea without adding the vulcanization accelerator and crosslinking aid of Example 1.
  • Comparative Example 2 The vulcanized molded body of Comparative Example 2 is obtained by changing the addition amounts of the chloroprene rubber and chlorinated polyethylene of Example 1 to the amounts shown in Table 3.
  • Comparative Example 3 The vulcanized molded body of Comparative Example 3 is obtained by changing the addition amount of the vulcanization accelerator of Example 1 to the amount described in Table 3.
  • Comparative Example 4 The vulcanized molded body of Comparative Example 4 is obtained by changing the addition amount of the vulcanization accelerator of Example 1 to the amount described in Table 3 and further adding 1 part by mass of phenothiazine.
  • Comparative Example 7 The vulcanized molded product of Comparative Example 7 was obtained by changing the addition amount of the vulcanization accelerator of Example 1 to the amount described in Table 3 and further adding 5 parts by mass of phenothiazine.
  • Comparative Example 8 The vulcanized molded body of Comparative Example 8 was obtained by changing the addition amount of the chloroprene rubber of Example 1 to that described in Table 3 and not adding chlorinated polyethylene.
  • the vulcanized molded article using the rubber composition of each example within the scope of the present invention was excellent in heat resistance and ozone resistance.
  • the vulcanized molded body of Comparative Example 1 does not contain a vulcanization accelerator and a crosslinking aid, the rate of change in elongation after cutting after heat aging and the change in durometer hardness after heat aging. was too big.
  • the ratio of the chlorinated polyethylene exceeded 70 mass% about the compounding ratio of chloroprene rubber and chlorinated polyethylene, the vulcanized molded body of Comparative Example 2 had a small elongation at break.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 耐熱性及び耐オゾン性に優れた加硫物が得られるゴム組成物、及びこのゴム組成物から得られる加硫物を提供すること。 ゴム組成物が、クロロプレンゴム30~95質量%及び塩素化ポリエチレン5~70質量%からなるブレンドゴム100質量部と、加硫促進剤0.1~20質量部と、架橋助剤0.2~5質量部を有するようにする。ゴム組成物に含まれる加硫促進剤は過酸化物であることが好ましく、架橋助剤は二官能性エステル化合物及び三官能性エステル化合物から選ばれる少なくとも1種の化合物であることが好ましい。また、ゴム組成物は、これに含まれるブレンドゴム100質量部に対してフェノチアジンを2質量部以下含有させたものが好ましい。ゴム組成物は加硫成形することにより加硫成形体とすることができる。加硫成形体は自動車用シール材、ホース材、ゴム型物、ガスケット等の工業用ゴム部品として利用することができる。

Description

ゴム組成物及び加硫成形体
 本発明は、クロロプレンゴムと塩素化ポリエチレンを主成分とするゴム組成物と、このゴム組成物を加硫成形して得られる加硫成形体とに関する。より詳しくは、加硫成形した際に、自動車用シール材、ホース材、ゴム型物、ガスケット等の工業用ゴム部品として利用することができるゴム組成物と、このゴム組成物を加硫成形して得られる加硫物とに関する。
 クロロプレンゴムを有するゴム組成物は、機械特性、難燃性等に優れており、工業用ゴム製品の材料として、広く用いられており、様々な改良がなされている。例えば、特許文献1~3では、耐熱性を向上させたクロロプレンゴムの技術が開示されている。また、特許文献4では、耐オゾン性を向上させたクロロプレンゴムの技術が開示されている。
特開2009-275124号公報 特開2010-106227号公報 特開2005-060546号公報 特開2008-195870号公報
 しかしながら、前述した技術では、クロロプレンゴムを有するゴム組成物を加硫成形して得られる工業用ゴム部品、特に自動車用ゴム部品等の加硫成形体は、耐熱性及び耐オゾン性の双方に優れているとはまだ言えず、加硫成形した際の耐熱性及び耐オゾン性を更に向上させたゴム組成物が求められていた。
 そこで、本発明は、加硫成形した際に耐熱性及び耐オゾン性に優れたゴム組成物及びこのゴム組成物を加硫成形して得られる加硫成形体を提供することを主目的とする。
 本発明では、クロロプレンゴム30~95質量%及び塩素化ポリエチレン5~70質量%からなるブレンドゴム100質量部と、加硫促進剤0.1~20質量部と、架橋助剤0.2~5質量部と、を有するゴム組成物を提供する。
 このゴム組成物は、更に、フェノチアジンを0.1~2質量部有していてもよい。
 また、前記塩素化ポリエチレンの塩素化率は、20~50%とすることができる。
 また、前記加硫促進剤は、過酸化物であってもよい。このとき、前記過酸化物は、ジクミル過酸化物と、バレレート過酸化物と、C1~C8のアルキル過酸化物と、クロロ基で置換されていてもよいC1~C8のアルキル基で置換された芳香族過酸化物とのうちから選択される少なくとも1つとすることができる。
 また、前記架橋助剤は、二官能性エステル化合物及び三官能性エステル化合物のうちから選択される少なくとも1種の化合物であってもよい。このとき、前記架橋助剤は、トリメチロールプロパン、エチレングリコールジメタクリレート、トリアリルイソシアネート及びフェニレンジマレイミドのうちから選択される少なくとも1つとすることができる。
 また、前記クロロプレンゴムは、メルカプタン変性クロロプレンゴム及びキサントゲン変性クロロプレンゴムのうちから選ばれる少なくとも1種であってもよい。
 また、本発明では、前述したゴム組成物を加硫成形することにより加硫成形体とすることができる。この加硫成形体は自動車用シール材、ホース材、ゴム型物、ガスケットなどの工業用ゴム部品として利用することができる。
 本発明によれば、加硫成形した際に耐熱性及び耐オゾン性に優れたゴム組成物及びこのゴム組成物を加硫成形して得られる加硫成形体が得られる。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
(第1の実施形態)
<ゴム組成物>
 先ず、本発明の第1の実施形態のゴム組成物について説明する。本実施形態に係るゴム組成物は、(1-1)クロロプレンゴム30~95質量%と(1-2)塩素化ポリエチレン5~70質量%からなる(1)ブレンドゴム100質量部と、(2)加硫促進剤0.1~20質量部と、(3)架橋助剤0.2~5質量部を有する。また、このゴム組成物は、(4)フェノチアジン0.1~2質量部を有していてもよい。
 以下、各成分について、詳細に説明する。
(1-1)クロロプレンゴム
 クロロプレンゴムは、クロロプレン重合体を主成分とする。クロロプレン重合体は、2-クロロ-1,3-ブタジエン(以下、クロロプレンと記す。)の単独重合体、又は、クロロプレンと他の単量体との共重合体である。ここで、クロロプレンと共重合可能な単量体としては、例えば、アクリル酸メチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルなどのアクリル酸のエステル類や、メタクリル酸メチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシルなどのメタクリル酸のエステル類や、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどのヒドロキシ(メタ)アクリレート類や、2,3-ジクロロ-1,3-ブタジエン、1-クロロ-1,3-ブタジエン、ブタジエン、イソプレン、エチレン、スチレン、アクリロニトリルなどが挙げられる。
 なお、クロロプレンと共重合する単量体は、1種類に限定されるものではなく、例えばクロロプレンを含む3種以上の単量体を共重合したものでもよい。また、クロロプレン重合体のポリマー構造も、特に限定されるものではない。
 クロロプレンゴムは単量体を重合させた後に添加する分子量調節剤の種類によって、メルカプタン変性タイプ、キサントゲン変性タイプ、硫黄変性タイプに分類できる。本実施形態のゴム組成物に含まれるクロロプレンゴムでは、これらのクロロプレンゴムのうち、メルカプタン変性クロロプレンゴム及び/又はキサントゲン変性クロロプレンゴムを用いる。
 メルカプタン変性クロロプレンゴムは、n-ドデシルメルカプタン、t-ドデシルオクチルメルカプタン、オクチルメルカプタン等のアルキルメルカプタン類を用いてクロロプレンゴムの分子量を調節して得られるものである。メルカプタン変性クロロプレンゴムは、他の変性タイプのものと比較して金属との接着性に優れるという特性を有する。このため、メルカプタン変性クロロプレンゴムを用いることによって、金属との接着性を向上させたゴム組成物及び加硫成形体を得ることができる。
 キサントゲン変性クロロプレンゴムは、アルキルキサントゲン化合物を用いてクロロプレンゴムの分子量を調節して得られるものである。キサントゲン変性クロロプレンゴムは、他の変性タイプのものと比較して引張強さや破断時伸び等の機械特性に優れるという特性を有する。このため、キサントゲン変性クロロプレンゴムを用いることによって、これらの機械特性を向上させたゴム組成物及び加硫成形体を得ることができる。
 なお、メルカプタン変性クロロプレンゴムとキサントゲン変性クロロプレンゴムは、目的とするゴム組成物及び加硫物の特性に合わせて併用することもできる。
[クロロプレンゴムの製造方法]
 本実施形態のクロロプレンゴムは、ロジン等を乳化分散剤として用いて、クロロプレンを主成分とする原料モノマーを、乳化重合することにより得られる。
 重合反応の触媒としては、例えば、硫酸カリウム等の無機過酸化物、ケトンパーオキサイド類、パーオキシケタール類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、ジアシルパーオキサイド類などの有機過酸化物が挙げられる。触媒活性化剤としては、亜硫酸ナトリウム、亜硫酸カリウム、酸化鉄(II)、アントラキノン、β-スルフォン酸ナトリウム、フォルムアミジンスルフォン酸、L-アスコルビン酸等が挙げられる。
 重合開始剤は、特に限定されるものではなく、通常のクロロプレンの乳化重合に使用されるものを使用することができる。具体的には、過硫酸カリウムなどの過硫酸塩、第3-ブチルヒドロパーオキサイドなどの有機過酸化物などが好適に用いられる。
 連鎖移動剤も、特に限定されるものではなく、通常のクロロプレンの乳化重合に使用されるものが使用できる。具体的には、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-オクチルメルカプタン等の長鎖アルキルメルカプタン類、ジイソプロピルキサントゲンジスルフィドやジエチルキサントゲンジスルフィドなどのジアルキルキサントゲンジスルフィド類、ヨードホルム等の公知の連鎖移動剤を使用することができる。
 重合を停止する際に添加する重合停止剤は、特に限定されるものではなく、通常用いられているものを使用することができる。具体的には、フェノチアジン、パラ-t-ブチルカテコール、ハイドロキノン、ハイドロキノンモノメチルエーテル、ジエチルヒドロキシルアミン、チオジフェニルアミン、1,3,5-トリヒドロキシベンゼンなどを用いることができる。
 なお、クロロプレンラテックスの重合温度は、特に限定されるものではなく、一般に乳化重合が行われる範囲とすることができる。また、前述した重合工程で得られクロロプレン重合体(クロロプレンゴム)の最終重合率は、特に限定するものではないが、30~100%の範囲内で任意に調節することが好ましい。
 次に、重合工程により得られた重合液から、未反応単量体の除去(脱モノマー)を行う。その方法は、特に限定されるものではなく、減圧加熱などの公知の方法を適用することができる。ただし、生産性を考慮すると、クロロプレン重合体の最終重合率は、30%以上とすることが好ましい。
(1-2)塩素化ポリエチレン
 本実施形態のゴム組成物に含まれる塩素化ポリエチレンは、得られるゴム組成物及び加硫成形体の耐熱性及び耐オゾン性を向上させるために添加するものである。ここで塩素化ポリエチレンとは、ポリエチレンを、塩素を含むトリクロロエタンや四塩化炭素等で処理し、その分子中の水素の一部を塩素と置換して得られるものである。
 塩素化ポリエチレンとしては、塩素化率20~50%のものを用いると、得られるゴム組成物及び加硫物の耐熱性を向上させる効果が高いため好ましい。より好ましくは25%以上である。また、45%以下であることがより好ましい。塩素化ポリエチレンとしては、例えば、具体的には昭和電工株式会社製のエラスレン(登録商標)や、ダウ・ケミカル日本株式会社製のタイリン(登録商標)のような市販製品を用いることができる。なお、この塩素化率とは、塩素化ポリエチレン中の塩素原子の質量比率のことを指す。また、塩素化率は、JIS-K7229に準拠し、酸素フラスコ法によって定量することができる。
(1)ブレンドゴム
 本実施形態のゴム組成物に含まれるブレンドゴムは、上述の(1-1)クロロプレンゴムと(1-2)塩素化ポリエチレンを混練して得られたものである。ブレンドゴム中、クロロプレンゴムと塩素化ポリエチレンの含有(配合)比率は、クロロプレンゴム30~95質量%、塩素化ポリエチレン5~70質量%とする。好ましくは、クロロプレンゴム50~90質量%、塩素化ポリエチレン10~50質量%の範囲であることが良い。クロロプレンゴムの比率がこの範囲より高くなってしまうと、得られる加硫成形体の耐熱性及び耐オゾン性が低下する。また、塩素化ポリエチレンの比率がこの範囲より高くなってしまうと、得られる加硫成形体の引張強度が低下する。
 クロロプレンゴムと塩素化ポリエチレンを混練する装置としては、密閉混合機内や二軸のオープンロール等が挙げられる。
(2)加硫促進剤
 本実施形態のゴム組成物に含まれる加硫促進剤は、得られるゴム組成物の加硫を促進させるために添加するものである。本実施形態では、加硫促進剤に過酸化物を用いることが好ましい。過酸化物を用いることによって、得られるゴム組成物の加硫を効率よく行うことができる。
 加硫促進剤の添加量は、ゴム組成物中のブレンドゴム100質量部に対して、0.1~20質量部であり、好ましくは0.5質量部以上である。また、15質量部以下であることが好ましい。加硫促進剤の添加量が0.1質量部未満では、ゴム組成物が加硫されない。また、加硫促進剤の添加量が20質量部を超えてしまうと、得られる加硫成形体の硬度が高く、熱老化後の耐熱性も低下してしまう。
 本実施形態のゴム組成物に含まれる加硫促進剤としては、具体的には、ジクミル過酸化物、バレレート過酸化物、C1~C8のアルキル過酸化物、クロロ基で置換されていてもよいC1~C8のアルキル基で置換された芳香族過酸化物等が、1種で又は複数種混合して用いられる。
 ジクミル過酸化物としては、クミル基を2つ含有する過酸化物であれば特に限定されないが、例えば、ジクミルペロキシド等が挙げられる。
 また、バレレート過酸化物としては、バレレート基を含有するバレレート系過酸化物であれば特に限定されないが、例えば、n-ブチル4,4-ジ(t-ブチルペルオキシ)バレレート等が挙げられる。
 また、アルキル過酸化物としては、C1~C8のアルキル基を含有する過酸化物であれば特に限定されないが、例えば、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン、t-ブチルペルオキシド、t-ブチルヒドロペルオキシド、1,1-ジ-(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、ジ-t-ブチルペルオキシ-イソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキシン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、2,2-ビス(t-ブチルペルオキシ)-4-ジイソプロピルベンゼン、1,3-ビス(t-ブチルペルオキシ)-4-ジイソプロピルベンゼン等が挙げられる。
 また、クロロ基で置換されていてもよいアルキル基で置換された芳香族過酸化物としては、クロロ基で置換されていてもよいC1~C8のアルキル基で置換された芳香族基を含有する過酸化物であれば特に限定されないが、例えば、t-ブチルクミルペルオキシド、α、α’-ジ(t-ブチルペルオキシ)ジイソプロピルベンゼン、ベンゾイルペルオキシド、2,4-ジクロロ-ベンゾイルペルオキシド等が挙げられる。
(3)架橋助剤
 本実施形態のゴム組成物に含まれる架橋助剤は、ゴム組成物の加硫速度や加硫密度を向上させるために添加するものである。架橋助剤としては、二官能性エステル化合物又は三官能性エステル化合物から選ばれる少なくとも一種の化合物を用いることが好ましい。
 架橋助剤の添加量は、ゴム組成物中のブレンドゴム100質量部に対して、0.2~5質量部であり、好ましくは0.5質量部以上である。また、4質量部以下であることが好ましい。架橋助剤の添加量が0.2質量部未満ではゴム組成物が加硫されない。架橋助剤の添加量が5質量部を超えてしまうと、得られる加硫物の硬度が高く、また、熱老化後の耐熱性も低下してしまう。
 架橋助剤としては、具体的には、トリメチロールプロパン、エチレングリコールジメタクリレート、トリアリルイソシアネート、トリアリルシアネート、マレイミド系化合物等が、1種で又は複数種混合して用いられる。
 このマレイミド系化合物としては、N-シクロヘキシルマレイミド、N-メチルマレイミド、N-エチルマレイミド、N-イソプロピルマレイミド、N-n-ブチルマレイミド、2-メチル-N-フェニルマレイミド、2,3-ジメチルマレイミド、2-エチルマレイミド、2-n-ブチルマレイミド、N-ベンジルマレイミド、N,N’-1,2-エチルビスマレイミド、N,N’-1,2-ヘキシルビスマレイミド、N-プロピオン酸マレイミド、4,4’-ビスマレイミドジフェニルメタン、6,7-メチレンジオキシ-4-メチル-3-クマル酸マレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、N-ブロモメチル-2,3-ジクロロマレイミド、N-(3-マレイミドベンゾイルオキシ)コハク酸、N-(3-マレイミドプロピオオキシ)コハク酸、N-(3-マレイミドブチルオキシ)コハク酸、N-(3-マレイミドヘキシルオキシ)コハク酸、N-(4-ジメチルアミノ-3,5-ジニトロフェニル)マレイミド、N,N’-1,2-フェニレンジマレイミド、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N-N’-1,3-ナフテンジマレイミド、N,N’-(4-メチル-1,3-フェニレン)ビスマレイミド、N-(1-ピレニル)マレイミド、1,1’-(メチレンジ-4,1-フェニレン)ビスマレイミド、N-[4-(2-ベンズイミダゾリル)フェニル]マレイミド、N-(9-アクリジニル)マレイミド、N-ヒドロキシマレイミド、2,3-ジフェニルマレイミド等が挙げられる。この中でも、本実施形態のゴム組成物では、特にN,N’-1,3-フェニレンジマレイミドが好ましく用いられる。
(4)フェノチアジン
 本実施形態のゴム組成物には、これらの化合物に加えて、フェノチアジンを添加することもできる。フェノチアジンは、得られるゴム組成物及び加硫成形体の加工安定性を向上させるために添加するものである。
 フェノチアジンの添加量は、ブレンドゴム100質量部に対して0.1~2質量部の範囲が好ましい。また、フェノチアジンの添加量は、より好ましくは、0.3質量部以上である。また、フェノチアジンの添加量は、1.5質量部以下であることがより好ましい。この範囲でフェノチアジンを添加することにより、得られるゴム組成物及び加硫成形体の加工安定性を向上させる効果が高い。
 ゴム組成物は、上述の化合物をブレンドゴムの加硫温度以下の温度で混練することで得られるものである。混練装置としては、ミキサー、バンバリーミキサー、ニーダーミキサー、二本ロールなどがある。
 ゴム組成物には、本発明の効果を阻害しない範囲でカーボンブラック、可塑剤、加硫剤、カーボンブラック以外の充填剤や補強剤、加工助剤、老化防止剤等を添加しても良い。
 なお、本実施形態のゴム組成物において、前述した加硫促進剤、架橋助剤、フェノチアジンのブレンドゴム100質量部に対する添加量は、実質的にそれぞれの化合物のブレンドゴム100質量部に対する含有量と同義である。
 以上詳述したように、本実施形態のゴム組成物は、特定比率のクロロプレンゴムと塩素化ポリエチレンからなるブレンドゴムと、特定量の加硫促進剤及び架橋助剤とを有するため、加硫成形した際、耐熱性及び耐オゾン性を優れたものとすることができる。また、このゴム組成物は、特定量のフェノチアジンを更に有することで、加工安定性を向上させることもできる。
(第2の実施形態)
<加硫成形体>
 次に、本発明の第2の実施形態の加硫成形体について説明する。本実施形態の加硫成形体は、上述の第1の実施形態のゴム組成物を所望する各種の形状に成形された後に加硫したり、ゴム組成物を加硫した後に各種の形状に成形したりして得られるものである。ゴム組成物から加硫成形体を成形する方法は、プレス成形、押出成形、カレンダー成形などの方法がある。
 ゴム組成物を加硫する温度は、ゴム組成物の組成に合わせて適宜設定すればよく、通常は140~220℃、好ましくは150~180℃の範囲で行われる。また、加硫する時間もゴム組成物の組成や形状によって適宜設定すればよく、通常は10分~60分の範囲で行われる。
 本実施形態の加硫成形体は、第1の実施形態で前述した特定のゴム組成物を加硫成形して得られるため、耐熱性及び耐オゾン性に優れる。
(メルカプタン変性クロロプレンゴムの製造)
 内容積5リットルの4つ口フラスコに、純水130質量部、ロジン酸ナトリウム塩4質量部、βナフタレンスルホン酸ホルマリン0.5質量部、2-クロロ-1,3-ブタジエン96質量部、2,3-ジクロロ-1,3-ブタジエン4質量部及びn-ドデシルメルカプタン0.3質量部及び他の化学品を仕込み、過硫酸カリウムを開始剤として、窒素雰囲気下で重合を行った。モノマーの転化率が65%に到達したとき、チオジフェニルアミンを加えて、重合を停止させた。次いで、常法のスチームトラップ法で未反応モノマーを除去し、ポリクロロプレンのラテックスを得た。得られたポリクロロプレンのラテックスを常法の凍結凝固乾燥法によりメルカプタン変性クロロプレンゴムを得た。
(キサントゲン変性クロロプレンゴムの製造)
 内容積5リットルの4つ口フラスコに、純水130質量部、ロジン酸ナトリウム塩4質量部、βナフタレンスルホン酸ホルマリン0.5質量部、2-クロロ-1,3-ブタジエン96質量部、2,3-ジクロロ-1,3-ブタジエン4質量部及びアルキルキサントゲン化合物0.3質量部及び他の化学品を仕込み、過硫酸カリウムを開始剤として、窒素雰囲気下で重合を行った。モノマーの転化率が65%に到達したとき、チオジフェニルアミンを加えて、重合を停止させた。次いで、常法のスチームトラップ法で未反応モノマーを除去し、ポリクロロプレンのラテックスを得た。得られたポリクロロプレンのラテックスを常法の凍結凝固乾燥法によりキサントゲン変性クロロプレンゴムを得た。
(実施例1)
(ゴム組成物の製造)
 上述のメルカプタン変性クロロプレンゴムを80質量部、塩素化ポリエチレンAとして昭和電工株式会社製のエラスレン(登録商標)301Aを20質量部、ステアリン酸を1質量部、老化防止剤として大内新興化学工業株式会社のノクラック(登録商標)CDを1質量部、酸化マグネシウムを6質量部、カーボンブラックとして旭カーボン株式会社製の旭#60を45質量部、可塑剤として新日本理化株式会社製のサンソサイザー(登録商標)DOSを10質量部を加圧式バンバリー試験機で混練りした。得られた組成物に、加硫促進剤Aとして日油株式会社製のパーヘキサ(登録商標)V-40を5質量部と架橋助剤Aとしてトリメチロールプロパンを1質量部を加えて8インチオープンロールを用いて混練し、ゴム組成物を得た。
(加硫成形体の製造)
 得られたゴム組成物を、160℃×20分の条件でプレス加硫して、厚さ2mmのシート状の加硫成形体を作製した。
(評価)
 上述の方法で得られた加硫成形体の評価を表1~3に示す。表1~3の評価は次の方法で行った。
(1)切断時伸び
 切断時伸びの試験は、JIS K6251に準拠して、シート状の加硫成形体を厚さ2mmのダンベル状3号形試験片に成形し、島津製作所製の加硫ゴム用長ストローク引張試験システムを用いて引張速度500mm/分で測定した。400%以上の値を示したものを合格とした。
(2)デュロメータ硬さ(Type-A)
 デュロメータ硬さ(Type-A)の試験は、シート状の加硫物を、JIS K6253に準拠してデュロメータ硬さ計を用いて測定した。60以上70以下の値を示したものを合格とした。
(3)熱老化後の切断時伸びの変化率
 熱老化後の切断時伸びの変化率の試験は、シート状の加硫物を130℃で70時間熱処理した後、切断時伸びを上述と同一の方法で測定し、熱処理前後の値の変化率を以下の式1(式中、Aは熱処理前の測定サンプルの切断時伸びの値、Bは熱処理後の測定サンプルの切断時伸びの値を示す。)によって算出した。-15%以上0%以下の値を示したものを合格とした。
 熱老化後の伸びの変化率(%)=(B-A)/A×100・・・(式1)
(4)熱老化後のデュロメータ硬さ(Type-A)の変化
 熱老化後のデュロメータ硬さの変化の試験は、シート状の加硫成形体を130℃で70時間熱処理した後、デュロメータ硬さ(Type-A)を上述と同一の方法で測定し、熱処理後のデュロメータ硬さ(Type-A)の値から熱処理前のデュロメータ硬さ(Type-A)の値を差し引いた値である。15以下の値を示したものを合格とした。
(5)耐オゾン性
 耐オゾン性の試験は、JIS K6259に準拠して測定した。測定条件は40℃、オゾン濃度50pphmの雰囲気中、サンプルを20%伸長させて216時間後の状態を観察した。サンプルに変化が無かったものを○とした。
Figure JPOXMLDOC01-appb-T000001
 
 実施例2~18及び比較例1~8におけるゴム組成物及び加硫成形体は、ゴム組成物を作製する際の条件を以下に示すとおり変更して実施例1と同様に作製し、実施例1と同様に評価したものである。
(実施例2~6)
 実施例2~6の加硫成形体は、実施例1で用いた加硫促進剤の種類をそれぞれ表1に記載したものに変更したものである。表1中、加硫促進剤Bは日油株式会社製のパーヘキサ(登録商標)C-40、加硫促進剤Cは日油株式会社製のパークミル(登録商標)D-40、加硫促進剤Dは日油株式会社製のパーブチル(登録商標)P-40、加硫促進剤Eは日油株式会社製のパーヘキサ(登録商標)25B、加硫促進剤Fは日油株式会社製のパーブチル(登録商標)Cである。
(実施例7)
 実施例7の加硫成形体は、実施例1で用いた酸化マグネシウム、加硫促進剤、架橋助剤の添加量をそれぞれ表1に記載した量に変更するとともに、酸化亜鉛1質量部を更に加えたものである。
(実施例8)
 実施例8の加硫成形体は、実施例1で用いた加硫促進剤と架橋助剤の添加量をそれぞれ表1に記載した量に変更したものである。
(実施例9)
 実施例9の加硫成形体は、実施例1で用いた架橋助剤の添加量を表1に記載した量に変更したものである。
Figure JPOXMLDOC01-appb-T000002
 
 
(実施例10~12)
 実施例10~12の加硫成形体は、実施例1で用いた架橋助剤の種類をそれぞれ表2に記載したものに変更したものである。表2中、架橋助剤Bはエチレングリコールジメタクリレート、架橋助剤Cはトリアリルイソシアネート、架橋助剤DはN,N’-1,3-フェニレンジマレイミドである。
(実施例13)
 実施例13の加硫成形体は、実施例1の配合に更にフェノチアジン0.1質量部を加えたものである。
(実施例14)
 実施例14の加硫成形体は、実施例13のフェノチアジンの添加量を表2に記載した量に変更したものである。
(実施例15)
 実施例15の加硫成形体は、実施例1のクロロプレンゴムの種類を表2に記載したものに変更したものである。
(実施例16)
 実施例16の加硫成形体は、実施例1のクロロプレンゴム、塩素化ポリエチレン及び酸化マグネシウムの添加量を表2に記載した量に変更するとともに、酸化亜鉛3質量部を更に加えたものである。
(実施例17)
 実施例17の加硫成形体は、実施例1のクロロプレンゴム及び塩素化ポリエチレンの添加量を表2に記載した量に変更するとともに、フェノチアジン0.5質量部を更に加えたものである。
(実施例18)
 実施例18の加硫成形体は、実施例1の塩素化ポリエチレンを塩素化ポリエチレンBとして昭和電工株式会社製のエラスレン(登録商標)303Aに変更するとともに、フェノチアジン0.5質量部を更に加えたものである。
Figure JPOXMLDOC01-appb-T000003
 
(比較例1)
 比較例1の加硫成形体は、実施例1の加硫促進剤、架橋助剤を添加せず、エチレンチオウレア1質量部を加えたものである。
(比較例2)
 比較例2の加硫成形体は、実施例1のクロロプレンゴム、塩素化ポリエチレンの添加量を表3に記載した量に変更したものである。
(比較例3)
 比較例3の加硫成形体は、実施例1の加硫促進剤の添加量を表3に記載した量に変更したものである。
(比較例4)
 比較例4の加硫成形体は、実施例1の加硫促進剤の添加量を表3に記載した量に変更するとともに、フェノチアジン1質量部を更に加えたものである。
(比較例5、6)
 比較例5及び6の加硫成形体は、実施例1の架橋助剤の添加量を表3に記載した量に変更したものである。
(比較例7)
 比較例7の加硫成形体は、実施例1の加硫促進剤の添加量を表3に記載した量に変更し、フェノチアジン5質量部を更に加えたものである。
(比較例8)
 比較例8の加硫成形体は、実施例1のクロロプレンゴムの添加量を表3に記載したものに変更するとともに、塩素化ポリエチレンを添加しなかったものである。
 表1及び表2に示されたとおり、本発明の範囲にある各実施例のゴム組成物を用いた加硫成形体は、耐熱性及び耐オゾン性に優れたものであった。
 これに対して、比較例1の加硫成形体は、加硫促進剤及び架橋助剤を添加していないため、熱老化後の切断時伸びの変化率及び熱老化後のデュロメータ硬さの変化が大き過ぎた。また、比較例2の加硫成形体は、クロロプレンゴムと塩素化ポリエチレンとの配合比率について、塩素化ポリエチレンの比率が70質量%を超えているため、切断時伸びが小さかった。
 比較例3の加硫成形体は、加硫促進剤の添加量が、ブレンドゴム100質量部に対して0.1質量部未満であったため、デュロメータ硬さが低く、熱老化後の切断時伸びの変化率が大き過ぎた。また、比較例4の加硫成形体は、加硫促進剤の添加量が、ブレンドゴム100質量部に対して20質量部を超えていたため、切断時伸びが小さかった。
 比較例5の加硫成形体は、架橋助剤の添加量が、ブレンドゴム100質量部に対して0.2質量部未満であったため、熱老化後の切断時伸びの変化率及び熱老化後のデュロメータ硬さの変化が大き過ぎた。また、比較例6の加硫成形体は、架橋助剤の添加量が、ブレンドゴム100質量部に対して5質量部を超えていたため、切断時伸びが小さかった。
 比較例7の加硫成形体は、加硫促進剤の添加量が、ブレンドゴム100質量部に対して20質量部を超えていたため、熱老化後の切断時伸びの変化率及び熱老化後のデュロメータ硬さの変化が大き過ぎた。これは、フェノチアジンの添加量が2質量部を超えていることも影響していると考えられる。また、比較例8の加硫成形体は、塩素化ポリエチレンが配合されていなかったため、耐オゾン性試験開始後24時間後に、クラックが発生し、耐オゾン性に劣っていた。

Claims (9)

  1.  クロロプレンゴム30~95質量%及び塩素化ポリエチレン5~70質量%からなるブレンドゴム100質量部と、
     加硫促進剤0.1~20質量部と、
     架橋助剤0.2~5質量部と、を有するゴム組成物。
  2.  更に、フェノチアジンを0.1~2質量部有する請求項1に記載のゴム組成物。
  3.  前記塩素化ポリエチレンの塩素化率は、20~50%である請求項1又は2に記載のゴム組成物。
  4.  前記加硫促進剤が、過酸化物である請求項1~3のいずれか1項に記載のゴム組成物。
  5.  前記過酸化物が、ジクミル過酸化物と、バレレート過酸化物と、C1~C8のアルキル過酸化物と、クロロ基で置換されていてもよいC1~C8のアルキル基で置換された芳香族過酸化物とのうちから選択される少なくとも1つである請求項4に記載のゴム組成物。
  6.  前記架橋助剤が、二官能性エステル化合物及び三官能性エステル化合物のうちから選択される少なくとも1種の化合物である請求項1~5のいずれか1項に記載のゴム組成物。
  7.  前記架橋助剤が、トリメチロールプロパン、エチレングリコールジメタクリレート、トリアリルイソシアネート、トリアリルシアネート及びマレイミド系化合物のうちから選択される少なくとも1つである請求項6に記載のゴム組成物。
  8.  前記クロロプレンゴムが、メルカプタン変性クロロプレンゴム及びキサントゲン変性クロロプレンゴムのうちから選ばれる少なくとも1種である請求項1~7のいずれか1項に記載のゴム組成物。
  9.  請求項1~8のいずれか1項に記載のゴム組成物を加硫成形して得られる加硫成形体。
PCT/JP2014/055249 2013-03-05 2014-03-03 ゴム組成物及び加硫成形体 WO2014136712A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480012735.4A CN105026483A (zh) 2013-03-05 2014-03-03 橡胶组合物和硫化成型体
JP2015504289A JP6225165B2 (ja) 2013-03-05 2014-03-03 ゴム組成物及び加硫成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-042705 2013-03-05
JP2013042705 2013-03-05

Publications (1)

Publication Number Publication Date
WO2014136712A1 true WO2014136712A1 (ja) 2014-09-12

Family

ID=51491230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055249 WO2014136712A1 (ja) 2013-03-05 2014-03-03 ゴム組成物及び加硫成形体

Country Status (4)

Country Link
JP (1) JP6225165B2 (ja)
CN (1) CN105026483A (ja)
TW (1) TW201443126A (ja)
WO (1) WO2014136712A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227402A (ja) * 2014-05-30 2015-12-17 株式会社ブリヂストン ゴム組成物及び防振ゴム
CN106589509A (zh) * 2016-12-05 2017-04-26 苏州英得福机电科技有限公司 一种多功能橡胶
CN106750690A (zh) * 2016-12-05 2017-05-31 苏州英得福机电科技有限公司 一种减震橡胶材料
CN106750644A (zh) * 2016-12-05 2017-05-31 苏州英得福机电科技有限公司 一种天然减震橡胶
CN106750688A (zh) * 2016-12-05 2017-05-31 苏州英得福机电科技有限公司 一种改性减震橡胶
RU2701035C1 (ru) * 2018-08-21 2019-09-24 Открытое акционерное общество "Курскрезинотехника" Материал из низкомодульной ячеистой резины (неопрен), сдублированной с трикотажным полотном
CN112831105A (zh) * 2021-03-04 2021-05-25 南京东润特种橡塑有限公司 一种高抗拉伸抗撕裂水闸橡胶密封件及其制备方法
WO2022113897A1 (ja) 2020-11-27 2022-06-02 デンカ株式会社 クロロプレン系ゴム組成物、該クロロプレン系ゴム組成物の加硫物、およびクロロプレン系ゴム組成物の加硫成形体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109337590B (zh) * 2018-09-07 2021-05-07 上海普力通新材料科技有限公司 一种隔震高阻尼橡胶专用型热硫化胶粘剂
CN112358667B (zh) * 2020-12-01 2022-05-17 中国第一汽车股份有限公司 一种橡胶组合物及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213743A (ja) * 1983-05-19 1984-12-03 Mitsui Petrochem Ind Ltd 加硫可能ゴム組成物
JPH07145269A (ja) * 1993-11-25 1995-06-06 Kureha Elastomer- Kk クロロプレンゴム組成物
JPH08245842A (ja) * 1995-03-13 1996-09-24 Nichias Corp 加硫ゴム組成物
JP2005060546A (ja) * 2003-08-13 2005-03-10 Daiso Co Ltd クロロプレン系ゴム組成物およびその加硫物
JP2006265302A (ja) * 2005-03-22 2006-10-05 Tosoh Corp クロロプレンゴム及びその製造方法
JP2010053246A (ja) * 2008-08-28 2010-03-11 Hitachi Cable Ltd 耐放射線性樹脂組成物、及び耐放射線ケーブル
JP2010106227A (ja) * 2008-09-30 2010-05-13 Nok Corp ゴム組成物
JP2010174217A (ja) * 2009-02-02 2010-08-12 Denki Kagaku Kogyo Kk アクリルゴム組成物及びその用途
WO2012042267A1 (en) * 2010-09-30 2012-04-05 Icon Polymer Limited Rubber composition for use in tension belts
CN102604242A (zh) * 2012-02-14 2012-07-25 无锡宝通带业股份有限公司 一种难燃耐热织物芯输送带用覆盖胶及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089039B (zh) * 2006-06-12 2010-11-24 深圳市迅特科技有限公司 氯化聚乙烯-氯丁胶的共混聚合物
CN102190994A (zh) * 2010-03-15 2011-09-21 张耀华 一种氯丁橡胶胶粘剂的生产方法
CN102040782B (zh) * 2010-12-29 2012-12-19 青岛三祥科技有限公司 动力转向高压软管及其生产工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213743A (ja) * 1983-05-19 1984-12-03 Mitsui Petrochem Ind Ltd 加硫可能ゴム組成物
JPH07145269A (ja) * 1993-11-25 1995-06-06 Kureha Elastomer- Kk クロロプレンゴム組成物
JPH08245842A (ja) * 1995-03-13 1996-09-24 Nichias Corp 加硫ゴム組成物
JP2005060546A (ja) * 2003-08-13 2005-03-10 Daiso Co Ltd クロロプレン系ゴム組成物およびその加硫物
JP2006265302A (ja) * 2005-03-22 2006-10-05 Tosoh Corp クロロプレンゴム及びその製造方法
JP2010053246A (ja) * 2008-08-28 2010-03-11 Hitachi Cable Ltd 耐放射線性樹脂組成物、及び耐放射線ケーブル
JP2010106227A (ja) * 2008-09-30 2010-05-13 Nok Corp ゴム組成物
JP2010174217A (ja) * 2009-02-02 2010-08-12 Denki Kagaku Kogyo Kk アクリルゴム組成物及びその用途
WO2012042267A1 (en) * 2010-09-30 2012-04-05 Icon Polymer Limited Rubber composition for use in tension belts
CN102604242A (zh) * 2012-02-14 2012-07-25 无锡宝通带业股份有限公司 一种难燃耐热织物芯输送带用覆盖胶及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227402A (ja) * 2014-05-30 2015-12-17 株式会社ブリヂストン ゴム組成物及び防振ゴム
CN106589509A (zh) * 2016-12-05 2017-04-26 苏州英得福机电科技有限公司 一种多功能橡胶
CN106750690A (zh) * 2016-12-05 2017-05-31 苏州英得福机电科技有限公司 一种减震橡胶材料
CN106750644A (zh) * 2016-12-05 2017-05-31 苏州英得福机电科技有限公司 一种天然减震橡胶
CN106750688A (zh) * 2016-12-05 2017-05-31 苏州英得福机电科技有限公司 一种改性减震橡胶
RU2701035C1 (ru) * 2018-08-21 2019-09-24 Открытое акционерное общество "Курскрезинотехника" Материал из низкомодульной ячеистой резины (неопрен), сдублированной с трикотажным полотном
WO2022113897A1 (ja) 2020-11-27 2022-06-02 デンカ株式会社 クロロプレン系ゴム組成物、該クロロプレン系ゴム組成物の加硫物、およびクロロプレン系ゴム組成物の加硫成形体
KR20230109181A (ko) 2020-11-27 2023-07-19 덴카 주식회사 클로로프렌계 고무 조성물, 상기 클로로프렌계 고무 조성물의 가황물 및 클로로프렌계 고무 조성물의 가황 성형체
CN112831105A (zh) * 2021-03-04 2021-05-25 南京东润特种橡塑有限公司 一种高抗拉伸抗撕裂水闸橡胶密封件及其制备方法

Also Published As

Publication number Publication date
TW201443126A (zh) 2014-11-16
JP6225165B2 (ja) 2017-11-01
CN105026483A (zh) 2015-11-04
JPWO2014136712A1 (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6225165B2 (ja) ゴム組成物及び加硫成形体
JP7001062B2 (ja) アクリル共重合体、およびその架橋物
JP6196290B2 (ja) ブレンドゴム、ブレンドゴム組成物及び加硫物
JP5525817B2 (ja) クロロプレンゴム組成物およびその用途
WO2018143101A1 (ja) アクリルゴム、アクリルゴム組成物、及びアクリルゴム架橋物
JP6765629B2 (ja) アクリルゴム、およびそのゴム架橋物
JPWO2007114108A1 (ja) アクリルゴムおよびその製造方法
JP6248180B2 (ja) ゴム組成物、その製造方法及び加硫物
JP2021095493A (ja) ゴム組成物、該ゴム組成物の加硫成形体
JPWO2020032173A1 (ja) アクリル共重合体、及びゴム材料
WO2019003342A1 (ja) アクリルゴム、およびそのゴム架橋物
WO2020095961A1 (ja) クロロプレンゴム組成物及び加硫成形体
WO2019163482A1 (ja) ニトリル共重合体ゴム組成物、架橋性ゴム組成物、ゴム架橋物、及びホース
JP4019827B2 (ja) 押出成形用アクリルゴム組成物及び押出成形品
WO2021049524A1 (ja) アクリルゴムの製造方法
JP2016044250A (ja) 熱可塑性エラストマー
JP2023151665A (ja) アクリルゴム組成物
EP4353756A1 (en) Acrylic copolymer, acrylic-copolymer-containing composition, and crosslinked acrylic copolymer
WO2020095960A1 (ja) クロロプレンゴム組成物及び加硫成形体
WO2020162080A1 (ja) ゴム組成物、加硫物及び成形品
JP2021080362A (ja) グラフト共重合体及びこれを含有する変性ハロゲン化ポリオレフィン組成物並びにその製造方法
JP2016044249A (ja) 熱可塑性エラストマー
JP2016044252A (ja) 熱可塑性エラストマー
JP2016044248A (ja) 熱可塑性エラストマー
JP2016044251A (ja) 熱可塑性エラストマー

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012735.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760385

Country of ref document: EP

Kind code of ref document: A1