WO2014136484A1 - 装置、接着剤用組成物、接着シート - Google Patents

装置、接着剤用組成物、接着シート Download PDF

Info

Publication number
WO2014136484A1
WO2014136484A1 PCT/JP2014/051205 JP2014051205W WO2014136484A1 WO 2014136484 A1 WO2014136484 A1 WO 2014136484A1 JP 2014051205 W JP2014051205 W JP 2014051205W WO 2014136484 A1 WO2014136484 A1 WO 2014136484A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
adhesive
manufactured
composition
resin
Prior art date
Application number
PCT/JP2014/051205
Other languages
English (en)
French (fr)
Inventor
美香 賀川
大輔 北原
洋次 白土
和哉 北川
飛澤 晃彦
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN201480010373.5A priority Critical patent/CN105027278A/zh
Priority to US14/769,946 priority patent/US20160002439A1/en
Priority to KR1020157027635A priority patent/KR20150130367A/ko
Priority to JP2015504196A priority patent/JPWO2014136484A1/ja
Publication of WO2014136484A1 publication Critical patent/WO2014136484A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/027Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J115/00Adhesives based on rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J147/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Definitions

  • the present invention relates to an apparatus, an adhesive composition, and an adhesive sheet.
  • Patent Document 1 discloses a semiconductor device in which a semiconductor element is mounted on a support such as a lead frame, and the support and a heat transfer metal layer connected to a heat sink are bonded by an insulating resin adhesive layer. ing.
  • the difference between the linear expansion coefficient of the support that supports the semiconductor element and the linear expansion coefficient of the heat transfer metal layer may be greatly different.
  • the insulating resin adhesive layer since the expansion / contraction rate of the support due to changes in the environmental temperature and the expansion / contraction rate of the heat transfer metal layer are different, the insulating resin adhesive layer may be peeled off from the support or the heat transfer metal layer. Concerned. When the insulating resin adhesive layer is peeled off from the support or the heat transfer metal layer, it becomes difficult to transfer the heat of the semiconductor element to the heat transfer metal layer, and the durability of the semiconductor device is lowered.
  • a support substrate for supporting the element for supporting the element; A heat dissipating member on which the support substrate is installed; An adhesive layer disposed between the heat dissipation member and the support substrate; An apparatus is provided in which the glass transition point of the adhesive layer is ⁇ 30 ° C. or lower.
  • the adhesive layer since the glass transition point of the adhesive layer is ⁇ 30 ° C. or lower, the adhesive layer is in a rubber state in a wide temperature range. Therefore, even if there is a difference between the expansion / contraction rate of the heat radiating member and the expansion / contraction rate of the support base material due to the change in environmental temperature, the difference can be mitigated by the adhesive layer. Thereby, it can be set as a highly durable apparatus.
  • the composition for adhesive agents and an adhesive sheet can also be provided. That is, according to the present invention, It is a composition for an adhesive that adheres a support base material that supports an element and a heat dissipation member, An adhesive composition having a Tg of ⁇ 30 ° C. or lower after being cured at 150 ° C. for 1 hour is provided. Furthermore, according to this invention, the adhesive sheet which shape
  • a highly durable device an adhesive composition and an adhesive sheet for use in a highly durable device.
  • the apparatus 1 includes a support base 12 that supports the element 11, and A heat dissipating member 13 provided with the support base 12; A heat dissipation member 13 and an adhesive layer 14 disposed between the support base 12 and The glass transition point of the adhesive layer 14 is ⁇ 30 ° C. or lower.
  • the device 1 is a semiconductor device, for example, a semiconductor power module.
  • the element 11 is a semiconductor element, for example, a semiconductor element such as an IGBT (insulated gate bipolar transistor).
  • the element 11 is bonded to the support base 12 via the solder 15.
  • the support base 12 is one on which the element 11 is mounted.
  • the support base 12 includes a lead frame 121, an insulating sheet 122, and a heat conductive layer 123.
  • the lead frame 121 includes a die pad portion 121A, an inner lead (not shown) connected to the die pad portion 121A, and an outer lead connected to the inner lead.
  • the lead frame 121 supports the element 11 with a die pad portion 121A.
  • the die pad portion 121 ⁇ / b> A is electrically connected to the element 11 through the solder 15.
  • the lead frame 121 may be a conductive member, but is made of a metal such as Cu, for example.
  • the insulating sheet 122 is for insulating the heat conductive layer 123 from the lead frame 121.
  • the insulating sheet 122 is made of a resin material.
  • the insulating sheet 122 includes a resin having an ester bond that is a resin component and a thermally conductive filler.
  • the resin having an ester bond include poly (meth) acrylic acid ester polymer compounds (so-called acrylic rubbers) containing either or both of butyl acrylate and ethyl acrylate as main raw material components.
  • the heat conductive filler boron nitride, alumina or the like can be used.
  • the content of the heat conductive filler is preferably 50 to 60% by volume with respect to the entire insulating sheet 122, and the resin component is preferably 40 to 50% by volume.
  • the insulating sheet 122 has a larger planar shape than the die pad portion of the lead frame 121, and the device 1 extends along the stacking direction of the element 11, the support base 12, the adhesive layer 14, and the heat dissipation member 13. Is projected from the outer periphery of the die pad portion 121A.
  • the heat conductive layer 123 is disposed between the adhesive layer 14 and the insulating sheet 122 and is in direct contact with the adhesive layer 14.
  • the heat conductive layer 123 transmits heat from the element 11 to the heat radiating member 13.
  • the heat conductive layer 123 is made of a metal such as Cu, for example.
  • the heat conductive layer 123 is a plate-like member and has approximately the same size as the insulating sheet 122.
  • the adhesive layer 14 is a layer for adhering the support base 12 to the heat radiating member 13.
  • the thickness of the adhesive layer 14 is, for example, 10 to 100 ⁇ m. By setting the thickness of the adhesive layer 14 to 100 ⁇ m or less, the heat from the element 11 can be easily transmitted to the heat radiating member 13.
  • the adhesive layer 14 is obtained by thermosetting an adhesive composition containing a thermosetting resin (A), a curing agent (B), and an inorganic filler (C). That is, the adhesive layer 14 has a C-stage shape including a thermosetting resin.
  • thermosetting resin (A) it is preferable to use one or more of an epoxy resin, an unsaturated polyester, and an acrylic resin. Among these, it is preferable to use an epoxy resin.
  • Epoxy resins include those having an aromatic ring structure or an alicyclic structure (alicyclic carbocyclic structure), such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol.
  • E type epoxy resin bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol type epoxy resin such as bisphenol Z type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, tetraphenol group ethane type novolac type epoxy resin
  • Arylalkylene type epoxy resins such as novolac type epoxy resins, biphenyl type epoxy resins, phenol aralkyl type epoxy resins having a biphenylene skeleton, naphthalene type epoxy resin
  • the epoxy resin it is preferable to use an aliphatic epoxy resin having no aromatic ring structure in order to set the glass transition point of the adhesive layer 14 to ⁇ 30 ° C. or less. Moreover, from the viewpoint of setting the storage elastic modulus of the adhesive layer 14 in a predetermined range described later, a bifunctional or higher functional epoxy resin having two or more glycidyl groups is preferable. Furthermore, the aliphatic epoxy resin is preferably liquid at room temperature. Specifically, the aliphatic epoxy resin is preferably 10 to 30 Pa ⁇ s at 25 ° C.
  • the aliphatic epoxy resins as described above are preferably those represented by chemical formulas (1) to (10), and preferably contain at least one of them.
  • n is an integer of 1 or more, preferably 2 to 15 in particular.
  • the unsaturated polyester examples include one or more polyvalents such as ethylene glycol, dipropylene glycol, 1,3-butanediol, hydrogenated bisphenol A, neopentyl glycol, isopentyl glycol, 1,6-hexanediol, and the like.
  • Reaction of alcohol with one or more unsaturated dibasic acids such as maleic acid, maleic anhydride, fumaric acid, itaconic acid and the like, and further styrene, t-butylstyrene, divinylbenzene, diallyl phthalate, vinyltoluene And those obtained by copolymerizing one or more vinyl monomers such as acrylic acid esters.
  • the acrylic resin is a compound having a (meth) acryloyl group in the molecule, and is a resin that forms a three-dimensional network structure by the reaction of the (meth) acryloyl group and cures. Although it is necessary to have one or more (meth) acryloyl groups in the molecule, it is preferable that two or more (meth) acryloyl groups are contained.
  • the acrylic resin is not particularly limited, and one or more of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms, is used as a component. And the like.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2 -Ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, dodecyl group and the like.
  • the other monomer forming the polymer is not particularly limited, and for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, 2-hydroxyethyl (meth) acrylate, (meth) 2-hydroxypropyl acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, (meth) Examples thereof include hydroxyl group-containing monomers such as 12-hydroxylauryl acrylate or (4-hydroxymethylcyclohexyl) -methyl acrylate.
  • the thermosetting resin (A) is preferably 20% by mass or more and 50% by mass or less of the resin composition constituting the adhesive layer 14, and more preferably 30% by mass or more and 45% by mass or less. preferable.
  • the aliphatic epoxy resin contained in the thermosetting resin (A) (for example, a total of one or more epoxy resins selected from the chemical formulas (1) to (10)) is used for the entire thermosetting resin (A). It is preferable that they are 50 mass% or more and 80 mass% or less. Especially, it is preferable that it is 75 mass% or less.
  • curing agent (B) (curing catalyst) examples include organic metals such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
  • organic metals such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
  • tertiary amines such as triethylamine, tributylamine, diazabicyclo [2,2,2] octane, 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-methyl-5-hydroxyimidazole, 2-phenyl-4,5-dihydroxyimidazole, 1,2-dimethylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4- Imidazoles such as methylimidazole, Organophosphorus compounds such as phenylphosphine, tri-p-tolylphosphine, tetraphenylphosphonium tetraphenylborate, triphenylphosphine triphenylborane, 1,2-bis- (diphenylphosphino) ethane, phenol, bisphenol
  • the curing catalyst one kind including these derivatives can be used alone, or two or more kinds including these derivatives can be used in combination.
  • a curing catalyst that is liquid at 25 ° C.
  • imidazoles in liquid form at 25 ° C. for example, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl- 2-ethyl-4-methylimidazole.
  • the contact bonding layer 14 when the contact bonding layer 14 is formed from the liquid adhesive composition which does not contain a solvent, it can suppress that a space
  • the content of the curing catalyst is not particularly limited, but is preferably 0.05% by mass or more and 5% by mass or less, and particularly preferably 0.2% by mass or more and 2% by mass or less of the entire composition constituting the adhesive layer 14.
  • Examples of the inorganic filler (C) include silicates such as talc, fired clay, unfired clay, mica and glass, oxides such as titanium oxide, alumina, silica, fused silica, boehmite and magnesium oxide, calcium carbonate, Carbonates such as magnesium carbonate and hydrotalcite, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite, zinc borate, metaboric acid
  • Examples include borates such as barium, aluminum borate, calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanates such as strontium titanate and barium titanate. be able to. One of these can be used alone, or two or more can be used in combination.
  • a heat conductive filler in order to improve the heat conductivity of the adhesive layer 14, it is preferable to include a heat conductive filler.
  • the thermally conductive filler any one or more of alumina, boron nitride, boehmite, aluminum nitride, and magnesium oxide can be used.
  • an alumina and boron nitride are included as a heat conductive filler.
  • an alumina it is preferable to use a large particle diameter alumina whose average particle diameter is 18 micrometers or more. The upper limit of the average particle diameter of alumina is, for example, 50 ⁇ m.
  • the elastic modulus of the adhesive layer 14 can be reduced by using the large particle size alumina described above and the boron nitride aggregate having a lower Mohs hardness than alumina. Moreover, when it is going to achieve a desired thermal conductivity using only the boron nitride aggregate mentioned above, the viscosity of the composition for adhesives will become high and usability will worsen. On the other hand, it becomes possible to make the viscosity of the composition for adhesives low by using together the large particle diameter alumina mentioned above and the aggregate of boron nitride. Further, by using the above-described boron nitride aggregate, the thermal conductivity in the thickness direction and in-plane direction of the adhesive layer 14 can be made uniform.
  • the average particle diameter can be measured as follows. Using a laser diffraction particle size distribution analyzer SALD-7000, the inorganic filler (C) is dispersed in water by ultrasonic treatment for 1 minute, and the particle size is measured. And let d50 value be an average particle diameter.
  • the mass ratio indicated by the large particle size alumina / boron nitride aggregate is preferably 1.5-3.
  • the content of the inorganic filler (C) is preferably 40% by mass or more and 70% by mass or less, and particularly preferably 50% by mass or more and 65% by mass or less of the entire composition constituting the adhesive layer 14.
  • an inorganic filler (C) consists of a large particle size alumina and the aggregate of a boron nitride (it does not contain other components other than the aggregate of a large particle size alumina and a boron nitride).
  • the adhesive layer 14 preferably does not contain a silicone resin. By doing in this way, generation
  • the adhesive layer 14 has a glass transition point of ⁇ 30 ° C. or lower.
  • the glass transition point of the adhesive layer 14 is preferably ⁇ 35 ° C. or lower, more preferably ⁇ 40 ° C. or lower.
  • the lower limit value of the glass transition point of the adhesive layer 14 is not particularly limited, and is, for example, ⁇ 60 ° C.
  • the glass transition point of the adhesive layer 14 can be measured as follows based on JIS K7121.
  • the adhesive layer 14 is in a rubber state in a wide temperature range. Therefore, even if there is a difference between the expansion / contraction rate of the heat radiating member 13 and the expansion / contraction rate of the support base 12 (particularly, the heat conductive layer 123) due to the change in the environmental temperature, the difference can be mitigated by the adhesive layer 14. it can. Thereby, it can be set as the apparatus 1 with high durability.
  • the elastic modulus (storage elastic modulus) E ′ at 25 ° C. of the adhesive layer 14 is preferably 400 MPa or less.
  • the storage elastic modulus E ′ is preferably 300 MPa or less, and particularly preferably 200 MPa or less.
  • the adhesive layer 14 is deformed even if an expansion / contraction difference occurs between the heat dissipation member 13 and the support base material 12, and the heat dissipation member 13 and the support base material 12 are deformed. The stress generated due to the difference between expansion and contraction can be relaxed. Thereby, it can be set as a highly durable apparatus.
  • the storage elastic modulus E ′ is preferably 5 MPa or more, and more preferably 10 MPa or more.
  • the said storage elastic modulus is measured with the dynamic viscoelasticity measuring apparatus.
  • the storage elastic modulus E ′ is a value of a storage elastic modulus at 25 ° C. when a tensile load is applied to the adhesive layer 14 and measured at ⁇ 50 ° C. to 300 ° C. at a frequency of 1 Hz and a heating rate of 5 to 10 ° C./min. It is.
  • the adhesive layer 14 has high thermal conductivity.
  • the thermal conductivity C1 in the thickness direction of the adhesive layer 14 (the stacking direction of each member of the device 1) is 3 W / m ⁇ K or more
  • the thermal conductivity C2 in the in-plane direction of the adhesive layer 14 is preferably 4 W / m ⁇ K or more, and more preferably 5 W / m ⁇ K or more.
  • is not particularly limited, but is 0, for example.
  • both the in-plane direction and the thickness direction thermal conductivity of the adhesive layer 14 are increased, and the in-plane direction thermal conductivity and the thickness direction thermal conductivity of the adhesive layer 14 are Can be reduced.
  • the heat from the element 11 spreads over the entire adhesive layer 14 and can be easily transmitted to the heat radiating member 13 through the adhesive layer 14.
  • the heat conductivity C1 of the thickness direction of the contact bonding layer 14 is 5 W / m * K or more.
  • the upper limit value of the thermal conductivity C1 in the thickness direction of the adhesive layer 14 is not particularly limited, and is, for example, 60 W / m ⁇ K.
  • the thermal conductivity C2 in the in-plane direction of the adhesive layer 14 is preferably 7 W / m ⁇ K or more. Further, the upper limit value of the thermal conductivity C2 in the in-plane direction of the adhesive layer 14 is not particularly limited, but is, for example, 60 W / m ⁇ K.
  • the heat radiating member 13 is a heat sink made of metal such as Al, for example.
  • the apparatus 1 as described above can be manufactured as follows. First, the heat radiating member 13 is prepared. Thereafter, the adhesive layer 14 is provided on the heat dissipation member 13. At this time, the liquid adhesive composition that becomes the adhesive layer 14 may be applied to the heat radiating member 13, or the adhesive composition is formed into a sheet shape in advance, and this sheet is attached to the heat radiating member 13. May be.
  • the adhesive resin composition is uncured (A stage) and has a glass transition point (Tg) of ⁇ 30 ° C. or less after being cured at 150 ° C. for 1 hour. Further, the adhesive composition preferably has a storage elastic modulus E ′ at 25 ° C. after being cured at 150 ° C. for 1 hour of 400 MPa or less.
  • a preferable range of the storage elastic modulus and Tg of the adhesive composition is the same as that of the adhesive layer 14.
  • the adhesive composition is liquid.
  • the adhesive composition does not contain a solvent, and preferably has a viscosity at 25 ° C. of 5 Pa ⁇ s or more and 70 Pa ⁇ s or less as measured with an E-type viscometer, in particular, 60 Pa ⁇ s or less. It is preferable that By setting the viscosity at 25 ° C. measured with an E-type viscometer to 70 Pa ⁇ s or less, the adhesive composition can be easily applied.
  • the viscosity can be measured as follows. Using an E-type viscometer, the viscosity was measured at a measurement temperature of 25 ° C., a cone angle of 3 degrees, and a rotation speed of 5.0 rpm. Moreover, it is preferable that the thixo ratio (ratio of the viscosity at 1 rpm with respect to the viscosity at 5 rpm of rotation by an E-type viscometer) of the adhesive composition is 1.1 or more and 3.0 or less. By setting it to 1.1 or more, there is an effect of preventing sedimentation of the filler, and by setting it to 3.0 or less, there is an effect of improving workability.
  • the sheet made of the adhesive composition has a Tg of ⁇ 30 ° C. or less after being cured at 150 ° C. for 1 hour, and a storage elastic modulus E ′ at 25 ° C. after being cured at 150 ° C. for 1 hour, It is preferably 400 MPa or less.
  • a preferable range of the storage elastic modulus and Tg of the sheet is the same as that of the adhesive layer 14.
  • the thermal conductivity C1 in the thickness direction of the sheet after being cured at 150 ° C. for 1 hour is 3 W / m ⁇ K or more, and the sheet has an in-plane direction.
  • the thermal conductivity C2 is preferably 4 W / m ⁇ K or more and
  • a preferable range of C1 and C2 is the same as that of the adhesive layer 14.
  • the sheet before curing is semi-cured (B stage state).
  • the heat conductive layer 123 is provided on the sheet or adhesive composition, and then the sheet or adhesive composition is cured at 150 ° C. for 1 hour. Thereby, the adhesive layer 14 is formed. The adhesive layer 14 is completely cured. Next, the insulating sheet 122 and the lead frame 121 are disposed on the heat conductive layer 123. Thereafter, the die pad portion of the lead frame 121 and the element 11 are bonded via the solder 15. Thereafter, the element 11 is sealed with the sealing material 16.
  • the support base 12 includes the lead frame 121, the insulating sheet 122, and the heat conductive layer 123, but is not limited thereto.
  • a ceramic substrate may be used as the support base material 22.
  • the adhesive layer 14 bonds the ceramic substrate and the heat dissipation member 13.
  • the element 11 is a semiconductor element, the present invention is not limited thereto, and any element that generates heat may be used, and an optical element such as a light emitting element may be used.
  • Example 1 21 g of diethylene glycol diglycidyl ether (expressed by Nagase ChemteX Corporation EX-851, represented by formula (7)), 13 g of polybutadiene-modified epoxy resin (PB-3600 manufactured by Daicel Chemical Industries, Ltd., represented by formula (1)), 1 g , 2-dimethylimidazole (1,2-DMZ, manufactured by Shikoku Kasei Co., Ltd.), boron nitride (SP-3, manufactured by Denki Kagaku Kogyo Co., Ltd.), 18 g, alumina (DAM-45, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size) 47 g in a 250 ml disposable cup was stirred for 1 hour, and then stirred and kneaded for 5 minutes with a small stirring and defoaming device, Foaming Netaro MX-201 (trade name, manufactured by Shinkey Corporation).
  • PB-3600 manufactured by Daicel Chemical Industries, Ltd.,
  • An adhesive composition was obtained.
  • This adhesive composition was applied on a mat surface of 35 ⁇ m thick electrolytically roughened copper foil GTSMP (trade name, manufactured by Furukawa Circuit Foil) so that the film thickness after drying was 100 ⁇ m, and dried at 80 ° C. for 10 minutes.
  • a B-stage adhesive sheet was obtained.
  • the copper foil with an adhesive sheet and 35 ⁇ m thick electrolytically roughened copper foil GTSMP (trade name, manufactured by Furukawa Circuit Foil) were press-bonded at 150 ° C. and 2 MPa for 60 minutes to prepare a laminate.
  • the properties of the laminate were measured and the results are shown in Table 1.
  • the measuring method of the characteristic shown in Table 1 is as follows. The same applies to examples and comparative examples described later. 1.
  • Adhesive Composition Viscosity Using an E-type viscometer, the viscosity was measured at a measurement temperature of 25 ° C., a cone angle of 3 degrees, and a rotation speed of 5.0 rpm.
  • a viscosity was measured using a thixo E-type viscometer at a measurement temperature of 25 ° C., a cone angle of 3 degrees, and a rotation speed of 5.0 rpm.
  • the viscosity was measured using an E-type viscometer at a measurement temperature of 25 ° C., a cone angle of 3 degrees, and a rotation speed of 1.0 rpm.
  • the electrolytically roughened copper foil GTSMP was peeled off to obtain an adhesive layer. Then, the adhesive layer was cut to obtain an 8 ⁇ 20 mm test piece. Using a dynamic viscoelasticity measuring apparatus, measurement was performed in a temperature range of ⁇ 50 ° C. to 300 ° C. with a tensile mode, a frequency of 1 Hz, and a temperature rising rate of 5 ° C./min. And the storage elastic modulus of 25 degreeC was obtained. (3) Thermal conductivity 150 ° C. 2 MPa From the laminate produced by press bonding at 60 minutes, the electrolytically roughened copper foil GTSMP was peeled off to obtain an adhesive layer (thickness: 100 ⁇ m).
  • the thermal conductivity in the thickness direction and in-plane direction of the adhesive layer was measured. Specifically, from the thermal diffusion coefficient ( ⁇ ) measured by the laser flash method (half-time method), the specific heat (Cp) measured by the DSC method, and the density ( ⁇ ) measured according to JIS-K-6911. The thermal conductivity was calculated using the following formula.
  • the unit of thermal conductivity is W / m ⁇ K.
  • Thermal conductivity [W / m ⁇ K] ⁇ [mm 2 / s] ⁇ Cp [J / g ⁇ K] ⁇ ⁇ [g / cm 3 ]
  • Example 2 24 g of diethylene glycol diglycidyl ether (expressed by Nagase ChemteX Corporation EX-851, represented by formula (7)), polybutadiene-modified epoxy resin (produced by Daicel Chemical Industries, PB-3600, represented by formula (1)) 10 g, 1 , 2-dimethylimidazole (1,2-DMZ, manufactured by Shikoku Kasei Co., Ltd.), boron nitride (SP-3, manufactured by Denki Kagaku Kogyo Co., Ltd.), 18 g, alumina (DAM-45, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size) 47 g in a 250 ml disposable cup was stirred for 1 hour, and then stirred and kneaded for 5 minutes with a small stirring and defoaming device, Foaming Netaro MX-201 (trade name, manufactured by Shinkey Corporation). An adhesive composition was obtained. Subsequent steps are the same as those in Example
  • Example 3 18 g of diethylene glycol diglycidyl ether (expressed by Nagase ChemteX, EX-851, represented by formula (7)), polybutadiene-modified epoxy resin (produced by Daicel Chemical Industries, PB-3600, represented by formula (1)), 16 g, , 2-dimethylimidazole (1,2-DMZ, manufactured by Shikoku Kasei Co., Ltd.), boron nitride (SP-3, manufactured by Denki Kagaku Kogyo Co., Ltd.), 18 g, alumina (DAM-45, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size) 47 g in a 250 ml disposable cup was stirred for 1 hour, and then stirred and kneaded for 5 minutes with a small stirring and defoaming device, Foaming Netaro MX-201 (trade name, manufactured by Shinkey Corporation). An adhesive composition was obtained. Subsequent steps are the same as those in Example 3, 16
  • Example 4 21 g of diethylene glycol diglycidyl ether (expressed by Nagase ChemteX Corporation EX-851, represented by formula (7)), 13 g of polybutadiene-modified epoxy resin (PB-3600 manufactured by Daicel Chemical Industries, Ltd., represented by formula (1)), 1 g , 2-dimethylimidazole (1,2-DMZ manufactured by Shikoku Kasei Co., Ltd.), 22 g of boron nitride (SP-3 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 4 ⁇ m), alumina (DAM-45 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size) 43 g in a 250 ml disposable cup was stirred for 1 hour, and then stirred and kneaded for 5 minutes with a small stirring and defoaming device, Foam Trier MX-201 (trade name, manufactured by Shinkey Corporation). An adhesive composition was obtained. Subsequent steps are the same
  • Example 5 21 g of diethylene glycol diglycidyl ether (expressed by Nagase ChemteX Corporation EX-851, represented by formula (7)), 13 g of polybutadiene-modified epoxy resin (PB-3600 manufactured by Daicel Chemical Industries, Ltd., represented by formula (1)), 1 g , 2-dimethylimidazole (1,2-DMZ, manufactured by Shikoku Kasei Co., Ltd.), boron nitride (SP-3, manufactured by Denki Kagaku Kogyo Co., Ltd., 20 g), alumina (DAM-45, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size) (45 ⁇ m in diameter) 45 g in a 250 ml disposable cup, stirred for 1 hour, and then stirred and kneaded for 5 minutes with a small stirring and defoaming device, Foaming Netaro MX-201 (trade name, manufactured by Shinky Corporation) An adhesive composition was obtained.
  • Example 6 21 g of diethylene glycol diglycidyl ether (expressed by Nagase ChemteX Corporation EX-851, represented by formula (7)), 13 g of polybutadiene-modified epoxy resin (PB-3600 manufactured by Daicel Chemical Industries, Ltd., represented by formula (1)), 1 g , 2-dimethylimidazole (1,2-DMZ manufactured by Shikoku Kasei Co., Ltd.), 17 g of boron nitride (SP-3 manufactured by Denki Kagaku Kogyo), alumina (DAM-45 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size) 48 g in a 250 ml disposable cup was stirred for 1 hour, and then stirred and kneaded for 5 minutes with a small stirring and defoaming device, Fossil Netaro MX-201 (trade name, manufactured by Shinkey Corporation). An adhesive composition was obtained. Subsequent steps are the same as those in Example 1.
  • Example 7 27 g of diethylene glycol diglycidyl ether (expressed by Nagase ChemteX Corporation EX-851, represented by formula (7)), 17 g of polybutadiene-modified epoxy resin (produced by Daicel Chemical Industries, Ltd., PB-3600, represented by formula (1)), 1 g , 2-dimethylimidazole (1,2-DMZ, manufactured by Shikoku Kasei Co., Ltd.), boron nitride (SP-3, manufactured by Denki Kagaku Kogyo Co., Ltd.), 18 g, alumina (DAM-45, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size) 37g in a 250ml disposable cup was stirred for 1 hour, and then stirred and kneaded for 5 minutes with a small stirring and defoaming device, Foaming Netaro MX-201 (trade name, manufactured by Sinky Corporation). An adhesive composition was obtained. Subsequent steps are the same
  • Example 8 21 g of diethylene glycol diglycidyl ether (expressed by Nagase ChemteX Corporation EX-851, represented by formula (7)), 13 g of polybutadiene-modified epoxy resin (PB-3600 manufactured by Daicel Chemical Industries, Ltd., represented by formula (1)), 1 g , 2-dimethylimidazole (1,2-DMZ manufactured by Shikoku Kasei Co., Ltd.), boron nitride (UHP-S1, manufactured by Showa Denko KK, average particle size 7 ⁇ m), 18 g, alumina (DAM-45 manufactured by Denki Kagaku Kogyo Co., average particle size) (45 ⁇ m) 47 g in a 250 ml disposable cup, stirred for 1 hour, and then stirred and kneaded for 5 minutes with a small stirring defoaming device, Foam Nertaro MX-201 (trade name, manufactured by Shinky Co., Ltd.) A pharmaceutical composition was obtained. Subs
  • Example 9 21 g of diethylene glycol diglycidyl ether (expressed by Nagase ChemteX Corporation EX-851, represented by formula (7)), 13 g of polybutadiene-modified epoxy resin (PB-3600 manufactured by Daicel Chemical Industries, Ltd., represented by formula (1)), 1 g , 2-dimethylimidazole (1,2-DMZ manufactured by Shikoku Kasei Co., Ltd.), boron nitride (SP-3 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 4 ⁇ m), 18 g, alumina (AA-18 manufactured by Sumitomo Chemical Co., Ltd., average particle size) (18 ⁇ m) 47 g in a 250 ml disposable cup, stirred for 1 hour, then stirred and kneaded for 5 minutes with a small stirring defoaming device, Foaming Nitaro MX-201 (trade name, manufactured by Shinky Co., Ltd.) A pharmaceutical composition was obtained. Subsequent
  • Example 10 21 g of diethylene glycol diglycidyl ether (expressed by Nagase ChemteX Corporation EX-851, represented by formula (7)), 13 g of polybutadiene-modified epoxy resin (PB-3600 manufactured by Daicel Chemical Industries, Ltd., represented by formula (1)), 1 g 1 g of benzyl-2-phenylimidazole (1B2PZ manufactured by Shikoku Kasei Co., Ltd.), 18 g of boron nitride (SP-3 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 4 ⁇ m), alumina (DAM-45 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 45 ⁇ m) ) 47 g was put into a 250 ml disposable cup, stirred for 1 hour, then stirred and kneaded for 5 minutes with a small stirring defoaming device, Foaming Nitaro MX-201 (trade name, manufactured by Nagas
  • Example 11 21 g of 1,6-hexanediol diglycidyl ether (EX-212 manufactured by Nagase ChemteX Corp., represented by formula (2)), polybutadiene-modified epoxy resin (PB-3600 manufactured by Daicel Chemical Industries, Ltd., represented by formula (1)) ) 13 g, 1,2-dimethylimidazole (1,2-DMZ, manufactured by Shikoku Kasei Co., Ltd.), boron nitride (SP-3, manufactured by Denki Kagaku Kogyo Co., Ltd., 18 g), alumina (DAM-, manufactured by Denki Kagaku Kogyo Co., Ltd.) (45, average particle size 45 ⁇ m) 47 g was put into a 250 ml disposable cup, stirred for 1 hour, and then stirred for 5 minutes with a small stirring defoaming device, Fossil Netaro MX-201 (trade name, manufactured by Shinky Corporation). -Kneaded to obtain
  • Example 12 21 g of neopentyl glycol diglycidyl ether (EX-211, manufactured by Nagase ChemteX Corp., represented by formula (6)), 13 g of polybutadiene-modified epoxy resin (PB-3600 manufactured by Daicel Chemical Industries, Ltd., represented by formula (1)), 1 g of 1,2-dimethylimidazole (1,2-DMZ manufactured by Shikoku Kasei Co., Ltd.), 18 g of boron nitride (SP-3 manufactured by Denki Kagaku Kogyo), alumina (DAM-45 manufactured by Denki Kagaku Kogyo K.K., average) 47g in a 250ml disposable cup was stirred for 1 hour, and then stirred and kneaded for 5 minutes with a small stirring defoaming device, Foam Nertaro MX-201 (trade name, manufactured by Shinkey Co., Ltd.). An adhesive composition was obtained. Subsequent steps are the same as those in Example 1.
  • Example 13 1,4-butanediol diglycidyl ether (EX-214 manufactured by Nagase ChemteX Corp., represented by formula (3)) 21 g, polybutadiene-modified epoxy resin (PB-3600 manufactured by Daicel Chemical Industries, Ltd., represented by formula (1)) ) 13 g, 1,2-dimethylimidazole (1,2-DMZ, manufactured by Shikoku Kasei Co., Ltd.), boron nitride (SP-3, manufactured by Denki Kagaku Kogyo Co., Ltd., 18 g), alumina (DAM-, manufactured by Denki Kagaku Kogyo Co., Ltd.) (45, average particle size 45 ⁇ m) 47 g was put into a 250 ml disposable cup, stirred for 1 hour, and then stirred for 5 minutes with a small stirring defoaming device, Fossil Netaro MX-201 (trade name, manufactured by Shinky Corporation). -Kneaded to obtain an
  • Example 14 21 g of diethylene glycol diglycidyl ether (expressed by Nagase ChemteX Corporation EX-851, represented by formula (7)), 13 g of polybutadiene-modified epoxy resin (produced by Nagase ChemteX Corporation R-45EPT, represented by formula (9)), 1 g of 1,2-dimethylimidazole (1,2-DMZ manufactured by Shikoku Kasei Co., Ltd.), 18 g of boron nitride (SP-3 manufactured by Denki Kagaku Kogyo), alumina (DAM-45 manufactured by Denki Kagaku Kogyo K.K., average) 47g in a 250ml disposable cup was stirred for 1 hour, and then stirred and kneaded for 5 minutes with a small stirring defoaming device, Foam Nertaro MX-201 (trade name, manufactured by Shinkey Co., Ltd.). An adhesive composition was obtained. Subsequent steps are the same as those in Example 1.
  • Comparative Example 2 34 g of bisphenol A epoxy resin (YDF-128 manufactured by Nippon Steel Chemical Co., Ltd.), 1 g of 1,2-dimethylimidazole (1,2-DMZ manufactured by Shikoku Kasei Co., Ltd.), boron nitride (SP-3 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size) 4 ⁇ m) 18 g and alumina (DAM-45 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 45 ⁇ m) 47 g were placed in a 250 ml disposable cup, stirred for 1 hour, and then a small stirring defoaming device, Narutaro Foam MX-201 (Trade name, manufactured by Shinky Co., Ltd.) was stirred and kneaded for 5 minutes to obtain an adhesive composition. Subsequent steps are the same as those in Example 1.

Abstract

 装置(1)は、素子(11)を支持する支持基材(12)と、この支持基材(12)が設置された放熱部材(13)と、放熱部材(13)と、支持基材(12)との間に配置された接着層(14)とを備える。接着層(14)のガラス転移点は、-30℃以下となっている。

Description

装置、接着剤用組成物、接着シート
 本発明は、装置、接着剤用組成物、接着シートに関する。
 従来、半導体素子をリードフレーム等の支持体に搭載し、支持体と、放熱部材とを接着層を介して接着した半導体装置が知られている。
 たとえば、特許文献1には、半導体素子をリードフレーム等の支持体に搭載し、支持体と、ヒートシンクに接続される伝熱金属層とを、絶縁樹脂接着層とで接着した半導体装置が開示されている。
特開2011-216619号公報
 特許文献1において、半導体素子を支持する支持体の線膨張係数と、伝熱金属層の線膨張係数との差が大きく異なることがある。この場合、環境温度の変化による支持体の膨張収縮率と、伝熱金属層の膨張収縮率とが異なることとなるので、絶縁樹脂接着層が、支持体あるいは伝熱金属層から剥離することが懸念される。絶縁樹脂接着層が、支持体あるいは伝熱金属層から剥離した場合、半導体素子の熱を伝熱金属層に伝熱させることが困難となり、半導体装置の耐久性が低下してしまう。
 本発明によれば、
 素子を支持する支持基材と、
 この支持基材が設置された放熱部材と、
 前記放熱部材と、前記支持基材との間に配置された接着層とを備え、
 前記接着層のガラス転移点は、-30℃以下である装置が提供される。
 この発明によれば、接着層のガラス転移点が-30℃以下であるため、広い温度領域において、接着層はゴム状態となる。そのため、環境温度の変化により、放熱部材の膨張収縮率と支持基材の膨張収縮率とに差が生じても、その差を接着層で緩和することができる。これにより、耐久性の高い装置とすることができる。
 また、本発明によれば、接着剤用組成物および接着シートも提供できる。
 すなわち、本発明によれば、
 素子を支持する支持基材と、放熱部材とを接着する接着剤用組成物であって、
 150℃1時間で硬化した後のTgが-30℃以下である接着剤用組成物が提供される。
 さらには、本発明によれば、このような接着用組成物をシート状に成形した接着シートも提供される。
 本発明によれば、耐久性の高い装置、耐久性の高い装置に使用される接着材用組成物および接着シートが提供される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明の一実施形態にかかる装置の断面図である。 本発明の変形例にかかる装置の断面図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、すべての図面において、同様な構成要素には同一符号を付し、その詳細な説明は重複しないように適宜省略される。
 図1を参照して、本実施形態について説明する。
 はじめに、本実施形態の装置1の概要について説明する。
 装置1は、素子11を支持する支持基材12と、
 この支持基材12が設置された放熱部材13と、
 放熱部材13と、支持基材12との間に配置された接着層14とを備え、
 接着層14のガラス転移点は、-30℃以下である。
 次に、装置1について詳細に説明する。
 本実施形態では、装置1は半導体装置であり、たとえば、半導体パワーモジュールである。
 素子11は、半導体素子であり、たとえば、IGBT(絶縁ゲート型バイポーラトランジスタ)等の半導体素子である。
 素子11は、支持基材12に半田15を介して接合されている。
 支持基材12は、素子11が搭載されるものである。本実施形態では、支持基材12は、リードフレーム121と、絶縁シート122と、熱伝導層123とを備える。
 リードフレーム121は、ダイパッド部121Aと、このダイパッド部121Aに接続されたインナーリード(図示略)と、インナーリードに接続されたアウターリードとを備える。リードフレーム121はダイパッド部121Aで素子11を支持している。ダイパッド部121Aは、半田15を介して素子11に電気的に接続されている。リードフレーム121は導電性の部材であればよいが、たとえば、Cu等の金属製である。
 絶縁シート122は、熱伝導層123をリードフレーム121から絶縁するためのものである。絶縁シート122は、樹脂材料で構成されている。
 たとえば、絶縁シート122は、樹脂成分であるエステル結合を有する樹脂と、熱伝導性のフィラーとを含む。
 エステル結合を有する樹脂としては、アクリル酸ブチル及びアクリル酸エチルのいずれか又は両方を主要原料成分とした、ポリ(メタ)アクリル酸エステル系高分子化合物(所謂アクリルゴム)があげられる。
 また、熱伝導性のフィラーとしては、窒化ホウ素や、アルミナ等を使用できる。
 熱伝導性フィラーの含有量は絶縁シート122全体に対して50~60体積%であり、樹脂成分は、40~50体積%であることが好ましい。
 本実施形態では、絶縁シート122は、リードフレーム121のダイパッド部よりも平面形状が大きくなっており、素子11、支持基材12、接着層14、放熱部材13の積層方向に沿って、装置1を平面視した際に、ダイパッド部121Aの外周縁からはみ出している。
 熱伝導層123は、接着層14と絶縁シート122との間に配置され、接着層14に直接接触している。
 この熱伝導層123は、素子11からの熱を、放熱部材13に伝達する。熱伝導層123はたとえば、Cu等の金属製である。熱伝導層123は板状の部材であり、絶縁シート122とほぼ同じ大きさとなっている。
 接着層14は、支持基材12を放熱部材13に接着するための層である。この接着層14の厚みは、たとえば、10~100μmである。接着層14の厚みを100μm以下とすることで、素子11からの熱を放熱部材13に伝達させやすくすることができる。
 ここで、接着層14の組成について説明する。
 接着層14は、熱硬化性樹脂(A)と、硬化剤(B)と、無機充填材(C)とを含む接着材用組成物を熱硬化させたものである。すなわち、接着層14は、熱硬化した硬化樹脂を含んだCステージ状となっている。
 熱硬化性樹脂(A)としては、エポキシ樹脂、不飽和ポリエステル、アクリル樹脂のうち、いずれか1以上を使用することが好ましい。なかでも、エポキシ樹脂を使用することが好ましい。
 エポキシ樹脂としては、芳香族環構造あるいは脂環構造(脂環式の炭素環構造)を有するものエポキシ樹脂があげられ、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂などのアリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂などのエポキシ樹脂などが挙げられる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。
 また、エポキシ樹脂としては、接着層14のガラス転移点を、-30℃以下とするためには、芳香環構造を有しない脂肪族エポキシ樹脂を使用することが好ましい。また、接着層14の貯蔵弾性率を後述する所定の範囲する観点から、グリシジル基を2以上有する2官能以上の脂肪族エポキシ樹脂が好ましい。
 さらには、前記脂肪族エポキシ樹脂としては、常温で液状であるものが好ましい。具体的には、脂肪族エポキシ樹脂は、25℃において、10~30Pa・sであることが好ましい。
 以上のような脂肪族エポキシ樹脂としては、化学式(1)~(10)で示されるものが好ましく、少なくともいずれか1以上を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
(式(1)において、l,m,n,p,q,rは0以上の整数、ただし、l、m、nがすべて0の場合を除き、p、q、rがすべて0の場合を除く。なかでも、l=1~5、m=5~20、n=0~8、p=0~8、q=3~12、r=0~4が好ましい。)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 (式(9)において、l、m、nは0以上の整数、ただし、l、m、nがすべて0の場合を除く。なかでも、l=1~12、m=8~30、n=0~10が好ましい。))
Figure JPOXMLDOC01-appb-C000010
(式(10)において、nは1以上の整数であり、なかでも、2~15であることが好ましい。)
 不飽和ポリエステルとしては、例えば、エチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、水素化ビスフェノールA、ネオペンチルグリコール、イソペンチルグリコール、1,6-ヘキサンジオール等のいずれか1以上の多価アルコールと、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等のいずれか1以上の不飽和二塩基酸とを反応させ、さらに、スチレン、t-ブチルスチレン、ジビ二ルベンゼン、ジアリルフタレート、ビニルトルエン、アクリル酸エステル等のいずれか1種以上のビニル単量体を、共重合させたものがあげられる。
 アクリル樹脂は、分子内に(メタ)アクリロイル基を有する化合物であり、(メタ)アクリロイル基が反応することで3次元的網目構造を形成し、硬化する樹脂である。(メタ)アクリロイル基は分子内に1つ以上有する必要があるが、2つ以上含まれていることが好ましい。
 アクリル樹脂としては、特に限定されるものではなく、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体等が挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、へキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基等が挙げられる。また、前記重合体を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル若しくは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレート等の様なヒドロキシル基含有モノマーが挙げられる。
 熱硬化性樹脂(A)は、接着層14を構成する樹脂組成物の20質量%以上、50質量%以下であることが好ましく、なかでも、30質量%以上、45質量%以下であることが好ましい。
 熱硬化性樹脂(A)中に含まれる前記脂肪族エポキシ樹脂(たとえば、化学式(1)~(10)から選択される1種以上のエポキシ樹脂の合計)は、熱硬化性樹脂(A)全体の50質量%以上、80質量%以下であることが好ましい。なかでも、75質量%以下であることが好ましい。
 硬化剤(B)(硬化触媒)としては、例えばナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)などの有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタンなどの3級アミン類、2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール類、トリフェニルホスフィン、トリ-p-トリルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィン・トリフェニルボラン、1,2-ビス-(ジフェニルホスフィノ)エタンなどの有機リン化合物、フェノール、ビスフェノールA、ノニルフェノールなどのフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸などの有機酸など、またはこの混合物が挙げられる。硬化触媒として、これらの中の誘導体も含めて1種類を単独で用いることもできるし、これらの誘導体も含めて2種類以上を併用したりすることもできる。
 なかでも、25℃において、液状である硬化触媒を使用することが好ましい。具体的には、25℃において、液状でイミダゾール類を使用することが好ましく、たとえば、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチルー2-エチル-4-メチルイミダゾールがあげられる。
 このような液状の硬化触媒を使用するとともに、前述した液状の脂肪族エポキシ樹脂を使用することで、溶剤を含まない液状の接着材用組成物を得ることができる。そして、溶剤を含まない液状の接着剤用組成物から接着層14を形成した際に、揮発により接着層14に空隙が生じてしまうことを抑制できる。接着層14に空隙が形成されてしまうと、放熱部材13への熱伝導が阻害されるが、接着層14の空隙の発生を抑制することで、接着層14から放熱部材13へ確実に熱を伝えることができる。
 硬化触媒の含有量は、とくに限定されないが、接着層14を構成する組成物全体の0.05質量%以上5質量%以下が好ましく、とくに0.2質量%以上2質量%以下が好ましい。
 無機充填材(C)としては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ、ベーマイト、酸化マグネシウムなどの酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素などの窒化物、チタン酸ストロンチウム、チタン酸バリウムなどのチタン酸塩などを挙げることができる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。
 なかでも、接着層14の熱伝導性を向上させるために、熱伝導性フィラーを含むことが好ましい。熱伝導性フィラーとしては、アルミナ、窒化ホウ素、ベーマイト、窒化アルミニウム、酸化マグネシウムのうちのいずれか1種以上を使用できる。
 なかでも、熱伝導フィラーとして、アルミナと、窒化ホウ素とを含むことが好ましい。
 そして、アルミナとしては、平均粒径が18μm以上大粒径アルミナを使用することが好ましい。アルミナの平均粒径の上限値は、たとえば、50μmである。
 一方で、窒化ホウ素としては、窒化ホウ素の粒子の凝集体を使用することが好ましく、平均粒径が1~10μmである凝集体を使用することが好ましい。なかでも、平均粒径が7μm以下、とくには、5μm以下である、窒化ホウ素の凝集体を使用することが好ましい。
 上述した大粒径アルミナのみを使用して、所望の熱伝導率を達成させようとすると、アルミナはモース硬度が高いため、接着層14の弾性率が高くなり、後述する所望の範囲の弾性率とすることが困難となる。
 これに対し、上述した大粒径アルミナと、アルミナに比べてモース硬度が低い窒化ホウ素の凝集体とを併用することで、接着層14の弾性率を低下させることが可能となる。
 また、上述した窒化ホウ素の凝集体のみを使用して、所望の熱伝導率を達成させようとすると、接着剤用組成物の粘度が高くなり、使い勝手が悪くなる。
 これに対し、上述した大粒径アルミナと、窒化ホウ素の凝集体とを併用することで、接着剤用組成物の粘度を低くすることが可能となる。
 また、上述した窒化ホウ素の凝集体を使用することで、接着層14の厚み方向、面内方向の熱伝導率を均一にできる。
 ここで、平均粒径は、以下のようにして計測できる。
 レーザー回折式粒度分布測定装置SALD-7000を用いて、水中に無機充填材(C)を1分間超音波処理することにより分散させ、粒子径の測定を行う。そして、d50値を平均粒径とする。
 大粒径アルミナと、窒化ホウ素の凝集体とを使用する場合には、大粒径アルミナ/窒化ホウ素の凝集体で示される質量比を1.5~3とすることが好ましい。
 さらには、無機充填材(C)の含有量は、接着層14を構成する組成物全体の40質量%以上70質量%以下が好ましく、とくに50質量%以上65質量%以下であることが好ましい。
 そして、無機充填材(C)が大粒径アルミナと、窒化ホウ素の凝集体とからなること(大粒径アルミナおよび窒化ホウ素の凝集体以外の他の成分を含まないこと)が好ましい。
 なお、接着層14は、シリコーン樹脂を含まないことが好ましい。このようにすることで、シロキサンガスの発生を防止できる。
 次に、接着層14の物性について説明する。
 接着層14は、ガラス転移点が-30℃以下である。なかでも、接着層14のガラス転移点は、-35℃以下、さらには、-40℃以下であることが好ましい。接着層14のガラス転移点の下限値は特に限定されないが、たとえば、-60℃である。
 接着層14のガラス転移点は、JIS K 7121に基づいて、以下のようにして計測できる。
 パーキンエルマー社製の温度変調示差走査熱量計PYRIS Diamond DSCを用い、ステップ温度2℃、昇温速度5℃/分、温度保持時間1分、窒素雰囲気(20ml/分)の条件のもと測定する。そして、X軸を温度、Y軸を比熱容量とした微分比熱容量曲線のガラス転移点前の安定した箇所における接線とガラス転移点後の安定した箇所における接線と交点をガラス転移点とした。
 このように、接着層14のガラス転移点が-30℃以下であるため、広い温度領域において、接着層14はゴム状態となる。そのため、環境温度の変化により、放熱部材13の膨張収縮率と支持基材12(特に熱伝導層123)の膨張収縮率とに差が生じても、その差を接着層14で緩和することができる。これにより、耐久性の高い装置1とすることができる。
 また、接着層14の25℃の弾性率(貯蔵弾性率)E'は、400MPa以下であることが好ましい。
 なかでも、貯蔵弾性率E'は、300MPa以下であることが好ましく、なかでも、200MPa以下であることが好ましい。
 このように、接着層14の貯蔵弾性率が低いことで、放熱部材13と支持基材12との間で膨張収縮差が生じても接着層14が変形し、放熱部材13と支持基材12との膨張収縮差に起因して発生する応力を緩和することができる。これにより、耐久性の高い装置とすることができる。
 また、接着層14の強度を確保する観点から、貯蔵弾性率E'は、5MPa以上、なかでも、10MPa以上であることが好ましい。
 なお、上記貯蔵弾性率は、動的粘弾性測定装置で測定したものである。
 貯蔵弾性率E'は、接着層14に引張り荷重をかけて、周波数1Hz、昇温速度5~10℃/分で-50℃から300℃で測定した際の、25℃の貯蔵弾性率の値である。
 また、接着層14は、高い熱伝導性を有する。具体的には、接着層14の厚さ方向(装置1の各部材の積層方向)の熱伝導率C1が3W/m・K以上であり、
 接着層14の面内方向の熱伝導率C2が4W/m・K以上であることが好ましく、なかでも、5W/m・K以上であることがさらに好ましい。また、|C1-C2|≦2であることが好ましい。なお、|C1-C2|の下限値は特に限定されないが、たとえば、0である。
 このようにすることで、接着層14の面内方向、厚さ方向の熱伝導率がいずれも高くなるとともに、接着層14の面内方向の熱伝導率と、厚さ方向の熱伝導率との差を小さくすることができる。これにより、素子11からの熱が、接着層14全体に広がることとなり、この接着層14を介して、放熱部材13に伝達させやすくすることができる。
 なかでも、接着層14の厚さ方向の熱伝導率C1は、5W/m・K以上であることが好ましい。接着層14の厚さ方向の熱伝導率C1の上限値は、特に限定されないが、たとえば、60W/m・Kである。
 さらには、接着層14の面内方向の熱伝導率C2は、7W/m・K以上であることが好ましい。また、接着層14の面内方向の熱伝導率C2の上限値は、特に限定されないが、たとえば、60W/m・Kである。
 次に、放熱部材13について説明する。
 放熱部材13は、たとえば、Al等の金属製のヒートシンクである。
 以上のような装置1は、以下のようにして製造することができる。
 はじめに、放熱部材13を用意する。
 その後、放熱部材13上に接着層14を設ける。このとき、接着層14となる液状の接着剤用組成物を放熱部材13に塗布してもよく、また、あらかじめ接着剤用組成物をシート状に成形し、このシートを放熱部材13に貼り付けてもよい。
 接着剤用樹脂組成物は、未硬化であり(Aステージ)、150℃1時間で硬化した後のガラス転移点(Tg)が-30℃以下である。
 また、接着剤用組成物は、150℃1時間で硬化した後の25℃での貯蔵弾性率E'が、400MPa以下であることが好ましい。接着剤用組成物の貯蔵弾性率、Tgの好ましい範囲は、接着層14と同様である。
 当該接着剤用組成物は、液状である。そして、この接着剤用組成物は、溶剤を含まず、E型粘度計で測定した25℃での粘度が5Pa・s以上、70Pa・s以下であることが好ましく、なかでも、60Pa・s以下であることが好ましい。
 E型粘度計で測定した25℃での粘度を70Pa・s以下とすることで、接着剤用組成物は塗布しやすくなる。また、接着剤用組成物が、溶剤を含まないことで、接着層14中で溶剤が揮発し、気泡が発生して、熱伝導性が低下することを防止できる。
 粘度は、以下のように計測できる。
 E型粘度計を用いて、測定温度25℃、コーン角度3度、回転数5.0rpmで粘度を測定した。
 また、接着剤用組成物のチキソ比(E型粘度計による回転数5rpmでの粘度に対する1rpmでの粘度の比率)が1.1以上3.0以下であると好ましい。1.1以上とすることで、フィラーの沈降防止という効果があり、3.0以下とすることで、作業性の改善という効果がある。
 また、接着剤用組成物からなるシートは、150℃1時間で硬化した後のTgが-30℃以下であり、150℃1時間で硬化した後の25℃での貯蔵弾性率E'が、400MPa以下であることが好ましい。シートの貯蔵弾性率、Tgの好ましい範囲は、接着層14と同様である。
 さらに、このシートは、接着層14となるものであるから、150℃1時間で硬化した後のシートの厚み方向の熱伝導率C1が3W/m・K以上であり、シートの面内方向の熱伝導率C2が4W/m・K以上であり、|C1-C2|≦2であることが好ましい。C1,C2の好ましい範囲は、接着層14と同様である。なお、硬化前のシートは、半硬化(Bステージ状態)である。
 その後、シートあるいは接着剤用組成物上に熱伝導層123を設け、その後、シートあるいは接着剤用組成物を150℃1時間で硬化する。これにより、接着層14が形成される。接着層14は完全硬化した状態となる。
 次に、熱伝導層123上に、絶縁シート122、リードフレーム121を配置する。その後、リードフレーム121のダイパッド部と、素子11とを半田15を介して接合する。その後、封止材16により、素子11を封止する。
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、前記実施形態では、支持基材12は、リードフレーム121と、絶縁シート122と、熱伝導層123とを備えていたが、これに限られるものではない。たとえば、図2に示すように、支持基材22として、セラミックス基板を使用してもよい。この場合には、接着層14は、セラミックス基板と、放熱部材13とを接着することとなる。
 また、素子11を半導体素子としたが、これに限らず、熱を発生する素子であればよく、発光素子等の光学素子としてもよい。
 次に、本発明の実施例について説明する。
(実施例1)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)21g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)13g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。この接着剤用組成物を、35μm厚の電解粗化銅箔GTSMP(古河サーキットフォイル製商品名)のマット面上に乾燥後の膜厚が100μmとなるように塗布し、80℃、10分間乾燥させBステージの接着シートを得た。その後、上記接着シート付き銅箔と35μm厚の電解粗化銅箔GTSMP(古河サーキットフォイル製商品名)とを、150℃ 2MPa 60分間プレス接着し、積層体を作製した。その積層体の特性を測定し、結果を表1に示した。
 なお、表1に示した特性の測定方法は以下の通りである。後述する実施例、比較例においても同様である。
1.接着剤用組成物の特性
(1)粘度
 E型粘度計を用いて、測定温度25℃、コーン角度3度、回転数5.0rpmで粘度を測定した。
(2)チキソ
 E型粘度計を用いて、測定温度25℃、コーン角度3度、回転数5.0rpmで粘度を測定した。
 また、E型粘度計を用いて、測定温度25℃、コーン角度3度、回転数1.0rpmで粘度を測定した。そして、E型粘度計による回転数5rpmでの粘度Aに対する1rpmでの粘度Bの比率(A/B)をチキソの値とした。
2.硬化物特性
(1)Tg(ガラス転移点)
 JIS K 7121に基づいて、以下のようにして測定した。
 150℃ 2MPa 60分でプレス接着して製造された積層体から、電解粗化銅箔GTSMPを剥離して、接着層を得た。そして、パーキンエルマー製の温度変調示差走査熱量計PYRIS Diamond DSCを用い、ステップ温度2℃、昇温速度5℃/分、温度保持時間1分、窒素雰囲気(20ml/分)の条件のもと測定した。X軸を温度、Y軸を比熱容量とした微分比熱容量曲線のガラス転移点前の安定した箇所における接線とガラス転移点後の安定した箇所における接線と交点をガラス転移点とした。
(2)貯蔵弾性率(E')
 150℃ 2MPa 60分でプレス接着して製造された積層体から、電解粗化銅箔GTSMPを剥離して、接着層を得た。そして、接着層を切削して、8×20mmの試験片を得た。動的粘弾性測定装置により、引っ張りモード、周波数1Hz、昇温速度5℃/分として、-50℃~300℃の温度範囲で測定を行った。そして、25℃の貯蔵弾性率を得た。
(3)熱伝導率
 150℃ 2MPa 60分でプレス接着して製造された積層体から、電解粗化銅箔GTSMPを剥離して、接着層(厚さ100μm)を得た。そして接着層の厚さ方向および面内方向の熱伝導率を計測した。具体的には、レーザーフラッシュ法(ハーフタイム法)にて測定した熱拡散係数(α)、DSC法により測定した比熱(Cp)、JIS-K-6911に準拠して測定した密度(ρ)より次式を用いて熱伝導率を算出した。熱伝導率の単位はW/m・Kである。
 熱伝導率[W/m・K]=α[mm/s]×Cp[J/g・K]×ρ[g/cm
(実施例2)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)24g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)10g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例3)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)18g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)16g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例4)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)21g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)13g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)22g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)43gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例5)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)21g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)13g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)20g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)45gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例6)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)21g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)13g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)17g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)48gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例7)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)27g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)17g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)37gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例8)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)21g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)13g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(昭和電工社製UHP-S1、平均粒径7μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例9)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)21g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)13g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(住友化学社製AA-18、平均粒径18μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例10)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)21g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)13g、1-ベンジル-2-フェニルイミダゾール(四国化成社製1B2PZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例11)
 1,6-ヘキサンジオールジグリシジルエーテル(ナガセケムテックス社製EX-212、式(2)で示される)21g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)13g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例12)
 ネオペンチルグリコールジグリシジルエーテル(ナガセケムテックス社製EX-211、式(6)で示される)21g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)13g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例13)
 1,4-ブタンジオールジグリシジルエーテル(ナガセケムテックス社製EX-214、式(3)で示される)21g、ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)13g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(実施例14)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)21g、ポリブタジエン変性エポキシ樹脂(ナガセケムテックス社製R-45EPT,式(9)で表される)13g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(比較例1)
 ポリブタジエン変性エポキシ樹脂(ダイセル化学社製PB-3600,式(1)で表される)13g、ビスフェノールA型エポキシ樹脂(新日鉄化学社製YD-128)21g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(比較例2)
 ビスフェノールA型エポキシ樹脂(新日鉄化学社製YDF-128)34g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(比較例3)
 ビスフェノールF型エポキシ樹脂(新日鉄化学社製YDF-170)34g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(比較例4)
 ジエチレングリコールジグリシジルエーテル(ナガセケムテックス社製EX-851,式(7)で表される)34g、1,2-ジメチルイミダゾール(四国化成社製1,2-DMZ)1g、窒化ホウ素(電気化学工業社製SP-3、平均粒径4μm)18g、アルミナ(電気化学工業社製DAM-45、平均粒径45μm)47gを250mlディスポーザブルカップに入れ、1時間撹拌したのち、次に、小型攪拌脱泡装置の泡とり練太郎MX-201((株)シンキー製商品名)で5分攪拌・混練し、接着剤用組成物を得た。その後の工程は実施例1と同じである。
(評価)
 実施例1~14、比較例1~4で得られた接着剤用樹脂組成物を用いて、図1に示した半導体装置を製造した。ただし、封止材は設けなかった。
 アルミ製の放熱部材13に接着剤用樹脂組成物を塗布し、接着層を設けた。その後、接着剤用組成物上にCu製の熱伝導層123を設け、その後、接着剤用組成物を150℃1時間で硬化した。さらに、熱伝導層123上に、絶縁シート122、Cu製のリードフレーム121を配置した。絶縁シート122としては古河電工社製のエフコTMシートHFを使用した。その後、リードフレーム121のダイパッド部と、素子11とを半田15(材料Sn-3.0Ag-0.5Cu)を介して接合した。
 以上のようにして、各実施例、各比較例につき、半導体装置10個を用意して、ヒートサイクル試験を実施した。ヒートサイクル試験は、-40℃7分~+175℃7分を1サイクルとして3000回行なった。ヒートサイクル試験後の接着層と、放熱部材13あるいは熱伝導層123との剥離を観察し、剥離したものをカウントした。
 結果を表1に示す。
 実施例1~14では、接着層の剥離は起こらなかった。そのため、半導体素子の熱を放熱部材に確実に伝導させることができ、耐久性の高い装置となった。
 これに対し、比較例1~4では、接着層の剥離が起こってしまった。そのため、半導体素子の熱を放熱部材に伝導させることが難しくなった。これにより、半導体素子の性能に影響がでると考えられる。
Figure JPOXMLDOC01-appb-T000011
 この出願は、2013年3月7日に出願された日本出願特願2013-045500号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (12)

  1.  素子を支持する支持基材と、
     前記支持基材が設置された放熱部材と、
     前記放熱部材と、前記支持基材との間に配置された接着層とを備え、
     前記接着層のガラス転移点は、-30℃以下である装置。
  2.  請求項1に記載の装置において、
     前記接着層は、硬化した硬化樹脂を含む装置。
  3.  請求項2に記載の装置において、
     前記接着層は、シリコーン樹脂を含まない装置。
  4.  請求項1乃至3のいずれか1項に記載の装置において、
     前記接着層は、25℃での貯蔵弾性率E'が400MPa以下である装置。
  5.  請求項1乃至4のいずれか1項に記載の装置において、
     前記接着層は、樹脂成分と熱伝導性フィラーとを含み、
     前記熱伝導性フィラーとして、平均粒径が18μm以上のアルミナと、
     窒化ホウ素の粒子の凝集体であり、平均粒径が7μm以下である凝集体とを含む装置。
  6.  請求項1乃至5のいずれか1項に記載の装置において、
     前記接着層は、硬化樹脂と熱伝導性フィラーとを含み、
     前記硬化樹脂は、エポキシ樹脂、不飽和ポリエステル、アクリル樹脂のいずれか1種以上を含む装置。
  7.  請求項1乃至6のいずれか1項に記載の装置において、
     前記接着層の厚みは100μm以下である装置。
  8.  素子を支持する支持基材と、放熱部材とを接着する接着剤用組成物であって、
     150℃1時間で硬化した後のガラス転移点が-30℃以下である接着剤用組成物。
  9.  請求項8に記載の接着剤用組成物において、
     前記接着剤用組成物は、熱硬化して、前記支持基材と前記放熱部材とを接着するものであり、
     前記接着剤用組成物は、熱硬化性樹脂を含み、
     前記接着剤用組成物は、シリコーン樹脂を含まない接着剤用組成物。
  10.  請求項8または9に記載の接着剤用組成物において、
     150℃1時間で硬化した後の25℃での貯蔵弾性率E'が400MPa以下である接着剤用組成物。
  11.  請求項8乃至10のいずれか1項に記載の接着剤用組成物において、
     当該接着剤用組成物は溶剤を含まず、
     E型粘度計で測定した25℃での粘度が70Pa・s以下である接着剤用組成物。
  12.  請求項8乃至11のいずれか1項に記載の接着剤用組成物をシート状に成形した接着シートであって、
     樹脂成分と熱伝導性フィラーとを含み、
     150℃1時間で硬化した後において、
     シートの厚み方向の熱伝導率C1が3W/m・K以上であり、
     シートの面内方向の熱伝導率C2が4W/m・K以上であり、
    |C1-C2|≦2Wm・Kである接着シート。
PCT/JP2014/051205 2013-03-07 2014-01-22 装置、接着剤用組成物、接着シート WO2014136484A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480010373.5A CN105027278A (zh) 2013-03-07 2014-01-22 装置、粘合剂用组合物、粘合片
US14/769,946 US20160002439A1 (en) 2013-03-07 2014-01-22 Apparatus, composition for adhesive, and adhesive sheet
KR1020157027635A KR20150130367A (ko) 2013-03-07 2014-01-22 장치, 접착제용 조성물, 접착 시트
JP2015504196A JPWO2014136484A1 (ja) 2013-03-07 2014-01-22 装置、接着剤用組成物、接着シート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-045500 2013-03-07
JP2013045500 2013-03-07

Publications (1)

Publication Number Publication Date
WO2014136484A1 true WO2014136484A1 (ja) 2014-09-12

Family

ID=51491011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051205 WO2014136484A1 (ja) 2013-03-07 2014-01-22 装置、接着剤用組成物、接着シート

Country Status (6)

Country Link
US (1) US20160002439A1 (ja)
JP (1) JPWO2014136484A1 (ja)
KR (1) KR20150130367A (ja)
CN (1) CN105027278A (ja)
TW (1) TW201444962A (ja)
WO (1) WO2014136484A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145624A1 (ja) * 2016-02-26 2017-08-31 日立化成株式会社 接着フィルム及びダイシング・ダイボンディングフィルム
JP2019149514A (ja) * 2018-02-28 2019-09-05 三菱マテリアル株式会社 放熱板付絶縁回路基板、及び、放熱板付絶縁回路基板の製造方法
WO2019229962A1 (ja) * 2018-05-31 2019-12-05 日立化成株式会社 樹脂組成物、樹脂部材、樹脂シート、bステージシート、cステージシート、樹脂付金属箔、金属基板及びパワー半導体装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742252B (zh) * 2014-12-09 2019-05-07 台达电子工业股份有限公司 一种功率模块及其制造方法
TWI693684B (zh) * 2018-11-26 2020-05-11 艾姆勒車電股份有限公司 Igbt模組散熱結構改良
CN111584346B (zh) * 2020-05-28 2021-02-12 浙江大学 具有热沉结构的GaN器件及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272599A (ja) * 2004-03-24 2005-10-06 Nippon Shokubai Co Ltd 放熱材料用脂組成物および放熱材料
JP2011144234A (ja) * 2010-01-13 2011-07-28 Denki Kagaku Kogyo Kk 熱伝導性樹脂組成物
JP2011216619A (ja) 2010-03-31 2011-10-27 Nippon Steel Chem Co Ltd 積層構造体及びその製造方法
JP2011225856A (ja) * 2010-03-31 2011-11-10 Toray Ind Inc 電子機器用接着剤組成物およびそれを用いた電子機器用接着剤シート
WO2012093510A1 (ja) * 2011-01-05 2012-07-12 ナミックス株式会社 樹脂組成物
JP2013018983A (ja) * 2012-08-15 2013-01-31 Hitachi Chemical Co Ltd 半導体装置の製造方法および半導体装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW490820B (en) * 2000-10-04 2002-06-11 Advanced Semiconductor Eng Heat dissipation enhanced ball grid array package
JP4311600B2 (ja) * 2001-01-30 2009-08-12 日本碍子株式会社 静電チャック用接合構造体及びその製造方法
US7220365B2 (en) * 2001-08-13 2007-05-22 New Qu Energy Ltd. Devices using a medium having a high heat transfer rate
US20030168730A1 (en) * 2002-03-08 2003-09-11 Howard Davidson Carbon foam heat exchanger for integrated circuit
US20030203181A1 (en) * 2002-04-29 2003-10-30 International Business Machines Corporation Interstitial material with enhanced thermal conductance for semiconductor device packaging
US6919504B2 (en) * 2002-12-19 2005-07-19 3M Innovative Properties Company Flexible heat sink
US7575955B2 (en) * 2004-01-06 2009-08-18 Ismat Corporation Method for making electronic packages
US7147041B2 (en) * 2004-05-03 2006-12-12 Parker-Hannifin Corporation Lightweight heat sink
CN101213661A (zh) * 2005-06-29 2008-07-02 皇家飞利浦电子股份有限公司 组件、子组件和制造它们的方法
JP2007158279A (ja) * 2005-12-09 2007-06-21 Hitachi Ltd 半導体装置及びそれを用いた電子制御装置
US20100177519A1 (en) * 2006-01-23 2010-07-15 Schlitz Daniel J Electro-hydrodynamic gas flow led cooling system
US20070169928A1 (en) * 2006-01-26 2007-07-26 Dayan Richard A Heat sink for controlling dissipation of a thermal load
WO2007119359A1 (ja) * 2006-03-16 2007-10-25 Tokyo Electron Limited ウエハ状計測装置及びその製造方法
TWI306296B (en) * 2006-04-06 2009-02-11 Siliconware Precision Industries Co Ltd Semiconductor device with a heat sink and method for fabricating the same
US7911044B2 (en) * 2006-12-29 2011-03-22 Advanced Chip Engineering Technology Inc. RF module package for releasing stress
CN101755335B (zh) * 2007-07-19 2012-07-11 日本电气株式会社 电子部件安装装置及其制造方法
US20120087088A1 (en) * 2008-08-05 2012-04-12 Pipeline Micro, Inc. Microscale heat transfer systems
WO2010115296A1 (zh) * 2009-04-10 2010-10-14 佛山市国星光电股份有限公司 功率led散热基板、功率led产品及其制造方法
US8362607B2 (en) * 2009-06-03 2013-01-29 Honeywell International Inc. Integrated circuit package including a thermally and electrically conductive package lid
US8780558B2 (en) * 2009-09-02 2014-07-15 University Of Washington Through Its Center For Commercialization Porous thermoplastic foams as heat transfer materials
US8207453B2 (en) * 2009-12-17 2012-06-26 Intel Corporation Glass core substrate for integrated circuit devices and methods of making the same
US8241964B2 (en) * 2010-05-13 2012-08-14 Stats Chippac, Ltd. Semiconductor device and method of embedding bumps formed on semiconductor die into penetrable adhesive layer to reduce die shifting during encapsulation
JP5617548B2 (ja) * 2010-11-11 2014-11-05 ソニー株式会社 半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272599A (ja) * 2004-03-24 2005-10-06 Nippon Shokubai Co Ltd 放熱材料用脂組成物および放熱材料
JP2011144234A (ja) * 2010-01-13 2011-07-28 Denki Kagaku Kogyo Kk 熱伝導性樹脂組成物
JP2011216619A (ja) 2010-03-31 2011-10-27 Nippon Steel Chem Co Ltd 積層構造体及びその製造方法
JP2011225856A (ja) * 2010-03-31 2011-11-10 Toray Ind Inc 電子機器用接着剤組成物およびそれを用いた電子機器用接着剤シート
WO2012093510A1 (ja) * 2011-01-05 2012-07-12 ナミックス株式会社 樹脂組成物
JP2013018983A (ja) * 2012-08-15 2013-01-31 Hitachi Chemical Co Ltd 半導体装置の製造方法および半導体装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145624A1 (ja) * 2016-02-26 2017-08-31 日立化成株式会社 接着フィルム及びダイシング・ダイボンディングフィルム
JP2019149514A (ja) * 2018-02-28 2019-09-05 三菱マテリアル株式会社 放熱板付絶縁回路基板、及び、放熱板付絶縁回路基板の製造方法
JP7087446B2 (ja) 2018-02-28 2022-06-21 三菱マテリアル株式会社 放熱板付絶縁回路基板、及び、放熱板付絶縁回路基板の製造方法
WO2019229962A1 (ja) * 2018-05-31 2019-12-05 日立化成株式会社 樹脂組成物、樹脂部材、樹脂シート、bステージシート、cステージシート、樹脂付金属箔、金属基板及びパワー半導体装置
JPWO2019229962A1 (ja) * 2018-05-31 2021-07-26 昭和電工マテリアルズ株式会社 樹脂組成物、樹脂部材、樹脂シート、bステージシート、cステージシート、樹脂付金属箔、金属基板及びパワー半導体装置
JP7255593B2 (ja) 2018-05-31 2023-04-11 株式会社レゾナック 樹脂組成物、樹脂部材、樹脂シート、bステージシート、cステージシート、樹脂付金属箔、金属基板及びパワー半導体装置

Also Published As

Publication number Publication date
JPWO2014136484A1 (ja) 2017-02-09
TW201444962A (zh) 2014-12-01
US20160002439A1 (en) 2016-01-07
CN105027278A (zh) 2015-11-04
KR20150130367A (ko) 2015-11-23

Similar Documents

Publication Publication Date Title
WO2014136484A1 (ja) 装置、接着剤用組成物、接着シート
JP6477483B2 (ja) エポキシ樹脂組成物、樹脂層付きキャリア材料、金属ベース回路基板および電子装置
JP7073716B2 (ja) 熱伝導性樹脂組成物、熱伝導性シートおよび半導体装置
WO2015163054A1 (ja) 金属ベース基板、金属ベース基板の製造方法、金属ベース回路基板および電子装置
JP2014139021A (ja) 多層樹脂シート及びその製造方法、多層樹脂シート硬化物の製造方法、並びに、高熱伝導樹脂シート積層体及びその製造方法
WO2015056555A1 (ja) 金属基板、金属ベース回路基板、電子装置および金属ベース回路基板の製造方法
JP6627303B2 (ja) 熱伝導性樹脂組成物、回路基板用積層体、回路基板および半導体装置
JP2012067220A (ja) 絶縁シート及び積層構造体
JP2011116913A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
WO2013061981A1 (ja) 積層体及びパワー半導体モジュール用部品の製造方法
JP2013098217A (ja) パワー半導体モジュール用部品の製造方法
JP2014090135A (ja) 半導体装置
KR20140037552A (ko) 에폭시 수지 조성물, 상기 에폭시 수지 조성물을 포함하는 접착시트과 회로기판 및 회로기판 제조방법
JP5346363B2 (ja) 積層体
JP2010135587A (ja) 半導体デバイス
KR20150025319A (ko) 에폭시 수지 조성물, 상기 에폭시 수지 조성물의 제조방법, 상기 에폭시 수지 조성물을 이용한 접착시트, 회로기판 및 상기 회로기판의 제조방법
JP2013094988A (ja) 積層体
JP2013201338A (ja) パワー半導体モジュール用部品の製造方法
JP2012229319A (ja) 絶縁材料及び積層構造体
JP5837839B2 (ja) 積層構造体
JP5114597B1 (ja) 積層体及び切断積層体
WO2015163055A1 (ja) 金属ベース基板、金属ベース基板の製造方法、金属ベース回路基板および電子装置
WO2015163056A1 (ja) 金属ベース基板、金属ベース回路基板および電子装置
JP2009224108A (ja) 絶縁シート及び積層構造体
JP2015198106A (ja) 金属ベース回路基板および電子装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010373.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504196

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769946

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014761188

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157027635

Country of ref document: KR

Kind code of ref document: A