WO2014132975A1 - (2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの製造方法 - Google Patents

(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの製造方法 Download PDF

Info

Publication number
WO2014132975A1
WO2014132975A1 PCT/JP2014/054609 JP2014054609W WO2014132975A1 WO 2014132975 A1 WO2014132975 A1 WO 2014132975A1 JP 2014054609 W JP2014054609 W JP 2014054609W WO 2014132975 A1 WO2014132975 A1 WO 2014132975A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactone
methyl
fluoro
ribono
group
Prior art date
Application number
PCT/JP2014/054609
Other languages
English (en)
French (fr)
Inventor
安本 学
岡本 隆一
裕力 名倉
英之 鶴田
石井 章央
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN201480011347.4A priority Critical patent/CN105026382B/zh
Priority to JP2015502941A priority patent/JP6394588B2/ja
Publication of WO2014132975A1 publication Critical patent/WO2014132975A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form

Definitions

  • the present invention relates to an industrial process for producing (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactones.
  • (2R) as a diastereomeric mixture by aldol reaction of ethyl 2-fluoropropionate with (R)-(+)-2,2-dimethyl-1,3-dioxolane-4-carboxaldehyde in the presence of a base
  • a method for separating diastereomers by obtaining a substrate-selective hydrolysis reaction with an enzyme after obtaining a -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactone precursor has been reported.
  • Et represents an ethyl group
  • Bz represents a benzoyl group
  • An object of the present invention is to provide an industrial process for producing (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactones.
  • 1,2-diols which are also raw material substrates of the present invention, are disclosed.
  • this compound can be produced by a known method, it is stereoselective using a Wittig reaction or a metal reagent. Cost reduction has been somewhat difficult due to the fact that a method of production by a dihydroxylation reaction has been adopted.
  • the process can be shortened as compared with the production method of Patent Document 1, but the total yield is low, and reproducibility is achieved by using an enzyme reaction for separation of diastereomers.
  • it still has a problem in terms of productivity, and it has been difficult to satisfy the requirements for industrial manufacturing methods (high productivity and good reproducibility).
  • Patent Document 3 sufficient selectivity and yield are not obtained, and an efficient separation method is still required. Therefore, in the development of a method for purifying (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactone, which is the subject of the present invention, an efficient dialysis by a simpler operation than in the conventional method. Separation of stereomers was strongly desired.
  • R 1 represents an alkyl group or a substituted alkyl group
  • A represents an oxygen atom, a nitrogen atom or a sulfur atom.
  • P 1 and P 2 each represent a protecting group for a hydroxyl group. * Represents an asymmetric carbon. ] [In the formula, * represents an asymmetric carbon. ]
  • recrystallization solvent alcohol, nitrile, ester, ether, aliphatic hydrocarbon, aromatic hydrocarbon, halogenated hydrocarbon, ketone, water can be used alone or in combination. It has been found that optically active 2-fluoro-2-C-methyl-D-ribono- ⁇ -lactone having high purity and high reproducibility can be obtained in high yield.
  • the corresponding lactone obtained here can be obtained in good yield by carrying out an acylation reaction.
  • the present invention is characterized by the order of performing “recrystallization purification” and “acylation reaction”. That is, the diastereomer is recrystallized from the (3R) -2-acylated (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactones in which the 3,5 positions are mixed, ie, first Even if recrystallization was performed after acylation, the product having the desired configuration could not be efficiently separated (see Comparative Example 1 described later). The results show that the diastereomeric separation behavior is clear when the 3,5 position is a hydroxyl group (when the 3,5 position is not acylated) and when the 3,5 position is acylated.
  • the present invention provides an industrial process for producing (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactones described in [Invention 1]-[Invention 7].
  • R 2 represents an acyl group
  • R 1 represents an alkyl group or a substituted alkyl group
  • A represents an oxygen atom, a nitrogen atom or a sulfur atom.
  • P 1 and P 2 each represent a protecting group for a hydroxyl group. * Represents an asymmetric carbon.
  • * represents an asymmetric carbon.
  • Solvents used for recrystallization of dihydroxy lactone diastereomeric mixtures are alcohols, aromatic hydrocarbons, esters, nitriles, ethers, halogenated hydrocarbons, ketones, water, and aliphatic hydrocarbons
  • invention 3 The production method according to invention 1 or 2, wherein the solvent used for recrystallization of the diastereomeric mixture of dihydroxylactone is isopropanol, toluene, ethyl acetate or n-heptane.
  • the acid used is acetic acid, sulfuric acid, hydrochloric acid, methanesulfonic acid, paratoluenesulfonic acid, or trifluoroacetic acid, The manufacturing method of the invention 1.
  • the present invention by performing recrystallization purification on a diastereomeric mixture of dihydroxylactone, among the diastereomers contained in the mixture, the target (2R) -2-fluoro-2-C-methyl- D-ribono- ⁇ -lactone can be obtained efficiently. Furthermore, (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactone with high reproducibility and high purity can be obtained by adopting suitable recrystallization conditions.
  • the present invention does not require a substrate-selective hydrolysis reaction using a conventional enzyme, and efficiently separates diastereomers by a simple operation that does not require an enzyme reaction. Has reproducibility and can increase productivity.
  • the present invention also satisfies the requirements as an industrial production method.
  • the present invention provides a diastereomeric mixture of dihydroxylactone represented by general formula [3] by deprotecting and lactonizing a diastereomeric mixture of lactone precursor represented by general formula [2] under acidic conditions. And by recrystallizing the mixture obtained in the previous step, a high purity (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactone represented by the general formula [4] is obtained.
  • a step of acylating the (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactone obtained in the previous step, and (2R) -2-fluoro-2- This is a method for producing C-methyl-D-ribono- ⁇ -lactones.
  • R 1 in the general formula [2] represents an alkyl group or a substituted alkyl group.
  • the alkyl group can have a straight chain or branched chain structure having 1 to 12 carbon atoms, or a cyclic structure (when the number of carbon atoms is 3 or more).
  • the substituted alkyl group has a substituent in any number and in any combination on any carbon atom of the alkyl group.
  • substituents include fluorine, chlorine, bromine, iodine halogen atoms, methyl groups, ethyl groups, propyl groups, butyl groups and other lower alkyl groups, methoxy groups, ethoxy groups, propoxy groups, butoxy groups and other lower alkoxy groups.
  • lower means 1 to 6 carbon atoms, and may be linear or branched, or cyclic (when the number of carbon atoms is 3 or more). Among them, an alkyl group having 1 to 6 carbon atoms or a substituted alkyl group is preferable, and a methyl group or an ethyl group is particularly preferable.
  • a in the general formula [2] represents an oxygen atom, a nitrogen atom, or a sulfur atom, and together with the definition of R 1 described above, examples of specific structures are as follows (note that a wavy line in the formula represents a binding site) Is).
  • P 1 and P 2 of the lactone precursor represented by the general formula [2] each represent a protecting group for a hydroxyl group.
  • protecting groups include those described in Protective Groups in Organic Synthesis, Third Edition, 1999, John Wiley & Sons, Inc.
  • P 1 and P 2 can adopt the same protecting group or different protecting groups, and can also adopt one protecting group at the same time. Among them, those which simultaneously take one protecting group are preferable (see below), and those protected with an isopropylidene group or a cyclohexylidene group are particularly preferable.
  • the diastereomeric mixture of the lactone precursor represented by the general formula [2] can be similarly produced with reference to Patent Document 2, Non-Patent Document 1, and the like.
  • the “diastereomeric mixture of lactone precursors” mentioned here refers to compounds (formula [2a] -formula [2d]) having four different steric configurations whose specific structures are shown below. .
  • the “diastereomeric mixture of dihydroxy lactones” mentioned here refers to compounds (formula [3a] -formula [3d]) having four different steric configurations whose specific structures are shown below.
  • examples of the acid include acetic acid, sulfuric acid, hydrochloric acid, methanesulfonic acid, paratoluenesulfonic acid, and trifluoroacetic acid.
  • the acid is not limited to these, and includes those generally used in organic synthesis. Of these, acetic acid, sulfuric acid, and hydrochloric acid are particularly preferable. These acids can be used alone or in combination.
  • the acid may be used in an amount of 0.05 mol or more per mol of the diastereomeric mixture of the lactone precursor represented by the general formula [2], preferably 0.1 mol to 50 mol, 0.2 mol To 20 mol is particularly preferred.
  • Reaction solvents include alcohols such as methanol and ethanol, amides such as N, N-dimethylformamide and 1,3-dimethyl-2-imidazolidinone, nitriles such as acetonitrile and propionitrile, water, tetrahydrofuran and dimethyl Examples thereof include sulfoxide. Of these, methanol, ethanol, N, N-dimethylformamide, acetonitrile, water, tetrahydrofuran and dimethyl sulfoxide are preferable, and methanol, ethanol, acetonitrile, water and tetrahydrofuran are particularly preferable. These reaction solvents can be used alone or in combination.
  • the reaction temperature may be in the range of ⁇ 20 to + 150 ° C., preferably ⁇ 10 to + 125 ° C., particularly preferably 0 to + 100 ° C.
  • the reaction time may be in the range of 96 hours or less, and varies depending on the raw material substrate and reaction conditions. Therefore, the progress of the reaction is traced by analysis means such as gas chromatography, liquid chromatography, nuclear magnetic resonance, etc.
  • the end point is preferably the point at which almost disappeared.
  • the recrystallization solvent examples include aliphatic hydrocarbons such as n-pentane, n-hexane, cyclohexane and n-heptane, aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene and mesitylene, methylene chloride, chloroform, Halogenated hydrocarbons such as 1,2-dichloroethane, ethers such as diethyl ether, tetrahydrofuran, t-butylmethyl ether, di-propyl ether, 1,4-dioxane, acetone, methyl ethyl ketone, methyl i-butyl ketone, etc.
  • aliphatic hydrocarbons such as n-pentane, n-hexane, cyclohexane and n-heptane
  • aromatic hydrocarbons such as benzene, toluene, e
  • Ketone ethyl acetate, ester such as n-butyl acetate, acetonitrile Lil, nitrile such as propionitrile, methanol, ethanol, n- propanol, i- propanol, alcohol such as n- butanol, water and the like.
  • acetonitrile Lil nitrile such as propionitrile
  • methanol ethanol
  • n- propanol n- propanol
  • i- propanol i- propanol
  • alcohol such as n- butanol, water and the like.
  • the amount of the recrystallization solvent used is usually 0.5 mL or more per 1 g of the mixture of dihydroxylactones represented by the general formula [3], preferably 1 to 30 mL, more preferably 2 to 10 mL.
  • the crystals are sufficiently precipitated in the range of ⁇ 20 to + 20 ° C. over 1 to 48 hours while dissolving with heating and gradually cooling while standing or stirring.
  • a method of filtering the precipitated crystals is preferably employed. It is also possible to use seed crystals during crystallization.
  • the (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactone obtained in the recrystallization step is represented by the general formula [1] by an acylation reaction in the presence of a base ( 2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactones.
  • Examples of the acylation reaction used in the present invention include acetylation, benzoylation, and formylation.
  • Acylating agents include acetic anhydride and acetyl chloride for acetylation, formic acid for formylation, and benzoyl chloride, benzoic anhydride, benzoyl cyanide, trifluoromethanesulfonic acid for benzoylation. Examples include, but are not limited to, benzoyl.
  • the acylation reaction is preferably acetylation or benzoylation reaction, more preferably benzoylation reaction.
  • the specific reagent in the benzoylation reaction is particularly preferably benzoyl chloride among the reagents described above.
  • the amount of the acylating agent to be used is generally 1 to 20 mol, preferably 2 to 10 mol, per 1 mol of (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactone. 2 to 5 mol is more preferable.
  • reaction solvent used in the acylation reaction examples include aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene, and mesitylene, halogenated hydrocarbons such as methylene chloride, chloroform, and 1,2-dichloroethane, diethyl ether, tetrahydrofuran, Examples thereof include ethers such as t-butyl methyl ether, di-propyl ether and 1,4-dioxane, and nitriles such as acetonitrile and propionitrile. These reaction solvents may be appropriately selected and used depending on the reaction conditions, and may be used alone or in combination.
  • Examples of the base that can be used include ammonia, triethylamine, pyridine, lutidine, collidine, amines such as N, N-dimethylaniline, and hydroxides such as sodium hydroxide, potassium hydroxide, and tetramethylammonium hydroxide. And alkali metal carbonates or hydrogen carbonates such as potassium carbonate and sodium hydrogen carbonate. These bases can be used singly or in combination of two or more.
  • reaction temperature an appropriate reaction temperature can be selected depending on the reaction conditions.
  • R 2 represents an acyl group.
  • the acyl group include a benzoyl group, a formyl group, and an acetyl group, and these correspond to the acylating agents described above.
  • the reaction-terminated liquid was concentrated under reduced pressure, concentrated azeotropically under reduced pressure five times with 15 ml of toluene, and vacuum-dried, thereby diastereoisomers of dihydroxylactones represented by the following formulas [4], [5], [10] and [11]. 11.90 g of the mer mixture was obtained.
  • the 19 F-NMR of the crude product is shown below.
  • the reaction-terminated liquid was concentrated under reduced pressure, concentrated azeotropically under reduced pressure five times with 15 ml of toluene, and vacuum-dried, thereby diastereoisomers of dihydroxylactones represented by the following formulas [4], [5], [10] and [11]. 13.90 g of a mer mixture was obtained.
  • the 19 F-NMR of the crude product was the same as in Example 1.
  • 13.90 g of the diastereomeric mixture of dihydroxylactone obtained above was recrystallized from a mixed solvent of 20.9 ml (1.5 vol) of isopropanol, 69.5 ml (5 vol) of toluene and 27.8 ml (2 vol) of n-heptane.
  • the gas chromatographic purity of the crystals was 99.1%, and the diastereomer represented by the above formula [5] as the main impurity was 0.4%.
  • the total amount of the crude product obtained above (7.09 g, referred to as 17.9 mmol for convenience) was 10.6 ml (1.5 vol) of ethyl acetate, 10.6 ml (1.5 vol) of isopropanol, and 63.8.4 ml of n-heptane. Recrystallization from a mixed solvent of (9 vol), washing with 13.8 ml of n-heptane, and vacuum drying gave (2R) -2-fluoro-2-C-methyl-D-ribono- 6.17 g (16.6 mmol) of white crystals of ⁇ -lactones were obtained. The yield was 92.6%. The gas chromatographic purity of the crystals was 99.8%.
  • reaction-terminated liquid was concentrated under reduced pressure, concentrated azeotropically under reduced pressure five times with 30 ml of toluene, and vacuum-dried, thereby diastereoisomers of dihydroxylactones represented by the following formulas [4], [5], [10] and [11]. 24.80 g of the mer mixture was obtained.
  • the total amount of the crude product obtained above (13.81 g, referred to as 35.6 mmol for convenience) was 20.7 ml (1.5 vol) of ethyl acetate, 20.7 ml (1.5 vol) of isopropanol, and 124.3 ml (9 vol) of n-heptane. ), And the crystals collected by filtration are washed with 27.4 ml of n-heptane and dried under vacuum to give (2R) -2-fluoro-2-C-methyl-D represented by the above formula. -11.99 g (32.2 mmol) of white crystals of ribono- ⁇ -lactones were obtained. The yield was 90.5%. The gas chromatographic purity of the crystals was 95.8%.
  • the reaction-terminated liquid was concentrated under reduced pressure, concentrated azeotropically under reduced pressure five times with 15 ml of toluene, and vacuum-dried, thereby diastereoisomers of dihydroxylactones represented by the following formulas [4], [5], [10] and [11]. 8.72 g of a mer mixture was obtained.
  • the 19 F-NMR of the crude product was the same as in Example 1. 8.72 g of the diastereomeric mixture of dihydroxylactone obtained above was recrystallized from a mixed solvent of isopropanol 13.1 ml (1.5 vol), toluene 43.6 ml (5 vol) and n-heptane 8.7 ml (1 vol).
  • the reaction-terminated liquid was concentrated under reduced pressure, concentrated azeotropically under reduced pressure five times with 10 ml of toluene, and vacuum-dried to obtain a dihydroxylactone diastereomer represented by the following formulas [4], [5], [10] and [11].
  • 0.52 g of the mer mixture was obtained.
  • the 19 F-NMR of the crude product was the same as in Example 1.
  • 0.52 g of the mixture of dihydroxylactone obtained above was recrystallized from a mixed solvent of 0.8 ml (1.5 vol) of isopropanol, 2.6 ml (5 vol) of toluene and 0.5 ml (1 vol) of n-heptane, and collected by filtration.
  • the reaction-terminated liquid was concentrated under reduced pressure, concentrated azeotropically under reduced pressure five times with 15 ml of toluene, and vacuum-dried, thereby diastereoisomers of dihydroxylactones represented by the following formulas [4], [5], [10] and [11]. 8.72 g of a mer mixture was obtained.
  • the 19 F-NMR of the crude product was the same as in Example 1. 6.84 g of the diastereomeric mixture of dihydroxylactone obtained above was recrystallized from a mixed solvent of 10.3 ml (1.5 vol) of isopropanol, 34.2 ml (5 vol) of toluene and 6.8 ml (1 vol) of n-heptane.
  • the reaction-terminated liquid was concentrated under reduced pressure, concentrated azeotropically under reduced pressure five times with 55 ml of toluene, and vacuum-dried, thereby diastereoisomers of dihydroxylactones represented by the following formulas [4], [5], [10] and [11]. 70.27 g of a mer mixture was obtained.
  • the 19 F-NMR of the crude product was the same as in Example 1.
  • (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactones represented by the following formulas [1] and [28]-[31] by concentration under reduced pressure and vacuum drying 131.74 g [[1]: 75.7 mmol, [20]: 69.8 mmol, [21] + [22]: 24.2 mmol (quantified by internal standard method by 19 F-NMR)] was obtained. It was.
  • the mixture was recrystallized from a mixed solvent of 197 ml (1.5 vol) of ethyl acetate, 197 ml (1.5 vol) of isopropanol and 1180 ml (9 vol) of n-heptane, and the crystals collected by filtration were washed with 132 ml of ice-cooled methanol. By vacuum drying, 40.36 g of white crystals were obtained. When the crystals were analyzed by gas chromatography, they contained [1]: 61% and [20]: 33%.
  • the crystals were recrystallized again from a mixed solvent of 60 ml (1.5 vol) of ethyl acetate, 60 ml (1.5 vol) of isopropanol and 364 ml (9 vol) of n-heptane, and the crystals collected by filtration were ice-cooled.
  • the crystals were washed with 81 ml of methanol and vacuum-dried to obtain 33.25 g of white crystals.
  • the crystals were analyzed by gas chromatography, they contained [1]: 67% and [20]: 33%.
  • the (2R) -2-fluoro-2-C-methyl-D-ribono- ⁇ -lactone targeted in the present invention is 2′-deoxy-2′-fluoro-2′-C-methyl having antiviral activity. It can be used as an important intermediate for cytidine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)

Abstract

 本発明によれば、(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン前駆体を含むジアステレオマー混合物を、酸性条件下で脱保護し、続いてラクトン化させることにより、ジヒドロキシラクトンのジアステレオマー混合物を得、続いて該混合物を再結晶精製することにより高純度の(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンを得ることができる。また、得られた(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンに対しアシル化反応を行うことにより、(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類を収率良く得ることができる。

Description

(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの製造方法
 本発明は、(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の工業的な製造方法に関する。
 (2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の製造方法は既に幾つか報告されている。大量規模での製造にも適した手法としては環状硫酸エステル体への開環フッ素化が挙げられ、本出願人は1,2-ジオール類と有機塩基の存在下におけるスルフリルフルオリドとの反応を開示している(特許文献1)。この反応では立体選択的にフッ素原子を導入することで、(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン前駆体を高い収率で再現良く得ることができる。一方、2-フルオロプロピオン酸エチルと塩基存在下における(R)-(+)-2,2-ジメチル-1,3-ジオキソラン-4-カルボキシアルデヒドとのアルドール反応によりジアステレオマー混合物として(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン前駆体を得た後、酵素による基質選択的加水分解反応を行うことでジアステレオマーの分離を行う方法が報告されている[下記スキームを参照、Etはエチル基を表し、Bzはベンゾイル基を表す](特許文献2、非特許文献1)。また、2-フルオロプロピオン酸エステルの代わりに2-フルオロプロピオン酸アミド類もしくはチオエステルを用いることで、塩基存在下の(R)-(+)-2,2-ジメチル-1,3-ジオキソラン-4-カルボキシアルデヒドとのアルドール反応における(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン前駆体の選択性を上げる手法も報告されている(特許文献3)。
Figure JPOXMLDOC01-appb-C000005
国際公開2011/152155号公報 米国公開2008/0145901号公報 米国公開2008/0177079号公報
Tetrahedron: Asymmetry(英国)、2009年、第20巻、p.305-312
 本発明の目的は、(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の工業的な製造方法を提供することにある。
 特許文献1の方法では、本願発明の原料基質でもある1,2-ジオール類が開示されているが、この化合物は公知の方法により製造可能とは言え、Wittig反応、金属試薬を用いる立体選択的ジヒドロキシ化反応で製造する方法を採用していることもあり、コスト削減がいくぶん困難であった。一方、特許文献2、非特許文献1の方法では、特許文献1の製法に比べて工程は短縮できるが、総収率は低く、またジアステレオマーの分離に酵素反応を利用することで再現性や生産性という点でも依然として問題が残るため、工業的な製造方法としての要件(高い生産性で再現良く)を満たすことは困難であった。特許文献3では十分な選択性と収率は得られておらず、依然として効率的な分離法が求められている。よって、本発明で対象とする(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの精製方法の開発においても、従来法に比べて簡便な操作による効率的なジアステレオマーの分離が強く望まれていた。
 尚、前述の従来技術では(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン前駆体および3,5位がアシル化された(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類については酵素反応、再結晶、カラムなどを駆使したジアステレオマーの分離精製検討がなされているが、3,5位がアシル化されていない(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの、ジアステレオマーの分離精製による効率的な製造方法は一切報告されていなかった。
 本発明者らは、上記の課題を踏まえて鋭意検討した結果、一般式[2]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン前駆体のジアステレオマー混合物を、酸性条件下で脱保護し、続いてラクトン化させることにより、一般式[3]で示されるジヒドロキシラクトンのジアステレオマー混合物を得、続いて該混合物を再結晶精製することで効率的なジアステレオマーの分離が可能となり、光学活性2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンを容易に製造できることを見出した。
Figure JPOXMLDOC01-appb-C000006
[式中、R1はアルキル基または置換アルキル基を表し、Aは酸素原子、窒素原子または硫黄原子を表す。P1およびP2はそれぞれヒドロキシル基の保護基を表す。*は不斉炭素を表す。]
Figure JPOXMLDOC01-appb-C000007
[式中、*は不斉炭素を表す。]
 また、再結晶溶媒としてはアルコール系、ニトリル系、エステル系、エーテル系、脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭化水素系、ケトン系、水を用いることができ、これらを単独または組み合わせて用いることで、高い収率で再現良く高純度の光学活性2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンを得ることができることを見出した。
 ここで得られた当該ラクトンはアシル化反応を行うことにより、対応する保護体を収率良く得ることができる。
 尚、本発明では、「再結晶精製」と「アシル化反応」を行う順番に特徴がある。すなわち、ジアステレオマーを、混合する3,5位がアシル化された(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類から再結晶を行う、すなわち、最初にアシル化を行った後に再結晶を行っても目的の立体配置を持つ生成物を効率よく分離することはできなかった(後述の比較例1を参照)。この結果は、3、5位がヒドロキシル基である場合(3,5位がアシル化されていない場合)と3,5位がアシル化された場合とでは、ジアステレオマーの分離における挙動が明らかに異なることを示唆しており、特に(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類と(2S)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の分離においては挙動に顕著な差が見られた。このことは特許文献2、特許文献3および非特許文献1で開示されている内容を大きく超えるものである。
 この様に、(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の極めて有用な製造方法を見出し、本発明に到達した。
 すなわち、本発明は、[発明1]-[発明7]に記載の(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の工業的な製造方法を提供する。
 [発明1]
 一般式[1]で表される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の製造方法において、一般式[2]で表されるラクトン前駆体のジアステレオマー混合物を、酸性条件下で脱保護し、続いてラクトン化させることにより、一般式[3]で表されるジヒドロキシラクトンのジアステレオマー混合物を得る工程と、得られた混合物を再結晶することにより、一般式[4]で表される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンを分離精製する工程と、分離精製されたラクトンをアシル化する工程と、を含む、(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の製造方法。
Figure JPOXMLDOC01-appb-C000008
[式中、R2はアシル基を表す]
Figure JPOXMLDOC01-appb-C000009
[式中、R1はアルキル基または置換アルキル基を表し、Aは酸素原子、窒素原子または硫黄原子を表す。P1およびP2はそれぞれヒドロキシル基の保護基を表す。*は不斉炭素を表す。]
Figure JPOXMLDOC01-appb-C000010
[式中、*は不斉炭素を表す。]
Figure JPOXMLDOC01-appb-C000011
 [発明2]
 ジヒドロキシラクトンのジアステレオマー混合物の再結晶に用いる溶媒が、アルコール系、芳香族炭化水素系、エステル系、ニトリル系、エーテル系、ハロゲン化炭化水素系、ケトン系、水、および脂肪族炭化水素系からなる群より選ばれる少なくとも1種の溶媒である、発明1に記載の製造方法。
 [発明3]
 ジヒドロキシラクトンのジアステレオマー混合物の再結晶に用いる溶媒が、イソプロパノール、トルエン、酢酸エチルまたはn-ヘプタンである、発明1または2に記載の製造方法。
 [発明4]
 一般式[2]におけるR1が、炭素数が1から6の直鎖または枝分れのアルキル基または置換アルキル基である、発明1に記載の製造方法。
 [発明5]
 一般式[2]におけるP1およびP2が、イソプロピリデン基またはシクロヘキシリデン基である、発明1に記載の製造方法。
 [発明6]
 ラクトン前駆体のジアステレオマー混合物を、酸性条件下で脱保護し、続いてラクトン化させる際、用いる酸が酢酸、硫酸、塩酸、メタンスルホン酸、パラトルエンスルホン酸、またはトリフルオロ酢酸である、発明1に記載の製造方法。
 [発明7]
 一般式[1]におけるR2が、ベンゾイル基、ホルミル基、またはアセチル基である、発明1に記載の製造方法。
 本発明が従来技術に比べて有利な点を以下に述べる。
 本発明では、ジヒドロキシラクトンのジアステレオマー混合物に対して再結晶精製を行うことで、該混合物に含まれるジアステレオマーのうち、目的とする(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンを効率的に得ることができる。さらに、好適な再結晶条件を採用することにより高い収率で再現良く高純度の(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンを得ることができる。特許文献2および非特許文献1に対して、本発明では、従来の酵素を用いた基質選択的加水分解反応は必要とせず、酵素反応を要しない簡便な操作による効率的なジアステレオマーの分離は再現性を有し、生産性を高めることも可能である。本発明は、工業的な製造方法としての要件も同時に満たしている。
 本発明の(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの製造方法について詳細に説明する。
 本発明は、一般式[2]で示されるラクトン前駆体のジアステレオマー混合物を酸性条件下で脱保護およびラクトン化反応させることにより、一般式[3]で示されるジヒドロキシラクトンのジアステレオマー混合物を得る工程と、前工程で得られた該混合物を再結晶により一般式[4]で示される高純度の(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンを得る工程と、前工程で得られた(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンをアシル化する工程とを含む、(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の製造方法である。
 一般式[2]におけるR1は、アルキル基または置換アルキル基を表す。アルキル基は、炭素数が1から12の、直鎖または枝分れの鎖式、または環式(炭素数が3以上の場合)を採ることができる。置換アルキル基は、該アルキル基の任意の炭素原子上に、任意の数でさらに任意の組み合わせで置換基を有する。係る置換基としては、フッ素、塩素、臭素、ヨウ素のハロゲン原子、メチル基、エチル基、プロピル基、ブチル基等の低級アルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の低級アルコキシ基等が挙げられる。本明細書において“低級”は炭素数が1から6を意味し、直鎖または枝分れの鎖式、または環式(炭素数が3以上の場合)を採ることができる。その中でも炭素数が1から6のアルキル基または置換アルキル基が好ましく、メチル基またはエチル基が特に好ましい。
 一般式[2]におけるAは酸素原子または窒素原子または硫黄原子を表し、前述のR1の定義とあわせ、具体的な構造の例は以下の通りである(なお、式中の波線は結合部位である)。
Figure JPOXMLDOC01-appb-C000012
 一般式[2]で示されるラクトン前駆体のP1およびP2は、それぞれヒドロキシル基の保護基を表す。係る保護基としては、Protective Groups in Organic Synthesis、Third Edition、1999、John Wiley & Sons、Inc.に記載されたもの等が挙げられる。P1とP2は同じ保護基または異なる保護基を採ることができ、さらに同時に1つの保護基を採ることもできる。その中でも同時に1つの保護基を採るものが好ましく(下記を参照)、イソプロピリデン基またはシクロヘキシリデン基で保護されたものが特に好ましい。
Figure JPOXMLDOC01-appb-C000013
 一般式[2]で示されるラクトン前駆体のジアステレオマー混合物は、特許文献2または非特許文献1等を参考にして同様に製造することができる。尚、ここで言う「ラクトン前駆体のジアステレオマー混合物」は、具体的な構造を以下に示すが、4種類の立体配置が異なる化合物(式[2a]-式[2d])のことを言う。
Figure JPOXMLDOC01-appb-C000014
 次に、脱保護およびラクトン化反応について説明する。
 一般式[2]で示されるラクトン前駆体のジアステレオマー混合物を酸性条件下にて反応させることにより、脱保護が進行した後に、連続して速やかにラクトン化反応が進行し、一般式[3]で示されるジヒドロキシラクトンのジアステレオマー混合物を得ることが出来る。尚、ここで言う「ジヒドロキシラクトンのジアステレオマー混合物」は、具体的な構造を以下に示すが、4種類の立体配置が異なる化合物(式[3a]-式[3d])のことを言う。
Figure JPOXMLDOC01-appb-C000015
 酸性条件下における脱保護およびラクトン化反応において、酸としては酢酸、硫酸、塩酸、メタンスルホン酸、パラトルエンスルホン酸、トリフルオロ酢酸が挙げられる。酸はこれらに限定されるものではなく、有機合成において一般的に用いられるものも挙げられる。その中でも酢酸、硫酸、塩酸が特に好ましい。これらの酸は単独または組み合わせて用いることができる。
 酸の使用量は、一般式[2]で示されるラクトン前駆体のジアステレオマー混合物1モルに対して0.05モル以上用いればよく、0.1モルから50モルが好ましく、0.2モルから20モルが特に好ましい。
 反応溶媒としてはメタノール、エタノールなどのアルコール系、N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン等のアミド系、アセトニトリル、プロピオニトリル等のニトリル系、水、テトラヒドロフラン、ジメチルスルホキシド等が挙げられる。その中でもメタノール、エタノール、N,N-ジメチルホルムアミド、アセトニトリル、水、テトラヒドロフランおよびジメチルスルホキシドが好ましく、メタノール、エタノール、アセトニトリル、水およびテトラヒドロフランが特に好ましい。これらの反応溶媒は単独でまたは組み合わせて用いることができる。
 反応温度は、-20から+150℃の範囲で行えば良く、-10から+125℃が好ましく、0から+100℃が特に好ましい。
 反応時間は、96時間以内の範囲で行えば良く、原料基質および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、核磁気共鳴等の分析手段により反応の進行状況を追跡し、原料基質が殆ど消失した時点を終点とすることが好ましい。
 次に、一般式[3]で示されるジヒドロキシラクトンのジアステレオマー混合物に対する再結晶操作について説明する。
 一般式[3]で示されるジヒドロキシラクトンのジアステレオマー混合物から一般式[4]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンを分離精製する際、再結晶溶媒としては、n-ペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタン等の脂肪族炭化水素系、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン等の芳香族炭化水素系、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素系、ジエチルエーテル、テトラヒドロフラン、t-ブチルメチルエーテル、ジi-プロピルエーテル、1,4-ジオキサン等のエーテル系、アセトン、メチルエチルケトン、メチルi-ブチルケトン等のケトン系、酢酸エチル、酢酸n-ブチル等のエステル系、アセトニトリル、プロピオニトリル等のニトリル系、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール等のアルコール系、水等が挙げられる。これらの溶媒は単独でまたは組み合わせて用いることができる。その中でも、単独の溶媒を組みあせたもの、すなわち、イソプロパノール/トルエン、イソプロパノール/酢酸エチル、イソプロパノール/トルエン/n-ヘプタン、イソプロパノール/酢酸エチル/n-ヘプタン、アセトニトリル/トルエン、アセトニトリル/トルエン/n-ヘプタンが好ましく、イソプロパノール/トルエン/n-ヘプタンまたはイソプロパノール/酢酸エチル/n-ヘプタンが特に好ましい。
 再結晶溶媒の使用量としては、一般式[3]で示されるジヒドロキシラクトンの混合物1gに対して通常0.5mL以上用いればよく、1~30mLが好ましく、特に2~10mLがより好ましい。
 再結晶の方法としては特に制限はないが、加熱溶解し、放置または攪拌下、徐々に降温しながら、-20~+20℃の範囲内で、1~48時間かけて、結晶を十分に析出させ、析出した結晶を濾過する方法が好適に採用される。結晶化の際に、種結晶を使用することも可能である。
 再結晶工程で得られた(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンは、塩基の存在下、アシル化反応することにより一般式[1]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類に誘導できる。本発明で用いるアシル化反応は、アセチル化、ベンゾイル化、ホルミル化等が挙げられる。
 アシル化剤としては、アセチル化においては無水酢酸、アセチルクロリドなどがあり、またホルミル化においてはギ酸などがあり、またベンゾイル化においてはベンゾイルクロリド、安息香酸無水物、シアン化ベンゾイル、トリフルオロメタンスルホン酸ベンゾイルなどがあるが、これらに限定されない。本発明では、アシル化反応のうち、好ましくはアセチル化、ベンゾイル化反応であり、より好ましくはベンゾイル化反応である。ベンゾイル化反応における具体的な試剤は、前述した試剤のうち、ベンゾイルクロリドが特に好ましい。
 アシル化剤の使用量は、(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン1モルに対し、通常1~20モルであるが、2~10モルが好ましく、2~5モルがより好ましい。アシル化反応に用いる反応溶媒としては、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン等の芳香族炭化水素系、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素系、ジエチルエーテル、テトラヒドロフラン、t-ブチルメチルエーテル、ジi-プロピルエーテル、1,4-ジオキサン等のエーテル系、アセトニトリル、プロピオニトリル等のニトリル系等が挙げられる。これらの反応溶媒は、反応条件により適宜選択して用いればよく、単独でまたは組み合わせて用いることができる。
 また、用いることができる塩基として、例えば、アンモニア、トリエチルアミン、ピリジン、ルチジン、コリジン、N,N-ジメチルアニリン等のアミン類、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム等の水酸化物類、炭酸カリウム、炭酸水素ナトリウム等のアルカリ金属の炭酸塩もしくは炭酸水素塩類、等が挙げられる。これらの塩基は、1種単独又は2種以上を混合して用いることができる。
 反応温度は、反応条件により適切な反応温度を選択できるが、通常0~30℃で行うとよい。
 一般式[1]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類のR2はアシル基を示す。アシル基は、ベンゾイル基、ホルミル基、アセチル基などが挙げられ、これらは前述したアシル化剤に対応する。
 実施例により本発明の実施の形態を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例1から実施例6を行った。また、比較例1も行った。尚、以下の化学式において、Meはメチル基を表す。
 [実施例1]
 100mlナスフラスコに下記式[6]-[9]で示されるラクトン前駆体のジアステレオマー混合物17.47g[[6]:22.3mmol、[7]:16.1mmol、[8]+[9]:9.9mmol(19F-NMRによる内部標準法で定量)]、メタノール24ml(0.5L/mol)、12N塩酸1.5ml(18mmol、0.37eq)を加え、室温で18時間攪拌した。
Figure JPOXMLDOC01-appb-C000016
 反応終了液は減圧濃縮し、トルエン15mlで5回共沸減圧濃縮し、真空乾燥することにより、下記式[4]、[5]、[10]および[11]で示されるジヒドロキシラクトンのジアステレオマー混合物11.90gを得た。
Figure JPOXMLDOC01-appb-C000017
 粗生成物の19F-NMRを下に示す。
19F-NMR[基準物質;C66、重溶媒;CD3CN]、
[4]:δ ppm;-6.60(m、1F)、
[5]:δ ppm;6.51(m、1F)、
[10]または[11]:δ ppm;-8.70(m、1F)、
[10]または[11]:δ ppm;7.70(m、1F)。
 上記で得られたジヒドロキシラクトンのジアステレオマー混合物11.90gをイソプロパノール17.9ml(1.5vol)とトルエン59.5ml(5vol)、n-ヘプタン11.9ml(1vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したn-ヘプタン11.9mlで洗浄し、真空乾燥することにより、上記式[4]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの淡褐色結晶を3.17g(19.3mmol)得た。収率は86.5%であった。結晶のガスクロマトグラフィー純度は94.4%で、主な不純物である上記式[5]で示されるジアステレオマーは3.7%であった。
 上記で得られた(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン3.17g(19.3mmol)に、アセトニトリル19.3ml(1L/mol)、とピリジン3.51g(44.4mmol、2.30eq)を加えて、ベンゾイルクロリド5.97g(42.5mmol、2.20eq)を氷冷下で加えて、室温で2時間攪拌した。反応終了液に水18mlを氷冷下で加え、室温で10分攪拌し、酢酸エチル36mlで抽出し、回収有機層を5%炭酸水素ナトリウム水溶液18mlで洗浄し、5%食塩水18mlで洗浄し、減圧濃縮し、真空乾燥することにより下記式[28]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類を7.52g得た。
Figure JPOXMLDOC01-appb-C000018
 粗生成物の19F-NMRを下に示す。
19F-NMR[基準物質;C66、重溶媒;CDCl3]δ ppm;-5.44(m、1F)
 上記で得られた粗生成物全量7.18g(便宜上19.3mmolとする)を酢酸エチル10.8ml(1.5vol)、イソプロパノール10.8ml(1.5vol)、n-ヘプタン64.6ml(9vol)の混合溶媒から再結晶し、濾取した結晶をn-ヘプタン14.9mlで洗浄し、真空乾燥することにより、上記式で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の白色結晶を6.52g(17.5mmol)得た。収率は90.7%であった。結晶のガスクロマトグラフィー純度は99.3%であった。
 [実施例2]
 100mlナスフラスコに下記式[12]-[15]で示されるラクトン前駆体のジアステレオマー混合物20.58g[[12]:23.1mmol、[13]:16.2mmol、[14]+[15]:6.7mmol(19F-NMRによる内部標準法で定量)]、メタノール23ml(0.5L/mol)、12N塩酸1.4ml(16.8mmol、0.37eq)を加え、室温で18時間攪拌した。
Figure JPOXMLDOC01-appb-C000019
 反応終了液は減圧濃縮し、トルエン15mlで5回共沸減圧濃縮し、真空乾燥することにより、下記式[4]、[5]、[10]および[11]で示されるジヒドロキシラクトンのジアステレオマー混合物13.90gを得た。
Figure JPOXMLDOC01-appb-C000020
 粗生成物の19F-NMRは実施例1と同様であった。
 上記で得られたジヒドロキシラクトンのジアステレオマー混合物13.90gをイソプロパノール20.9ml(1.5vol)とトルエン69.5ml(5vol)、n-ヘプタン27.8ml(2vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したトルエン13.9mlで洗浄し、真空乾燥することにより、上記式[4]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの淡褐色結晶を3.73g(22.7mmol)得た。収率は98.3%であった。結晶のガスクロマトグラフィー純度は90.3%で、主な不純物である上記式[5]で示されるジアステレオマーは6.3%であった。この結晶3.73gを用いて再度イソプロパノール5.6ml(1.5vol)とトルエン18.7ml(5vol)、n-ヘプタン3.7ml(1vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したトルエン3.7mlで洗浄し、真空乾燥することにより、上記式[4]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの淡黄色結晶を2.94g(17.9mmol)得た。回収率は78.8%であった。結晶のガスクロマトグラフィー純度は99.1%で、主な不純物である上記式[5]で示されるジアステレオマーは0.4%であった。
 上記で得られた(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン2.94g(17.9mmol)に、アセトニトリル17.9ml(1L/mol)、とピリジン3.26g(41.2mmol、2.30eq)を加えて、ベンゾイルクロリド5.54g(39.4mmol、2.20eq)を氷冷下で加えて、室温で2時間攪拌した。反応終了液に水17mlを氷冷下で加え、室温で10分攪拌し、酢酸エチル34mlで抽出し、回収有機層を5%炭酸水素ナトリウム水溶液17mlで洗浄し、5%食塩水17mlで洗浄し、減圧濃縮し、真空乾燥することにより下記式[28]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類を7.09g得た。
Figure JPOXMLDOC01-appb-C000021
 粗生成物の19F-NMRは実施例1と同様であった。
 上記で得られた粗生成物全量7.09g(便宜上17.9mmolとする)を酢酸エチル10.6ml(1.5vol)、イソプロパノール10.6ml(1.5vol)、n-ヘプタン63.8.4ml(9vol)の混合溶媒から再結晶し、n-ヘプタン13.8mlで洗浄し、真空乾燥することにより、上記式で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の白色結晶を6.17g(16.6mmol)得た。収率は92.6%であった。結晶のガスクロマトグラフィー純度は99.8%であった。
 [実施例3]
 100mlナスフラスコに下記式[6]-[9]で示されるラクトン前駆体のジアステレオマー混合物35.26g[[6]:44.4mmol、[7]:31.7mmol、[8]+[9]:22.7mmol(19F-NMRによる内部標準法で定量)]、水79ml(0.8L/mol)、酢酸88.99g(1.48mol、15eq)を加え、90度で1時間攪拌した。
Figure JPOXMLDOC01-appb-C000022
 反応終了液は減圧濃縮し、トルエン30mlで5回共沸減圧濃縮し、真空乾燥することにより、下記式[4]、[5]、[10]および[11]で示されるジヒドロキシラクトンのジアステレオマー混合物24.80gを得た。
Figure JPOXMLDOC01-appb-C000023
 上記で得られたジヒドロキシラクトンのジアステレオマー混合物24.80gをイソプロパノール10ml(0.4vol)と酢酸エチル42ml(1.7vol)、n-ヘプタン52ml(2.1vol)の混合溶媒から再結晶し、濾取した結晶をn-ヘプタン20mlで洗浄し、真空乾燥することにより、上記式[4]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの淡褐色結晶を5.85g(35.6mol)得た。収率は80.1%であった。結晶のガスクロマトグラフィー純度は95.4%で、主な不純物である上記式[5]で示されるジアステレオマーは3.9%であった。
 上記で得られた(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン5.85g(35.6mmol)に、アセトニトリル35.8ml(1L/mol)、とピリジン6.48g(81.9mmol、2.30eq)を加えて、ベンゾイルクロリド11.01g(78.3mmol、2.20eq)を氷冷下で加えて、室温で2時間攪拌した。反応終了液に水33mlを氷冷下で加え、室温で10分攪拌し、酢酸エチル66mlで抽出し、回収有機層を5%炭酸水素ナトリウム水溶液33mlで洗浄し、5%食塩水33mlで洗浄し、減圧濃縮し、真空乾燥することにより下記式[28]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類を13.81g得た。
Figure JPOXMLDOC01-appb-C000024
 粗生成物の19F-NMRは実施例1と同様であった。
 上記で得られた粗生成物全量13.81g(便宜上35.6mmolとする)を酢酸エチル20.7ml(1.5vol)、イソプロパノール20.7ml(1.5vol)、n-ヘプタン124.3ml(9vol)の混合溶媒から再結晶し、濾取した結晶をn-ヘプタン27.4mlで洗浄し、真空乾燥することにより、上記式で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の白色結晶を11.99g(32.2mmol)得た。収率は90.5%であった。結晶のガスクロマトグラフィー純度は95.8%であった。
 [実施例4]
 100mlナスフラスコに下記式[16]-[19]で示されるラクトン前駆体のジアステレオマー混合物16.73g[[16]:18.5mmol、[17]:12.0mmol、[18]+[19]:8.9mmol(19F-NMRによる内部標準法で定量)]、メタノール19.7ml(0.5L/mol)、12N塩酸1.2ml(14.4mmol、0.36eq)を加え、室温で18時間攪拌した。
Figure JPOXMLDOC01-appb-C000025
 反応終了液は減圧濃縮し、トルエン15mlで5回共沸減圧濃縮し、真空乾燥することにより、下記式[4]、[5]、[10]および[11]で示されるジヒドロキシラクトンのジアステレオマー混合物8.72gを得た。
Figure JPOXMLDOC01-appb-C000026
 粗生成物の19F-NMRは実施例1と同様であった。
 上記で得られたジヒドロキシラクトンのジアステレオマー混合物8.72gをイソプロパノール13.1ml(1.5vol)とトルエン43.6ml(5vol)、n-ヘプタン8.7ml(1vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したトルエン8.7mlで洗浄し、真空乾燥することにより、上記式[4]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの淡褐色結晶を2.45g(14.9mmol)得た。収率は80.5%であった。結晶のガスクロマトグラフィー純度は81.8%で、主な不純物である上記式[5]で示されるジアステレオマーは8.0%であった。この結晶2.31gを用いて再度イソプロパノール3.5ml(1.5vol)とトルエン11.6ml(5vol)、n-ヘプタン2.3ml(1vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したトルエン2.3mlで洗浄し、真空乾燥することにより、上記式[4]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの淡黄色結晶を1.78g(10.8mmol)得た。収率は77%であった。結晶のガスクロマトグラフィー純度は99.7%で、主な不純物である上記式[5]で示されるジアステレオマーは0.3%であった。
 上記で得られた(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン1.78g(10.8mmol)に、アセトニトリル10.8ml(1L/mol)、とピリジン1.96g(24.8mmol、2.30eq)を加えて、ベンゾイルクロリド3.34g(23.7mmol、2.19eq)を氷冷下で加えて、室温で2時間攪拌した。反応終了液に水10mlを氷冷下で加え、室温で10分攪拌し、酢酸エチル20mlで抽出し、回収有機層を5%炭酸水素ナトリウム水溶液10mlで洗浄し、5%食塩水10mlで洗浄し、減圧濃縮し、真空乾燥することにより下記式[28]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類を4.16g得た。
Figure JPOXMLDOC01-appb-C000027
 粗生成物の19F-NMRは実施例1と同様であった。
 上記で得られた粗生成物全量4.16g(便宜上10.8mmolとする)を酢酸エチル6.2ml(1.5vol)、イソプロパノール6.2ml(1.5vol)、n-ヘプタン37.4ml(9vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したメタノール8.3mlで洗浄し、真空乾燥することにより、上記式で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の白色結晶を3.63g(9.7mmol)得た。収率は89.8%であった。結晶のガスクロマトグラフィー純度は99.1%であった。
 [実施例5]
 100mlナスフラスコに下記式[20]-[23]で示されるラクトン前駆体のジアステレオマー混合物1.01g[[20]:1.08mmol、[21]:0.77mmol、[22]+[23]:0.54mmol(19F-NMRによる内部標準法で定量)]、メタノール1.2ml(0.5L/mol)、12N塩酸1.2ml(0.9mol、0.36eq)を加え、室温で18時間攪拌した。
Figure JPOXMLDOC01-appb-C000028
 反応終了液は減圧濃縮し、トルエン10mlで5回共沸減圧濃縮し、真空乾燥することにより、下記式[4]、[5]、[10]および[11]で示されるジヒドロキシラクトンのジアステレオマー混合物0.52gを得た。
Figure JPOXMLDOC01-appb-C000029
 粗生成物の19F-NMRは実施例1と同様であった。
 上記で得られたジヒドロキシラクトンの混合物0.52gをイソプロパノール0.8ml(1.5vol)とトルエン2.6ml(5vol)、n-ヘプタン0.5ml(1vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したn-ヘプタン3.0mlで洗浄し、真空乾燥することにより、上記式[4]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの淡褐色結晶を0.14g(0.84mmol)得た。収率は77.5%であった。結晶のガスクロマトグラフィー純度は87.6%で、主な不純物である上記式[5]で示されるジアステレオマーは5.3%であった。この結晶2.31gを用いて再度イソプロパノール3.5ml(1.5vol)とトルエン11.6ml(5vol)、n-ヘプタン2.3ml(1vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したトルエン2.3mlで洗浄し、真空乾燥することにより、上記式[4]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの淡褐色結晶を1.78g(10.8mmol)得た。回収率は72%であった。結晶のガスクロマトグラフィー純度は99.7%で、主な不純物である上記式[5]で示されるジアステレオマーは0.3%であった。
 [実施例6]
 100mlナスフラスコに下記式[24]-[27]で示されるラクトン前駆体のジアステレオマー混合物13.80g[[24]:13.9mmol、[25]:11.0mmol、[26]+[27]:6.2mmol(19F-NMRによる内部標準法で定量)]メタノール15.6ml(0.5L/mol)、12N塩酸0.96ml(11.5mmol、0.37eq)を加え、室温で18時間攪拌した。
Figure JPOXMLDOC01-appb-C000030
 反応終了液は減圧濃縮し、トルエン15mlで5回共沸減圧濃縮し、真空乾燥することにより、下記式[4]、[5]、[10]および[11]で示されるジヒドロキシラクトンのジアステレオマー混合物8.72gを得た。
Figure JPOXMLDOC01-appb-C000031
 粗生成物の19F-NMRは実施例1と同様であった。
 上記で得られたジヒドロキシラクトンのジアステレオマー混合物6.84gをイソプロパノール10.3ml(1.5vol)とトルエン34.2ml(5vol)、n-ヘプタン6.8ml(1vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したn-ヘプタン6.8mlで洗浄し、真空乾燥することにより、上記式[4]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの淡褐色色結晶を1.80g(11.0mmol)得た。収率は78.8%であった。結晶のガスクロマトグラフィー純度は81.8%で、主な不純物である上記式[5]で示されるジアステレオマーは8.0%であった。この結晶2.31gを用いて再度イソプロパノール3.5ml(1.5vol)とトルエン11.6ml(5vol)、n-ヘプタン2.3ml(1vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したトルエン2.3mlで洗浄し、真空乾燥することにより、上記式[4]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの淡褐色結晶を1.78g(10.8mmol)得た。回収率は72%であった。結晶のガスクロマトグラフィー純度は99.7%で、主な不純物である上記式[5]で示されるジアステレオマーは0.3%であった。
 [比較例1]
 100mlナスフラスコに下記式[6]-[9]で示されるラクトン前駆体のジアステレオマー混合物79.03g[[6]:73.6mmol、[7]:62.1mmol、[8]+[9]:30.4mmol(19F-NMRによる内部標準法で定量)]、メタノール83ml(0.5L/mol)、12N塩酸5.1ml(61.4mmol、0.37eq)を加え、室温で18時間攪拌した。
Figure JPOXMLDOC01-appb-C000032
 反応終了液は減圧濃縮し、トルエン55mlで5回共沸減圧濃縮し、真空乾燥することにより、下記式[4]、[5]、[10]および[11]で示されるジヒドロキシラクトンのジアステレオマー混合物70.27gを得た。
Figure JPOXMLDOC01-appb-C000033
 粗生成物の19F-NMRは実施例1と同様であった。
 上記で得られたジヒドロキシラクトンの混合物70.27g(便宜上166.1mmolとする)に、アセトニトリル166.1ml(1L/mol)、とピリジン30.29g(382.9mmol、2.31eq)を加えて、ベンゾイルクロリド51.60g(367.1mmol、2.21eq)を氷冷下で加えて、室温で2時間攪拌した。反応終了液に水150mlを氷冷下で加え、室温で10分攪拌し、酢酸エチル300mlで抽出し、回収有機層を5%炭酸水素ナトリウム水溶液150mlで洗浄し、5%食塩水150mlで洗浄し、減圧濃縮し、真空乾燥することにより下記式[1]および[28]-[31]で示される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類を含むジアステレオマー混合物131.74g[[1]:75.7mmol、[20]:69.8mmol、[21]+[22]:24.2mmol(19F-NMRによる内部標準法で定量)]を得た。
Figure JPOXMLDOC01-appb-C000034
 次いで、該混合物を酢酸エチル197ml(1.5vol)、イソプロパノール197ml(1.5vol)、n-ヘプタン1180ml(9vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したメタノール132mlで洗浄し、真空乾燥することにより白色結晶40.36gを得た。この結晶をガスクロマトグラフィーにより分析したところ[1]:61%、[20]:33%が含まれていた。この結晶40.36gを用いて再度、酢酸エチル60ml(1.5vol)、イソプロパノール60ml(1.5vol)、n-ヘプタン364ml(9vol)の混合溶媒から再結晶し、濾取した結晶を氷冷したメタノール81mlで洗浄し、真空乾燥することにより白色結晶33.25gを得た。この結晶をガスクロマトグラフィーにより分析したところ[1]:67%、[20]:33%が含まれていた。
 以上、本発明の実施形態について説明したが、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良可能であることはいうまでもない。
 本発明で対象とする(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンは、抗ウイルス活性を有する2’-デオキシ-2’-フルオロ-2’-C-メチルシチジンの重要中間体として利用できる。

Claims (7)

  1. 一般式[1]で表される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の製造方法において、一般式[2]で示されるラクトン前駆体のジアステレオマー混合物を、酸性条件下で脱保護し、続いてラクトン化させることにより、一般式[3]で表されるジヒドロキシラクトンのジアステレオマー混合物を得る工程と、得られた混合物を再結晶することにより、一般式[4]で表される(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンを分離精製する工程と、分離精製されたラクトンをアシル化する工程と、を含む、(2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトン類の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R2はアシル基を表す]
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1はアルキル基または置換アルキル基を表し、Aは酸素原子または窒素原子または硫黄原子を表す。P1およびP2はそれぞれヒドロキシル基の保護基を表す。*は不斉炭素を表す。]
    Figure JPOXMLDOC01-appb-C000003
    [式中、*は不斉炭素を表す。]
    Figure JPOXMLDOC01-appb-C000004
  2. ジヒドロキシラクトンのジアステレオマー混合物の再結晶に用いる溶媒が、アルコール系、芳香族炭化水素系、エステル系、ニトリル系、エーテル系、ハロゲン化炭化水素系、ケトン系、水、および脂肪族炭化水素系からなる群より選ばれる少なくとも1種の溶媒である、請求項1に記載の製造方法。
  3. ジヒドロキシラクトンのジアステレオマー混合物の再結晶に用いる溶媒が、イソプロパノール、トルエン、酢酸エチルまたはn-ヘプタンである、請求項1または2に記載の製造方法。
  4. 一般式[2]におけるR1が、炭素数が1から6の直鎖または枝分れのアルキル基または置換アルキル基である、請求項1に記載の製造方法。
  5. 一般式[2]におけるP1およびP2が、イソプロピリデン基またはシクロヘキシリデン基である、請求項1に記載の製造方法。
  6. ラクトン前駆体のジアステレオマー混合物を、酸性条件下で脱保護し、続いてラクトン化させる際、用いる酸が酢酸、硫酸、塩酸、メタンスルホン酸、パラトルエンスルホン酸、またはトリフルオロ酢酸である、請求項1に記載の製造方法。
  7. 一般式[1]におけるR2が、ベンゾイル基、ホルミル基、またはアセチル基である、請求項1に記載の製造方法。
PCT/JP2014/054609 2013-02-28 2014-02-26 (2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの製造方法 WO2014132975A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480011347.4A CN105026382B (zh) 2013-02-28 2014-02-26 (2R)-2-氟-2-C-甲基-D-核糖酸-γ-内酯的制造方法
JP2015502941A JP6394588B2 (ja) 2013-02-28 2014-02-26 (2R)−2−フルオロ−2−C−メチル−D−リボノ−γ−ラクトンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013038505 2013-02-28
JP2013-038505 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014132975A1 true WO2014132975A1 (ja) 2014-09-04

Family

ID=51428239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054609 WO2014132975A1 (ja) 2013-02-28 2014-02-26 (2R)-2-フルオロ-2-C-メチル-D-リボノ-γ-ラクトンの製造方法

Country Status (3)

Country Link
JP (1) JP6394588B2 (ja)
CN (1) CN105026382B (ja)
WO (1) WO2014132975A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507547A (ja) * 2004-07-21 2008-03-13 ファーマセット, インク. アルキル置換された2−デオキシ−2−フルオロ−d−リボフラノシルピリミジン類及びプリン類及びそれらの誘導体の調製
JP2008513456A (ja) * 2004-09-14 2008-05-01 ファーマセット,インク. 2’−フルオロ−2’−アルキル−置換又は他の置換されていてもよいリボフラノシルピリミジン類及びプリン類並びにそれらの誘導体の製造
WO2008090046A1 (en) * 2007-01-23 2008-07-31 F. Hoffmann-La Roche Ag Alternate process for preparing 3,5-di-omicron-acyl-2-fluoro-2-c-methyl-d-ribono-gamma-lactone
JP2010513377A (ja) * 2006-12-18 2010-04-30 エフ.ホフマン−ラ ロシュ アーゲー 3,5−ジ−O−アシル−2−フルオロ−2−C−メチル−D−リボノ−γ−ラクトンの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023094B (zh) * 2004-07-21 2011-05-18 法莫赛特股份有限公司 烷基取代的2-脱氧-2-氟代-d-呋喃核糖基嘧啶和嘌呤及其衍生物的制备
CN101437524B (zh) * 2004-09-14 2012-01-11 法莫赛特股份有限公司 2'-氟-2'-烷基-取代的或其它任选取代的呋喃核糖基嘧啶和嘌呤及其衍生物的制备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507547A (ja) * 2004-07-21 2008-03-13 ファーマセット, インク. アルキル置換された2−デオキシ−2−フルオロ−d−リボフラノシルピリミジン類及びプリン類及びそれらの誘導体の調製
JP2008513456A (ja) * 2004-09-14 2008-05-01 ファーマセット,インク. 2’−フルオロ−2’−アルキル−置換又は他の置換されていてもよいリボフラノシルピリミジン類及びプリン類並びにそれらの誘導体の製造
JP2010513377A (ja) * 2006-12-18 2010-04-30 エフ.ホフマン−ラ ロシュ アーゲー 3,5−ジ−O−アシル−2−フルオロ−2−C−メチル−D−リボノ−γ−ラクトンの製造方法
WO2008090046A1 (en) * 2007-01-23 2008-07-31 F. Hoffmann-La Roche Ag Alternate process for preparing 3,5-di-omicron-acyl-2-fluoro-2-c-methyl-d-ribono-gamma-lactone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, PINGSHENG ET AL.: "A practical synthesis of (2R)-3,5-di-O-benzoyl-2-fluoro-2-C-methyl- D-ribono-y-lactone", TETRAHEDRON : ASYMMETRY, vol. 20, no. 3, 2009, pages 305 - 312, XP026071137, DOI: doi:10.1016/j.tetasy.2009.02.006 *

Also Published As

Publication number Publication date
JP6394588B2 (ja) 2018-09-26
JPWO2014132975A1 (ja) 2017-02-02
CN105026382B (zh) 2016-10-19
CN105026382A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
EP2578578B1 (en) Method for producing (2r)-2-fluoro-2-c-methyl-d-ribono- -lactone precursor
JP4674297B2 (ja) D−エリトロ−2,2−ジフルオロ−2−デオキシ−1−オキソリボース誘導体の製造方法
JP6793187B2 (ja) ホスホルアミダート化合物及びその製造方法並びに結晶
US9376410B2 (en) (2R)-2-deoxy-2,2-disubstituted-ribono-1,4-lactone and preparation method and use thereof
JP2009506118A (ja) ゲムシタビンおよび関連中間体の製造方法
JP6476591B2 (ja) (2R)−2−フルオロ−2−C−メチル−D−リボノ−γ−ラクトン類の製造方法
JP6394588B2 (ja) (2R)−2−フルオロ−2−C−メチル−D−リボノ−γ−ラクトンの製造方法
KR100908363B1 (ko) 트라이-O-아세틸-5-데옥시-β-D-라이보퓨라노즈의입체선택적 제조방법 및 이의 분리방법
CN105111169A (zh) 一种索菲布韦关键中间体的简便制备方法
JP2007291100A (ja) ゲムシタビン及び関連中間体を調製する方法
KR100741310B1 (ko) 젬시타빈의 합성에 유용한 신규한나프탈렌-2-카르복실레이트 유도체와 그의 제조방법
CN112142629B (zh) 3-氨基磺酰基丙氨酸的制备方法
JP4373080B2 (ja) ミルベマイシン類の精製法
JP4428086B2 (ja) 1−アセトキシ−3−(3,4−メチレンジオキシフェニル)プロペン誘導体の製法
JP5349342B2 (ja) 2’−デオキシ−2’,2’−ジフルオロシチジンの製造方法
JP3823668B2 (ja) スフィンゴミエリン類縁体およびその製法
KR100863463B1 (ko) 광학적으로 순수한 옥소라이보스유도체의 제조방법
EP2216337A1 (en) Method for producing 4-deoxy-4-fluoro-d-glucose derivative
GB2411399A (en) Purification of N4-acylcytidine derviatives via their alkali metal or alkaline earth metal salts
JP2005272435A (ja) N4−アシルシチジン誘導体の金属塩、およびこの金属塩を用いるn4−アシルシチジン誘導体の製造方法
WO1999061447A1 (fr) Procede de production de derives de 13-ester de milbemycines
WO2015019928A1 (ja) ビナフチルジアミン誘導体の合成方法
JP2012006921A (ja) リン酸オセルタミビルの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011347.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756869

Country of ref document: EP

Kind code of ref document: A1