WO2014128889A1 - 軌道式車両、および、その車体傾斜制御方法 - Google Patents

軌道式車両、および、その車体傾斜制御方法 Download PDF

Info

Publication number
WO2014128889A1
WO2014128889A1 PCT/JP2013/054370 JP2013054370W WO2014128889A1 WO 2014128889 A1 WO2014128889 A1 WO 2014128889A1 JP 2013054370 W JP2013054370 W JP 2013054370W WO 2014128889 A1 WO2014128889 A1 WO 2014128889A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vehicle body
track
width direction
vehicle width
Prior art date
Application number
PCT/JP2013/054370
Other languages
English (en)
French (fr)
Inventor
寛之 前山
宗 田村
耕介 片平
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to SG11201505382TA priority Critical patent/SG11201505382TA/en
Priority to PCT/JP2013/054370 priority patent/WO2014128889A1/ja
Priority to JP2015501161A priority patent/JP6086973B2/ja
Priority to US14/760,129 priority patent/US9643622B2/en
Publication of WO2014128889A1 publication Critical patent/WO2014128889A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/50Other details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F9/00Rail vehicles characterised by means for preventing derailing, e.g. by use of guide wheels

Definitions

  • the present invention relates to a track-type vehicle that can travel along a track, and particularly relates to a track-type vehicle that can tilt a vehicle body toward an inner track side and a vehicle body tilt control method thereof.
  • an orbital transportation system that travels on a track using traveling wheels equipped with rubber tires is known.
  • This type of orbital traffic system is generally called “new traffic system”, “APM (Automated People Mover)” or the like.
  • APM Automatic People Mover
  • a track-type traffic system guide wheels arranged on both sides of a vehicle are guided by guide rails provided along the track.
  • the vehicle of the above-mentioned track system transportation system has a shorter vehicle body length compared to a general railway vehicle, it is often equipped with a single-shaft carriage in front of and behind the vehicle body, similar to automobiles and buses. Furthermore, when a vehicle of a track-type traffic system uses a single-shaft carriage, a parallel link system similar to that of an automobile or the like is often adopted as a simple suspension mechanism.
  • the vehicle of the above-described track system traffic system may have an air spring between the vehicle body and the carriage in order to absorb the unevenness of the track and improve the riding comfort.
  • Patent Documents 1 to 5 describe techniques for inclining the vehicle body toward the inner track side by making the lengths of the pair of left and right air springs different from each other using a height adjustment mechanism of the air spring. According to this technique, the vehicle body can be inclined toward the inner track side with a simple configuration.
  • the vehicle body When the vehicle body is tilted using the air spring, it is necessary to start the air spring supply / exhaust control at the timing of entering the curved portion of the track based on a preset operation plan (run curve), own vehicle position, etc. . Therefore, it is necessary to accurately detect the vehicle position.
  • the vehicle body may not be inclined toward the inner gauge side despite entering the curved portion, and the vehicle body may be inclined toward the outer gauge side due to centrifugal force. It is done. In this case, the passenger feels an acceleration larger than the acceleration due to the actual centrifugal force, and the riding comfort is deteriorated.
  • the vehicle In order to prevent the vehicle body from tilting toward the outer track, for example, it is conceivable to provide the vehicle with an anti-rolling device that increases the rolling rigidity and suppresses the vehicle body from tilting in the roll direction at the curved portion of the track. .
  • an anti-rolling device that increases the rolling rigidity and suppresses the vehicle body from tilting in the roll direction at the curved portion of the track.
  • the rolling rigidity is increased to suppress the inclination of the vehicle body, vibration due to unevenness on the traveling road is transmitted to the vehicle body, and the riding comfort is deteriorated.
  • An object of the present invention is to provide a track-type vehicle and a vehicle body tilt control method that can more reliably prevent deterioration in ride comfort when traveling on a curved portion of a track.
  • a first aspect of a track-type vehicle includes a vehicle body and a carriage that supports the vehicle body from below, and the carriage includes a vehicle body tilt mechanism that tilts the vehicle body in a vehicle width direction, and a track. And a guide frame that turns while being guided by a guide rail provided.
  • a detection unit that detects a turning amount of the guide frame, and a tilt control unit that controls the tilt of the vehicle body by the vehicle body tilt mechanism based on a detection result of the detection unit.
  • the detection unit in the track-type vehicle according to the first aspect includes a link mechanism that converts a displacement of the guide frame in a turning direction into a linear displacement, A displacement sensor that detects the displacement in the linear direction converted by the link mechanism.
  • the shock absorber disposed separately in the vehicle width direction between the carriage and the vehicle body,
  • a height adjusting device capable of individually adjusting the height of the shock absorber, and an automatic height adjusting mechanism for operating the height adjusting device to hold the height of the shock absorber within a preset height range;
  • the vehicle body tilt mechanism may include a height adjusting device moving mechanism capable of moving the height adjusting device in a height direction, and a driving device that drives the height adjusting device moving mechanism.
  • the tilt control unit performs drive control of the drive device based on the detection result of the detection unit, and moves the position of the height adjustment device in the height direction via the height adjustment device moving mechanism. May be.
  • the shock absorber disposed separately in the vehicle width direction between the carriage and the vehicle body,
  • a height adjusting device capable of individually adjusting the height of the shock absorber, and an automatic height adjusting mechanism for operating the height adjusting device to hold the height of the shock absorber within a preset height range; , May be provided.
  • a tilt amount control device that bypasses the height adjusting device and changes the height of the buffer device, and the shock absorber by the height adjusting device And an inclination adjusting device that regulates the height adjustment.
  • the tilt control unit may adjust the height of the shock absorber by driving and controlling the tilt amount control device based on the detection result of the detection unit.
  • the shock absorber disposed separately in the vehicle width direction between the carriage and the vehicle body, A height adjusting device capable of individually adjusting the height of the shock absorber, and an automatic height adjusting mechanism for operating the height adjusting device to hold the height of the shock absorber within a preset height range; , May be provided.
  • the vehicle body tilting mechanism supports the shock absorber from below, and regulates the height adjustment of the shock absorber by the vehicle body ascending / descending device capable of moving the position of the shock absorber vertically.
  • an inclination adjusting device that performs the adjustment.
  • the tilt control unit may displace the vertical position of the shock absorber via the vehicle body raising / lowering device based on the detection result of the detection unit.
  • a shock absorber disposed apart from the carriage and the vehicle body in the vehicle width direction, and the vehicle An anti-rolling device that includes a torsion bar extending in the width direction and restricts the inclination of the vehicle body using a restoring force in the torsion direction of the torsion bar.
  • the vehicle body tilt mechanism may include a rod telescopic device that displaces a neutral position of the torsion bar in the twisting direction.
  • the tilt control unit may drive and control the rod telescopic device based on the detection result of the detection unit to displace the neutral position of the torsion bar.
  • the track-type vehicle according to the fifth or sixth aspect further includes a shock absorber disposed between the carriage and the vehicle body in the vehicle width direction.
  • the cart may include a suspension frame fixed to the floor of the vehicle body.
  • the vehicle body tilt mechanism is arranged at a vehicle width direction center portion of the floor portion of the vehicle body and allows the vehicle body to tilt in the vehicle width direction while restricting sliding of the vehicle body in the vehicle width direction.
  • a stopper and a vehicle body tilt drive device that applies a force in the vehicle width direction to the suspension frame may be provided.
  • the tilt control unit may drive-control the vehicle body tilt drive device based on the detection result of the detection unit so as to apply a force in the vehicle width direction to the suspension frame.
  • the travel condition in which the inclination control unit of the track-type vehicle according to any one of the first to seventh aspects acquires at least vehicle speed information as the travel condition.
  • the inclination control unit includes a steady acceleration calculation unit that obtains vehicle width direction steady acceleration received by passengers in the vehicle based on the vehicle speed information and the curve radius, and the vehicle body direction based on the vehicle width direction steady acceleration.
  • An inclination angle calculation unit that calculates an inclination angle in the vehicle width direction.
  • the track-type vehicle according to the eighth aspect may include a speed detection unit that detects the vehicle speed. Further, the travel condition acquisition unit may acquire vehicle speed information from the speed detection unit. Further, the steady acceleration calculating unit may calculate a vehicle width direction steady acceleration based on the vehicle speed information and the curve radius information.
  • the inclination control unit of the track-type vehicle according to the eighth aspect includes a storage unit in which information on the track cant and the vehicle speed is stored in advance. It may be. Furthermore, the travel condition acquisition unit may acquire the information of the cant and the vehicle speed from the storage information of the storage unit. The steady acceleration calculating unit may calculate a vehicle width direction steady acceleration based on the cant information, the vehicle speed information, and the curve radius information.
  • the track-type vehicle according to the tenth aspect may include an acceleration detection unit that detects the vehicle width direction steady acceleration. Furthermore, the travel condition acquisition unit may acquire information on the vehicle width direction steady acceleration detected by the acceleration detection unit.
  • the inclination control unit may include an acceleration comparison unit that compares the vehicle width direction steady acceleration calculated by the steady acceleration calculation unit and the vehicle width direction steady acceleration detected by the acceleration detection unit. Good.
  • a vehicle body tilt control method for a track type vehicle provided with a guide frame that is guided by a guide rail provided along the track to turn. And a detecting step for detecting the turning amount of the guide frame, and an inclination control step for controlling the inclination of the vehicle body based on the turning amount of the guide frame.
  • the tilt control step includes at least vehicle speed information as a running condition.
  • the traveling condition acquisition step includes a cant and the vehicle speed.
  • the steady acceleration calculation step may calculate the vehicle width direction steady acceleration based on the cant, the vehicle speed, and the curve radius.
  • the vehicle body tilt control method for a track type vehicle according to the fourteenth aspect includes an acceleration detection step of detecting a vehicle width direction steady acceleration, In the running condition acquisition step, information on the vehicle width direction steady acceleration detected by the acceleration detection step is acquired, and the tilt control step includes the vehicle width direction steady acceleration calculated by the steady acceleration calculation step and the acceleration. You may provide the acceleration comparison process which compares with the vehicle width direction steady acceleration detected by the detection process.
  • the track type vehicle According to the track type vehicle according to the above aspect of the present invention, it is possible to more reliably prevent the ride comfort from deteriorating when traveling on the curved portion of the track.
  • FIG. 4 is a front view corresponding to FIG. 3 in the same embodiment.
  • FIG. 3 is a hydraulic circuit diagram showing a configuration of a vehicle body tilt mechanism in the same embodiment.
  • FIG. 5 is a block diagram corresponding to FIG. 4 in the same embodiment. It is a side view equivalent to FIG. 1 in 3rd embodiment of this invention.
  • FIG. 3 is a side view corresponding to FIG. 2 in the same embodiment.
  • FIG. 4 is a front view corresponding to FIG. 3 in the same embodiment.
  • FIG. 5 is a block diagram corresponding to FIG. 4 in the same embodiment.
  • FIG. 10 is a hydraulic circuit diagram corresponding to FIG. 9 in the same embodiment. It is a top view equivalent to FIG. 1 in 4th embodiment of this invention.
  • FIG. 3 is a side view corresponding to FIG. 2 in the same embodiment.
  • FIG. 4 is a front view corresponding to FIG.
  • FIG. 3 in the same embodiment. It is a front view equivalent to FIG. 3 in 5th embodiment of this invention. It is a block diagram equivalent to FIG. 4 in 6th embodiment of this invention. It is a block diagram equivalent to FIG. 4 in 7th embodiment of this invention. It is a flowchart equivalent to FIG. 6 in 6th embodiment of this invention. It is a flowchart equivalent to FIG. 6 in 7th embodiment of this invention.
  • 1 to 3 show a track-type vehicle 1 according to the first embodiment.
  • the track-type vehicle 1 in the first embodiment travels on a travel path 4 while being guided by so-called side guide type guide rails 3 arranged on both sides in the width direction of the track 2.
  • the track-type vehicle 1 includes a vehicle body 5 and a carriage 6.
  • the vehicle body 5 (see FIGS. 2 and 3) is formed in a hollow rectangular parallelepiped shape that is long in the front-rear direction.
  • the interior space of the vehicle body 5 is a space for accommodating passengers.
  • the carriage 6 can travel on the travel path 4 and supports the front part of the vehicle body 5 and the rear part of the vehicle body 5 from below.
  • the carriage 6 includes a pair of traveling wheels 7, a guide steering device 8, a suspension device 9, a shock absorber 10, a vehicle body tilt mechanism 11, a detection unit 12, and a tilt control unit 13 (see FIG. 4), It has.
  • positioned at the rear part of the vehicle body 5 differ only in the front-back arrangement
  • the pair of running wheels 7 is a wheel with a tire to which a rubber tire is attached. These traveling wheels 7 are linked to a driving device 15 such as a gear box via an axle 14 extending inward in the vehicle width direction. A driving force from the driving device 15 is transmitted to the traveling wheel 7 via the axle 14.
  • the traveling wheels 7 are supported so as to be swingable around the king pins 16 disposed at both ends in the vehicle width direction of a carriage frame (not shown).
  • the guide steering device 8 is a device that steers the traveling wheel 7 using a reaction force received from the guide rail 3 when the track-type vehicle 1 travels on the track 2.
  • the guide steering device 8 includes a steering arm 17, a steering rod 18, and a guide frame 19.
  • the steering arm 17 is a member for swinging the traveling wheel 7 around the king pin 16.
  • the steering arm 17 is swingable together with the traveling wheel 7, and is formed to extend in the traveling direction, for example.
  • the steering rod 18 is a member for transmitting force from the guide frame 19 to the steering arm 17.
  • the end of the steering rod 18 on the inner side in the vehicle width direction is connected to the center of the guide frame 19 in the vehicle width direction.
  • the end of the steering rod 18 on the outer side in the vehicle width direction is connected to the end of the steering arm 17.
  • the steering rod 18 is pin-coupled to the guide frame 19 and the steering arm 17 so as to be rotatable about an axis extending in the vertical direction.
  • the guide frame 19 is a member that receives the reaction force of the guide rail 3 and turns according to the arc shape of the curved portion of the track 2.
  • the guide frame 19 includes a pair of horizontal beams 20, a pair of vertical beams 21, and a plurality of guide wheels 22.
  • the pair of cross beams 20 are arranged to extend in the vehicle width direction in front of and behind the traveling wheels 7.
  • the cross beam 20 is formed slightly shorter than the distance between the guide rails 3 in the vehicle width direction.
  • the cross beam 20 has a guide wheel support portion 23 at each end.
  • the pair of vertical beams 21 extends in the traveling direction and joins the pair of horizontal beams 20 described above in the traveling direction.
  • the vertical beams 21 connect the central portions of the horizontal beams 20 in the vehicle width direction.
  • the pair of longitudinal beams 21 are formed with bearing support portions 24 (see FIG. 1) for supporting the bearings in the center portion in the longitudinal direction.
  • the vertical beam 21 is attached to a bogie frame 26, which will be described later, via a bearing 25 supported by a bearing support portion 24 so as to be turnable about an axis line in the vertical direction.
  • the above-described vertical direction is a direction perpendicular to the traveling path 4 of the track 2.
  • the guide frame 19 includes a guide frame coupling portion 27 to which the above-described end portion on the inner side in the vehicle width direction of the steering rod 18 is coupled.
  • the guide frame coupling portion 27 is disposed between the pair of vertical beams 21 and is provided so as to extend between the horizontal beam 20 and the bearing support portion 24.
  • reference numeral “28” denotes a reinforcing material provided between the vertical beam 21 and the horizontal beam 20.
  • the guide wheel 22 is a member that contacts the guide rail 3 and transmits a reaction force from the guide rail 3 toward the inner side in the vehicle width direction to the cross beam 20.
  • Each of these guide wheels 22 is attached to a guide wheel support portion 23 of the cross beam 20 so as to be rotatable about an axis line in the vertical direction. The guide wheel 22 rotates in contact with the guide rail 3 when the track-type vehicle 1 is traveling.
  • the lateral beam 20 of the guide frame 19 receives a reaction force from the guide rail 3, and the guide frame 19 is curved. It turns according to the arc.
  • the steering rod 18 attached to the guide frame 19 pushes and pulls the end portion of the steering arm 17 in the same direction as the turning direction of the guide frame 19. Then, the steering arm 17 is swung, and the traveling wheel 7 is swung around the kingpin 16 together with the steering arm 17.
  • the suspension device 9 transmits driving force and braking force (hereinafter simply referred to as “traveling direction force”) generated in the traveling wheel 7 to the vehicle body 5 while allowing the traveling wheel 7 to be displaced in the vertical direction with respect to the vehicle body 5. It is a device for doing.
  • the suspension device 9 includes a pair of bogie frames 26, a pair of suspension frames 29, and a parallel link device 30.
  • the pair of carriage frames 26 is a member that transmits a force in the traveling direction to the parallel link device 30 and supports an air spring 31 (described later) of the shock absorber 10 from below.
  • These bogie frames 26 are spaced apart from each other in the vehicle width direction, and are formed so as to sandwich the axle 14 and the axle cover (not shown) vertically.
  • the pair of suspension frames 29 transmit the traveling direction force transmitted through the parallel link device 30 to the vehicle body 5.
  • these suspension frames 29 include a vehicle body mounting fixing portion 32 and a parallel link receiving portion 33.
  • the vehicle body mounting / fixing portion 32 is fixed to a vehicle body frame 35 formed so as to extend in the vehicle body longitudinal direction along the vehicle floor surface 34 of the vehicle body 5 by fastening members (not shown) such as bolts.
  • the parallel link receiving portion 33 is formed so as to extend vertically downward from an end portion of the vehicle body mounting fixing portion 32 on the inner side in the vehicle body longitudinal direction. Moreover, the parallel link receiving part 33 is arrange
  • the pair of bogie frames 26 are coupled by bogie frames 39 (see FIG. 1) extending in the vehicle width direction.
  • the parallel link device 30 transmits a force in the traveling direction from the carriage frame 26 to the suspension frame 29 while allowing the suspension frame 29 to be displaced in the vertical direction with respect to the suspension frame 29.
  • the parallel link device 30 connects the carriage frame 26 and the suspension frame 29 in a state where the suspension frame 29 can tilt in the vehicle width direction with respect to the carriage frame 26.
  • the parallel link device 30 includes a pair of upper and lower parallel links 36 that are spaced apart in the vehicle width direction.
  • the parallel link 36 includes an upper link member 37 and a lower link member 38 that form a pair.
  • the upper link member 37 and the lower link member 38 are attached so as to extend over the carriage frame 26 and the suspension frame 29 in a state parallel to each other. More specifically, the upper link member 37 connects the bogie frame 26 and the suspension frame 29 above the axle 14, and the lower link member 38 is the bogie frame 26 and the suspension frame below the axle 14. 29 is connected.
  • the upper link member 37 and the lower link member 38 are coupled at their ends so as to be swingable in the vertical direction with respect to the carriage frame 26 and the suspension frame 29, and between the carriage frame 26 and the suspension frame 29. It can swing in the left-right direction with respect to either one.
  • the shock absorber 10 mainly prevents the vertical vibration of the carriage 6 from being transmitted to the vehicle body 5.
  • the shock absorber 10 in this embodiment is an air spring 31. At least a pair of air springs 31 are provided for one carriage 6 and are spaced apart in the vehicle width direction.
  • the air spring 31 is made of an elastic body such as rubber that can store compressed air therein. These air springs 31 are arranged so as to be sandwiched between each bogie frame 26 and the vehicle body 5.
  • a height adjusting device 40 is connected to each of the air springs 31.
  • the height adjusting device 40 is a device for supplying and exhausting compressed air to and from the air spring 31.
  • the height adjusting device 40 includes a height adjusting valve 41, an air reservoir (not shown), and a pipe (not shown) for sucking compressed air.
  • the air reservoir stores compressed air of a predetermined pressure compressed by a compressor (not shown) or the like.
  • the piping forms a flow path between the air reservoir and the air spring 31.
  • FIG. 1 for convenience of illustration, the height adjustment valve 41 and an adjustment valve support bar 42 described later are not shown.
  • the height adjustment valve 41 is a control valve for adjusting the internal pressure of the air spring 31 so that the height of the air spring 31 is within a predetermined height range.
  • the height of the air spring 31 changes with a load change of the vehicle body 5 such as a change in the number of passengers of the track-type vehicle 1. Therefore, the height adjustment valve 41 has the main purpose of aligning the heights of the air springs 31 arranged on both sides in the vehicle width direction so that the vehicle body 5 does not tilt.
  • the height adjusting valve 41 opens and closes an air supply path between the air spring 31 and the air reservoir, and opens and closes an exhaust path between the air spring 31 and the outside.
  • the height adjustment valve 41 is provided for each air spring 31.
  • These height adjustment valves 41 are supported by the vehicle body 5 via bar-shaped adjustment valve support bars (height adjustment device moving mechanism) 42 extending in the vehicle width direction.
  • the regulating valve support bar 42 is formed to be sufficiently longer than the interval between the air springs 31 that are separated in the vehicle width direction.
  • the adjustment valve support bar 42 is rotatably supported at its center in the vehicle width direction by a bracket 43 (see FIG. 3) that extends downward from the vehicle floor surface 34.
  • the height adjustment valve 41 is provided with a lever 44 (indicated by a broken line in FIG. 3) for opening and closing the air supply path and the exhaust path.
  • the lever 44 extends in the vehicle width direction, for example.
  • the end of the lever 44 is connected via an adjustment valve rod (automatic height adjustment mechanism) 45 so that the positional relationship in the vertical direction with the bogie frame 26 or axle cover disposed under the spring is kept constant.
  • the adjustment valve rod 45 changes when the height of one air spring 31 changes.
  • the lever 44 is swung.
  • the height adjustment valve 41 when the air spring 31 becomes shorter than a predetermined length set in advance, the height adjustment valve 41 is displaced in a direction approaching an unsprung member such as the carriage frame 26 in the vertical direction. Then, the adjustment valve rod 45 pushes up the end of the lever 44 relatively upward, the air supply passage is opened by the height adjustment valve 41, and compressed air is supplied to the air spring 31.
  • the height adjustment valve 41 when the air spring 31 becomes longer than a predetermined length set in advance, the height adjustment valve 41 is displaced in the vertical direction away from the unsprung member such as the carriage frame 26. Then, the adjustment valve rod 45 relatively lowers the end of the lever 44 downward, the height adjustment valve 41 opens the exhaust passage, and the compressed air is exhausted from the air spring 31. That is, the above-described height adjustment valve 41 and the adjustment valve rod 45 constitute the automatic height adjustment mechanism of the present invention.
  • the height adjustment valve 41 closes the exhaust passage when the air supply passage is opened, and closes the air supply passage when the exhaust passage is opened.
  • the detection unit 12 detects the turning amount of the guide frame 19.
  • the detection unit 12 includes a displacement sensor 46 and a link unit (link mechanism) 47, and is provided for each suspension frame 29 that is spaced apart in the vehicle width direction.
  • the link portion 47 transmits the displacement of the guide frame 19 in the turning direction to the displacement sensor 46 as a linear direction, more specifically, a vertical displacement.
  • the link portion 47 includes a horizontal rod 48, a horizontal detection link 49, and a vertical rod 50.
  • the horizontal rod 48 extends in the vehicle width direction above the cross beam 20 of the guide frame 19 when the track-type vehicle 1 is traveling on the straight portion of the track 2 (hereinafter simply referred to as straight travel). Arranged.
  • the end of the horizontal rod 48 on the outer side in the vehicle width direction is coupled to the cross beam 20 of the guide frame 19. Accordingly, the horizontal rod 48 can swing with respect to the cross beam 20.
  • the end of the horizontal rod 48 on the inner side in the vehicle width direction is coupled to the lower end of the horizontal detection link 49. That is, the horizontal rod 48 can swing with respect to the horizontal detection link 49.
  • the horizontal detection link 49 is supported with respect to the suspension frame 29 so as to be rotatable around an axis line facing the longitudinal direction of the vehicle body.
  • the horizontal detection link 49 includes a first arm portion 51 that extends downward from the center of rotation during linear travel, and a second arm portion 52 that extends outward in the vehicle width direction from the rotation center during straight travel. That is, the horizontal detection link 49 is formed in an L shape by the first arm portion 51 and the second arm portion 52, and the displacement of the end portion of the first arm portion 51 in the vehicle width direction is detected by the second arm portion 52. Convert to the vertical displacement of the edge.
  • An end portion on the inner side in the vehicle width direction of the horizontal rod 48 described above is coupled to the lower end portion of the first arm portion 51 so as to be swingable.
  • the vertical rod 50 transmits the displacement in the vertical direction of the end portion of the second arm portion 52 to the displacement sensor 46.
  • the vertical rod 50 is formed in a rod shape extending in the vertical direction.
  • the lower end portion of the vertical rod 50 is swingably coupled to the end portion of the second arm portion 52, and the upper end portion of the vertical rod 50 is connected to the displacement sensor 46.
  • the horizontal detection link 49 and the vertical rod 50 may be coupled to each other so as to be swingable in the vehicle width direction.
  • a coupling method for coupling via a pin extending in the longitudinal direction of the vehicle body or a universal joint may be used.
  • the bond used can be used.
  • the horizontal rod 48 is coupled using, for example, a universal joint such as a ball joint so as to allow displacement of the guide frame 19 in the longitudinal direction of the vehicle body with respect to the horizontal detection link 49.
  • the displacement sensor 46 is a sensor that detects the amount of vertical displacement of the vertical rod 50.
  • the displacement sensor 46 is fixed to the vehicle floor surface 34 of the vehicle body 5, the suspension frame 29 attached to the vehicle body 5, and the like so as not to be displaced relative to the vehicle body 5 in the vertical direction.
  • the amount of vertical displacement of the vertical rod 50 changes according to the turning amount of the guide frame 19 and increases, for example, as the curvature of the track 2 increases.
  • the turning amount of the guide frame 19 increases as the curve radius of the track 2 decreases. That is, by obtaining the relationship between the turning amount and the curvature in advance, the turning amount of the guide frame 19 can be obtained from the magnitude of the displacement amount by the displacement sensor 46. Information on the detection result of the displacement sensor 46 is input to the tilt control unit 13.
  • the vehicle body tilt mechanism 11 is a device that tilts the vehicle body 5 in the vehicle width direction with respect to the carriage 6.
  • the vehicle body tilting mechanism 11 includes a tilt driving unit 53 and the adjusting valve support bar 42 described above.
  • the tilt drive unit 53 generates power for tilting the vehicle body 5 based on the detection result of the detection unit 12.
  • the tilt drive unit 53 includes, for example, an actuator 54 that can be expanded and contracted as a power source.
  • the actuator 54 is attached so as to cross between the carriage frame 26 and the adjustment valve support bar 42 on the outer side in the vehicle width direction than the rotation center of the adjustment valve support bar 42.
  • the actuator 54 can tilt the adjustment valve support bar 42 by displacing the vertical distance between the carriage frame 26 and the adjustment valve support bar 42 at the mounting position.
  • the actuator 54 is expanded and contracted between the linear position and the left inclined position, and between the linear position and the right inclined position, respectively.
  • the adjustment valve support bar 42 is held in a state of extending in the vehicle width direction.
  • the adjustment valve support bar 42 is inclined to the left side in the vehicle width direction with respect to the linear position.
  • the actuator 54 is set to the right tilt position, the adjustment valve support bar 42 is tilted to the right in the vehicle width direction from the linear position.
  • linear motion mechanism for example, a cylinder using a working fluid, a ball screw that operates by driving a motor, a rack and pinion, or the like can be used.
  • the tilt control unit 13 drives and controls the tilt drive unit 53 of the vehicle body tilt mechanism 11 based on the detection result of the detection unit 12. As shown in FIG. 4, the inclination control unit 13 includes a traveling condition acquisition unit 55, a curve radius calculation unit 56, a steady acceleration calculation unit 57, and an inclination angle calculation unit 58.
  • the traveling condition acquisition unit 55 acquires vehicle speed information as a traveling condition from a speed detection unit 59 such as a speed generator.
  • the curve radius calculation unit 56 calculates the curve radius of the track 2 from the turning amount of the guide frame 19 detected by the detection unit 12.
  • the wheel base of the track vehicle 1 is “L” (m) and the curve radius is “R” (m)
  • the turning amount “ ⁇ ” (deg) of the guide frame is (1) It can represent with Formula.
  • Sin ⁇ 1 (L / 2) / R) (1)
  • the wheel base “L” is determined in advance for each track-type vehicle 1, and in this embodiment, is the distance between the turning centers of the guide frames 19 of the front and rear carriages 6. Therefore, the curve radius “R” can be obtained by the following equation (2).
  • R (L / 2) / Sin ⁇ (2)
  • the steady acceleration calculation unit 57 obtains the vehicle width direction steady acceleration received by the passenger in the vehicle based on the vehicle speed and the curve radius.
  • the vehicle that the passenger receives when passing the curve is “k” (rad)
  • the width-direction steady acceleration “ ⁇ p” (G) can be obtained by the following equation (4).
  • the inclination angle calculation unit 58 calculates the inclination angle of the vehicle body 5 in the vehicle width direction based on the vehicle width direction steady acceleration. In other words, the inclination angle of the vehicle body 5 necessary for canceling the vehicle width direction steady acceleration acting on the passenger is calculated.
  • the tilt control unit 13 drives and controls the tilt driving unit 53 described above based on the tilt angle calculated by the tilt angle calculating unit 58.
  • the vehicle width direction steady acceleration that passengers feel uncomfortable is generally said to be 0.08 (G) or more.
  • the steady acceleration in the vehicle width direction is set to “0”, but the target is set to about 0.00 to 0.02 (G) in consideration of errors included in the calculation result.
  • the optimum inclination amount “ ⁇ ” (rad) for inclining the vehicle body 5 toward the inner track side when passing through the curve can be expressed as the following equation (5).
  • the tilt control unit 13 performs a tilt control step for obtaining the tilt angle of the vehicle body 5 based on the detection results of the pair of displacement sensors 46.
  • the speed detector 59 detects the vehicle speed
  • the displacement sensor 46 detects the turning amount of the guide frame 19 (detection step).
  • the inclination control unit 13 acquires the vehicle speed detected by the speed detection unit 59 by the travel condition acquisition unit 55 (step S01; travel condition acquisition step). Further, in parallel with this, the turning amount of the guide frame 19 detected by the displacement sensor 46 is acquired by the curve radius calculation unit 56 (step S02).
  • the inclination control unit 13 calculates the curve radius of the track 2 from the turning amount of the guide frame 19 by the curve radius calculation unit 56 (step S03; curve radius calculation step). Further, the inclination control unit 13 obtains the vehicle width direction steady acceleration received by the passenger in the vehicle based on the vehicle speed and the curve radius information by the steady acceleration calculation unit 57 (step S04; steady acceleration calculation step).
  • the inclination control unit 13 calculates the inclination angle of the vehicle body 5 in the vehicle width direction by the inclination angle calculation unit 58 based on the vehicle width direction steady acceleration obtained by the steady acceleration calculation unit 57 (step S05; Angle calculation step). And the inclination control part 13 performs drive control of the inclination drive part 53 so that it may become the said calculated inclination angle (step S06).
  • the tilt control unit 13 displaces the actuator 54 of the tilt drive unit 53 from the linear position to the left tilt position or the right tilt position, and tilts the adjustment valve support bar 42 toward the inner track side of the curve.
  • the inclination control unit 13 drives and controls the actuator 54 of the inclination driving unit 53 so that the adjustment valve support bar 42 has the inclination angle calculated by the inclination angle calculation unit 58.
  • the height regulating valve 41 disposed relatively upward is operated on the air supply side, and the height regulating valve 41 disposed relatively below on the exhaust side. Operated. As a result, a difference occurs in the height of the air springs 31 that are spaced apart in the vehicle width direction, and the vehicle body 5 is inclined toward the inner track side by this difference.
  • the turning amount can be detected by the detection unit 12. Furthermore, the vehicle body 5 can be tilted in the vehicle width direction by driving the actuator 54 based on the turning amount of the guide frame 19 by the tilt control unit 13. As a result, it is possible to prevent the deterioration of the riding comfort when traveling on the curved portion of the track 2 more reliably without increasing the rolling rigidity or excessively increasing the carriage 6.
  • the amount of turning of the guide frame 19 for steering the traveling wheel 7 can be converted into the amount of vertical displacement of the vertical rod 50 by the detection unit 12 and detected by the displacement sensor 46.
  • the height control valve of each air spring 31 spaced apart in the vehicle width direction is controlled by driving the actuator 54 of the tilt drive unit 53 by the tilt control unit 13 to change the tilt angle of the adjustment valve support bar 42.
  • the height position of 41 can be changed. Therefore, the lengths of the air springs 31 that are spaced apart in the vehicle width direction can be made different by effectively using the height adjustment mechanism of the air spring 31 for keeping the height of the vehicle body 5 constant. As a result, the vehicle body 5 can be easily tilted only by driving and controlling one actuator 54.
  • the track type vehicle in the second embodiment of the present invention will be described.
  • the track-type vehicle according to the second embodiment is different from the track-type vehicle 1 according to the first embodiment described above only in the configuration of the vehicle body tilt mechanism.
  • the track type vehicle of the second embodiment includes a vehicle body 5 and a carriage 6.
  • the cart 6 includes a traveling wheel 7, a guide steering device 8, a suspension device 9, a shock absorber 10, a vehicle body tilt mechanism 211, a detection unit 12, and a tilt control unit 213.
  • the traveling wheel 7, the guide steering device 8, the suspension device 9, the shock absorber 10, the detection unit 12, and the tilt control unit 213 have the same configuration as that of the first embodiment described above. Therefore, detailed description is omitted.
  • the height adjustment valve 41 and the adjustment valve rod 45 for automatically adjusting the height of the vehicle body 5 are omitted in FIGS.
  • the detection unit 12 includes a displacement sensor 46 and a link unit 47 as in the first embodiment, and detects the turning amount of the guide frame 19 by converting it into a linear displacement amount of the vertical rod 50.
  • the detection unit 12 is provided for each suspension frame 29 that is spaced apart in the vehicle width direction.
  • the detection result of the displacement sensor 46 is input to the tilt control unit 213.
  • the shock absorber 10 in the second embodiment includes an air spring 31 as in the first embodiment described above.
  • a height adjusting device 40 is connected to the air spring 31.
  • the height adjusting device 40 includes a height adjusting valve 41, an air reservoir (not shown), and a pipe 62 for sucking compressed air.
  • the vehicle body tilting mechanism 211 tilts the vehicle body 5 with respect to the carriage 6 in the vehicle width direction.
  • the vehicle body tilt mechanism 211 includes a tilt amount control device 60 and a tilt adjustment device 61.
  • the inclination amount control device 60 bypasses the height adjustment valve 41 operated by the adjustment valve rod 45 and adjusts the height of the air spring 31.
  • the inclination adjusting device 61 restricts (inhibits) the adjustment of the height of the air spring 31 via the height adjustment valve 41 when the height of the air spring 31 is adjusted by the inclination amount control device 60. .
  • the inclination amount control device 60 includes a first three-way electromagnetic switching valve 63, a bypass pipe 65, and a second three-way electromagnetic switching valve 64.
  • the first three-way electromagnetic switching valve 63 and the second three-way electromagnetic switching valve 64 are control valves that perform an opening / closing operation based on a control command from the inclination control unit 13, respectively.
  • the inclination adjusting device 61 includes the first three-way electromagnetic switching valve 63 and the second three-way electromagnetic switching valve 64 described above.
  • the first three-way electromagnetic switching valve 63 has a state in which a pipe 66 communicated with the air reservoir and a pipe 62 connected to the height adjustment valve 41 communicate with each other, and a pipe 66 and a bypass pipe 65 communicate with each other. It is possible to switch between the states to be performed.
  • the second three-way electromagnetic switching valve 64 includes a state in which a pipe 69 connected to the air spring 31 and a pipe 68 connected to the height adjustment valve 41 communicate with each other, and the pipe 69 and the bypass pipe 65 described above. The communication state can be switched. Further, the second three-way electromagnetic switching valve 64 can exhaust the compressed air in the air spring 31. A pressure sensor 70 for detecting the pressure of the compressed air accommodated in the air spring 31 is attached to each pipe 69. The detection results of these pressure sensors 70 are transmitted toward the inclination control unit 13.
  • a differential pressure valve 71 is attached between the two pipes 68 described above.
  • the differential pressure valve 71 communicates between the two pipes 68 when the pressure difference in the two air springs 31 separated in the vehicle width direction exceeds a predetermined pressure difference.
  • the differential pressure valve 71 operates, for example, when one of the two air springs 31 is punctured, and is adjusted so that the pressure in the two air springs 31 approaches. Thereby, the wheel load omission at the time of puncture can be suppressed.
  • the tilt control unit 213 controls the tilt angle of the vehicle body 5 by the vehicle body tilt mechanism 211. More specifically, based on the detection result of the detection unit 12, the inclination amount control device 60 is drive-controlled to adjust the height of the air spring 31. At this time, the inclination control unit 213 performs the height adjustment of the air spring 31 by the inclination adjustment device 61 in a state where the automatic height adjustment of the air spring 31 by the height adjustment valve 41 is disabled.
  • the flow rate of the compressed air that can be flowed via the inclination amount control device 60 is set to be larger than the flow rate of the compressed air that can be flowed via the height adjustment valve 41, so that quick intake and exhaust can be performed. It is possible.
  • the tilt control unit 213 includes a travel condition acquisition unit 55, a curve radius calculation unit 56, a steady acceleration calculation unit 57, and a tilt angle calculation unit 58. .
  • the vehicle body tilt mechanism 211 obtains the pressure target value of each air spring 31 based on, for example, a mathematical formula, a table, a map, and the like based on the calculation result of the tilt angle calculation unit 58.
  • the inclination control part 213 controls the flow volume of the compressed air by the 2nd 3 way electromagnetic switching valve 64 so that the pressure of the air spring 31 may turn into target pressure.
  • the height of the air spring 31 is automatically adjusted by the height adjustment valve 41 and the adjustment valve rod 45 so that the vehicle body 5 does not tilt during normal times. be able to.
  • the height of each air spring 31 can be individually adjusted by the bypass pipe 65 and the second three-way electromagnetic switching valve 64.
  • the height adjustment of each air spring 31 is adjusted by the bypass pipe 65 and the second three-way electromagnetic switching valve 64. It is possible to prevent the tilt of the vehicle body 5 from being hindered by the operation of the valve 41. As a result, when the vehicle body 5 is tilted with different heights of the air springs 31 and travels on the curved portion of the track 2, it is possible to more reliably prevent the riding comfort from deteriorating.
  • the track-type vehicle of the second embodiment has a bypass pipe 65 and a second three-way electromagnetic than the case where compressed air is supplied to the air spring 31 via the pipe 62, the height adjustment valve 41, and the pipe 68.
  • the flow rate can be increased when compressed air is supplied to the air spring 31 via the switching valve 64 (inclination amount control device 60). Therefore, the vehicle body 5 can be quickly tilted, and deterioration in riding comfort due to a delay in tilt timing can be prevented.
  • the track type vehicle in the third embodiment of the present invention will be described.
  • the track-type vehicle according to the third embodiment is different from the track-type vehicle according to the second embodiment described above only in a part of the vehicle body tilt mechanism.
  • the track type vehicle of the third embodiment includes a vehicle body 5 and a carriage 6.
  • the cart 6 includes a traveling wheel 7, a guide steering device 8, a suspension device 9, a shock absorber 10, a vehicle body tilt mechanism 311, a detection unit 12, and a tilt control unit 313 (see FIG. 15).
  • the traveling wheel 7, the guidance steering device 8, the suspension device 9, the shock absorber 10, the detection unit 12, and the inclination control unit 313 have the same configuration as that of the first embodiment described above. Detailed description is omitted.
  • the height adjustment valve 41 and the adjustment valve rod 45 for automatically adjusting the height of the vehicle body 5 are omitted.
  • the detection unit 12 includes a displacement sensor 46 and a link unit 47 as in the first embodiment, and detects the turning amount of the guide frame 19 by converting it into a linear displacement amount of the vertical rod 50.
  • the detection unit 12 is provided for each suspension frame 29 that is spaced apart in the vehicle width direction.
  • the detection result of the displacement sensor 46 is input to the inclination control unit 313.
  • the vehicle body tilting mechanism 311 includes a vehicle body lifting / lowering device 74 and a tilt adjusting device 61 (see FIG. 14).
  • the vehicle body raising / lowering device 74 supports the air spring 31 of the shock absorber 10 from below so as to be movable in the vertical direction.
  • the vehicle body raising / lowering device 74 includes an actuator 75.
  • the actuator 75 includes a linear motion mechanism that can expand and contract in the vertical direction.
  • the actuator 75 is sandwiched between the upper surface of the carriage frame 26 and the lower surface of the air spring 31 so that the distance between the carriage frame 26 and the air spring 31 can be changed.
  • These actuators 75 may be, for example, cylinders that are driven using fluid pressure or the like.
  • the inclination adjusting device 61 includes a first electromagnetic switching valve 76 and a second electromagnetic switching valve 77.
  • the first electromagnetic switching valve 76 is provided in the middle of a pipe 66 that connects an air reservoir (not shown) and the height adjustment valve 41.
  • the first electromagnetic switching valve 76 can be switched between a state where the flow path of the pipe 66 is shut off and a state where it is opened by the inclination control unit 313.
  • the second electromagnetic switching valve 77 is provided in the middle of the pipe 68 that connects the height adjustment valve 41 and the air spring 31. Similar to the first electromagnetic switching valve 76, the second electromagnetic switching valve 77 can be switched by the inclination control unit 313 between a state where the flow path of the pipe 68 is blocked and a state where it is opened. Yes.
  • a two-way electromagnetic switching valve or an electromagnetic cutoff valve can be used as the first electromagnetic switching valve 76 and the second electromagnetic switching valve 77.
  • a differential pressure valve 71 is attached between the two pipes 68 described above, as in the first embodiment described above.
  • the tilt control unit 313 is similar to the tilt control unit 13 of the first embodiment, in which the traveling condition acquisition unit 55, the curve radius calculation unit 56, the steady acceleration calculation unit 57, and the tilt angle calculation. Part 58.
  • the vehicle body tilt mechanism 311 is based on the calculation result of the tilt angle calculation unit 58, for example, based on a mathematical formula, a table, a map, or the like so that the calculation result of the tilt angle calculation unit 58 matches the tilt angle of the vehicle body 5. Expansion / contraction control of each actuator 75 of the ascending / descending device 74 is performed.
  • the vehicle body 5 is not tilted by the height adjustment valve 41 and the adjustment valve rod 45 in the normal state, similarly to the track type vehicle of the second embodiment described above.
  • the height of the air spring 31 can be automatically adjusted.
  • the support position for supporting each air spring 31 from below by the actuator 75 is changed in the vertical direction while the height adjustment of the air spring 31 by the height adjustment valve 41 is restricted. Can be made.
  • the height position of the vehicle body 5 with respect to the carriage frame 26 can be adjusted similarly to the case where the height of each air spring 31 is adjusted individually.
  • the vehicle body 5 is inclined with different heights in the vehicle width direction of the vehicle body 5 and travels along the curved portion of the track, it is possible to more reliably prevent the ride comfort from deteriorating.
  • the track-type vehicle according to the fourth embodiment is different from the track-type vehicle 1 according to the third embodiment described above only in the configuration of the vehicle body tilt mechanism. Therefore, while using FIG. I will explain.
  • the track type vehicle of the fourth embodiment includes a vehicle body 5 and a carriage 6.
  • the carriage 6 includes a traveling wheel 7, a guide steering device 8, a suspension device 9, a shock absorber 10, a vehicle body tilt mechanism 411, a detection unit 12, a tilt control unit 313 (see FIG. 15), and anti-rolling.
  • Device 80 Note that the traveling wheel 7, the guide steering device 8, the suspension device 9, the shock absorber 10, the detection unit 12, and the inclination control unit 313 have the same configuration as that of the third embodiment described above. Therefore, detailed description is omitted.
  • the height adjustment valve 41 and the adjustment valve rod 45 for automatically adjusting the height of the vehicle body 5 are not shown in FIGS.
  • the detection unit 12 includes a displacement sensor 46 and a link unit 47 as in the first embodiment, and detects the turning amount of the guide frame 19 by converting it into a linear displacement amount of the vertical rod 50.
  • the detection unit 12 is provided for each suspension frame 29 that is spaced apart in the vehicle width direction.
  • the detection result of the displacement sensor 46 is input to the inclination control unit 313.
  • the anti-rolling device 80 has a torsion bar 81 extending in the vehicle width direction.
  • the anti-rolling device 80 regulates the inclination of the vehicle body 5, in other words, the displacement in the rolling direction, using the restoring force of the torsion bar 81 in the torsional direction.
  • the torsion bar 81 is rotatably supported by a torsion bar rotation support bearing portion 82 whose both ends are fixed to the vehicle body 5.
  • the torsion bar 81 includes arm portions 83 (see FIG. 17) extending in the longitudinal direction of the vehicle body at both ends thereof.
  • the arm portion 83 is attached to an end portion thereof so that an adjustment rod 84 extending downward is swingable.
  • the lower end portion of the adjustment rod 84 is attached to the adjustment rod lower receiving portion 85 via an actuator 87 which will be described later.
  • the adjustment rod lower receiving portion 85 is formed so as to extend forward from the carriage frame 26 in the longitudinal direction of the vehicle body.
  • the vehicle body tilt mechanism 411 includes a rod telescopic device 86 and a tilt adjusting device 61.
  • the rod telescopic device 86 has an actuator 87.
  • the actuator 87 displaces the neutral position where no restoring force in the torsional direction is generated in the adjusting rod 84.
  • the actuator 87 is configured by a linear motion mechanism that can be expanded and contracted in the vertical direction, and the distance between the end portion of the arm portion 83 and the end portion of the adjustment rod lower receiving portion 85 can be changed.
  • the end portion of the arm portion 83 arranged on the side displaced downward by the rolling of the vehicle body 5 is moved from the torsion bar 81 by the adjustment rod 84. Is also lifted relatively upward. Then, the torsion bar 81 is twisted, and the end of the arm portion 83 tends to return relatively downward by the restoring force, and the end of the torsion bar 81 tends to be displaced upward. That is, since the vehicle body 5 is pressed from below through the torsion bar rotation support bearing portion 82 disposed on the end side of the torsion bar 81, the inclination of the vehicle body 5 in the vehicle width direction is restricted.
  • the arm portion 83 swings upward. To do. Then, the torsion bar 81 is twisted, and one side of the torsion bar 81 in the vehicle width direction tends to be displaced upward by the restoring force. At this time, of the pair of air springs 31 spaced apart in the vehicle width direction by the restoring force of the torsion bar 81, a force in the compression direction acts on the air spring 31 on one side, and the other air spring 31 in the extension direction. Force acts. By these forces, each air spring 31 is elastically deformed, and the vehicle body 5 is inclined in the vehicle width direction.
  • the inclination control unit 313 in the fourth embodiment is common in that the vehicle body 5 is inclined by the vertical expansion and contraction of a pair of actuators 87 separated in the vehicle width direction. That is, the tilt control unit 313 according to the fourth embodiment is merely switched from “vehicle body lifting / lowering device 74” to “rod telescopic device 86” in FIG.
  • the air spring 31 of the air spring 31 is prevented from being inclined by the height adjustment valve 41 and the adjustment valve rod 45 during normal times.
  • the height can be adjusted automatically.
  • the neutral position of the torsion bar 81 is changed by twisting the torsion bar 81 with the actuator 87 in a state where the height adjustment of the air spring 31 by the height adjustment valve 41 is restricted. Can be made.
  • the height position of the vehicle body 5 with respect to the carriage frame 26 can be adjusted similarly to the case where the height of each air spring 31 is adjusted individually.
  • the vehicle body 5 is inclined with different heights in the vehicle width direction of the vehicle body 5 and travels along the curved portion of the track, it is possible to more reliably prevent the ride comfort from deteriorating.
  • the track-type vehicle according to the fifth embodiment is different from the track-type vehicle according to the third embodiment described above only in part of the vehicle body tilt mechanism.
  • the track-type vehicle of the fifth embodiment includes a vehicle body 5 and a carriage 6.
  • the cart 6 includes a traveling wheel 7, a guide steering device 8, a suspension device 9, a shock absorber 10, a vehicle body tilt mechanism 511, a detection unit 12, and a tilt control unit 313.
  • the traveling wheel 7, the guide steering device 8, the suspension device 9, the shock absorber 10, the detection unit 12, and the inclination control unit 313 have the same configuration as that of the third embodiment described above. Therefore, detailed description is omitted.
  • the height adjustment valve 41 and the adjustment valve rod 45 for automatically adjusting the height of the vehicle body 5 are not shown.
  • the detection unit 12 includes a displacement sensor 46 and a link unit 47 as in the first embodiment, and detects the turning amount of the guide frame 19 by converting it into a linear displacement amount of the vertical rod 50.
  • the detection unit 12 is provided for each suspension frame 29 that is spaced apart in the vehicle width direction.
  • the detection result of the displacement sensor 46 is input to the inclination control unit 313.
  • the vehicle body tilt mechanism 511 includes a left / right stopper 90 and a vehicle body tilt drive device 91.
  • the left and right stoppers 90 are arranged in the center of the floor of the vehicle body 5 in the vehicle width direction, and allow the vehicle body 5 to slide in the vehicle width direction relative to the carriage 6 while allowing the vehicle body 5 to tilt relative to the carriage 6 in the vehicle width direction.
  • the left and right stopper 90 includes a suspension frame horizontal beam 92, a stopper receiver 93, a stopper rubber mounting receiver 94, and a stopper rubber 95.
  • the suspension frame lateral beam 92 is a flat plate-like member arranged so as to cross between the upper surfaces of the air springs 31.
  • the stopper receiver 93 forms a pair of support surfaces that extend vertically downward from the lower surface of the suspension frame horizontal beam 92 and face each other.
  • the stopper rubber mounting receiver 94 is disposed between the support surfaces of the stopper receiver 93 in the vehicle width direction, and is fixed to an unsprung structure such as a carriage frame 26 or a gear box (not shown).
  • the stopper rubber 95 is respectively attached to the outer surface in the vehicle width direction of the stopper rubber mounting receiver 94, and is arranged with a slight gap between the stopper rubber 95 and the stopper receiver 93.
  • the stopper rubber 95 is preferably made of a material softer than the stopper receiver 93, such as rubber or resin.
  • the vehicle body tilt drive device 91 applies a force in the vehicle width direction to the suspension frame 29.
  • the vehicle body tilt drive device 91 includes a pair of actuators 96 and a swivel bearing support portion 97.
  • the actuator 96 can be expanded and contracted in the vehicle width direction based on a control command from the inclination control unit 313.
  • the actuator 96 has an end portion on the outer side in the vehicle width direction coupled to a lower portion of the suspension frame 29.
  • the inner end of the actuator 96 in the vehicle width direction is supported by the swivel bearing support 97.
  • the slewing bearing support portion 97 is disposed so as to cross between the lower portions of the bogie frames 26 and is formed to extend in the traveling direction (the front and back direction in FIG. 11).
  • the suspension frame 29 tends to slide toward the other actuator 96 in the vehicle width direction.
  • the stopper rubber 95 comes into contact with the stopper receiver 93.
  • the suspension frame lateral beam 92 is inclined with the position where the stopper receiver 93 and the stopper rubber 95 are in contact with each other as the tilting center (fulcrum).
  • the air spring 31 disposed on the one actuator 96 side of the pair of air springs 31 is extended, and the air spring 31 disposed on the other actuator 96 side is compressed. And a difference arises in the height of a pair of air spring 31, and the vehicle body 5 will incline.
  • the inclination control unit 313 in the fifth embodiment is common in that the vehicle body 5 is inclined by expansion and contraction of a pair of actuators 96 separated in the vehicle width direction. That is, the tilt control unit 313 according to the fifth embodiment is merely switched from “vehicle body lifting / lowering device 74” to “vehicle body tilt driving device 91” in FIG. .
  • the air spring is prevented so that the vehicle body 5 is not inclined by the height adjustment valve 41 and the adjustment valve rod 45 in the normal state.
  • the height of 31 can be automatically adjusted.
  • the actuator 96 presses the suspension frame 29 in the vehicle width direction in a state where the height adjustment of the air spring 31 by the height adjustment valve 41 is restricted, so that a pair of air The height of the spring 31 can be changed.
  • the height position of the vehicle body 5 with respect to the carriage frame 26 can be adjusted similarly to the case where the height of each air spring 31 is adjusted individually.
  • the vehicle body 5 is inclined with different heights in the vehicle width direction of the vehicle body 5 and travels along the curved portion of the track, it is possible to more reliably prevent the ride comfort from deteriorating.
  • the track-type vehicle according to the sixth embodiment is different from the track-type vehicle according to the third embodiment described above only in a part of the configuration, and therefore the same portions are denoted by the same reference numerals.
  • the track-type vehicle according to the sixth embodiment includes a vehicle body 5 and a carriage 6.
  • the carriage 6 includes a pair of traveling wheels 7, a guide steering device 8, a suspension device 9, a shock absorber 10, and A vehicle body tilt mechanism 11, a detection unit 12, and a tilt control unit 413 are provided.
  • the track type vehicle in the sixth embodiment further includes a storage unit 101 instead of the speed detection unit 59 provided in the track type vehicle of the third embodiment described above.
  • the storage unit 101 stores information on the cant of the track 2 and the vehicle speed in advance. More specifically, the memory
  • the tilt control unit 413 performs drive control of the vehicle body tilt mechanism 11 based on the detection result of the detection unit 12 and the stored information of the storage unit 101.
  • the inclination control unit 413 includes a traveling condition acquisition unit 455, a curve radius calculation unit 56, a steady acceleration calculation unit 457, and an inclination angle calculation unit 58.
  • the traveling condition acquisition unit 455 acquires information on the cant of the track 2 and the vehicle speed from the storage information in the storage unit 101.
  • the information on the cant and the vehicle speed is stored in association with the information on the travel position on the track 2 or the travel time. That is, information on the cant and the vehicle speed according to the travel position of the track type vehicle can be acquired from the storage unit 101.
  • the curve radius calculation unit 56 calculates the curve radius from the detection result of the displacement sensor 46 from the above-described equation (2), similarly to the curve radius calculation unit 56 of the first embodiment described above.
  • the steady acceleration calculation unit 457 obtains the vehicle width direction steady acceleration received by the passengers in the vehicle based on the information on the cant, the vehicle speed, and the curve radius.
  • the cant provided on the curve is “C” (%)
  • the curve radius is “R” (m)
  • the vehicle speed when the track type vehicle passes the curve is “V” (km / h).
  • the steady acceleration calculation unit 457 obtains the vehicle width direction steady acceleration “ ⁇ p” (G) that the passenger receives when passing through the curve, using the above-described equation (4).
  • the inclination angle calculation unit 58 calculates an optimum inclination amount that causes the vehicle body 5 to incline toward the inner track side when passing the curve, using the above-described equation (5).
  • the tilt control unit 413 performs tilt control of the vehicle body 5 by the vehicle body tilt mechanism 11 based on the tilt angle calculated by the tilt angle calculation unit 58.
  • the inclination control unit 413 acquires the vehicle speed and kant information of the track type vehicle stored in the storage unit 101 by the travel condition acquisition unit 55 (step S ⁇ b> 11). Further, in parallel with this, the turning amount of 19 of the guide frame detected by the displacement sensor 46 is acquired (step S02). Next, the inclination control unit 413 calculates the curve radius of the track 2 from the turning amount of the guide frame 19 by the curve radius calculation unit 56 (step S03). Further, the inclination control unit 413 obtains the vehicle width direction steady acceleration received by the passenger in the vehicle based on the vehicle speed, cant, and curve radius information by the steady acceleration calculation unit 457 (step S14).
  • the tilt control unit 413 calculates the tilt angle of the vehicle body 5 in the vehicle width direction by the tilt angle calculation unit 58 based on the vehicle width direction steady acceleration obtained by the steady acceleration calculation unit 457 (step S05). Then, the inclination control unit 413 performs drive control of the inclination driving unit 53 so as to achieve the calculated inclination angle (step S06).
  • the track type vehicle in the sixth embodiment it is possible to calculate the vehicle width direction steady acceleration in consideration of the cant of the track 2. Therefore, it is possible to calculate a more optimal amount of tilt than when the vehicle body 5 is tilted toward the inner track side when passing through a curve.
  • the track-type vehicle according to the seventh embodiment is different from the track-type vehicle according to the third embodiment described above only in a part of the configuration.
  • the track-type vehicle according to the seventh embodiment includes a vehicle body 5 and a carriage 6.
  • the carriage 6 includes a pair of traveling wheels 7, a guide steering device 8, a suspension device 9, a shock absorber 10, and A vehicle body tilt mechanism 11, a detection unit 12, and a tilt control unit 513 are provided.
  • the tilt control unit 513 performs drive control of the vehicle body tilt mechanism 11 based on the detection result of the detection unit 12 and the stored information of the storage unit 101.
  • the track type vehicle in the seventh embodiment includes an acceleration detection unit 103.
  • the acceleration detection unit 103 is attached to the vehicle body 5 and detects a steady acceleration in the vehicle width direction.
  • the inclination control unit 513 includes a traveling condition acquisition unit 455, a curve radius calculation unit 56, a steady acceleration calculation unit 457, an acceleration comparison unit 104, and an inclination angle calculation unit 58. Since the traveling condition acquisition unit 455, the curve radius calculation unit 56, and the steady acceleration calculation unit 457 have the same configuration as that of the sixth embodiment described above, detailed description thereof is omitted.
  • the acceleration comparison unit 104 compares the detection result of the acceleration detection unit 103 with the calculation result of the steady acceleration calculation unit 457. More specifically, the calculation result by the steady acceleration calculation unit 457 is confirmed by the detection result by the acceleration detection unit 103. For example, when the difference between the calculation result of the steady acceleration calculation unit 457 and the detection result of the acceleration detection unit 103 exceeds a preset threshold value, the acceleration comparison unit 104 determines that the calculation result of the steady acceleration calculation unit 457 is in a failed state. Therefore, the tilt control of the vehicle body 5 is not performed.
  • the inclination angle calculation unit 58 calculates the optimal amount of inclination that causes the vehicle body 5 to incline toward the inner track side when passing the curve, using the above-described equation (5).
  • the tilt control unit 413 performs tilt control of the vehicle body 5 by the vehicle body tilt mechanism 11 based on the tilt angle calculated by the tilt angle calculation unit 58.
  • the operation of the inclination control unit 513 in the seventh embodiment is different from the operation of the inclination control unit 413 of the sixth embodiment only in that the acceleration comparison process by the acceleration comparison unit 104 is performed, and therefore the same process is the same. A description will be given with reference numerals.
  • the inclination control unit 513 acquires the vehicle speed and kant information of the track type vehicle stored in the storage unit 101 by the travel condition acquisition unit 55 (step S11). Further, in parallel with this, the turning amount of 19 of the guide frame detected by the displacement sensor 46 is acquired (step S02). Next, the inclination control unit 513 calculates the curve radius of the track 2 from the turning amount of the guide frame 19 by the curve radius calculation unit 56 (step S03). Further, the inclination control unit 513 obtains the vehicle width direction steady acceleration received by the passenger in the vehicle based on the vehicle speed, cant, and curve radius information by the steady acceleration calculation unit 457 (step S14).
  • the inclination control unit 513 acquires the vehicle width direction steady acceleration detected by the acceleration detection unit 103 (step S21; acceleration detection process and travel condition acquisition process). Further, the inclination control unit 513 compares the vehicle width direction steady acceleration calculated by the steady acceleration calculation unit 457 with the vehicle width direction steady acceleration detected by the steady acceleration detection unit 104 by the acceleration comparison unit 104 ( Step S22: acceleration comparison step).
  • the acceleration detection unit 103 determines that the difference between the calculation result of the steady acceleration calculation unit 457 and the detection result of the acceleration detection unit 103 exceeds a preset threshold, For example, information indicating a failure is output to the tilt angle calculation unit 58 so that the tilt control of 5 is not performed.
  • the tilt control unit 513 causes the tilt angle calculation unit 58 to execute the vehicle width.
  • the inclination angle of the vehicle body 5 in the vehicle width direction is calculated (step S05).
  • the inclination control part 13 performs drive control of the inclination drive part 53 so that it may become the said calculated inclination angle (step S06).
  • the acceleration detection unit 103 can detect the vehicle width direction steady acceleration actually acting on the passenger. Therefore, even when the value of the steady acceleration in the vehicle width direction calculated by the steady acceleration calculation unit 457 is abnormal, this abnormality can be detected and optimal tilt control of the vehicle body 5 can be performed.
  • the shock absorber 10 includes the air spring 31
  • the shock absorber 10 is not limited to the air spring 31 as long as the height of the vehicle body can be adjusted.
  • an example in which two air springs 31 are arranged apart from each other in the vehicle width direction has been described.
  • the number of air springs 31 arranged in the vehicle width direction is not limited to two, and three or more air springs 31 are included. It may be arranged.
  • the detection unit 12 detects that the track-type vehicle 1 is in a state of entering the curved portion.
  • the rotational power of the motor may be transmitted to the rotation shaft of the adjustment valve support bar 42 via a speed reduction mechanism or the like to rotate the adjustment valve support bar 42.
  • vehicle body tilt mechanisms 11, 211, 311 and 411 have been individually described. However, it is sufficient that at least one of these vehicle body tilt mechanisms 11, 211, 311 and 411 is provided, and the vehicle body 5 may be tilted by appropriately combining them.
  • the curve radius calculation unit 56 of each of the above-described embodiments the case where the curve radius is obtained using a mathematical formula has been described, but the configuration is not limited to this.
  • the curve radius may be obtained by referring to a table or map of the detection result of the displacement sensor and the curve radius.
  • the steady acceleration calculation units 57 and 457 obtain the vehicle width direction steady acceleration and the inclination angle calculation unit 58 obtains the inclination angle using mathematical expressions.
  • the vehicle width direction steady acceleration may be obtained based on a curve radius, a traveling condition (vehicle speed, cant), and a steady acceleration map.
  • the tilt angle calculation unit 58 the tilt angle of the vehicle body 5 may be obtained based on a table or map of the vehicle width direction steady acceleration and the tilt angle.
  • the turning amount of the guide frame 19 is converted into the displacement amount in the linear direction and detected by the displacement sensor 46 .
  • any detection device capable of detecting the turning amount may be used, and is not limited to the displacement sensor 46.
  • the turning amount of the guide frame 19 may be detected using various detection devices such as a rotary encoder, a variable resistor, and an image processing device.
  • an inclination angle storage unit for storing information on the inclination angle may be provided.
  • this tilt angle storage unit information on the tilt angle calculated in advance by the tilt angle calculation unit 58 based on the storage information of the storage unit 101 such as route alignment and run curve is stored.
  • the tilt control unit 413 may perform the tilt control of the vehicle body 5 by the vehicle body tilt mechanism 11 based on the tilt angle stored in the tilt angle storage unit.
  • the case where the four guide wheels 22 are provided by arranging the cross beams 20 of the guide frame 19 at the front and rear of the traveling wheel 7 has been described.
  • the cross beam 20 may be disposed only in front of the traveling wheel 7.
  • the case where the guide wheel 19 is provided with the rotatable guide wheel 22 has been described, but a non-rotatable sliding member may be arranged instead of the guide wheel 22.
  • the present invention can be widely applied to a track type vehicle that can travel along a track guided by a guide rail.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)

Abstract

 車体と、該車体を下方から支持するとともに、軌道に垂直な軸線回りに旋回可能な枠体を有する台車とを備え、該台車が、進行方向の左右への前記車体の傾斜を行う車体傾斜部と、前記枠体の旋回量を検出する検出部と、該検出部が検出する旋回量に基づいて、前記車体傾斜部に前記車体の傾斜を行わせる傾斜制御部と、を備える。

Description

軌道式車両、および、その車体傾斜制御方法
 本発明は、軌道に沿って走行可能な軌道式車両に関するものであり、特に車体を内軌側に傾斜可能な軌道式車両および、その車体傾斜制御方法に係る。
 バスや鉄道以外の新たな交通手段として、ゴムタイヤを装着した走行輪によって軌道を走行する軌道系交通システムが知られている。この種の軌道系交通システムは、一般に、「新交通システム」や「APM(Automated People Mover)」等と呼ばれている。軌道系交通システムは、車両の両側部などに配された案内輪が軌道に沿って設けられたガイドレールに案内される。
 上記軌道系交通システムの車両は、一般的な鉄道車両と比較して車体長が短いため、自動車やバスと同様に、車体の前後に一軸式の台車を備えている場合が多い。さらに、軌道系交通システムの車両は、一軸式の台車を用いている場合、簡易な懸架機構として、自動車等と同様の平行リンク方式が採用されている場合が多い。また、上記軌道系交通システムの車両は、軌道の凹凸を吸収して乗り心地を向上させるために、車体と台車との間に空気ばねを設けている場合がある。
 ところで、上記軌道系交通システムの車両にあっては、移動時間の短縮や輸送力アップのために、更なる走行速度の向上が要望されている。しかし、軌道の曲線部を走行する際に走行速度の向上に応じて超過遠心力が増加してしまうため、乗り心地が悪化するとともに安全性が低下する可能性がある。
 ここで、一般的な鉄道車両においては、曲線部において生じる超過遠心力を打ち消すために、車体を軌道内側に傾斜させる車体傾斜装置を備えたものが実用化されている。
 例えば、特許文献1~5には、空気ばねの高さ調整機構を利用して左右一対の空気ばねの長さをそれぞれ異ならせることで車体を内軌側に傾斜させる技術が記載されている。この技術によれば、簡易な構成で、車体を内軌側に傾斜させることが可能となる。
特開2012-232718号公報 特開2012-176657号公報 特開2011-016441号公報 特開2010-173354号公報 特開2011-184027号公報
 上記空気ばねを用いた車体傾斜を行う場合、予め設定された運行計画(ランカーブ)や自車位置などに基づき、軌道の曲線部に進入するタイミングで空気ばねの給排気制御を開始する必要がある。そのため、正確に自車位置を検出する必要がある。しかしながら、上記自車位置検出にずれが生じた場合、曲線部に進入したにもかかわらず車体が内軌側に傾斜せずに、遠心力によって車体が外軌側に傾斜してしまうことが考えられる。この場合、乗客が実際の遠心力による加速度よりも大きな加速度を感じることとなり、乗り心地が悪化してしまう。
 上記外軌側への車体傾斜を防止するためには、例えば、軌道の曲線部において、ローリング剛性を増加させて車体のロール方向への傾斜を抑制するアンチローリング装置を車両に設けることも考えられる。しかし、ローリング剛性を増加させて車体の傾斜を抑制した場合、走行路上の凹凸などによる振動が車体に伝達されて乗り心地が悪化してしまう。
 さらに、超過遠心力を打ち消す方法として、一般的な鉄道車両の振り子はり方式の車体傾斜機構を用いることも考えられる。しかし、上記軌道系交通システムの車両に振り子はり方式の車体傾斜機構を採用した場合、車体に対して台車が大きくなり過ぎてしまう。そのため、車体の重心位置が高くなり、乗り心地が改善されない可能性がある。
 本発明は、軌道の曲線部を走行する際に、より確実に乗り心地の悪化を防止することができる軌道式車両および、その車体傾斜制御方法を提供することを目的とする。
 本発明に係る軌道式車両の第一態様は、車体と、前記車体を下方から支持する台車と、を備え、前記台車は、前記車体を車幅方向に傾斜させる車体傾斜機構と、軌道に沿って設けられたガイドレールに案内されて旋回する案内枠と、を備えている。また、前記案内枠の旋回量を検出する検出部と、前記検出部の検出結果に基づいて、前記車体傾斜機構による前記車体の傾斜を制御する傾斜制御部と、を備えている。
 本発明に係る軌道式車両の第二態様では、上記第一態様の軌道式車両における前記検出部が、前記案内枠の旋回方向への変位を、直線方向の変位に変換するリンク機構と、前記リンク機構によって変換された直線方向の変位を検出する変位センサと、を備えていてもよい。
 本発明に係る軌道式車両の第三態様では、上記第一又は第二態様の軌道式車両において、前記台車と前記車体との間に車幅方向に離間して配される緩衝装置と、前記緩衝装置の高さを個別に調整可能な高さ調整装置と、前記高さ調整装置を操作して前記緩衝装置の高さを予め設定された高さ範囲内に保持する自動高さ調整機構と、を備えていてもよい。また、前記車体傾斜機構が、前記高さ調整装置を高さ方向に移動可能な高さ調整装置移動機構と、前記高さ調整装置移動機構を駆動する駆動装置と、を備えていてもよい。さらに、前記傾斜制御部が、前記検出部の検出結果に基づいて前記駆動装置の駆動制御を行い、前記高さ調整装置移動機構を介して前記高さ調整装置の高さ方向の位置を移動させてもよい。
 本発明に係る軌道式車両の第四態様では、上記第一又は第二態様の軌道式車両において、前記台車と前記車体との間に車幅方向に離間して配される緩衝装置と、前記緩衝装置の高さを個別に調整可能な高さ調整装置と、前記高さ調整装置を操作して前記緩衝装置の高さを予め設定された高さ範囲内に保持する自動高さ調整機構と、を備えていても良い。さらに、前記車体傾斜機構が、前記車体を傾斜させる際に、前記高さ調整装置を迂回して前記緩衝装置の高さを変化させる傾斜量制御装置と、前記高さ調整装置による前記緩衝装置の高さ調整を規制する傾斜調整装置と、を備えていてもよい。また、前記傾斜制御部が、前記検出部の検出結果に基づいて、前記傾斜量制御装置を駆動制御して前記緩衝装置の高さを調整してもよい。
 本発明に係る軌道式車両の第五態様では、上記第一又は第二態様の軌道式車両において、前記台車と前記車体との間に車幅方向に離間して配される緩衝装置と、前記緩衝装置の高さを個別に調整可能な高さ調整装置と、前記高さ調整装置を操作して前記緩衝装置の高さを予め設定された高さ範囲内に保持する自動高さ調整機構と、を備えていてもよい。また、前記車体傾斜機構が、前記緩衝装置を下方から支持し、前記緩衝装置の位置を上下方向に移動可能な車体上昇下降装置と、前記高さ調整装置による前記緩衝装置の高さ調整を規制する傾斜調整装置と、を備えていてもよい。さらに、前記傾斜制御部が、前記検出部の検出結果に基づいて、前記車体上昇下降装置を介して前記緩衝装置の上下方向の位置を変位させてもよい。
 本発明に係る軌道式車両の第六態様では、上記第一又は第二態様の軌道式車両において、前記台車と前記車体との間に車幅方向に離間して配される緩衝装置と、車幅方向に延びるトーションバーを具備し、前記トーションバーのねじり方向の復元力を利用して前記車体の傾斜を規制するアンチローリング装置と、を備えていてもよい。さらに、前記車体傾斜機構が、ねじり方向における前記トーションバーの中立位置を変位させるロッド伸縮装置を備えていてもよい。さらに、前記傾斜制御部が、前記検出部の検出結果に基づいて、前記ロッド伸縮装置を駆動制御して、前記トーションバーの中立位置を変位させるようにしてもよい。
 本発明に係る軌道式車両の第七態様では、上記第五又は第六態様の軌道式車両において、前記台車と前記車体との間に車幅方向に離間して配される緩衝装置を備えていてもよい。さらに、前記台車が、前記車体の床部に固定された懸架枠を備えていてもよい。また、前記車体傾斜機構が、前記車体の床部の車幅方向中央部に配されて前記車体の車幅方向への傾斜を許容しつつ、前記車体の車幅方向へのスライドを規制する左右ストッパーと、前記懸架枠に対して車幅方向への力を作用させる車体傾斜駆動装置と、を備えていてもよい。また、前記傾斜制御部が、前記検出部の検出結果に基づいて、前記車体傾斜駆動装置を駆動制御して、前記懸架枠に対して車幅方向への力を作用させるようにしてもよい。
 本発明に係る軌道式車両の第八態様では、上記第一から第七態様の何れか一つに係る軌道式車両の前記傾斜制御部が、走行条件として少なくとも車両速度の情報を取得する走行条件取得部と、前記検出部によって検出された旋回量から前記軌道の曲線半径を算出する曲線半径算出部と、を備えても良い。さらに、前記傾斜制御部が、前記車両速度の情報、および、前記曲線半径に基づき車内の乗客が受ける車幅方向定常加速度を求める定常加速度算出部と、前記車幅方向定常加速度に基づき前記車体の車幅方向への傾斜角度を算出する傾斜角度算出部と、を備えていていもよい。
 本発明に係る軌道式車両の第九態様では、上記第八態様に係る軌道式車両において、車両速度を検出する速度検出部を備えていていもよい。また、前記走行条件取得部が、前記速度検出部から車両速度の情報を取得してもよい。さらに、前記定常加速度算出部が、前記車両速度の情報、および、前記曲線半径の情報に基づき車幅方向定常加速度を算出するようにしてもよい。
 本発明に係る軌道式車両の第十態様では、上記第八態様に係る軌道式車両の前記傾斜制御部が、前記軌道のカント、および、前記車両速度の情報が予め記憶される記憶部を備えていてもよい。さらに、前記走行条件取得部が、前記記憶部の記憶情報から前記カント、および、車両速度の情報を取得するようにしてもよい。また、前記定常加速度算出部が、前記カントの情報、および、前記車両速度の情報と、前記曲線半径の情報とに基づき車幅方向定常加速度を算出するようにしてもよい。
 本発明に係る軌道式車両の第十一態様では、上記第十態様に係る軌道式車両において、車幅方向定常加速度を検出する加速度検出部を備えていてもよい。さらに、前記走行条件取得部が、前記加速度検出部によって検出された車幅方向定常加速度の情報を取得するようにしてもよい。また、前記傾斜制御部が、前記定常加速度算出部により算出された車幅方向定常加速度と、前記加速度検出部により検出された車幅方向定常加速度と、を比較する加速度比較部を備えていていもよい。
 本発明に係る軌道式車両の車体傾斜制御方法の第十二態様においては、軌道に沿って設けられたガイドレールに案内されて旋回する案内枠を備えた軌道式車両の車体傾斜制御方法であって、前記案内枠の旋回量を検出する検出工程と、前記案内枠の旋回量に基づいて車体の傾斜を制御する傾斜制御工程と、を備える。
 本発明に係る軌道式車両の車体傾斜制御方法の第十三態様では、上記第十二態様に係る軌道式車両の車体傾斜制御方法において、前記傾斜制御工程が、走行条件として少なくとも車両速度の情報を取得する走行条件取得工程と、前記案内枠の旋回量から前記軌道の曲線半径を算出する曲線半径算出工程と、前記車両速度、および、前記曲線半径に基づき車内の乗客が受ける車幅方向定常加速度を求める定常加速度算出工程と、前記車幅方向定常加速度に基づき前記車体の車幅方向への傾斜角度を算出する傾斜角度算出工程と、を備え、算出された前記傾斜角度となるように前記車体の傾斜を制御するようにしても良い。
 本発明に係る軌道式車両の車体傾斜制御方法の第十四態様では、上記第十三態様に係る軌道式車両の車体傾斜制御方法において、前記走行条件取得工程が、カント、および、前記車両速度の情報を取得し、前記定常加速度算出工程が、前記カント、および、前記車両速度と、前記曲線半径とに基づき前記車幅方向定常加速度を算出するようにしてもよい。
 本発明に係る軌道式車両の車体傾斜制御方法の第十五態様では、上記第十四態様に係る軌道式車両の車体傾斜制御方法において、車幅方向定常加速度を検出する加速度検出工程を備え、前記走行条件取得工程では、前記加速度検出工程によって検出された車幅方向定常加速度の情報を取得し、前記傾斜制御工程が、前記定常加速度算出工程により算出された車幅方向定常加速度と、前記加速度検出工程により検出された車幅方向定常加速度と、を比較する加速度比較工程を備えていてもよい。
 本発明の上記態様に係る軌道式車両によれば、軌道の曲線部を走行する際に、より確実に乗り心地の悪化を防止することができる。
本発明の一実施形態における軌道式車両の台車を示す平面図である。 同実施形態における軌道式車両の台車を拡大した側面図である。 同実施形態における軌道式車両の台車を拡大した正面図である。 同実施形態における傾斜制御部の構成を示すブロック図である。 同実施形態における前後の曲線走行時の台車の状態を示す平面図である。 同実施形態における傾斜制御部の動作を示すフローチャートである。 本発明の第二実施形態における図2に相当する側面である。 同実施形態における図3に相当する正面図である。 同実施形態における車体傾斜機構の構成を示す液圧回路図である。 同実施形態における図4に相当するブロック図である。 本発明の第三実施形態における図1に相当する側面図である。 同実施形態における図2に相当する側面図である。 同実施形態における図3に相当する正面図である。 同実施形態における図4に相当するブロック図である。 同実施形態における図9に相当する液圧回路図である。 本発明の第四実施形態における図1に相当する平面図である。 同実施形態における図2に相当する側面図である。 同実施形態における図3に相当する正面図である。 本発明の第五実施形態における図3に相当する正面図である。 本発明の第六実施形態における図4に相当するブロック図である。 本発明の第七実施形態における図4に相当するブロック図である。 本発明の第六実施形態における図6に相当するフローチャートである。 本発明の第七実施形態における図6に相当するフローチャートである。
 以下、本発明の第一実施形態に係る軌道式車両1について説明する。
 図1~図3は、第一実施形態の軌道式車両1を示している。第一実施形態における軌道式車両1は、軌道2の幅方向両側部に配されるいわゆるサイドガイド型のガイドレール3によって案内されて走行路4上を走行する。
 図1~図3に示すように、軌道式車両1は、車体5と、台車6とを備えている。
 車体5(図2、図3参照)は、前後方向に長い中空の直方体状に形成されている。この車体5の内部空間は、乗客を収容する空間となっている。
 台車6は、走行路4上を走行可能とされ、車体5の前部、および、車体5の後部を下方から支持する。台車6は、一対の走行輪7と、案内操向装置8と、懸架装置9と、緩衝装置10と、車体傾斜機構11と、検出部12と、傾斜制御部13(図4参照)と、を備えている。なお、車体5の前部に配置される台車6と、車体5の後部に配置される台車6とは、前後配置が異なるだけであるため、以下の説明においては、前部に配置される台車6についてのみ説明する(以下、第二実施形態から第五実施形態も同様)。
 一対の走行輪7は、ゴムタイヤが装着されたタイヤ付きホイールである。これら走行輪7は、車幅方向内側に向かって延びる車軸14を介してギヤボックスなどの駆動装置15に連係されている。走行輪7には、車軸14を介して駆動装置15からの駆動力が伝達される。また、走行輪7は、台車フレーム(図示せず)の車幅方向両端部に配されたキングピン16回りに揺動可能に支持されている。
 案内操向装置8は、軌道式車両1が軌道2上を走行する際に、ガイドレール3から受ける反力を利用して走行輪7を操舵する装置である。図1に示すように、案内操向装置8は、ステアリングアーム17と、ステアリングロッド18と、案内枠19と、を備えている。
 ステアリングアーム17は、走行輪7をキングピン16回りに揺動させるための部材である。ステアリングアーム17は、走行輪7と共に揺動可能とされ、例えば、走行方向に延びるようにして形成されている。
 ステアリングロッド18は、案内枠19からステアリングアーム17へ力を伝達するための部材である。ステアリングロッド18の車幅方向内側の端部は、案内枠19の車幅方向の中央部に連結されている。また、ステアリングロッド18の車幅方向外側の端部は、ステアリングアーム17の端部に連結されている。ステアリングロッド18は、例えば、案内枠19およびステアリングアーム17に対して、上下方向に延びる軸線回りに回動可能にピン結合されている。
 案内枠19は、ガイドレール3の反力を受けて、軌道2の曲線部の円弧形状に応じて旋回する部材である。案内枠19は、一対の横梁20と、一対の縦梁21と、複数の案内輪22と、を備えている。
 一対の横梁20は、走行輪7の前方および後方に、車幅方向に延びるように配されている。横梁20は、車幅方向におけるガイドレール3間の距離よりも僅かに短く形成されている。横梁20は、各端部に、案内輪支持部23を有している。
 一対の縦梁21は、進行方向に延びて上述した一対の横梁20を進行方向で接合する。縦梁21は、それぞれ横梁20の車幅方向の中央部同士を接続している。また、一対の縦梁21には、その長手方向の中央部に軸受を支持する軸受支持部24(図1参照)が形成されている。縦梁21は、軸受支持部24に支持された軸受25を介して後述する台車枠26に対して上下方向を向く軸線回りに旋回可能に取り付けられている。ここで、上述した上下方向とは、軌道2の走行路4に対して垂直な方向である。
 案内枠19は、上述したステアリングロッド18の車幅方向内側の端部が連結される案内枠結合部27を備えている。案内枠結合部27は、一対の縦梁21の間に配されるとともに、横梁20と軸受支持部24との間に渡るようにして設けられている。なお、図1中、符号「28」は、縦梁21と横梁20との間に設けられた補強材である。
 案内輪22は、ガイドレール3に接触してガイドレール3から車幅方向内側に向かう反力を横梁20へ伝達する部材である。これら案内輪22は、それぞれ横梁20の案内輪支持部23に対して上下方向を向く軸線回りに回転自在に取り付けられている。案内輪22は、軌道式車両1が走行している際に、ガイドレール3と接触して回転する。
 上述した案内操向装置8によれば、軌道式車両1が軌道2の曲線部を走行する際に、案内枠19の横梁20がガイドレール3から反力を受けて、案内枠19が曲線部の円弧に応じて旋回する。これにより、案内枠19に取り付けられたステアリングロッド18が、案内枠19の旋回方向と同方向にステアリングアーム17の端部を押し引きする。すると、ステアリングアーム17が揺動されて、走行輪7がステアリングアーム17と共にキングピン16回りに揺動される。
 懸架装置9は、車体5に対する走行輪7の上下方向への変位を許容しつつ、走行輪7に生じる駆動力や制動力(以下、単に「走行方向の力」と呼ぶ)を車体5に伝達するための装置である。この懸架装置9は、一対の台車枠26と、一対の懸架枠29と、平行リンク装置30とを備えている。
 一対の台車枠26は、走行方向の力を平行リンク装置30に伝達するとともに、緩衝装置10の後述する空気ばね31を下方から支持する部材である。これら台車枠26は、車幅方向に離間して配され、車軸14および車軸カバー(図示せず)を上下で挟み込むように形成されている。
 一対の懸架枠29は、平行リンク装置30を介して伝達される走行方向の力を車体5に伝達する。図2に示すように、これら懸架枠29は、車体取付固定部32と平行リンク受部33とからなる。車体取付固定部32は、車体5の車両床面34に沿う車体長手方向に延びるように形成された車体台枠35に対して、ボルト等の締結部材(図示せず)によって固定される。
 平行リンク受部33は、車体取付固定部32の車体長手方向内側の端部から垂直下方に向かって延びるように形成されている。また平行リンク受部33は、それぞれ一対の台車枠26よりも車体長手方向内側に配置されている。平行リンク受部33は、台車枠26と同様に、車幅方向に離間されるとともに、進行方向から見て台車枠26と重なる位置に配されている。ここで、一対の台車枠26は、それぞれ車幅方向に延びる台車枠39(図1参照)によって結合されている。
 平行リンク装置30は、懸架枠29に対して台車枠26の上下方向への変位を許容しつつ、台車枠26から懸架枠29に対して走行方向への力を伝達する。また、平行リンク装置30は、台車枠26に対して懸架枠29が車幅方向に傾動可能な状態で、台車枠26と懸架枠29とを連結する。この平行リンク装置30は、車幅方向に離間して配される各上下一対の平行リンク36を備えている。
 平行リンク36は、それぞれ対を成す上側リンク部材37と下側リンク部材38とを備えている。上側リンク部材37と下側リンク部材38とは、互いに平行な状態で、台車枠26と懸架枠29とに渡るように取り付けられている。より具体的には、上側リンク部材37は、車軸14よりも上側の台車枠26と懸架枠29とを連結し、下側リンク部材38は、車軸14よりも下側の台車枠26と懸架枠29とを連結している。上側リンク部材37と下側リンク部材38とは、台車枠26および懸架枠29に対して上下方向に揺動可能なように各端部が結合されるとともに、台車枠26と懸架枠29との何れか一方に対して左右方向に揺動可能となっている。
 緩衝装置10は、主に車体5に対して台車6の上下方向の振動が伝達されることを防止する。この実施形態における緩衝装置10は、空気ばね31である。空気ばね31は、一つの台車6に対して少なくとも一対設けられ、車幅方向に離間して配される。空気ばね31は、その内部に圧縮空気を溜めることができるゴム等の弾性体からなる。これら空気ばね31は、各台車枠26と車体5との間に挟まれるようにして配置されている。これら空気ばね31には、それぞれ高さ調整装置40が接続されている。
 高さ調整装置40は、空気ばね31に対する圧縮空気の給排気を行う装置である。高さ調整装置40は、高さ調整弁41と、空気溜め(図示せず)と、圧縮空気を吸気するための配管(図示せず)と、を備えている。ここで、空気溜めには、圧縮機(図示せず)などにより圧縮された所定圧の圧縮空気が貯留される。また、上記配管は、空気溜めと空気ばね31との間の流路を形成する。なお、図1においては、図示都合上、高さ調整弁41と、後述する調整弁支持バー42との図示を省略している。
 高さ調整弁41は、空気ばね31の高さが所定の高さ範囲内となるように空気ばね31の内圧を調整するための制御弁である。ここで、空気ばね31の高さは、軌道式車両1の乗客数の変化など、車体5の荷重変化に伴い変化する。そのため、高さ調整弁41は、その主目的として、車幅方向両側に配置された各空気ばね31の高さを揃えて、車体5が傾かないようにしている。
 高さ調整弁41は、空気ばね31と空気溜めとの間の給気路を開閉するとともに、空気ばね31と外部との間の排気路を開閉する。高さ調整弁41は、空気ばね31毎に設けられている。これら高さ調整弁41は、車幅方向に延びる棒状の調整弁支持バー(高さ調整装置移動機構)42を介して車体5に支持されている。調整弁支持バー42は、車幅方向に離間された各空気ばね31の間隔よりも十分長く形成されている。調整弁支持バー42は、その車幅方向の中央部が、車両床面34から下方に向かって延びるブラケット43(図3参照)によって回動可能に支持されている。
 さらに、高さ調整弁41は、上記給気路および上記排気路を開閉操作するためのレバー44(図3中、破線で示す)を備えている。レバー44は、例えば、車幅方向に向かって延びている。レバー44の端部は、ばね下に配置される台車枠26又は車軸カバー等との上下方向の位置関係が一定に保たれるように調整弁ロッド(自動高さ調整機構)45を介して連結されている。ここで、一つの空気ばね31と、この空気ばね31に対応する高さ調整弁41との相対位置が変化しないと仮定した場合、一つの空気ばね31の高さが変化すると、調整弁ロッド45によりレバー44が揺動操作される。
 より具体的には、空気ばね31が予め設定された所定長さよりも短くなった場合には、高さ調整弁41が上下方向で台車枠26等のばね下の部材に近づく方向に変位する。すると、調整弁ロッド45がレバー44の端部を相対的に上方に押し上げて、高さ調整弁41により給気路が開弁され空気ばね31に圧縮空気が供給される。一方で、空気ばね31が、予め設定された所定長さよりも長くなった場合には、高さ調整弁41が上下方向で台車枠26等のばね下の部材から遠ざかる方向に変位する。すると、調整弁ロッド45がレバー44の端部を相対的に下方に引き下げて、高さ調整弁41により排気路が開弁され空気ばね31から圧縮空気が排気される。つまり、上述した高さ調整弁41と調整弁ロッド45とにより本発明の自動高さ調整機構が構成されている。なお、高さ調整弁41は、給気路が開弁されると排気路を閉弁し、排気路が開弁されると給気路を閉弁するようになっている。
 検出部12は、案内枠19の旋回量を検出する。検出部12は、変位センサ46と、リンク部(リンク機構)47と、を備え、車幅方向に離間配置された懸架枠29毎に設けられている。
 リンク部47は、案内枠19の旋回方向への変位を直線方向、より具体的には上下方向の変位として変位センサ46へ伝達する。
 図3に示すように、リンク部47は、水平ロッド48と、水平検知リンク49と、垂直ロッド50と、を備えている。
 水平ロッド48は、軌道式車両1が軌道2の直線部を走行しているとき(以下、単に直線走行時と呼ぶ)に、案内枠19の横梁20よりも上方で車幅方向に延びるように配される。水平ロッド48の車幅方向外側の端部は、案内枠19の横梁20に結合されている。これにより、水平ロッド48は、横梁20に対して揺動可能とされている。また、水平ロッド48の車幅方向内側の端部は、水平検知リンク49の下端部に結合されている。つまり、水平ロッド48は、水平検知リンク49に対しても揺動可能とされている。
 水平検知リンク49は、懸架枠29に対して、車体長手方向を向く軸線回りに回動自在に支持されている。水平検知リンク49は、直線走行時に回動中心から下方に延びる第一アーム部51と、同じく直線走行時に回動中心から車幅方向外側に延びる第二アーム部52とを備えている。つまり、水平検知リンク49は、第一アーム部51と第二アーム部52とによってL字状に形成され、第一アーム部51の端部の車幅方向の変位を、第二アーム部52の端部の上下方向の変位に変換する。第一アーム部51の下端部には、上述した水平ロッド48の車幅方向内側の端部が揺動可能に結合されている。
 垂直ロッド50は、上記第二アーム部52の端部の上下方向への変位を変位センサ46に伝達する。垂直ロッド50は、上下方向に延びる棒状に形成されている。垂直ロッド50の下端部は、第二アーム部52の端部に揺動可能に結合され、垂直ロッド50の上端部は、変位センサ46に接続されている。ここで、水平検知リンク49と垂直ロッド50とは、互いに車幅方向に揺動可能に結合されていればよく、例えば、車体長手方向に延びるピンを介して結合する結合方法や、自在継手を用いた結合などを用いることができる。また、水平ロッド48は、水平検知リンク49に対する案内枠19の車体長手方向への変位を許容するべく、例えば、ボールジョイント等の自在継手などを用いて結合される。
 変位センサ46は、垂直ロッド50の上下方向への変位量を検知するセンサである。変位センサ46は、例えば、車体5の車両床面34や、車体5に取り付けられた懸架枠29などに固定されて、車体5に対して上下方向に相対変位しないようになっている。
 ここで、上記垂直ロッド50の上下方向への変位量は、案内枠19の旋回量に応じて変化し、例えば、軌道2の曲率が大きくなるほど増加する。換言すれば、案内枠19の旋回量は、軌道2の曲線半径が小さくなるほど増加する。つまり、旋回量と曲率との関係を予め求めておくことで、変位センサ46による変位量の大きさから案内枠19の旋回量を求めることができる。変位センサ46の検出結果の情報は、傾斜制御部13に入力される。
 車体傾斜機構11は、台車6に対して車体5を車幅方向に傾斜させる装置である。この車体傾斜機構11は、傾斜駆動部53と、上述した調整弁支持バー42とを備えている。
 傾斜駆動部53は、検出部12の検出結果に基づいて車体5を傾斜させる動力を発生させる。この傾斜駆動部53は、例えば、動力源として伸縮可能なアクチュエータ54を備えている。
 アクチュエータ54は、調整弁支持バー42の回動中心よりも車幅方向外側において、台車枠26と調整弁支持バー42との間に渡るように取り付けられている。アクチュエータ54は、その取付位置において台車枠26と調整弁支持バー42との上下方向の間隔を変位させることで、上記調整弁支持バー42を傾動させることが可能となっている。
 アクチュエータ54は、直線位置と左傾斜位置との間、および、直線位置と右傾斜位置との間でそれぞれ伸縮される。ここで、アクチュエータ54が直線位置とされた場合、調整弁支持バー42は、車幅方向に延びる状態で保持される。また、アクチュエータ54が左傾斜位置とされた場合、調整弁支持バー42は、直線位置よりも車幅方向の左側に傾斜した状態とされる。さらに、アクチュエータ54が右傾斜位置とされた場合、調整弁支持バー42は、直線位置よりも車幅方向の右側に傾斜した状態とされる。
 上述したアクチュエータ54としては、様々な直動機構を用いることができる。直動機構としては、例えば、作動流体を用いたシリンダーや、モータ駆動により動作するボールネジ、ラックアンドピニオンなどを用いることができる。
 傾斜制御部13は、検出部12の検出結果に基づいて、車体傾斜機構11の傾斜駆動部53を駆動制御する。
 図4に示すように、傾斜制御部13は、走行条件取得部55と、曲線半径算出部56と、定常加速度算出部57と、傾斜角度算出部58と、を備えている。
 走行条件取得部55は、速度発電機などの速度検出部59から、走行条件として車両速度の情報を取得する。
 曲線半径算出部56は、検出部12によって検出された案内枠19の旋回量から軌道2の曲線半径を算出する。ここで、図5に示すように、軌道式車両1のホイールベースを「L」(m)、曲線半径を「R」(m)とした場合、案内枠の旋回量「θ」(deg)は(1)式で表すことができる。
 θ=Sin-1(L/2)/R)・・・(1)
 ここで、ホイールベース「L」は、軌道式車両1毎に予め決まっており、この実施形態にあっては、前後の台車6の案内枠19の旋回中心間の距離である。
 よって、曲線半径「R」は、以下の(2)式で求めることができる。
 R=(L/2)/Sinθ・・・(2)
 定常加速度算出部57は、車両速度、および、曲線半径に基づき車内の乗客が受ける車幅方向定常加速度を求める。ここで、軌道式車両1が曲線を通過する際の車両速度を「V」(km/h)とすると、超過遠心加速度「αs」(G)は以下の(3)式で求めることができる。
 αs=(V)/(127R)・・・(3)
 さらに、曲線通過時の超過遠心加速度によって、軌道式車両1の緩衝装置10のばね系により車体5が外軌側に傾斜する角度を「k」(rad)とすると、曲線通過時に乗客が受ける車幅方向定常加速度「αp」(G)は、以下の(4)式で求めることができる。なお、(4)式で求めた車幅方向定常加速度は、車体5を車体傾斜機構11によって内軌側へ傾斜させない場合に乗客が受ける車幅方向の定常加速度である。
 αp=αs+k・・・(4)
 傾斜角度算出部58は、車幅方向定常加速度に基づき車体5の車幅方向への傾斜角度を算出する。言い換えれば、乗客に作用する車幅方向定常加速度を打ち消すために必要な車体5の傾斜角度を算出する。傾斜制御部13は、この傾斜角度算出部58により算出された傾斜角度に基づき、上述した傾斜駆動部53を駆動制御する。
 ここで、乗客が不快と感じる車幅方向定常加速度は、一般に0.08(G)以上といわれている。車幅方向定常加速度は、「0」を目指すことが理想的ではあるが、算出結果に含まれる誤差なども考慮して0.00~0.02(G)程度を目標として設定する。すると、曲線通過時に車体5を内軌側に傾斜させる最適な傾斜量「ξ」(rad)は、以下の(5)式のように表すことができる。
 ξ-αp=0.0~0.02
    ξ=αp+(0.0~0.02)・・・(5)
 次に、軌道式車両1が軌道2の曲線部を走行する際の車体傾斜機構11の動作について説明する。
 まず、軌道式車両1が曲線部に進入すると、傾斜制御部13が、一対の変位センサ46の検知結果に基づいて、車体5の傾斜角度を求める傾斜制御工程を実施する。
 より具体的には、まず、速度検出部59が車両速度を検出するとともに、変位センサ46が案内枠19の旋回量を検出する(検出工程)。次いで、図6に示すように、傾斜制御部13は、速度検出部59によって検出された車両速度を走行条件取得部55により取得する(ステップS01;走行条件取得工程)。さらに、これと並行して変位センサ46によって検出された案内枠19の旋回量を曲線半径算出部56により取得する(ステップS02)。
 次いで、傾斜制御部13は、曲線半径算出部56によって、案内枠19の旋回量から軌道2の曲線半径を算出する(ステップS03;曲線半径算出工程)。
 さらに、傾斜制御部13は、定常加速度算出部57によって、車両速度、および、曲線半径の情報に基づいて、車内の乗客が受ける車幅方向定常加速度を求める(ステップS04;定常加速度算出工程)。
 次いで、傾斜制御部13は、傾斜角度算出部58によって、上記定常加速度算出部57で求めた車幅方向定常加速度に基づき、車体5の車幅方向への傾斜角度を算出する(ステップS05;傾斜角度算出工程)。
 そして、傾斜制御部13は、上記算出された傾斜角度となるように傾斜駆動部53の駆動制御を行う(ステップS06)。
 ここで、傾斜制御部13は、傾斜駆動部53のアクチュエータ54を直線位置から、左傾斜位置又は右傾斜位置に変位させて、曲線の内軌側に向かって調整弁支持バー42を傾動させる。この際、傾斜制御部13は、調整弁支持バー42が傾斜角度算出部58で算出した傾斜角度となるように傾斜駆動部53のアクチュエータ54を駆動制御する。これにより、調整弁支持バー42の両端部と、台車枠26等のばね下の部材との間の上下方向の間隔が変化する。そのため、調整弁支持バー42の傾斜量および傾斜向きに応じて、高さ調整弁41のレバー44が調整弁ロッド45によって操作される。調整弁支持バー42の両端部うち、相対的に上方に配置される高さ調整弁41は、給気側に操作され、相対的に下方に配置される高さ調整弁41は、排気側に操作される。その結果、車幅方向で離間配置された空気ばね31の高さに差が生じ、この差分だけ車体5が内軌側に傾斜される。
 したがって、上述した第一実施形態の軌道式車両1によれば、案内枠19がガイドレール3から反力を受けて旋回した場合に、この旋回量を検出部12によって検出することができる。さらに、傾斜制御部13によって、案内枠19の旋回量に基づきアクチュエータ54を駆動制御して車体5を車幅方向に傾斜させることができる。その結果、ローリング剛性が高くなったり、台車6が大きくなり過ぎたりすることなく、より確実に、軌道2の曲線部を走行する際の乗り心地悪化を防止することができる。
 また、検出部12によって、走行輪7を操舵するための案内枠19の旋回量を、垂直ロッド50の上下方向への変位量に変換して変位センサ46で検出することができる。その結果、部品点数の増加を抑制しつつ、簡単な構成で曲線部への進入を検出することができる。
 さらに、傾斜制御部13によって傾斜駆動部53のアクチュエータ54を駆動制御して調整弁支持バー42の傾斜角度を変化させることで、車幅方向に離間配置された各空気ばね31の高さ調整弁41の高さ位置を変化させることができる。そのため、車体5の高さを一定に保つための空気ばね31の高さ調整機構を有効利用して、車幅方向に離間配置された各空気ばね31の長さを異ならせることができる。その結果、一つのアクチュエータ54を駆動制御するだけで容易に車体5を傾斜させることが可能となる。
 次に、この発明の第二実施形態における軌道式車両について説明する。この第二実施形態の軌道式車両は、上述した第一実施形態の軌道式車両1と車体傾斜機構の構成が異なるだけであるため、同一部分に同一符号を付して説明する。
 図7,図8に示すように、第二実施形態の軌道式車両は、車体5と台車6とを備えている。台車6は、走行輪7と、案内操向装置8と、懸架装置9と、緩衝装置10と、車体傾斜機構211と、検出部12と、傾斜制御部213と、を備えている。なお、走行輪7と、案内操向装置8と、懸架装置9と、緩衝装置10と、検出部12と、傾斜制御部213と、については、上述した第一実施形態と同様の構成であるため詳細説明を省略する。また、図示都合上、図7、図8においては、車体5の高さを自動調整するための高さ調整弁41および調整弁ロッド45を省略している。
 検出部12は、第一実施形態と同様に、変位センサ46と、リンク部47と、を備え、案内枠19の旋回量を垂直ロッド50の直線方向の変位量に変換して検出する。検出部12は、車幅方向に離間配置された懸架枠29毎に設けられている。変位センサ46の検出結果は、傾斜制御部213に入力される。
 図9に示すように、この第二実施形態における緩衝装置10は、上述した第一実施形態と同様に空気ばね31からなる。空気ばね31には、高さ調整装置40が接続されている。高さ調整装置40は、高さ調整弁41と、空気溜め(図示せず)と圧縮空気を吸気するための配管62とを備えている。
 車体傾斜機構211は、台車6に対して車体5を車幅方向に傾斜させる。この車体傾斜機構211は、傾斜量制御装置60と、傾斜調整装置61と、を備えている。傾斜量制御装置60は、調整弁ロッド45によって操作される高さ調整弁41を迂回して空気ばね31の高さを調整する。傾斜調整装置61は、傾斜量制御装置60により空気ばね31の高さを調整する際に、上記高さ調整弁41を介して空気ばね31の高さが調整されることを規制(禁止)する。
 傾斜量制御装置60は、第一の3方電磁切換弁63と、迂回配管65と、第二の3方電磁切換弁64と、を備えている。これら第一の3方電磁切換弁63と第二の3方電磁切換弁64とは、それぞれ傾斜制御部13からの制御指令に基づいて開閉動作を行う制御弁である。また、傾斜調整装置61は、上述した第一の3方電磁切換弁63と、第二の3方電磁切換弁64とからなる。
 第一の3方電磁切換弁63は、空気溜めに連通される配管66と、高さ調整弁41に接続される配管62と、が連通される状態と、配管66と迂回配管65とが連通される状態とを切り替え可能となっている。
 第二の3方電磁切換弁64は、空気ばね31に接続される配管69と高さ調整弁41に接続される配管68とが連通される状態と、配管69と上述した迂回配管65とが連通される状態とを切り替え可能となっている。また、第二の3方電磁切換弁64は、空気ばね31内の圧縮空気を排気させることが可能となっている。配管69には、空気ばね31に収容される圧縮空気の圧力を検出するための圧力センサ70がそれぞれ取り付けられている。これら圧力センサ70の検出結果は、傾斜制御部13に向けて送信される。
 さらに、上述した2つの配管68間には、差圧弁71が取り付けられている。この差圧弁71は、車幅方向に離間された2つの空気ばね31内の圧力差が予め設定された所定の圧力差を超えた場合に2つの配管68間を連通させる。この差圧弁71は、例えば、2つの空気ばね31のうち何れか一方がパンクした場合などに動作して、2つの空気ばね31内の圧力が近づく方向に調整される。これにより、パンク時の輪重抜けなどを抑制することができる。
 図10に示すように、傾斜制御部213は、車体傾斜機構211による車体5の傾斜角度を制御する。より具体的には、検出部12の検出結果に基づいて、傾斜量制御装置60を駆動制御して空気ばね31の高さを調整する。この際、傾斜制御部213は、高さ調整弁41による空気ばね31の自動高さ調整を無効にした状態で、傾斜調整装置61による空気ばね31の高さ調整を行う。ここで、傾斜量制御装置60を経由して流すことができる圧縮空気の流量は、高さ調整弁41を経由して流すことができる圧縮空気の流量よりも大きく設定され、迅速な吸排気が可能となっている。
 傾斜制御部213は、第一実施形態の傾斜制御部13と同様に、走行条件取得部55と、曲線半径算出部56と、定常加速度算出部57と、傾斜角度算出部58とを備えている。車体傾斜機構211は、傾斜角度算出部58の算出結果に基づいて、例えば、数式、テーブル、マップなどに基づき各空気ばね31の圧力目標値を求める。そして、傾斜制御部213は、空気ばね31の圧力が目標の圧力となるように、第二の3方電磁切換弁64による圧縮空気の流量を制御する。
 したがって、上述した第二実施形態の軌道式車両によれば、通常時は、高さ調整弁41および調整弁ロッド45によって車体5が傾斜しないように空気ばね31の高さを自動的に調整することができる。一方で、車体5を傾斜させる場合には、迂回配管65および、第二の3方電磁切換弁64により各空気ばね31の高さを個別に調整することができる。
 また、高さ調整弁41による空気ばね31の高さ調整を規制した状態で、迂回配管65および第二の3方電磁切換弁64により各空気ばね31の高さを調整するため、高さ調整弁41の動作により、車体5の傾斜が妨げられることを防止できる。その結果、各空気ばね31の高さを異ならせて車体5を傾斜させて、軌道2の曲線部を走行する際に、より確実に乗り心地の悪化を防止することができる。
 さらに第二実施形態の軌道式車両は、配管62、高さ調整弁41、および、配管68を介して空気ばね31に圧縮空気を供給する場合よりも、迂回配管65および第二の3方電磁切換弁64(傾斜量制御装置60)を介して空気ばね31に圧縮空気を供給する場合の方が流量を大きくすることができる。そのため、迅速に車体5を傾斜させることができ、傾斜タイミングの遅れによる乗り心地の悪化を防止することができる。
 次に、この発明の第三実施形態における軌道式車両について説明する。この第三実施形態の軌道式車両は、上述した第二実施形態の軌道式車両と車体傾斜機構の一部が異なるだけであるため、同一部分に同一符号を付して説明する。
 図11~図13に示すように、第三実施形態の軌道式車両は、車体5と台車6とを備えている。台車6は、走行輪7と、案内操向装置8と、懸架装置9と、緩衝装置10と、車体傾斜機構311と、検出部12と、傾斜制御部313(図15参照)と、を備えている。なお、走行輪7と、案内操向装置8と、懸架装置9と、緩衝装置10と、検出部12と、傾斜制御部313と、については、上述した第一実施形態と同じ構成であるため詳細説明を省略する。また、図示都合上、図11~図13においては、車体5の高さを自動調整するための高さ調整弁41および調整弁ロッド45を省略している。
 検出部12は、第一実施形態と同様に、変位センサ46と、リンク部47と、を備え、案内枠19の旋回量を垂直ロッド50の直線方向の変位量に変換して検出する。検出部12は、車幅方向に離間配置された懸架枠29毎に設けられている。変位センサ46の検出結果は、傾斜制御部313に入力される。
 車体傾斜機構311は、車体上昇下降装置74と、傾斜調整装置61(図14参照)と、を備えている。
 車体上昇下降装置74は、緩衝装置10の空気ばね31を上下方向に移動可能に下方から支持する。車体上昇下降装置74は、アクチュエータ75を備える。アクチュエータ75は、上下方向に伸縮可能な直動機構を備える。アクチュエータ75は、台車枠26の上面と空気ばね31の下面との間に挟み込まれ、台車枠26と空気ばね31との間の距離を変化させることが可能となっている。これらアクチュエータ75は、例えば、流体圧などを用いて駆動されるシリンダーなどを用いることができる。
 図14に示すように、傾斜調整装置61は、第一の電磁切換弁76と、第二の電磁切換弁77とを備えている。
 第一の電磁切換弁76は、空気溜め(図示せず)と高さ調整弁41とを繋ぐ配管66の途中に設けられている。第一の電磁切換弁76は、配管66の流路が遮断される状態と開放される状態との間を、傾斜制御部313によって切り換え可能となっている。
 第二の電磁切換弁77は、高さ調整弁41と空気ばね31とを繋ぐ配管68の途中に設けられている。第二の電磁切換弁77は、第一の電磁切換弁76と同様に、配管68の流路が遮断される状態と開放される状態との間を、傾斜制御部313によって切り換え可能となっている。ここで、第一の電磁切換弁76、および、第二の電磁切換弁77としては、2方電磁切換弁又は電磁締切弁等を用いることができる。上述した2つの配管68間には、上述した第一実施形態と同様に、差圧弁71が取り付けられている。
 図15に示すように、傾斜制御部313は、第一実施形態の傾斜制御部13と同様に、走行条件取得部55と、曲線半径算出部56と、定常加速度算出部57と、傾斜角度算出部58とを備えている。車体傾斜機構311は、傾斜角度算出部58の算出結果に基づいて、例えば、数式、テーブル、マップなどに基づき、傾斜角度算出部58の算出結果と車体5の傾斜角度とが一致するように車体上昇下降装置74の各アクチュエータ75の伸縮制御を行う。
 したがって、上述した第三実施形態の軌道式車両によれば、上述した第二実施形態の軌道式車両と同様に、通常時は、高さ調整弁41および調整弁ロッド45によって車体5が傾斜しないように空気ばね31の高さを自動的に調整することができる。一方で、車体5を傾斜させる場合には、高さ調整弁41による空気ばね31の高さ調整を規制した状態で、アクチュエータ75によって各空気ばね31を下方から支持する支持位置を上下方向に変化させることができる。これにより、各空気ばね31の高さを個別に調整する場合と同様に台車枠26に対する車体5の高さ位置を調整することができる。その結果、車体5の車幅方向の高さを異ならせて車体5を傾斜させて、軌道の曲線部を走行する際に、より確実に乗り心地の悪化を防止することができる。
 次に、この発明の第四実施形態における軌道式車両について説明する。この第四実施形態の軌道式車両は、上述した第三実施形態の軌道式車両1と車体傾斜機構の構成が異なるだけであるため、図15を援用するとともに、同一部分に同一符号を付して説明する。
 図16~図18に示すように、第四実施形態の軌道式車両は、車体5と台車6とを備えている。台車6は、走行輪7と、案内操向装置8と、懸架装置9と、緩衝装置10と、車体傾斜機構411と、検出部12と、傾斜制御部313(図15参照)と、アンチローリング装置80と、を備えている。なお、走行輪7と、案内操向装置8と、懸架装置9と、緩衝装置10と、検出部12と、傾斜制御部313と、については、上述した第三実施形態と同様の構成であるため詳細説明を省略する。また、図示都合上、図16~図18においては、車体5の高さを自動調整するための高さ調整弁41および調整弁ロッド45の図示を省略している。
 検出部12は、第一実施形態と同様に、変位センサ46と、リンク部47と、を備え、案内枠19の旋回量を垂直ロッド50の直線方向の変位量に変換して検出する。検出部12は、車幅方向に離間配置された懸架枠29毎に設けられている。変位センサ46の検出結果は、傾斜制御部313に入力される。
 アンチローリング装置80は、車幅方向に延びるトーションバー81を有している。アンチローリング装置80は、トーションバー81のねじり方向の復元力を利用して車体5の傾斜、換言すればローリング方向への変位を規制する。トーションバー81は、両端部が車体5に固定されたトーションバー回転支持軸受部82に回転可能に支持されている。さらにトーションバー81は、その両端部に、車体長手方向に延びるアーム部83(図17参照)を備えている。アーム部83は、その端部に下方へ延びる調整ロッド84が揺動可能に取り付けられている。調整ロッド84は、その下端部が、後述するアクチュエータ87を介して調整ロッド下受部85に揺動可能に取り付けられている。調整ロッド下受部85は、台車枠26から車体長手方向の前方側に延びるように形成されている。
 車体傾斜機構411は、ロッド伸縮装置86と、傾斜調整装置61と、を備えている。ロッド伸縮装置86は、アクチュエータ87を有している。
 アクチュエータ87は、調整ロッド84にねじり方向の復元力が生じない中立位置を変位させる。具体的には、アクチュエータ87は、上下方向に伸縮可能な直動機構などにより構成され、アーム部83の端部と調整ロッド下受部85の端部との距離を変化可能となっている。
 例えば、アクチュエータ87が動作しておらず、車体5がローリング方向に変位した場合、車体5のローリングにより下方に変位する側に配されたアーム部83の端部が調整ロッド84によってトーションバー81よりも相対的に上方に持ち上げられる。すると、トーションバー81がねじれて、その復元力により、アーム部83の端部が相対的に下方に戻ろうとして、上記トーションバー81の端部が上方に変位しようとする。つまり、トーションバー81の端部側に配されたトーションバー回転支持軸受部82を介して車体5が下方から押圧されるため、車体5の車幅方向への傾斜が規制されることとなる。
 例えば、車幅方向における何れか一方のアーム部83の端部と調整ロッド下受部85の端部との距離が長くなる方向にアクチュエータ87が動作されると、アーム部83が上方に揺動する。すると、トーションバー81がねじれて、その復元力によりトーションバー81の車幅方向における一方側が上方に変位しようとする。この際、トーションバー81の復元力により車幅方向に離間配置された一対の空気ばね31のうち、一方側の空気ばね31に圧縮方向の力が作用し、他方の空気ばね31に伸長方向の力が作用する。これらの力によって、各空気ばね31が弾性変形して、車体5が車幅方向に傾斜される。
 ここで、この第四実施形態における傾斜制御部313は、車幅方向に離間された一対のアクチュエータ87の上下方向の伸縮により車体5を傾斜させる点で共通している。すなわち、第四実施形態における傾斜制御部313は、制御対象が図15の「車体上昇下降装置74」から「ロッド伸縮装置86」に入れ替わっただけであるため、ここでの詳細説明は省略する。
 したがって、第四実施形態の軌道式車両によれば、上述した第三実施形態と同様に、通常時は、高さ調整弁41および調整弁ロッド45によって車体5が傾斜しないように空気ばね31の高さを自動的に調整することができる。一方で、車体5を傾斜させる場合には、高さ調整弁41による空気ばね31の高さ調整を規制した状態で、アクチュエータ87によってトーションバー81をねじることで、トーションバー81の中立位置を変化させることができる。これにより、各空気ばね31の高さを個別に調整する場合と同様に台車枠26に対する車体5の高さ位置を調整することができる。その結果、車体5の車幅方向の高さを異ならせて車体5を傾斜させて、軌道の曲線部を走行する際に、より確実に乗り心地の悪化を防止することができる。
 次に、この発明の第五実施形態における軌道式車両について説明する。この第五実施形態の軌道式車両は、上述した第三実施形態の軌道式車両と車体傾斜機構の一部が異なるだけであるため、同一部分に同一符号を付して説明する。
 図19に示すように、第五実施形態の軌道式車両は、車体5と台車6とを備えている。台車6は、走行輪7と、案内操向装置8と、懸架装置9と、緩衝装置10と、車体傾斜機構511と、検出部12と、傾斜制御部313と、を備えている。なお、走行輪7と、案内操向装置8と、懸架装置9と、緩衝装置10と、検出部12と、傾斜制御部313と、については、上述した第三実施形態と同様の構成であるため詳細説明を省略する。また、図示都合上、図19においては、車体5の高さを自動調整するための高さ調整弁41および調整弁ロッド45の図示を省略している。
 検出部12は、第一実施形態と同様に、変位センサ46と、リンク部47と、を備え、案内枠19の旋回量を垂直ロッド50の直線方向の変位量に変換して検出する。検出部12は、車幅方向に離間配置された懸架枠29毎に設けられている。変位センサ46の検出結果は、傾斜制御部313に入力される。
 車体傾斜機構511は、左右ストッパー90と、車体傾斜駆動装置91とを備えている。
 左右ストッパー90は、車体5の床部の車幅方向中央部に配されて、台車6に対する車体5の車幅方向への傾斜を許容しつつ、台車6に対する車体5の車幅方向へのスライドを規制する。左右ストッパー90は、懸架枠横梁92と、ストッパー受93と、ストッパーゴム取付受94と、ストッパーゴム95と、を備えている。
 懸架枠横梁92は、空気ばね31の上面間を渡るように配される平板状の部材である。ストッパー受93は、上記懸架枠横梁92の下面から垂直下方に向かって延びて互いに対向する一対の支持面を形成する。
 ストッパーゴム取付受94は、車幅方向で上記ストッパー受93の支持面の間に配され、台車枠26又はギヤボックス(図示せず)等、ばね下の構造物に固定されている。
 ストッパーゴム95は、上記ストッパーゴム取付受94の車幅方向外側面にそれぞれ取り付けられ、上記ストッパー受93との間にわずかな隙間を介して配される。ストッパーゴム95は、例えば、ゴムや樹脂などストッパー受93よりも軟らかい材料を用いることが好ましい。
 車体傾斜駆動装置91は、懸架枠29に対して車幅方向への力を作用させる。車体傾斜駆動装置91は、一対のアクチュエータ96と、旋回軸受支持部97とを備えている。
 アクチュエータ96は、傾斜制御部313の制御指令に基づき車幅方向に伸縮可能とされている。アクチュエータ96は、その車幅方向外側の端部がそれぞれ懸架枠29の下部に結合されている。一方で、アクチュエータ96の車幅方向内側の端部は、旋回軸受支持部97に支持されている。
 旋回軸受支持部97は、各台車枠26の下部間を渡るように配されるとともに、走行方向(図11の紙面表裏方向)に延びるように形成される。
 すなわち、一対のアクチュエータ96のうち、一方のアクチュエータ96を伸ばし、他方のアクチュエータ96を縮めると、懸架枠29が車幅方向で他方のアクチュエータ96側にスライドしようとする。すると、ストッパー受93にストッパーゴム95が突き当たる。そして、このストッパー受93とストッパーゴム95とが突き当たった位置を傾動中心(支点)として、懸架枠横梁92が傾斜する。これにより、一対の空気ばね31のうち一方のアクチュエータ96側に配される空気ばね31が伸長され、他方のアクチュエータ96側に配される空気ばね31が圧縮される。そして、一対の空気ばね31の高さに差が生じて車体5が傾斜することとなる。
 ここで、この第五実施形態における傾斜制御部313は、車幅方向に離間された一対のアクチュエータ96の伸縮により車体5を傾斜させる点で共通している。すなわち、第五実施形態における傾斜制御部313は、制御対象が図15の「車体上昇下降装置74」から「車体傾斜駆動装置91」に入れ替わっただけであるため、ここでの詳細説明は省略する。
 したがって、上述した第五実施形態の軌道式車両によれば、上述した第三実施形態と同様に、通常時は、高さ調整弁41および調整弁ロッド45によって車体5が傾斜しないように空気ばね31の高さを自動的に調整することができる。一方で、車体5を傾斜させる場合には、高さ調整弁41による空気ばね31の高さ調整を規制した状態で、アクチュエータ96によって懸架枠29を車幅方向に押圧することで、一対の空気ばね31の高さを変化させることができる。これにより、各空気ばね31の高さを個別に調整する場合と同様に台車枠26に対する車体5の高さ位置を調整することができる。その結果、車体5の車幅方向の高さを異ならせて車体5を傾斜させて、軌道の曲線部を走行する際に、より確実に乗り心地の悪化を防止することができる。
 次に、この発明の第六実施形態における軌道式車両について説明する。この第六実施形態の軌道式車両は、上述した第三実施形態の軌道式車両と一部の構成が異なるだけであるため、同一部分に同一符号を付して説明する。この第六実施形態における軌道式車両は、車体5と台車6とを備えており、台車6は、一対の走行輪7と、案内操向装置8と、懸架装置9と、緩衝装置10と、車体傾斜機構11と、検出部12と、傾斜制御部413と、を備えている。
 図20に示すように、第六実施形態における軌道式車両は、さらに、上述した第三実施形態の軌道式車両が具備する速度検出部59に代えて記憶部101を備えている。
 記憶部101は、軌道2のカント、および、車両速度の情報を予め記憶する。より具体的には、記憶部101は、軌道式車両が走行する路線線形とランカーブとを予め記憶している。
 傾斜制御部413は、検出部12の検出結果と、記憶部101の記憶情報とに基づいて、車体傾斜機構11の駆動制御を行う。傾斜制御部413は、走行条件取得部455と、曲線半径算出部56と、定常加速度算出部457と、傾斜角度算出部58と、を備えている。
 走行条件取得部455は、記憶部101の記憶情報から軌道2のカント、および、車両速度の情報を取得する。ここで、カント、および、車両速度の情報は、軌道2における走行位置、又は、走行時間の情報と関連付けされて記憶されている。つまり、記憶部101から、軌道式車両の走行位置に応じたカント、および、車両速度の情報を取得することができる。
 曲線半径算出部56は、上述した第一実施形態の曲線半径算出部56と同様に、変位センサ46の検出結果から曲線半径を上述した(2)式より算出する。
 定常加速度算出部457は、カント、車両速度、および、曲線半径の情報に基づき車内の乗客が受ける車幅方向定常加速度を求める。ここで、曲線に設けられたカントを「C」(%)、曲線半径を「R」(m)、軌道式車両が曲線を通過する際の車両速度を「V」(km/h)とすると、超過遠心加速度「αs」(G)は以下の(6)式で求めることができる。
 αs=(V)/(127R)-C・・・(6)
 さらに定常加速度算出部457は、上述した(4)式により、曲線通過時に乗客が受ける車幅方向定常加速度「αp」(G)を求める。
 傾斜角度算出部58は、上述した(5)式により、曲線通過時に車体5を内軌側に傾斜させる最適な傾斜量を算出する。そして、傾斜制御部413は、この傾斜角度算出部58により算出された傾斜角度に基づき、車体傾斜機構11による車体5の傾斜制御を行う。
 次に、この第六実施形態における軌道式車両が軌道2の曲線部を走行する際の車体傾斜機構11の動作について説明する。なお、この第六実施形態における傾斜制御部413の動作は、第一実施形態の傾斜制御部13の図6に示すと動作と、走行条件の種類および取得方法が異なるだけである。よって、同一の工程には同一符号を付して説明する。
 図22に示すように、まず、傾斜制御部413は、記憶部101に記憶された軌道式車両の車両速度、および、カントの情報を、走行条件取得部55によって取得する(ステップS11)。さらに、これと並行して変位センサ46によって検出された案内枠の19の旋回量を取得する(ステップS02)。
 次いで、傾斜制御部413は、曲線半径算出部56によって、案内枠19の旋回量から軌道2の曲線半径を算出する(ステップS03)。
 さらに、傾斜制御部413は、定常加速度算出部457によって、車両速度、カント、および、曲線半径の情報に基づいて、車内の乗客が受ける車幅方向定常加速度を求める(ステップS14)。
 次いで、傾斜制御部413は、傾斜角度算出部58によって、上記定常加速度算出部457で求めた車幅方向定常加速度に基づき、車体5の車幅方向への傾斜角度を算出する(ステップS05)。
 そして、傾斜制御部413は、上記算出された傾斜角度となるように傾斜駆動部53の駆動制御を行う(ステップS06)。
 したがって、第六実施形態における軌道式車両によれば、軌道2のカントを考慮した車幅方向定常加速度を算出することができる。そのため、曲線通過時に車体5を内軌側に傾斜させるより最適な傾斜量を算出することができる。
 次に、この発明の第七実施形態における軌道式車両について説明する。この第七実施形態の軌道式車両は、上述した第三実施形態の軌道式車両と一部の構成が異なるだけであるため、同一部分に同一符号を付して説明する。この第七実施形態における軌道式車両は、車体5と台車6とを備えており、台車6は、一対の走行輪7と、案内操向装置8と、懸架装置9と、緩衝装置10と、車体傾斜機構11と、検出部12と、傾斜制御部513と、を備えている。
 傾斜制御部513は、検出部12の検出結果と、記憶部101の記憶情報とに基づいて、車体傾斜機構11の駆動制御を行う。
 図21に示すように、第七実施形態における軌道式車両は、加速度検出部103を備えている。加速度検出部103は、車体5に取り付けられて、車幅方向定常加速度を検出する。
 また、傾斜制御部513は、走行条件取得部455と、曲線半径算出部56と、定常加速度算出部457と、加速度比較部104と、傾斜角度算出部58と、を備えている。走行条件取得部455と、曲線半径算出部56と、定常加速度算出部457とは、上述した第六実施形態と同一構成であるため、詳細説明を省略する。
 加速度比較部104は、加速度検出部103の検出結果と、定常加速度算出部457による算出結果とを比較する。より具体的には、定常加速度算出部457による算出結果を、加速度検出部103による検出結果により確認する。例えば、加速度比較部104は、定常加速度算出部457の算出結果と加速度検出部103の検出結果との差分が予め設定された閾値を超えた場合に、定常加速度算出部457による算出結果がフェール状態と判定して、車体5の傾斜制御を行わないようにする。
 傾斜角度算出部58は、上述した(5)式により、曲線通過時に車体5を内軌側に傾斜させる最適な傾斜量を算出する。そして、傾斜制御部413は、この傾斜角度算出部58により算出された傾斜角度に基づき、車体傾斜機構11による車体5の傾斜制御を行う。
 次に、この第七実施形態における軌道式車両が軌道2の曲線部を走行する際の車体傾斜機構11の動作について説明する。なお、この第七実施形態における傾斜制御部513の動作は、加速度比較部104による加速度比較工程を行う点でのみ第六実施形態の傾斜制御部413の動作と異なるため、同一の工程には同一符号を付して説明する。
 図23に示すように、まず、傾斜制御部513は、記憶部101に記憶された軌道式車両の車両速度、および、カントの情報を、走行条件取得部55によって取得する(ステップS11)。さらに、これと並行して変位センサ46によって検出された案内枠の19の旋回量を取得する(ステップS02)。
 次いで、傾斜制御部513は、曲線半径算出部56によって、案内枠19の旋回量から軌道2の曲線半径を算出する(ステップS03)。
 さらに、傾斜制御部513は、定常加速度算出部457によって、車両速度、カント、および、曲線半径の情報に基づいて車内の乗客が受ける車幅方向定常加速度を求める(ステップS14)。
 また、傾斜制御部513は、加速度検出部103により検出された車幅方向定常加速度を取得する(ステップS21;加速度検出工程および走行条件取得工程)。さらに、傾斜制御部513は、加速度比較部104によって、定常加速度算出部457により算出された車幅方向定常加速度と、定常加速度検出部104により検出された車幅方向定常加速度と、を比較する(ステップS22;加速度比較工程)。ここで、上述したように、加速度検出部103は、定常加速度算出部457の算出結果と加速度検出部103の検出結果との差分が予め設定された閾値を超えたと判定された場合には、車体5の傾斜制御を行わないように、例えば、フェールである旨の情報を傾斜角度算出部58に出力する。
 次いで、傾斜制御部513は、加速度比較部104を経由して上記定常加速度算出部457で求めた車幅方向定常加速度の情報が入力された場合には、傾斜角度算出部58によって、当該車幅方向定常加速度に基づいて、車体5の車幅方向への傾斜角度を算出する(ステップS05)。そして、傾斜制御部13は、上記算出された傾斜角度となるように傾斜駆動部53の駆動制御を行う(ステップS06)。
 したがって、上述した第七実施形態の軌道式車両によれば、実際に乗客に作用する車幅方向定常加速度を加速度検出部103によって検出することができる。そのため、定常加速度算出部457により算出された車幅方向定常加速度の値が異常である場合であっても、この異常を検出して最適な車体5の傾斜制御を行うことができる。
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、上述した各実施形態においては、緩衝装置10が空気ばね31を備える場合を一例に説明したが、車体の高さ調整が可能な緩衝装置10であれば空気ばね31に限られるものではない。また、空気ばね31が車幅方向に2つ離間して配置される一例を説明したが、車幅方向に配列される空気ばね31の数は2つに限られず3つ以上の空気ばね31を配列しても良い。
 上述した第一実施形態においては、案内枠19の旋回量に応じて、車体5の傾斜角度を変化させる場合について説明した。しかし、軌道2の曲線部が予め設定された所定の曲率よりも大きい場合に、車体5を予め設定された所定角度だけ傾斜させるようにしても良い。この場合、軌道式車両1が曲線部に進入した状態であることを検出部12によって検出する。
 さらに、第一実施形態においては、アクチュエータ54により台車枠26と調整弁支持バー42との上下間隔を変位させる場合を一例に説明したが、この構成に限られるものではない。例えば、モータの回転動力を、減速機構などを介して調整弁支持バー42の回転軸に伝達して調整弁支持バー42を回動させるようにしても良い。
 さらに、上述した各実施形態においては、それぞれ異なる形式の車体傾斜機構11,211,311、411について個別に説明した。しかしながら、これら車体傾斜機構11,211,311、411を少なくとも一つ備えていればよく、適宜組み合わせて車体5を傾斜させるようにしても良い。
 また、上述した各実施形態の曲線半径算出部56においては、数式を用いて曲線半径を求める場合について説明したが、この構成に限られるものではない。例えば、変位センサの検出結果と曲線半径とのテーブルやマップを参照して曲線半径を求めるようにしても良い。
 同様に、数式により、定常加速度算出部57,457において車幅方向定常加速度を求め、傾斜角度算出部58において傾斜角度を求める場合について説明した。しかし、定常加速度算出部57,457においては、曲線半径、走行条件(車両速度、カント)、および、定常加速度のマップに基づいて車幅方向定常加速度を求めても良い。傾斜角度算出部58においては、車幅方向定常加速度と傾斜角度とのテーブルやマップに基づいて車体5の傾斜角度を求めても良い。
 さらに、上述した各実施形態においては、案内枠19の旋回量を直線方向の変位量に変換して変位センサ46により検出する場合について説明した。しかし、旋回量を検出可能な検出装置であればよく、上記変位センサ46に限られるものではない。例えば、ロータリーエンコーダ、可変抵抗器、画像処理装置など種々の検出装置を用いて案内枠19の旋回量を検出するようにしても良い。
 さらに、上述した第六実施形態において、傾斜角度の情報を記憶させる傾斜角度記憶部を設けてもよい。この傾斜角度記憶部には、記憶部101の例えば路線線形およびランカーブ等の記憶情報に基づいて予め傾斜角度算出部58により算出された傾斜角度の情報が記憶される。傾斜制御部413は、この傾斜角度記憶部に記憶された傾斜角度に基づき車体傾斜機構11による車体5の傾斜制御を行うようにすればよい。
 また、上述した各実施形態においては、案内枠19の横梁20を走行輪7の前方および後方にそれぞれ配置して、案内輪22を4つ設ける場合について説明した。しかし、走行輪7の前方にのみ横梁20を配しても良い。また、案内枠19に回転自在な案内輪22を設ける場合について説明したが、案内輪22に代えて回転不能な摺動部材を配置しても良い。
 本発明は、ガイドレールに案内されて軌道を走行可能な軌道式車両について広く適用可能である。
 1 軌道式車両
 2 軌道
 3 ガイドレール
 4 走行路
 5 車体
 6 台車
 7 走行輪
 8 案内操向装置
 9 懸架装置
 10 緩衝装置
 11,211 車体傾斜機構
 12 検出部
 13,213,313,413,513 傾斜制御部
 14 車軸
 15 駆動装置
 16 キングピン
 17 ステアリングアーム
 18 ステアリングロッド
 19 案内枠
 20 横梁
 21 縦梁
 22 案内輪
 23 案内輪支持部
 24 軸受支持部
 25 軸受
 26 台車枠
 27 案内枠結合部27
 28 補強材
 29 懸架枠
 30 平行リンク装置
 31 空気ばね
 32 固定部
 33 平行リンク受部
 34 車両床面
 35 車体台枠
 36 平行リンク
 37 上側リンク部材
 38 下側リンク部材
 39 台車枠
 40 高さ調整装置
 41 高さ調整弁
 42 調整弁支持バー
 43 ブラケット
 44 レバー
 45 調整弁ロッド
 46 変位センサ
 47 リンク部
 48 水平ロッド
 49 水平検知リンク
 50 垂直ロッド
 51 第一アーム部
 52 第二アーム部
 53 傾斜駆動部
 54 アクチュエータ
 55 走行条件取得部
 56 曲線半径算出部
 57 定常加速度算出部
 58 傾斜角度算出部
 59 速度検出部
 60 傾斜量制御装置
 61 傾斜調整装置
 62 配管
 63 第一の3方電磁切換弁
 64 第二の3方電磁切換弁
 65 迂回配管
 66 配管
 68 配管
 69 配管
 70 圧力センサ
 71 差圧弁
 74 車体上昇下降装置
 75 アクチュエータ
 76 第一の電磁切換弁
 77 第二の電磁切換弁
 80 アンチローリング装置
 81 トーションバー
 82 トーションバー回転支持軸受部
 83 アーム部
 84 調整ロッド
 85 調整ロッド下受部
 86 ロッド伸縮装置
 87 アクチュエータ
 90 左右ストッパー
 91 車体傾斜駆動装置
 92 懸架枠横梁
 93 ストッパー受
 94 ストッパーゴム取付受
 95 ストッパーゴム
 96 アクチュエータ
 97 旋回軸受支持部
 101 記憶部
 103 加速度検出部

Claims (15)

  1.  車体と、
     前記車体を下方から支持する台車と、を備え、
     前記台車は、
     前記車体を車幅方向に傾斜させる車体傾斜機構と、
     軌道に沿って設けられたガイドレールに案内されて旋回する案内枠と、
     前記案内枠の旋回量を検出する検出部と、
     前記検出部の検出結果に基づいて、前記車体傾斜機構による前記車体の傾斜を制御する傾斜制御部と、
    を備える軌道式車両。
  2.  請求項1に記載した軌道式車両であって、
     前記検出部は、
     前記案内枠の旋回方向への変位を、直線方向の変位に変換するリンク機構と、
     前記リンク機構によって変換された直線方向の変位を検出する変位センサと、を備える軌道式車両。
  3.  請求項1又は2に記載した軌道式車両であって、
     前記台車と前記車体との間に車幅方向に離間して配される緩衝装置と、
     前記緩衝装置の高さを個別に調整可能な高さ調整装置と、
     前記高さ調整装置を操作して前記緩衝装置の高さを予め設定された高さ範囲内に保持する自動高さ調整機構と、を備え、
     前記車体傾斜機構は、
     前記高さ調整装置を高さ方向に移動可能な高さ調整装置移動機構と、
     前記高さ調整装置移動機構を駆動する駆動装置と、を備え、
     前記傾斜制御部は、前記検出部の検出結果に基づいて前記駆動装置の駆動制御を行い、前記高さ調整装置移動機構を介して前記高さ調整装置の高さ方向の位置を移動させる軌道式車両。
  4.  請求項1又は2に記載した軌道式車両であって、
     前記台車と前記車体との間に車幅方向に離間して配される緩衝装置と、
     前記緩衝装置の高さを個別に調整可能な高さ調整装置と、
     前記高さ調整装置を操作して前記緩衝装置の高さを予め設定された高さ範囲内に保持する自動高さ調整機構と、を備え、
     前記車体傾斜機構は、
     前記車体を傾斜させる際に、前記高さ調整装置を迂回して前記緩衝装置の高さを変化させる傾斜量制御装置と、
     前記高さ調整装置による前記緩衝装置の高さ調整を規制する傾斜調整装置と、を備え、
     前記傾斜制御部は、前記検出部の検出結果に基づいて、前記傾斜量制御装置を駆動制御して前記緩衝装置の高さを調整する軌道式車両。
  5.  請求項1又は2記載した軌道式車両であって、
     前記台車と前記車体との間に車幅方向に離間して配される緩衝装置と、
     前記緩衝装置の高さを個別に調整可能な高さ調整装置と、
     前記高さ調整装置を操作して前記緩衝装置の高さを予め設定された高さ範囲内に保持する自動高さ調整機構と、を備え、
     前記車体傾斜機構は、
     前記緩衝装置を下方から支持し、前記緩衝装置の位置を上下方向に移動可能な車体上昇下降装置と、
     前記高さ調整装置による前記緩衝装置の高さ調整を規制する傾斜調整装置と、を備え、
     前記傾斜制御部は、前記検出部の検出結果に基づいて、前記車体上昇下降装置を介して前記緩衝装置の上下方向の位置を変位させる軌道式車両。
  6.  請求項1又は2に記載した軌道式車両であって、
     前記台車と前記車体との間に車幅方向に離間して配される緩衝装置と、
     車幅方向に延びるトーションバーを具備し、前記トーションバーのねじり方向の復元力を利用して前記車体の傾斜を規制するアンチローリング装置と、を備え、
     前記車体傾斜機構は、
     ねじり方向における前記トーションバーの中立位置を変位させるロッド伸縮装置を備え、
     前記傾斜制御部は、
     前記検出部の検出結果に基づいて、前記ロッド伸縮装置を駆動制御して、前記トーションバーの中立位置を変位させる軌道式車両。
  7.  請求項5又は6に記載した軌道式車両であって、
     前記台車と前記車体との間に車幅方向に離間して配される緩衝装置を備え、
     前記台車は、
     前記車体の床部に固定された懸架枠を備え、
     前記車体傾斜機構は、
     前記車体の床部の車幅方向中央部に配されて前記車体の車幅方向への傾斜を許容しつつ、前記車体の車幅方向へのスライドを規制する左右ストッパーと、
     前記懸架枠に対して車幅方向への力を作用させる車体傾斜駆動装置と、を備え、
     前記傾斜制御部は、
     前記検出部の検出結果に基づいて、前記車体傾斜駆動装置を駆動制御して、前記懸架枠に対して車幅方向への力を作用させる軌道式車両。
  8.  請求項1から7の何れか一項に記載した軌道式車両であって、
     前記傾斜制御部は、
     走行条件として少なくとも車両速度の情報を取得する走行条件取得部と、
     前記検出部によって検出された旋回量から前記軌道の曲線半径を算出する曲線半径算出部と、
     前記車両速度の情報、および、前記曲線半径に基づき車内の乗客が受ける車幅方向定常加速度を求める定常加速度算出部と、
     前記車幅方向定常加速度に基づき前記車体の車幅方向への傾斜角度を算出する傾斜角度算出部と、を備える軌道式車両。
  9.  請求項8に記載した軌道式車両であって、
     車両速度を検出する速度検出部を備え、
     前記走行条件取得部は、前記速度検出部から車両速度の情報を取得し、
     前記定常加速度算出部は、前記車両速度の情報、および、前記曲線半径の情報に基づき車幅方向定常加速度を算出する軌道式車両。
  10.  請求項8に記載した軌道式車両であって、
     前記軌道のカント、および、前記車両速度の情報が予め記憶される記憶部を備え、
     前記走行条件取得部は、前記記憶部の記憶情報から前記カント、および、車両速度の情報を取得し、
     前記定常加速度算出部は、前記カントの情報、および、前記車両速度の情報と、前記曲線半径の情報とに基づき車幅方向定常加速度を算出する軌道式車両。
  11.  請求項10に記載した軌道式車両であって、
     車幅方向定常加速度を検出する加速度検出部を備え
     前記走行条件取得部は、前記加速度検出部によって検出された車幅方向定常加速度の情報を取得し、
     前記傾斜制御部は、
     前記定常加速度算出部により算出された車幅方向定常加速度と、前記加速度検出部により検出された車幅方向定常加速度と、を比較する加速度比較部を備える軌道式車両。
  12.  軌道に沿って設けられたガイドレールに案内されて旋回する案内枠を備えた軌道式車両の車体傾斜制御方法であって、
     前記案内枠の旋回量を検出する検出工程と、
     前記案内枠の旋回量に基づいて車体の傾斜を制御する傾斜制御工程と、
    を備える軌道式車両の車体傾斜制御方法。
  13.  請求項12に記載した軌道式車両の車体傾斜制御方法であって、
     前記傾斜制御工程は、
     走行条件として少なくとも車両速度の情報を取得する走行条件取得工程と、
     前記案内枠の旋回量から前記軌道の曲線半径を算出する曲線半径算出工程と、
     前記車両速度、および、前記曲線半径に基づき車内の乗客が受ける車幅方向定常加速度を求める定常加速度算出工程と、
     前記車幅方向定常加速度に基づき前記車体の車幅方向への傾斜角度を算出する傾斜角度算出工程と、を備え、
     算出された前記傾斜角度となるように前記車体の傾斜を制御する軌道式車両の車体傾斜制御方法。
  14.  請求項13に記載した軌道式車両の車体傾斜制御方法であって、
     前記走行条件取得工程では、
     カント、および、前記車両速度の情報を取得し、
     前記定常加速度算出工程では、
     前記カント、および、前記車両速度と、前記曲線半径とに基づき前記車幅方向定常加速度を算出する軌道式車両の車体傾斜制御方法。
  15.  請求項14に記載した軌道式車両の車体傾斜制御方法であって、
     車幅方向定常加速度を検出する加速度検出工程を備え、
     前記走行条件取得工程では、
     前記加速度検出工程によって検出された車幅方向定常加速度の情報を取得し、
     前記傾斜制御工程は、
     前記定常加速度算出工程により算出された車幅方向定常加速度と、前記加速度検出工程により検出された車幅方向定常加速度と、を比較する加速度比較工程を備える軌道式車両の車体傾斜制御方法。
PCT/JP2013/054370 2013-02-21 2013-02-21 軌道式車両、および、その車体傾斜制御方法 WO2014128889A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201505382TA SG11201505382TA (en) 2013-02-21 2013-02-21 Track-guided vehicle, and car body tilt control method therefor
PCT/JP2013/054370 WO2014128889A1 (ja) 2013-02-21 2013-02-21 軌道式車両、および、その車体傾斜制御方法
JP2015501161A JP6086973B2 (ja) 2013-02-21 2013-02-21 軌道式車両、および、その車体傾斜制御方法
US14/760,129 US9643622B2 (en) 2013-02-21 2013-02-21 Track-guided vehicle, and car body tilt control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054370 WO2014128889A1 (ja) 2013-02-21 2013-02-21 軌道式車両、および、その車体傾斜制御方法

Publications (1)

Publication Number Publication Date
WO2014128889A1 true WO2014128889A1 (ja) 2014-08-28

Family

ID=51390718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054370 WO2014128889A1 (ja) 2013-02-21 2013-02-21 軌道式車両、および、その車体傾斜制御方法

Country Status (4)

Country Link
US (1) US9643622B2 (ja)
JP (1) JP6086973B2 (ja)
SG (1) SG11201505382TA (ja)
WO (1) WO2014128889A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109125A (zh) * 2014-06-26 2014-10-22 中山大学 一种4-取代-2-芳乙烯基喹啉类衍生物及其制备方法和应用
CN109398400A (zh) * 2018-09-26 2019-03-01 同济大学 一种面向新轮轨列车的自动对中双轴转向架系统
JP2019142449A (ja) * 2018-02-23 2019-08-29 三菱重工エンジニアリング株式会社 台車、及び車両
CN111046484A (zh) * 2019-10-25 2020-04-21 西南交通大学 考虑纵向振动的车辆-轨道耦合动力学分析方法
KR102133307B1 (ko) * 2020-02-20 2020-07-22 한국모노레일주식회사 수평 유지 장치가 구비된 모노레일 차량
WO2020170842A1 (ja) * 2019-02-20 2020-08-27 三菱重工エンジニアリング株式会社 移動体制御装置、移動体、移動体制御方法及びプログラム
CN112441051A (zh) * 2019-08-30 2021-03-05 比亚迪股份有限公司 用于轨道车辆的防侧翻装置和轨道车辆

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014128878A1 (ja) * 2013-02-21 2017-02-02 三菱重工業株式会社 軌道系車両
JP6050156B2 (ja) * 2013-03-11 2016-12-21 川崎重工業株式会社 案内軌条式車両用案内装置、及び案内軌条式車両
JP5669914B1 (ja) * 2013-10-18 2015-02-18 三菱重工業株式会社 走行台車、及び軌道系交通システムの車両
JP6213825B2 (ja) * 2013-11-28 2017-10-18 三菱重工業株式会社 走行台車及び軌道式車両
JP5868930B2 (ja) * 2013-11-28 2016-02-24 三菱重工業株式会社 車両用サスペンション装置、走行台車、及び車両
JP5730381B1 (ja) * 2013-12-12 2015-06-10 三菱重工業株式会社 案内輪、走行台車、及び車両
US9975562B2 (en) * 2015-11-30 2018-05-22 Kawasaki Jukogyo Kabushiki Kaisha Railcar
FR3053301B1 (fr) * 2016-06-29 2019-05-24 Alstom Transport Technologies Procede de commande de la hauteur d'un vehicule de transport et vehicule de transport associe
JP6642370B2 (ja) * 2016-10-12 2020-02-05 株式会社ダイフク レール検査装置及びレール検査システム
CN107415608B (zh) * 2017-05-18 2024-04-19 青岛四机设备工程有限公司 一种apm列车工程车
US10427697B2 (en) 2017-07-04 2019-10-01 Nordco Inc. Rail pressure adjustment assembly and system for rail vehicles
US10836407B2 (en) * 2017-11-29 2020-11-17 Sperry Rail Holdings, Inc. System and method for inspecting a rail
WO2020084669A1 (ja) * 2018-10-22 2020-04-30 三菱電機株式会社 ガイドレール加工装置及びガイドレール加工方法
JP7190946B2 (ja) * 2019-03-20 2022-12-16 三菱重工エンジニアリング株式会社 電源装置、自動操舵車両、及び電力供給方法
US10807617B1 (en) * 2020-04-28 2020-10-20 Bombardier Transportation Gmbh Anti-seismic retaining system for a mass transit vehicle
CN113745797B (zh) * 2020-05-27 2024-01-05 比亚迪汽车工业有限公司 天线高度调节系统及车辆
CN112046533B (zh) * 2020-09-18 2021-11-30 中车青岛四方机车车辆股份有限公司 轨道车辆倾摆系统、倾摆控制方法及轨道车辆
CN112896202A (zh) * 2021-03-01 2021-06-04 大洋机械工业科技(大连)有限公司 一种新型假台车
CN117346723B (zh) * 2021-10-19 2024-05-17 郑州大学 一种车载式轨道曲率数据全线检测装置
CN114834522B (zh) * 2022-05-09 2023-04-18 东风悦享科技有限公司 一种车辆的转向系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656034A (ja) * 1992-08-06 1994-03-01 Nippon Sharyo Seizo Kaisha Ltd 鉄道車両用車体傾斜装置
JPH10236305A (ja) * 1997-02-24 1998-09-08 East Japan Railway Co 鉄道車両の走行位置補正方法及び誤補正防止方法
JP2000006805A (ja) * 1998-06-23 2000-01-11 Nippon Sharyo Seizo Kaisha Ltd 軌道走行車両の曲線検知方法および車体傾斜制御装置
JP2003252202A (ja) * 2002-02-27 2003-09-10 Hitachi Ltd 鉄道車両の車体傾斜装置
JP2004009895A (ja) * 2002-06-06 2004-01-15 Sumitomo Metal Ind Ltd 車体傾斜制御のフェール検知装置及び鉄道車両
JP2005035321A (ja) * 2003-07-15 2005-02-10 Nippon Sharyo Seizo Kaisha Ltd 鉄道車両の車体傾斜装置
JP2008239043A (ja) * 2007-03-28 2008-10-09 Sumitomo Metal Ind Ltd 車体傾斜制御方法及び装置
JP2010188971A (ja) * 2009-02-20 2010-09-02 Mitsubishi Heavy Ind Ltd ガイドレール式車両用台車
JP2010188958A (ja) * 2009-02-20 2010-09-02 Mitsubishi Heavy Ind Ltd 軌道系車両
JP2010215120A (ja) * 2009-03-17 2010-09-30 Mitsubishi Heavy Ind Ltd 軌道系車両用台車
JP2012081920A (ja) * 2010-10-14 2012-04-26 Mitsubishi Heavy Ind Ltd 軌道式車両の走行装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH524191A (de) * 1970-01-26 1972-06-15 Knorr Bremse Gmbh Neigungssteuereinrichtung für Fahrzeuge, insbesondere für mit Luftfederungen ausgerüstete Schienenfahrzeuge
CH523540A (de) * 1970-01-26 1972-05-31 Knorr Bremse Gmbh Neigungssteuereinrichtung für Fahrzeuge, insbesondere für mit Luftfederungen ausgerüstete Schienenfahrzeuge
US4132174A (en) * 1976-10-13 1979-01-02 S I Handling Systems, Inc. Driverless vehicle shuttle
JPH06270806A (ja) 1993-03-19 1994-09-27 Sumitomo Metal Ind Ltd 鉄道車両の車体傾斜制御装置
EP0839102A4 (en) * 1995-06-07 2000-05-31 Autran Corp AUTOMATED TRANSPORTATION SYSTEM FOR AUTOMOTIVE PLATFORMS, PASSENGER CABINS AND OTHER LOADS
US5590604A (en) * 1995-06-07 1997-01-07 Autran Corp. Transportation system with high speed vehicles and automatic control
US5590603A (en) * 1995-06-07 1997-01-07 Autran Corp. Transportation system including elevated guideway
US5598783A (en) * 1995-06-07 1997-02-04 Autran Corp. Integrated transportation system including transfer vehicles
DE19654862C2 (de) * 1996-12-04 1999-11-04 Abb Daimler Benz Transp Verfahren zur Beeinflussung des Knickwinkels von Schienenfahrzeug-Wagenkästen und Schienenfahrzeug zur Durchführung des Verfahrens
FR2794707B1 (fr) * 1999-06-11 2003-03-14 Alstom Procede et dispositif de commande de l'inclinaison d'un vehicule ferroviaire pendulaire
EP1914140B1 (en) * 2005-05-31 2012-07-18 Kabushiki Kaisha Aichi Corporation Traveling control device of vehicle
DE102006025773A1 (de) * 2006-05-31 2007-12-06 Bombardier Transportation Gmbh Verfahren zur Regelung eines aktiven Fahrwerks eines Schienenfahrzeugs
JP2010173354A (ja) 2009-01-27 2010-08-12 Railway Technical Res Inst 鉄道車両用空気ばね車体傾斜の制御方法
JP4486696B1 (ja) * 2009-02-20 2010-06-23 三菱重工業株式会社 ガイドレール式車両用台車
JP5182239B2 (ja) 2009-07-08 2013-04-17 新日鐵住金株式会社 鉄道車両の車体傾斜制御装置
JP5267490B2 (ja) 2010-03-11 2013-08-21 新日鐵住金株式会社 鉄道車両の車体傾斜制御方法
JP5668527B2 (ja) 2011-02-25 2015-02-12 新日鐵住金株式会社 簡易車体傾斜制御装置
JP5813992B2 (ja) 2011-05-09 2015-11-17 ピー・エス・シー株式会社 車体傾斜装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656034A (ja) * 1992-08-06 1994-03-01 Nippon Sharyo Seizo Kaisha Ltd 鉄道車両用車体傾斜装置
JPH10236305A (ja) * 1997-02-24 1998-09-08 East Japan Railway Co 鉄道車両の走行位置補正方法及び誤補正防止方法
JP2000006805A (ja) * 1998-06-23 2000-01-11 Nippon Sharyo Seizo Kaisha Ltd 軌道走行車両の曲線検知方法および車体傾斜制御装置
JP2003252202A (ja) * 2002-02-27 2003-09-10 Hitachi Ltd 鉄道車両の車体傾斜装置
JP2004009895A (ja) * 2002-06-06 2004-01-15 Sumitomo Metal Ind Ltd 車体傾斜制御のフェール検知装置及び鉄道車両
JP2005035321A (ja) * 2003-07-15 2005-02-10 Nippon Sharyo Seizo Kaisha Ltd 鉄道車両の車体傾斜装置
JP2008239043A (ja) * 2007-03-28 2008-10-09 Sumitomo Metal Ind Ltd 車体傾斜制御方法及び装置
JP2010188971A (ja) * 2009-02-20 2010-09-02 Mitsubishi Heavy Ind Ltd ガイドレール式車両用台車
JP2010188958A (ja) * 2009-02-20 2010-09-02 Mitsubishi Heavy Ind Ltd 軌道系車両
JP2010215120A (ja) * 2009-03-17 2010-09-30 Mitsubishi Heavy Ind Ltd 軌道系車両用台車
JP2012081920A (ja) * 2010-10-14 2012-04-26 Mitsubishi Heavy Ind Ltd 軌道式車両の走行装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109125A (zh) * 2014-06-26 2014-10-22 中山大学 一种4-取代-2-芳乙烯基喹啉类衍生物及其制备方法和应用
JP2019142449A (ja) * 2018-02-23 2019-08-29 三菱重工エンジニアリング株式会社 台車、及び車両
WO2019163153A1 (ja) * 2018-02-23 2019-08-29 三菱重工エンジニアリング株式会社 台車、及び車両
US11820408B2 (en) 2018-02-23 2023-11-21 Mitsubishi Heavy Industries Engineering, Ltd. Bogie and guideway vehicle
CN109398400A (zh) * 2018-09-26 2019-03-01 同济大学 一种面向新轮轨列车的自动对中双轴转向架系统
WO2020170842A1 (ja) * 2019-02-20 2020-08-27 三菱重工エンジニアリング株式会社 移動体制御装置、移動体、移動体制御方法及びプログラム
JP2020131970A (ja) * 2019-02-20 2020-08-31 三菱重工エンジニアリング株式会社 移動体制御装置、移動体、移動体制御方法及びプログラム
JP7130573B2 (ja) 2019-02-20 2022-09-05 三菱重工エンジニアリング株式会社 移動体制御装置、移動体、移動体制御方法及びプログラム
CN112441051A (zh) * 2019-08-30 2021-03-05 比亚迪股份有限公司 用于轨道车辆的防侧翻装置和轨道车辆
CN112441051B (zh) * 2019-08-30 2022-04-15 比亚迪股份有限公司 用于轨道车辆的防侧翻装置和轨道车辆
CN111046484B (zh) * 2019-10-25 2023-06-23 西南交通大学 考虑纵向振动的车辆-轨道耦合动力学分析方法
CN111046484A (zh) * 2019-10-25 2020-04-21 西南交通大学 考虑纵向振动的车辆-轨道耦合动力学分析方法
KR102133307B1 (ko) * 2020-02-20 2020-07-22 한국모노레일주식회사 수평 유지 장치가 구비된 모노레일 차량

Also Published As

Publication number Publication date
JP6086973B2 (ja) 2017-03-01
US9643622B2 (en) 2017-05-09
SG11201505382TA (en) 2015-08-28
JPWO2014128889A1 (ja) 2017-02-02
US20150353104A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP6086973B2 (ja) 軌道式車両、および、その車体傾斜制御方法
US8381660B2 (en) Track-guided vehicle wheel truck
US8353248B2 (en) Track-guided vehicle wheel track
JP5187311B2 (ja) 鉄道車両用操舵台車、鉄道車両および連接車両
TWI385088B (zh) 軌道類車輛用之台車
JP2002104183A (ja) 鉄道車両
WO2015079833A1 (ja) 走行台車及び軌道式車両
JP6213825B2 (ja) 走行台車及び軌道式車両
JP4930171B2 (ja) 案内軌条式車両操舵系の振動制御方法及び装置
HU223286B1 (hu) Futómű sínhez kötött járműhöz
WO2018096699A1 (ja) 鉄道車両用台車
CN114644028A (zh) 一种用于轨道车辆行走机构的液压互联系统
US9346474B2 (en) Vehicle and travel device for same
JP2014144710A (ja) 軌道式車両
GB2530677A (en) Railroad vehicle capable of reducing lateral force and lateral force reduction method
JP2000264198A (ja) モノレール車両用台車及びモノレール車両
JP4160741B2 (ja) 台車操舵式鉄道車両
WO2019163153A1 (ja) 台車、及び車両
JP4799039B2 (ja) 鉄道車両の車体傾斜装置
JPH08142862A (ja) 鉄道車両用台車
JP2001048007A (ja) 案内軌道式車両用台車
JP2000515459A (ja) 車 両
JP2013118787A (ja) 鉄道車両のパンタグラフ支持装置
KR20130004242U (ko) 윤축 조향각 제어시스템
JP5836073B2 (ja) ボギー台車及びこれを備えた軌道系車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501161

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14760129

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875739

Country of ref document: EP

Kind code of ref document: A1