WO2014125591A1 - 微細パターニング用表面化学処理装置 - Google Patents

微細パターニング用表面化学処理装置 Download PDF

Info

Publication number
WO2014125591A1
WO2014125591A1 PCT/JP2013/053492 JP2013053492W WO2014125591A1 WO 2014125591 A1 WO2014125591 A1 WO 2014125591A1 JP 2013053492 W JP2013053492 W JP 2013053492W WO 2014125591 A1 WO2014125591 A1 WO 2014125591A1
Authority
WO
WIPO (PCT)
Prior art keywords
conduit
solid phase
solution
phase
opening
Prior art date
Application number
PCT/JP2013/053492
Other languages
English (en)
French (fr)
Inventor
内山 一美
秀 中嶋
楊 明
湖烈 曽
義之 菅原
西本 尚弘
Original Assignee
株式会社島津製作所
公立大学法人首都大学東京
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 公立大学法人首都大学東京, 学校法人早稲田大学 filed Critical 株式会社島津製作所
Priority to US14/766,494 priority Critical patent/US9839932B2/en
Priority to CN201380073044.0A priority patent/CN104994964B/zh
Priority to JP2015500038A priority patent/JP5956053B2/ja
Priority to PCT/JP2013/053492 priority patent/WO2014125591A1/ja
Publication of WO2014125591A1 publication Critical patent/WO2014125591A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/08Apparatus, e.g. for photomechanical printing surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/10Arrangements for collecting, re-using or eliminating excess spraying material the excess material being particulate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/06Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C3/00Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material
    • B05C3/20Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material for applying liquid or other fluent material only at particular parts of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/06Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying two different liquids or other fluent materials, or the same liquid or other fluent material twice, to the same side of the work
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/66Chemical treatment, e.g. leaching, acid or alkali treatment
    • C03C25/68Chemical treatment, e.g. leaching, acid or alkali treatment by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means

Definitions

  • the present invention relates to a technique for performing solid-phase synthesis reaction or analysis by chemical patterning on a solid-phase surface such as a glass material or a silicon substrate in a gas phase or a liquid phase to construct a molecule having a specific function. .
  • One of them is a method in which a solid phase to be subjected to chemical treatment is completely immersed in the above solution.
  • the solid phase is chemically treated by molecules in the solution without any selectivity regarding the position.
  • the other is a method of drawing the above-mentioned solution in a required pattern on the surface of the solid phase while discharging the above solution using a dispenser (liquid quantitative discharge device).
  • a dispenser liquid quantitative discharge device
  • the solid phase surface is positioned by the above solute.
  • the patterning can be miniaturized to some extent by reducing the diameter of the dispenser.
  • microfluidic probe In the field of microfluidics, a technique using a tool called a microfluidic probe or a micropipette is known as a technique for discharging a small amount of solution or the like onto the solid surface.
  • a microfluidic probe has a flat surface called a mesa at the tip of a probe made of Si or the like, and two openings are formed adjacent to the mesa so that the mesa is attached to the solid surface. While discharging the solution from one opening at the same time facing in parallel, suction from the other opening prevents the discharged solution from spreading and enables the solution to stay in a narrow area (For example, refer nonpatent literature 1).
  • a micropipette is that three openings are formed in a line at the tip of a pipette made of polydimethylsiloxane (PDMS) and the like. As described above, the spread of the solution or the like on the surface of the solid phase is suppressed (for example, see Non-Patent Document 2).
  • PDMS polydimethylsiloxane
  • the method of immersing the solid phase to be chemically treated in a solution cannot be applied when it is desired to perform position selective treatment on the surface of the solid phase.
  • the reduction of the dispenser diameter is limited in terms of manufacturing technology and maintainability. There is a limit to the miniaturization of the molecular immobilization area.
  • the number of discharge ports is usually one, and it is difficult to discharge two or more types of solutions for reaction.
  • a suction port is provided next to or both sides of the solution discharge port to suppress the spread of the solution on the solid surface. Therefore, it is considered that the pattern can be made finer than the above-described method.
  • the suction port is present in a one-dimensional direction with respect to the discharge port, and is orthogonal thereto.
  • the effect of suppressing the spread of the solution in the direction is limited, and there is a problem that it is not easy to prevent so-called “bleeding” in all directions.
  • An object of the present invention is to provide a surface-selective surface chemical processing apparatus for position-selective fine patterning, which enables miniaturization of the fixed area.
  • the surface chemical treatment apparatus for fine patterning is an apparatus for performing chemical treatment of a required pattern on the surface of a solid phase placed in a gas phase or a liquid phase.
  • a first pipe having one end opened and the other end communicating with the liquid supply means; one end opened so as to surround the opening of the first pipe; the other end serving as the liquid suction means In a state where the communicating second pipes and the openings of the first and second pipes face the surface of the solid phase in the gas phase or liquid phase, the openings and the solid phase are connected to each other.
  • a moving mechanism for relatively moving the first pipe by supplying a patterning solution for reacting with the solid phase surface and chemically treating the surface into the first pipe line from the liquid supply means;
  • the liquid suction means is driven to discharge the first through the opening of the second conduit while discharging from the opening of the passage. While the patterning solution discharged from the opening of the pipe line is sucked together with the gas phase or the liquid phase, the opening of the first and second pipe lines and the solid phase are moved relative to each other to perform a chemical processing region of a required pattern. (Claim 1).
  • a sheath for forming a sheath flow in the first conduit and converging the patterning solution to the center.
  • the structure (Claim 2) provided with the liquid supply conduit can be suitably employed.
  • the moving mechanism is a mechanism that relatively moves the respective openings and the solid phase in a three-dimensional direction, and relatively moves the openings and the solid phase along a route that is set in advance by setting means. It can be set as a structure (Claim 3).
  • the first and second conduits, or the first and second conduits and the sheath liquid supply conduit are composed of a structure formed using Si (claim). 4) can be adopted.
  • the present invention intends to solve the problem by adopting a double tube structure in the vicinity of the solution discharge port, and sucking with the outer tube while discharging the solution from the inner tube.
  • the liquid supply means is communicated with the other end of the first pipe having one end opened, and one end of the second pipe is opened so as to surround the opening of the first pipe.
  • the other end of the pipe is communicated with the liquid suction means.
  • the liquid supply means and the liquid suction means are simultaneously driven in a state where the openings of the first and second pipelines are opposed to the solid phase surface in the gas phase or the liquid phase covering the solid phase surface to be patterned.
  • the patterning solution is discharged from the opening of the first conduit, and at the same time, the patterning solution and the gas phase or the liquid phase are sucked from the opening of the second conduit.
  • the patterning solution discharged from the opening of the first pipe toward the solid phase surface is sucked from all directions around it, so that “bleeding” on the solid surface is omnidirectional. It is possible to prevent over.
  • the solute in the solution can be concentrated and immobilized in a region of a very small area on the surface of the solid phase, and the efficiency of immobilization can be improved as compared with conventional devices and methods. That is, according to the present invention, it is possible to reduce the area of the immobilization while improving the efficiency of immobilization of the solute in the solution to the solid phase surface, and a surface chemical treatment apparatus with a highly efficient and fine pattern. Can be realized.
  • a molecule having a function according to the purpose can be constructed at an arbitrary position on a glass material or a silicon substrate under an arbitrary fine pattern.
  • a sheath liquid is supplied with respect to a 1st pipe line, a sheath flow is formed, and a patterning solution is converged in the center in a 1st pipe line. Therefore, in the invention according to claim 2, the patterning solution discharged from the opening of the first conduit reaches the solid phase surface in a flow that is narrower than the opening of the first conduit, and is finer Patterning is possible. According to the configuration using the sheath flow, even if there is a restriction on the reduction of the opening diameter of the first conduit in terms of the manufacturing technology and maintainability of the conduit, the molecular immobilization area is further increased. It can be miniaturized.
  • the moving mechanism for relatively moving the openings of the first and second pipes and the solid phase for patterning is based on the normal path set by the setting means as in the invention according to claim 3. Adopting the moving mechanism is useful for forming patterns equivalent to each other on the same solid phase or a plurality of solid surfaces, and the relative movement is not limited to the two-dimensional direction along the solid surface. Since the distance between the first and second openings and the solid phase surface is a factor that affects the patterning line width, the relative movement in the direction in which each opening and the solid phase surface approach / separate each other is also set as set. It is preferable to carry out.
  • the first conduit and the second conduit, or the sheath fluid supply conduit in addition thereto may be formed by, for example, glasswork or the like, or may be formed of various resins.
  • the pattern can be made finer.
  • FIG. 1 is a schematic diagram showing the configuration of a basic embodiment of the present invention.
  • a solid phase 1 such as a glass material or a silicon substrate to be subjected to patterning processing on the surface is disposed by being held by a holding member (not shown) in a container 3 containing a gas phase or a liquid phase, in this example, a liquid phase 2. And subjected to treatment in a state immersed in the liquid phase 2.
  • the container 3 is fixed on the stage 4.
  • the stage 4 is moved in the x and y directions along the surface of the solid phase 1 and the z direction perpendicular thereto by driving the moving mechanism 21.
  • the moving mechanism 21 is placed under the control of the control unit 22, and the control unit 22 moves the stage 4 along the moving path set by the setting unit 23 and stored in the storage unit 24. 21 is controlled.
  • storage part 24 can be comprised with a computer and its peripheral device.
  • a double pipe comprising a first pipe 11 and a second pipe 12 arranged so as to surround the outside is provided.
  • One end (lower end) of each of the pipes 11 and 12 forms an opening 11a and 12a, respectively, and each of the openings 11a and 12a is immersed in the liquid phase 2 in the solid phase 1. Opposite the surface.
  • the other end (upper end) portion 11b of the first pipe line 11 communicates with the discharge port 14a of the injection pump 14 via the pipe 13, and the suction port 14b of the injection pump 14 stores the patterning solution 31. It is connected to a patterning solution tank (not shown).
  • the patterning solution 31 is obtained by dissolving a solute 32 in a solvent 33, and the solvent 33 may be the same liquid as the liquid phase 2 in the container 3.
  • the other end (upper end) portion 12b of the second conduit 12 communicates with the suction port 16a of the discharge pump 16 via the pipe 15, and the discharge port 16b of the discharge pump 16 is a liquid discharge port (not shown). ).
  • the movement path of the stage 4 is set in advance based on the pattern to be drawn on the surface of the solid phase 1 by the operation of the setting unit 23 prior to actual driving of the apparatus.
  • the setting contents are stored in the storage unit 24.
  • the stage 4 is moved by controlling the movement mechanism 21 along the movement path stored in the storage unit 24 while driving both the infusion pump 14 and the discharge pump 16.
  • the patterning solution 31 flows into the first pipeline 11, and flows out from the opening 11 a at the lower end toward the solid phase 1 to the outside of the tube.
  • the solute 32 dissolved in the solvent 33 is fixed to the surface of the solid phase 1 based on a required pattern, and a patterning region 34 by the solute 32 is formed.
  • the discharge pump 16 since the discharge pump 16 is also driven, the solvent 33 in the patterning solution 31 and the part of the solute 32 that have flowed out from the opening 11a of the first conduit 11 are indicated by an arrow A in the figure.
  • the suction is performed from the opening 12a of the second conduit 12 positioned so as to surround the opening 11a, and the surrounding liquid phase 2 is also opened by the opening 12a of the conduit 12 as indicated by the arrow B. Sucked from.
  • the patterning solution 31 discharged from the opening 11a of the first conduit 11 is sucked from the opening 12a of the second conduit 12 positioned so as to surround it.
  • the spread of the patterning region 34 where the solute 32 is fixed in contact with the surface of the solid phase 1 can be suppressed in all directions on the surface of the solid phase 1 to prevent “bleeding”.
  • the solute 32 can be concentrated and immobilized, and the efficiency of immobilization is improved.
  • a temperature-responsive polymer is drawn only on the target surface of a glass capillary plate, and the substance A is fixed to the capillary portion of the capillary plate, from the temperature-responsive polymer side. It is a microreactor that reacts substance B, and is a reactor that can perform the reaction between substances A and B only at an arbitrary portion by hydrophilic control (Laplace pressure control) using a temperature-responsive polymer.
  • hydrophilic control Laplace pressure control
  • permeability control by temperature can be performed in a position-selective manner. That is, when the temperature is higher than the rearrangement temperature, the surface becomes hydrophobic and thus impermeable, and when the temperature is lower than the rearrangement temperature, the surface becomes hydrophilic and transmits.
  • the Laplace pressure can be controlled and it can be operated as a microreactor provided with a switching function.
  • a bromo group is introduced into the surface of the capillary plate (by isopropylamide or the like), and the capillary plate is 1 to 5% N, N, N ′, N ′′, Immerse in methanol: DMF (1: 1) (hereinafter referred to as solvent 1) containing N ′′ -pentamethyldiethylenetriamine and 0.1-5% copper (I) bromide.
  • solvent 1 a solution obtained by diluting 0.1 to 5% N-isopropylacrylamide with the solvent 1 (hereinafter referred to as “reagent 1”) is supplied to the first conduit 11 according to the embodiment of the present invention.
  • the opening 11a of the first conduit 11 is brought close to a target position on the surface of the capillary plate.
  • the reagent 1 is discharged from the opening 11a of the first conduit 11 at a rate of 1 to 100 ⁇ L per minute, and the solvent 1 and the reagent 1 are aspirated from the opening 12a of the second conduit 12 at a rate of 1 to 500 ⁇ L per minute.
  • FIG. 2 is a schematic diagram showing the configuration of the main part, and members equivalent to those shown in FIG.
  • FIG. 2 The embodiment of FIG. 2 is characterized in that a sheath forming port 51 is provided in the vicinity of the upper end of the first conduit 11 and one end of a sheath liquid supply conduit 52 is connected to the sheath forming port 51. .
  • the other end of the sheath liquid supply conduit 52 communicates with the discharge port 53a of the sheath liquid supply pump 53, and the suction port 53b of the sheath liquid supply pump 53 is a sheath liquid tank (not shown) that stores the sheath liquid 35. ).
  • the sheath liquid 35 flows into the first conduit 11 to form a sheath flow composed of the patterning solution 31 and the sheath liquid 35, and the flow of the patterning solution 31 is changed to the first flow.
  • the patterning solution 31 flowing out from the opening 11 a at the lower end of the first pipeline 11 becomes a flow thinner than the diameter of the opening 11 a, and the opening of the second pipeline 12 driven by the discharge pump 16. From 12a, the sheath liquid 35 and the solvent 33 mixed with the liquid phase 2 and a part of the solute 32 are sucked and discharged.
  • patterning can be further miniaturized as compared with the previous example. Even if there is a restriction, it is possible to draw a line finer than the aperture.
  • the first conduit 11, the second conduit 12, the sheath fluid supply conduit 52, and the like are glass tubes, resin tubes, or the like.
  • the present invention is not limited to this, and in addition to using a tube body of these materials, it may be configured by a Si structure having a structure equivalent to the above using MEMS technology. In that case, further miniaturization of patterning is expected.
  • the present invention can construct a target molecule based on an arbitrary pattern at an arbitrary position on, for example, a glass material or a silicon substrate. For example, it can be used to create various fine sensors or sensor arrays, or on a metal film. Effective use as a device for surface chemical treatment of fine patterns on a solid surface using a solution, such as patterning with molecules having a thiol group on the surface, and patterning of other molecules on a specific site on the surface Can do.
  • Solid phase 2 Liquid phase (or gas phase) DESCRIPTION OF SYMBOLS 3 Container 4 Stage 11 1st pipe line 12 2nd pipe line 13 Pipe 14 Injection pump 15 Pipe 16 Discharge pump 21 Movement mechanism 22 Control part 23 Setting part 24 Memory

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Coating Apparatus (AREA)

Abstract

 溶液(31)中に溶質(32)として溶解している分子の固相表面(1)への固定化の効率を向上させ、かつ、固相表面(1)での溶液(31)の広がりを確実に抑制して、固定化面積の微小化を可能とする微細パターニング用表面化学処理装置を提供する。本発明の装置は、一端が開口(11a)し、他端が液供給手段(14)に連通する第1の管路(11)と、その第1の管路(11)の開口(11a)の周りを囲むように一端が開口(12a)し、他端が液吸引手段(16)に連通する第2の管路(12)を備えるとともに、これらの第1、第2の管路(11,12)の開口(11a,12a)と、パターニング対象である固相表面(1)とを相対的に移動させる移動機構(21)を備えた構成とし、第1の管路(11)の開口(11a)からパターニング溶液(31)を吐出しながら、その周囲に存在する第2の管路(12)の開口(12a)からその溶液(31)を周囲の液相(2)もしくは気相とともに吸引することで、全方位への溶液(31)の滲みを防止し、微細パターンでの表面化学処理を可能とする。

Description

微細パターニング用表面化学処理装置
 本発明は、気相もしくは液相中で、ガラス素材やシリコン基板などの固相表面に化学的パターニングを行い、特定の機能を有する分子を構築し、固相合成反応や分析などを行う技術に関する。
 ガラス素材やシリコン基板などの固相表面に、ある分子による化学処理を施す場合、従来、その分子が溶質として溶媒に溶解している溶液を用いて、以下に例示するような手法が一般に用いられている。
 その一つは、化学処理を施したい固相を、上記の溶液に完全に浸漬させる方法であり、この場合、固相は溶液中の分子により位置に関する選択性を伴わずに化学処理される。
 他の一つは、ディスペンサ(液体定量吐出装置)を用いて上記した溶液を吐出しながら固相表面に所要のパターンで描画する方法であり、この場合には上記の溶質により固相表面は位置選択的に化学処理される。このディスペンサを用いる方法においては、ディスペンサの口径を縮小化していくことにより、ある程度までパターニングの微細化を実現することができる。
 また、マイクロフルイディクスの分野において、固相表面に微量の溶液等を吐出する技術として、マイクロフルイディクスプローブやマイクロピペットと称するツールを用いた技術が知られている。
 マイクロフルイディクスプローブと称するものは、Siなどで形成したプローブの先端にメサと称する平坦面を形成するとともに、そのメサには2つの開口を隣接して形成し、固相表面に対してメサを平行に対向させた状態で、一方の開口から溶液を吐出すると同時に、他方の開口から吸引することで、吐出した溶液が広がってしまうことを抑制し、狭小な領域に溶液が留まることを可能としている(例えば非特許文献1参照)。
 一方、マイクロピペットと称するものは、ポリジメチルシロキサン(PDMS)等で形成したピペットの先端部に3つの開口を一列状に形成し、その中央の開口から溶液等を吐出すると同時に、その両側の開口から吸引することで、上記と同様に溶液等の固相表面での広がりを抑制している(例えば非特許文献2参照)。
David Juncker et al."Multipurpose microfluidic probe" nature materials ADVANCE ONLINE PUBRICATION(www.nature.com/naturematerials),24 July 2005 Alar Ainla et al."A multifunctional pipette" lab chip,2012,12,p1255-1261,The Royal Society of Chemestry
 上記した従来の手法のうち、化学処理すべき固相を溶液中に浸漬する手法では、固相表面に位置選択的に処理を施したい場合には適用することができない。
 これに対し、ディスペンサを用いて固相表面に溶液を所要のパターンで描画する手法では、ディスペンサ口径の縮小化には、製造技術面やメンテナンス性の面において制約があるため、化学処理のための分子の固定化面積の微小化には限度がある。また通常吐出口の数は1個であり、反応に供する2種類以上の溶液を吐出することは困難である。
 一方、マイクロフルイディクス技術におけるマイクロフルイディクスプローブやマイクロピペットと称するツールを用いる場合には、溶液の吐出口の横もしくは両横に吸引口を設けて、固相表面での溶液の広がりを抑制するため、上記した手法に比してよりパターンの微細化が可能であると考えられるが、これらのツールによれば、吸引口が吐出口に対して1次元方向に存在しているため、それに直交する方向への溶液の広がりの抑制効果は限定的であり、いわゆる「滲み」を全方位にわたって防止することが容易ではないという問題がある。
 本発明はこのような実情に鑑みてなされたもので、溶液中の分子の固相表面への固定化の効率を向上させ、かつ、固相表面に吐出した溶液の広がりを確実に抑制して、固定化面積の微小化を可能とした、位置選択的な微細パターニング用表面化学処理装置の提供をその課題としている。
 上記の課題を解決するため、本発明の微細パターニング用表面化学処理装置は、気相もくしは液相中に置かれた固相の表面に、所要パターンの化学的処理を施すための装置であって、一端が開口し、他端が液供給手段に連通する第1の管路と、その第1の管路の開口の周りを囲むように一端が開口し、他端が液吸引手段に連通する第2の管路と、これらの第1と第2の管路の開口を上記気相もしくは液相中で上記固相の表面に対向させた状態で、当該各開口と固相とを相対的に移動させる移動機構を備え、上記液供給手段から上記第1の管路内に上記固相表面と反応して当該表面を化学処理するためのパターニング溶液を供給して当該第1の管路の開口から吐出させつつ、上記液吸引手段の駆動により上記第2の管路の開口を通じて上記第1の管路の開口から吐出したパターニング溶液を上記気相もしくは液相とともに吸引しながら、上記第1と第2の管路の開口と上記固相とを相対移動させて所要パターンの化学的処理領域を形成することによって特徴づけられる(請求項1)。
 ここで、本発明においては、上記第1の管路に向けてシース液を供給することにより、当該第1の管路中でシースフローを形成して上記パターニング溶液を中央に収束させるためのシース液供給用管路を備えている構成(請求項2)を好適に採用することができる。
 また、本発明において、上記移動機構としては、上記各開口と固相とを3次元方向に相対移動させる機構であり、設定手段によりあらかじめ設定された順路で上記開口と固相とを相対移動させる構成(請求項3)とすることができる。
 そして本発明においては、上記第1と第2の管路、または、上記第1と第2の管路およびシース液供給用管路は、Siを用いて形成した構造体からなる構成(請求項4)を採用することができる。
 本発明は、溶液の吐出口近傍を二重管構造とし、その内管から溶液を吐出しながら、外管で吸引することで課題を解決しようとするものである。
 すなわち、一端が開口する第1の管路の他端に液供給手段を連通させ、この第1の管路の開口の周りを囲むように第2の管路の一端を開口させ、この第2の管路の他端は液吸引手段に連通させる。そして、第1および第2の管路の開口を、パターニングすべき固相表面を覆う気相もしくは液相中で当該固相表面に対向させた状態で、液供給手段と液吸引手段を同時に駆動することにより、第1の管路の開口からパターニング溶液を吐出すると同時にその周囲の第2の管路の開口からパターニング溶液と気相もしくは液相を吸引する。
 以上の動作によると、第1の管路の開口から固相表面に向けて吐出されたパターニング溶液は、その周囲の全方位から吸引される結果、固相表面上での「滲み」を全方位にわたって防止することが可能となる。これにより、固相表面の極微小面積の領域において、溶液中の溶質を濃縮して固定化することができ、従来装置や手法に比して固定化の効率が向上する。すなわち、本発明によれば、溶液中の溶質の固相表面への固定化の効率を向上させつつ、固定化の面積の微小化を可能とし、高効率で微細なパターンでの表面化学処理装置を実現することができる。
 本発明の装置を用いることにより、ガラス素材やシリコン基板上の任意の位置に、任意の微細パターンのもとに目的に応じた機能を有する分子を構築することができる。
 また、金属膜上にチオール基を有する分子のパターン形成が可能となり、その上の特定の位置に別の分子を形成することも可能となる。
 そして、請求項2に係る発明では、第1の管路に対してシース液を供給してシースフローを形成し、パターニング溶液を第1の管路中で中央に収束させる。したがってこの請求項2に係る発明では、第1の管路の開口から吐出されるパターニング溶液は、当該第1の管路の開口よりも細い流れとなって固相表面に到達し、より微細なパターニングが可能となる。このシースフローを利用した構成によれば、管路の製造技術面やメンテナンス性の面において、第1の管路の開口径の縮小化に制約があっても、分子の固定化面積をより一層微小化することができる。
 パターニングのために第1および第2の管路の各開口と固相とを相対的に移動させる移動機構は、請求項3に係る発明のように、設定手段で設定された順路のもとに移動させる機構を採用すると、同じ固相もしくは複数の固相表面に互いに同等のパターンを形成する上で有用であり、その際、その相対移動は固相表面に沿った2次元方向のほか、第1および第2の開口と固相表面との距離がパターニングの線幅に影響を及ぼすファクターとなるため、各開口と固相表面とが互いに接近/離隔する方向への相対移動も併せて設定通りに行うことが好ましい。このような設定通りに相対移動させる移動機構の採用により、一つの固相表面にある溶液を用いて分子を固定化した後、その固定化されたパターンに対して一定の位置関係もしくは重畳して、他の溶液を用いて他の分子を固定化するような用途に適用することも可能となる。
 そして、本発明においては、第1の管路と第2の管路、あるいはそれに加えてシース液供給用管路を、例えばガラス細工等により形成したり、あるいは各種の樹脂で形成してもよいが、請求項4に係る発明のようにSiを用いた構造体とすることにより、パターンの微細化がより容易となる。
本発明の実施形態の基本構成を示す模式図。 本発明の他の実施形態の要部構成を示す模式図。
 以下、図面を参照しつつ本発明の実施の形態について説明する。図1は本発明の基本的な実施の形態の構成を示す模式図である。
 表面にパターニング処理を施すべきガラス素材やシリコン基板などの固相1は、気相もしくは液相、この例では液相2が収容された容器3内に保持部材(図示略)により保持されて配置され、液相2内に浸漬された状態で処理に供される。容器3はステージ4上に固定されている。ステージ4は移動機構21の駆動により固相1の表面に沿うx,y方向およびそれに直交するz方向に移動する。この移動機構21は、制御部22の制御下に置かれており、制御部22は、設定部23により設定され記憶部24に記憶されている移動経路通りにステージ4が移動するように移動機構21を制御する。なお、制御部22、設定部23および記憶部24は、コンピュータとその周辺機器によって構成することができる。
 ステージ4の上方には、第1の管路11と、その外側を囲むように配置された第2の管路12とからなる二重管が設けられている。これらの各管路11,12の一端(下端)はそれぞれ開口部11a,12aを形成しており、これらの各開口部11a,12aは、液相2内に浸漬された状態で固相1の表面に対向している。
 第1の管路11の他端(上端)部11bは配管13を介して注入用ポンプ14の吐出口14aに連通しており、この注入用ポンプ14の吸引口14bはパターニング溶液31を貯留するパターニング溶液槽(図示略)に接続されている。パターニング溶液31は、溶質32を溶媒33に溶解させたものであり、溶媒33は容器3中の液相2と同じ液であってもよい。
 第2の管路12の他端(上端)部12bは配管15を介して排出用ポンプ16の吸引口16aに連通しており、この排出用ポンプ16の吐出口16bは液排出口(図示略)に連通している。
 以上の実施の形態の作用を述べると、実際の装置の駆動に先立ち、設定部23の操作により、固相1の表面に描画すべきパターンに基いて、ステージ4の移動経路をあらかじめ設定する。その設定内容は記憶部24に記憶される。
 装置に駆動開始指令を与えると、注入用ポンプ14および排出用ポンプ16の双方を駆動しながら、記憶部24に記憶された移動経路のもとに移動機構21を駆動制御してステージ4を移動させる。注入用ポンプ14の駆動によりパターニング溶液31が第1の管路11内に流入し、その下端の開口部11aから固相1に向けて管外へと流出する。このパターニング溶液31の流出により、溶媒33に溶解している溶質32が固相1の表面に所要のパターンのもとに固定化され、溶質32によるパターニング領域34が形成される。このとき、排出用ポンプ16も駆動していることから、第1の管路11の開口部11aから流出したパターニング溶液31中の溶媒33と、溶質32の一部は、図中矢印Aで示すように、開口部11aの周りを囲むように位置する第2の管路12の開口部12aから吸引され、併せて周囲の液相2も、矢印Bで示すように管路12の開口部12aから吸引される。
 このような動作によれば、第1の管路11の開口部11aから吐出されたパターニング溶液31は、その周りを囲むように位置する第2の管路12の開口部12aから吸引されるため、溶質32が固相1の表面に接触して固定化されるパターニング領域34の広がりを固相1表面上の全方位にわたって抑制して「滲み」を防止することができる結果、極微小な領域において溶質32を濃縮して固定化することができ、固定化の効率が向上する。
 以上の実施の形態を用いて、マイクロリアクタを作成した例について述べる。この例では、ガラス製のキャピラリプレートの目的とする表面のみに、温度応答性高分子を描画した構造のもので、このキャピラリプレートのキャピラリ部分に物質Aを固定し、温度応答性高分子側から物質Bを反応させるマイクロリアクタであり、物質AとBの反応を温度応答性高分子による親水性制御(ラプラス圧制御)により任意の部分のみで行うことが可能なリアクタである。
 キャピラリプレートの目的とする表面に温度応答性高分子を描画した構造においては、温度による透過性制御を位置選択的に行える。すなわち、転位温度より高い温度では表面が疎水性となるので不透過となり、転位温度より低い温度では表面が親水性となるために透過する。要は、水を溶媒として用いた場合、ラプラス圧が制御可能となり、スイッチング機能が付与されたマイクロリアクタとして動作させることが可能である。
 さて、以上のようなマイクロリアクタの作成においては、まず、ブロモ基をキャピラリプレートの表面に(イソプロピルアミドなどにより)導入し、そのキャピラリプレートを、1~5% N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、および、0.1~5%臭化銅(I)を含有する、メタノール:DMF(1:1)(以下、これを溶媒1と称する)に浸す。
 次に、上記した本発明の実施の形態の第1の管路11に、0.1~5% N-イソプロピルアクリルアミドを前記した溶媒1で希釈した溶液(以下、試薬1と称する)を供給するように設定し、この第1の管路11の開口11aをキャピラリプレートの表面の目的とする位置に近接させる。第1の管路11の開口11aから毎分1~100μLの割合で試薬1を吐出し、第2の管路12の開口12aから毎分1~500μLで溶媒1および試薬1を吸引し、目的位置付近を化学修飾する。ステージ4の駆動によりキャピラリプレートと第1、第2の管路11,12とをx,y方向に相対移動させることにより、任意領域のパターンを描画することもできる。上記は窒素雰囲気下で実施する。
 これにより、キャピラリプレートの目的とする表面のみに温度応答性高分子を導入することができる。
 次に、本発明の他の実施の形態について述べる。図2はその要部構成を示す模式図であり、図1に示したものと同等の部材については同じ符号を付して説明を省略する。
 この図2の実施の形態の特徴は、第1の管路11の上端部近傍にシース形成口51を設け、そのシース形成口51にシース液供給用管路52の一端を接続した点にある。シース液供給用管路52の他端はシース液供給用ポンプ53の吐出口53aに連通し、そのシース液供給用ポンプ53の吸入口53bは、シース液35を貯留するシース液槽(図示略)に連通している。このシース液供給用ポンプ53の駆動により、シース液35が第1の管路11内に流入し、パターニング溶液31とシース液35とからなるシースフローを形成して、パターニング溶液31の流れを第1の管路11の中心に収束させる。したがって、第1の管路11の下端の開口部11aから流出するパターニング溶液31は、当該開口部11aの口径よりも細い流れとなり、排出用ポンプ16の駆動による第2の管路12の開口部12aから、液相2が混在したシース液35および溶媒33と、溶質32の一部が吸引されて排出される。
 このシースフローを利用した構成によると、先の例に比してより一層パターニングの微細化が可能となり、特に、第1の管路11の開口部11aの口径に製造技術面やメンテナンス面での制約があっても、その口径よりも微細な線の描画が可能となる。
 ここで、以上の各実施形態においては、説明の便宜上、第1の管路11、第2の管路12、およびシース液供給用管路52等は、ガラス管や樹脂管などを用いた場合を図示したが、本発明はこれに限定されることなく、これらの材質の管体を用いるほか、MEMS技術を用いて、上記と等価の構造を有したSi製の構造体で構成してもよく、その場合には、パターニングの更なる微細化が期待される。
 また、前記した実施の形態では、表面にパターニングを施すべき固相を搭載したステージを移動させてパターニングを行う例を示したが、本発明は、固相側を固定し、第1,第2の管路側を移動させる機構を備えた構成を採用し得ることは勿論である。
 本発明は、例えばガラス素材やシリコン基板上の任意の位置に、任意のパターンのもとに目的とする分子を構築することができ、例えば微細な各種センサやセンサアレイの作成、あるいは金属膜上にチオール基を有する分子によるパターニング、またその上の特定部位への別の分子のパターニングなど、溶液を用いた固相表面への微細パターンの表面化学処理を行うための装置として有効に利用することができる。
  1 固相
  2 液相(または気相)
  3 容器
  4 ステージ
 11 第1の管路
 12 第2の管路
 13 配管
 14 注入用ポンプ
 15 配管
 16 排出用ポンプ
 21 移動機構
 22 制御部
 23 設定部
 24 記憶部
 31 パターニング溶液
 32 溶質
 33 溶媒
 34 パターニング領域
 35 シース液
 51 シース形成口
 52 シース液供給用管路
 53 シース液供給用ポンプ

Claims (4)

  1.  気相もくしは液相中に置かれた固相の表面に、所要パターンの化学的処理を施すための装置であって、
     一端が開口し、他端が液供給手段に連通する第1の管路と、その第1の管路の開口の周りを囲むように一端が開口し、他端が液吸引手段に連通する第2の管路と、これらの第1と第2の管路の開口を上記気相もしくは液相中で上記固相の表面に対向させた状態で、当該各開口と固相とを相対的に移動させる移動機構を備え、
     上記液供給手段から上記第1の管路内に上記固相表面と反応して当該表面を化学処理するためのパターニング溶液を供給して当該第1の管路の開口から吐出させつつ、上記液吸引手段の駆動により上記第2の管路の開口を通じて上記第1の管路の開口から吐出したパターニング溶液を上記気相もしくは液相とともに吸引しながら、上記第1と第2の管路の開口と上記固相とを相対移動させて所要パターンの化学的処理領域を形成することを特徴とする微細パターニング用表面化学処理装置。
  2.  上記第1の管路に向けてシース液を供給することにより、当該第1の管路中でシースフローを形成して上記パターニング溶液を中央に収束させるためのシース液供給用管路を備えていることを特徴とする請求項1に記載の微細パターニング用表面化学処理装置。
  3.  上記移動機構は、上記各開口と固相とを3次元方向に相対移動させる機構であり、設定手段によりあらかじめ設定された順路で上記開口と固相とを相対移動させることを特徴とする請求項1または2に記載の微細パターニング用表面化学処理装置。
  4.  上記第1と第2の管路、または、上記第1と第2の管路およびシース液供給用管路は、Siを用いて形成した構造体からなっていることを特徴とする請求項1から3のいずれか1項に記載の微細パターニング用表面化学処理装置。
PCT/JP2013/053492 2013-02-14 2013-02-14 微細パターニング用表面化学処理装置 WO2014125591A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/766,494 US9839932B2 (en) 2013-02-14 2013-02-14 Surface chemical treatment apparatus for drawing predetermined pattern by carrying out a chemical treatment
CN201380073044.0A CN104994964B (zh) 2013-02-14 2013-02-14 细微图案化用表面化学处理装置
JP2015500038A JP5956053B2 (ja) 2013-02-14 2013-02-14 微細パターニング用表面化学処理装置
PCT/JP2013/053492 WO2014125591A1 (ja) 2013-02-14 2013-02-14 微細パターニング用表面化学処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053492 WO2014125591A1 (ja) 2013-02-14 2013-02-14 微細パターニング用表面化学処理装置

Publications (1)

Publication Number Publication Date
WO2014125591A1 true WO2014125591A1 (ja) 2014-08-21

Family

ID=51353624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053492 WO2014125591A1 (ja) 2013-02-14 2013-02-14 微細パターニング用表面化学処理装置

Country Status (4)

Country Link
US (1) US9839932B2 (ja)
JP (1) JP5956053B2 (ja)
CN (1) CN104994964B (ja)
WO (1) WO2014125591A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013206458A1 (de) * 2013-04-11 2014-10-16 Eos Gmbh Electro Optical Systems Rotationsbeschichter und Vorrichtung zum generativen Herstellen eines Objekts mit dem Rotationsbeschichter
WO2019149955A1 (en) * 2018-02-05 2019-08-08 Bio-Rad Laboratories, Inc. Microfluidic probe head with barrier projections
WO2020069609A1 (en) 2018-10-01 2020-04-09 Gervais Thomas System and method of fluid delivery
US11458467B2 (en) 2019-08-06 2022-10-04 Bio-Rad Laboratories Inc. Structures to define flow confinement shape and confinement stability with uniform aspiration
CN115038812B (zh) * 2020-02-26 2024-05-28 拓自达电线株式会社 附件、固相粒子回收装置以及固相粒子回收系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203789A (en) * 1981-06-11 1982-12-14 Inoue Japax Res Inc Partial plating device
JPH03151070A (ja) * 1989-11-06 1991-06-27 Agency Of Ind Science & Technol 吐出ノズル
JP2003033699A (ja) * 2001-07-26 2003-02-04 Nichiden Tekkosho:Kk 真空塗装方法及び装置
JP2010172817A (ja) * 2009-01-29 2010-08-12 Micronics Japan Co Ltd 金属微粒子の噴射ノズル

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591391B2 (ja) * 1979-11-19 1984-01-11 コニカ株式会社 塗布物の製造方法
US4826084A (en) * 1986-09-26 1989-05-02 Wallace Norman R Sheathed jet fluid dispersing apparatus
JPH0611422B2 (ja) * 1988-10-04 1994-02-16 富士写真フイルム株式会社 塗布層縁部の吸引処理方法及び吸引ノズル
US5520735A (en) * 1992-06-30 1996-05-28 Nordson Corporation Nozzle assembly and system for applying powder to a workpiece
JP2739839B2 (ja) * 1995-06-20 1998-04-15 日本電気株式会社 流動体の塗布方法
WO2002032588A1 (en) * 2000-10-17 2002-04-25 Neophotonics Corporation Coating formation by reactive deposition
US7108894B2 (en) * 1998-09-30 2006-09-19 Optomec Design Company Direct Write™ System
US6827634B2 (en) * 2000-05-22 2004-12-07 Agency Of Industrial Science And Technology Ultra fine particle film forming method and apparatus
JP3942785B2 (ja) * 2000-01-26 2007-07-11 エスアイアイ・ナノテクノロジー株式会社 光ファイバープローブおよび微小開口付カンチレバーと、それらの開口形成方法
US20020014403A1 (en) * 2000-04-07 2002-02-07 Eiichi Hoshino Method of fabricating reflective mask, and methods and apparatus of detecting wet etching end point and inspecting side etching amount
CN1247314C (zh) * 2000-05-16 2006-03-29 明尼苏达大学评议会 电喷射方法和设备
US6699356B2 (en) * 2001-08-17 2004-03-02 Applied Materials, Inc. Method and apparatus for chemical-mechanical jet etching of semiconductor structures
US8469295B2 (en) * 2002-02-15 2013-06-25 Implant Sciences Corporation Trace chemical particle release nozzle
US7351348B2 (en) * 2005-08-10 2008-04-01 International Business Machines Corporation Evaporation control using coating
CN101310169B (zh) * 2005-11-16 2011-06-08 株式会社日立制作所 液滴生成运送方法和装置以及粒子操作装置
JP2007147456A (ja) * 2005-11-28 2007-06-14 Seiko Epson Corp マイクロ流体システム、試料分析装置、及び標的物質の検出または測定方法
WO2007065001A2 (en) * 2005-11-29 2007-06-07 Bete Fog Nozzle, Inc. Spray nozzles
US20070154641A1 (en) * 2005-12-30 2007-07-05 Brother Kogyo Kabushiki Kaisha Thin-film forming method and mask used therefor
JP2007266074A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 半導体装置の製造方法及び液浸リソグラフィーシステム
JP4907400B2 (ja) * 2006-07-25 2012-03-28 大日本スクリーン製造株式会社 基板処理装置及び基板処理方法
US8194232B2 (en) * 2007-07-24 2012-06-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US8547527B2 (en) * 2007-07-24 2013-10-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method
US20090051895A1 (en) * 2007-08-24 2009-02-26 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, device manufacturing method, and processing system
US8023106B2 (en) * 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
JP4661942B2 (ja) * 2008-05-13 2011-03-30 ソニー株式会社 マイクロチップとその流路構造
JP5573046B2 (ja) * 2009-08-24 2014-08-20 富士通株式会社 成膜装置及び成膜方法
WO2013158178A2 (en) * 2012-01-27 2013-10-24 Ndsu Research Foundation Micro cold spray direct write systems and methods for printed micro electronics
WO2014098905A1 (en) * 2012-12-21 2014-06-26 Clearedge Power Corporation Deposition cloud tower with adjustable field
JP6432236B2 (ja) * 2014-09-17 2018-12-05 富士ゼロックス株式会社 粉体塗装装置、及び粉体塗装方法
CN104294206B (zh) * 2014-10-09 2016-05-04 沈阳富创精密设备有限公司 一种半导体装备用抗高温蠕变接地基片的制备方法
US10130961B2 (en) * 2014-11-07 2018-11-20 National Technology & Engineering Solutions Of Sandia, Llc Two-fluid hydrodynamic printing
US10294567B2 (en) * 2014-12-11 2019-05-21 The Research Foundation For The State University Of New York Electroless copper plating polydopamine nanoparticles
US9446422B2 (en) * 2015-02-10 2016-09-20 Nordson Corporation Adhesive dispensing module and method of spraying a plurality of droplets of a liquid adhesive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203789A (en) * 1981-06-11 1982-12-14 Inoue Japax Res Inc Partial plating device
JPH03151070A (ja) * 1989-11-06 1991-06-27 Agency Of Ind Science & Technol 吐出ノズル
JP2003033699A (ja) * 2001-07-26 2003-02-04 Nichiden Tekkosho:Kk 真空塗装方法及び装置
JP2010172817A (ja) * 2009-01-29 2010-08-12 Micronics Japan Co Ltd 金属微粒子の噴射ノズル

Also Published As

Publication number Publication date
JPWO2014125591A1 (ja) 2017-02-02
US9839932B2 (en) 2017-12-12
CN104994964B (zh) 2017-05-10
JP5956053B2 (ja) 2016-07-20
US20150376796A1 (en) 2015-12-31
CN104994964A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5956053B2 (ja) 微細パターニング用表面化学処理装置
JP4418770B2 (ja) 流体を表面に接触させる装置及び方法
JP4642909B2 (ja) エレクトロウェッティング方式の技術を用いて小滴を操作するための方法および装置
JP5027070B2 (ja) マイクロチャンバ
JP4225972B2 (ja) 過剰な希釈剤を有する精製カラムを備える微小流体デバイスおよび方法
JP2007225438A (ja) マイクロ流体チップ
WO2006014460A3 (en) Spotting device and method for high concentration spot deposition on microarrays and other microscale devices
US9975117B2 (en) Apparatus and method for controlling droplet
JP2007136322A (ja) 反応物質同士の拡散および反応を効率化したマイクロリアクタ、およびそれを用いた反応方法
JP2013040776A (ja) 流路デバイスおよび流体の混合方法
JP4322956B2 (ja) 送液装置及び送液方法
JP4868526B2 (ja) 試料導入マイクロデバイス
JP2007330857A (ja) 送液装置及び送液方法
US20060037657A1 (en) Method and apparatus for controlling minute amount of fluid
JP6968578B2 (ja) マイクロリアクター、並びに、抽出方法及び反応方法
US20130255789A1 (en) Microfluidic device and a related method thereof
KR101809071B1 (ko) 마이크로채널을 통과하는 유체의 기포제거장치와 이것의 제조방법
JP4251353B2 (ja) 微少流体制御方法および微少流体制御装置
JP4460944B2 (ja) マイクロ化学デバイス
JP4599805B2 (ja) 微小流路構造体及びそれを用いた化学反応方法
JP2009183876A (ja) マイクロ流体混合装置および混合方法
JP2002257838A (ja) 位置決め可能な駆動機構とそれを有するチップ
JP5610258B2 (ja) 送液装置
JP2005156500A (ja) 微小流路構造体
JP2009229262A (ja) マイクロチップ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500038

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14766494

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875123

Country of ref document: EP

Kind code of ref document: A1