WO2014119493A1 - 溶接缶胴、溶接缶、溶接缶胴の製造方法、及び溶接缶の製造方法 - Google Patents

溶接缶胴、溶接缶、溶接缶胴の製造方法、及び溶接缶の製造方法 Download PDF

Info

Publication number
WO2014119493A1
WO2014119493A1 PCT/JP2014/051584 JP2014051584W WO2014119493A1 WO 2014119493 A1 WO2014119493 A1 WO 2014119493A1 JP 2014051584 W JP2014051584 W JP 2014051584W WO 2014119493 A1 WO2014119493 A1 WO 2014119493A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
steel plate
welded
laser
laser irradiation
Prior art date
Application number
PCT/JP2014/051584
Other languages
English (en)
French (fr)
Inventor
勇治郎 森岡
新井 隆
小林 伸之
啓 久保
Original Assignee
大日製罐株式会社
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日製罐株式会社, Jfeスチール株式会社 filed Critical 大日製罐株式会社
Priority to US14/761,971 priority Critical patent/US20150314908A1/en
Priority to KR1020157020505A priority patent/KR20150100925A/ko
Priority to JP2014559658A priority patent/JP6307447B2/ja
Priority to CN201480005467.3A priority patent/CN104936738B/zh
Priority to BR112015017569-4A priority patent/BR112015017569B1/pt
Priority to MYPI2015702374A priority patent/MY182087A/en
Priority to SG11201505518RA priority patent/SG11201505518RA/en
Publication of WO2014119493A1 publication Critical patent/WO2014119493A1/ja
Priority to SA515360822A priority patent/SA515360822B1/ar

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/0026Welding of thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • B23K11/065Resistance welding; Severing by resistance heating using roller electrodes for welding curved planar seams
    • B23K11/066Resistance welding; Severing by resistance heating using roller electrodes for welding curved planar seams of tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • B23K11/093Seam welding not restricted to one of the preceding subgroups for curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/34Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/02Combined welding or cutting procedures or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D7/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
    • B65D7/12Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by wall construction or by connections between walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D7/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
    • B65D7/12Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by wall construction or by connections between walls
    • B65D7/34Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by wall construction or by connections between walls with permanent connections between walls
    • B65D7/38Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by wall construction or by connections between walls with permanent connections between walls formed by soldering, welding, or otherwise uniting opposed surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/12Vessels
    • B23K2101/125Cans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D7/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
    • B65D7/02Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by shape
    • B65D7/04Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by shape of curved cross-section, e.g. cans of circular or elliptical cross-section
    • B65D7/045Casks, barrels, or drums in their entirety, e.g. beer barrels, i.e. presenting most of the following features like rolling beads, double walls, reinforcing and supporting beads for end walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D7/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
    • B65D7/02Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by shape
    • B65D7/06Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by shape of polygonal cross-section, e.g. tins, boxes

Definitions

  • a chrome-plated steel plate or a material steel plate made of a chrome-plated steel plate and a resin-coated steel plate coated with a resin coating such as a laminate is joined by a welded portion by resistance welding, and an 18-liter can, a general can body, etc.
  • the present invention relates to a welding can body, a welding can, a manufacturing method of a welding can body, and a manufacturing method of a welding can that can improve production efficiency in can manufacturing.
  • a metal can body such as an 18 liter can or a general can body is formed by superimposing the welded portions of the material steel plates and welding them by a resistance welding method such as a seam welding method. It is manufactured by attaching a top plate (bottom plate) to the can body.
  • Examples of the material steel plate that forms such a welding can include a cover plate, a chrome-plated steel plate (hereinafter referred to as a tin-free steel plate), a resin-coated steel plate in which a tin-free steel plate is coated with a resin coating, and the like. .
  • tin-free steel sheets usually have chromium hydrated oxide formed on the surface of metallic chromium, the electrical resistance is high, and as it is, joining by resistance welding in which an electrode is brought into contact and energized is difficult. Therefore, for the purpose of making welding easier by lowering electrical resistance, removal of the chromium plating film by physical polishing of the welded part and improvement of the chromium plating film of the tin-free steel sheet are performed as pre-welding treatments. ing.
  • polishing scraps may adhere to the can body and remain in the can body. It needs to be prevented. Special attention is required when the content to be filled in the can is food or the like.
  • the chromium plating film is completely removed. Therefore, when a resin film is formed on the welded part by repair coating or repair laminate, a resin such as a repair coating film or repair laminate is used. Adhesion with the coating is reduced. As a result, the content easily penetrates into the welded part, and since the chrome plating film is not formed on the welded part, the corrosion resistance is low when the content penetrates into the welded part, which causes corrosion. There is.
  • Patent Document 1 a technique for forming a low electric resistance of a chromium plating film of a tin-free steel sheet is disclosed (for example, refer to Patent Document 1). According to the technique described in Patent Document 1, since the electrical resistance of the tin-free steel plate is low, good weldability is ensured, and as a result, it is widely spread.
  • a laser polishing method in which a chromium plating film on a planned welding portion of a tin-free steel plate is completely removed by irradiation with laser light as a pretreatment for welding (for example, , See Patent Document 2).
  • Patent Document 1 Although the amount of hydrated chromium oxide is small and the electrical resistance is lowered and the weldability is improved, the corrosion resistance is lowered as compared with a general tin-free steel plate. For this reason, it is difficult to obtain a stable effect as a welding can in applications where sufficient corrosion resistance is required.
  • a material steel plate made of a tin-free steel plate or a resin-coated steel plate coated with a resin coating such as a laminate is joined by resistance welding.
  • welded cans such as liter cans and general cans
  • (2) tin-free material that will be a material steel plate Improve the processing speed of laser processing as a pre-welding process for the pre-welding part of the steel plate, and (3) adhesion and residue of dust and debris in the pre-welding process for the pre-welding part of the tin-free steel plate that will be the material steel plate.
  • the first aspect of the present invention is a tin-free steel plate or a material steel plate made of a resin-coated steel plate coated with a resin coating on a tin-free steel plate, the corresponding portions are overlapped with each other, and the overlapped portions are resistance welded
  • a welding can body configured by forming a welded portion, wherein the planned welding portion planned for the welded portion in the material steel plate has an electrode contact surface on the side in contact with the electrode during the resistance welding.
  • a laser is applied to at least one of the four surfaces comprising the two surfaces constituting the two surfaces constituting the joining surface on the side where the material steel plates are joined by the resistance welding.
  • a laser processing portion is formed in which the laser irradiation portion where the chrome plating is removed and the steel plate is exposed is divided.
  • a method for manufacturing a welded can body comprising forming a material steel plate made of a chrome-plated steel plate or a resin-coated steel plate coated with a resin coating on a chrome-plated steel plate, and forming the formed material steel plate.
  • the laser welding is performed on the portion to be welded that constitutes the welded portion of the welding can body, the two surfaces constituting the electrode contact surface in contact with the electrode during the resistance welding, and the material steel plate by the resistance welding.
  • Laser processing in which the laser irradiation part where the chrome plating is removed and the steel plate is exposed is divided and arranged on at least one of the four surfaces comprising the two surfaces that are to be joined to each other Forming welded portions of the formed steel sheets, and connecting the overlapped portions by resistance welding to form welded portions, thereby forming the welded can body.
  • the third aspect of the present invention is a welding can formed by attaching one or both of the top plate and the bottom plate to the opening of the welding can body of the first aspect of the present invention.
  • a welded can formed by attaching one or both of a top plate and a bottom plate to an opening of the welded can body in the method for manufacturing a welded can body of the second aspect of the present invention. It is a manufacturing method.
  • the welded portion of the material steel plate made of a tin-free steel plate or a resin-coated steel plate is an electrode during resistance welding. At least one of the four surfaces comprising the two surfaces constituting the electrode contact surface on the side in contact with the surface and the two surfaces constituting the joint surface on the side where the material steel plates are joined by resistance welding.
  • a laser processing portion is formed in which the laser irradiation portion where the chrome plating is removed and the steel plate is exposed is divided and arranged.
  • a laser processing part can be processed at high speed by parting the laser irradiation part in a scheduled welding part.
  • a resin-coated steel sheet refers to a steel sheet having a resin film formed on one or both sides of a tin-free steel sheet.
  • the resin film include painting (coating, spraying, etc.), printing, vapor deposition, and the like.
  • the resin film formed on the surface of the tin-free steel plate by the film forming means, and the resin film formed separately from the tin-free steel plate such as a laminate film are integrated on the surface of the tin-free steel plate.
  • the resin includes materials that can be formed as a resin film, such as a polyester resin such as polypropylene resin (PP), polyethylene resin (PE), and polyethylene terephthalate (PET), and an epoxy resin.
  • the laser irradiation portion refers to a portion where chromium plating coated on a tin-free steel plate (including a resin-coated steel plate) forming a material steel plate is removed by laser irradiation.
  • a laser processing part means the welding plan part in which a laser irradiation part and a non-irradiation part are mixed.
  • the laser irradiation part is divided and arranged, that the laser irradiation part is divided and arranged on a straight line extending in at least any direction on the surface of the material steel plate.
  • a straight line constituted by a set of straight lines (including a set of straight lines arranged in parallel and a set arranged crossing each other (in this case, an area surrounded by the intersecting straight lines may be isolated))
  • a form in which a gap is formed between the straight lines may be used, and it is not necessary to be configured as a set of dots divided in all directions.
  • the adhesion amount of chromium in the said laser irradiation part shall be 5 mg / m ⁇ 2 > or less in conversion of metal chromium.
  • the chromium plating is removed by laser irradiation, and the amount of chromium deposited in the laser irradiation portion is 5 mg / m 2 or less in terms of metal chromium.
  • the electrical resistance at the contact portion can be lowered and the welding stability can be improved.
  • the area occupied by the laser irradiation portion in the laser processing portion is 10% or more and 90% or less.
  • the welding can body and the manufacturing method of the welding can body according to the present invention since the area of the laser irradiation portion is 10% or more and 90% or less in the laser processing portion of the welding portion, the weldability is improved. At the same time, when a resin film is formed on the welded portion by repair coating, repair laminate, or the like, the adhesion of the resin film such as the repair coating film or the repair laminate is improved, and as a result, the corrosion resistance can be improved.
  • the laser processed portion is formed on two electrode contact surfaces among the four surfaces constituting the welded portion.
  • the two electrode contact surfaces are laser processing parts
  • the laser processing parts are formed on all surfaces (four surfaces) constituting the welding part. Compared with forming, the cost can be reduced.
  • a weldable range hereinafter referred to as ACR
  • ACR weldable range
  • the material steel plate is formed by laser irradiation on at least one of the four surfaces constituting the welded portion. Since the laser-processed portion in which the laser irradiation portion where the chrome plating is removed and the steel plate is exposed is divided is formed, the overall resistance is lowered, and the weldability at the time of resistance welding can be improved. . Moreover, the laser treatment as the pre-welding process can be performed at a high speed by dividing the laser irradiation part in the planned welding part.
  • the schematic shows an example of the process of forming a laser processing part in a material steel plate by laser irradiation.
  • the inventors have intensively studied improvement of weldability in resistance welding of a welded portion of a steel plate made of a tin-free steel plate or a resin-coated steel plate coated with a resin coating such as a laminate. It is possible to increase the speed of removal of the chromium plating film by laser irradiation and improve the adhesion in the weld repair part or the laminate repair part, and consequently the corrosion resistance of the weld part by leaving the insulating film made of As a result, the present invention was completed. Hereinafter, each embodiment of the present invention will be described in detail.
  • FIG. 1 is a diagram showing a schematic configuration of a can body according to the first embodiment of the present invention, and a symbol W0 is a square can such as an 18L square can (welded can), for example, a symbol W1. Indicates a welding can body, and reference numeral 11 indicates a welded portion of the welding can body.
  • the rectangular can W0 includes, for example, a cylindrical can body W1, a top plate W11, and a bottom plate W12.
  • the top plate W11 and the bottom plate W12 are welded can bodies W1. It is attached to the opening part of both ends.
  • the top plate W11 is formed with a hole H1 for filling the inside of the rectangular can W0 or allowing the content to flow out.
  • the can body W1 is joined by, for example, bending a formed material steel plate and overlapping corresponding edge portions, and resistance welding the overlapped portions to form a welded portion 11.
  • FIGS. 2A to 2C are perspective views schematically showing the manufacturing process up to the can body W1 according to the first embodiment.
  • the material steel plate M is irradiated with, for example, pulsed laser light from the laser irradiation devices L1 and L3 while flowing the material steel plate M in the direction of the arrow T1, thereby forming a laser processing portion.
  • the laser irradiation apparatuses L2 and L4 in which the laser beam is indicated by a broken-line cone portion are as follows. Instead, laser irradiation apparatuses L1 and L3 in which laser light is indicated by solid line conical portions are used.
  • the laser irradiation device L1 forms a laser processing part G1 formed on the front surface side in the drawing
  • the laser irradiation device L3 forms a laser processing part G3 formed on the back surface side in the drawing.
  • the material steel plate M is bent so that the laser processing part G1 and the laser processing part G3 face each other, and the edge part (corresponding part) of the formed material steel sheet M is to be joined.
  • ) Are overlapped with each other to form a can body intermediate product W2 in a state in which the planned welding portion 12 constituting the welding portion 11 can be welded.
  • the laser processed portion G is formed up to the end surface of the material steel plate M.
  • the welding planned portion 12 is sandwiched between the electrode rollers A (A1, A2) and energized to seam weld (resistance welding) the planned welding portion 12.
  • the welded portion 11 is formed and the planned welded portion 12 is joined.
  • the can body W1 as shown in FIG. 2C is manufactured. Then, the square can W0 is manufactured by winding and attaching the top plate W11 and the bottom plate W12 to the can body W1.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the material steel plate M according to the first embodiment.
  • the material steel plate M is a tin-free steel plate generally used as a can material.
  • the tin-free steel plate constituting the material steel plate M includes a steel plate M1, a chromium plating layer M2 applied to both surfaces of the steel plate M1, and a chromium hydrated oxide layer M3 formed on both surfaces of the chromium plating layer M2. It is configured with. With such a configuration, the tin-free steel sheet has a high electric resistance of the chromium plating film, and therefore physical polishing is performed as a pretreatment for resistance welding. However, in normal physical polishing, polishing powder and debris may adhere. is there.
  • FIG. 4 is a diagram illustrating an outline of a laser irradiation process in the manufacturing process of the can body W according to the first embodiment.
  • the laser irradiation device L1 and the laser irradiation device L4 are arranged to face each other.
  • the laser irradiation devices L1, L2, L3, and L4 irradiate, for example, a pulsed laser beam to the welded portion 12 positioned at the edge of the material steel plate M that constitutes the welded portion 11, so that the material steel plate M Remove chrome plating.
  • the laser processing portion G in which the laser irradiation portion where the steel plate M1 is exposed is distributed is formed.
  • the laser processing part G shown in FIG. 4 shows the position of the laser processing part G notionally, and emphasizes the thickness direction for easy viewing.
  • the laser irradiation devices L1 and L3 in which the laser beam is indicated by the solid cone portion are used instead of the laser irradiation devices L2 and L4 in which the laser beam is indicated by the broken cone portion.
  • the laser processing parts G1 and G3 are formed on the corresponding edges by being overlapped while being positioned on opposite surfaces of the material steel plate M.
  • FIG. 5 is a cross-sectional view illustrating a schematic configuration of a laser irradiation unit formed on the material steel plate M according to the first embodiment.
  • the laser irradiation part is formed on only one surface.
  • the laser irradiation section 13 is formed from the surface of the material steel plate M through the chromium plating layer M2 and the chromium hydrated oxide layer M3 until reaching the steel plate M1. Moreover, it is suitable for the adhesion amount of chromium in the laser irradiation part 13 that it is 5 mg / m ⁇ 2 > or less, for example.
  • the area of the laser irradiation part 13 is 10% or more and 90% or less in the area of a welding part. Furthermore, it is more suitable if it is 20% or more and 50% or less.
  • the area ratio of the laser irradiation part 13 in an arbitrary 1 mm ⁇ 1 mm area in the laser processing part G is set. A method such as viewing is effective.
  • the steel plate M1 is exposed in a part of the material steel plate M, and the remaining portion is the chromium hydrated oxide layer M3, so that the electrical resistance is reduced in the laser irradiation unit 13 where the steel plate M1 is exposed.
  • energization is facilitated and weldability is improved.
  • the adhesion and corrosion resistance of the coating film and the like in the repair coating etc. are ensured well, and the resin such as the repair coating film and repair laminate in the welded portion.
  • the adhesion of the coating is improved.
  • the amount of laser energy required is significantly reduced compared to full-scale exfoliation by laser, so it is possible to form a laser-processed part at high speed and follow normal can-making speed, so it can be put to practical use. Becomes easy.
  • the electric resistance of the welded part can be reduced uniformly and stable weldability can be ensured.
  • FIG. 6A is a schematic diagram illustrating an example of the arrangement of the laser processed parts G (G1, G3) in the material steel plate M used in the can body W1 according to the first embodiment
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of a unit 13.
  • the laser processing portion G1 is formed on one surface of the material steel plate M, and the laser processing portion is disposed on the other surface of the material steel plate M.
  • G3 is formed. Both the laser processing part G1 and the laser processing part G3 are located in the site
  • the arrangement of the laser irradiation unit 13 in the laser processing unit G includes, for example, a set 13X of a plurality of laser irradiation units 13 formed along the width direction of the laser processing unit G, and a laser.
  • the laser irradiation unit 13 can be evenly arranged in a predetermined area of the welding unit 11 in the laser processing unit G. Further, portions other than the irradiation unit 13 can also be arranged equally.
  • FIG. 7A is a diagram illustrating a state in which the welding planned portion 12 is resistance-welded in the manufacturing process of the weld can according to the first embodiment.
  • the welding planned portion 12 of the can body intermediate product W2 is moved by the electrode rollers A1 and A2. It is a figure which shows the outline of the state which carries out seam welding.
  • FIG. 7B is a figure which shows an example of arrangement
  • the formed can body intermediate product W2 is moved along the longitudinal direction of the planned welding portion 12 and energized by being sandwiched between the electrode roller A1 and the electrode roller A2. By doing so, the welding part 11 is formed and an object part is connected.
  • the laser processing portion G1 is disposed on the surface in contact with the electrode roller A1 when the laser processing portion G is disposed in the welding target portion 12 when the planned welding portion 12 is seam welded.
  • the laser processing part G3 is arranged on the surface in contact with the electrode roller A2. Further, on the interface side where the steel plates M are in contact with each other, the chrome plating remains without the laser-processed portion G being disposed.
  • FIG. 8A and FIG. 8B are diagrams illustrating a schematic configuration of an arrangement modification example of the laser irradiation unit 13 in the laser processing unit G of the material steel plate M used in the can body W1 according to the first embodiment.
  • the longitudinal direction of the laser processed portion G is indicated by Y.
  • FIG. 8A is a diagram illustrating a first modification of the first embodiment.
  • the laser irradiation units 13 are arranged at equal intervals in the width direction (X direction) of the laser processing unit G, and the like in the X direction.
  • the groups of the laser irradiation units 13 arranged at intervals are repeatedly arranged in the longitudinal direction (Y direction) of the laser processing unit G.
  • interval of laser irradiation parts 13 is made into the substantially same dimension as the laser irradiation part 13 in a X direction and a Y direction.
  • FIG. 8B is a diagram illustrating a second modification of the first embodiment.
  • the laser irradiation units 13 are arranged at equal intervals in the width direction (X direction) of the laser processing unit G, and the like in the X direction.
  • the groups of the laser irradiation units 13 arranged at intervals are repeatedly arranged in the longitudinal direction (Y direction) of the laser processing unit G by shifting the position in the X direction by a half pitch.
  • interval of laser irradiation parts 13 is made into the substantially same dimension as the laser irradiation part 13 in a X direction and a Y direction.
  • the laser processing parts G1 and G3 are formed on two surfaces constituting the electrode contact surface among the planned welding parts 12 of the material steel plate M.
  • the contact resistance can be lowered, the planned welding portion 12 can be efficiently seam welded.
  • the laser processing part G can be formed at high speed by dividing and arranging the laser irradiation part 13 in the planned welding part 12.
  • the amount of chromium deposited on the laser irradiation unit 13 is 5 mg / m 2 or less in terms of metal chromium, so the planned welding part 12 Can be seam welded stably.
  • the area of the laser irradiation unit 13 is, for example, 10% or more and 90% or less in an arbitrary 1 mm ⁇ 1 mm area in the welded part 11. It is said that.
  • the weldability is improved, and a repaired coating film or a repaired laminate when repaired or repaired laminated on the welded part 11.
  • the adhesion of the formed resin film can be improved, and as a result, the corrosion resistance can be improved.
  • the area ratio is 20 to 50%, the ACR is wide, and the area for removing chromium can be made sufficiently small compared to the entire surface polishing (removing chromium over the entire surface of the laser processed portion).
  • the laser processing portion G can be formed at a higher speed, Furthermore, it becomes suitable.
  • the two electrode contact surfaces are the laser processed portions G, all surfaces (four surfaces) constituting the welded portion 11 are used. ), The cost can be reduced as compared with the case where the laser processed portion is formed.
  • the splash means that the material steel plate M protrudes from the welded portion in a needle shape and adheres to the weld can or the weld can body.
  • the laser processed portion is formed at the joint between the material steel plates M, the overall electrical resistance is reduced and the weldability is improved.
  • heat generation at the portion where the electrode and the material steel plate M are in contact with each other The heat generation may be larger than the heat generation of the material steel plate M, and it is easy to melt on the electrode side of the material steel plate M. Therefore, it is considered effective to widen the ACR by forming a laser processed portion at the contact portion between the electrode and the material steel plate M to reduce the electrical resistance at the contact portion between the electrode and the material steel plate M.
  • FIG. 9A is a schematic view showing a configuration of a laser irradiation part in a laser processing part G of a material steel plate used for a welding can body according to the second embodiment, and FIGS. 9B to 9D are modified examples of the second embodiment.
  • FIG. 9A to 9D for example, the longitudinal direction Y and the width direction of the laser processing part G are indicated by X.
  • the laser processing unit G includes a plurality of laser irradiation units 13 having a predetermined length in the Y direction and adjacent to each other in the X direction.
  • a plurality of irradiation units 13 are arranged in the Y direction so as to be shifted from each other by a half pitch.
  • the pulse laser or the continuous laser may be used for forming the laser processed portion G, and the length of the laser irradiation portion 13 can be arbitrarily set as required.
  • a plurality of laser irradiation units 13 having a predetermined length in the Y direction are arranged in the X direction.
  • a plurality of similar ones are arranged in the Y direction.
  • the structure of the laser processing part G according to the second modification of the second embodiment is, for example, as shown in FIG. 9C, a laser formed continuously from the end to the end in the longitudinal direction of the laser processing part G.
  • a plurality of irradiation units 13 are arranged at predetermined intervals in the X direction.
  • the structure of the laser processing part G according to the third modification of the second embodiment is, for example, a laser formed continuously from end to end in the X direction of the laser processing part G as shown in FIG. 9D.
  • a plurality of irradiation units 13 are arranged at predetermined intervals in the Y direction.
  • FIG. 10 is a diagram illustrating a schematic configuration of the arrangement of the laser processed parts G in the material steel plate M when seam welding is performed on the planned welding part 12 in the manufacturing process of the welding can body according to the third embodiment.
  • the third embodiment is different from the first embodiment in that, in the first embodiment, the laser processing parts G1 and G3 are formed on the two surfaces constituting the electrode contact surface in the planned welding part 12. In contrast, in the third embodiment, the laser processed portions G1 and G3 are formed on the two surfaces constituting the electrode contact surface.
  • the laser processing parts G2 and G4 are formed also in the two surfaces which comprise the joint surface by the side of the interface where material steel plates M are joined, and four parts which comprise the welding part 11 are formed.
  • a laser processing part G is formed on all the surfaces. Others are the same as those in the first embodiment, and a description thereof will be omitted.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of a material steel plate made of a laminated steel plate (resin-coated steel plate) MR according to the fourth embodiment.
  • the fourth embodiment is different from the first embodiment in that a laminated steel plate MR is used as a material steel plate constituting the can body W1. Others are the same as those in the first embodiment, and a description thereof will be omitted.
  • the laminated steel plate MR includes a steel plate M1, a chromium plating layer M2 applied to both surfaces of the steel plate M1, a chromium hydrated oxide layer M3 formed on both surfaces of the chromium plating layer M2, And a laminate film F formed on both side surfaces of the chromium hydrated oxide layer M3.
  • the laminate film F is not covered with the planned welding portion 12 in this embodiment.
  • the laminate film F is not described in detail, but various laminate films according to the contents can be applied, and also in the case of a laminate film having a plurality of layers having different functions. Applicable.
  • FIG. 12 is a diagram showing a schematic configuration of a can body according to the fifth embodiment of the present invention.
  • Reference numeral W10 denotes, for example, a cylindrical can (welding can) in which the outer periphery of a pail can or the like is formed in a cylindrical shape.
  • W1A indicates a can body (welding can body), and 11A indicates a welded portion of the can body W1A and the welding can W1A.
  • the cylindrical can W10 includes, for example, a cylindrical can body W1A, a top plate W11A, and a bottom plate W12A.
  • the top plate W11A and the bottom plate W12A are at both ends of the can body W1A. It is attached to the opening.
  • the top plate W11A is formed with a hole H1A for filling the contents inside the cylindrical can W10 or allowing the contents to flow out.
  • the can body W1A is joined, for example, by bending a formed material steel plate and overlapping corresponding edge portions, and resistance welding the overlapped portions to form a welded portion 11A.
  • FIGS. 13A to 13C are perspective views showing an outline of the manufacturing process up to the can body W1A according to the fifth embodiment.
  • the material steel plate M is irradiated with, for example, pulsed laser light from the laser irradiation devices L1 and L3 while flowing the material steel plate M in the direction of the arrow T1, thereby forming a laser processing portion.
  • the laser irradiation apparatuses L2 and L4 in which the laser light is indicated by a broken-line cone portion are provided.
  • laser irradiation apparatuses L1 and L3 in which laser light is indicated by solid line conical portions are used.
  • the laser irradiation device L1 forms a laser processing portion G1 formed on the front surface side in the drawing
  • the laser irradiation device L3 forms a laser processing portion G3 formed on the back surface side in the drawing. .
  • the material steel plate M is bent so that the laser processing part G1 and the laser processing part G3 face each other, and the edge part (corresponding part) of the formed material steel sheet M is to be joined.
  • ) Are overlapped with each other to form a can body intermediate product W2A in a state in which the planned welding portion 12A constituting the welding portion 11A can be welded.
  • the laser processed portion G is formed up to the end surface of the material steel plate M.
  • the welding planned portion 12A is sandwiched between the electrode rollers A (A1, A2) and energized to seam weld (resistance welding) the planned welding portion 12A.
  • the welded part 11A is formed and the welded part 12A is joined.
  • a can body W1A as shown in FIG. 13C is manufactured. Then, the cylindrical can W10 is manufactured by winding and attaching the top plate W11A and the bottom plate W12A to the can body W1A.
  • the rectangular can W0 and the cylindrical can W10 and the corresponding can barrels W1 and W1A have been described.
  • the present invention may be applied to welding cans of other shapes and welding can bodies used for the welding cans.
  • the laser processing portion G may be formed by continuously irradiating the laser. .
  • the adhesion amount of chromium in a laser irradiation part was 5 mg / m ⁇ 2 > or less
  • the adhesion amount of chromium is in the range which can be resistance-welded in a welding scheduled part. In order to improve the weldability, it is effective to reduce the adhesion amount of residual chromium.
  • the area ratio of the laser irradiation part demonstrated the case where it was 10% or more and 90% or less in the area of 1 mm x 1 mm in a welding part
  • the laser irradiation part in the welding part 11 was demonstrated.
  • the area ratio 13 may be arbitrarily set within a range in which resistance welding can be performed on the planned welding portion 12. For example, in order to improve weldability, it is effective to increase the area ratio of the laser irradiation portion 13 in the planned welding portion 12.
  • the laminate layer may have a plurality of layers.
  • Table 1 is a table showing evaluation results regarding high-speed weldability, paint adhesion, corrosion resistance, and weldability, which were performed using Examples 1 to 13 and Comparative Examples 1 and 2 according to the present invention.
  • Examples 1 to 13 and Comparative Examples 1 and 2 were prepared using tin-free steel plates in which a cold-rolled steel plate having a thickness of 0.32 mm and a tempering degree T4CA was plated with chromium.
  • the area ratio (%) occupied by the laser irradiated part in the welded parts of Examples 1 to 13 and Comparative Examples 1 and 2, the arrangement of the laser processed parts (A, B, C) in the welded part, and the chromium adhesion in the laser irradiated part The amount (mg / m 2 ) is as shown in Table 1.
  • FIG. 14 shows the laser processing part in four surfaces which comprise a welding part. The arrangement (presence or absence of formation) is shown.
  • the non-adhesion part was provided continuously in the tape affixing part, and this was made into the tape end. Further, the tape applying part was sufficiently pressed from above so that the tape and the sample were sufficiently adhered.
  • the sample produced by the above method was fixed, the end of the tape was held, and the tape was peeled off by pulling vigorously in the direction of 45 ° with respect to the sample plane. After peeling off the tape, the case where the coating was peeled off was rated as x, and the case where it was not peeled off was marked as ⁇ .
  • a cylindrical cell with a lid of 50 mm ⁇ was prepared.
  • a lid was attached to the cylindrical cell, and the lid was made into a cup shape with the bottom as the bottom, and was filled with the previously prepared corrosive solution.
  • the sample was regarded as an upper lid, and the center of the marking surface was placed inside the center of the cell, and the cell was covered with a cell filled with a caustic solution, and was tied up so that the solution did not leak even if the cell and the sample were turned over.
  • the sample was inverted so that it came to the lower side, charged in a thermostatic bath, and allowed to age for 4 days at 38 ° C. A sample after the lapse of time was taken out and the corrosion state was observed.
  • the case where the corrosion is only in the marking portion is indicated by ⁇
  • the case where the corrosion proceeds under the coating film is indicated by ⁇ .
  • Examples 1 to 13 high-speed weldability, paint adhesion, corrosion resistance, and weldability are all good results.
  • the weldability was particularly excellent ( ⁇ ).
  • Examples 8 and 9 are the same conditions as Example 2 except that the laser-processed portion Cr adhesion amount is 3 mg / m 2 and 5 mg / m 2 , but the residual Cr adhesion amount is large. As a result, the weldability is ⁇ .
  • Examples 10 to 12 have the same conditions as those of Examples 3 to 5 except that the target surface of the laser processing part is B (only one of the two electrode contact surfaces forms a laser processing part). However, since the laser-processed part is one side, the weldability is good.
  • the area ratio of the laser irradiation part in the laser processing part is 100%, and the laser irradiation part is formed on two surfaces in contact with the electrode among the parts constituting the welding part. .
  • the area ratio of the laser irradiated portion in the laser processed portion is 0%, and all the welded portions are laser non-irradiated portions and do not have a laser irradiated portion. Come off. As a result, the weldability is x.
  • the amount of laser energy required per unit area is reduced compared to the entire surface peeling by laser, so if the amount of energy (output) per unit time of laser is constant, the laser processing part is formed at high speed. It becomes possible.
  • the amount of residual chromium is 5 mg / m ⁇ 2 > or less in conversion of metal chromium, and the stable weldability is ensured.
  • the present invention it is possible to improve the weldability at the time of resistance welding to a material steel plate, and therefore it can be used industrially.
  • W0 square can (welded can) W10 Cylindrical can (welded can) W1, W1A Can body (welded can body) W11, W11A Top plate W12, W12A Bottom plate
  • Material steel plate MR Laminated steel plate (material steel plate, resin-coated steel plate) M1 Steel plate M2 Chromium plating layer M3 Chromium hydrated oxide layer F Laminate film (resin coating) A, A1, A2 Electrode roller (electrode) G, G1, G2, G3, G4 Laser processing part 11 Welding part 12 Welding planned part 13 Laser irradiation part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

 この発明の溶接缶胴は、ティンフリー鋼板又はティンフリー鋼板に樹脂被膜が被覆された樹脂被覆鋼板からなる材料鋼板を成形し、対応する部位を互いに重ね合せて、重ね合せた部位を抵抗溶接して溶接部とすることで構成され、前記材料鋼板において前記溶接部に予定される溶接予定部(12)は、前記抵抗溶接の際に電極(A)と接触する側の電極接触面を構成する二つの面と、前記抵抗溶接により前記材料鋼板同士が接合される側の接合面を構成する二つの面と、からなる四つの面のうち少なくとも一つの面に、前記抵抗溶接前にレーザー照射することにより、クロムめっきが除去され鋼板が露出するレーザー照射部が分断配置されたレーザー加工部が形成されている。

Description

溶接缶胴、溶接缶、溶接缶胴の製造方法、及び溶接缶の製造方法
 本発明は、クロムめっき鋼板、又はクロムめっき鋼板にラミネートをはじめとする樹脂被膜が被覆された樹脂被覆鋼板からなる材料鋼板を抵抗溶接による溶接部により接合して、18リットル缶や一般缶体等の溶接缶を形成する際に、製缶における生産効率を向上することが可能な溶接缶胴、溶接缶、溶接缶胴の製造方法、及び溶接缶の製造方法に関する。
 本願は、2013年1月29日に、日本に出願された特願2013-014644号に基づき優先権を主張し、その内容をここに援用する。
 周知のように、18リットル缶や一般缶体等の金属缶体は、材料鋼板の溶接予定部を重ね合せて、シーム溶接法等の抵抗溶接法により溶接して缶胴部を形成し、この缶胴部に天板(底板)を取付けて製造される。
 このような溶接缶を形成する材料鋼板としては、例えば、ぶりき板、クロムめっき鋼板(以下、ティンフリー鋼板という。)や、ティンフリー鋼板に樹脂被膜が被覆された樹脂被覆鋼板等が用いられる。
 ティンフリー鋼板は、通常、金属クロムの表面にクロム水和酸化物が形成されていることから、電気抵抗が高く、そのままでは、電極を接触させて通電する抵抗溶接による接合は困難である。
 そこで、電気抵抗を低くして溶接しやすくすることを目的として、溶接前処理として、溶接部を物理研磨することによるクロムめっき被膜の除去や、ティンフリー鋼板のクロムめっき被膜の改良等が行われている。
 しかしながら、溶接部を物理研磨する場合には、缶体に研磨屑等が付着して缶体内に残留する可能性があることから、残留した研磨屑等が、缶体内において製品に混入するのを防止する必要が生じる。缶体内に充填する内容物が食品等である場合には、特に注意が必要とされる。
 また、溶接部を物理研磨する場合には、クロムめっき被膜が完全に除去されるので、溶接部に補修塗装や補修ラミネート等により樹脂被膜を形成する際に、補修塗装膜や補修ラミネート等の樹脂被膜との密着性が低下する。
 その結果、内容物が溶接部に浸透しやすくなり、しかも、溶接部にクロムめっき被膜が形成されていないので、内容物が溶接部に浸透した場合の耐食性が低く、腐食の要因となるという問題がある。
 そこで、上記課題を解決するために、例えば、ティンフリー鋼板のクロムめっき被膜の電気抵抗を低く形成する技術が開示されている(例えば、特許文献1参照。)。
 特許文献1に記載の技術によれば、ティンフリー鋼板の電気抵抗が低いので、良好な溶接性が確保され、その結果、一般にも広く普及している。
 また、上記課題を解決するために、例えば、ティンフリー鋼板の溶接予定部のクロムめっき被膜を、溶接前処理としてレーザー光を照射して完全に除去するレーザーによる研磨方法が開示されている(例えば、特許文献2参照。)。
 特許文献2に記載のレーザーによる研磨方法によれば、従来の物理研磨では、クロムめっき被膜を完全に除去することが困難であっためっき層を、レーザー照射により完全に除去することが可能とされ、良好な溶接性を得ることができる。 さらに、クロムめっき被膜の除去に際してチリや屑がほとんど発生しないので、缶体内の製品にチリや屑等が混入するのを抑制することが可能である。
日本国特公平6-37712号公報 日本国特開昭62-34682号公報
 しかしながら、特許文献1に開示された技術によれば、水和クロム酸化物の量が少なく、電気抵抗が低下して溶接性は向上するものの、一般的なティンフリー鋼板に比較すると、耐食性が低下することから、充分な耐食性が要求される用途では、溶接缶として安定した効果を得ることが困難である。
 また、特許文献2に開示された技術によれば、溶接前処理工程でクロムめっきを完全に除去することから、抵抗溶接により溶接部を効率的かつ安定して接合可能である点では効果が大きい。
 しかしながら、溶接部のめっき被膜を完全に除去するためには、溶接部全面にレーザーを高出力で照射する必要があり、1缶あたりの処理時間が長くなるうえに、レーザー研磨工程を製缶ラインに組み込むとライン速度の低下を招き生産性を阻害する。
 このことが、レーザー研磨技術を実用化する上で大きなデメリットとなり、普及に至らない要因となっている。
 また、溶接部の耐食性が保てない(めっきを完全に除去する為、補修塗料や補修フィルムとの密着性が劣る為)ことも、レーザーによる研磨が普及に至らない理由となっている。
 この発明は、このような事情を考慮してなされたものであり、ティンフリー鋼板、又はラミネートをはじめとする樹脂被膜が被覆された樹脂被覆鋼板からなる材料鋼板を抵抗溶接により接合して、18リットル缶や一般缶体等の溶接缶を製造する際に、(1)材料鋼板となるティンフリー鋼板の溶接予定部の抵抗溶接における溶接性を向上すること、(2)材料鋼板となるティンフリー鋼板の溶接予定部の溶接前処理としてのレーザー加工処理の処理速度を向上させること、(3)材料鋼板となるティンフリー鋼板の溶接予定部の溶接前処理におけるチリや屑等の付着、残留を抑制すること、(4)材料鋼板となるティンフリー鋼板を溶接缶として形成した場合に溶接部における密着性を向上することが可能であること、の少なくとも一つを解決することが可能な溶接缶胴、溶接缶、溶接缶胴の製造方法、溶接缶の製造方法を提供することを目的とする。
 本発明の各態様は、以下の通りである。
 本発明の第1の態様は、ティンフリー鋼板又はティンフリー鋼板に樹脂被膜が被覆された樹脂被覆鋼板からなる材料鋼板を成形し、対応する部位を互いに重ね合せて、重ね合せた部位を抵抗溶接して溶接部とすることで構成される溶接缶胴であって、前記材料鋼板において前記溶接部に予定される溶接予定部は、前記抵抗溶接の際に電極と接触する側の電極接触面を構成する二つの面と、前記抵抗溶接により前記材料鋼板同士が接合される側の接合面を構成する二つの面と、からなる四つの面のうち少なくとも一つの面に、前記抵抗溶接前にレーザー照射することにより、クロムめっきが除去され鋼板が露出するレーザー照射部が分断配置されたレーザー加工部が形成されている。
 本発明の第2の態様は、溶接缶胴の製造方法であって、クロムめっき鋼板又はクロムめっき鋼板に樹脂被膜が被覆された樹脂被覆鋼板からなる材料鋼板を成形し、前記成形された材料鋼板において前記溶接缶胴の溶接部を構成する溶接予定部にレーザー照射して、前記抵抗溶接の際に電極と接触する側の電極接触面を構成する二つの面と、前記抵抗溶接により前記材料鋼板同士が接合される側の接合面を構成する二つの面と、からなる四つの面のうち少なくとも一つの面に、クロムめっきが除去され鋼板が露出されたレーザー照射部が分断配置されたレーザー加工部を形成し、前記成形された材料鋼板の溶接予定部を互いに重ね合せ、前記重ね合せた部位を抵抗溶接して溶接部とすることで接続して、前記溶接缶胴を形成する。
 本発明の第3の態様は、本発明の第1の態様の溶接缶胴の開口部に、天板と底板のいずれか一方又は双方を取付けて形成した溶接缶である。
 本発明の第4の態様は、本発明の第2の態様の溶接缶胴の製造方法において、溶接缶胴の開口部に、天板と底板のいずれか一方又は双方を取付けて形成する溶接缶の製造方法である。
 この発明に係る溶接缶胴、溶接缶、溶接缶胴の製造方法及び溶接缶の製造方法によれば、ティンフリー鋼板又は樹脂被覆鋼板からなる材料鋼板の溶接予定部は、抵抗溶接の際に電極と接触する側の電極接触面を構成する二つの面と、抵抗溶接により材料鋼板同士が接合される側の接合面を構成する二つの面と、からなる四つの面のうち少なくとも一つの面に、レーザー照射によって、クロムめっきが除去されて鋼板が露出するレーザー照射部が分断して配置されたレーザー加工部が形成されている。その結果、溶接予定部を抵抗溶接する際の溶接性を向上することができる。
 また、溶接予定部におけるレーザー照射部を分断することにより、レーザー加工部を高速で加工することができる。
 この明細書において、樹脂被覆鋼板とは、ティンフリー鋼板の片側又は両側の面に樹脂被膜が形成された鋼板をいい、樹脂被膜とは、例えば、塗装(塗布、スプレー等)、印刷、蒸着等の被膜形成手段によってティンフリー鋼板の表面に形成された樹脂被膜や、ラミネートフィルム等ティンフリー鋼板とは別個に形成された樹脂被膜をティンフリー鋼板の表面に一体化させたものを含む。
 また、樹脂としては、ポリプロピレン樹脂(PP)、ポリエチレン樹脂(PE)、ポリエチレンテレフタレート(PET)等のポリエステル樹脂、エポキシ樹脂等、樹脂被膜として形成可能な材質を含む。
 この明細書において、レーザー照射部とは、材料鋼板をなすティンフリー鋼板(樹脂被覆鋼板を含む)に被覆されたクロムめっきが、レーザーを照射することにより除去された部分をいう。また、レーザー加工部とは、レーザー照射部と非照射部が混在する溶接予定部をいう。
 また、この明細書において、レーザー照射部が分断して配置されているとは、レーザー照射部が材料鋼板の面上の少なくともいずれかの方向に延在する直線上において、分断配置されていることをいう。例えば、直線の集合(平行配置される直線の集合、互いに交差して配置される集合(この場合、交差する直線に囲まれる領域が孤立されていてもよい)を含む)により構成された直線と直線の間に間隙が形成された形態でもよく、すべての方向に分断されたドットの集合として構成されることを要しない。
 本発明の第1の態様又は第2の態様では、前記レーザー照射部におけるクロムの付着量を金属クロム換算で5mg/m以下とすることが好適である。
 この発明に係る溶接缶胴、溶接缶胴の製造方法によれば、レーザー照射により、クロムめっきを除去させて、レーザー照射部におけるクロムの付着量を金属クロム換算で5mg/m以下とすることで、接触部における電気抵抗を下げ、溶接安定性を向上させることができる。
 本発明の第1の態様又は第2の態様では、前記レーザー加工部におけるレーザー照射部が占める面積を10%以上90%以下とすることが好適である。
 この発明に係る溶接缶胴、溶接缶胴の製造方法によれば、レーザー照射部の面積が、前記溶接部のレーザー加工部において10%以上90%以下とされているので、溶接性が向上するとともに、溶接部に補修塗装や補修ラミネート等により樹脂被膜を形成する際に、補修塗装膜や補修ラミネート等の樹脂被膜の密着性が向上し、ひいては耐食性を向上することができる。
 本発明の第1の態様又は第2の態様では、前記溶接部を構成する四つの面のうち、二つの前記電極接触面に前記レーザー加工部が形成されていることが好適である。
 この発明に係る溶接缶胴、溶接缶胴の製造方法によれば、二つの電極接触面がレーザー加工部とされているので、溶接部を構成するすべての面(四つの面)にレーザー加工部を形成するのに比較して、コストを削減することができる。
 また、レーザー加工部を、材料鋼板同士が接合される二つの接合面に形成する場合と比較して、抵抗溶接における溶接可能範囲(以下、ACRという)を広く確保することができ、溶接性が良好である。
 本発明に係る溶接缶胴、溶接缶、溶接缶胴の製造方法及び溶接缶の製造方法によれば、材料鋼板において溶接部を構成する四つの面のうち少なくとも一つの面に、レーザー照射により形成され、クロムめっきが除去されて鋼板が露出するレーザー照射部が分断配置されたレーザー加工部が形成されているので、全体としての抵抗が下がり、抵抗溶接する際の溶接性を向上することができる。
 また、溶接予定部におけるレーザー照射部を分断することにより、溶接前処理としてのレーザー処理を高速で実施することができる。
本発明の第1の実施形態に係る角形状缶の概略構成の一例を示す図である。 第1の実施形態に係る角形状缶の製造工程の概略の一例を示す斜視図であり、レーザー照射装置からレーザー光を照射して、材料鋼板にレーザー加工部を形成する状態を示す図である。 第1の実施形態に係る角形状缶の製造工程の概略の一例を示す斜視図であり、缶胴中間品をシーム溶接することにより溶接予定部を接合する状態を示す図である。 第1の実施形態に係る角形状缶の製造工程の概略の一例を示す斜視図であり、製造された缶胴を示す図である。 第1の実施形態に係る材料鋼板を構成するティンフリー鋼板の概略構成の一例を示す断面図である。 第1の実施形態に係る溶接缶の製造工程において、レーザー照射により材料鋼板にレーザー加工部を形成する工程の一例を示す概略図である。 第1の実施形態に係るティンフリー鋼板に形成されたレーザー照射部の概略構成の一例を説明する断面図である。 第1の実施形態に係る溶接缶胴に用いる材料鋼板におけるレーザー加工部の配置の一例を示す概略図である。 第1の実施形態に係る溶接缶胴に用いる材料鋼板に形成されたレーザー加工部におけるレーザー照射部の配置の概略構成の一例を示す図である。 第1の実施形態に係る溶接缶の製造工程において、溶接予定部を抵抗溶接する状態の一例を示す図であり、溶接缶胴の溶接予定部を電極ローラによりシーム溶接する状態の概略を示す図である。 第1の実施形態に係る溶接缶の製造工程において、抵抗溶接した溶接予定部におけるレーザー加工部の断面の配置の一例を示す図である。 第1の実施形態に係る溶接缶胴に用いる材料鋼板のレーザー加工部におけるレーザー照射部の配置を変形した第1変形例の概略構成を説明する図である。 第1の実施形態に係る溶接缶胴に用いる材料鋼板のレーザー加工部におけるレーザー照射部の構成を変形した第2変形例の概略構成を説明する図である。 本発明の第2の実施形態に係る溶接缶胴に用いる材料鋼板のレーザー加工部におけるレーザー照射部の概略構成の一例を説明する図である。 本発明の第2の実施形態に係る溶接缶胴に用いる材料鋼板のレーザー加工部におけるレーザー照射部の配置を変形した第1変形例の概略構成を説明する図である。 本発明の第2の実施形態に係る溶接缶胴に用いる材料鋼板のレーザー加工部におけるレーザー照射部の配置を変形した第2変形例の概略構成を説明する図である。 本発明の第2の実施形態に係る溶接缶胴に用いる材料鋼板のレーザー加工部におけるレーザー照射部の配置を変形した第3変形例の概略構成を説明する図である。 本発明の第3の実施形態に係る溶接缶胴の製造工程において、溶接予定部を抵抗溶接する場合における、材料鋼板におけるレーザー加工部の配置の概略構成の一例を説明する図である。 本発明の第4の実施形態に係る溶接缶胴に用いるラミネート鋼板の概略構成の一例を示す断面図である。 本発明の第5の実施形態に係る円筒形状缶の概略構成の一例を示す図である。 第5の実施形態に係る円形形状缶の製造工程の概略の一例を示す斜視図であり、レーザー照射装置からレーザー光を照射して、材料鋼板にレーザー加工部を形成する状態を示す図である。 第5の実施形態に係る円形形状缶の製造工程の概略の一例を示す斜視図であり、缶胴中間品をシーム溶接することにより溶接予定部を接合する状態を示す図である。 第5の実施形態に係る円形形状缶の製造工程の概略の一例を示す斜視図であり、製造された缶胴を示す図である。 本発明の実施例を説明するための溶接部におけるレーザー加工部の概略構成の一例を示す図である。
 そこで、発明者らは、ティンフリー鋼板、又はラミネートをはじめとする樹脂被膜が被覆された樹脂被覆鋼板からなる材料鋼板の溶接予定部の抵抗溶接における溶接性の向上を鋭意研究した結果、クロムめっきからなる絶縁被膜をあえて部分的に残すことで、レーザー照射によるクロムめっき被膜の除去の高速化と、溶接補修部又はラミネート補修部における密着性、ひいては溶接部の耐食性を向上することが可能であるとの知見を得て、本発明を完成させた。以下に、本発明の各実施形態について詳述する。
<第1の実施形態>
 以下、図1から図8Bを参照して、この発明の第1の実施形態について説明する。
 図1は、本発明の第1の実施形態に係る缶体の概略構成を示す図であり、符号W0は例えば、18L角缶(Square Can)(溶接缶)などの角形状缶を、符号W1は溶接缶胴を、符号11は溶接缶胴の溶接部を示している。
 角形状缶W0は、図1に示すように、例えば、筒状に形成された缶胴W1と天板W11と、底板W12とを備えており、天板W11及び底板W12は、溶接缶胴W1の両端の開口部に取付けられている。
 天板W11には、角形状缶W0の内部に内容物を充填し又は内容物を外部に流出させるための孔H1が形成されている。
 また、缶胴W1は、例えば、成形した材料鋼板を湾曲して対応する辺の縁部同士を重ねて、重ね合せた部分を、抵抗溶接して溶接部11を形成して接合されている。
 次に、図2A~図2Cを参照して、第1の実施形態に係る缶体Wの製造方法の概略について説明する。図2A~図2Cは、第1の実施形態に係る缶胴W1までの製造工程の概略を示す斜視図である。
 まず、図2Aに示すように、材料鋼板Mを矢印T1方向に流しながら、レーザー照射装置L1、L3から、例えば、パルス状のレーザー光を材料鋼板Mに照射して、レーザー加工部を形成する。
 ここで、図2Aには、4基のレーザー照射装置L1、L2、L3、L4が設けられているが、この実施形態では、レーザー光を破線の円錐部で示したレーザー照射装置L2、L4は用いずに、レーザー光を実線の円錐部で示したレーザー照射装置L1、L3を用いている。
 また、レーザー照射装置L1は、図において表面側に形成されるレーザー加工部G1を形成し、レーザー照射装置L3は、図において裏面側に形成されるレーザー加工部G3を形成する。
 次に、図2Bに示すように、レーザー加工部G1及びレーザー加工部G3が互いに対面するように材料鋼板Mを湾曲して、成形された材料鋼板Mの接合されるべき縁部(対応する部位)同士を重ね合せ、溶接部11を構成する溶接予定部12を溶接可能な状態の缶胴中間品W2を形成する。なお、この実施形態では、レーザー加工部Gが、材料鋼板Mの端面まで形成されている。
 そして、形成した缶胴中間品W2を、矢印T2方向に移動させながら、溶接予定部12を電極ローラA(A1、A2)で挟み、通電して溶接予定部12をシーム溶接(抵抗溶接)することで溶接部11を形成して、溶接予定部12を接合する。
 図2A、図2Bを経て、図2Cに示すような缶胴W1が製造される。
 その後、缶胴W1に、天板W11及び底板W12を巻き締めて取付けることにより、角形状缶W0が製造される。
 次に、図3を参照して、第1の実施形態に係る缶体Wに用いる材料鋼板Mの概略構成について説明する。図3は、第1の実施形態に係る材料鋼板Mの概略構成を示す断面図であり、この実施形態において、材料鋼板Mは、缶用材料として一般的に用いられるティンフリー鋼板である。
 材料鋼板Mを構成するティンフリー鋼板は、鋼板M1と、鋼板M1の両側表面に施されたクロムめっき層M2と、クロムめっき層M2の両側表面に形成されたクロム水和酸化物の層M3とを備えて構成されている。
 かかる構成により、ティンフリー鋼板は、クロムめっきの被膜の電気抵抗が高いので、抵抗溶接の前処理として、物理研磨が行われるが、通常の物理研磨では、研磨粉や屑が付着する可能性がある。
 次に、図4を参照して、第1の実施形態に係る缶体Wの製造工程における、レーザー照射工程の概略について説明する。図4は、第1の実施形態に係る缶体Wの製造工程における、レーザー照射工程の概略を示す図である。
 レーザー照射工程では、例えば、上述の図2A及び図4に示すように、4基のレーザー照射装置L1、L2、L3、L4を用いる。ここで、レーザー照射装置L1及びレーザー照射装置L4、レーザー照射装置L2及びレーザー照射装置L3が、それぞれ対向配置されている。
 レーザー照射装置L1、L2、L3、L4は、溶接部11を構成する材料鋼板Mの縁部に位置された溶接予定部12に、例えば、パルス状のレーザー光を照射して、材料鋼板Mのクロムめっきを除去する。
 材料鋼板Mのクロムめっきを除去することにより、鋼板M1が露出するレーザー照射部が分布するレーザー加工部Gを形成する。
 なお、図4に示したレーザー加工部Gは、レーザー加工部Gの位置を概念的に示すものであり、見やすくするために、厚さ方向を強調して表現している。
 この実施形態では、上述のように、レーザー光を破線の円錐部で示したレーザー照射装置L2、L4は用いずに、レーザー光を実線の円錐部で示したレーザー照射装置L1、L3を用いる。
 レーザー照射装置L1、L3を用いることにより、材料鋼板Mにおいて互いに反対側の面に位置されるとともに、重ね合せによって対応する縁部に、レーザー加工部G1、G3を形成する。
 次に、図5を参照して、第1の実施形態に係る材料鋼板Mに形成されたレーザー照射部の概略構成を説明する。図5は、第1の実施形態に係る材料鋼板Mに形成されたレーザー照射部の概略構成を示す断面図である。なお、図5において、レーザー照射部は、一面のみに形成されている。
レーザー照射部13は、図5に示すように、材料鋼板Mの表面からクロムめっきの層M2及びクロム水和酸化物の層M3を貫通して、鋼板M1に到達するまで形成されている。
また、レーザー照射部13におけるクロムの付着量は、例えば、5mg/m以下であることが好適である。
また、レーザー照射部13の面積は、溶接部のエリア内において、10%以上90%以下であることが好適である。更に、20%以上50%以下であれば、さらに好適となる。
 なお、溶接部11(溶接予定部12)のエリア内におけるレーザー照射部13の面積を測定する場合、例えば、レーザー加工部G内の任意の1mm×1mmのエリアにおけるレーザー照射部13の面積率をみる等の方法が有効である。
 このように、材料鋼板Mの一部において鋼板M1が露出し、残りの部分がクロム水和酸化物の層M3とされることにより、鋼板M1が露出するレーザー照射部13では、電気抵抗が低下して通電が容易になるため溶接性が向上する。
 その結果、クロム水和酸化物の層M3が形成されている部分では、補修塗装等における塗膜等の密着性及び耐食性が良好に確保されて、溶接部における補修塗装膜や補修ラミネート等の樹脂被膜の密着性が向上する。
 また、レーザーによる全面剥離に比較すると、必要とされるレーザーのエネルギー量は大幅に減少するので、レーザー加工部を高速で形成することが可能となり、通常の製缶速度に追随できるため、実用化が容易となる。
 また、レーザー照射部13の配置を制御することにより、物理研磨においてクロムめっき被膜が残存するのと異なり、溶接部の電気抵抗を均一に低下させて、安定した溶接性を確保することができる。
 次に、図6A、図6Bを参照して、第1の実施形態に係る缶胴W1に用いる材料鋼板におけるレーザー加工部Gの配置等について説明する。
 図6Aは、第1の実施形態に係る缶胴W1に用いる材料鋼板Mにおけるレーザー加工部G(G1、G3)の配置の一例を示す概略図であり、図6Bはレーザー加工部Gにおけるレーザー照射部13の概略構成の一例を示す図である。
 材料鋼板Mにおけるレーザー加工部Gの配置は、図6Aに示すように、例えば、材料鋼板Mの一方側の面にレーザー加工部G1が形成され、材料鋼板Mの他方側の面にレーザー加工部G3が形成されている。
 レーザー加工部G1と、レーザー加工部G3は、ともに溶接部11を構成する部位に位置し、溶接予定部12を形成する。
 また、レーザー加工部Gにおけるレーザー照射部13の配置構成は、図6Bに示すように、例えば、レーザー加工部Gの幅方向に沿って形成される複数のレーザー照射部13の集合13Xと、レーザー照射部13の集合13Xと直交する長手方向に形成される複数のレーザー照射部13の集合13Yとから構成されている。
 かかる構成により、レーザー加工部G内の溶接部11の所定エリアに、レーザー照射部13を均等に配置することができる。また、照射部13以外の部分についても、均等に配置することが可能である。
 次に、図7A、図7Bを参照して、第1の実施形態に係る溶接缶の製造工程における、溶接予定部12の抵抗溶接の概略について説明する。
 図7Aは、第1の実施形態に係る溶接缶の製造工程において、溶接予定部12を抵抗溶接する状態を示す図であり、缶胴中間品W2の溶接予定部12を電極ローラA1、A2によりシーム溶接する状態の概略を示す図である。
 また、図7Bは、第1の実施形態に係る溶接缶の製造工程において、溶接予定部12におけるレーザー加工部Gの配置の一例を示す図である。
 缶胴中間品W2の溶接予定部12における抵抗溶接では、例えば、形成した缶胴中間品W2を溶接予定部12の長手方向に沿って移動させるとともに、電極ローラA1、電極ローラA2により挟んで通電することで、溶接部11を形成して対象部位を接続する。
また、溶接予定部12をシーム溶接する際の、溶接予定部12におけるレーザー加工部Gの配置は、この実施形態では、例えば、電極ローラA1と接触する側の面にレーザー加工部G1が配置され、電極ローラA2と接触する側の面にレーザー加工部G3が配置されている。
 また、材料鋼板M同士が接触する界面側は、それぞれレーザー加工部Gが配置されずにクロムめっきが残存している。
次に、図8A、図8Bを参照して、第1の実施形態に係る缶胴W1に用いる材料鋼板のレーザー加工部Gにおけるレーザー照射部13の構成の変形例を説明する。図8A、図8Bは、第1の実施形態に係る缶胴W1に用いる材料鋼板Mのレーザー加工部Gにおけるレーザー照射部13の配置変形例の概略構成を説明する図である。図8A、図8Bにおいて、例えば、レーザー加工部Gの長手方向をYで示している。
 図8Aは、第1の実施形態の第1変形例を示す図であり、例えば、レーザー照射部13は、レーザー加工部Gの幅方向(X方向)に等間隔に配置され、X方向において等間隔に配置されたレーザー照射部13のグループが、レーザー加工部Gの長手方向(Y方向)に繰り返し配置された構成とされている。なお、レーザー照射部13同士の間隔は、X方向、Y方向において、レーザー照射部13とほぼ同寸法とされている。
 図8Bは、第1の実施形態の第2変形例を示す図であり、例えば、レーザー照射部13は、レーザー加工部Gの幅方向(X方向)に等間隔に配置され、X方向において等間隔に配置されたレーザー照射部13のグループが、レーザー加工部Gの長手方向(Y方向)において、X方向の位置を半ピッチずらして繰り返し配置された構成とされている。なお、レーザー照射部13同士の間隔は、X方向、Y方向において、レーザー照射部13とほぼ同寸法とされている。
 第1の実施形態に係る缶胴W1、角形状缶W0によれば、材料鋼板Mの溶接予定部12のうち、電極接触面を構成する二つの面に、レーザー加工部G1、G3が形成されていて、接触抵抗を下げることができるので、溶接予定部12を効率的にシーム溶接することができる。
 また、溶接予定部12におけるレーザー照射部13を分断配置することにより、レーザー加工部Gを高速で形成することができる。
 また、第1の実施形態に係る缶胴W1、角形状缶W0によれば、レーザー照射部13におけるクロムの付着量が金属クロム換算で5mg/m以下とされているので、溶接予定部12を安定してシーム溶接することができる。
 また、第1の実施形態に係る缶胴W1、角形状缶W0によれば、レーザー照射部13の面積が、例えば、溶接部11における任意の1mm×1mmのエリアにおいて、10%以上90%以下とされている。
 溶接部11における任意の1mm×1mmのエリアにおいて、10%以上90%以下とされているので、溶接性が向上するとともに、溶接部11に補修塗装や補修ラミネートする際の補修塗装膜や補修ラミネート等、形成した樹脂被膜の密着性が向上し、ひいては耐食性を向上することができる。
 また、面積率が20~50%の場合は、ACRが広く、かつ、全面研磨(レーザー加工部を全面にわたってのクロム除去)に比較してクロムを除去する面積を十分に小さくすることができる。
 その結果、レーザー加工部Gの単位面積あたりのレーザー出力を小さくすることが可能となり、単位時間当たりのレーザー出力が同じであっても、レーザー加工部Gをより高速に形成することができて、さらに好適となる。
 また、第1の実施形態に係る缶胴W1、角形状缶W0によれば、二つの電極接触面がレーザー加工部Gとされているので、溶接部11を構成するすべての面(四つの面)にレーザー加工部を形成するのに比較して、コストを削減することができる。
 また、レーザー加工部Gを、材料鋼板M同士が接合される二つの接合面に形成する場合と比較して、シーム溶接におけるACRを広く確保して、溶接性を向上することができる。
 一般に、電極と接触する面の接触抵抗と比較して、材料同士の接触抵抗を高くすることで、鋼板同士の界面が十分に溶融し、スプラッシュやチリなどが飛び難くなるため、特にACRが広くなり良好となる。ここで、スプラッシュとは、材料鋼板Mが、溶接部から針状に飛び出して、溶接缶又は溶接缶胴に付着したものをいう。
 すなわち、抵抗溶接においては、抵抗の高い部分で発熱が起こるので、電極と材料鋼板の接触部分は、通常、電極により冷却されるが、電極そのものは抵抗が低いので、電極と材料鋼板の接触部(電極-鋼板界面)に比較して、材料鋼板M同士の接合部(鋼板-鋼板界面)の電気抵抗が大きく、接合面で大きく発熱、溶融して、安定した溶接が行われる。
 しかしながら、材料鋼板M同士の接合部にレーザー加工部を形成すると、全体の電気抵抗が低下して溶接性は向上するが、一方で、電極と材料鋼板Mの接触する部分での発熱が接合部の発熱よりも大きくなる場合があり、材料鋼板Mの電極側で溶融しやすくなる。
 したがって、電極と材料鋼板Mの接触部にレーザー加工部を形成して、電極と材料鋼板Mの接触部の電気抵抗を低下させることがACRを広くするうえで効果的であると考えられる。
<第2の実施形態>
 以下、図9A~図9Dを参照して、この発明の第2の実施形態について説明する。
 図9Aは、第2の実施形態に係る溶接缶胴に用いる材料鋼板のレーザー加工部Gにおけるレーザー照射部の構成を示す概略図であり、図9B~図9Dは第2の実施形態の変形例を説明する概略図である。図9A~図9Dにおいて、例えば、レーザー加工部Gの長手方向Y、幅方向をXで示している。
 第2の実施形態に係るレーザー加工部Gは、例えば、図9Aに示すように、Y方向に所定の長さを有するレーザー照射部13が、X方向に複数配置され、X方向において隣接するレーザー照射部13は、Y方向において、互いに半ピッチずれて複数配置された構成とされている。
 なお、レーザー加工部Gの形成には、パルスレーザー、連続レーザーのいずれを用いてもよく、レーザー照射部13の長さは、必要に応じて任意に設定することが可能である。
 第2の実施形態の第1変形例に係るレーザー加工部Gの構成は、例えば、図9Bに示すように、Y方向に所定の長さを有するレーザー照射部13が、X方向に複数配置され、同様のものが、Y方向に複数配置された構成とされている。
 第2の実施形態の第2変形例に係るレーザー加工部Gの構成は、例えば、図9Cに示すように、レーザー加工部Gの長手方向の端部から端部まで連続して形成されたレーザー照射部13が、X方向に所定間隔をあけて複数配置された構成とされている。
 第2の実施形態の第3変形例に係るレーザー加工部Gの構成は、例えば、図9Dに示すように、レーザー加工部GのX方向の端部から端部まで連続して形成されたレーザー照射部13が、Y方向に所定間隔をあけて複数配置された構成とされている。
<第3の実施形態>
 以下、図10を参照して、この発明の第3の実施形態について説明する。
 図10は、第3の実施形態に係る溶接缶胴の製造工程において、溶接予定部12をシーム溶接する場合における、材料鋼板Mにおけるレーザー加工部Gの配置の概略構成を説明する図である。
 第3の実施形態が、第1の実施形態と異なるのは、第1の実施形態では、溶接予定部12のうち、電極接触面を構成する二つの面にレーザー加工部G1、G3が形成されていたのに対して、第3の実施形態では、電極接触面を構成する二つの面にレーザー加工部G1、G3が形成されている点である。
 また、第3の実施形態では、材料鋼板M同士が接合される界面側の接合面を構成する二つの面にもレーザー加工部G2、G4が形成されていて、溶接部11を構成する四つの面のすべてにレーザー加工部Gが形成されている。その他は第1の実施形態と同様であるので、説明を省略する。
<第4の実施形態>
 以下、図11を参照して、この発明の第4の実施形態について説明する。
 図11は、第4の実施形態に係るラミネート鋼板(樹脂被覆鋼板)MRからなる材料鋼板の概略構成を示す断面図である。
 第4の実施形態が、第1の実施形態と異なるのは、缶胴W1を構成する材料鋼板として、ラミネート鋼板MRを用いる点である。その他は第1の実施形態と同様であるので、説明を省略する。
 ラミネート鋼板MRは、図11に示すように、鋼板M1と、鋼板M1の両側表面に施されたクロムめっき層M2と、クロムめっき層M2の両側表面に生成したクロム水和酸化物層M3と、クロム水和酸化物層M3の両側表面に形成されたラミネートフィルムFとを備えている。また、ラミネートフィルムFは、この実施形態では、溶接予定部12には被覆されていない。なお、図11には、ラミネートフィルムFについては詳述していないが、内容物に応じた各種のラミネートフィルムが適用可能であり、また、機能の異なる複数の層を有するラミネートフィルムの場合にも適用可能である。
<第5の実施形態>
 以下、図12、図13A~図13Cを参照して、この発明の第5の実施形態について説明する。
 図12は、本発明の第5の実施形態に係る缶体の概略構成を示す図であり、符号W10は、例えば、ペール缶等の外周が円筒形状に形成された円筒形状缶(溶接缶)を、符号W1Aは缶胴(溶接缶胴)を、符号11Aは缶胴W1A及び溶接缶W1Aの溶接部を示している。
 円筒形状缶W10は、図12に示すように、例えば、円筒形状に形成された缶胴W1Aと天板W11Aと底板W12Aとを備えており、天板W11A及び底板W12Aは、缶胴W1Aの両端の開口部に取付けられている。
 天板W11Aには、円筒形状缶W10の内部に内容物を充填し又は内容物を外部に流出させるための孔H1Aが形成されている。
 また、缶胴W1Aは、例えば、成形した材料鋼板を湾曲して対応する辺の縁部同士を重ねて、重ね合せた部分を、抵抗溶接して溶接部11Aを形成して接合されている。
 次に、図13A~図13Cを参照して、第5の実施形態に係る缶体Wの製造方法の概略について説明する。図13A~図13Cは、第5の実施形態に係る缶胴W1Aまでの製造工程の概略を示す斜視図である。
 まず、図13Aに示すように、材料鋼板Mを矢印T1方向に流しながら、レーザー照射装置L1、L3から、例えば、パルス状のレーザー光を材料鋼板Mに照射して、レーザー加工部を形成する。
 ここで、図13Aには、4基のレーザー照射装置L1、L2、L3、L4が設けられているが、この実施形態では、レーザー光を破線の円錐部で示したレーザー照射装置L2、L4を用いずに、レーザー光を実線の円錐部で示したレーザー照射装置L1、L3を用いている。
 また、レーザー照射装置L1は、図において表面側に形成されるレーザー加工部G1を形成し、レーザー照射装置L3は、図において裏面側に形成されるレーザー加工部G3を形成するようになっている。
 次に、図13Bに示すように、レーザー加工部G1及びレーザー加工部G3が互いに対面するように材料鋼板Mを湾曲して、成形された材料鋼板Mの接合されるべき縁部(対応する部位)同士を重ね合せ、溶接部11Aを構成する溶接予定部12Aを溶接可能な状態の缶胴中間品W2Aを形成する。なお、この実施形態では、レーザー加工部Gが、材料鋼板Mの端面まで形成されている。
 そして、形成した缶胴中間品W2Aを、矢印T2方向に流しながら、溶接予定部12Aを電極ローラA(A1、A2)で挟み、通電して溶接予定部12Aをシーム溶接(抵抗溶接)することで溶接部11Aを形成して、溶接予定部12Aを接合する。
 図13A、図13Bを経て、図13Cに示すような缶胴W1Aが製造される。
 その後、缶胴W1Aに、天板W11A及び底板W12Aを巻き締めて取付けることにより、円筒形状缶W10が製造される。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記実施の形態においては、角形状缶W0及び円筒形状缶W10、及びこれらに対応する缶胴W1、W1Aについて説明したが、例えば、5ガロン缶、ジェリ缶、飲料用を含む3ピース缶等、他の形状の溶接缶やその溶接缶に用いる溶接缶胴に適用してもよい。
 また、上記実施の形態においては、ティンフリー鋼板にパルスレーザーを照射してレーザー加工処理する場合について説明したが、例えば、連続的にレーザーを照射してレーザー加工部Gを形成する構成としてもよい。
また、上記実施の形態においては、レーザー照射部におけるクロムの付着量が5mg/m以下である場合について説明したが、クロムの付着量は、溶接予定部において抵抗溶接が可能とされる範囲内で、任意に設定することができ、溶接性を向上するためには、残存クロムの付着量を低くすることが効果的である。
また、上記実施の形態においては、レーザー照射部の面積率が、例えば、溶接部における1mm×1mmのエリアにおいて、10%以上90%以下である場合について説明したが、溶接部11におけるレーザー照射部13の面積率は、溶接予定部12に抵抗溶接が可能とされる範囲内で、任意に設定してもよい。例えば、溶接性を向上するためには、溶接予定部12におけるレーザー照射部13の面積率を高くすることが効果的である。また、溶接部に補修塗装や補修ラミネートする際の密着性を向上して耐食性を向上するためには、レーザー照射部の密度を低下することが効果的である。
 また、上記実施の形態においては、材料鋼板がティンフリー鋼板又はラミネート鋼板とされる場合について説明したが、母材となる鋼板の一方側の面にクロムめっきが施され、他方側の面にクロムめっきが施された表面側にラミネートが施された構成としてもよい。また、前述したように、ラミネート層が複数の層を有していてもよい。
 以下、表1を参照して、本発明の実施例について説明する。
 表1は、この発明に係る実施例1~実施例13及び比較例1、2を用いて行った、高速溶接性、塗料密着性、耐食性、溶接性に関する評価結果を示す表である。
 以下、実施例1~13、および比較例1、2は、厚さ0.32mm、テンパー度T4CAの冷延鋼板にクロムめっきを施したティンフリー鋼板を用いて調製した。実施例1~13、および比較例1、2の溶接部においてレーザー照射部が占める面積率(%)、溶接部におけるレーザー加工部の配置(A、B、C)、レーザー照射部におけるクロムの付着量(mg/m)は、表1に示すとおりである。
 また、高速溶接性、塗料密着性、耐食性、溶接性は、以下に示す方法により評価した。
 なお、表1に示した、溶接部におけるレーザー加工部の配置(A、B、C)は、図14に示すとおりであり、図14は、溶接部を構成する4つの面におけるレーザー加工部の配置(形成の有無)を示している。
〔高速溶接性評価〕
 溶接性試験において、全面にレーザー照射し、かつレーザー照射部のCr付着量が1mg/m以下となる場合を100%出力として比較した。同面積のレーザー加工部を形成する場合に必要な出力が90%を超える場合は不可(×)、50%超え90%以下の場合は可(○)、50%以下の場合は優(◎)とした。
〔塗料密着性評価〕
 レーザー加工部を形成した面にエポキシ系の塗料を塗布し、続いて220℃×10分の焼付けを行い5μm厚の塗装を施した。次に、塗装サンプルの塗装面に縦横2mm間隔の碁盤目状のケガキ線を施した。ケガキ線は十分に地鉄層まで到達する深さのものとした。
 次に、塗装面のケガキ部にニチバン(登録商標)製セロハンテープ(LP24)を貼った。その際、コイル状のテープからテープを解きながらサンプルに貼り付けた。そして、テープ貼り付け部分に連続して非接着部を設け、これをテープ端とした。また、テープ貼り付け部は、テープとサンプルが十分密着するように上から十分押えた。
上記方法で作製したサンプルを固定し、テープ端を持ち、サンプル平面に対して45°方向に勢い良く引っ張ることで、テープ剥離を実施した。テープ剥離後、塗装が剥げたものは×、剥げなかったものを○とした。
〔耐食性評価〕
 レーザー加工部を形成したサンプルの両面にエポキシ系の塗料を塗布し、続いて220℃×10分の焼付けを行い、両面5μm厚の塗装を施した。次に、塗装サンプルを70mm×70mmの大きさに剪断し、レーザー加工部を形成した面側に2本の対角線状のケガキ線を施した。ケガキ線は十分に地鉄層まで到達する深さのものとした。
 次に腐食液を調製した。腐食液は、塩化ナトリウムとクエン酸の混合水溶液で、塩化ナトリウム1.5wt%、クエン酸1.5wt%となるように調製した。
続いて50mmφの筒状の蓋つきセルを用意した。筒状のセルに蓋を装着し、蓋を底にしてコップ状にし、先に調製した腐食液を充填した。サンプルを上蓋に見立てて、ケガキ面の中央部がセルの中央内側に来るようにして、腐食液を充填したセルに被せ、セルとサンプルをひっくり返しても液が漏れないように個縛した。続いて、サンプルが下側に来るように反転させて、恒温槽に装入し、38℃×4日間経時させた。
経時後のサンプルを取り出し、腐食状態を観察した。腐食がケガキ部のみのものは○、腐食が塗装被膜下で進行しているものは×とした。
〔溶接性評価〕
厚さ0.32mm、テンパー度T4CAの冷延鋼板にクロムめっきを施したティンフリー鋼板を用いて、溶接部に実施例及び比較例のレーザー加工部を形成し、続いて、シーム溶接法で溶接を行った。溶接電流が高すぎるとチリやスプラッシュを発生させ不良となり、一方溶接電流が低すぎると溶接の接合力が弱くなり不良となる。溶接接合力が充分得られ、かつチリやスプラッシュが発生しない範囲を溶接可能電流範囲(ACR)と呼ぶが、ACRが広いほど、溶接の安定性が高くなる。
そこで、溶接電流範囲が1A未満のものを×、1A以上3A未満のものを〇、3A以上のものを◎として、1A以上を合格とした。
Figure JPOXMLDOC01-appb-T000001
 〔評価結果〕
(1)実施例1~13は、高速溶接性、塗料密着性、耐食性、溶接性の全てが良好な結果となる。
(2)実施例2~7は、溶接性が特に優れた結果(◎)となった。
 (3)実施例8、9は、レーザー加工部Cr付着量が3mg/m、5mg/mであること以外は、実施例2と同様の条件であるが、残存Cr付着量が多いことにより溶接性が○となっている。
 (4)実施例10~12は、レーザー加工部対象面がB(二つの電極接触面のうち、ひとつのみレーザー加工部を形成)であること以外は、実施例3~5と同条件であるが、レーザー加工部が片面であるので、溶接性が○となっている。
 (5)比較例1は、レーザー加工部におけるレーザー照射部の面積率が100%となっており、溶接部を構成する部分のうち、電極と接する二つの面にレーザー照射部が形成されている。その結果、高速溶接性、塗料密着性、耐食性が劣る結果となっている。
 (6)比較例2は、レーザー加工部におけるレーザー照射部の面積率0%であり、溶接部は全てレーザー非照射部となっており、レーザー照射部を持たない為、本特許の請求範囲から外れる。その結果、溶接性が×となっている。
 以上のように、従来のレーザー研磨方法(特許文献2参照)において、溶接部の全面にレーザーを照射(研磨面積率100%(研磨残りが全く無い))していたのに比較すると、レーザー照射部と非照射部を設けることで、高速溶接性、塗料密着性、耐食性が向上する。
 また、レーザーによる全面剥離に比較すると、単位面積あたりに必要とされるレーザーのエネルギー量は減少するので、レーザーの単位時間あたりのエネルギー量(出力)が一定なら、レーザー加工部を高速で形成することが可能となる。
 また、レーザー照射部(研磨部)であっても、残存クロム量は金属クロム換算で5mg/m以下となっており、安定した溶接性が確保される。
 本発明によれば、材料鋼板に抵抗溶接する際の溶接性を向上することができるので、産業上利用可能である。
 W0 角形状缶(溶接缶)
 W10 円筒形状缶(溶接缶)
 W1、W1A 缶胴(溶接缶胴)
 W11、W11A 天板
 W12、W12A 底板
 M 材料鋼板
MR ラミネート鋼板(材料鋼板、樹脂被覆鋼板)
 M1 鋼板
 M2 クロムめっきの層
 M3 クロム水和酸化物の層 
 F ラミネートフィルム(樹脂被膜)
A、A1、A2 電極ローラ(電極)
G、G1、G2、G3、G4 レーザー加工部
 11 溶接部
 12 溶接予定部
 13 レーザー照射部

Claims (10)

  1.  ティンフリー鋼板又はティンフリー鋼板に樹脂被膜が被覆された樹脂被覆鋼板からなる材料鋼板を成形し、対応する部位を互いに重ね合せて、重ね合せた部位を抵抗溶接して溶接部とすることで構成される溶接缶胴であって、
     前記材料鋼板において前記溶接部に予定される溶接予定部は、前記抵抗溶接の際に電極と接触する側の電極接触面を構成する二つの面と、前記抵抗溶接により前記材料鋼板同士が接合される側の接合面を構成する二つの面と、からなる四つの面のうち少なくとも一つの面に、前記抵抗溶接前にレーザー照射することにより、クロムめっきが除去され鋼板が露出するレーザー照射部が分断配置されたレーザー加工部が形成されている溶接缶胴。
  2.  前記レーザー照射部におけるクロムの付着量が金属クロム換算で5mg/m以下である請求項1に記載の溶接缶胴。
  3.  前記レーザー加工部におけるレーザー照射部が占める面積が10%以上90%以下である請求項1又は請求項2に記載の溶接缶胴。
  4.  前記溶接部を構成する四つの面のうち、二つの前記電極接触面に前記レーザー加工部が形成されている請求項1~請求項3のいずれか1項に記載の溶接缶胴。
  5.  請求項1~請求項4のいずれか1項に記載の溶接缶胴の開口部に、天板と底板のいずれか一方又は双方を取付けて形成する溶接缶。
  6.  クロムめっき鋼板又はクロムめっき鋼板の表面に樹脂被膜が被覆された樹脂被覆鋼板からなる材料鋼板を成形し、
     前記成形された材料鋼板において前記溶接缶胴の溶接部を構成する溶接予定部にレーザー照射して、前記抵抗溶接の際に電極と接触する側の電極接触面を構成する二つの面と、前記抵抗溶接により前記材料鋼板同士が接合される側の接合面を構成する二つの面と、からなる四つの面のうち少なくとも一つの面に、クロムめっきが除去され鋼板が露出されたレーザー照射部が分断配置されたレーザー加工部を形成し、
     前記成形された材料鋼板の溶接予定部を互いに重ね合せ、
     前記重ね合せた部位を抵抗溶接して溶接部とすることで接続して、前記溶接缶胴を形成する溶接缶胴の製造方法。
  7.  前記レーザー照射部におけるクロムの付着量が金属クロム換算で5mg/m以下であることを特徴とする請求項6に記載の溶接缶胴の製造方法。
  8.  前記レーザー照射部の面積は、前記溶接部のレーザー加工部において10%以上90%以下であることを特徴とする請求項6又は請求項7に記載の溶接缶胴の製造方法。
  9.  前記溶接部を構成する四つの面のうち、二つの前記電極接触面に前記レーザー加工部が形成されている請求項6~請求項8のいずれか1項に記載の溶接缶胴の製造方法。
  10.  溶接缶の製造方法であって、
     請求項6~請求項9のいずれか1項に記載の溶接缶胴の製造方法により形成した溶接缶胴の開口部に、天板と底板のいずれか一方又は双方を取付けて溶接缶を形成する溶接缶の製造方法。
PCT/JP2014/051584 2013-01-29 2014-01-24 溶接缶胴、溶接缶、溶接缶胴の製造方法、及び溶接缶の製造方法 WO2014119493A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/761,971 US20150314908A1 (en) 2013-01-29 2014-01-24 Welded can body, welded can, method of manufacturing welded can body, and method of manufacturing welded can
KR1020157020505A KR20150100925A (ko) 2013-01-29 2014-01-24 용접 캔 동체, 용접 캔, 용접 캔 동체의 제조 방법, 및 용접 캔의 제조 방법
JP2014559658A JP6307447B2 (ja) 2013-01-29 2014-01-24 溶接缶胴、溶接缶、溶接缶胴の製造方法、及び溶接缶の製造方法
CN201480005467.3A CN104936738B (zh) 2013-01-29 2014-01-24 焊接罐体、焊接罐、焊接罐体的制造方法及焊接罐的制造方法
BR112015017569-4A BR112015017569B1 (pt) 2013-01-29 2014-01-24 Corpo de lata soldada, lata soldada, método para fabricar corpo de lata soldada e método para fabricar lata soldada
MYPI2015702374A MY182087A (en) 2013-01-29 2014-01-24 Welded can body, welded can, method for manufacturing welded can body, and method for manufacturing welded can
SG11201505518RA SG11201505518RA (en) 2013-01-29 2014-01-24 Welded can body, welded can, method for manufacturing welded can body, and method for manufacturing welded can
SA515360822A SA515360822B1 (ar) 2013-01-29 2015-07-28 جسم علبة ملحومة, العلبة الملحومة, طريقة لتصنيع جسم العلبة الملحومة, وطريقة لتصنيع العلبة الملحومة

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013014644 2013-01-29
JP2013-014644 2013-01-29

Publications (1)

Publication Number Publication Date
WO2014119493A1 true WO2014119493A1 (ja) 2014-08-07

Family

ID=51262208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051584 WO2014119493A1 (ja) 2013-01-29 2014-01-24 溶接缶胴、溶接缶、溶接缶胴の製造方法、及び溶接缶の製造方法

Country Status (10)

Country Link
US (1) US20150314908A1 (ja)
JP (1) JP6307447B2 (ja)
KR (1) KR20150100925A (ja)
CN (1) CN104936738B (ja)
BR (1) BR112015017569B1 (ja)
MY (1) MY182087A (ja)
SA (1) SA515360822B1 (ja)
SG (1) SG11201505518RA (ja)
TW (1) TWI547337B (ja)
WO (1) WO2014119493A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013676A1 (ja) * 2021-08-03 2023-02-09 日本製鉄株式会社 構造部材の設計方法、鋼板の製造方法、テーラードブランクの製造方法、構造部材の製造方法、および構造部材

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180051771A1 (en) * 2015-03-26 2018-02-22 Dana Automotive Systems Group, Llc Laser welding of balance weights to driveshafts
KR101719950B1 (ko) 2016-01-07 2017-03-24 최연수 캔용기의 동체 제조장치
CN106270992A (zh) * 2016-09-02 2017-01-04 广州亨龙智能装备股份有限公司 消防瓶电阻焊工艺
TWI632017B (zh) * 2016-11-30 2018-08-11 統一實業股份有限公司 Method for adjusting process of splicing surface contour curve with tinplate can welding line
US20210035767A1 (en) * 2019-07-29 2021-02-04 Applied Materials, Inc. Methods for repairing a recess of a chamber component
KR20210077963A (ko) 2019-12-18 2021-06-28 주식회사 엘지에너지솔루션 용접성을 향상시키는 전지의 동박 표면처리 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234682A (ja) * 1985-08-09 1987-02-14 Nippon Kokan Kk <Nkk> 缶用素材の溶接方法
US6328197B1 (en) * 1998-02-28 2001-12-11 United States Can Company Aerosol dispensing container and method for manufacturing same
JP2002210562A (ja) * 2001-01-19 2002-07-30 Kawasaki Steel Corp 薄クロムめっき鋼板のシーム溶接方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2040275A (en) * 1934-03-07 1936-05-12 Bossert Company Inc Metal barrel
JPS5638496A (en) * 1979-09-05 1981-04-13 Toyo Seikan Kaisha Ltd Electrolytic chromic acid treated steel plate suitable in electric resistance welding
JPS56150200A (en) * 1980-04-22 1981-11-20 Nippon Steel Corp Preparation of resistance welded can from chromic acid treated steel plate
JPS57202987A (en) * 1981-06-05 1982-12-13 Toyo Seikan Kaisha Ltd Manufacture of welded can body
JPS5847576A (ja) * 1981-09-14 1983-03-19 Kishimoto Akira 溶接缶胴体の製造方法
JPS61130500A (ja) * 1984-11-29 1986-06-18 Kawasaki Steel Corp Sn/Cr2層めつき鋼板の製造方法
JPS62263884A (ja) * 1986-05-13 1987-11-16 Nippon Kokan Kk <Nkk> 缶用素材のレ−ザ研磨溶接装置
JPH02255282A (ja) * 1989-03-28 1990-10-16 Nippon Steel Corp シーム溶接用ワイヤー及びシーム溶接方法
JP2595409B2 (ja) * 1992-05-18 1997-04-02 新日本製鐵株式会社 圧延用ダルロールの製造方法
EP0658395B1 (de) * 1993-12-15 2002-05-29 Elpatronic Ag Verfahren und Vorrichtung zum Verschweissen von Blechkanten
GB9614754D0 (en) * 1996-07-13 1996-09-04 Metal Box Plc Welding packaging containers
JP2000296854A (ja) * 1999-04-14 2000-10-24 Nkk Corp ラミネート缶体の製造方法
WO2004028734A1 (ja) * 2002-09-26 2004-04-08 Fine Process Company Ltd. 異種金属のレーザロール接合方法およびレーザロール接合装置
JP2004306057A (ja) * 2003-04-03 2004-11-04 Nissan Motor Co Ltd レーザ溶接装置
US7772518B2 (en) * 2005-02-22 2010-08-10 Rexam Beverage Can Company Reinforced can end—can body joints with laser seaming
EP1897759A1 (en) * 2005-04-29 2008-03-12 Autotech Engineering, A.I.E. Bumper cross-member and production method thereof
JP2006320907A (ja) * 2005-05-17 2006-11-30 Muneharu Kutsuna 粉体および被膜を用いたマイクロレーザピーニング処理およびマイクロレーザピーニング処理部品
JP5488461B2 (ja) * 2008-05-13 2014-05-14 旭硝子株式会社 酸化物層付き基体とその製造方法
KR101607964B1 (ko) * 2009-07-15 2016-04-01 엘지디스플레이 주식회사 투명 디스플레이 장치
JP5524563B2 (ja) * 2009-10-16 2014-06-18 北海製罐株式会社 溶接缶体
CN103080380B (zh) * 2010-09-29 2014-06-18 新日铁住金株式会社 酸性液体用三片可再密封罐
US20120132629A1 (en) * 2010-11-30 2012-05-31 Electro Scientific Industries, Inc. Method and apparatus for reducing taper of laser scribes
EP2855070B1 (en) * 2012-05-25 2019-12-11 Shiloh Industries, Inc. Sheet metal piece having weld notch and method of forming the same
MX2015006795A (es) * 2012-11-30 2015-08-14 Shiloh Ind Inc Metodo para formar una muesca de soldadura en una pieza de metal en hoja.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234682A (ja) * 1985-08-09 1987-02-14 Nippon Kokan Kk <Nkk> 缶用素材の溶接方法
US6328197B1 (en) * 1998-02-28 2001-12-11 United States Can Company Aerosol dispensing container and method for manufacturing same
JP2002210562A (ja) * 2001-01-19 2002-07-30 Kawasaki Steel Corp 薄クロムめっき鋼板のシーム溶接方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013676A1 (ja) * 2021-08-03 2023-02-09 日本製鉄株式会社 構造部材の設計方法、鋼板の製造方法、テーラードブランクの製造方法、構造部材の製造方法、および構造部材

Also Published As

Publication number Publication date
TWI547337B (zh) 2016-09-01
JP6307447B2 (ja) 2018-04-04
MY182087A (en) 2021-01-18
TW201436915A (zh) 2014-10-01
SG11201505518RA (en) 2015-09-29
KR20150100925A (ko) 2015-09-02
BR112015017569B1 (pt) 2020-03-31
JPWO2014119493A1 (ja) 2017-01-26
SA515360822B1 (ar) 2021-10-13
US20150314908A1 (en) 2015-11-05
CN104936738A (zh) 2015-09-23
CN104936738B (zh) 2018-12-18
BR112015017569A2 (pt) 2017-07-11

Similar Documents

Publication Publication Date Title
JP6307447B2 (ja) 溶接缶胴、溶接缶、溶接缶胴の製造方法、及び溶接缶の製造方法
US9061787B2 (en) Three-piece resealable can for acidic liquid
JP4818755B2 (ja) 溶接缶用鋼板
WO1997002137A1 (fr) Materiau plaque
US11110539B2 (en) Methods and joints for welding sheets of dissimilar materials
JP3212136B2 (ja) 溶接缶胴を有する缶体
JP2687799B2 (ja) 溶接缶用ラミネート鋼板
CA2842910C (en) Three-piece resealable can
JPH09125259A (ja) 溶接缶用表面処理鋼板
JPH11106952A (ja) 溶接性、耐食性、フィルム密着性に優れた溶接缶用鋼板
JP2011117071A (ja) 3ピースリシール缶
JP2015093314A (ja) 防錆鋼板の溶接方法
JP3582443B2 (ja) 無研磨溶接缶の缶胴用ラミネート鋼帯および缶胴の製造方法
KR100261507B1 (ko) 수지필름 피복 금속판의 제조방법
JP3153001B2 (ja) 溶接缶胴を有する缶体
JP2910488B2 (ja) 溶接缶用ラミネート鋼板
JPH067948A (ja) 缶胴の製造方法
JPS632712B2 (ja)
JPS6120396B2 (ja)
JPH067947A (ja) 缶胴の製造方法
JPH061348A (ja) 溶接缶胴を有する缶体
JP2000296854A (ja) ラミネート缶体の製造方法
JPH0651358B2 (ja) 溶接缶用ストライプ状熱可塑性樹脂被覆鋼板の製造方法
JP2002172444A (ja) ラミネート缶体の製造方法
JPH05339749A (ja) 溶接缶用クロムめっき鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559658

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14761971

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157020505

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201504659

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015017569

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15190012

Country of ref document: CO

122 Ep: pct application non-entry in european phase

Ref document number: 14746011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015017569

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150723