WO2014115477A1 - 成膜マスクの製造方法及びレーザ加工装置 - Google Patents

成膜マスクの製造方法及びレーザ加工装置 Download PDF

Info

Publication number
WO2014115477A1
WO2014115477A1 PCT/JP2013/084811 JP2013084811W WO2014115477A1 WO 2014115477 A1 WO2014115477 A1 WO 2014115477A1 JP 2013084811 W JP2013084811 W JP 2013084811W WO 2014115477 A1 WO2014115477 A1 WO 2014115477A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
film
opening pattern
laser
preliminary
Prior art date
Application number
PCT/JP2013/084811
Other languages
English (en)
French (fr)
Inventor
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN201380071351.5A priority Critical patent/CN104955977B/zh
Priority to KR1020157019872A priority patent/KR102148970B1/ko
Publication of WO2014115477A1 publication Critical patent/WO2014115477A1/ja
Priority to US14/809,086 priority patent/US9802221B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0235Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Definitions

  • the present invention relates to a method for manufacturing a film-forming mask having a structure in which a resin film provided with an opening pattern is supported by a thin magnetic metal member, and more particularly to a film-forming mask that can improve the position accuracy of opening pattern formation by laser processing.
  • the present invention relates to a manufacturing method and a laser processing apparatus.
  • a first resist pattern having a plurality of through openings is formed on a metal plate, and etching is performed through the through openings of the first resist pattern to penetrate the metal plate.
  • the first resist pattern is removed, and a second resist pattern having a plurality of second through-openings exposing a metal edge having a predetermined width around each of the plurality of opening patterns.
  • the second resist pattern is removed after forming a peripheral portion having a thickness larger than the thickness of the main body (see, for example, Patent Document 1).
  • a metal plate is wet-etched to form a plurality of opening patterns penetrating the metal plate.
  • a precise opening pattern could not be formed with high accuracy.
  • an uneven pattern of the mask could not be formed uniformly due to the occurrence of etching unevenness.
  • the applicant applied a thin film-like film having a resin film formed with an opening pattern having the same shape and dimension as the thin film pattern formed on the substrate, and a through hole containing the opening pattern.
  • a composite film-forming mask having a structure in which a magnetic metal member is in close contact is proposed.
  • the composite film-formation mask is formed by laser processing an opening pattern in a thin resin film having a thickness of about 10 ⁇ m to 30 ⁇ m, and can form a high-definition opening pattern with high accuracy.
  • Such a large-area film formation mask has a feature that an opening pattern can be uniformly formed over the entire mask surface.
  • a magnetic metal member having a small thermal expansion coefficient such as Invar or Invar alloy and a member having a relatively large thermal expansion coefficient such as a resin film are brought into close contact with each other at room temperature or higher. Thereafter, when the aperture pattern is laser processed, the position of the aperture pattern may be cumulatively shifted due to the internal stress of the film caused by the difference in thermal expansion between the two members.
  • an object of the present invention is to provide a film forming mask manufacturing method and a laser processing apparatus that can cope with such problems and improve the position accuracy of opening pattern formation by laser processing.
  • a method of manufacturing a film formation mask according to a first aspect of the present invention includes a resin film having a plurality of opening patterns penetrating therethrough and a plurality of openings provided in close contact with one surface of the film.
  • a film forming mask comprising a magnetic metal member provided with a plurality of through-holes having a size including at least one of the patterns, wherein the magnetic metal member provided with the through-hole is attached to one surface of the film
  • the laser processing apparatus irradiates a laser beam into the through hole of the mask member having a structure in which a magnetic metal member provided with a plurality of through holes is in close contact with one surface of a resin film, A laser processing apparatus for forming a plurality of opening patterns penetrating through the film, the stage having the mask member mounted thereon and movable in a two-dimensional plane parallel to the mounting surface, and the laser beam A laser optical head that shapes a cross-sectional shape according to the shape of the opening pattern and irradiates the mask member, and the laser optical head has a first slit having a shape similar to the opening pattern.
  • a second slit having a shape similar to the preliminary opening pattern included in the opening pattern is formed on the same substrate and moved across the optical path of the laser beam.
  • a projection lens for reducing and projecting the first and second slits onto the mask member, and moving the stage while using the second slit of the light beam cross-sectional shaping mask After irradiating a predetermined regular position with laser light, penetrating the film to form a plurality of preliminary opening patterns, the first slit of the beam cross-section shaping mask is used to The opening pattern is laser processed on the preliminary opening pattern.
  • the opening pattern is formed on the preliminary opening pattern.
  • the positional deviation of the opening pattern after the opening pattern is formed can be suppressed. Therefore, it is possible to improve the position accuracy of the opening pattern by laser processing.
  • FIG. It is explanatory drawing which shows the formation process of the member for masks in the manufacturing method of the film-forming mask by this invention. It is explanatory drawing which shows the joining process of the flame
  • FIG. 1 is a flowchart showing an embodiment of a method for manufacturing a film formation mask according to the present invention.
  • This method of manufacturing a film forming mask is a method of manufacturing a film forming mask having a structure in which a resin film provided with an opening pattern is supported by a thin plate-like magnetic metal member.
  • Step S1 for forming a mask member, and a frame Step S2 for joining, Step S3 for forming a preliminary opening pattern, and Step S4 for forming an opening pattern are included.
  • a method of manufacturing the film formation mask 1 provided with the unit mask 2 will be described. More specifically, visible light having a plurality of penetrating aperture patterns 3 having the same shape and dimension as the thin film pattern is transmitted at positions corresponding to the plurality of thin film patterns (for example, organic EL layers) to be formed.
  • FIG. 2 shows a configuration example of the film formation mask 1 in which a plurality of opening patterns 3 are provided in the stripe-shaped through holes 5, but the film formation mask 1 has one opening in the through hole 5.
  • a pattern 3 may be provided.
  • Step S1 is a step of forming a mask member 12 having a structure in which a magnetic metal member 6 provided with a through hole 5 having a size including the opening pattern 3 is in close contact with one surface of the film 4.
  • a magnetic metal sheet 9 made of a magnetic metal material having a thermal expansion coefficient of 1 ⁇ 10 ⁇ 6 / ° C. or less and made of invar or invar alloy and having a thickness of about 30 ⁇ m to 50 ⁇ m is formed. Cut out according to the surface area of the substrate to be coated, apply a resin liquid such as polyimide on one surface 9a of the magnetic metal sheet 9, and cure it at a temperature of about 200 ° C. to 300 ° C. to a thickness of 10 ⁇ m to 30 ⁇ m. A film 4 that transmits a certain amount of visible light is formed.
  • a resist is applied on the other surface 9b of the magnetic metal sheet 9, for example, by spraying, and then dried to form a resist film.
  • the resist is formed using a photomask. The film is exposed and developed, and a plurality of stripe-shaped stripes having a size including the preliminary opening pattern or the opening pattern 3 at positions corresponding to the plurality of preliminary opening patterns or the opening pattern 3 formed in steps S3 and S4 described later.
  • a resist mask 11 provided with an opening 10 is formed.
  • the magnetic metal sheet 9 is wet etched using the resist mask 11, and the magnetic metal sheet 9 corresponding to the opening 10 of the resist mask 11 is removed.
  • the resist mask 11 is removed by dissolving it in an organic solvent, for example. Thereby, the mask member 12 in which the magnetic metal member 6 and the resin film 4 are brought into close contact with each other is formed.
  • the etching solution for etching the magnetic metal sheet 9 is appropriately selected according to the material of the magnetic metal sheet 9 to be used, and a known technique can be applied.
  • the through hole 5 is formed by etching the magnetic metal sheet 9, it is aligned with a substrate side alignment mark provided in advance on the substrate at a predetermined position outside the formation region of the plurality of through holes 5.
  • a mask alignment mark (not shown) may be formed at the same time.
  • an alignment mark opening may be provided at a position corresponding to the mask side alignment mark.
  • step S2 the mask member 12 is stretched on one end face of a frame-shaped frame 8 made of invar or invar alloy or the like provided with openings 7 sized to enclose the plurality of through holes 5 of the magnetic metal member 6.
  • the peripheral edge portion of the magnetic metal member 6 is joined to one end surface of the frame 8.
  • a KrF 248 nm excimer laser or a third harmonic or a fourth harmonic of a YAG laser is used for the portion of the film 4 corresponding to the peripheral edge of the magnetic metal member 6. Then, the laser beam L having a wavelength of 400 nm or less is irradiated to ablate and remove the portion of the film 4.
  • the mask member 12 is tensioned so as not to bend the mask member 12 in the side parallel to the surface of the mask member 12 (in the direction of the arrow). Positioned above the frame 8 in the hung state.
  • the mask member 12 is stretched on one end surface 8a of the frame 8 in a state in which a tension is applied to the side parallel to the surface, and the peripheral portion of the magnetic metal member 6 is The frame 8 is spot welded.
  • the composite type deposition mask 1 proposed by the applicant irradiates a predetermined regular position in the plurality of through holes 5 with laser light based on the design value.
  • the opening pattern 3 penetrating the film 4 was formed.
  • the thermal expansion coefficient of the film 4 for example, polyimide, is 3 to 5 ⁇ 10 ⁇ 5 / ° C.
  • the film 4 that has been cured at 200 ° C. to 300 ° C. and then cooled to room temperature is pulled in a direction parallel to the surface due to the difference in thermal expansion coefficient because it is an order of magnitude larger than that of Invar alloy. It will balance in a state where the stress is applied.
  • the positions of the formed opening pattern 3 and through-hole 5 may deviate from normal positions based on design values.
  • the method of manufacturing the film formation mask 1 according to the present invention forms a plurality of preliminary opening patterns in a shape included in the opening pattern 3 in a regular position in advance, The opening pattern 3 is formed after the internal stress is partially released to intentionally cause the positional deviation of the preliminary opening pattern.
  • steps S4 and S5 which are characteristic parts of the method of manufacturing the film formation mask 1 according to the present invention, will be described in detail.
  • steps S4 and S5 are performed using the laser processing apparatus shown in FIG.
  • a laser beam emitted from a pulse laser is shaped in accordance with the shape of the preliminary opening pattern or the opening pattern 3 and irradiated onto the film 4.
  • the stage 13 is a XY tee that moves on a two-dimensional plane (XY plane) parallel to the placement surface 13a by placing the mask member 12, and is a control means (not shown) such as a personal computer. ) To control movement.
  • a pulse laser 14 is provided above the stage 13.
  • the pulse laser 14 is, for example, an Nd: YAG laser that emits laser light having a wavelength of 355 nm.
  • the energy density of the irradiated laser beam is set to 0.5 J / cm 2 to 1 J / cm 2
  • the pulse width is set to 5 ns to 7 nsec
  • the shot frequency is set to 50 Hz to 60 Hz.
  • a laser optical head 15 is provided on the downstream side of the laser beam of the pulse laser 14. As shown in FIG. 6B, the laser optical head 15 shapes the beam cross-sectional shape of the laser light in accordance with the shape of the opening pattern 3 or the preliminary opening pattern and irradiates the mask member 12 with a pulse laser.
  • the illumination optical system 16 includes a beam expander, an integrator, a condenser lens, and the like that expands the laser beam emitted from the beam 14 and supplies parallel light with a uniform intensity distribution to a beam cross-sectional shaping mask 21 described later. As shown in FIG.
  • a light beam cross-sectional shaping mask 21 provided so as to be movable in the directions of arrows A and B crossing the optical path of the laser beam and the first and second mask areas 18 and 20 are placed on the mask member 12.
  • the projection lens 22 is configured to be reduced and projected to a size of 5 mm ⁇ 5 mm.
  • FIG. 6A shows a laser processing apparatus provided with three pulse lasers 14 and a laser optical head 15.
  • reference numeral 23 denotes a total reflection mirror
  • reference numeral 24 denotes a support member that supports the laser optical head 15.
  • the first and second slits 17 and 19 are provided on the same substrate to form the beam section shaping mask 21, and this beam section shaping mask 21 is used as the optical axis of the laser optical head 15.
  • the first and second slits 17 and 19 are provided on different substrates to form the two light beam cross-sectional shaping masks 21, and the laser optical head 15.
  • the two light velocity section shaping masks 12 may be replaceable with respect to the optical axis.
  • step S4 a plurality of preliminary opening patterns having a shape included in the opening pattern 3 are formed by penetrating the film 4 by irradiating a laser beam onto a regular position predetermined by design values in the plurality of through holes 5. Is a step of forming.
  • step S4 will be described in detail with reference to FIGS.
  • the mask member 12 is positioned and placed on the stage 13 by abutting the four sides of the square mask member 12 against the positioning pins 28 provided on the placement surface of the stage 13. At this time, the mask member may be attracted and fixed to the stage 13 by providing the stage 13 with an attracting means such as a magnetic chuck.
  • an imaging camera (not shown) provided at a certain distance from the optical axis of the projection lens 22 of any one of the plurality of laser optical heads 15 is provided.
  • a mask-side alignment mark (not shown) provided at a predetermined position of the member 12 is photographed to detect the position, and the stage 13 is moved by a predetermined distance based on the position of the mask-side alignment mark. Then, as shown in FIG. 8A, the plurality of laser optical heads 15 are positioned at the processing start position.
  • the beam cross-section shaping mask 21 is moved in the direction of arrow A or B so that the center of the second mask area 20 matches the optical axis of the laser optical head 15.
  • the laser beam is emitted by the oscillation of the pulse laser 14 and the laser beam whose beam diameter is expanded and the intensity distribution is made uniform is the second mask area of the beam section shaping mask 21 provided in each laser optical head 15. 20 is illuminated.
  • the laser light is shaped into a plurality of beams having a shape similar to the preliminary aperture pattern by a plurality of second slits 19 provided in the second mask area 20, and is reduced by the projection lens 22, for example, on the mask member 12.
  • the shot area 27 (see FIG. 8B) of 5 mm ⁇ 5 mm is irradiated.
  • the film 4 located in the through hole 5 of the mask member 12 is ablated and laser processed, and a plurality of preliminary opening patterns 26 are formed at regular positions determined by design values (see FIG. 9). .
  • the output and shot timing of the three pulse lasers 14 can be individually controlled.
  • the plurality of preliminary opening patterns 26 are sequentially processed into regular positions while the stage 13 is moved stepwise by a certain distance in the Y direction.
  • the shot area 27 is sequentially moved, for example, as shown by the arrow in FIG. Form.
  • FIG. 9 is a diagram showing the position of the preliminary opening pattern 26 after the preliminary opening pattern 26 is formed.
  • a part of the internal stress tensile stress going from the inside to the outside
  • the film 4 contracts slightly.
  • the shrinkage of the film 4 stops when the shrinkage force of the film 4 and the shrinkage prevention force by the magnetic metal member 6 are balanced. Therefore, the position (center position) of the preliminary opening pattern 26 is shifted by dx in the X direction and dy in the Y direction from the normal position indicated by the intersection of the one-dot chain line, as shown in an enlarged view in FIG. Become.
  • the amount of misalignment and the direction of misalignment of the preliminary opening pattern 26 vary depending on the position where the preliminary opening pattern 26 is formed in the plane of the mask member 12, but the amount of misalignment is about several ⁇ m at the maximum. .
  • the subsequent step S ⁇ b> 5 is a process of laser processing the opening pattern 3 on the plurality of preliminary opening patterns 26.
  • step S5 will be described in detail with reference to FIG.
  • adsorption means such as a magnetic chuck.
  • the beam cross-section shaping mask 21 is moved in the direction of arrow A or B so that the center of the first mask area 18 matches the optical axis of the laser optical head 15.
  • step S4 the plurality of laser optical heads 15 are positioned at the processing start position of the mask member 12.
  • the laser beam is emitted by the oscillation of the pulse laser 14, and the laser beam whose beam diameter is expanded and the intensity distribution is made uniform is the first mask area of the beam section shaping mask 21 provided in each laser optical head 15.
  • the laser light is shaped into a plurality of beams having a shape similar to the opening pattern 3 by the plurality of first slits 17 provided in the first mask area 18, and is reduced by the projection lens 22 to be formed on the mask member 12, for example. Irradiate the shot area 27 of 5 mm ⁇ 5 mm.
  • the film 4 positioned in the through hole 5 of the mask member 12 is ablated and laser processed, and the normal position determined by the design value on the preliminary opening pattern 26 (the intersection of the one-dot chain line shown in FIG. 10).
  • a plurality of opening patterns 3 are formed at the position (1).
  • the plurality of opening patterns 3 are sequentially processed into regular positions while the stage 13 is moved by a certain distance step in the Y direction.
  • the shot area 27 is sequentially moved, for example, as indicated by the arrow in FIG. An opening pattern 3 is formed.
  • FIG. 10 is a diagram showing the position of the opening pattern 3 after the opening pattern 3 is formed. Since the internal stress inherent in the film 4 is partially released by the formation of the preliminary opening pattern 26, the positional deviation of the opening pattern 3 is small even after the opening pattern 3 is formed. It will be formed at a normal position within the allowable range. Since the preliminary opening pattern 26 has a small area enough to be included in the opening pattern 3, the preliminary opening pattern 26 in which the positional deviation has occurred is also accommodated inside the opening pattern 3.
  • the opening pattern 3 may be formed so as to correct the displacement amount.
  • a plurality of laser optical heads 15 are provided. It may be provided individually so that it can be finely moved in the X direction. Accordingly, the laser optical head 15 can be finely moved individually in the X direction according to the amount of positional deviation of the preliminary opening pattern 26, and the opening pattern 3 can be laser processed in the Y direction while correcting the positional deviation.
  • film formation including a plurality of through holes 5 in the unit mask 2 (see FIG. 2).
  • a dummy through hole 29 extending in parallel to the outer periphery of the unit mask 2 is provided in advance in the magnetic metal member 6 outside the effective region, and the dummy opening pattern 30 is formed on the film 4 in the dummy through hole 29 after the preliminary opening pattern 26 is formed.
  • Laser processing is recommended. Thereby, the internal stress of the film 4 in the film formation effective region is separated from the internal stress of the film 4 outside the film formation effective region, and the distortion of the distortion of the film 4 is reduced.
  • FIG. 11 shows a case where two pairs of dummy through holes 29 and dummy opening patterns 30 are provided facing each other, but the dummy through holes 29 and dummy opening patterns 30 are either up, down, left, or right in FIG. One pair may be provided on one side.
  • the dummy opening pattern 30 may be formed after the opening pattern 3 is formed to correct the positional deviation.
  • the method of manufacturing the large-area film formation mask 1 corresponding to a plurality of large-area substrates having, for example, organic EL panels attached thereto has been described.
  • the present invention is not limited thereto, and the film formation mask is not limited thereto. 1 may correspond to the unit mask 2 shown in FIG.
  • step S2 for joining the frame 8 to the mask member 12 has been described.
  • the present invention is not limited to this, and step S2 may be omitted.
  • the present invention is not limited to a film formation mask for forming an organic EL panel, and any film formation mask can be used as long as it can form a plurality of thin film patterns on a substrate with high positional accuracy. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laser Beam Processing (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、貫通孔を設けた磁性金属部材をフィルムの一面に密接させた構造のマスク用部材を形成する第1段階と、複数の貫通孔内の予め定められた正規の位置にレーザ光を照射してフィルムを貫通加工し、複数の予備開口パターンを形成する第2段階と、複数の予備開口パターン上に開口パターンをレーザ加工する第3段階と、を含むものである。

Description

成膜マスクの製造方法及びレーザ加工装置
 本発明は、開口パターンを設けた樹脂製フィルムを薄板状の磁性金属部材で支持する構造の成膜マスクの製造方法に関し、特にレーザ加工による開口パターンの形成位置精度を向上し得る成膜マスクの製造方法及びレーザ加工装置に係るものである。
 従来の成膜マスクの製造方法は、複数の貫通開口を有する第1レジストパターンを金属板上に形成し、上記第1レジストパターンの貫通開口を介してエッチング処理を行なって上記金属板に貫通する複数の開口パターンを形成した後、上記第1レジストパターンを除去し、上記複数の開口パターンの各々の周りの所定幅の金属縁部を露出させる複数の第2貫通開口を有する第2レジストパターンを上記金属板上に形成し、上記第2レジストパターンの第2貫通開口を介してエッチング処理を行なって上記複数の貫通開口の各々の周りのマスク本体部と該マスク本体部の周囲に位置するマスク本体部の厚さより大なる厚さを有する周縁部とを形成した後、上記第2レジストパターンを除去するものとなっていた(例えば、特許文献1参照)。
特開2001-237072号公報
 しかし、このような従来の成膜マスクの製造方法においては、金属板をウェットエッチング処理して該金属板に貫通する複数の開口パターンを形成しているので、ウェットエッチングの等方性により高精細な開口パターンを精度よく形成することができなかった。また、一辺の長さが数十cm以上の大面積の例えば有機EL表示パネル用の成膜マスクの場合、エッチングむらの発生によりマスク全面の開口パターンを均一に形成することができなかった。
 そこで、出願人は、基板に成膜される薄膜パターンに対応して該薄膜パターンと形状寸法の同じ開口パターンを形成した樹脂製のフィルムと、開口パターンを内包する貫通孔を形成した薄板状の磁性金属部材とを密接させた構造の複合型の成膜マスクを提案している。
 上記複合型の成膜マスクは、厚みが10μm~30μm程度の薄い樹脂製フィルムに開口パターンをレーザ加工して形成するものであり、高精細な開口パターンを精度よく形成することができると共に、上述のような大面積の成膜マスクもマスク全面に亘って均一に開口パターンを形成することができるという特長を有している。
 しかしながら、上記複合型の成膜マスクにおいては、例えばインバー又はインバー合金のような熱膨張係数の小さい磁性金属部材と樹脂製フィルムのような比較的熱膨張係数の大きい部材とを室温以上で密接させた後に、開口パターンをレーザ加工すると両部材間の熱膨張の差に起因して発生するフィルムの内部応力により、開口パターンの位置が累積的にずれることがあった。
 そこで、本発明は、このような問題点に対処し、レーザ加工による開口パターンの形成位置精度を向上し得る成膜マスクの製造方法及びレーザ加工装置を提供することを目的とする。
 上記目的を達成するために、第1の発明による成膜マスクの製造方法は、貫通する複数の開口パターンを形成した樹脂製のフィルムと、前記フィルムの一面に密接させて設けられ前記複数の開口パターンの少なくとも1つを内包する大きさの複数の貫通孔を設けた磁性金属部材とを備えた成膜マスクの製造方法であって、前記貫通孔を設けた前記磁性金属部材を前記フィルムの一面に密接させた構造のマスク用部材を形成する第1段階と、前記複数の貫通孔内の予め定められた正規の位置にレーザ光を照射して前記フィルムを貫通加工し、前記開口パターンに内包される形状の複数の予備開口パターンを形成する第2段階と、前記複数の予備開口パターン上に前記開口パターンをレーザ加工する第3段階と、を含むものである。
 また、第2の発明によるレーザ加工装置は、複数の貫通孔を設けた磁性金属部材を樹脂製のフィルムの一面に密接させた構造のマスク用部材の前記貫通孔内にレーザ光を照射し、前記フィルムに貫通する複数の開口パターンを形成するレーザ加工装置であって、前記マスク用部材を載置して載置面に平行な2次元平面内を移動可能なステージと、前記レーザ光の光束断面形状を前記開口パターンの形状に合わせて整形し前記マスク用部材に照射するレーザ光学ヘッドと、を備えて構成され、前記レーザ光学ヘッドは、前記開口パターンに相似の形状を有する第1のスリット、及び前記開口パターンに内包される形状の予備開口パターンに相似の形状を有する第2のスリットを並べて同一の基板に形成し、前記レーザ光の光路に交差して移動可能に設けられた光束断面整形マスク、又は前記第1のスリット及び第2のスリットを夫々異なる基板に形成し、前記レーザ光の光路に対して差し替え可能に設けられた光束断面整形マスクと、前記第1及び第2のスリットを前記マスク用部材上に縮小投影する投影レンズとを備え、前記ステージを移動しながら、前記光束断面整形マスクの前記第2のスリットを使用して前記貫通孔内の予め定められた正規の位置にレーザ光を照射し、前記フィルムを貫通加工して複数の前記予備開口パターンを形成した後、前記光束断面整形マスクの第1のスリットを使用して、前記複数の予備開口パターン上に前記開口パターンをレーザ加工するものである。
 本発明によれば、開口パターンに内包される形状の予備開口パターンを予め形成してフィルムに内在する内部応力の一部を解放した状態で、予備開口パターン上に開口パターンを形成しているので、開口パターン形成後の開口パターンの位置ずれを抑制することができる。したがって、レーザ加工による開口パターンの形成位置精度を向上することができる。
本発明による成膜マスクの製造方法の実施形態を示すフローチャートである。 本発明の方法により製造される成膜マスクの一構成例であり、(a)は平面図、(b)は(a)の一部を拡大して示す平面図、(c)は(a)のO-O線断面矢視図である。 本発明による成膜マスクの製造方法におけるマスク用部材の形成工程を示す説明図である。 本発明による成膜マスクの製造方法におけるフレームの接合工程を示す説明図である。 複合型成膜マスクにおける開口パターン形成時の懸念事項について説明する図であり、(a)は理想状態を示し、(b)は開口パターンの位置ずれを示している。 本発明によるレーザ加工装置の一構成例を示す図であり、(a)は正面図、(b)はレーザ光学ヘッドの一構成を示す説明図である。 本発明によるレーザ加工装置に使用される光束断面整形マスクの一構成例を示す平面図である。 本発明によるレーザ加工装置を使用して行うレーザ加工について説明する図であり、(a)は平面図、(b)は一部を拡大して示す平面図である。 本発明による成膜マスクの製造方法における予備開口パターン形成後の状態を示す説明図であり、(a)は予備開口パターンの全体的な位置ずれを示し、(b)は予備開口パターンの正規の位置に対する位置ずれを示す。 本発明による成膜マスクの製造方法における開口パターン形成後の状態を示す説明図である。 本発明の方法により製造される成膜マスクの変形例を示す平面図である。
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明による成膜マスクの製造方法の実施形態を示すフローチャートである。この成膜マスクの製造方法は、開口パターンを設けた樹脂製フィルムを薄板状の磁性金属部材で支持する構造の成膜マスクを製造するもので、マスク用部材を形成するステップS1と、フレームを接合するステップS2と、予備開口パターンを形成するステップS3と、開口パターンを形成するステップS4とを含んでいる。
 ここでは一例として、図2に示すように、複数の、例えば有機ELパネルを多面付した大面積の基板に対応した大面積の成膜マスク1であり、上記複数のパネルに対応して複数の単位マスク2を配置して備えた成膜マスク1の製造方法について説明する。より詳細には、形成しようとする複数の薄膜パターン(例えば、有機EL層)に対応した位置に、該薄膜パターンと同じ形状寸法を有する貫通する複数の開口パターン3を形成した可視光を透過する樹脂製のフィルム4の一面に上記開口パターン3を内包する大きさの貫通する複数の貫通孔5を形成した薄板状の磁性金属部材6を密接し、該磁性金属部材6の上記フィルム4との密接面とは反対面の周縁部に上記複数の貫通孔5を内包する大きさの開口7を有する枠状のフレーム8の端面を接合した構造の成膜マスク1の製造方法について説明する。なお、図2においては、ストライプ状の貫通孔5内に複数の開口パターン3が設けられた成膜マスク1の構成例を示しているが、成膜マスク1は貫通孔5内に一つの開口パターン3が設けられたものであってもよい。
 上記ステップS1は、フィルム4の一面に、開口パターン3を内包する大きさの貫通する貫通孔5を設けた磁性金属部材6を密接した構造のマスク用部材12を形成する工程である。以下、図3を参照して詳細に説明する。
 先ず、図3(a)に示すように、熱膨張係数が1×10-6/℃以下であるインバー又はインバー合金からなる厚みが30μm~50μm程度の磁性金属材料の磁性金属シート9を、成膜対象である基板の表面積に合わせて切り出し、該磁性金属シート9の一面9aに例えばポリイミド等の樹脂液を塗布し、これを200℃~300℃程度の温度で硬化させて厚みが10μm~30μm程度の可視光を透過するフィルム4を形成する。
 次いで、図3(b)に示すように、磁性金属シート9の他面9bにレジストを例えばスプレー塗布した後、これを乾燥させてレジストフィルムを形成し、次に、フォトマスクを使用してレジストフィルムを露光・現像し、後述のステップS3,S4において形成される複数の予備開口パターン又は開口パターン3に対応した位置に該予備開口パターン又は開口パターン3を内包する大きさの複数のストライプ状の開口部10を設けたレジストマスク11を形成する。
 続いて、図3(c)に示すように、上記レジストマスク11を使用して磁性金属シート9をウェットエッチングし、レジストマスク11の開口部10に対応した部分の磁性金属シート9を除去してストライプ状の貫通孔5を設けて磁性金属部材6を形成した後、レジストマスク11を例えば有機溶剤に溶解させて除去する。これにより、磁性金属部材6と樹脂製のフィルム4とを密接させたマスク用部材12が形成される。なお、磁性金属シート9をエッチングするためのエッチング液は、使用する磁性金属シート9の材料に応じて適宜選択され、公知の技術を適用することができる。
 また、磁性金属シート9をエッチングして貫通孔5を形成する際に、複数の貫通孔5の形成領域外の予め定められた位置に基板に予め設けられた基板側アライメントマークに対して位置合わせするための図示省略のマスク側アライメントマークを同時に形成してもよい。この場合、レジストマスク11を形成する際に、マスク側アライメントマークに対応した位置にアライメントマーク用の開口部を設けるとよい。
 上記ステップS2は、磁性金属部材6の複数の貫通孔5を内包する大きさの開口7を設けたインバー又はインバー合金等からなる枠状のフレーム8の一端面にマスク用部材12を張架して、該フレーム8の一端面に磁性金属部材6の周縁部を接合する工程である。以下、図4を参照して詳細に説明する。
 先ず、図4(a)に示すように、磁性金属部材6の周縁部に対応したフィルム4の部分に、例えばKrF248nmのエキシマレーザ、又はYAGレーザの第3高調波や第4高調波を使用して、波長が400nm以下のレーザ光Lを照射し、当該部分のフィルム4をアブレーションして除去する。
 次に、図4(b)に示すように、マスク用部材12を該マスク用部材12の面に平行な側方(矢印方向)にマスク用部材12が撓まない程度の大きさのテンションをかけた状態でフレーム8の上方に位置付ける。
 さらに、図4(c)に示すように、マスク用部材12をその面に平行な側方にテンションをかけた状態でフレーム8の一端面8aに張架し、磁性金属部材6の周縁部とフレーム8とをスポット溶接する。
 ところで、出願人が提案した複合型の成膜マスク1は、図5(a)に示すように、設計値に基づいて複数の貫通孔5内の予め定められた正規の位置にレーザ光を照射して、フィルム4を貫通する開口パターン3を形成するようにしたものであった。磁性金属部材6として熱膨張係数が1×10-6/℃以下のインバー又はインバー合金を使用した場合、フィルム4、例えばポリイミドの熱膨張係数が3~5×10-5/℃で、インバー又はインバー合金の熱膨張係数に比べて1桁大きいため、200℃~300℃で硬化された後、室温まで冷却されたフィルム4には、上記熱膨張係数の差により、面に平行な方向に引張応力が働いた状態でバランスすることになる。
 このような状態で、フィルム4に開口パターン3が形成されると、上記バランスが崩れてフィルム4は変形しようとする。そのため、形成された開口パターン3及び貫通孔5の位置が図5(b)に示すように、設計値に基づく正規の位置からずれるおそれがあった。
 そこで、このような問題に対処するために、本発明による成膜マスク1の製造方法は、正規の位置に開口パターン3に内包される形状の複数の予備開口パターンを予め形成し、フィルム4の内部応力を一部解放して予備開口パターンの位置ずれを意図的に生じさせた後、開口パターン3を形成することを特徴としている。以下に、本発明による成膜マスク1の製造方法の特徴部分であるステップS4,S5を詳細に説明する。
 なお、ステップS4,S5は、図6に示すレーザ加工装置を使用して行われる。このレーザ加工装置は、パルスレーザから放射されたレーザビームを予備開口パターン又は開口パターン3の形状に合わせて整形してフィルム4に照射するものであり、ステージ13と、パルスレーザ14と、レーザ光学ヘッド15と、を備えて構成されている。
 上記ステージ13は、マスク用部材12を載置して載置面13aに平行な2次元平面(XY平面)内を移動するもので、XYテージであり、図示省略の制御手段(例えば、パーソナルコンピュータ)によって移動が制御されるようになっている。
 上記ステージ13の上方には、パルスレーザ14が設けられている。このパルスレーザ14は、波長が355nmのレーザ光を放射する例えばNd:YAGレーザである。この場合、照射するレーザ光のエネルギー密度は、0.5J/cm~1J/cm、パルス幅は5ns~7nsec、ショット周波数は50Hz~60Hzに設定される。
 上記パルスレーザ14のレーザ光の下流側には、レーザ光学ヘッド15が設けられている。このレーザ光学ヘッド15は、図6(b)に示すように、レーザ光の光束断面形状を開口パターン3又は予備開口パターンの形状に合わせて整形しマスク用部材12に照射するもので、パルスレーザ14から放射されたレーザビームを拡張すると共に強度分布が均一な平行光を後述の光束断面整形マスク21に供給する、例えばビームエキスパンダ、インテグレータ及びコンデンサーレンズ等を含んで構成された照明光学系16と、図7に示すように開口パターン3に相似な形状の複数の第1のスリット17を形成した第1のマスクエリア18、及び開口パターン3に内包される形状の、例えば開口パターン3の80%の面積を有する予備開口パターンに相似な形状の複数の第2のスリット19を形成した第2のマスクエリア20を並べて形成し、レーザ光の光路に交差して同図の矢印A,B方向に移動可能に設けられた光束断面整形マスク21と、第1及び第2のマスクエリア18,20をマスク用部材12上に、例えば5mm×5mmの大きさに縮小投影する投影レンズ22とを備えて構成されている。そして、大面積の基板の複数領域を同時にレーザ加工することができるように複数のレーザ光学ヘッド15が一定の間隔で並べて設けられている。なお、図6(a)は3台のパルスレーザ14及びレーザ光学ヘッド15を備えたレーザ加工装置を示している。図6(a)において、符号23は全反射ミラーであり、符号24はレーザ光学ヘッド15を支持する支持部材である。また、上記実施形態においては、複数の第1及び第2のスリット17,19を同一の基板に設けて光束断面整形マスク21を形成し、この光束断面整形マスク21をレーザ光学ヘッド15の光軸に交差する方向に移動可能に設けた場合について説明したが、第1及び第2のスリット17,19を夫々異なる基板に設けて2枚の光束断面整形マスク21を形成し、上記レーザ光学ヘッド15の光軸に対して上記2枚の光速断面整形マスク12を差し替え可能にしてもよい。
 以下、上記レーザ加工装置を使用して行う予備開口パターン及び開口パターン3のレーザ加工について説明する。
 上記ステップS4は、複数の貫通孔5内の設計値で予め定められた正規の位置にレーザ光を照射してフィルム4を貫通加工し、開口パターン3に内包される形状の複数の予備開口パターンを形成する工程である。以下、図8,9を参照してステップS4を詳細に説明する。
 先ず、ステージ13の載置面に設けられた位置決めピン28に四角形のマスク用部材12の四辺を突き当ててマスク用部材12がステージ13上に位置決めして載置される。このとき、ステージ13に磁気チャック等の吸着手段を備えることにより、マスク用部材をステージ13に吸着固定させるようにしてもよい。
 次に、複数のレーザ光学ヘッド15のうち、いずれか1つのレーザ光学ヘッド15の、例えば投影レンズ22の光軸に対して一定の距離だけ離れて設けられた図示省略の撮像カメラにより、マスク用部材12の予め定められた位置に設けられた図示省略のマスク側アライメントマークを撮影してその位置を検出し、該マスク側アライメントマークの位置を基準にして予め定められた距離だけステージ13を移動し、図8(a)に示すように複数のレーザ光学ヘッド15を加工開始位置に位置付ける。
 続いて、光束断面整形マスク21を矢印A又はB方向に移動して、第2のマスクエリア20の中心をレーザ光学ヘッド15の光軸に合致させる。
 次いで、パルスレーザ14が発振してレーザビームが発射され、ビーム径が拡張され強度分布が均一にされたレーザ光が各レーザ光学ヘッド15に備えられた光束断面整形マスク21の第2のマスクエリア20を照明する。レーザ光は、第2のマスクエリア20に設けられた複数の第2のスリット19により予備開口パターンに相似な形状の複数のビームに整形され、投影レンズ22により縮小されてマスク用部材12の例えば5mm×5mmのショット領域27(図8(b)参照)に照射する。これにより、マスク用部材12の貫通孔5内に位置するフィルム4がアブレーションされてレーザ加工され、設計値で定められた正規の位置に複数の予備開口パターン26が形成される(図9参照)。なお、3台のパルスレーザ14は、その出力及びショットタイミング等を個別に制御することが可能である。
 次に、図8(a)に示すように、ステージ13をY方向に一定距離だけステップ移動しながら、複数の予備開口パターン26を正規の位置に順次加工して行く。この場合、ステージ13をX,Y方向にステップ移動しながら、ショット領域27を例えば同図(b)に矢印で示すように順次移動してマスク用部材12の全面に亘って予備開口パターン26を形成する。
 図9は、予備開口パターン26が形成された後の予備開口パターン26の位置を示す図である。同図に示すように、予備開口パターン26が形成されるとフィルム4に内在している内部応力(内から外に向かう引張応力)の一部が解放され、フィルム4は僅かに収縮する。そして、フィルム4の収縮力と磁性金属部材6による収縮阻止力がバランスしたところでフィルム4の収縮は止まる。そのため、予備開口パターン26の位置(中心位置)は、同図(b)に拡大して示すように1点鎖線の交点で示す正規の位置からX方向にdx、Y方向にdyだけずれることになる。なお、予備開口パターン26の位置ずれ量及び位置ずれ方向は、マスク用部材12の平面内の予備開口パターン26が形成されている位置によって異なるが、そのずれ量は、最大で数μm程度である。
 続いて実行される上記ステップS5は、複数の予備開口パターン26上に開口パターン3をレーザ加工する工程である。以下、ステップS5について図10を参照して詳細に説明する。なお、ステップS5は、フィルム4の内部応力の発生を抑制するために、マスク用部材12をステージ13に磁気チャック等の吸着手段により吸着させないで行うことが好ましい。
 先ず、光束断面整形マスク21を矢印A又はB方向に移動して、第1のマスクエリア18の中心をレーザ光学ヘッド15の光軸に合致させる。
 次に、ステップS4と同様にして、複数のレーザ光学ヘッド15がマスク用部材12の加工開始位置に位置付けられる。
 次いで、パルスレーザ14が発振してレーザビームが発射され、ビーム径が拡張され強度分布が均一にされたレーザ光が各レーザ光学ヘッド15に備えられた光束断面整形マスク21の第1のマスクエリア18を照明する。レーザ光は、第1のマスクエリア18に設けられた複数の第1のスリット17により開口パターン3に相似な形状の複数のビームに整形され、投影レンズ22により縮小されてマスク用部材12の例えば5mm×5mmのショット領域27に照射する。これにより、マスク用部材12の貫通孔5内に位置するフィルム4がアブレーションされてレーザ加工され、予備開口パターン26上の設計値で定められた正規の位置(図10に示す1点鎖線の交点の位置)に複数の開口パターン3が形成される。
 そして、図8(a)に示すように、ステージ13をY方向に一定距離ステップ移動しながら、複数の開口パターン3を正規の位置に順次加工して行く。この場合、前述と同様に、ステージ13をX,Y方向にステップ移動しながら、ショット領域27を例えば同図(b)に矢印で示すように順次移動してマスク用部材12の全面に亘って開口パターン3を形成する。
 図10は、開口パターン3が形成された後の開口パターン3の位置を示す図である。予備開口パターン26の形成により、フィルム4に内在していた内部応力が一部解放されているため、開口パターン3が形成された後も開口パターン3の位置ずれは少なく、開口パターン3は位置ずれの許容範囲内で正規の位置に形成されることになる。なお、予備開口パターン26は、開口パターン3に内包される程の面積の小さいものであるため、位置ずれが生じた予備開口パターン26も開口パターン3の内側に収まる。
 又は、撮像手段により予備開口パターン26を撮影してその中心位置を検出した後、予備開口パターン26の正規の位置に対する位置ずれ量(図9(b)に示すdx,dy)を計測し、該位置ずれ量を補正するように開口パターン3を形成してもよい。この場合、前述したように、予備開口パターン26の位置ずれ量及び位置ずれ方向は、マスク用部材12の平面内の予備開口パターン26が形成される位置によって異なるため、複数のレーザ光学ヘッド15を個別にX方向に微動可能に設けるとよい。これにより、予備開口パターン26の位置ずれ量に応じてレーザ光学ヘッド15を個別にX方向に微動し、上記位置ずれを補正しながらY方向に開口パターン3をレーザ加工することができる。
 なお、予備開口パターン26の位置ずれ量が大きく、開口パターン3の内側に収まらない時には、図11に示すように、単位マスク2(図2参照)内の複数の貫通孔5を内包する成膜有効領域外の磁性金属部材6に、単位マスク2の外周に平行に延びるダミー貫通孔29を予め設けておき、予備開口パターン26の形成後にダミー貫通孔29内のフィルム4にダミー開口パターン30をレーザ加工するとよい。これにより、成膜有効領域内のフィルム4の内部応力が成膜有効領域外のフィルム4の内部応力から切り離されてフィルム4の歪の偏りが減少する。したがって、予備開口パターン26の位置ずれが減少して、予備開口パターン26は正規の位置に近づくことになる。それ故、その後、開口パターン3を正規の位置に形成すれば、予備開口パターン26は開口パターン3の内側に収まり、開口パターン3からはみ出すことはない。ダミー開口パターン30の形状、形成位置及び個数は、予備開口パターン26の位置ずれ量及び位置ずれの偏りに応じて適宜決定される。なお、図11においては、ダミー貫通孔29及びダミー開口パターン30を対向して2対設けた場合について示しているが、ダミー貫通孔29及びダミー開口パターン30は図11において上下又は左右のいずれか一方に1対設けてもよい。
 又は、開口パターン3形成後の開口パターン3の位置ずれ量が許容値を超えて大きい場合には、開口パターン3の形成後に上記ダミー開口パターン30を形成し、上記位置ずれを補正するとよい。
 上記実施形態においては、複数の、例えば有機ELパネルを多面付した大面積の基板に対応した大面積の成膜マスク1の製造方法について説明したが、本発明はこれに限られず、成膜マスク1は図2に示す単位マスク2に相当するものであってもよい。
 また、上記実施形態においては、マスク用部材12にフレーム8を接合するステップS2を含む場合について説明したが、本発明はこれに限られず、ステップS2は省略してもよい。
 さらに、本発明は有機ELパネルを形成するための成膜マスクに限られず、基板上に複数の薄膜パターンを位置精度よく形成しようとする成膜マスクであれば、如何なる成膜マスクであってもよい。
 1…成膜マスク
 3…開口パターン
 4…フィルム
 5…貫通孔
 6…磁性金属部材
 7…フレームの開口
 8…フレーム
 12…マスク用部材
 13…ステージ
 15…レーザ光学ヘッド
 17…第1のスリット
 18…第1のマスクエリア
 19…第2のスリット
 20…第2のマスクエリア
 21…光束断面整形マスク
 22…投影レンズ
 26…予備開口パターン
 

Claims (9)

  1.  貫通する複数の開口パターンを形成した樹脂製のフィルムと、前記フィルムの一面に密接させて設けられ前記複数の開口パターンの少なくとも1つを内包する大きさ複数の貫通孔を設けた磁性金属部材とを備えた成膜マスクの製造方法であって、
     前記貫通孔を設けた前記磁性金属部材を前記フィルムの一面に密接させた構造のマスク用部材を形成する第1段階と、
     前記複数の貫通孔内の予め定められた正規の位置にレーザ光を照射して前記フィルムを貫通加工し、前記開口パターンに内包される形状の複数の予備開口パターンを形成する第2段階と、
     前記複数の予備開口パターン上に前記開口パターンをレーザ加工する第3段階と、
    を含むことを特徴とする成膜マスクの製造方法。
  2.  前記第3段階は、前記正規の位置にレーザ光を照射して前記開口パターンを形成することを特徴とする請求項1記載の成膜マスクの製造方法。
  3.  前記開口パターンは、前記マスク用部材に予め設けられたマスク側アライメントマークを基準にして予め定められた位置に形成されることを特徴とする請求項2記載の成膜マスクの製造方法。
  4.  前記第3段階は、前記フィルムと前記磁性金属部材との熱膨張差に起因する前記フィルムの内部応力に基づいて、前記第2段階実施後に生じる前記予備開口パターンの前記正規の位置に対する位置ずれを計測し、該位置ずれを補正して前記開口パターンを形成することを特徴とする請求項1記載の成膜マスクの製造方法。
  5.  前記予備開口パターンは、前記マスク用部材に予め設けられたマスク側アライメントマークを基準にして予め定められた位置に形成されることを特徴とする請求項1~4のいずれか1項に記載の成膜マスクの製造方法。
  6.  前記第1段階と前記第2段階との間で、前記複数の貫通孔を内包する大きさの開口を有する枠状のフレームの一端面に前記磁性金属部材の周縁部を接合することを特徴とする請求項1~4のいずれか1項に記載の成膜マスクの製造方法。
  7.  前記第1段階と前記第2段階との間で、前記複数の貫通孔を内包する大きさの開口を有する枠状のフレームの一端面に前記磁性金属部材の周縁部を接合することを特徴とする請求項4記載の成膜マスクの製造方法。
  8.  複数の貫通孔を設けた磁性金属部材を樹脂製のフィルムの一面に密接させた構造のマスク用部材の前記貫通孔内にレーザ光を照射し、前記フィルムに貫通する複数の開口パターンを形成するレーザ加工装置であって、
     前記マスク用部材を載置して載置面に平行な2次元平面内を移動可能なステージと、
     前記レーザ光の光束断面形状を前記開口パターンの形状に合わせて整形し前記マスク用部材に照射するレーザ光学ヘッドと、
    を備えて構成され、
     前記レーザ光学ヘッドは、前記開口パターンに相似の形状を有する第1のスリット、及び前記開口パターンに内包される形状の予備開口パターンに相似の形状を有する第2のスリットを並べて同一の基板に形成し、前記レーザ光の光路に交差して移動可能に設けられた光束断面整形マスク、又は前記第1のスリット及び第2のスリットを夫々異なる基板に形成し、前記レーザ光の光路に対して差し替え可能に設けられた光束断面整形マスクと、前記第1及び第2のスリットを前記マスク用部材上に縮小投影する投影レンズとを備え、
     前記ステージを移動しながら、前記光束断面整形マスクの前記第2のスリットを使用して前記貫通孔内の予め定められた正規の位置にレーザ光を照射し、前記フィルムを貫通加工して複数の前記予備開口パターンを形成した後、前記光束断面整形マスクの第1のスリットを使用して、前記複数の予備開口パターン上に前記開口パターンをレーザ加工することを特徴とするレーザ加工装置。
  9.  複数の前記第1及び第2のスリットを使用して加工される複数の前記開口パターン及び予備開口パターンを夫々1単位とし、前記ステージをステップ移動しながら前記マスク用部材の全面に亘って前記予備開口パターン及び開口パターンを形成することを特徴とする請求項8記載のレーザ加工装置。
     
PCT/JP2013/084811 2013-01-28 2013-12-26 成膜マスクの製造方法及びレーザ加工装置 WO2014115477A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380071351.5A CN104955977B (zh) 2013-01-28 2013-12-26 成膜掩模的制造方法以及激光加工装置
KR1020157019872A KR102148970B1 (ko) 2013-01-28 2013-12-26 성막 마스크의 제조 방법 및 레이저 가공 장치
US14/809,086 US9802221B2 (en) 2013-01-28 2015-07-24 Deposition mask production method and laser processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013013539A JP6078747B2 (ja) 2013-01-28 2013-01-28 蒸着マスクの製造方法及びレーザ加工装置
JP2013-013539 2013-01-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/809,086 Continuation US9802221B2 (en) 2013-01-28 2015-07-24 Deposition mask production method and laser processing apparatus

Publications (1)

Publication Number Publication Date
WO2014115477A1 true WO2014115477A1 (ja) 2014-07-31

Family

ID=51227277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084811 WO2014115477A1 (ja) 2013-01-28 2013-12-26 成膜マスクの製造方法及びレーザ加工装置

Country Status (6)

Country Link
US (1) US9802221B2 (ja)
JP (1) JP6078747B2 (ja)
KR (1) KR102148970B1 (ja)
CN (1) CN104955977B (ja)
TW (1) TWI595326B (ja)
WO (1) WO2014115477A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711512A (zh) * 2015-03-27 2015-06-17 广州今泰科技股份有限公司 一种环保型物理气相沉积间色镀膜的方法
US20170036230A1 (en) * 2014-04-24 2017-02-09 V Technology Co., Ltd. Deposition mask, method for producing deposition mask and touch panel
WO2017056656A1 (ja) * 2015-09-30 2017-04-06 フォックスコン日本技研株式会社 微細パターンを有する樹脂フィルムの製造方法および有機el表示装置の製造方法ならびに微細パターン形成用基材フィルムとサポート部材付き樹脂フィルム
WO2017119153A1 (ja) * 2016-01-06 2017-07-13 鴻海精密工業股▲ふん▼有限公司 蒸着マスク及びその製造方法、有機el表示装置の製造方法
JP2018066053A (ja) * 2016-10-21 2018-04-26 大日本印刷株式会社 蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着マスクの製造方法、有機半導体素子の製造方法、及び有機elディスプレイの製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6035548B2 (ja) * 2013-04-11 2016-11-30 株式会社ブイ・テクノロジー 蒸着マスク
JP6197423B2 (ja) * 2013-07-11 2017-09-20 大日本印刷株式会社 蒸着マスク、蒸着マスクの製造方法、及び有機半導体素子の製造方法
KR102128968B1 (ko) * 2013-10-15 2020-07-02 삼성디스플레이 주식회사 금속 마스크 및 금속 마스크 제조 방법
JP6357312B2 (ja) * 2013-12-20 2018-07-11 株式会社ブイ・テクノロジー 成膜マスクの製造方法及び成膜マスク
JP2015190021A (ja) * 2014-03-28 2015-11-02 ソニー株式会社 蒸着用マスクの製造方法および表示装置の製造方法
JP6769692B2 (ja) * 2015-01-14 2020-10-14 大日本印刷株式会社 蒸着マスクの製造方法、及び有機半導体素子の製造方法
KR102352280B1 (ko) * 2015-04-28 2022-01-18 삼성디스플레이 주식회사 마스크 프레임 조립체 제조 장치 및 이를 이용한 마스크 프레임 조립체 제조 방법
WO2017154233A1 (ja) * 2016-03-10 2017-09-14 鴻海精密工業股▲ふん▼有限公司 蒸着マスク、蒸着マスク用マスク部材、及び蒸着マスクの製造方法と有機el表示装置の製造方法
JP6341434B2 (ja) * 2016-03-29 2018-06-13 株式会社ブイ・テクノロジー 成膜マスク、その製造方法及び成膜マスクのリペア方法
JP6376483B2 (ja) * 2017-01-10 2018-08-22 大日本印刷株式会社 蒸着マスクの製造方法、蒸着マスク装置の製造方法および蒸着マスクの良否判定方法
JP6521003B2 (ja) * 2017-08-23 2019-05-29 大日本印刷株式会社 蒸着マスク、蒸着マスクの製造方法、及び有機半導体素子の製造方法
KR20190071476A (ko) 2017-12-14 2019-06-24 에이피시스템 주식회사 레이저 가공방법 및 마스크 조립체 제조방법
WO2020012771A1 (ja) * 2018-07-09 2020-01-16 株式会社ブイ・テクノロジー レーザ加工装置、レーザ加工方法及び成膜マスクの製造方法
KR102390023B1 (ko) 2019-03-15 2022-04-26 에이피에스홀딩스 주식회사 멀티 빔 가공방법 및 멀티 빔 가공장치
CN113646461A (zh) * 2019-04-01 2021-11-12 堺显示器制品株式会社 成膜掩模的制造方法
KR20200122021A (ko) 2019-04-17 2020-10-27 에이피에스홀딩스 주식회사 멀티 빔 가공장치 및 멀티 빔 가공방법
JP2021175824A (ja) * 2020-03-13 2021-11-04 大日本印刷株式会社 有機デバイスの製造装置の蒸着室の評価方法、評価方法で用いられる標準マスク装置及び標準基板、標準マスク装置の製造方法、評価方法で評価された蒸着室を備える有機デバイスの製造装置、評価方法で評価された蒸着室において形成された蒸着層を備える有機デバイス、並びに有機デバイスの製造装置の蒸着室のメンテナンス方法
WO2022034634A1 (ja) * 2020-08-11 2022-02-17 堺ディスプレイプロダクト株式会社 成膜マスクの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190057A (ja) * 2002-12-09 2004-07-08 Nippon Filcon Co Ltd パターニングされたマスク被膜と支持体からなる積層構造の薄膜パターン形成用マスク及びその製造方法
JP2005163111A (ja) * 2003-12-02 2005-06-23 Sony Corp 蒸着マスクおよびその製造方法
JP2005302457A (ja) * 2004-04-09 2005-10-27 Toray Ind Inc 蒸着マスクおよびその製造方法並びに有機電界発光装置の製造方法
JP2006188748A (ja) * 2005-01-05 2006-07-20 Samsung Sdi Co Ltd シャドウマスクパターンの形成方法
JP2009062565A (ja) * 2007-09-05 2009-03-26 Seiko Epson Corp マスク、マスクの製造方法、電気光学装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300664A (ja) * 1994-04-28 1995-11-14 Fujitsu Ltd メタルマスクの製造方法とその再生方法
JPH09174271A (ja) * 1995-12-26 1997-07-08 Nikon Corp レーザ加工装置及び加工用マスク
JP2001237072A (ja) 2000-02-24 2001-08-31 Tohoku Pioneer Corp メタルマスク及びその製造方法
JP2011031282A (ja) * 2009-08-03 2011-02-17 Marubun Corp レーザ加工装置、レーザ加工方法および液滴吐出ノズルプレート
TWI601838B (zh) * 2012-01-12 2017-10-11 大日本印刷股份有限公司 A method of manufacturing a vapor deposition mask, and a method of manufacturing an organic semiconductor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190057A (ja) * 2002-12-09 2004-07-08 Nippon Filcon Co Ltd パターニングされたマスク被膜と支持体からなる積層構造の薄膜パターン形成用マスク及びその製造方法
JP2005163111A (ja) * 2003-12-02 2005-06-23 Sony Corp 蒸着マスクおよびその製造方法
JP2005302457A (ja) * 2004-04-09 2005-10-27 Toray Ind Inc 蒸着マスクおよびその製造方法並びに有機電界発光装置の製造方法
JP2006188748A (ja) * 2005-01-05 2006-07-20 Samsung Sdi Co Ltd シャドウマスクパターンの形成方法
JP2009062565A (ja) * 2007-09-05 2009-03-26 Seiko Epson Corp マスク、マスクの製造方法、電気光学装置の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170036230A1 (en) * 2014-04-24 2017-02-09 V Technology Co., Ltd. Deposition mask, method for producing deposition mask and touch panel
CN104711512A (zh) * 2015-03-27 2015-06-17 广州今泰科技股份有限公司 一种环保型物理气相沉积间色镀膜的方法
JP2019090115A (ja) * 2015-09-30 2019-06-13 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. 微細パターンを有する樹脂フィルムの製造方法および有機el表示装置の製造方法ならびに微細パターン形成用基材フィルムとサポート部材付き樹脂フィルム
JPWO2017056656A1 (ja) * 2015-09-30 2018-05-24 鴻海精密工業股▲ふん▼有限公司 微細パターンを有する樹脂フィルムの製造方法および有機el表示装置の製造方法ならびに微細パターン形成用基材フィルムとサポート部材付き樹脂フィルム
CN108474100A (zh) * 2015-09-30 2018-08-31 鸿海精密工业股份有限公司 具有微细图案的树脂薄膜的制造方法以及有机el显示装置的制造方法与微细图案形成用基材薄膜和具有支撑部件的树脂薄膜
US20190044069A1 (en) * 2015-09-30 2019-02-07 Hon Hai Precision Industry Co., Ltd. Method for producing resin film having fine pattern, method for producing organic el display device, base film for forming fine pattern, and resin film provided with supporting member
WO2017056656A1 (ja) * 2015-09-30 2017-04-06 フォックスコン日本技研株式会社 微細パターンを有する樹脂フィルムの製造方法および有機el表示装置の製造方法ならびに微細パターン形成用基材フィルムとサポート部材付き樹脂フィルム
JP2019090114A (ja) * 2015-09-30 2019-06-13 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. 微細パターンを有する樹脂フィルムの製造方法および有機el表示装置の製造方法ならびに微細パターン形成用基材フィルムとサポート部材付き樹脂フィルム
JP2019090116A (ja) * 2015-09-30 2019-06-13 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. 微細パターンを有する樹脂フィルムの製造方法および有機el表示装置の製造方法ならびに微細パターン形成用基材フィルムとサポート部材付き樹脂フィルム
JP2020111832A (ja) * 2015-09-30 2020-07-27 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. 微細パターンを有する樹脂フィルムの製造方法および有機el表示装置の製造方法
US10840449B2 (en) 2015-09-30 2020-11-17 Hon Hai Precision Industry Co., Ltd. Method for producing resin film having fine pattern, method for producing organic el display device, base film for forming fine pattern, and resin film provided with supporting member
WO2017119153A1 (ja) * 2016-01-06 2017-07-13 鴻海精密工業股▲ふん▼有限公司 蒸着マスク及びその製造方法、有機el表示装置の製造方法
JPWO2017119153A1 (ja) * 2016-01-06 2018-05-24 鴻海精密工業股▲ふん▼有限公司 蒸着マスク及びその製造方法、有機el表示装置の製造方法
JP2018066053A (ja) * 2016-10-21 2018-04-26 大日本印刷株式会社 蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着マスクの製造方法、有機半導体素子の製造方法、及び有機elディスプレイの製造方法

Also Published As

Publication number Publication date
US20150328662A1 (en) 2015-11-19
US9802221B2 (en) 2017-10-31
TWI595326B (zh) 2017-08-11
JP2014146470A (ja) 2014-08-14
CN104955977B (zh) 2018-01-09
KR20150111349A (ko) 2015-10-05
KR102148970B1 (ko) 2020-08-27
JP6078747B2 (ja) 2017-02-15
TW201447498A (zh) 2014-12-16
CN104955977A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
JP6078747B2 (ja) 蒸着マスクの製造方法及びレーザ加工装置
JP5976527B2 (ja) 蒸着マスク及びその製造方法
JP5958824B2 (ja) 蒸着マスクの製造方法
US10337096B2 (en) Method for manufacturing deposition mask and deposition mask
WO2015002129A1 (ja) 成膜マスク及び成膜マスクの製造方法
KR101986331B1 (ko) 성막 마스크, 그 제조 방법 및 성막 마스크의 리페어 방법
JP6142194B2 (ja) 蒸着マスクの製造方法及び蒸着マスク
WO2014069049A1 (ja) 成膜マスク
JP6035548B2 (ja) 蒸着マスク
TWI635923B (zh) 雷射處理設備
WO2014097728A1 (ja) 成膜マスクの製造方法
JP6240960B2 (ja) 成膜マスクの製造方法及び成膜マスク
JP6330377B2 (ja) 基板付蒸着マスク装置の製造方法、基板付蒸着マスクおよびレジストパターン付基板
JP2020007623A (ja) 蒸着マスク、蒸着マスクの製造方法および有機el表示装置の製造方法
JP6330390B2 (ja) 基板付蒸着マスク装置の製造方法および基板付蒸着マスク
JP2004319581A (ja) パターン描画装置及びパターン描画方法
JP2015175027A (ja) 基板付蒸着マスク装置の製造方法および基板付蒸着マスク
JP5172092B2 (ja) フォトマスクの製造方法
JP2019042762A (ja) 蒸着マスクの製造方法及び加工マスク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157019872

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872549

Country of ref document: EP

Kind code of ref document: A1