WO2017119153A1 - 蒸着マスク及びその製造方法、有機el表示装置の製造方法 - Google Patents
蒸着マスク及びその製造方法、有機el表示装置の製造方法 Download PDFInfo
- Publication number
- WO2017119153A1 WO2017119153A1 PCT/JP2016/071620 JP2016071620W WO2017119153A1 WO 2017119153 A1 WO2017119153 A1 WO 2017119153A1 JP 2016071620 W JP2016071620 W JP 2016071620W WO 2017119153 A1 WO2017119153 A1 WO 2017119153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vapor deposition
- resin
- film
- substrate
- deposition mask
- Prior art date
Links
- 238000007740 vapor deposition Methods 0.000 title claims abstract description 223
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims description 29
- 229920005989 resin Polymers 0.000 claims abstract description 190
- 239000011347 resin Substances 0.000 claims abstract description 190
- 239000000758 substrate Substances 0.000 claims abstract description 180
- 239000000463 material Substances 0.000 claims abstract description 123
- 238000000151 deposition Methods 0.000 claims abstract description 94
- 238000000576 coating method Methods 0.000 claims abstract description 44
- 239000011248 coating agent Substances 0.000 claims abstract description 43
- 239000007788 liquid Substances 0.000 claims abstract description 21
- 230000008021 deposition Effects 0.000 claims description 83
- 238000010304 firing Methods 0.000 claims description 44
- 239000012044 organic layer Substances 0.000 claims description 44
- 239000011368 organic material Substances 0.000 claims description 25
- 229920001721 polyimide Polymers 0.000 claims description 14
- 239000004642 Polyimide Substances 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 12
- 238000002834 transmittance Methods 0.000 claims description 12
- 230000008020 evaporation Effects 0.000 claims description 10
- 238000001704 evaporation Methods 0.000 claims description 10
- 230000002829 reductive effect Effects 0.000 claims description 9
- 238000005401 electroluminescence Methods 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 239000010408 film Substances 0.000 description 141
- 239000010410 layer Substances 0.000 description 35
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 10
- 230000031700 light absorption Effects 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000005525 hole transport Effects 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910019015 Mg-Ag Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
- H10K71/166—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/122—Pixel-defining structures or layers, e.g. banks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
- H10K71/164—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
Definitions
- the present invention relates to a vapor deposition mask used when vapor-depositing an organic layer of an organic EL display device and a manufacturing method thereof. More specifically, even when a vapor deposition material is deposited on a predetermined place of a substrate having an uneven surface, the vapor deposition mask can deposit the vapor deposition material accurately on a predetermined place without depositing the vapor deposition material on an extra place.
- the present invention relates to a manufacturing method thereof and a manufacturing method of an organic EL display device using the vapor deposition mask.
- an organic layer is laminated for each pixel on a substrate on which a switching element such as a TFT is formed. Therefore, a vapor deposition mask is disposed on the substrate, an organic material is vapor-deposited through the vapor deposition mask, and an organic layer necessary only for necessary pixels is laminated.
- a metal mask has been used as the vapor deposition mask, but recently, in order to form a finer pattern, a resin film tends to be frequently used instead of the metal mask.
- a film-like mask member such as PET or polyimide is provided on the deposition substrate, and a mask is formed by irradiating the mask member with laser light to form an opening, and through the opening of the mask.
- a method is known in which an organic material or the like is deposited and then the mask is peeled off (see, for example, Patent Document 1).
- the deposition mask contacts only the convex surface of the deposition substrate.
- the vapor deposition material also enters the recesses of the vapor deposition substrate to be covered with the vapor deposition mask.
- unevenness such as a TFT is once flattened by a flattening film provided thereon, but a bank for dividing each pixel is formed on the flattening film. Is done.
- a deposition mask is placed on the upper surface of the bank and deposited.
- the vapor deposition material is also deposited on the side wall of the bank below the vapor deposition mask.
- a film-like mask member is placed on a surface of a TFT substrate having an uneven surface, where a film-like mask material is deposited, and the mask member is irradiated with laser light.
- the mask is formed by forming the opening, the concave portion of the TFT substrate is not covered because it is placed on the uneven surface in a film state.
- the opening is formed in the mask member while looking directly at the anode electrode through the mask member, it is expected that the opening of the mask and the predetermined position where the TFT substrate is deposited can be accurately aligned.
- the problem that the deposition material adheres between the deposition mask and the place where the TFT substrate is deposited cannot be solved. In other words, if the surface of the TFT substrate is uneven, the mask member and the TFT substrate cannot be completely adhered.
- a deposition material is deposited on the side wall of the bank, and light is also emitted obliquely from the side wall of the bank. As a result, there is a problem of color mixing between pixels.
- the laser beam when a mask member is directly formed on the TFT substrate and an organic material or the like is vapor-deposited as it is, the laser beam must be irradiated when forming the opening of the vapor deposition mask. There is also a problem of harming the device characteristics. Further, for example, even when a common organic material is used in two or more of the RGB sub-pixels in the RGB sub-pixel, such as in the hole injection layer, the hole transport layer, and the electron transport layer, the RGB sub-pixels are organic. All laminated films of materials must be formed.
- the present invention has been made to solve such a problem, and even when a deposition material is deposited only at a predetermined location on the bottom of a deposition substrate having unevenness on the surface, the deposition mask and the deposition substrate are provided. It is an object of the present invention to provide a vapor deposition mask that can be deposited only at a desired location with no gap between them, and a method for manufacturing the same.
- Another object of the present invention is to provide a deposition mask capable of reliably depositing a deposition material at a desired location without hindering the deposition material from coming from a deposition source when the deposition material is deposited, and a method for manufacturing the same. It is to provide.
- Still another object of the present invention is to provide a method of manufacturing a vapor deposition mask in which the linear expansion coefficient of the vapor deposition mask is adjusted so as not to cause a pattern shift based on the difference in linear expansion coefficient between the vapor deposition substrate and the vapor deposition mask. It is to provide.
- Still another object of the present invention is to provide a method for manufacturing an organic EL display device manufactured using the above-described vapor deposition mask, and more specifically, a method for performing vapor deposition so that a vapor deposition material is not deposited on an unnecessary place during the production. It is to provide.
- the vapor deposition mask of the present invention is a vapor deposition mask for forming a laminated film by vapor deposition at a predetermined position on the surface of the substrate to be vapor-deposited having irregularities on the surface, and is formed of a resin film.
- the surface has a concavo-convex shape corresponding to a shape inverted from the concavo-convex shape of the substrate to be deposited, and has an opening at a portion corresponding to the predetermined location.
- the opening is formed in a tapered shape in which the opening is reduced from the one surface to the other surface, and the taper angle of the tapered shape is equal to or smaller than the vapor deposition angle of the vapor deposition material flying from the vapor deposition material source.
- the taper angle is an angle formed between the taper-shaped ridge line and the taper-shaped base, for example, as shown in FIG. 5A, between the base of the opening 13 (a plane perpendicular to the taper-shaped central axis) and the wall surface.
- the angle ⁇ formed that is, the angle ⁇ formed between the bottom of the convex portion 12a and the wall surface remaining as a result of the opening 13 being formed, or the angle ⁇ formed between the bottom of the tapered portion of the dummy bank 33 and the inclined surface.
- the vapor deposition angle is an angle determined by the shape of the opening of the container of the vapor deposition source, as indicated by ⁇ in FIGS.
- the radiation angle of the vapor deposition material (vapor deposition particles) radiated from the vapor deposition source (vapor deposition) It means a remainder angle of 1/2 of the maximum divergence angle at which the material is radiated, that is, an acute angle formed by the trajectory of the vapor deposition particles and the horizontal plane when the vapor deposition material has the maximum divergence angle.
- the vapor deposition mask manufacturing method of the present invention is a vapor deposition mask manufacturing method for depositing a vapor deposition material on the predetermined location in order to form a laminated film at a predetermined location on the surface of the deposition target substrate having irregularities on the surface.
- a dummy substrate having irregularities corresponding to the shape of the surface of the substrate to be deposited is manufactured, and a resin coating film is formed by applying a liquid resin material until the surface is substantially flat on the irregular surface of the dummy substrate.
- a resin film having a desired opening pattern is formed by forming a desired opening pattern in the resin fired film by irradiating with a laser beam, and the resin film is removed from the dummy film. Characterized by the deposition mask by peeling from the substrate.
- each opening of the pattern of the opening can be formed in a taper shape in the thickness direction of the resin film.
- the firing of the resin coating film is performed by firing.
- the difference between the linear expansion coefficient of the fired film to be formed and the linear expansion coefficient of the deposition target substrate can be 3 ppm / ° C. or less.
- a dummy substrate having irregularities corresponding to the surface of a deposition target substrate on which an organic layer is laminated is produced, and a liquid resin is used until the irregularity surface of the dummy substrate becomes substantially flat.
- a resin film is formed by forming a pattern of openings by irradiating a laser fired resin fired film that has been coated and fired, and a vapor deposition mask is formed by peeling the resin film from the dummy substrate.
- a TFT and a first electrode are formed on the substrate, and the deposition mask is aligned and superimposed on the deposition substrate on which a bank for dividing each pixel is formed, and an organic material is deposited on the deposition substrate.
- the second electrode is formed by laminating an organic layer and removing the vapor deposition mask.
- the bank By forming the bank into a tapered shape that tapers in a cross-sectional shape, and forming the bank so that the taper angle of the bank is equal to or less than the vapor deposition angle of the vapor deposition material flying from the vapor deposition source of the organic material, It becomes easy to make it vapor-deposit in a desired place, without disturbing the coming of vapor deposition material from a vapor deposition source.
- the taper angle and the vapor deposition angle have the same meaning as described above.
- the vapor deposition mask of the present invention has a flat surface, but the back surface has an uneven shape corresponding to the reverse shape of the uneven shape of the substrate to be deposited. Even in the case of superposition, the projections and depressions are fitted, and the deposition mask is accurately aligned with the deposition substrate. Furthermore, since it is fitted to the irregularities on the surface of the evaporation target substrate, the step portion is completely covered. As a result, even when used as a vapor deposition mask of an organic EL display device, for example, the side wall of the bank is also covered with the vapor deposition mask, so that the organic material is not deposited on the side wall of the bank after the vapor deposition mask is removed. That is, even when a deposition material is deposited on a deposition substrate having an uneven surface, no deposition material is deposited at a place where deposition is not desired.
- the opening formed in the vapor deposition mask is formed so as to be tapered (thinner) in the thickness direction of the vapor deposition mask, and a small opening at the tip of the tapered shape is predetermined to deposit a desired vapor deposition material.
- the taper angle is formed to be equal to or smaller than the vapor deposition angle of the vapor deposition source, so that the vapor deposition material flying from the vapor deposition source is not blocked by the vapor deposition mask, and the desired vapor deposition location has the desired thickness. This is preferable because it is uniformly deposited.
- a liquid resin material is applied to a dummy substrate having irregularities similar to the irregularities on the surface of the vapor deposition substrate, so that the vapor deposition mask is formed.
- the mask to be fitted is easily formed. Furthermore, since portions other than the predetermined place are covered with the vapor deposition mask, the vapor deposition material does not adhere to an undesired place.
- the dummy substrate one of the deposition target substrates on which the original deposition material is deposited may be used as a dummy substrate, or a substrate imitating the surface shape may be formed using a metal plate or the like. Since it is necessary to raise the temperature to about 500 ° C.
- a deposition target substrate for baking and solidifying the resin material of the vapor deposition mask, it is necessary to have heat resistance that can withstand this temperature. Any other material can be used. Further, instead of a deposition target substrate to be actually used, for example, only a bank or the like formed on the planarization film may be formed without forming an element hidden by the planarization film.
- the manufacturing method of the organic EL display device of the present invention since the organic material is not deposited on the side wall of the bank, there is no color mixing with other pixels, and uniform light emitted from a uniform organic layer in each pixel is also obtained. Therefore, an organic EL display device having a very excellent display quality can be obtained.
- FIG. 1 is a flow chart showing a method of manufacturing a deposition mask according to an embodiment of the present invention
- FIGS. 2A to 3D are explanatory views in plan and cross sections in the steps S3 to S6 of FIG. ing.
- the vapor deposition mask according to the present embodiment is a vapor deposition mask 10 for forming a laminated film by vapor deposition at a predetermined location on the surface of a vapor deposition substrate having irregularities on the surface, and FIG.
- one surface 10a is a flat surface
- the other surface 10b has a concavo-convex shape portion 12 corresponding to a shape reversed from the concavo-convex shape of the deposition target substrate 20 (see FIG. 4A).
- the opening 13 is provided at a portion corresponding to the location.
- FIG. 4A the example shown in FIG.
- the opening 13 is formed in a tapered shape so that the remaining protrusion 12a has a tapered shape. Details of the reason for the taper shape and the taper angle will be described later.
- the resin film 11 is formed by applying and baking a liquid resin material, as will be described later. Therefore, even with the deposition target substrate 20 (see FIG. 4A) having an uneven surface, the deposition mask 10 having the inverted uneven shape portion 12 corresponding to the unevenness can be easily formed.
- a heat-resistant resin can be used as described later. It is preferable to consist of a polyimide film whose linear expansion coefficient can be adjusted by firing conditions. However, it is not limited to this. Since the polyimide is in a liquid state before firing and has a small viscosity, the uneven shape on the surface of the deposition substrate 20 is not limited and can correspond to various unevenness.
- a planarization film is formed on the surface on which the TFT or the like is formed, and an example of unevenness in which a bank 23 (see FIG. 4A) for dividing each subpixel is formed on the surface is described. Even when the organic material is directly deposited on the uneven surface on which the TFT or the like is formed, the vapor deposition mask 10 matched with the uneven surface can be formed.
- FIGS. 2A to 3D are plan views of S3 to S6 in FIG.
- a dummy substrate 30 (see FIG. 3A) having irregularities corresponding to the shape of the surface of the deposition target substrate 20 (see FIG. 4A) is produced (S1).
- the resin coating film 11b (refer FIG. 6) is formed by apply
- the short wavelength light absorption layer 11 d is formed between the resin fired film 11 c and the dummy substrate 30.
- the resin fired film 11c adhering to the dummy substrate 30 is processed by being irradiated with a laser beam through a laser mask 41, as shown in FIGS. 2B and 3B.
- the resin film 11 having the pattern of the desired opening 13 is formed by forming the pattern of the desired opening 13 in the resin fired film 11c (S4).
- the frame body 14 is attached to the periphery of the resin film 11 (S5).
- the resin film 11 is peeled from the dummy substrate 30 to form the vapor deposition mask 10 (S6).
- the vapor deposition mask 10 made of a resin film is formed by applying the resin material 11a on the dummy substrate 30 and baking it. Therefore, the surface of the evaporation target substrate 20 (see FIG. 4A) does not need to be flat, and the evaporation mask 10 along the unevenness is formed even in the evaporation target substrate 20 having unevenness. As a result, even when a deposition mask is superimposed on a deposition target substrate having irregularities, the entire irregularities can be covered and only a desired place can be exposed, so that a very high performance device can be obtained. it can. For example, when an organic EL display device is manufactured, the vapor deposition mask 10 (see FIG.
- a dummy substrate 30 (see FIG. 3A) having irregularities on the surface corresponding to the irregularities on the surface of the deposition target substrate 20 (see FIG. 4A) on which the vapor deposition material is deposited is produced (S1 in FIG. 1).
- the dummy substrate 30 is a substrate on which the resin material 11a (see FIG. 6) is applied and baked, and vapor deposition is performed so that the back surface of the resin film 11 to be manufactured meshes with the irregularities on the surface of the vapor deposition substrate 20. Unevenness similar to that of the substrate 20 is formed.
- the dummy electrode 32 and the dummy bank 33 corresponding to the unevenness of the surface of the first electrode 22 and the bank 23 of the deposition target substrate 20 are formed on the surface of the dummy TFT substrate 31, and the resin material 11a. It is made of a material that can withstand the firing temperature. For example, when forming a vapor deposition mask for an organic EL display device, a number of vapor deposition target substrates 20 are manufactured together, and one of them can be used as the dummy substrate 30.
- the bank 23 of the deposition substrate 20 is formed by an acrylic resin, because it may not withstand the temperature at firing the resin coating with film 11b, an inorganic material such as SiO x or SiN y It is preferred that Further, since the deposition mask 10 is preferably slightly larger than the actual deposition target substrate 20, an overhang is formed around the actual deposition target substrate 20, or the frame body is outside the periphery of the resin film 11. It is preferable to be formed. Further, the surface shape may be the same, and there may be no TFT formed below the planarization film (not shown, but on the surface side of the TFT substrate 21).
- the vapor deposition mask 10 is manufactured by using an arbitrary one as the dummy substrate 30 and is used as the vapor deposition mask 10 on other TFT substrates.
- the gap is not generated by completely fitting to the unevenness of the substrate 20 to be deposited.
- it may be formed of other materials such as a metal plate different from the TFT substrate 21.
- a material that can withstand the firing temperature of the resin material 11a (about 500 ° C.) and that has a difference in linear expansion coefficient of about 3 ppm or less from the actual linear expansion coefficient of the deposition target substrate 20 is preferable. The reason for this is as follows.
- the vapor deposition mask when used as a vapor deposition mask for an organic layer in an organic EL display device, the vapor deposition mask is fixed on the vapor deposition substrate on which the organic layer is formed. This is because a large deviation causes a shift in the position of the vapor deposition region of the pixel intended as the vapor deposition substrate and the opening of the vapor deposition mask.
- the size of one side of the display panel is 100 cm
- the size of one side of the opening (sub-pixel for each color of the deposited organic layer) is 60 ⁇ m square
- the allowable displacement is 9 ⁇ m (15% with respect to 60 ⁇ m).
- the size of the sub-pixel is an example when the size of one side of the display panel is 100 cm.
- the length of one side of the sub-pixel becomes 30 ⁇ m. Therefore, the allowable value of the positional deviation is 4.5 ⁇ m (15%), but the allowable length is 50 cm. That is, since an expansion of 4.5 ⁇ m / 50 cm is allowed at 3 ° C., the linear expansion coefficient is 3 ppm / ° C., and this relationship holds for any size display device.
- the difference in linear expansion coefficient between the vapor deposition mask 10 and the substrate on which the mask is used needs to be 3 ppm / ° C. or less.
- the difference in linear expansion coefficient between the resin film 11 formed from this resin material and the dummy substrate 30 is large, the resin film 11 on which a fine pattern is formed by laser processing is peeled off from the dummy substrate 30 at room temperature.
- the resin film 11 tends to curl due to the influence of thermal distortion.
- the temperature at which the resin coating film 11b is baked is 400 ° C. or higher and 500 ° C. or lower, which is a considerably high temperature.
- the dimensional difference due to thermal expansion during baking increases, but the formation of a fine pattern by laser processing is not possible. Since it is performed at room temperature, there is no problem of pattern displacement. However, when laser processing is performed with laser light having a very small pulse width of about femtoseconds, the expansion of the resin film is not a problem due to local heating, but the pulse width of about ⁇ sec is normal. In the case of laser light, a temperature increase of about several degrees Celsius is expected. Therefore, it is preferable that the difference in linear expansion coefficient between the resin film 11 and the dummy substrate 30 is also about 3 ppm / ° C. or less.
- the difference between the linear expansion coefficient of the substrate when used as a vapor deposition mask and the linear expansion coefficient of the dummy substrate 30 is 6 ppm / ° C. or less, more preferably 3 ppm / ° C. in consideration of ⁇ 3 ppm / ° C. It is preferable that it is ° C.
- a resin coating film 11b is formed by applying a liquid resin material 11a (see FIG. 6) on the dummy substrate 30 (S2 in FIG. 1).
- the liquid resin material 11a can be applied by any method as long as the film thickness can be controlled.
- the liquid resin material 11a can be applied by using a slit coating method. That is, coating is performed by sequentially moving the slot die 5 while discharging the liquid resin material 11a from the tip of the slot die 5 while supplying the resin material 11a to the slot die 5. In some cases, such as when the discharge amount of the liquid resin material 11a is not completely uniform, it may not be completely flat in the applied state, and may wave on the surface.
- liquid resin material 11a even when bubbles are involved, even when the resin coating film 11b is thick (in the concave portion of the dummy substrate 30) is about 20 ⁇ m or less, there are no bubbles of 100 nm or more.
- a resin coating film 11 b that is in close contact with the dummy substrate 30 is formed over the entire surface of the fine pattern formation region that forms the opening 13.
- the liquid resin material 11a may be applied by other methods such as spin coating instead of slit coating. Spin coating is not suitable in terms of material use efficiency when a large resin film is formed, but a resin coating film 11b having a flat surface can be obtained that is in close contact with the dummy substrate 30.
- the liquid resin material 11a may be any material that can be fired and absorbs laser light from laser processing. However, as described above, when the resin film 11 is used as the vapor deposition mask 10, it is between the vapor deposition substrate 20 on which the vapor deposition mask 10 is placed and the dummy substrate 30 on which the resin coating film 11b is formed. It is preferable that the material has a small difference in linear expansion coefficient. Since a glass plate is generally used as the substrate of the organic EL display device, polyimide is preferable from that viewpoint. Polyimide is a general term for polymer resins containing an imide bond, and can be converted into a film-like polyimide by accelerating an imidization reaction by heating and baking a precursor polyamic acid (liquid at room temperature).
- the linear expansion coefficient can be adjusted according to the firing conditions, it is particularly preferable in that it can easily match the linear expansion coefficient of the deposition target substrate 20 and the dummy substrate 30 of the organic EL display device described above.
- the linear expansion coefficient of a general polyimide is 20 ppm / ° C. or more and about 60 ppm / ° C. or less.
- the linear expansion coefficient of glass can be close to 4 ppm / ° C. depending on firing conditions.
- the linear expansion coefficient can be reduced by firing at a higher temperature for a longer time.
- Other substrate materials such as a resin film may be used as a device substrate instead of a glass plate, and a resin material is selected in accordance with the linear expansion coefficient of the substrate material.
- polyimide for example, transparent polyimide, PEN, PET, COP, COC, PC, etc. can be used.
- the temperature of the resin coating film 11b is increased to a temperature at which the resin material 11a is cured, for example, about 450 ° C., and the resin coating film 11b is baked to fire the resin fired film 11c. Is formed (S3 in FIG. 1). During this firing, a short wavelength light absorption layer 11d is formed at the interface between the resin fired film 11c and the dummy substrate 30 as shown in FIG. 3A.
- the short wavelength light absorption layer 11d is in contact with a material different from the resin material such as the dummy substrate 30 (for example, ITO or silicon nitride film) when the resin coating film 11b is baked, the contact surface of the resin material 11a is It is formed by alteration. As a result, short wavelength light such as ultraviolet rays is more easily absorbed than the resin material 11a.
- the thickness of the short wavelength light absorption layer 11d is 5 nm or more and about 100 nm or less.
- an adhesive improvement / surface modifier such as a silane coupling agent is applied as an ultrathin layer on the dummy substrate 30 before firing. It is preferable to form the coating film 11b.
- a resin fired film 11c adhered to the dummy substrate 30 via the short wavelength light absorption layer 11d is obtained.
- the resin coating film 11b and the dummy substrate 30 are in close contact with each other, and a float cannot be formed between the resin coating film 11b and the dummy substrate 30. If bubbles are formed, the short wavelength light absorption layer 11 d is not formed in the floating portion, and a gap is formed between the resin fired film 11 c and the dummy substrate 30. Therefore, it is the same that peeling is easy.
- This baking is performed, for example, not by heating the dummy substrate 30 but by heating the whole in an oven.
- the dummy substrate 30 may be heated from the back side.
- the temperature profile during the heating can be changed according to the purpose.
- the temperature is 100 ° C. or lower and is maintained for 10 minutes or more and 60 minutes or less.
- Long-time heating at a low temperature is preferable in that bubbles entrained in the resin coating film 11b are released from the surface of the resin coating film 11b. If it is 100 ° C. or lower, curing does not occur, but rather the fluidity increases, and the entrained bubbles expand, so that the bubbles are likely to escape from the surface of the resin coating film 11b that is 10 ⁇ m or more and 20 ⁇ m or less. Further, due to firing, when the temperature rises, the temperature does not always rise uniformly over the entire surface. From this point, there is also an effect that the temperature of the resin coating film 11b is likely to be uniform by securing a sufficient time at the beginning of the temperature rise.
- the linear expansion coefficient changes depending on the firing conditions as described above. Therefore, as described above, the resin film 11 can be baked under the conditions close to the linear expansion coefficient of the deposition target substrate 20 or the dummy substrate 30 as described above. For example, in the case of polyimide, it is fired at about 450 ° C., but if the temperature is further raised to near 500 ° C. and left for 10 minutes or longer and 60 minutes or shorter, the linear expansion coefficient can be reduced. Further, the linear expansion coefficient of the resin film 11 can be reduced by maintaining the temperature for 30 minutes or more after baking at about 450 ° C.
- the linear expansion coefficient of the resin film 11 can be increased by baking with a profile of a large step (step of increasing the temperature significantly and maintaining the temperature for a long time).
- the firing of the resin coating film 11b can be raised to the firing temperature while gradually increasing at a temperature of 10 ° C. or more and 200 ° C. or less every 5 minutes or more and 120 minutes or less. preferable. This range can be further specified by the characteristics of the intended resin film, the resin material, and the like.
- the resin fired film 11c attached to the dummy substrate 30 is processed by irradiating the resin with a laser beam, whereby a desired opening 13 is formed in the resin fired film 11c.
- a resin film 11 having s is formed (S4).
- this laser light irradiation is performed by irradiating the laser light from the front surface side through a laser mask 41 having a desired pattern of openings 41a and an optical lens 42.
- the pattern of the opening 41a of the mask 41 is reduced and transferred.
- This laser beam irradiation apparatus is moved by a stepper, and the pattern of the opening 13 is sequentially formed on the large fired film 11c, so that the resin film 11 (all the openings 13 are formed to become the resin film 11, and is shown in the figure. Not formed).
- the optical lens 42 is not necessarily required, but is effective in increasing the irradiation energy density of the processed surface.
- the optical lens 42 is disposed downstream of the laser mask 41 in the traveling direction of the laser light (resin fired film 11c side), and condenses the laser light.
- the energy density is 100 times, but the transfer pattern of the laser mask 41 has a scale of 1/10.
- the conditions of laser light irradiation vary depending on the material and thickness of the resin fired film 11c to be processed, the size and shape of the opening 13 to be processed, and generally, the pulse frequency of the laser light is 1 Hz or more.
- the pulse width is 1 nanosecond (nsec) or more and 15 nanoseconds or less, and the energy density of the laser beam on the irradiated surface per pulse is 0.01 J / cm 2 or more. It is performed under the condition of 1 J / cm 2 or less.
- the wavelength is 355 nm (third harmonic of YAG laser).
- the laser beam has a pulse frequency of 60 Hz
- the pulse width is 7 nsec
- the energy density of the laser beam on the irradiated surface is 0.36 J / cm 2 per pulse
- the number of shots number of pulses to be irradiated
- polyimide The resin fired film 11c having a thickness of 5 ⁇ m is irradiated.
- the irradiated laser beam is not limited to the YAG laser. Any laser having a wavelength that can be absorbed by the resin material may be used. Therefore, another laser beam such as an excimer laser or a He—Cd laser may be used.
- another laser beam such as an excimer laser or a He—Cd laser may be used.
- the irradiation conditions change when the laser light source changes or the resin material changes. In the above example, irradiation of 100 shots was performed to form the opening pattern, but a through-hole is opened in about 5 shots in a 5 ⁇ m thick polyimide film.
- the opening 13 is formed from one surface 10 a to the other of the deposition mask 10 (see FIG. 3D), as shown in FIG. 5A (only half of the openings 13 are shown on both sides of the dummy bank 33). It is preferable that the opening be smaller on the surface 10b side, that is, formed into a tapered shape. More specifically, the taper angle ⁇ of the opening 13, that is, the taper angle ⁇ of the convex part 12 a remaining as a result of the formation of the opening 13 (the angle formed between the tapered bottom surface and the inclined surface) is determined as the vapor deposition source 60.
- the vapor deposition angle ⁇ of the vapor deposition beam of the vapor deposition material radiated from (refer to FIG. 5B) (the half angle of the radiation angle of the vapor deposition material). If the taper angle ⁇ of the opening 13 of the vapor deposition mask 10 is equal to or smaller than the vapor deposition angle ⁇ of the vapor deposition source 60, the vapor is emitted from the vapor deposition source 60 as shown in FIG. Even the vapor deposition particles on the side edge of the vapor deposition beam to be deposited adhere to the end of the first electrode 22 exposed on the bottom surface of the opening 13 without being blocked by the vapor deposition mask 10. On the other hand, as shown in FIG.
- the vapor deposition mask having the tapered opening 13 is formed, for example, such that the peripheral edge of the opening 41a of the laser mask 41 (see FIG. 7A) described above decreases in the laser beam transmittance toward the peripheral end. Can be obtained.
- the aforementioned laser mask 41 is formed, for example, as follows. That is, as shown in FIG. 7B, a light-shielding thin film 41b such as chromium is formed on a transparent substrate that transmits laser light, such as a quartz glass plate, and then an opening 41a is formed by patterning the light-shielding thin film 41b. Yes. Therefore, the light-shielding thin film 41b can be formed by spot formation as conceptually shown in FIG. 7C, for example. In FIG.
- the opening 41a is depicted as being separated from the first portion 41a1, the second portion 41a2, and the third portion 41a3 for convenience, but such a division is not necessary.
- the first portion 41a1 transmits 100% because the light shielding thin film 41b is not formed at all.
- the light shielding thin film 41b is sparsely formed, and the area thereof is formed to be about 20%.
- the transmittance of the second portion 41a2 is 80%.
- the third portion 41a3 is formed so that the amount of the light shielding thin film 41b is about 50% in terms of area.
- the transmittance of the third portion 41a3 is about 50%.
- the first portion 41a1, the second portion 41a2, and the third portion 41a3 are divided and described, and the light shielding thin film 41b is formed in a dispersed manner. Since the transfer resolution of laser light is 2 ⁇ m, for example, a 2 ⁇ m square is equally divided into 5 parts vertically and horizontally, and the light-shielding thin film 41b is formed in a part of 25 segments in total, so that the transmittance of the laser light is increased. Can be adjusted.
- the tapered opening 13 can be formed by reducing the transmittance continuously toward the periphery.
- the transmittance of the laser light gradually decreases, the laser light incident on the resin fired film 11c becomes weaker and the force for sublimating the resin fired film 11c becomes weaker. As a result, the amount removed from the surface side becomes weak around the periphery, and the tapered opening 13 is formed.
- the frame body 14 is attached to the periphery of the resin fired film 11c in which the opening 13 is formed (S5).
- the attachment of the frame body 14 is for facilitating handling without damaging the resin film 11 after the resin fired film 11c is peeled from the dummy substrate 30 and used as the vapor deposition mask 10.
- an adhesive that does not generate unnecessary gas release during subsequent vapor deposition such as an epoxy resin, may be used. preferable.
- the frame body 14 is required to have rigidity capable of withstanding the metal film and has a thickness of 25 mm or more and a metal of 50 mm or less. A board was used. This is called a stretching process.
- the stretching step can be omitted. Therefore, the frame 14 is not essential and may be omitted. Therefore, the frame body 14 only needs to have a certain degree of mechanical strength.
- a metal plate or a plastic plate having a thickness of 1 mm or more and about 20 mm or less can be used.
- a magnetic metal plate as the frame 14 because it can be fixed with a magnet.
- the deposition mask 10 is preferably larger than the deposition target substrate 20, when the size of the dummy substrate 30 is the same as the actual deposition target substrate, the frame 14 is attached to the outer periphery thereof. It is preferable to make it.
- the resin film 11 is peeled from the dummy substrate 30 to obtain the vapor deposition mask 10 (S6).
- a recess 12 b is formed on the other surface (back surface) 10 b side of the resin film 11.
- the resin film 11 is peeled from the dummy substrate 30 by further alteration of the short wavelength light absorption layer 11d by laser light irradiation. That is, the laser beam irradiation when forming the opening 13 is performed by laser beam irradiation that is easily absorbed by the resin film 11 only in the portion where the opening 13 is formed.
- the entire surface is irradiated with a laser beam that the resin film 11 hardly absorbs. Therefore, the resin fired film 11c itself is irradiated with weak laser light that does not deteriorate. From this point of view, it is not necessary to use laser light, and any light source that emits light having a short wavelength such as a xenon lamp, a high-pressure mercury lamp, or an ultraviolet LED may be used.
- the short wavelength light absorption layer 11 d is further changed between the dummy substrate 30 having unevenness and the resin film 11.
- the resin film 11 is easily separated from the dummy substrate 30. Therefore, even in the case of a flat film as in the past, there is no need to use a troublesome method of immersing and separating in oil, there is no opportunity to attach undesirable moisture to the organic layer, and the pattern of the opening 13
- the resin film 11 is easily separated from the dummy substrate 30 without damaging the substrate. As a result, the vapor deposition mask 10 is obtained. If necessary, the release agent can be applied to the surface of the dummy substrate 30 before forming the resin coating film 10b, so that the release can be more easily performed.
- the vapor deposition mask 10 is formed by the above-described method. That is, the dummy substrate 30 having irregularities corresponding to the surface of the evaporation target substrate 20 (see FIG. 4A) on which the organic layer is laminated is manufactured.
- the resin film 11 is formed by irradiating a laser beam to the resin fired film 11c obtained by applying the liquid resin 11a to the uneven surface of the dummy substrate 30 until the surface is almost flat, and firing the resin.
- the vapor deposition mask 10 is formed by peeling the resin film 11 from the dummy substrate 30.
- the deposition mask 10 When the deposition mask 10 is formed, if the same organic material is deposited on each of the RGB sub-pixels, openings are formed in all the sub-pixels as shown in FIG. 3D described above.
- the vapor deposition mask 10 may be used, but when different organic materials are vapor-deposited for each of the RGB sub-pixels, the vapor deposition mask 10R having only the sub-pixel R opened, the vapor deposition mask 10G having only the sub-pixel G opened, and the sub-pixel B only.
- a vapor deposition mask 10B having an opening is formed in advance.
- the R and G sub-pixels are vapor-deposited with the same organic material and only the B sub-pixel is different, the R and G sub-pixels are opened, and the B sub-pixel is not opened, such as a vapor deposition mask 10RG (not shown).
- a vapor deposition mask 10RG (not shown).
- Various combinations of vapor deposition masks 10 are formed in advance.
- the above-described vapor deposition mask 10 (10R, etc.) is aligned and overlapped, and an organic material is vapor-deposited, whereby an organic layer 25 (25R, etc.) is stacked on the vapor deposition substrate 20.
- the deposition mask 10R has a concave and convex shape on the surface of the dummy substrate 30 so as to be substantially the same shape as the surface of the deposition target substrate 20, so that it fits perfectly and covers the side wall of the bank 23.
- the vapor deposition mask 10 on the side wall portion protrudes and is unnatural. However, there is actually no gap, and the organic layer 25 is also formed up to the base of the side wall of the bank 23 only by covering the side wall with the thin vapor deposition mask 10.
- a switch element such as a TFT is formed for each RGB sub-pixel of each pixel on a glass plate, for example, and a first electrode (for example, an anode) 22 connected to the switch element and
- the wiring is formed on the planarizing film by a combination of a metal film such as Ag or APC and an ITO film.
- a metal film such as Ag or APC and an ITO film.
- an insulating bank 23 made of SiO 2 or the like that shields the sub-pixels is formed.
- the above-described deposition mask 10 is aligned and fixed.
- the opening 13 of the vapor deposition mask 10 is formed in the taper shape as mentioned above.
- the organic material 24 is vapor-deposited in the vapor deposition apparatus, and the organic material 24 is vapor-deposited only on the opening 13 of the vapor deposition mask 10 to form the organic layer 25 (25R) on the first electrode 22 of the desired subpixel.
- This vapor deposition is performed in a large format in which a plurality of deposition target substrates 20 are formed by scanning a vapor deposition source 60 composed of, for example, a crucible having a line shape (extending in the front and back (vertical) direction of the drawing) in the horizontal direction of the drawing. Vapor deposited on the entire surface.
- the vapor deposition material is radiated within a range on the central axis side from the vapor deposition angle ⁇ determined by the shape of the radiation port. Therefore, for example, when the opening 13 of the vapor deposition mask 10 is close to a right angle, the vapor deposition material does not easily reach the periphery of the bottom surface of the opening 13 of the vapor deposition mask 10 (the exposed surface of the first electrode 22). It can no longer be obtained. However, if the taper angle ⁇ (see FIG. 5A) of the opening 13 of the vapor deposition mask 10 is equal to or smaller than the vapor deposition angle ⁇ , the organic layer 25 is laminated with a uniform thickness even at the periphery of the bottom surface as shown in FIG. 5B. Made.
- an organic layer made of a material corresponding to each color of RGB is deposited on the light emitting layer.
- the hole transport layer, the electron transport layer, and the like are preferably deposited separately using a material suitable for the light emitting layer if the light emitting performance is important.
- a material suitable for the light emitting layer if the light emitting performance is important.
- two or three colors of RGB are laminated with the same material.
- an evaporation mask in which an opening 13 is formed in the common subpixel is formed.
- each of the organic layers can be vapor-deposited continuously using one vapor deposition mask 10R for the R sub-pixel, and a common organic layer is deposited in RGB.
- the organic layer of each sub-pixel is vapor-deposited up to the lower side of the common layer, and all the pixels are formed at once using the vapor-deposition mask 10 in which RGB openings are formed in the common organic layer.
- An organic layer is deposited.
- FIG. 4A shows an example in which an organic layer is stacked only on the R sub-pixel.
- an organic layer is stacked only on the G sub-pixel, as shown in FIG.
- An opening 13 is formed only in the sub-pixel, and a vapor deposition mask 10G that covers the other R and B sub-pixels is used.
- the vapor deposition mask 10G is preferably a mask in which the organic layer 25 is released, but the organic layer 25 is formed by depositing all the organic layers. However, since it is about 500 nm, it does not matter so much even if it is ignored.
- the vapor deposition mask 10 is replaced with the B vapor deposition mask 10B, and the vapor deposition material is vapor-deposited only on the B sub-pixel as in the above example.
- the organic layer is vapor-deposited on each of the RGB sub-pixels.
- the same material is vapor-deposited together for the pixels.
- the organic layer 25 is simply shown as one layer, but actually, the organic layer 25 is formed of a multilayer film made of different materials.
- a hole injection layer made of a material with good ionization energy consistency that improves hole injection may be provided.
- a hole transport layer capable of improving the stable transport of holes and confining electrons (energy barrier) in the light emitting layer is formed of, for example, an amine material.
- a light emitting layer selected on the basis of the emission wavelength is formed, for example, by doping Alq 3 with red or green organic fluorescent material for red and green.
- a DSA organic material is used as the blue material.
- an electron transport layer that further improves the electron injection property and stably transports electrons is formed of Alq 3 or the like.
- the organic layer 25 is formed by laminating these layers about several tens of nanometers each.
- An electron injection layer that improves the electron injection property such as LiF or Liq may be provided between the organic layer 25 and the metal electrode.
- the vapor deposition mask 10 is removed, and the second electrode (for example, cathode) 26 is formed on the entire surface.
- the example shown in FIG. 4D is a top emission type and emits light from the upper side. Therefore, the second electrode 26 is formed of a translucent material, for example, a thin Mg—Ag eutectic film. . In addition, Al or the like can be used.
- ITO, In 3 O 4 or the like is used for the first electrode 22, and a metal having a small work function, for example, Mg, K, Li, Al, etc. can be used.
- a protective film 27 made of, for example, Si 3 N 4 is formed on the surface of the second electrode 26.
- the entirety is sealed with a sealing layer made of glass, resin film, or the like (not shown) so that the organic layer 25 and the second electrode 26 do not absorb moisture, oxygen, or the like.
- the organic layer 25 can be made as common as possible, and a color filter can be provided on the surface side.
- the bank 23 is formed in a taper shape with a tapered cross section, and the taper angle ⁇ (see FIG. 5A) is equal to the vapor deposition angle ⁇ of the vapor deposition material radiated from the organic material vapor deposition source 60. Or smaller angle ⁇ 1 (see FIG. 5B).
- the taper angle ⁇ of the bank 23 is larger than the vapor deposition angle ⁇ , the vapor deposition particles radiated at the side edge of the vapor deposition beam radiated from the vapor deposition source 60 are the same as the taper shape of the opening 13 of the vapor deposition mask 10 described above. This is because the vapor deposition material is not sufficiently deposited on the bank 23 side end of the first electrode 22 by being blocked by the bank 23.
- the taper angle ⁇ of the bank 23 is preferably smaller than the taper angle ⁇ of the opening 13 of the vapor deposition mask 10.
- the bank 23 is not covered with the convex portion 12 a of the vapor deposition mask 10.
- the bank 23 is exposed from the deposition mask 10 formed so that the taper angle ⁇ 1 of the opening 13 of the deposition mask 10 is equal to or less than the deposition angle ⁇ of the deposition source 60.
- the vapor deposition material 25 m is deposited on the shoulders and side walls of the bank 23.
- the shape of the bank 23 on the evaporation target substrate 20 side is also a taper angle equal to or less than the evaporation angle ⁇ , more preferably the opening 13 of the evaporation mask 10. It needs to be formed in a shape having a taper angle equal to or smaller than the taper angle ⁇ .
- the bank 23 having such a taper angle can be formed by the following method.
- the adhesion strength with the resist film material is adjusted.
- the taper angle can be adjusted by optimizing the formation conditions of the resist film such as the adjustment of the film thickness and the selection of the etchant.
- the bank 23 when the bank 23 is made of an organic material, when the organic material is made of a photosensitive resin, exposure conditions such as defocus, development conditions such as a developer and temperature, and baking temperatures such as a pre-bake temperature and a cure temperature are set. By adjusting the conditions, a desired taper angle can be obtained. When the bank 23 is made of a non-photosensitive resin, a desired taper angle can be obtained by performing the same process as in the case where the bank 23 is made of an inorganic material.
- the taper angle ⁇ of the bank 23 is desirably equal to or smaller than the taper angle ⁇ of the opening 13 of the vapor deposition mask 10 as is apparent from FIG. 5A. Even if the taper angle ⁇ of the opening 13 of the vapor deposition mask 10 is reduced to prevent the vapor deposition material from being blocked, if the taper angle of the bank 23 is large, the bank 23 is blocked and has no meaning, and as shown in FIG. This is because the vapor deposition material 25 m is deposited on the shoulder and the side wall of the bank 23. That is, it is desirable that ⁇ ⁇ ⁇ .
- the taper angle ⁇ of the opening 13 of the vapor deposition mask 10 is desirably equal to or smaller than the vapor deposition angle ⁇ of the vapor deposition source 60.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
Abstract
表面に凹凸がある被蒸着基板の底部の所定の場所のみに蒸着材料を蒸着する場合でも、蒸着マスクと被蒸着基板との間に隙間がなく、所望の場所にのみ蒸着することができる蒸着マスク、及びその製造方法を提供する。被蒸着基板の表面の形状に対応する凹凸を有するダミー基板が作製され(S1)、ダミー基板の凹凸面に液状の樹脂材料を塗布することで樹脂塗布膜が形成され(S2)、樹脂塗布膜の温度を上昇させて樹脂塗布膜を焼成することで、樹脂焼成膜が形成される(S3)。次に、ダミー基板に付着している樹脂焼成膜に、所望の開口部のパターンを形成することで所望の開口部のパターンを有する樹脂フィルムが形成される(S4)。その後、樹脂フィルムをダミー基板から剥離して蒸着マスクにする(S6)。
Description
本発明は、有機EL表示装置の有機層を蒸着する際などに用いられる蒸着マスク及びその製造方法に関する。さらに詳しくは、表面に凹凸を有する基板の所定の場所に蒸着材料を蒸着する場合でも、余計な場所に蒸着材料が被着することなく、所定の場所に正確に蒸着材料を蒸着し得る蒸着マスク、その製造方法及びその蒸着マスクを使用した有機EL表示装置の製造方法に関する。
有機EL表示装置が製造される場合、例えばTFT等のスイッチ素子が形成された基板上に有機層が画素ごとに対応して積層される。そのため、基板上に蒸着マスクが配置され、その蒸着マスクを介して有機材料が蒸着され、必要な画素のみに必要な有機層が積層される。その蒸着マスクとしては、従来メタルマスクが用いられていたが、近年、より精細なパターンを形成するため、メタルマスクに代って樹脂フィルムが多用される傾向にある。
また、被蒸着基板に、例えばPETやポリイミド等のフィルム状マスク用部材を設け、そのマスク用部材にレーザ光を照射して開口を設けることにより、マスクを形成し、そのマスクの開口を介して有機材料などを蒸着し、その後にそのマスクを剥離する方法が知られている(例えば特許文献1参照)。
前述のように、メタルマスク又は樹脂フィルムからなる蒸着マスクを用いて凹凸の表面を有する被蒸着基板に蒸着をしようとすると、蒸着マスクは被蒸着基板の凸部表面にだけコンタクトするため、本来、蒸着マスクにより被覆されるべき被蒸着基板の凹部内にも蒸着材料が入り込む可能性が大きい。例えば、有機EL表示装置の有機層を蒸着する場合、TFTなどの凹凸は、その上に設けられる平坦化膜により一旦平坦化されるが、その平坦化膜上に各画素を区分するバンクが形成される。そのバンクの上面に蒸着マスクが載置されて蒸着される。そのため、蒸着マスクの下側のバンクの側壁にも蒸着材料が被着する。その結果、有機EL表示装置の各画素を発光させる際に、バンクの側壁に蒸着された蒸着材料から斜め方向に光が放射され、隣接する画素の光と混合し不鮮明な画像になるという問題がある。
また、前述の特許文献1に示されるように、例えば表面に凹凸を有するTFT基板の有機材料を蒸着する場所の上に、フィルム状マスク用部材を載せて、そのマスク用部材にレーザ光を照射して開口を形成することにより、マスクを形成しても、フィルムの状態で凹凸の表面上に載せるため、TFT基板の凹部は覆われない。この方法は、マスク用部材を通して直接陽極電極を見ながらマスク用部材に開口を形成するため、マスクの開口部とTFT基板の蒸着する所定の位置の位置合せは正確にできると予想されるが、前述のような蒸着マスクとTFT基板の蒸着する場所との間に蒸着材料が被着する問題を解消することはできない。すなわち、TFT基板の表面に凹凸があると、マスク部材とTFT基板とを完全に密着させることはできない。例えば有機EL表示装置を製造する場合、バンクの上にフィルム状の蒸着マスクを重ねて蒸着しても、バンクの側壁にも蒸着材料が被着し、バンクの側壁からも斜め方向に光が放射されることになり、画素間の混色の問題も生じてくる。
さらに、前述のように、TFT基板に直接マスク部材を形成し、そのままその蒸着マスクとして有機材料などを蒸着すると、蒸着マスクの開口を形成する際に、レーザ光を照射しなければならず、TFTの素子特性を害するという問題もある。さらに、例えばRGBのサブ画素で、正孔注入層、正孔輸送層、電子輸送層などで、RGBの各サブ画素の2以上で共通の有機材料を用いる場合でも、RGBそれぞれのサブ画素で有機材料の積層膜を全て形成しなければならない。すなわち、RGBの各サブ画素で、同じ層構造の部分に同じ材料を蒸着する場合でも、各サブ画素で別々に再度同じ材料を蒸着する必要があり、材料が無駄になるのみならず、製造工数が大幅に増加するという問題もある。さらに、例えばRのサブ画素の積層が完了した後に、蒸着マスクを除去して再度別のGのサブ画素用の蒸着マスクを形成しなければならず、既に積層されているRのサブ画素の有機材料への悪影響も懸念される。
本発明は、このような問題を解決するためになされたもので、表面に凹凸がある被蒸着基板の底部の所定の場所のみに蒸着材料を蒸着する場合でも、蒸着マスクと被蒸着基板との間に隙間がなく、所望の場所にのみ蒸着することができる蒸着マスク、及びその製造方法を提供することにある。
本発明の他の目的は、蒸着材料を蒸着する場合に、蒸着源からの蒸着材料の飛来を妨げないで、所望の場所に確実に蒸着材料を蒸着することができる蒸着マスク及びその製造方法を提供することにある。
本発明のさらに他の目的は、被蒸着基板と蒸着マスクとの間に線膨張係数の差に基づきパターンずれが生じないように、蒸着マスクの線膨張率が調整される蒸着マスクの製造方法を提供することにある。
本発明のさらに他の目的は、上記蒸着マスクを用いて製造する有機EL表示装置の製造方法、さらに詳しくはその製造の際に、蒸着材料が不要な場所に被着しないように蒸着する方法を提供することにある。
本発明の蒸着マスクは、表面に凹凸を有する被蒸着基板の表面の所定の場所に積層膜を蒸着により形成するための蒸着マスクであって、樹脂フィルムにより形成され、一面は平坦面で、他面が前記被蒸着基板の凹凸形状と反転した形状に対応する凹凸形状を有し、前記所定の場所に対応する部分に開口部を有している。
前記開口部が、前記一面から前記他面側に開口が小さくなるテーパ形状に形成され、前記テーパ形状のテーパ角度が、蒸着材料源から飛来する蒸着材料の蒸着角度と等しいか、それより小さくなるように形成されることにより、飛来する蒸着材料が蒸着マスクにより阻止されなくなるので好ましい。
ここにテーパ角度とは、テーパ形状の稜線とテーパ形状の底辺とのなす角度、例えば図5Aに示されるように、開口部13の底辺(テーパ形状の中心軸と垂直な平面)と壁面とのなす角度α、すなわち、開口部13が形成された結果、残される凸部12aの底辺と壁面とのなす角度α、又はダミーバンク33のテーパ形状部の底辺と斜面とのなす角度βを意味し、蒸着角度とは、図5B~5Dのθで示されるように、蒸着源の容器の開口部の形状によって定まる角度であり、蒸着源から放射される蒸着材料(蒸着粒子)の放射角度(蒸着材料が放射される広がり角の最大角)の1/2の余角、すなわち蒸着材料の最大広がり角のときの蒸着粒子の軌跡と水平面とのなす鋭角を意味する。
本発明の蒸着マスクの製造方法は、表面に凹凸を有する被蒸着基板の表面の所定の場所に積層膜を形成するため、蒸着材料を前記所定の場所に蒸着するための蒸着マスクの製造方法であって、前記被蒸着基板の表面の形状に対応する凹凸を有するダミー基板を作製し、前記ダミー基板の凹凸面に表面がほぼ平坦になるまで液状の樹脂材料を塗布することで樹脂塗布膜を形成し、前記樹脂塗布膜の温度を前記樹脂材料が硬化する温度まで上昇させて前記樹脂塗布膜を焼成することで樹脂焼成膜を形成し、前記ダミー基板に付着している前記樹脂焼成膜にレーザ光を照射して加工することにより、前記樹脂焼成膜に所望の開口部のパターンを形成することで所望の開口部のパターンを有する樹脂フィルムを形成し、前記樹脂フィルムを前記ダミー基板から剥離することにより蒸着マスクとすることを特徴とする。
前記レーザ光を照射することにより前記開口部のパターンを形成する際に、前記開口部のパターンを形成するためのレーザマスクの開口の周縁に、前記開口の端縁に行くほどレーザ光の透過率が低下するレーザ光透過率の漸減領域を形成することにより、前記開口部のパターンの各開口部を前記樹脂フィルムの厚さ方向でテーパ形状に形成することができる。
前記樹脂塗付膜の焼成を、前記樹脂材料の塗布厚、前記焼成時の焼成温度、前記焼成の時間、及び焼成温度と焼成時間のプロファイルの少なくとも1つを調整しながら行うことにより、焼成により形成される前記焼成膜の線膨張率と、前記被蒸着基板の線膨張率との差を3ppm/℃以下にすることができる。
本発明の有機EL表示装置の製造方法は、有機層を積層する被蒸着基板の表面と対応する凹凸を有するダミー基板を作製し、前記ダミー基板の凹凸面に表面がほぼ平坦になるまで液状樹脂を塗布して焼成した樹脂焼成膜にレーザ光を照射することにより開口部のパターンを形成することにより樹脂フィルムとし、前記ダミー基板から前記樹脂フィルムを剥離することで、蒸着マスクを形成し、装置基板上にTFT及び第1電極が形成され、各画素を区分するバンクが形成された被蒸着基板上に前記蒸着マスクを位置合せして重ね合せ、有機材料を蒸着することにより前記被蒸着基板上に有機層を積層し、前記蒸着マスクを除去して第2電極を形成することを特徴とする。
前記バンクを断面形状で先細りになるテーパ形状に形成し、前記バンクのテーパの角度が、前記有機材料の蒸着源から飛来する蒸着材料の蒸着角度以下になるように前記バンクを形成することにより、蒸着源からの蒸着材料の飛来を妨げることなく、所望の場所に蒸着させやすくなる。なお、テーパ角度及び蒸着角度は、前述の意味と同じである。
本発明の蒸着マスクは、表面は平坦であるが、裏面が被蒸着基板の凹凸形状と反転した形状に対応する凹凸形状を有しているので、表面に凹凸を有する被蒸着基板に蒸着マスクを重ね合せる場合でも、凹凸が嵌合し、蒸着マスクが被蒸着基板に対して正確に位置合せされる。さらに、被蒸着基板の表面の凹凸に嵌め合さっているので、段差部分も完全に被覆される。その結果、例えば有機EL表示装置の蒸着マスクとして使用する場合でも、バンクの側壁も蒸着マスクにより覆われているので、蒸着マスクの除去後には、バンクの側壁に有機材料が被着していない。すなわち、表面に凹凸のある被蒸着基板に蒸着材料が蒸着される場合でも、被着を所望しない場所には一切蒸着材料が被着しない。
また、蒸着マスクに形成される開口が蒸着マスクの厚さ方向にテーパ状に細くなる(奥細になる)ように形成され、テーパ形状の先端の小さい開口が所望の蒸着材料が蒸着される所定領域になるように形成され、さらにそのテーパ角度が蒸着源の蒸着角度以下に形成されることにより、蒸着源から飛来する蒸着材料が蒸着マスクによって遮られることなく、所望の蒸着場所に所望の厚さで均一に蒸着されるので好ましい。
本発明の蒸着マスクの製造方法によれば、被蒸着基板の表面の凹凸と同様の凹凸を有するダミー基板に液状の樹脂材料を塗布して蒸着マスクが形成されるので、被蒸着基板の凹凸と嵌め合されるマスクが容易に形成される。さらに、所定の場所以外の部分は蒸着マスクにより被覆されるので、所望しない場所に蒸着材料が被着することはない。ダミー基板としては、本来の蒸着材料を蒸着する被蒸着基板の1枚をダミー基板としてもよいし、金属板などにより表面形状を模倣した基板が形成されてもよい。蒸着マスクの樹脂材料を焼成して固化するのに、500℃程度に温度を上げる必要があるので、この程度の温度に耐える耐熱性であることが必要であるが、耐熱性があれば、他の材料でも使用できる。また、実際に使用する被蒸着基板ではなく、例えば平坦化膜で隠れる素子などの形成はしないで、その平坦化膜上に形成される、例えばバンクなどだけを形成したものでもよい。
本発明の有機EL表示装置の製造方法によれば、バンクの側壁に有機材料が被着しないので、他の画素との混色がなく、また、各画素でも均一な有機層から発光する均一な光でディスプレイを構成することができるので、非常に表示品位の優れた有機EL表示装置が得られる。
つぎに、図面を参照しながら本発明の蒸着マスク及びその製造方法が、有機EL表示装置の製造方法を例にして説明される。図1に、本発明の一実施形態による蒸着マスクの製造方法を示すフローチャートが、図2A~3Dにその図1のS3~S6の各工程での平面及び断面での説明図が、それぞれ示されている。
本実施形態による蒸着マスクは、表面に凹凸を有する被蒸着基板の表面の所定の場所に積層膜を蒸着により形成するための蒸着マスク10であって、図3Dに部分的断面の説明図が示されるように、樹脂フィルム11により形成され、一面10aは平坦面で、他面10bが被蒸着基板20(図4A参照)の凹凸形状と反転した形状に対応する凹凸形状部12を有し、所定の場所に対応する部分に開口部13を有している。図3Dに示される例では、樹脂フィルム11の開口部13が形成された結果、残される凸部12aがテーパ形状になるように、開口部13が先細りのテーパ形状で形成されている。このテーパ形状にする理由及びそのテーパ角度についての詳細は、後述される。
この樹脂フィルム11は、後述されるように、液状の樹脂材料を塗布して焼成することにより形成される。そのため、表面に凹凸のある被蒸着基板20(図4A参照)であっても、その凹凸に対応する反転した凹凸形状部12を有する蒸着マスク10が容易に形成される。材料としては、後述されるが、耐熱性を有する樹脂が用いられ得る。焼成条件により線膨張率を調整し得るポリイミド膜からなることが好ましい。しかし、これに限定されるものではない。このポリイミドの焼成前の状態は液状で粘度はある程度小さいため、被蒸着基板20の表面の凹凸形状は、限定されず、種々の凹凸に対応することができる。例えば後述される例では、TFTなどが形成された表面に平坦化膜が形成され、その表面に各サブ画素を区分するバンク23(図4A参照)が形成された凹凸の例で説明されるが、TFTなどが形成された凹凸表面に直接有機材料が蒸着される場合でも、その凹凸に合せた蒸着マスク10が形成され得る。
この蒸着マスク10を製造するには、図1にそのフローチャートが示され、図2A~3Dに図1のS3~S6の各工程の平面及びその一部断面の説明図が、それぞれ示されるように、被蒸着基板20(図4A参照)の表面の形状に対応する凹凸を有するダミー基板30(図3A参照)が作製される(S1)。そして、ダミー基板30の凹凸面に液状の樹脂材料11a(図6参照)を塗布することで樹脂塗布膜11b(図6参照)が形成される(S2)。その後、樹脂塗布膜11bの温度を樹脂材料が硬化する温度まで上昇させて樹脂塗布膜11bを焼成することで、図2A及び3Aに示されるように、樹脂焼成膜11cが形成される(S3)。この際、樹脂焼成膜11cとダミー基板30との間に短波長光吸収層11dが形成される。次に、ダミー基板30に付着している樹脂焼成膜11cに、図7Aに示されるように、レーザ用マスク41を介して、レーザ光を照射して加工することにより、図2B及び3Bに示されるように、樹脂焼成膜11cに所望の開口部13のパターンを形成することで所望の開口部13のパターンを有する樹脂フィルム11が形成される(S4)。その後、図2C及び図3Cに示されるように、樹脂フィルム11の周縁に枠体14が取り付けられる(S5)。その後、樹脂フィルム11をダミー基板30から剥離することにより蒸着マスク10とされる(S6)。
すなわち、本発明では、樹脂フィルムからなる蒸着マスク10が、ダミー基板30上に樹脂材料11aを塗布して焼成されることにより形成されている。そのため、被蒸着基板20(図4A参照)の表面が平坦である必要がなく、凹凸を有する被蒸着基板20でも、その凹凸に沿った蒸着マスク10が形成されることに特徴がある。その結果、凹凸を有する被蒸着基板上に蒸着マスクを重ね合せる場合でも、その凹凸の全体をカバーして、所望の場所のみを露出することができるので、非常に高性能なデバイスを得ることができる。例えば有機EL表示装置が製造される場合、平坦化膜上に形成される各サブ画素を区分するバンク23上に蒸着マスク10(図4A参照)が載置されるが、平板状の蒸着マスクでは、バンク23の上面と、蒸着材料が蒸着されるバンク23の底部側のサブ画素領域との間に段差が生じ、バンク23の側壁に蒸着材料が被着する。しかし、本発明では、この側壁部も蒸着マスク10で被覆されるので、所定の場所以外に蒸着材料が被着するという問題がなくなる。
次に、この蒸着マスク10の製造方法が、具体例によりさらに詳細に説明される。まず、蒸着材料を蒸着する被蒸着基板20(図4A参照)の表面の凹凸に対応する凹凸を表面に有するダミー基板30(図3A参照)が作製される(図1のS1)。ダミー基板30は、樹脂材料11a(図6参照)を塗布して焼成するための基板にすると共に、製造される樹脂フィルム11の裏面が被蒸着基板20の表面の凹凸と噛み合うように、被蒸着基板20と同様の凹凸が形成されている。すなわち、ダミーTFT基板31の表面に、被蒸着基板20(図4A参照)の第1電極22及びバンク23の表面の凹凸に対応するダミー電極32及びダミーバンク33が形成され、かつ、樹脂材料11aの焼成温度に耐え得る材料で形成される。例えば有機EL表示装置の蒸着マスクを形成する場合には、被蒸着基板20が何枚も一括して製造されるので、そのうちの1枚をダミー基板30として使用することができる。
但し、被蒸着基板20のバンク23がアクリル樹脂などで形成される場合には、樹脂塗付膜11bの焼成時の温度に耐えられないことがあるので、SiOx又はSiNyなどの無機物で形成されることが好ましい。また、蒸着マスク10は、実際の被蒸着基板20よりも一回り大きいことが好ましいので、実際の被蒸着基板20の周囲に張り出し部が形成されるか、枠体が樹脂フィルム11の周囲の外側に形成されることが好ましい。さらに、表面形状が同じであればよく、平坦化膜(図示されていないが、TFT基板21の表面側の層)の下側に形成されるTFTなどは無くてもよい。これらのTFT基板21は、同様の形状に形成されているので、任意の1枚をダミー基板30として使用して蒸着マスク10が製造され、他のTFT基板に蒸着マスク10として使用される場合でも、被蒸着基板20の凹凸に完全にフィットして隙間を生じさせることはない。さらに、TFT基板21とは異なる金属板などの他の材料で形成されてもよい。但し、樹脂材料11aの焼成温度(500℃程度)に耐え得ると共に、実際の被蒸着基板20の線膨張率と3ppm程度以下の線膨張率差を有する材料であることが好ましい。この理由は、以下のとおりである。
すなわち、有機EL表示装置の有機層の蒸着マスクとして使用される場合には、有機層の形成される被蒸着基板上にこの蒸着マスクが固定されるため、被蒸着基板との線膨張率の差が大きくなると、被蒸着基板として意図される画素の蒸着領域と蒸着マスクの開口の位置にずれが生じるからである。例えば表示パネルの一辺の大きさが100cmで、開口(蒸着される有機層の色ごとのサブ画素)の一辺の大きさを60μm角とし、位置ずれ許容値を9μm(60μmに対して15%)とすると、前記線膨張率差が3ppmのとき、3℃の上昇(蒸着の際の温度上昇)で9μmの位置ずれ(許容値上限)が発生することになる。このサブ画素の大きさは、表示パネルの一辺の大きさが、100cmのときの例であるが、一般的に表示パネルの一辺と1サブ画素の一辺とは、解像度が同じであれば、ほぼ比例的に変るので、例えば50cmの表示パネルで同じ解像度(前述の例は5.6kの解像度)にしようとすると、サブ画素の一辺の長さは30μmになる。従って、位置ずれの許容値は4.5μm(15%)が、50cmの長さに許容される。すなわち、3℃で4.5μm/50cmの膨張が許容されるので、線膨張率は3ppm/℃となり、どの大きさの表示装置に対しても、この関係は成り立つ。
従って、蒸着マスク10とそのマスクが使用される基板(被蒸着基板20)との線膨張率の差は3ppm/℃以下であることが必要となる。一方、この樹脂材料から形成される樹脂フィルム11とダミー基板30との線膨張率の差が大きいと、レーザ加工により微細パターンが形成された樹脂フィルム11が室温でダミー基板30から剥離された後に、熱歪みの影響で樹脂フィルム11がカールしやすい。樹脂塗布膜11bが焼成される際の温度は、400℃以上であって500℃以下と相当高温になるため、焼成時の熱膨張による寸法差は大きくなるが、レーザ加工による微細パターンの形成は室温で行われるため、パターンの位置ずれの問題は生じない。しかし、レーザ加工の際に、フェムト秒程度の非常に小さいパルス幅のレーザ光が照射されれば、局所的な加熱で樹脂フィルムの膨張は殆ど問題にならないが、通常のμsec程度のパルス幅のレーザ光であると、数℃程度の温度上昇が見込まれる。そのため、この樹脂フィルム11とダミー基板30との間の線膨張率の差も3ppm/℃以下程度であることが好ましい。すなわち、蒸着マスクとして使用される際の基板の線膨張率と、このダミー基板30の線膨張率との差は、±3ppm/℃を考慮して、6ppm/℃以下、さらに好ましくは、3ppm/℃であることが好ましい。
次に、ダミー基板30上に液状の樹脂材料11a(図6参照)を塗布することで樹脂塗布膜11b(図6参照)が形成される(図1のS2)。この液状樹脂材料11aの塗布は、膜厚制御が可能な方法であればどのようなものでもよいが、例えば前述の図6に示されるように、スリットコートの方法を用いて塗布され得る。すなわち、スロットダイ5に樹脂材料11aを供給しながら、スロットダイ5の先端部から帯状に液状樹脂材料11aを吐出させながら、スロットダイ5を順次移動させることにより塗布される。液状樹脂材料11aの吐出量が完全に均一でない場合など、塗布された状態では完全には平坦にならず、表面に波を打つ場合がある。厚さ数μmから数十μm程度の塗布膜にするために、材料の粘度をある程度高くしているからである。しかし、表面に波を打っていても、ほぼ平坦な状態になり、後の焼成工程で、加熱されることにより、一旦粘度が低下して平坦化される。そのため、最終的には平坦な面になる。そして、ダミー基板30の凸面上に、3μm以上であって10μm以下程度の樹脂塗付膜11bが形成され、表面はほぼ平坦化される。なお、液状樹脂材料11aを塗布することにより、気泡を巻き込んでも、樹脂塗付膜11bの厚いところ(ダミー基板30の凹部のところ)でも20μm程度以下であるため、100nm以上の気泡は一切なく、開口部13を形成する微細パターン形成領域の全面に亘って、ダミー基板30に密着した樹脂塗布膜11bが形成される。なお、この液状樹脂材料11aの塗布は、スリットコートでなくても、例えばスピンコートなど、他の方法で塗布されてもよい。スピンコートは、大きな樹脂フィルムを形成する場合には材料の使用効率の面で不向きであるが、ダミー基板30に密着し、表面が平坦な樹脂塗布膜11bが得られる。
液状樹脂材料11aとしては、焼成し得る材料であり、かつ、レーザ加工のレーザ光を吸収する材料であればよい。しかし、前述のように、樹脂フィルム11が蒸着マスク10として使用される場合には、蒸着マスク10が載置される被蒸着基板20、及び樹脂塗布膜11bが形成されるダミー基板30との間で線膨張率の差が小さい材料であることが好ましい。一般的に有機EL表示装置の基板としてガラス板が用いられるので、その観点からポリイミドが好ましい。ポリイミドはイミド結合を含む高分子樹脂の総称であり、前駆体であるポリアミド酸(常温では液体)を加熱・焼成することでイミド化反応を促進することにより、フィルム状のポリイミドになり得る。また、焼成時の条件によって線膨張率を調整することができるので、前述の有機EL表示装置の被蒸着基板20やダミー基板30の線膨張率に合せやすい点で特に好ましい。一般的なポリイミドの線膨張率は20ppm/℃以上であって60ppm/℃以下程度であるが、焼成条件によって、ガラスの線膨張率4ppm/℃に近づけられ得る。例えば、より高温・長時間の焼成がなされることにより、線膨張率を小さくすることができる。装置基板として、ガラス板ではなく、樹脂フィルムなど、他の基板材料が用いられることもあり、その基板材料の線膨張率に合せて樹脂材料も選択され、ポリイミド以外にも、例えば、透明ポリイミド、PEN、PET、COP、COC、PCなどが用いられ得る。
次に、図2A及び図3Aに示されるように、樹脂塗布膜11bの温度を樹脂材料11aが硬化する温度、例えば450℃程度まで上昇させて樹脂塗布膜11bを焼成することで樹脂焼成膜11cが形成される(図1のS3)。この焼成の際に、樹脂焼成膜11cとダミー基板30との界面に図3Aに示されるように、短波長光吸収層11dが形成される。短波長光吸収層11dは、樹脂塗布膜11bの焼成の際に、ダミー基板30(例えばITOやシリコン窒化膜など)という樹脂材料とは異なる材料と接しているため、樹脂材料11aの接触面が変質することにより形成される。その結果、紫外線などの短波長の光を樹脂材料11aよりも吸収しやすくなる。短波長光吸収層11dの厚さとしては、5nm以上であって100nm以下程度である。この短波長光を特に吸収しやすい層にするには、この焼成前に、シランカップリング剤などの密着性改善・表面改質剤をダミー基板30上に極薄層で塗布してから、樹脂塗布膜11bを形成することが好ましい。この焼成により、ダミー基板30に短波長光吸収層11dを介して密着した樹脂焼成膜11cが得られる。なお、本発明では樹脂塗付膜11bとダミー基板30との間は密着しており、樹脂塗付膜11bとダミー基板30との間に浮きが形成されることはあり得ないが、もし、気泡が形成されていると、その浮いた部分には短波長光吸収層11dは形成されず、樹脂焼成膜11cとダミー基板30との間に間隙部ができる。そのため、剥離が容易であることは同様である。
この焼成は、例えばダミー基板30の加熱ではなく、オーブン内で全体の加熱により行われる。しかし、ダミー基板30の裏面側から加熱されてもよい。この加熱の際の温度プロファイルは、目的に応じて変更され得る。
すなわち、第1に、樹脂焼成膜11cの裏面に気泡などが形成されると、次の開口部13が形成される際に、バリなどが生じやすい。そのため、この樹脂塗布膜11bが焼成される際に、気泡を巻き込むことは確実に阻止されることが望まれる。前述のように、樹脂塗布膜11bは、液状の樹脂材料11aが塗布されることにより形成されているので、気泡が巻き込まれることは余りない。しかし、ダミー基板30の表面に凹凸があり、液状の樹脂材料11aがダミー基板30上に塗布される際に気泡が巻き込まれることはあり得る。そのため、焼成の初期には100℃以下の温度で、10分以上であって60分以下程度は維持されることが好ましい。低温における長時間の加熱は、樹脂塗布膜11b中に巻き込まれた気泡が樹脂塗布膜11bの表面から放出されるという点で好ましい。100℃以下であれば、硬化は起こらず、むしろ流動性が増し、巻き込まれている気泡も膨張するため、10μm以上であって20μm以下程度の樹脂塗布膜11bの表面から気泡が抜けやすい。また、焼成のため、温度が上昇する際に、全面で均一に温度上昇するとは限らない。その点から、温度の上昇初期に充分な時間が確保されることにより、樹脂塗布膜11bの温度が均一になりやすいという効果もある。
第2に、樹脂材料11aとして、ポリイミドが用いられる場合、前述のように、その焼成条件によって、線膨張率が変化する。そのため、この焼成条件により前述のように、樹脂フィルム11は、被蒸着基板20や、ダミー基板30の線膨張率と近づく条件で焼成され得る。例えば、ポリイミドの場合450℃程度で焼成されるが、さらに500℃近くまで温度を上昇させて、10分以上であって60分以下ぐらい放置すると、線膨張率を小さくすることができる。また、450℃程度で焼成した後に、さらに30分以上その温度を維持することによっても、樹脂フィルム11の線膨張率を小さくすることができる。逆に、温度上昇を大きなステップ(温度を大幅に上げて、その温度を長い時間維持するステップ)のプロファイルで焼成することにより、樹脂フィルム11の線膨張率を大きくすることができる。これらの観点から、樹脂塗布膜11bの焼成は、5分以上であって120分以下ごとに10℃以上であって200℃以下の温度で段階的に上昇させながら、焼成温度まで上昇させることが好ましい。この範囲は、目的とする樹脂フィルムの特性、樹脂材料などによりさらに特定され得る。
次に、図2B及び図3Bに示されるように、ダミー基板30に付着している状態の樹脂焼成膜11cにレーザ光を照射して加工することにより、樹脂焼成膜11cに所望の開口部13を有する樹脂フィルム11が形成される(S4)。
このレーザ光の照射は、例えば図7Aに示されるように、その表面側から所望の開口部41aのパターンを有するレーザ用マスク41と光学レンズ42を介してレーザ光が照射されることにより、レーザ用マスク41の開口部41aのパターンが縮小して転写される。このレーザ光照射装置がステッパにより移動して、大きな焼成膜11cに開口部13のパターンが順次形成されることにより樹脂フィルム11(開口部13が全て形成されて樹脂フィルム11となるため、図示されていない)が形成される。光学レンズ42は必ずしも必要ではないが、加工面の照射エネルギー密度を稼ぐ際に有効である。この場合、光学レンズ42は、レーザ用マスク41よりもレーザ光の進行方向の下流側(樹脂焼成膜11c側)に配置され、レーザ光を集光させる。例えば、10倍の光学レンズ42が使用された場合は、エネルギー密度は100倍になるが、レーザ用マスク41の転写パターンは10分の1のスケールとなる。このレーザ光の照射により、レーザ用マスク41の開口部41aを透過したレーザ光が樹脂焼成膜11cの一部を焼失させる。その結果、レーザ光が照射されたレーザ用マスク41の開口部41aのパターンに合せて、そのパターンと同じ、あるいは縮小された開口部13の微細パターンが樹脂焼成膜11cに形成される。これにより、微細パターンを有する樹脂フィルム11がダミー基板30上に形成される。
レーザ光照射の条件は、加工される樹脂焼成膜11cの材料、厚さ、加工される開口部13の大きさや形状などにより異なるが、一般的には、レーザ光のパルス周波数が、1Hz以上であって60Hz以下であり、パルス幅が1ナノ秒(nsec)以上であって15ナノ秒以下であり、1パルス当たりの照射面におけるレーザ光のエネルギー密度が0.01J/cm2以上であって1J/cm2以下の条件で行われる。
有機EL表示装置の有機層を蒸着する際の蒸着マスク10とするため、例えば60μm角の開口が60μm程度の間隔でマトリクス状に形成される場合、波長が355nm(YAGレーザの3倍波)のレーザ光が、60Hzのパルス周波数、パルス幅が7nsec、照射面でのレーザ光のエネルギー密度が1パルス当たり0.36J/cm2、ショット数(照射するパルスの数)が100の条件で、ポリイミドからなる5μm厚の樹脂焼成膜11cに照射される。
しかし、照射されるレーザ光は、YAGレーザには限定されない。樹脂材料が吸収し得る波長のレーザであればよい。従って、エキシマレーザ、He-Cdレーザなど、他のレーザ光が用いられてもよい。勿論、レーザ光源が変ったり、樹脂材料が変ったりすると、照射条件が変ることは言うまでもない。前述の例で、開口部のパターンを形成するのに、100ショットの照射が行われたが、5μm厚のポリイミド膜に50ショットぐらいで貫通孔が開く。
この開口部13が、図5Aに示されるように(図5Aでは、ダミーバンク33の両側に開口部13が半分ずつしか記載されていない)、蒸着マスク10(図3D参照)の一面10aから他面10b側に開口が小さくなる、すなわち先細りのテーパ形状に形成されることが好ましい。さらに具体的には、開口部13のテーパ角度α、すなわち開口部13が形成された結果、残される凸部12aのテーパ角度α(テーパ形状の底面と斜面とのなす角度)が、蒸着源60(図5B参照)から放射される蒸着材料の蒸着ビームの蒸着角度θ(蒸着材料の放射角度の1/2の余角)と同じか、それより小さいことが好ましい。この蒸着マスク10の開口部13のテーパ角度αが、蒸着源60の蒸着角度θと等しいか、小さい角度α1であれば、蒸着の際に、図5Bに示されるように、蒸着源60から放射される蒸着ビームの側縁の蒸着粒子でも、蒸着マスク10に遮断されることなく、開口部13の底面に露出する第1電極22の端部に被着する。一方、図5Cに示されるように、この開口部13のテーパ角度αが、蒸着角度θより大きい角度α2であると、放射された蒸着材料が蒸着マスク10の凸部12aにより遮断されて開口部13の底面の端に蒸着材料が堆積されなくなる。
テーパ形状の開口部13を有する蒸着マスクは、例えば前述のレーザ用マスク41(図7A参照)の開口部41aの周縁部を、周端部に行くほどレーザ光の透過率が低下するように形成することにより得られる。前述のレーザ用マスク41は、例えば次のようにして形成される。すなわち、図7Bに示されるように、石英ガラス板などのレーザ光を透過させる透明基板に、クロムなどの遮光薄膜41bが形成され、その後、その遮光薄膜41bのパターニングにより開口部41aが形成されている。そのため、この遮光薄膜41bが、例えば図7Cに概念的に示されるように、スポット的に形成されることにより形成され得る。図7Cでは、開口部41aが第1部分41a1、第2部分41a2、第3部分41a3と便宜的に区切って描かれているがそのような区分はしなくてよい。そして、この第1部分41a1は、遮光薄膜41bが全く形成されていないので、100%透過する。第2部分41a2は、遮光薄膜41bがまばらに形成され、その面積が20%程度に形成されている。その結果、この第2部分41a2は、透過率が80%になる。さらに、第3部分41a3は、遮光薄膜41bの量が面積的に50%程度になるように形成されている。その結果、この第3部分41a3の透過率は50%程度になる。この周端縁に向かっての透過率の変化が急激になるようにレーザ用マスク41が形成されることにより、開口部13のテーパ角度αは大きくなり、透過率の変化が緩やかになるように形成されることにより、開口部13のテーパ角度αは小さくなる。
この例では、説明を分かりやすくするため、第1部分41a1、第2部分41a2、第3部分41a3に分割して説明し、遮光薄膜41bが分散して形成された図になっているが、実際には、レーザ光の転写分解能が2μmであるため、例えば2μm角が縦横5等分され、全部で25個のセグメントの一部に遮光薄膜41bが形成されることにより、レーザ光の透過率を調整することができる。この透過率が連続的に周縁に行くほど小さくなるようにすることにより、テーパ状の開口部13が形成され得る。
このようにレーザ光の透過率が徐々に低下すると樹脂焼成膜11cに入射するレーザ光が弱くなり、樹脂焼成膜11cを昇華させる力が弱くなる。その結果、表面側から除去される量は周囲で弱くなり、テーパ状の開口部13が形成される。
次に、図2C及び図3Cに示されるように、開口部13が形成された樹脂焼成膜11cの周縁に枠体14が貼り付けられる(S5)。この枠体14の貼り付けは、樹脂焼成膜11cがダミー基板30から剥離されて蒸着マスク10にされた後に、樹脂フィルム11を破損させないで取り扱いを容易にするためのものである。この枠体14が樹脂フィルム11の周縁に貼り付けられる場合、後の蒸着の際に不要なガス放出が発生しない接着剤、例えばエポキシ樹脂のように、完全硬化型の接着剤が用いられることが好ましい。
従来の製造方法では、樹脂フィルム11に張力を加えながら枠体14に貼り付ける必要があったため、枠体14にはそれに耐え得る剛性が要求され、厚さが25mm以上であって50mm以下の金属板を使用していた。これを架張工程という。しかし本発明の実施形態においては、樹脂焼成膜11cとダミー基板30が接合された状態で枠体14を貼り付けるため、架張工程を省略できる。従って、枠体14は必須ではなく、無くても構わない。よって、この枠体14は、ある程度の機械的強度があればよく、例えば1mm以上であって20mm以下程度の厚さの金属板、又はプラスチック板などを用いることができる。しかし、蒸着の際の固定を考慮すると、枠体14として磁性のある金属板を用いる方がマグネットで固定できるため好ましい。前述のように、蒸着マスク10は被蒸着基板20より大きいことが好ましいので、ダミー基板30の大きさが実際の被蒸着基板の大きさと同じ場合には、その外周に枠体14が取り付けられるようにすることが好ましい。
その後、図2D及び図3Dに示されるように、樹脂フィルム11がダミー基板30から剥離されることにより、蒸着マスク10が得られる(S6)。ダミー基板30から樹脂フィルム11が剥離されることにより、樹脂フィルム11の他面(裏面)10b側に凹部12bが形成される。この樹脂フィルム11をダミー基板30から剥離するには、レーザ光の照射による短波長光吸収層11dのさらなる変質により行われる。すなわち、前述の開口部13を形成する際のレーザ光照射は、開口部13が形成される部分のみに樹脂フィルム11が吸収しやすいレーザ光の照射で行われ、その部分の短波長光吸収層11dも消失しているが、この工程では、樹脂フィルム11が殆ど吸収しないレーザ光を全面に照射する。そのため、樹脂焼成膜11cそのものは変質しない程度の弱いレーザ光が照射される。その観点から、レーザ光でなくてもよく、キセノンランプ、高圧水銀ランプ、紫外線LEDなど波長の短い光を放射する光源であればよい。
このような短波長光が全面に照射されることにより、樹脂フィルム11には何ら変化はなく、短波長光吸収層11dは、さらに変質して凹凸のあるダミー基板30と樹脂フィルム11との間の結合力を失い、樹脂フィルム11はダミー基板30から容易に分離する。そのため、従来のように平板状のフィルムでも、オイルに浸漬して分離するという面倒な方法を用いることなく、また、有機層に好ましくない水分を付着させる機会もなくなり、しかも、開口部13のパターンを損傷することなく、簡単に樹脂フィルム11がダミー基板30から分離される。その結果、蒸着マスク10が得られる。なお、必要に応じて、樹脂塗付膜10bを形成する前に離型剤をダミー基板30の表面に塗布しておくことにより、より容易に剥離することができる。
次に、このようにして製造された樹脂フィルムからなる蒸着マスク10を用いて有機EL表示装置を製造する方法が説明される。蒸着マスク10以外の製造方法は、周知の方法で行えるので、蒸着マスク10を用いた有機層の積層方法についてのみ説明される。
本発明の有機EL表示装置の製造方法は、まず、前述の方法により蒸着マスク10が形成される。すなわち、有機層を積層する被蒸着基板20(図4A参照)の表面と対応する凹凸を有するダミー基板30が作製される。そのダミー基板30の凹凸面に表面がほぼ平坦になるまで液状樹脂11aを塗布して焼成した樹脂焼成膜11cにレーザ光を照射することで開口部13のパターンが形成されることにより樹脂フィルム11とされ、ダミー基板30から樹脂フィルム11が剥離されることで、蒸着マスク10が形成される。この蒸着マスク10が形成される際に、RGBの各サブ画素で同じ有機材料が蒸着される場合の蒸着マスクなら、前述の図3Dに示されるような、各サブ画素全てに開口が形成された蒸着マスク10でよいがRGBの各サブ画素で異なる有機材料が蒸着される場合には、サブ画素Rのみを開口した蒸着マスク10R、サブ画素Gのみを開口した蒸着マスク10G、サブ画素Bのみを開口した蒸着マスク10Bがあらかじめ形成される。R及びGのサブ画素は同じ有機材料の蒸着で、Bのサブ画素のみ異なる場合には、R及びGのサブ画素を開口し、Bのサブ画素は開口しない蒸着マスク10RG(図示せず)など、種々の組合せの蒸着マスク10が予め形成される。
そして、図4Aに示されるように、基板上にTFT、平坦化膜などが形成されたTFT基板21、第1電極22、及び各画素を区分するバンク23が形成された被蒸着基板20上に前述の蒸着マスク10(10R等)を位置合せして重ね合せ、有機材料が蒸着されることにより被蒸着基板20上に有機層25(25R等)が積層される。この蒸着マスク10Rは、ダミー基板30の表面の凹凸形状が、この被蒸着基板20の表面とほぼ同じ形状に形成されているため、ピッタリと嵌合しバンク23の側壁も被覆される。図4A~4Cでは、蒸着マスク10と被蒸着基板20との境界を明確にするため、その境界部に隙間を入れて描いているため、側壁部の蒸着マスク10が出っ張って、不自然な図になっているが、実際には隙間はなく、側壁に薄い蒸着マスク10が被覆されるだけで、有機層25もバンク23の側壁の根元まで形成される。
TFT基板21は、図示されていないが、例えばガラス板などに、各画素のRGBサブ画素ごとにTFTなどのスイッチ素子が形成され、そのスイッチ素子に接続された第1電極(例えば陽極)22及び配線が、平坦化膜上に、AgあるいはAPCなどの金属膜と、ITO膜との組み合わせにより形成されている。サブ画素間には、図4Aに示されるように、サブ画素間を遮蔽するSiO2などからなる絶縁バンク23が形成されている。このようなTFT基板21のバンク23上に、前述の蒸着マスク10が位置合せして固定される。なお、蒸着マスク10の開口13は、前述のようにテーパ形状に形成されている。
この状態で、蒸着装置内で有機材料24が蒸着され、蒸着マスク10の開口部13のみに有機材料24が蒸着され、所望のサブ画素の第1電極22上に有機層25(25R)が形成される。この蒸着は、例えばライン状(図面の表裏面(垂直)方向に延びる)の坩堝などからなる蒸着源60が図面の左右方向にスキャンされることにより、被蒸着基板20が複数個形成された大判の全面に蒸着される。前述のように、蒸着源60は、その放射口の形状により定まる蒸着角度θから中心軸側の範囲内で蒸着材料が放射される。そのため、例えば蒸着マスク10の開口部13が直角に近いと、蒸着マスク10の開口部13の底面(第1電極22の露出面)の周縁には、蒸着材料が届きにくく、均一な積層膜が得られなくなる。しかし、蒸着マスク10の開口部13のテーパ角度α(図5A参照)が蒸着角度θ以下であれば、図5Bに示されるように、底面の周縁でも均一な膜厚で有機層25の積層がなされる。
有機層25のうち、発光層は、RGBの各色に応じた材料の有機層が堆積される。また、正孔輸送層、電子輸送層などは、発光性能を重視すれば、発光層に適した材料で別々に堆積されることが好ましい。しかし、材料コストの面を勘案して、RGBの2色又は3色に共通して同じ材料で積層される場合もある。2色以上のサブ画素で共通する材料が積層される場合には、共通するサブ画素に開口部13が形成された蒸着マスクが形成される。個々のサブ画素で蒸着層が異なる場合には、例えばRのサブ画素で1つの蒸着マスク10Rを用いて、各有機層を連続して蒸着することができるし、RGBで共通の有機層が堆積される場合には、その共通層の下側まで、各サブ画素の有機層の蒸着がなされ、共通の有機層のところで、RGBに開口が形成された蒸着マスク10を用いて一度に全画素の有機層の蒸着がなされる。
図4Aは、Rのサブ画素のみに有機層が積層される例が示されているが、Gのサブ画素のみに有機層が積層される場合には、図4Bに示されるように、Gのサブ画素のみに開口部13が形成され、他のR及びBのサブ画素を被覆する蒸着マスク10Gが用いられる。この場合、Rのサブ画素は、既に有機層25Rが形成されているので、蒸着マスク10Gは、その分を逃がしたマスクであることが望ましいが、有機層25は全ての有機層が蒸着されても、500nm程度であるので、無視してもそれほど問題にはならない。
その後、図4Cに示されるように、蒸着マスク10をB用の蒸着マスク10Bに取り換えて、前述の例と同様にBのサブ画素のみに蒸着材料が蒸着される。なお、この例では、RGBのそれぞれのサブ画素に有機層を蒸着するように説明したが、RGBで共通の有機材料である場合には、それらの画素をまとめて同じ材料が蒸着される。
図4A~4Cでは、有機層25が簡単に1層で示されているが、実際には、有機層25は、異なる材料からなる複数層の積層膜で形成される。例えば陽極(第1電極)22に接する層として、正孔の注入性を向上させるイオン化エネルギーの整合性の良い材料からなる正孔注入層が設けられる場合がある。この正孔注入層上に、正孔の安定な輸送を向上させると共に、発光層への電子の閉じ込め(エネルギー障壁)が可能な正孔輸送層が、例えばアミン系材料により形成される。さらに、その上に発光波長に応じて選択される発光層が、例えば赤色、緑色に対してはAlq3に赤色又は緑色の有機物蛍光材料をドーピングして形成される。また、青色系の材料としては、DSA系の有機材料が用いられる。発光層の上には、さらに電子の注入性を向上させると共に、電子を安定に輸送する電子輸送層が、Alq3などにより形成される。これらの各層がそれぞれ数十nm程度ずつ積層されることにより有機層25が形成されている。なお、この有機層25と金属電極との間にLiFやLiqなどの電子の注入性を向上させる電子注入層が設けられることもある。
そして、全ての有機層25及びLiF層などの電子注入層の形成が終了したら、蒸着マスク10は除去され、第2電極(例えば陰極)26が全面に形成される。図4Dに示される例は、トップエミッション型で、上側から光を出す方式になっているので、第2電極26は透光性の材料、例えば、薄膜のMg-Ag共晶膜により形成される。その他にAlなどが用いられ得る。なお、TFT基板21側から光が放射されるボトムエミッション型の場合には、第1電極22にITO、In3O4などが用いられ、第2電極26としては、仕事関数の小さい金属、例えばMg、K、Li、Alなどが用いられ得る。この第2電極26の表面には、例えばSi3N4などからなる保護膜27が形成される。なお、この全体は、図示しないガラス、樹脂フィルムなどからなるシール層により封止され、有機層25や第2電極26が水分や酸素等を吸収しないように構成される。また、有機層25はできるだけ共通化し、その表面側にカラーフィルタを設ける構造にすることもできる。
前述のバンク23は、断面形状が先細りになるテーパ形状に形成され、そのテーパの角度β(図5A参照)が、前述の有機材料の蒸着源60から放射される蒸着材料の蒸着角度θと等しいか、それより小さい角度β1(図5B参照)に形成されることが好ましい。バンク23のテーパ角度βが蒸着角度θより大きいと、前述の蒸着マスク10の開口部13のテーパ形状と同様に、蒸着源60から放射される蒸着ビームの側縁で放射される蒸着粒子が、バンク23により遮断されて、第1電極22のバンク23側の端部に充分に蒸着材料が被着されないからである。また、バンク23のテーパ角度βは、蒸着マスク10の開口部13のテーパ角度αより小さいことが好ましい。バンク23のテーパ角度βが蒸着マスク10の開口部13のテーパ角度αより大きい角度β2であると、バンク23が蒸着マスク10の凸部12aにより被覆されなくなってしまう。その結果、図5Dに示されるように、蒸着マスク10の開口部13のテーパ角度α1が蒸着源60の蒸着角度θ以下になるように形成された蒸着マスク10からバンク23が露出してしまい、バンク23の肩部や側壁に蒸着材料25mが被着してしまう。その結果、有機材料を蒸着する場合、バンク23の側壁からも光が斜め方向に放射され、隣接する画素との間でクロストークをして表示品位が低下することになる。従って、有機EL表示装置の均一な有機層25が積層されるためには、被蒸着基板20側のバンク23の形状も蒸着角度θ以下のテーパ角度、さらに好ましくは蒸着マスク10の開口部13のテーパ角度α以下のテーパ角度を有する形状に形成されることが必要である。このようなテーパ角度を有するバンク23を形成するには、次のような方法で行うことができる。
すなわち、例えば、バンク23がSiO2、Si3N4などの無機物で形成されている場合、その形成をドライエッチング又はウェットエッチングを用いて行うときに、レジスト膜の素材との密着力の調整や膜厚の調整などのレジスト膜の形成条件、及びエッチャントの選定を適正化することによりテーパ角度の調整がなされ得る。
また、バンク23が有機物からなる場合には、その有機物が感光性樹脂からなるとき、デフォーカスなどの露光条件と、現像液や温度などの現像条件と、プリベーク温度やキュア温度などの焼成温度の条件を調整することにより、所望のテーパ角度が得られる。バンク23が非感光性樹脂の場合には、前述の無機物からなる場合と同様に行うことにより、所望のテーパ角度が得られる。
このバンク23のテーパ角度βは、図5Aからも明らかなように、蒸着マスク10の開口部13のテーパ角度αと同じか、それより小さいことが望ましい。蒸着マスク10の開口部13のテーパ角度αを小さくして、蒸着材料の遮断が防止されても、バンク23のテーパ角度が大きいと遮断されて意味がなくなると共に、図5Dに示されるように、バンク23の肩部及び側壁に蒸着材料25mが被着するからである。すなわち、α≧βであることが望ましい。一方、前述のように、蒸着マスク10の開口部13のテーパ角度αは、蒸着源60の蒸着角度θ以下であることが望ましい。その結果、蒸着角度θ、蒸着マスク10の開口部13のテーパ角度α、及びバンク23(ダミーバンク33)のテーパ角度βとの間には、θ≧α≧βの関係があることが望ましい。
10 蒸着マスク
10a 第1面
10b 第2面
11 樹脂フィルム
11a 樹脂材料
11b 樹脂塗布膜
11c 樹脂焼成膜
11d 短波長光吸収層
12 凹凸形状部
12a 凸部
12b 凹部
13 開口部
14 枠体
20 被蒸着基板
21 TFT基板
22 第1電極
23 バンク
24 有機材料
25 有機層
26 第2電極
37 保護膜
30 ダミー基板
41 レーザ用マスク
41a 開口部
41b 遮光薄膜
42 光学レンズ
10a 第1面
10b 第2面
11 樹脂フィルム
11a 樹脂材料
11b 樹脂塗布膜
11c 樹脂焼成膜
11d 短波長光吸収層
12 凹凸形状部
12a 凸部
12b 凹部
13 開口部
14 枠体
20 被蒸着基板
21 TFT基板
22 第1電極
23 バンク
24 有機材料
25 有機層
26 第2電極
37 保護膜
30 ダミー基板
41 レーザ用マスク
41a 開口部
41b 遮光薄膜
42 光学レンズ
Claims (14)
- 表面に凹凸を有する被蒸着基板の表面の所定の場所に積層膜を蒸着により形成するための蒸着マスクであって、
樹脂フィルムにより形成され、一面は平坦面で、他面が前記被蒸着基板の凹凸形状と反転した形状に対応する凹凸形状を有し、前記所定の場所に対応する部分に開口部を有する蒸着マスク。 - 前記開口部が、前記一面から前記他面側に開口が小さくなるテーパ形状に形成され、前記テーパ形状のテーパ角度が、蒸着材料源から飛来する蒸着材料の蒸着角度と等しいか、それより小さくなるように形成されてなる請求項1記載の蒸着マスク。
- 前記樹脂フィルムの線膨張率と、前記被蒸着基板の線膨張率との差が3ppm/℃以下になるように前記樹脂フィルムがポリイミドにより形成されてなる請求項1又は2記載の蒸着マスク。
- 表面に凹凸を有する被蒸着基板の表面の所定の場所に積層膜を形成するため、蒸着材料を前記所定の場所に蒸着するための蒸着マスクの製造方法であって、
前記被蒸着基板の表面の形状に対応する凹凸を有するダミー基板を作製し、
前記ダミー基板の凹凸面に表面がほぼ平坦になるまで液状の樹脂材料を塗布することで樹脂塗布膜を形成し、
前記樹脂塗布膜の温度を前記樹脂材料が硬化する温度まで上昇させて前記樹脂塗布膜を焼成することで樹脂焼成膜を形成し、
前記ダミー基板に付着している前記樹脂焼成膜にレーザ光を照射して加工することにより、前記樹脂焼成膜に所望の開口部のパターンを形成することで所望の開口部のパターンを有する樹脂フィルムを形成し、
前記樹脂フィルムを前記ダミー基板から剥離することにより蒸着マスクとする
ことを特徴とする蒸着マスクの製造方法。 - 前記レーザ光を照射することにより前記開口部のパターンを形成する際に、前記開口部のパターンを形成するためのレーザマスクの開口の周縁に、前記開口の端縁に行くほどレーザ光の透過率が低下するレーザ光透過率の漸減領域を形成することにより、前記開口部のパターンの各開口部を前記樹脂フィルムの厚さ方向でテーパ形状に形成する請求項4記載の蒸着マスクの製造方法。
- 前記樹脂塗付膜の焼成を、前記樹脂材料の塗布厚、前記焼成時の焼成温度、前記焼成の時間、及び焼成温度と焼成時間のプロファイルの少なくとも1つを調整しながら行うことにより、焼成により形成される前記樹脂焼成膜の線膨張率と、前記被蒸着基板の線膨張率との差を3ppm/℃以下にする請求項4又は5記載の蒸着マスクの製造方法。
- 前記樹脂塗付膜の焼成を、前記樹脂材料の塗布厚、前記焼成時の焼成温度、前記焼成の時間、及び焼成温度と焼成時間のプロファイルの少なくとも1つを調整しながら行うことにより、焼成により形成される前記樹脂焼成膜の線膨張率と、前記ダミー基板の線膨張率との差が3ppm/℃以下になるように前記ダミー基板の材料を選定する請求項4~6のいずれか1項に記載の蒸着マスクの製造方法。
- 前記樹脂材料の焼成を、5分以上であって120分以下ごとに10℃以上であって200℃以下の温度で段階的に上昇させながら、焼成温度まで上昇させることにより行う請求項4~7のいずれか1項に記載の蒸着マスクの製造方法。
- 前記レーザ光の照射による加工が、被蒸着基板上の画素ごとに有機材料を蒸着する蒸着マスクを形成するための加工である請求項4~8のいずれか1項に記載の蒸着マスクの製造方法。
- 前記レーザ光が、パルスレーザである請求項4~9のいずれか1項に記載の樹脂フィルムの製造方法。
- 前記樹脂フィルムを前記ダミー基板から剥離する前に前記樹脂フィルムの周縁に枠体を形成する請求項4~10のいずれか1項に記載の樹脂フィルムの製造方法。
- 前記樹脂フィルムを前記ダミー基板から剥離する際に、前記樹脂フィルムと前記ダミー基板との界面に焦点を合せた短波長光を照射することにより、前記樹脂フィルムと前記ダミー基板との密着力を弱くして剥離する請求項4~11のいずれか1項に記載の樹脂フィルムの製造方法。
- 被蒸着基板上に有機層を積層して有機EL表示装置を製造する方法であって、
有機層を積層する被蒸着基板の表面と対応する凹凸を有するダミー基板を作製し、
前記ダミー基板の凹凸面に表面がほぼ平坦になるまで液状樹脂を塗布して焼成した樹脂焼成膜にレーザ光を照射することで開口部のパターンを形成することにより樹脂フィルムとし、前記ダミー基板から前記樹脂フィルムを剥離することで、蒸着マスクを形成し、
装置基板上にTFT及び第1電極が形成され、各画素を区分するバンクが形成された被蒸着基板上に前記蒸着マスクを位置合せして重ね合せ、有機材料を蒸着することにより前記被蒸着基板上に有機層を積層し、
前記蒸着マスクを除去して第2電極を形成する
ことを特徴とする有機EL表示装置の製造方法。 - 前記バンクを断面形状で先細りになるテーパ形状に形成し、前記バンクのテーパの角度が、前記有機材料の蒸着源から飛来する蒸着材料の蒸着角度以下になるように前記バンクを形成する請求項13記載の有機EL表示装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/068,430 US10580985B2 (en) | 2016-01-06 | 2016-07-22 | Deposition mask, method for manufacturing thereof, and method for manufacturing organic EL display device |
JP2017560031A JP6462157B2 (ja) | 2016-01-06 | 2016-07-22 | 蒸着マスク及びその製造方法、有機el表示装置の製造方法 |
CN201680077604.3A CN108474101B (zh) | 2016-01-06 | 2016-07-22 | 蒸镀掩模及其制造方法、有机el显示装置的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-001071 | 2016-01-06 | ||
JP2016001071 | 2016-01-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017119153A1 true WO2017119153A1 (ja) | 2017-07-13 |
Family
ID=59273477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/071620 WO2017119153A1 (ja) | 2016-01-06 | 2016-07-22 | 蒸着マスク及びその製造方法、有機el表示装置の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10580985B2 (ja) |
JP (2) | JP6462157B2 (ja) |
CN (1) | CN108474101B (ja) |
TW (1) | TWI653351B (ja) |
WO (1) | WO2017119153A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102314655B1 (ko) * | 2017-05-17 | 2021-10-20 | 애플 인크. | 측방향 누설이 감소된 유기 발광 다이오드 디스플레이 |
US20220181594A1 (en) * | 2019-03-27 | 2022-06-09 | Sakai Display Products Corporation | Method for manufacturing resin film having fine pattern, method for manufacturing organic el display device, base material film for use in formation of fine pattern, and resin film having support member attached thereto |
KR20220019881A (ko) | 2020-08-10 | 2022-02-18 | 삼성디스플레이 주식회사 | 표시 장치의 제조장치, 마스크 조립체의 제조방법, 및 표시 장치의 제조방법 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279424A (ja) * | 2000-03-30 | 2001-10-10 | Tdk Corp | マスキング装置及び薄膜形成方法 |
JP2004107723A (ja) * | 2002-09-18 | 2004-04-08 | Hitachi Chem Co Ltd | 薄膜の形成方法 |
JP2005519187A (ja) * | 2002-02-14 | 2005-06-30 | スリーエム イノベイティブ プロパティズ カンパニー | 回路製作用アパーチャマスク |
WO2013039196A1 (ja) * | 2011-09-16 | 2013-03-21 | 株式会社ブイ・テクノロジー | 蒸着マスク、蒸着マスクの製造方法及び薄膜パターン形成方法 |
JP2014067500A (ja) * | 2012-09-24 | 2014-04-17 | Dainippon Printing Co Ltd | 蒸着マスク用材料の製造方法、蒸着マスクの製造方法 |
WO2014115477A1 (ja) * | 2013-01-28 | 2014-07-31 | 株式会社ブイ・テクノロジー | 成膜マスクの製造方法及びレーザ加工装置 |
WO2014167989A1 (ja) * | 2013-04-12 | 2014-10-16 | 大日本印刷株式会社 | 蒸着マスク、蒸着マスク準備体、蒸着マスクの製造方法、及び有機半導体素子の製造方法 |
WO2015034097A1 (ja) * | 2013-09-09 | 2015-03-12 | 株式会社ブイ・テクノロジー | 成膜マスク、成膜装置、成膜方法及びタッチパネル基板 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7007833B2 (en) * | 1997-05-27 | 2006-03-07 | Mackay John | Forming solder balls on substrates |
KR100525819B1 (ko) * | 2003-05-06 | 2005-11-03 | 엘지전자 주식회사 | 유기 이엘 디스플레이 패널 제조용 새도우 마스크 |
TWI555862B (zh) * | 2011-09-16 | 2016-11-01 | V科技股份有限公司 | 蒸鍍遮罩、蒸鍍遮罩的製造方法及薄膜圖案形成方法 |
-
2016
- 2016-07-22 CN CN201680077604.3A patent/CN108474101B/zh active Active
- 2016-07-22 US US16/068,430 patent/US10580985B2/en active Active
- 2016-07-22 WO PCT/JP2016/071620 patent/WO2017119153A1/ja active Application Filing
- 2016-07-22 JP JP2017560031A patent/JP6462157B2/ja active Active
- 2016-07-29 TW TW105124038A patent/TWI653351B/zh active
-
2018
- 2018-07-09 JP JP2018130160A patent/JP6553257B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279424A (ja) * | 2000-03-30 | 2001-10-10 | Tdk Corp | マスキング装置及び薄膜形成方法 |
JP2005519187A (ja) * | 2002-02-14 | 2005-06-30 | スリーエム イノベイティブ プロパティズ カンパニー | 回路製作用アパーチャマスク |
JP2004107723A (ja) * | 2002-09-18 | 2004-04-08 | Hitachi Chem Co Ltd | 薄膜の形成方法 |
WO2013039196A1 (ja) * | 2011-09-16 | 2013-03-21 | 株式会社ブイ・テクノロジー | 蒸着マスク、蒸着マスクの製造方法及び薄膜パターン形成方法 |
JP2014067500A (ja) * | 2012-09-24 | 2014-04-17 | Dainippon Printing Co Ltd | 蒸着マスク用材料の製造方法、蒸着マスクの製造方法 |
WO2014115477A1 (ja) * | 2013-01-28 | 2014-07-31 | 株式会社ブイ・テクノロジー | 成膜マスクの製造方法及びレーザ加工装置 |
WO2014167989A1 (ja) * | 2013-04-12 | 2014-10-16 | 大日本印刷株式会社 | 蒸着マスク、蒸着マスク準備体、蒸着マスクの製造方法、及び有機半導体素子の製造方法 |
WO2015034097A1 (ja) * | 2013-09-09 | 2015-03-12 | 株式会社ブイ・テクノロジー | 成膜マスク、成膜装置、成膜方法及びタッチパネル基板 |
Also Published As
Publication number | Publication date |
---|---|
TW201741474A (zh) | 2017-12-01 |
US20190013471A1 (en) | 2019-01-10 |
JP2018184665A (ja) | 2018-11-22 |
TWI653351B (zh) | 2019-03-11 |
CN108474101A (zh) | 2018-08-31 |
JPWO2017119153A1 (ja) | 2018-05-24 |
JP6553257B2 (ja) | 2019-07-31 |
JP6462157B2 (ja) | 2019-01-30 |
US10580985B2 (en) | 2020-03-03 |
CN108474101B (zh) | 2020-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6951490B2 (ja) | 微細パターンを有する樹脂フィルムの製造方法および有機el表示装置の製造方法 | |
JP6553257B2 (ja) | 蒸着マスク及びその製造方法、有機el表示装置の製造方法 | |
WO2017154233A1 (ja) | 蒸着マスク、蒸着マスク用マスク部材、及び蒸着マスクの製造方法と有機el表示装置の製造方法 | |
WO2015149467A1 (zh) | Oled显示器件及其制作方法、显示装置 | |
US8741535B2 (en) | Laser irradiation device and method of fabricating organic light emitting display device using the same | |
US11101455B2 (en) | Vapor deposition mask, production method therefor, and production method for organic EL display device | |
JP6277357B2 (ja) | 接合体の製造方法 | |
TW201109744A (en) | Color conversion filter substrate | |
US20170104176A1 (en) | Method for packaging display panel | |
WO2019008705A1 (ja) | 有機el表示装置および有機el表示装置の製造方法 | |
JP2005307254A (ja) | 蒸着方法 | |
JP6839729B2 (ja) | 蒸着マスク、その製造方法及び有機el表示装置の製造方法 | |
KR101818255B1 (ko) | 유기전계 발광 표시장치 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16883654 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017560031 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16883654 Country of ref document: EP Kind code of ref document: A1 |