WO2014109412A1 - マイクロカプセルの製造方法およびマイクロカプセル - Google Patents
マイクロカプセルの製造方法およびマイクロカプセル Download PDFInfo
- Publication number
- WO2014109412A1 WO2014109412A1 PCT/JP2014/050608 JP2014050608W WO2014109412A1 WO 2014109412 A1 WO2014109412 A1 WO 2014109412A1 JP 2014050608 W JP2014050608 W JP 2014050608W WO 2014109412 A1 WO2014109412 A1 WO 2014109412A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microcapsule
- vinyl monomer
- vinyl
- electron
- group
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/14—Solid materials, e.g. powdery or granular
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/26—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
- A01N25/28—Microcapsules or nanocapsules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/45—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
- B01F25/452—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
- B01F25/4523—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through sieves, screens or meshes which obstruct the whole diameter of the tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
- B01J13/16—Interfacial polymerisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
- B01J13/18—In situ polymerisation with all reactants being present in the same phase
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/42—Nitriles
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
- C11D3/502—Protected perfumes
- C11D3/505—Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
- F28D20/023—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0431—Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
- B01F23/413—Homogenising a raw emulsion or making monodisperse or fine emulsions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the present invention relates to a method for producing a microcapsule in which a core material is a functional organic compound such as a pharmaceutical, agricultural chemical, fragrance, and heat storage material and a shell material is a polymer of a vinyl monomer, and a microcapsule obtained by the method. is there. More specifically, the present invention relates to the chemical properties and physical properties of the polymer as the shell material in order to enhance the function retention (leakage prevention, etc.) and the function manifestation (permeation adjustment, etc.) of the functional organic compound as the core material. The present invention relates to a microcapsule production method capable of arbitrarily controlling shape characteristics (particle size distribution and the like) and a microcapsule obtained by the production method.
- a core material is a functional organic compound such as a pharmaceutical, agricultural chemical, fragrance, and heat storage material
- a shell material is a polymer of a vinyl monomer
- Patent Document 1 discloses a lipophilic substance having a solid / liquid phase transition within a specific temperature range (for example, branched or linear C 10 -C 40 -hydrocarbon, cyclic hydrocarbon) as a nuclear material, and As shell material, alkyl ester of specific carbon number such as acrylic acid (monomer I); bifunctional or polyfunctional monomer (polyvinyl monomer such as monomer II, DVB, EGDMA, TMPT); and other monomer (monomer III, for example, Disclosed is a microcapsule having a polymer obtained by radical polymerization by dissolving an initiator in a monomer mixture containing styrene) as a latent heat storage material, and a method for producing these.
- a specific temperature range for example, branched or linear C 10 -C 40 -hydrocarbon, cyclic hydrocarbon
- alkyl ester of specific carbon number such as acrylic acid (monomer I); bifunctional or polyfunctional monomer (polyvinyl mono
- Patent Document 2 discloses a microcapsule that is used as a heat storage material and has excellent heat storage performance, and uses a phase change material that stores or dissipates latent heat in accordance with a phase change as a core material (for example, a wax such as an aliphatic hydrocarbon).
- the core material is a microcapsule covered with a capsule wall of a thermoplastic resin obtained by polymerizing a polymerizable monomer (for example, MMA) and trimethylolpropane trimethacrylate (TMPT) as a cross-linking agent,
- a polymerizable monomer for example, MMA
- TMPT trimethylolpropane trimethacrylate
- Disclosed is a single-hole microcapsule in which a core substance is housed in a capsule wall made of a continuous coating.
- the dispersion method of the oil phase is high-speed stirring using a homogenizer, and the particle size of the microcapsules is as large as 20 to 30 ⁇ m, and although there is no disclosure of the particle size distribution, it is presumed to be wide from the dispersion method.
- Patent Document 3 discloses a polymerization monomer solution composed of a radically polymerizable monomer (for example, MMA), an aliphatic hydrocarbon, a polymerization initiator, and a bifunctional crosslinkable vinyl monomer, and dispersion stability of the same components as in Patent Document 2.
- a heat storage microcapsule obtained by stirring and dispersing an aqueous dispersion medium to which an agent is added with a homogenizer, and polymerizing the obtained suspension dispersion at 80 ° C. for a predetermined time. It is disclosed that microcapsules having high heat storage performance can be obtained because the capsule wall of the shell material is difficult to break and the core material is difficult to leak out.
- Patent Document 4 discloses a heat storage capsule that is tough enough to be destroyed even when used as a heat transport medium, and a method for manufacturing the same.
- a heat storage capsule comprising a layer composed of coalescence is disclosed.
- the dispersion method of the dispersion stabilizer aqueous solution and the heat storage material and the monomer mixture can adopt a known method such as a dispersion method using mechanical shearing force such as a homogenizer or a membrane emulsification method, and the particle size of the obtained microcapsules The distribution is estimated to be wide.
- Patent document 5 is an application of the original company succeeded by the present applicant. Disclosed is an emulsification apparatus that can easily control a particle size and a particle size distribution in an emulsifier, can be easily maintained, and can secure a sufficient production amount suitable for industrial production.
- an emulsification method comprising an incorporated cylindrical channel, and a predetermined number of wire meshes arranged at predetermined intervals in the cylindrical channel, and an emulsifying device therefor. Furthermore, the microcapsule manufactured using the emulsion obtained by the said emulsification apparatus is also disclosed. However, there is no specific disclosure of a microcapsule having a core-shell structure in which the core material is an organic compound containing no vinyl group and the shell material is a polymer of a vinyl monomer as in the present application.
- Patent Document 6 discloses a microcapsule particle for a heat storage material that is less likely to cause leakage of the heat storage material even when exposed to a high temperature environment for a long time, and is encapsulated in a capsule wall made of a crosslinkable resin.
- the crosslinkable resin is composed of a polymerizable monomer containing a polyfunctional polymerizable monomer
- the heat storage material has a number average molecular weight (Mn).
- Mn number average molecular weight
- Disclosed is a heat storage material microcapsule particle of 1300 to 4,000 polyfunctional fatty acid ester, the content of which is 30 to 100 parts by weight with respect to 100 parts by weight of the resin.
- the volume average particle size (Dv) of the particles is 3 to 50 ⁇ m, and the particle size distribution which is the ratio of Dv to the number average particle size (Dn) is 1 to 1.8.
- the dispersion treatment for forming droplets is performed using an apparatus capable of strong stirring, such as an in-line type emulsifier / disperser, a high-speed emulsifier / disperser (TK homomixer), and the CV value is 30.
- TK homomixer high-speed emulsifier / disperser
- microcapsule particles having a narrow particle size distribution of not more than% can be obtained.
- these known technologies only propose each element technology individually, and do not propose a comprehensive solution of all the element technologies.
- the present inventors have intensively studied, and as a result, the heat resistance of the microcapsule can be improved by optimizing the vinyl monomer species constituting the shell and appropriately designing the crosslinked structure.
- an O / W type dispersion containing an organic compound not containing a vinyl group and at least one vinyl monomer is used as a raw material, and the core contains the vinyl group through a polymerization reaction of the vinyl monomer.
- the O / W type dispersion is provided along the flow path before the polymerization reaction.
- the present invention relates to a method for producing a microcapsule, comprising a step of continuously emulsifying a plurality of nets that are arranged while maintaining a certain interval and successively passing the mesh.
- the vinyl monomer in the method for producing the microcapsule, includes at least one vinyl monomer having an electron withdrawing group and at least one vinyl monomer having an electron donating group.
- the present invention relates to a method for producing a microcapsule according to the first aspect of the present invention.
- a third aspect of the present invention relates to the method for producing a microcapsule according to the first or second aspect of the present invention, wherein the O / W type dispersion liquid contains a crosslinking agent having two or more vinyl groups.
- a fourth aspect of the present invention relates to the method for producing a microcapsule according to the third aspect of the present invention, wherein the crosslinking agent having two or more vinyl groups has an electron attractive group.
- the vinyl monomer in the O / W type dispersion includes acrylonitrile or methacrylonitrile as a vinyl monomer having an electron attractive group, and styrene as a vinyl monomer having an electron donating group.
- a method for producing a microcapsule according to any one of the first to fourth aspects of the present invention is the microcapsule according to any one of the first to fifth aspects of the present invention, wherein the microcapsule defined by the following formula (1) has a CV value of 30 or less. It relates to a manufacturing method.
- a seventh aspect of the present invention is a polymer obtained by the method for producing a microcapsule according to any one of the first to sixth aspects of the present invention, wherein the core is an organic compound containing no vinyl group and the shell is a vinyl monomer polymer.
- the shell includes at least a binary copolymer containing at least one vinyl monomer having an electron-withdrawing substituent and at least one vinyl monomer having an electron-donating group as constituent units.
- the present invention relates to a microcapsule which is a polymer and has a CV value of 30 or less.
- An eighth aspect of the present invention relates to the microcapsule according to the seventh aspect of the present invention, wherein the shell is crosslinked with a crosslinking agent containing two or more vinyl groups having an electron-withdrawing group.
- a ninth aspect of the present invention is characterized in that the shell contains acrylonitrile or methacrylonitrile as a vinyl monomer having an electron-withdrawing group, and styrene as a vinyl monomer having an electron-donating group.
- the present invention it is possible to control the chemical characteristics and mechanical characteristics of the shell material and the shape characteristics and particle size distribution of the microcapsule so as to meet the function retention and expression of the functional organic compound as the core material.
- the manufactured microcapsules can be used as insecticides, fragrances, heat storage materials, etc. according to the function of the core material.
- FIG. 1 is an exploded perspective view showing an emulsification apparatus used in the production method of the present invention.
- FIG. 2 is a perspective view of a spacer for holding the mesh body of the apparatus and determining the interval.
- FIG. 3 is a cross-sectional view of an emulsifying device used in the production method of the present invention.
- the organic compound containing no vinyl group according to the present invention is a compound constituting the core (or core) material of the microcapsule, and does not have a polymerizable vinyl group, and thus forms a shell (or shell) material. In the polymerization reaction process, substantially, it does not react with the shell material and is not incorporated into the shell.
- the organic compound is not particularly limited, and examples include fragrances (natural fragrances, synthetic fragrances and plant essential oils), agricultural chemicals, physiologically active substances, repellents, deodorants, colorants, heat storage materials and the like. These organic compounds preferably have hydrophobicity, and are not limited to liquids but may be solids.
- dissolved these core substances or core materials in the non-volatile oil and the high boiling point solvent can also be used as a core material.
- the heat storage material C 8 to C 40 normal paraffin is used.
- it is alkyl ester of acrylic acid or methacrylic acid (The carbon number of an alkyl group is usually 1).
- the vinyl monomer in the O / W type dispersion that is subjected to the polymerization reaction according to the present invention is preferably at least one vinyl monomer having an electron withdrawing group and at least one vinyl monomer having an electron donating group.
- a vinyl monomer having an electron-withdrawing group is an e-value representing the electron density of a double bond involved in a polymerization reaction in a vinyl compound (these values are expressed by Takayuki Otsu, “Chemistry of Polymer Synthesis” (Chemical Monograph).
- the vinyl monomer having an electron donating group has a negative e value and usually has a polar (hydrophilic) substituent.
- the electron-withdrawing group and the electron-donating group can be attracted to each other to form a charge transfer complex, and alternate copolymerization can be performed. In coalescence, the probability that a nonpolar group and a polar group are localized is small.
- the hydrophobicity and hydrophilicity of the shell chemical structure are homogenized, and a spherical, pseudo-spherical or flat shape can be obtained on the shape surface of the microcapsule, and on the penetration or leakage surface of the core material, Permeation or leakage can be suppressed.
- middle property of both vinyl monomer polymers is calculated
- the molar ratio is adjusted in the range of 20:80 to 80:20. In the range which deviates from this, the effect that both a nonpolar group and a polar group exist may not be acquired.
- Illustrated are combinations of vinyl monomers, these are known to produce alternating copolymers, and the difference in e-values ( ⁇ e) is 1.0 or more, preferably 1.30 or more. More preferably, it is a combination of 1.50 or more vinyl monomers.
- a particularly preferable combination is a combination using acrylonitrile or methacrylonitrile and styrene in consideration of the reactivity of the vinyl monomer and the alternating copolymerization reactivity in addition to the difference in e value. is there.
- the polymerization reaction is performed using an O / W emulsion (or dispersion) containing the organic compound not containing a vinyl group and a vinyl monomer as a raw material.
- the O / W type emulsion is an emulsion in which an oil phase (an organic compound not containing a vinyl group and a vinyl monomer) is a dispersed phase and an aqueous phase containing a dispersant is a continuous phase.
- a polymerization reaction is carried out using this O / W type emulsion as a raw material.
- Initiators and the like necessary for the polymerization reaction may coexist when the O / W emulsion is formed, or may be added after the O / W emulsion is formed and before the polymerization reaction is started.
- a compound containing two or more vinyl groups (multi-vinyl group-containing cross-linking agent) is included in the microcapsule for the purpose of further mechanical strength, heat resistance, and prevention of leakage of the core material. I do.
- the compound containing 2 or more vinyl groups there is no restriction
- the thing well-known as an organic peroxide crosslinking agent can be used in the rubber
- a compound containing two or more vinyl groups having an electron attractive group is preferably used. The reason for this is not clear, but the inventors usually have a negative e value of the double bond involved in the crosslinking reaction in these compounds, as is the case with vinyl monomers having an electron-withdrawing group constituting the shell, It is assumed that it is uniformly arranged in the vinyl monomer having the electron donating group constituting the shell.
- polymerization initiator used in the polymerization reaction according to the present invention is not particularly limited, but normal peroxy compounds and azo compounds can be used as radical polymerization initiators for radically proceeding polymerization.
- Preferred radical polymerization initiators include t-butylperoxyneodecanoate, t-amylperoxypivalate, dilauroyl peroxide, t-amylperoxy-2-ethylhexanoate, 2,2′-azobis- (2, 4-dimethylvaleronitrile), 2,2′-azobis- (2-methylbutyronitrile), dibenzoyl peroxide, t-butyl-per-2-ethylhexanoate, di-t-butyl peroxide, t-butyl Hydroperoxide, 2,5-dimethyl-2,5-di- (t-butylperoxy) hexane and cumene hydroperoxide.
- More preferred radical initiators are di- (3,5,5-trimethylhexanoyl) -peroxide, 4,4′-azobisisobutyronitrile, t-butyl perpivalate, dimethyl-2,2-azobis. Isobutyrate and 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate. They have a half-life of 10 hours in the temperature range 30-100.degree.
- the chain transfer agent used for the polymerization reaction according to the present invention is not particularly limited, but preferably (A) a mercaptan (for example, octyl mercaptan, n- or tert-dodecyl mercaptan), thiosalicylic acid, mercaptoacetic acid, and mercapto.
- a mercaptan for example, octyl mercaptan, n- or tert-dodecyl mercaptan
- thiosalicylic acid thiosalicylic acid
- mercaptoacetic acid and mercapto.
- Examples include mercaptans such as ethanol, (B) halogenated compounds, and (C) ⁇ -methylstyrene dimers. Among these, mercaptans are more preferable.
- the O / W type dispersion liquid used for the polymerization reaction based on this invention Preferably, partially saponified polyvinyl acetate, a cellulose derivative, polyvinylpyrrolidone, etc. are mentioned. It is done. Among these, partially saponified polyvinyl acetate is more preferable.
- the O / W-type dispersion is successively passed sequentially through a plurality of nets arranged at regular intervals provided along the flow path before the start of the polymerization reaction. Process.
- the O / W type dispersion liquid having a predetermined composition passes through the flow path at a linear velocity of 0.1 to 50 cm / sec.
- reticulated bodies are arranged at predetermined intervals at a plurality of locations, and the supplied emulsified raw material sequentially passes through the reticulated bodies, and in the meantime, the dispersed phase of the O / W type dispersion liquid is refined.
- the CV value of the dispersed phase droplets is 50% or less, and a value approximate to this value is held as the CV value of the microcapsule after the polymerization reaction.
- the inventors consider that the CV value is 30% or less as a standard for uniform function expression of the microcapsules, but this value is difficult to obtain by ordinary batch type emulsification. The mechanism of emulsification by this method, the action and effect of the network, etc.
- the dispersed phase droplet has a core-shell structure, and an organic compound not containing a vinyl group is disposed in the core and a vinyl monomer is disposed in the shell.
- vinyl monomers are thought to function as surfactants by forming so-called hydrophilic groups on the surface of the sphere to form micelles. It is thought that the combination of the vinyl monomer compounds according to the invention (the combination of hydrophobicity and hydrophilicity) contributes.
- the interval between the mesh bodies is related to the fluid flow velocity in the flow path, the fluid viscosity, and the like, but specifically, it is usually preferably 5 mm to 200 mm. More preferably, it is 10 mm to 100 mm. Here, it is preferable that a longer interval is adopted at a higher flow rate, and a shorter interval is adopted when the fluid viscosity is higher. Furthermore, it is important that the mesh body is provided at a plurality of locations along the flow path, but preferably 30 to 200 locations.
- the opening degree of the network is preferably 35 to 4000, more preferably 150 to 3000 mesh as the number of meshes according to ASTM standard.
- FIG. 1 to 3 show an example of an emulsifying apparatus used in the production method of the present invention.
- Example 1 ⁇ Preparation and treatment of O / W emulsion before polymerization reaction> Thirty sets of units each consisting of a wire mesh b made of a 1400 mesh main wire mesh and a spacer c having a length (l) of 10 mm and an inner diameter (d 2 ) of 15 mm are inserted into a cylindrical casing a having an inner diameter of 20 mm and a length of about 500 mm. The emulsifier was used.
- FIG. 1 ⁇ Preparation and treatment of O / W emulsion before polymerization reaction> Thirty sets of units each consisting of a wire mesh b made of a 1400 mesh main wire mesh and a spacer c having a length (l) of 10 mm and an inner diameter (d 2 ) of 15 mm are inserted into a cylindrical casing a having an inner diameter of 20 mm and a length
- volume average diameter (hereinafter referred to as “volume average particle diameter”) and droplet diameter distribution of the slurry obtained above were measured with a Coulter counter (manufactured by Beckman Coulter, Multisizer 4). The number of measured particles is 100,000. As a result, the volume average particle diameter of the droplet was 24 ⁇ m, and the CV value was 27%.
- the CV value used as an index of droplet diameter distribution was calculated by the following formula (1).
- CV value standard deviation of droplet size distribution / volume average particle size ⁇ 100 (1)
- the volume average particle diameter and the CV value were measured by the same method.
- the VOC value was measured by the following method.
- a 0.1 g sample was weighed into a petri dish, placed in a microchamber, allowed to stand at 100 ° C. ⁇ 2 hr, and then allowed to stand at 25 ° C. ⁇ 22 hr.
- a release test was conducted, and the generated gas was collected with a TenaxTA collection tube.
- the emitted gas collection tube (TenaxTA tube) and the microchamber were subjected to solvent extraction with hexane, and the gas generated by a gas chromatograph mass spectrometer (GC / MS) was quantified.
- the measurement results of the characteristic values are shown in Table 1.
- Example 2 ⁇ Preparation and treatment of O / W emulsion before polymerization reaction> Thirty units of a wire mesh made of a 3000 mesh main wire mesh and a spacer having a length of 10 mm and an inner diameter of 15 mm were inserted into a cylindrical casing having an inner diameter of 20 mm and a length of about 500 mm to obtain an emulsifier.
- paraffin TS-8 (chemical name: n-octadecane, function: heat storage) manufactured by JX Nippon Oil & Energy is used as an organic compound not containing a vinyl group, and styrene is used as a vinyl monomer compound, and a crosslinking agent.
- EGDMA composition shown in Table 1
- POO perocta O
- thiocalcol 20 chemical name: n-dodecyl mercaptan, “DM” manufactured by Kao Corporation as a chain transfer agent
- PVA217EE aqueous dispersant solution
- Emulsification was carried out by introducing the oil phase mixture into the emulsifier at a flow rate of 30 g / min and the dispersed aqueous solution at a flow rate of 60 g / min with individual plunger pumps to obtain an O / W emulsion. Diluted with distilled water to obtain an O / W emulsion having an oil phase concentration of 20% by weight, and used as a polymerization raw material.
- ⁇ Polymerization reaction> In a container (polymerization tank) equipped with a stirrer, a pressure gauge, and a thermometer, 60 g of the O / W emulsion and 40 g of distilled water were added, the inside of the polymerization vessel was depressurized, and the container was deoxygenated. The internal pressure of the polymerization layer was returned to normal pressure with nitrogen, and the pressure was increased to 0.3 MPa with nitrogen. With the stirrer rotated, the temperature inside the polymerization tank was raised to 110 ° C. to initiate polymerization. The polymerization was completed in 2 hours, and the polymerization tank internal temperature was cooled to room temperature.
- Example 3 ⁇ Preparation and treatment of O / W emulsion before polymerization reaction> An O / W emulsion was prepared in the same manner as in Example 2 except that a main mesh of 3000 mesh was used instead of a 2400 mesh.
- Example 1 Styrene and MMA were used as vinyl monomers, and the cross-linking agent was replaced with DVB, and the same operation as in Example 2 was performed except that the composition was added as shown in Table 1 to obtain an O / W emulsion.
- Example 5 In the same manner as in Example 2, an O / W emulsion was obtained and polymerized in the same manner as in Example 2 to obtain a microcapsule powder.
- Example 6 An O / W emulsion was obtained in the same manner as in Example 2 except that the cross-linking agent was replaced with TMPT, and this was polymerized in the same manner as in Example 2 to obtain a microcapsule powder. The characteristic values of the obtained microcapsules were measured and are shown in Table 2.
- Example 7 An O / W emulsion was prepared by operating in the same manner as in Example 2 except that styrene and acrylonitrile were added as vinyl monomers in the composition shown in Table 1 and a crosslinking agent was added in the composition (parts by weight) shown in Table 1. Polymerization gave a microcapsule powder.
- Example 8 O / W emulsion was prepared in the same manner as in Example 2 except that styrene and acrylonitrile were added as vinyl monomers in the composition shown in Table 1, and EGDMA was added as a crosslinking agent in the composition (parts by weight) shown in Table 1. It was polymerized to obtain a microcapsule powder. The characteristic values of the obtained microcapsules were measured and are shown in Table 2.
- Example 9 An O / W emulsion was prepared in the same manner as in Example 2 except that styrene and methacrylonitrile were added as vinyl monomers in the composition shown in Table 1 and EGDMA was added as the crosslinking agent in the composition (parts by weight) shown in Table 1. Then, it was polymerized to obtain a microcapsule powder. The characteristic values of the obtained microcapsules were measured and are shown in Table 2. ⁇ Discussion> From the results of Table 1, the microcapsules obtained by polymerizing O / W emulsions using only styrene as the vinyl monomer of the shell materials of Examples 1 to 3 and n-octadecane as the organic compound of the core material have a CV value.
- the microcapsule particles obtained by the method of the present invention have a core material that is a functional organic compound and a shell material that is a crosslinked or non-crosslinked polymer compound, which is narrower than conventional products and has a uniform particle size distribution. Therefore, stabilization of the expression of the function of the core material and efficiency improvement are achieved.
- the microcapsules of the present invention can be used for various uses such as fragrances, medicines, agricultural chemicals, insecticides, physiologically active substances, repellents, deodorants, coloring agents, fragrances, and heat storage materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Zoology (AREA)
- Agronomy & Crop Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Dentistry (AREA)
- Toxicology (AREA)
- Environmental Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Medicinal Preparation (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
さらに詳しくは、本発明は、コア材である機能性有機化合物の機能保持(漏洩防止等)および機能発現(浸透調整等)の効果を高めるべく、シェル材である重合体の化学特性、物理特性、形状特性(粒径分布等)を任意に制御できるマイクロカプセルの製造方法およびその製造方法により得られるマイクロカプセルに関するものである。
特許文献1には、核材料として、特定の温度範囲内に固/液相転移を有する親油性物質(例えば、分枝状または線状C10~C40−炭化水素、環状炭化水素)、および殻材として、アクリル酸等の特定炭素数のアルキルエステル(モノマーI);二官能性または多官能性モノマー(モノマーII,DVB、EGDMA、TMPT等ポリビニルモノマー);およびその他のモノマー(モノマーIII,例えばスチレン)を含むモノマー混合物に開始剤を溶解させてラジカル重合により得られるポリマーを有するマイクロカプセルの潜熱蓄熱材料としての使用、ならびにこれらの製造方法等に関して開示する。得られたマイクロカプセルの粒径は、1~30μmの記載はあるが、粒径分布に関する記載はなく、ホモジナイザー撹拌機による乳化方法から推測するに、狭い粒径分布のマイクロカプセルは得られていない。
特許文献2は、蓄熱材として用いられ、蓄熱性能に優れたマイクロカプセルを開示し、相変化に伴って潜熱を蓄熱または放熱する相変化物質を芯物質(例えば脂肪族炭化水素等のワックス)とし、該芯物質が重合性モノマー(例えば、MMA)、架橋剤としてトリメチロールプロパントリメタクリレート(TMPT)を重合してなる熱可塑性樹脂のカプセル壁で覆われたマイクロカプセルであり、該マイクロカプセルが、連続した被膜よりなるカプセル壁に芯物質が収納された単孔マイクロカプセルを開示する。しかし、油相の分散方法はホモジナイザーを用いる高速撹拌で、当該マイクロカプセルの粒径は、20~30μmと大きく、粒径分布の開示はないが分散方法から推して広いものと推定される。
特許文献3は、特許文献2と同様の成分の、ラジカル重合性モノマー(例えば、MMA)、脂肪族炭化水素、重合開始剤、2官能性架橋性ビニルモノマーからなる重合用モノマー溶液、及び分散安定剤を添加した水性分散媒体をホモジナイザーで高速撹拌、分散混合し、得られた懸濁分散液を80℃で所定時間重合して得られた蓄熱マイクロカプセルを開示する。殻材のカプセル壁が破壊し難く、芯物質が外へ漏出し難いので、高い蓄熱性能を有するマイクロカプセルが得られる旨開示する。しかし、マイクロカプセルの粒径は10~60μmと大きく、ホモジナイザーによる分散であるから、製法から推して粒径分布も広いものと推測される。
特許文献4は、熱輸送媒体として用いられる場合にも破壊され難い程度に強靭な蓄熱カプセル、その製造方法を開示する。シェル及び中空部分からなる中空カプセルの中空部分に蓄熱材料が内包された蓄熱カプセルであって、シェルが架橋性モノマーの重合体若しくは共重合体、又は架橋性モノマーと単官能性モノマーとの共重合体で構成される層を含む蓄熱カプセルを開示する。しかし、分散安定剤の水溶液、および蓄熱材料及びモノマー混合物の分散方法はホモジイザーや膜乳化法など機械的せん断力による分散法など公知の方法を採用できる旨開示し、得られたマイクロカプセルの粒径分布は広いものと推定される。
特許文献5は、本願出願人が承継したもとの企業の出願である。乳化機において、粒径及び粒径分布制御が容易で、メンテナンスが簡易で工業生産に適した十分な生産量が確保できる乳化装置を開示する。乳化剤の存在下に、相互に実質的に不溶性の複数の液体を、一定間隔を保持して配置されてなる複数の網状体を連続して順次通過させることにより乳化させる方法で、当該網状体が組込まれた筒型流路を具備し、該筒型流路内には所定間隔で所定枚数の金網が配置されてなる乳化方法およびそのための乳化装置を開示する。さらに、前記乳化装置により得られた乳化液を用いて製造されるマイクロカプセルも開示する。しかし、本願のような、コア材がビニル基を含まない有機化合物、シェル材がビニルモノマーの重合体からなるコア−シェル構造のマイクロカプセルについての具体的開示はない。
特許文献6は、高温環境下に長時間曝されても蓄熱材の漏洩が生じ難く、耐熱性に優れる蓄熱材用マイクロカプセル粒子を開示し、架橋性樹脂からなるカプセル壁と、それに内包された蓄熱材とから構成される蓄熱材用マイクロカプセル粒子で、前記架橋性樹脂が、多官能重合性単量体を含む重合性単量体から構成され、蓄熱材が、数平均分子量(Mn)が1300~4,000の多官能性脂肪酸エステルであり、その含有量が前記樹脂100重量部に対して30~100重量部である蓄熱材用イクロカプセル粒子を開示する。当該粒子の体積平均粒径(Dv)は3~50μmで、Dvと個数平均粒径(Dn)の比である粒径分布が1~1.8である旨開示する。しかし、液滴形成のための分散処理は、インライン型乳化分散機、高速乳化・分散機(T.K.ホモミクサー)等強撹拌が可能な装置を用いて行う旨開示し、CV値表示で30%以下の狭い粒径分布のマイクロカプセル粒子が得られる旨の開示はない。
しかし乍、上述の通り、これら公知技術は、各要素技術を個別に提案するにとどまり、すべての要素技術の総合的な解決を提案するものではない。
本発明の第二は、前記マイクロカプセルを製造する方法において、前記ビニルモノマーが電子吸引性基を有する少なくとも1種のビニルモノマーと電子供与性基を有する少なくとも1種のビニルモノマーとを含むことを特徴とする、本発明の第一に記載のマイクロカプセルの製造方法に関する。
本発明の第三は、前記O/W型分散液が、2以上のビニル基を有する架橋剤を含むことを特徴とする、本発明の第一ないし第二に記載のマイクロカプセルの製造方法に関する。
本発明の第四は、前記2以上のビニル基を有する架橋剤が、電子吸引性基を有することを特徴とする本発明の第三に記載のマイクロカプセルの製造方法に関する。
本発明の第五は、前記O/W型分散液中のビニルモノマーが、電子吸引性基を有するビニルモノマーとしてアクリロニトリルまたはメタクリロニトリル、電子供与性基を有するビニルモノマーとしてスチレンを含むことを特徴とする、本発明の第一乃至第四の何れかに記載のマイクロカプセルの製造方法に関する。
本発明の第六は、下記式(1)で定義されるマイクロカプセルのCV値が30以下であること、を特徴とする、本発明の第一乃至第五の何れかに記載のマイクロカプセルの製造方法に関する。
CV値=(液滴径分布の標準偏差/体積平均粒径)×100 式(1)
本発明の第七は、本発明の第一乃至第六の何れかに記載のマイクロカプセルの製造方法によって得られる、コアが、ビニル基を含まない有機化合物でありシェルがビニルモノマーの重合体であるコア—シェル構造を有するマイクロカプセルにおいて、シェルが、電子吸引性置換基を有する少なくとも1種のビニルモノマーと電子供与性基を有する少なくとも1種のビニルモノマーとを構成単位として含む少なくとも二元共重合体であり、かつ、CV値が30以下のマイクロカプセルに関する。
本発明の第八は、シェルが、電子吸引性基を有する2以上のビニル基を含む架橋剤で架橋されていることを特徴とする、本発明の第七に記載のマイクロカプセルに関する。
本発明の第九は、シェルが、電子吸引性基を有するビニルモノマーとしてアクリロニトリルまたはメタクリロニトリル、電子供与性基を有するビニルモノマーとしてスチレンを含むことを特徴とする、本発明の第七乃至八に記載のマイクロカプセルに関する。
図2は上記装置の網状体を保持し、間隔を決定するスペーサーの斜視図である。
図3は本発明の製造方法に用いる乳化装置の断面図である。
b 金網(網状体)
c スペーサー
2a 止め具
本発明に係る、重合反応に供される、O/W型分散液中のビニルモノマーには、特に制限はないが、好ましくはアクリル酸またはメタクリル酸のアルキルエステル(アルキル基の炭素数は通常1~32)、特に、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチルおよび相当するメタクリル酸エステル、アクリロニトリルまたはメタクリロニトリル、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、無水マレイン酸、N−ビニルピロリドン、2−ヒドロキシエチルアクリレート及び2−ヒドロキシエチルメタクリレート、アクリルアミド及びメタクリルアミド、N−メチロールアクリルアミド及びN−メチロールメタクリルアミド、スチレン、α−メチルスチレン、ブタジエン、イソプレン、酢酸ビニル、プロピオン酸ビニル、4−ビニルピリジン等が挙げられる。中でも、メタクリル酸メチル、アクリロニトリル/メタクリロニトリル、スチレンがさらに好ましい。
本発明に係る、重合反応に供される、O/W型分散液中のビニルモノマーは、好ましくは、電子吸引性基を有する少なくとも1つのビニルモノマーと電子供与性基を有する少なくとも1つのビニルモノマーを含む。
電子吸引性基を有するビニルモノマーとは、ビニル化合物中の重合反応に関与する二重結合の電子密度を表すe値(これらの値は、大津隆行著「高分子合成の化学」(化学モノグラフ15)1968年(株)化学同人発行等に記載されている。)が正のものであり、通常、非極性(疎水性)の置換基を有する。電子供与性基を有するビニルモノマーとは、e値が負のものであり、通常、極性(親水性)の置換基を有する。
上記のビニルモノマー化合物の組み合わせは、電子吸引性基と電子供与性基が互いに引き付け合い電荷移動錯体を形成し、交互共重合を行うことが可能であるので、本発明に係るシェルを構成する重合体では、非極性基と極性基とが、局在する確率が小さい。その結果、シェル化学構造の疎水性と親水性の均質化が行われ、マイクロカプセルの形状面では、球状、擬球状または扁平状形状を得ることができ、コア材の浸透あるいは漏洩面では、局所的な浸透あるいは漏洩を抑制できる。
両者の配合比は、両ビニルモノマー重合体の中間的性質を求めるのであれば、等モルを基準に配合する。コア材のマイクロカプセル外への浸透促進を優先する場合は、両者のうち、コア材との親和性が大きいビニルモノマーを相対的に増量し、漏洩防止を優先する場合は、コア材との親和性が大きいビニルモノマーを相対的に減量する調整を行う。通常は、モル比20:80~80:20の範囲で調整する。これを逸脱する範囲では、非極性基と極性基の両者が存在する効果が得られないことがある。
ビニルモノマーの組み合わせを例示するが、これらは、交互共重合体を生成することが知られている組み合わせであり、e値の差(Δe)が1.0以上、好ましくは、1.30以上、さらに好ましくは、1.50以上のビニルモノマーの組み合わせである。すなわち、電子吸引性基を有するビニルモノマー化合物としては、塩化ビニル(e値=0.16)、メタクリル酸メチル(e値=0.40)、アクリル酸メチル(e値=0.60)、メチルビニルケトン(e値=0.68)、アクリロニトリル(e値=1.20)、メタクリロニトリル(e値=1.00)、アクリルアミド(e値=1.30)、無水マレイン酸(e値=2.25)、ビニリデンシアニド(e値=2.58)等から選択し、電子供与性置換基を有するビニルモノマー化合物としては、α—メチルスチレン(e値=−1.27)、スチレン(e値=−0.80)、イソプレン(e値=−0.55)、酢酸ビニル(e値=−0.88)、イソブチレン(e値=−1.20)から選択する(出典:大津隆行著「高分子合成の化学」および高分子学会編「基礎高分子科学」、並びにそれら文献に基づく推定値を含む)。
上記の組み合わせの中で、特に好ましい組み合わせは、e値の差の大きさに加えてビニルモノマーとしての反応性と交互共重合反応性まで考慮して、アクリロニトリルまたはメタクリロニトリルとスチレンを用いる組み合わせである。
本発明においては、前記ビニル基を含まない有機化合物とビニルモノマーとを含むO/W型乳化液(または分散液)を原料として重合反応を行う。O/W型乳化液とは、油相(ビニル基を含まない有機化合物とビニルモノマー)が分散相で分散剤を含む水相が連続相である乳化液である。本発明は、このO/W型乳化液を原料として重合反応を行う。重合反応に必要な開始剤等は、O/W型乳化液が形成されるときに共存していてもよく、O/W型乳化液が形成された後、重合反応開始前に添加してもよい。
本発明においては、マイクロカプセルに、さらなる機械的強度、耐熱性、そしてコア材の漏洩防止を目的として、2以上のビニル基を含む化合物(複数ビニル基含有架橋剤)を含ませて、重合反応を行う。2以上のビニル基を含む化合物には、制限はなく、例えば、ゴム加工分野で、有機過酸化物架橋剤として公知のものを使用することができる。
本発明における2以上のビニル基を含む化合物としては、電子吸引性基を有する2以上のビニル基を含む化合物を用いることが好ましい。この理由は明らかではないが、発明者らは、これら化合物中の架橋反応に関与する二重結合のe値が、通常、シェルを構成する電子吸引性基を有するビニルモノマー同様に負であり、シェルを構成する電子供与性基を有するビニルモノマー中に、均一に配置されるためと想定している。これら、化合物の具体例を挙げれば、ジビニルベンゼン(DVB)、エチレングリコールジメタクリレート(EGDMA)、トリメチロールプロパントリメタクリレート(TMPT)である。
本発明に係る、重合反応に供される重合開始剤は、特に制限はないが、ラジカル的に進行する重合のためのラジカル重合開始剤として、通常のペルオキシ化合物およびアゾ化合物が使用できる。
好ましいラジカル重合開始剤としては、t−ブチルペルオキシネオデカノアート、t−アミルペルオキシピバラート、ジラウロイルペルオキシド、t−アミルペルオキシ−2−エチルヘキサノアート、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−(2−メチルブチロニトリル)、ジベンゾイルペルオキシド、t−ブチル−ペル−2−エチルヘキサノアート、ジ−t−ブチルペルオキシド、t−ブチルヒドロペルオキシド、2,5−ジメチル−2,5−ジ−(t−ブチルペルオキシ)ヘキサンおよびクメンヒドロペルオキシドが挙げられる。
さらに好ましいラジカル開始剤は、ジ−(3,5,5−トリメチルヘキサノイル)−ペルオキシド、4,4’−アゾビスイソブチロニトリル、t−ブチルペルピバラート、ジメチル−2,2−アゾビスイソブチラートおよび1,1,3,3,−テトラメチルブチルパーオキシ−2−エチルヘキサノエートである。これらは、半減期10時間を温度範囲30~100℃において有する。
本発明に係る、重合反応に供される連鎖移動剤は、特に制限はないが、好ましくは(A)メルカプタン(例えばオクチルメルカプタン、n−もしくはtert−ドデシルメルカプタン)、チオサリシル酸、メルカプト酢酸、およびメルカプトエタノール等のメルカプタン類、(B)ハロゲン化化合物、および(C)α−メチルスチレンダイマーが挙げられる。中でも、メルカプタン類がさらに好ましい。
本発明に係る、重合反応に供される、O/W型分散液中の分散安定剤には、特に制限はないが、好ましくは、部分ケン化ポリ酢酸ビニル、セルロース誘導体、ポリビニルピロリドンなどが挙げられる。中でも、部分ケン化ポリ酢酸ビニルがさらに好ましい。
本発明においては、O/W型分散液を、重合反応開始前に、流路に沿って設けられた一定間隔を保持して配置されてなる複数の網状体を連続して順次通過させる工程で処理する。
所定の配合で構成されるO/W型分散液は、線速度0.1~50cm/secの範囲で流路内を通過する。流路内には、複数箇所に、所定間隔をもって網状体が配置され、供給された乳化原料は該複数の網状体を順次通過し、その間にO/W型分散液の分散相の微細化が進行、安定、均一化し、分散相液滴のCV値は50%以下となり、この値に近似した値が、重合反応後のマイクロカプセルのCV値として保持される。発明者らは、マイクロカプセルの機能発現性の均一の目安としてCV値は30%以下と考えているが、この値は、通常のバッチ式乳化で得ることは困難である。
この方法による乳化の機構、網状体の作用効果等はいまだ明らかではないが、一旦網状体に達した流体が、網状体の多数の網目により分割されて小滴となり、次の網状体に達するまでの間に当該生成した小滴は安定化し、その結果として分散相液滴の粒子径が均一化されるものと考えられる。また、分散相液滴は、コア−シェル構造となり、コアにビニル基を含まない有機化合物、シェルにビニルモノマーを配置する。
これらの過程で、ビニルモノマーは、いわゆる、親水性基が球の表面にミセルを形成して配列し界面活性剤様の機能を果たすものと考えられるが、この機能の発現には、特に、本発明に係るビニルモノマー化合物の組み合わせ(疎水性と親水性の組み合わせ)が貢献していると考えられる。
網状体の間隔は、流路内の流体流速、流体粘度等にも関係するが、具体的には、通常は5mm~200mmが好ましい。さらに好ましくは10mmから100mmである。ここで、より高速の流速ではより長い間隔を採用し、また流体粘度がより高粘度では、反対に、より短い間隔を採用するようにするのが好ましい。さらに、網状体の配設箇所は、流路に沿って複数箇所とすることが肝要であるが、好ましくは30~200までの箇所である。網状体の開口度はASTM規格によるメッシュ数として、好ましくは35から4000、より好ましくは150メッシュ~3000メッシュである。
図1~図3は本発明の製造方法に用いる乳化装置の一例を示す。
[実施例1]
<O/W型乳化液の重合反応前の調合と処理>
内径20mm、長さ約500mmの円筒型ケーシングa内に1400メッシュの主金網からなる金網bと、長さ(l)10mm、内径(d2)15mmのスペーサーcとから成るユニットを30組挿入して乳化装置とした。なお、図3では、理解を容易にするため、網状体数を10個で示した。
O/W型分散液には、ビニル基を含まない有機化合物としてJX日鉱日石エネルギー社製TS−8(化学名:n−オクタデカン、機能:蓄熱性)、ビニルモノマーとしてスチレン、架橋剤としてEGDMA(組成を表1に示す)、開始剤として日油社製パーオクタO(POO)(化学名:1,1,3,3,−テトラメチルブチルパーオキシ−2−エチルヘキサノエート)、1.4重量部、および連鎖移動剤として花王社製チオカルコール20(化学名:n−ドデシルメルカプタン)3.0重量部の油相混合物に分散剤水溶液(クラレ製PVA217EE、0.5重量部)を加えて使用し、それぞれ個別のプランジャーポンプにより上記油相混合物および分散剤水溶液をそれぞれ15g/分、30g/分の流量にて乳化装置に導入することにより乳化を実施し、O/W型乳化液を得て、重合原料に供した。
<重合反応>
撹拌機、圧力計、および温度計を備えた容器(重合槽)に、上記操作で得られたO/W型乳化液60gと分散剤水溶液40g(クラレ製PVA217EE、1.5重量部)を投入し、重合器内を減圧して容器内の脱酸素を行い、窒素により圧力を常圧に戻し、窒素で0.3MPaまで加圧した。撹拌機を回転させた状態で、重合槽内温を110℃まで昇温し、重合を開始した。2時間で重合を終了し、重合槽内温を室温まで冷却した。重合乳化液を濾紙を用いて濾過し、蓄熱材マイクロカプセルを単離し、これを80℃、大気圧下にて乾燥し、蓄熱材マイクロカプセルの粉末が得られた。
<マイクロカプセルの特性測定>
(1)粒径、CV値を以下の方法で測定した。
コールターカウンター(ベックマンコールター社製、マルチサイザー4)にて上記にて得られたスラリーの体積平均径(以下「体積平均粒径」という。)および液滴径分布を測定した。なお測定粒子数は10万個である。その結果、液滴の体積平均粒径24μm、CV値は27%であった。液滴径分布の指標に使用したCV値は下記式(1)にて算出した。
CV値=液滴径分布の標準偏差/体積平均粒径×100 ・・・式(1)
以下の実施例、比較例においても同様の方法にて体積平均粒径およびCV値を測定した。
(2)VOC値を以下の方法で測定した。
試料をシャーレに0.1g量り取り、マイクロチャンバーに入れ、100℃×2hr放置後、25℃×22hrに放置する条件で放散試験を行ない、発生するガスをTenaxTA捕集管にて捕集した。放散ガス捕集管(TenaxTA管)及びマイクロチャンバーをヘキサンにより溶媒抽出し、ガスクロマトグラフ質量分析計(GC/MS)にて発生したガスの定量を行なった。
上記特性値の測定結果を表1に示した。
[実施例2]
<O/W型乳化液の重合反応前の調合と処理>
内径20mm、長さ約500mmの円筒型ケーシング内に3000メッシュの主金網からなる金網と、長さ10mm、内径15mmのスペーサーから成るユニットを30組挿入して乳化装置とした。
O/W型分散液には、ビニル基を含まない有機化合物としてJX日鉱日石エネルギー社製パラフィンTS−8(化学名:n−オクタデカン、機能:蓄熱性)とビニルモノマー化合物としてスチレン、架橋剤としてEGDMA(組成を表1に示す)、開始剤として日油社製パーオクタO(POO)1.4重量部、および連鎖移動剤として花王社製チオカルコール20(化学名:n−ドデシルメルカプタン、“DM”とも表記)。3.0重量部の油相混合物に、分散剤水溶液(クラレ製PVA217EE、2重量部)を混合して得た分散体を使用した。それぞれ個別のプランジャーポンプにより油相混合物を30g/分、分散時水溶液を60g/分の流量にて乳化装置に導入することにより乳化を実施し、O/W型乳化液を得た。蒸留水で希釈し、油相の濃度が20重量%であるO/W型乳化液とし、重合原料に供した。
<重合反応>
撹拌機、圧力計、および温度計を備えた容器(重合槽)に、上記O/W型乳化液60gと蒸留水40gを投入し、重合器内を減圧して容器内の脱酸素を行い、窒素により重合層内圧を常圧に戻して、窒素で0.3MPaまで加圧した。撹拌機を回転させた状態で、重合槽内温を110℃まで昇温し、重合を開始した。2時間で重合を終了し、重合槽内温を室温まで冷却した。マイクロカプセル濃度約20重量%の蓄熱マイクロカプセルを含むスラリーを得た。重合液を濾紙を用いて濾過し、蓄熱マイクロカプセルを単離し、これを80℃、大気圧下にて乾燥し、マイクロカプセルの粉末が得られた。
得られたマイクロカプセル試料の各特性値を測定し、結果を表1に示した。
[実施例3]
<O/W型乳化液の重合反応前の調合と処理>
主金網が3000メッシュの金網を2400メッシュの金網に代えて使用した以外は実施例2と同様の操作により、O/W乳化液を調製した。
<重合反応>
実施例2と同様に、O/W乳化液を重合してマイクロカプセルの粉末を調製した。
得られたマイクロカプセル試料の各特性値を測定し、結果を表1に示した。
[比較例1]
<O/W型乳化液の重合反応前の調合と処理>
室温で分散剤水溶液160g(クラレ製PVA217EE、2重量部)を導入し、重合性成分としてスチレン、架橋剤としてEGDMA及び非重合性成分として“TS−8”を含む油相物(各組成を表1に示す)80gを混合し、ホモジナイザーを用いて3000rpmで分散させ、5分間の分散により、O/W型乳化液を得た。
<重合反応>
重合条件は実施例2と同様の操作により、蓄熱マイクロカプセルの粉末が得られた。
得られたマイクロカプセル試料の各特性値を測定し、結果を表1に示した。
ビニルモノマーとしてスチレンおよびMMAを用い、架橋剤をDVBに代え、表1の組成で添加した以外は実施例2と同様の操作を行ない、O/W乳化液を得た。
また、上記O/W乳化液を原料として実施例2と同様に重合反応を行ない、マイクロカプセルの粉末を得た。
得られたマイクロカプセルのVOC、CV値を実施例1に記載した要領で測定し、さらに、下記の測定方法にて測定した加熱減量を表2に示した。
<加熱減量の測定>
乾燥したマイクロカプセルを、アルミカップに1~2g秤量し、これを80℃にて5時間真空下に保持し、加熱減量を測定した。
[実施例5]
実施例2と同様の操作で、O/W乳化液を得、それを同じく実施例2と同様の方法で重合してマイクロカプセルの粉末を得た。
得られたマイクロカプセルの特性値を測定し、表2に示した。
[実施例6]
架橋剤をTMPTに代えた以外は、実施例2と同様にO/W乳化液を得、それを同じく実施例2と同様の方法で重合してマイクロカプセルの粉末を得た。
得られたマイクロカプセルの特性値を測定し、表2に示した。
[実施例7]
ビニルモノマーとしてスチレンとアクリロニトリルを表1の組成で添加し、架橋剤を表1の組成(重量部数)で添加した以外は実施例2と同様に操作しO/W乳化液を調製し、それを重合してマイクロカプセルの粉末を得た。
得られたマイクロカプセルの特性値を測定し、表2に示した。
[実施例8]
ビニルモノマーとしてスチレンとアクリロニトリルを表1の組成で添加し、架橋剤としてEGDMAを表1の組成(重量部数)で添加した以外は実施例2と同様に操作しO/W乳化液を調製し、それを重合してマイクロカプセルの粉末を得た。
得られたマイクロカプセルの特性値を測定し、表2に示した。
[実施例9]
ビニルモノマーとしてスチレンとメタクリロニトリルを表1の組成で添加し、架橋剤としてEGDMAを表1の組成(重量部数)で添加した以外は実施例2と同様に操作しO/W乳化液を調製し、それを重合してマイクロカプセルの粉末を得た。
得られたマイクロカプセルの特性値を測定し、表2に示した。
表1の結果より、実施例1~3のシェル材のビニルモノマーとしてスチレンのみ、コア材の有機化合物としてn−オクタデカンを用いたO/W乳化液を重合して得たマイクロカプセルは、CV値が何れも30%未満と小さく、ホモジナイザーを用いて乳化した比較例1に比べて均一な粒径分布であることが分かった。
表2の結果より、実施例7~9の場合のようにシェル材としてビニルモノマーとしてアクリロニトリルまたはメタクリロニトリルを15重量部とスチレン15~30重量部を用い(Δe値が2.0前後)、コア材としてn−オクタデカンを用い、所定量の架橋剤を添加し、本願発明に係る乳化方法によって得たO/W乳化液を重合して得られたマイクロカプセルは、加熱減量が低く、耐熱性が高く、加工安定性に優れるものと推定され、またVOCも比較例1のホモジナイザー分散による場合に比べて低いことから、コア材の漏洩または揮発防止に寄与し、よって物質の安全性に寄与しているものと推定される。
本発明のマイクロカプセルは、香料、医薬、農薬、殺虫剤、生理活性物質、忌避剤、消臭剤、着色剤、芳香剤、蓄熱材等種々の用途に用いられ得る。
Claims (9)
- ビニル基を含まない有機化合物と少なくとも1種のビニルモノマーとを含むO/W型分散液を原料とし、前記ビニルモノマー化合物の重合反応を経て、コアが前記ビニル基を含まない有機化合物でありシェルが前記ビニルモノマー化合物の重合体であるコア—シェル構造を有するマイクロカプセルを製造する方法において、
前記O/W型分散液が、
前記重合反応前に、流路に沿って設けられた一定間隔を保持して配置されてなる複数の網状体を連続して順次通過させて乳化処理される工程を含むことを特徴とするマイクロカプセルの製造方法。 - 前記マイクロカプセルを製造する方法において、
前記ビニルモノマー化合物が
電子吸引性基を有する少なくとも1種のビニルモノマーと電子供与性基を有する少なくとも1種のビニルモノマーとを含むことを特徴とする、請求項1に記載のマイクロカプセルの製造方法。 - 前記O/W型分散液が2以上のビニル基を含む架橋剤を含むことを特徴とする、請求項1ないし2に記載のマイクロカプセルの製造方法。
- 前記2以上のビニル基を含む架橋剤が電子吸引性基を有することを特徴とする、請求項3に記載のマイクロカプセルの製造方法。
- 前記O/W型分散液中のビニルモノマーが、電子吸引性基を有するビニルモノマーとしてアクリロニトリルおよび/またはメタクリロニトリル、電子供与性基を有するビニルモノマーとしてスチレンを含むことを特徴とする請求項1ないし4の何れかに記載のマイクロカプセルの製造方法。
- 下記式(1)で定義されるマイクロカプセルのCV値が30以下であることを特徴とする、請求項1ないし5の何れかに記載のマイクロカプセルの製造方法。
CV値=(液滴径分布の標準偏差/体積平均粒径)×100 式(1) - 請求項1ないし6の何れかに記載のマイクロカプセルの製造方法によって得られる、コアがビニル基を含まない有機化合物であり、シェルがビニルモノマーの重合体であるコア—シェル構造を有するマイクロカプセルにおいて、
シェルが、電子吸引性置換基を有する少なくとも1種のビニルモノマー化合物と電子供与性基を有する少なくとも1種のビニルモノマー化合物とを構成単位として含む少なくとも二元共重合体であり、かつCV値が30以下のマイクロカプセル。 - シェルが、電子吸引性基を有する2以上のビニル基を含む架橋剤で架橋されていることを特徴とする、請求項7に記載のマイクロカプセル。
- シェルが、電子吸引性基を有するビニルモノマーとしてアクリロニトリルおよび/またはメタクリロニトリル、電子供与性基を有するビニルモノマーとしてスチレンを含むことを特徴とする、請求項7ないし8に記載のマイクロカプセル。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14738224.6A EP2944375A4 (en) | 2013-01-10 | 2014-01-08 | PRODUCTION OF MICROCAPSULE AND MICROCAPSULE |
CN201480004473.7A CN104918695A (zh) | 2013-01-10 | 2014-01-08 | 微胶囊的制造方法及微胶囊 |
US14/759,755 US20150353805A1 (en) | 2013-01-10 | 2014-01-08 | Method for Producing Microcapsule and Microcapsule |
CA2897148A CA2897148A1 (en) | 2013-01-10 | 2014-01-08 | Method for producing microcapsule and microcapsule |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013002829A JP6007113B2 (ja) | 2013-01-10 | 2013-01-10 | マイクロカプセルの製造方法およびマイクロカプセル |
JP2013-002829 | 2013-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014109412A1 true WO2014109412A1 (ja) | 2014-07-17 |
Family
ID=51167056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050608 WO2014109412A1 (ja) | 2013-01-10 | 2014-01-08 | マイクロカプセルの製造方法およびマイクロカプセル |
Country Status (7)
Country | Link |
---|---|
US (1) | US20150353805A1 (ja) |
EP (1) | EP2944375A4 (ja) |
JP (1) | JP6007113B2 (ja) |
CN (1) | CN104918695A (ja) |
CA (1) | CA2897148A1 (ja) |
TW (1) | TW201427767A (ja) |
WO (1) | WO2014109412A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016207179A1 (en) * | 2015-06-22 | 2016-12-29 | Givaudan Sa | Improvements in or relating to encapsulated perfume compositions |
WO2018110638A1 (ja) * | 2016-12-16 | 2018-06-21 | 花王株式会社 | マイクロカプセルの製造方法 |
CN112675793A (zh) * | 2020-12-10 | 2021-04-20 | 广州中国科学院先进技术研究所 | 一种灵芝孢子油纳米微囊的制备方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107418519B (zh) * | 2017-05-16 | 2020-04-24 | 中国科学院过程工程研究所 | 一种窄粒径分布的有机相变材料微胶囊及其制备方法 |
CN111359552B (zh) * | 2020-03-02 | 2022-06-24 | 浙江理工大学 | 一种自交联型精油微胶囊及其制备方法 |
CN113913160B (zh) * | 2021-11-09 | 2023-08-15 | 青岛尼希米生物科技有限公司 | 一种双层囊壁储能调温微胶囊、聚丙烯腈纤维及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02294655A (ja) * | 1989-05-10 | 1990-12-05 | Mita Ind Co Ltd | 電子写真用マイクロカプセルトナー及びその製造方法 |
JP2002516913A (ja) | 1997-11-11 | 2002-06-11 | ビーエーエスエフ アクチェンゲゼルシャフト | 潜熱蓄熱材料としてのマイクロカプセルの使用 |
WO2004058910A1 (ja) * | 2002-12-25 | 2004-07-15 | Matsumoto Yushi-Seiyaku Co., Ltd. | 熱膨張性マイクロカプセル、発泡成形物の製造方法及び発泡成形物 |
JP2004203978A (ja) | 2002-12-24 | 2004-07-22 | Sekisui Chem Co Ltd | 蓄熱マイクロカプセル |
JP2004277646A (ja) | 2003-03-18 | 2004-10-07 | Sekisui Chem Co Ltd | 蓄熱マイクロカプセル |
JP2006257415A (ja) | 2005-02-17 | 2006-09-28 | Kobe Univ | 蓄熱カプセル及びその利用 |
WO2007117041A1 (ja) * | 2006-04-10 | 2007-10-18 | Nippon Oil Corporation | 連続乳化方法およびそのための乳化装置 |
JP2009090191A (ja) | 2007-10-05 | 2009-04-30 | Nippon Oil Corp | 乳化液の粒径および粒径分布を制御する方法およびこの方法に使用する装置 |
JP2010150329A (ja) | 2008-12-24 | 2010-07-08 | Nippon Zeon Co Ltd | 蓄熱材用マイクロカプセル粒子 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1253833A (en) * | 1984-11-06 | 1989-05-09 | Akira Yada | Process for preparing water-soluble polymer gel particles |
CN1321735C (zh) * | 2005-03-29 | 2007-06-20 | 东华大学 | 乳液聚合法合成相变储能微胶囊 |
CN100336834C (zh) * | 2005-05-11 | 2007-09-12 | 浙江大学 | 油溶性引发剂引发活性细乳液聚合法制备微胶囊的方法 |
DK1945271T3 (da) * | 2005-10-24 | 2020-01-13 | Magsense Life Sciences Inc | Fremgangsmåde til fremstilling af polymerbelagte mikropartikler |
CN101421027A (zh) * | 2006-04-10 | 2009-04-29 | 新日本石油株式会社 | 连续乳化方法和用于该方法的乳化设备 |
JP5324757B2 (ja) * | 2007-06-04 | 2013-10-23 | 松本油脂製薬株式会社 | 蓄熱マイクロカプセル、その製造方法および用途 |
JP2009185218A (ja) * | 2008-02-08 | 2009-08-20 | Toyo Ink Mfg Co Ltd | マイクロカプセルの水性分散体の製造方法及びマイクロカプセルを用いた架橋性樹脂組成物 |
JP4714780B2 (ja) * | 2008-09-29 | 2011-06-29 | 積水化学工業株式会社 | 単孔中空ポリマー微粒子の製造方法 |
EP2944679A4 (en) * | 2013-01-10 | 2016-09-21 | Jx Nippon Oil & Energy Corp | MICROCAPED HEAT STORAGE MATERIAL, MANUFACTURING METHOD AND USE THEREOF |
-
2013
- 2013-01-10 JP JP2013002829A patent/JP6007113B2/ja not_active Expired - Fee Related
-
2014
- 2014-01-07 TW TW103100493A patent/TW201427767A/zh unknown
- 2014-01-08 CA CA2897148A patent/CA2897148A1/en not_active Abandoned
- 2014-01-08 EP EP14738224.6A patent/EP2944375A4/en not_active Withdrawn
- 2014-01-08 WO PCT/JP2014/050608 patent/WO2014109412A1/ja active Application Filing
- 2014-01-08 US US14/759,755 patent/US20150353805A1/en not_active Abandoned
- 2014-01-08 CN CN201480004473.7A patent/CN104918695A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02294655A (ja) * | 1989-05-10 | 1990-12-05 | Mita Ind Co Ltd | 電子写真用マイクロカプセルトナー及びその製造方法 |
JP2002516913A (ja) | 1997-11-11 | 2002-06-11 | ビーエーエスエフ アクチェンゲゼルシャフト | 潜熱蓄熱材料としてのマイクロカプセルの使用 |
JP2004203978A (ja) | 2002-12-24 | 2004-07-22 | Sekisui Chem Co Ltd | 蓄熱マイクロカプセル |
WO2004058910A1 (ja) * | 2002-12-25 | 2004-07-15 | Matsumoto Yushi-Seiyaku Co., Ltd. | 熱膨張性マイクロカプセル、発泡成形物の製造方法及び発泡成形物 |
JP2004277646A (ja) | 2003-03-18 | 2004-10-07 | Sekisui Chem Co Ltd | 蓄熱マイクロカプセル |
JP2006257415A (ja) | 2005-02-17 | 2006-09-28 | Kobe Univ | 蓄熱カプセル及びその利用 |
WO2007117041A1 (ja) * | 2006-04-10 | 2007-10-18 | Nippon Oil Corporation | 連続乳化方法およびそのための乳化装置 |
JP2009090191A (ja) | 2007-10-05 | 2009-04-30 | Nippon Oil Corp | 乳化液の粒径および粒径分布を制御する方法およびこの方法に使用する装置 |
JP2010150329A (ja) | 2008-12-24 | 2010-07-08 | Nippon Zeon Co Ltd | 蓄熱材用マイクロカプセル粒子 |
Non-Patent Citations (3)
Title |
---|
See also references of EP2944375A4 |
TAKAYUKI OTSU: "Kobunshigosei no kagaku" |
TAKAYUKI OTSU: "Kobunshigosei no kagaku", 1968, KAGAKU-DOJIN PUBLISHING CO., INC |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016207179A1 (en) * | 2015-06-22 | 2016-12-29 | Givaudan Sa | Improvements in or relating to encapsulated perfume compositions |
US10806683B2 (en) | 2015-06-22 | 2020-10-20 | Givaudan Sa | Encapsulated perfume compositions |
WO2018110638A1 (ja) * | 2016-12-16 | 2018-06-21 | 花王株式会社 | マイクロカプセルの製造方法 |
JP6360642B1 (ja) * | 2016-12-16 | 2018-07-18 | 花王株式会社 | マイクロカプセルの製造方法 |
CN110036038A (zh) * | 2016-12-16 | 2019-07-19 | 花王株式会社 | 微胶囊的制造方法 |
CN110036038B (zh) * | 2016-12-16 | 2021-11-05 | 花王株式会社 | 微胶囊的制造方法 |
US11179695B2 (en) | 2016-12-16 | 2021-11-23 | Kao Corporation | Method for producing microcapsule |
CN112675793A (zh) * | 2020-12-10 | 2021-04-20 | 广州中国科学院先进技术研究所 | 一种灵芝孢子油纳米微囊的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6007113B2 (ja) | 2016-10-12 |
JP2014133212A (ja) | 2014-07-24 |
US20150353805A1 (en) | 2015-12-10 |
EP2944375A4 (en) | 2016-11-23 |
TW201427767A (zh) | 2014-07-16 |
EP2944375A1 (en) | 2015-11-18 |
CN104918695A (zh) | 2015-09-16 |
CA2897148A1 (en) | 2014-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014109412A1 (ja) | マイクロカプセルの製造方法およびマイクロカプセル | |
JP5651272B1 (ja) | マイクロカプセル蓄熱材、その製造方法およびその使用 | |
Tan et al. | Enzyme-assisted photoinitiated polymerization-induced self-assembly: an oxygen-tolerant method for preparing block copolymer nano-objects in open vessels and multiwell plates | |
Thompson et al. | Preparation of Pickering double emulsions using block copolymer worms | |
Tanaka et al. | Dual stimuli-responsive “mushroom-like” Janus polymer particles as particulate surfactants | |
US10287376B2 (en) | Anisotropic and amphiphilic particles and methods for producing and using the same | |
Tanaka et al. | Preparation of “mushroom-like” Janus particles by site-selective surface-initiated atom transfer radical polymerization in aqueous dispersed systems | |
US10573443B2 (en) | Process for producing magnetic monodisperse polymer particles | |
US11746204B2 (en) | Heat-expandable microspheres and applications thereof | |
JP7468529B2 (ja) | 中空樹脂粒子の製造方法 | |
Kaewsaneha et al. | Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization | |
CN115785516A (zh) | 中空树脂颗粒的制造方法 | |
JP2008536971A5 (ja) | ||
US20160287516A1 (en) | Porous microparticles with high loading efficiencies | |
CN106519152B (zh) | 一种聚合物纳米粒子、复合水凝胶及其制备方法 | |
JPH03137105A (ja) | 高吸着性共重合体の製造方法 | |
RU2696571C2 (ru) | Способ суспензионной полимеризации | |
Krüger et al. | Heterophase polymerization: pressures, polymers, particles | |
KR20150018560A (ko) | 혼합염 현탁 중합방법 및 그로부터 제조된 수지 및 촉매 | |
Delaittre | Nitroxide-mediated polymerization in dispersed media | |
JP2006131709A (ja) | 磁性粒子の製造方法、ならびに生化学用担体 | |
JP5443780B2 (ja) | イミダゾール化合物を内包した微粒子の製造方法 | |
KR20230150271A (ko) | 중공 입자 | |
JP2019073582A (ja) | 有機微粒子及びその製造方法 | |
JP2019073583A (ja) | 有機微粒子及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2014738224 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014738224 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14738224 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2897148 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14759755 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |