WO2014109069A1 - ボイラシステム - Google Patents

ボイラシステム Download PDF

Info

Publication number
WO2014109069A1
WO2014109069A1 PCT/JP2013/054171 JP2013054171W WO2014109069A1 WO 2014109069 A1 WO2014109069 A1 WO 2014109069A1 JP 2013054171 W JP2013054171 W JP 2013054171W WO 2014109069 A1 WO2014109069 A1 WO 2014109069A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiler
boilers
load factor
steam
steam amount
Prior art date
Application number
PCT/JP2013/054171
Other languages
English (en)
French (fr)
Inventor
山田 和也
嘉秀 久保
浩二 三浦
康弘 兵頭
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2014109069A1 publication Critical patent/WO2014109069A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association

Definitions

  • the present invention relates to a boiler system. More specifically, the present invention relates to a boiler system that controls the combustion state by proportional control.
  • This application claims priority based on Japanese Patent Application No. 2013-001406 filed in Japan on January 8, 2013, the contents of which are incorporated herein by reference.
  • the can increase line L1 shows the load factor which increases the boiler which is burning, and shall be set to 80% as an example.
  • the can reducing line L2 shows the load factor which reduces the boiler which is burning, and shall be set to 40% as an example.
  • the equal line L3 shows an equal load factor in all the burning boilers after increasing / decreasing the number of burning boilers.
  • FIGS. 10A to 10C show a case where the number of boilers is increased.
  • the No. 1 boiler and the No. 2 boiler are burning, and an increase in the load factor is required.
  • FIG. 10 (B) when the load factor of the No. 1 boiler and the No. 2 boiler reaches the load factor specified in the can increase line L1, the operation of the No. 3 boiler is newly started. Become.
  • FIG. 10 (C) when all of the No. 1 boilers to No. 3 boilers are operated at an equal load factor indicated by the equal line L3, the No. 1 machine which has already been operated before the increase of the No. 3 boilers.
  • the load factor of the boiler and No. 2 boiler will be greatly reduced.
  • the load factor of the two boilers of the No. 1 and No. 2 boilers decreased by 27% from 80% to 53% at the same time, compared with the 53% rise of the No. 3 boiler. It becomes.
  • FIGS. 10D to 10F show a case where the number of boilers is reduced.
  • the No. 1 boiler to the No. 3 boiler are burning, and a reduction in the load factor is required.
  • FIG. 10 (E) in accordance with this request, when the load factor of the No. 3 boiler reaches the load factor defined in the can reduction line L2, the operation of the No. 3 boiler is stopped.
  • FIG. 10 (F) when the No. 1 boiler and the No. 2 boiler are operated at an equal load factor indicated by the equal line L3, the No. 1 boiler and the No. 2 boiler that have been operating before the No. 3 boiler is stopped.
  • the load factor of Unit No. boiler will be greatly increased. Specifically, in FIG.
  • the load factor of the two boilers, the No. 1 and No. 2 boilers increased by 20% from 40% to 60% at the same time, compared to the 40% drop in the No. 3 boiler. It becomes.
  • This invention is made in view of such a problem, and it aims at providing the boiler system which suppresses the pressure fluctuation at the time of increasing / decreasing the number of the boilers which are burning.
  • the present invention is a boiler system including a boiler group including a plurality of boilers capable of burning by continuously changing a load factor, and a control unit that controls a combustion state of the boiler group according to a required load.
  • the plurality of boilers are set with a minimum steam amount, which is the steam amount in the smallest combustion state, and the control unit minimizes the number of boilers that start new combustion when increasing the number of boilers to be combusted.
  • the present invention relates to a boiler system that burns with steam.
  • the boiler group is provided with a booster line indicating a load factor that serves as a reference for increasing the number of boilers to be burned, and the control unit is configured to load a boiler in a combustion state among the plurality of boilers. It is preferable that a boiler selection unit that increases the number of boilers to be burned when the rate reaches the load factor defined by the can-increasing line is provided.
  • the boiler group is set with an increased reference steam amount that serves as a reference for increasing the number of boilers to be burned
  • the control unit is configured to each of the boilers in a combustion state among the plurality of boilers.
  • a surplus power calculation unit that calculates an increase surplus steam amount that is a difference between the maximum steam amount and the output steam amount, and calculates a total surplus surplus steam amount that is a sum of the calculated surplus surplus steam amount, and the surplus power calculation It is preferable to include a boiler selection unit that increases the number of boilers to be burned when the total increase surplus steam amount calculated by the unit falls below the increase reference steam amount.
  • the boiler group is provided with a can reduction line indicating a load factor that serves as a reference for reducing the number of boilers to be burned, and the control unit is configured to load a boiler in a combustion state among the plurality of boilers.
  • the boiler selection unit that selects one of the boilers in the combustion state as a stop boiler, and the load factor of the stop boiler is changed with respect to the required load
  • pressure fluctuation can be suppressed even when the number of burning boilers is increased or decreased.
  • the boiler system 1 includes a boiler group 2 including a plurality of (five) boilers 20, a steam header 6 that collects steam generated in the plurality of boilers 20, and steam that measures the pressure inside the steam header 6.
  • a pressure sensor 7 and a number control device 3 having a control unit 4 for controlling the combustion state (load factor) of the boiler group 2 are provided.
  • the boiler group 2 produces
  • the steam header 6 is connected to a plurality of boilers 20 constituting the boiler group 2 via a steam pipe 11. A downstream side of the steam header 6 is connected to a steam use facility 18 via a steam pipe 12.
  • the steam header 6 collects and stores the steam generated in the boiler group 2, thereby adjusting the pressure difference and pressure fluctuation of the plurality of boilers 20, and supplying the steam whose pressure is adjusted to the steam using facility 18. Supply.
  • the vapor pressure sensor 7 is electrically connected to the number control device 3 through the signal line 13.
  • the steam pressure sensor 7 measures the steam pressure inside the steam header 6 (steam pressure generated in the boiler group 2), and sends a signal (steam pressure signal) related to the measured steam pressure via the signal line 13. It transmits to the control apparatus 3.
  • the number control device 3 is electrically connected to a plurality of boilers 20 through a signal line 16.
  • the number control device 3 controls the combustion state of each boiler 20 based on the steam pressure inside the steam header 6 measured by the steam pressure sensor 7. Details of the number control device 3 will be described later.
  • the above boiler system 1 can supply the steam generated in the boiler group 2 to the steam using equipment 18 via the steam header 6.
  • the load required in the boiler system 1 (required load) is the amount of steam consumed in the steam using facility 18.
  • the number control device 3 determines the fluctuation of the steam pressure inside the steam header 6 corresponding to the fluctuation of the steam consumption based on the steam pressure (physical quantity) inside the steam header 6 measured by the steam pressure sensor 7.
  • the amount of combustion of each boiler 20 which comprises the boiler group 2 is calculated and controlled.
  • the boiler system 1 can monitor the fluctuation of the required load based on the fluctuation of the vapor pressure measured by the vapor pressure sensor 7. Then, the boiler system 1 calculates a necessary steam amount that is a steam amount required according to the consumed steam amount (required load) of the steam using facility 18 based on the steam pressure of the steam header 6.
  • FIG. 2 is a diagram showing an outline of the boiler group 2 according to the present embodiment.
  • the boiler 20 of the present embodiment is composed of a proportional control boiler capable of burning by continuously changing the combustion amount (load factor).
  • the proportional control boiler is a boiler in which the combustion amount can be continuously controlled at least in the range from the minimum combustion state S1 (for example, the combustion state at 20% of the maximum combustion amount) to the maximum combustion state S2. It is.
  • the proportional control boiler adjusts the amount of combustion by, for example, controlling the opening degree (combustion ratio) of a valve that supplies fuel to the burner and a valve that supplies combustion air.
  • the continuous control of the combustion amount means that the calculation or signal in the local control unit 22 described later is a digital method and is handled in stages (for example, the output (combustion amount) of the boiler 20 in increments of 1%). Even when the output is controlled).
  • the change of the combustion state between the combustion stop state S0 and the minimum combustion state S1 of the boiler 20 is controlled by turning on / off the combustion of the boiler 20 (burner).
  • the combustion amount can be controlled continuously.
  • a unit steam amount U which is a unit of variable steam amount, is set for each of the plurality of boilers 20.
  • the boiler 20 can change the steam amount in units of the unit steam amount U in the range from the minimum combustion state S1 to the maximum combustion state S2.
  • the steam amount in the minimum combustion state S1 of the boiler 20 is referred to as a minimum steam amount
  • the steam amount in the maximum combustion state S2 of the boiler 20 is referred to as a maximum steam amount.
  • the unit steam amount U can be appropriately set according to the maximum steam amount, but from the viewpoint of improving the followability of the output steam amount to the required steam amount in the boiler system 1, it is 0.1% to 20% of the maximum steam amount of the boiler 20. % Is preferably set, and more preferably 1% to 10%.
  • the output steam amount indicates the steam amount output by the boiler group 2, and this output steam amount is represented by the total value of the steam amounts output from each of the plurality of boilers 20.
  • Priority is set for each of the plurality of boilers 20.
  • the priority order is used to select the boiler 20 that performs a combustion instruction or a combustion stop instruction.
  • the priority order can be set, for example, using an integer value so that the lower the numerical value, the higher the priority order.
  • FIG. 2 when the priority order of “1” to “5” is assigned to each of the No. 1 boiler to No. 5 boiler of the boiler 20, the No. 1 boiler has the highest priority. Has the lowest priority. In the normal case, this priority order is changed at predetermined time intervals (for example, 24 hour intervals) under the control of the control unit 4 described later.
  • a can increase line L1 indicating a load factor (combustion amount) for increasing the number of combustion boilers 20 and a can reduction line L2 indicating a load factor for decreasing the number of combustion boilers 20 are set.
  • the load factor of the boiler 20 that is burning increases with the fluctuation of the required steam amount and exceeds the load factor defined in the can-increasing line L1
  • the combustion of the new boiler 20 (burner) is turned on and the boiler that burns The number of 20 will increase (can increase).
  • the can increasing line L1 and the can reducing line L2 can be set suitably, it is preferable to set to the value which can suppress the increase / decrease in the number of boilers 20 to burn.
  • the can increasing line L1 is set to a load factor of 80%
  • the can reducing line L2 is set to a load factor of 40%.
  • the can increase line L1 and the can decrease line L2 By appropriately setting the can increase line L1 and the can decrease line L2, increase / decrease in the number of units can be suppressed (inhibition of excessive increase in the number of combustion units), and as a result, purge loss, heat dissipation loss, startup loss, and the like can be reduced.
  • the can increasing line L1 and the can reducing line L2 may be set according to the operation efficiency of the boiler 20, and by setting from such a viewpoint, the load factor of the burning boiler 20 increases. When the operating efficiency of the boiler group 2 is reduced (can increase line), the operation of a new boiler 20 can be started, and the operating efficiency of the entire boiler group 2 can be maintained.
  • the number control device 3 Based on the vapor pressure signal from the vapor pressure sensor 7, the number control device 3 calculates the required combustion amount of the boiler group 2 according to the required load and the combustion state of each boiler 20 corresponding to the required combustion amount, The number control signal is transmitted to the boiler 20 (a local control unit 22 described later). As shown in FIG. 1, the number control device 3 includes a storage unit 5 and a control unit 4.
  • the storage unit 5 is configured to control the number of control devices 3 (the control unit 4).
  • the control unit 4 gives various instructions to each boiler 20 via the signal line 16 and receives various data from each boiler 20 to control the combustion state and priority order of the five boilers 20. .
  • each boiler 20 receives a signal for changing the combustion state from the number control device 3, it controls the boiler 20 according to the instruction.
  • the boiler 20 includes a boiler body 21 in which combustion is performed, and a local control unit 22 that controls the combustion state of the boiler 20.
  • the local control unit 22 changes the combustion state of the boiler 20 according to the required load. Specifically, the local control unit 22 controls the combustion amount of the boiler 20 and varies the load factor based on the number control signal transmitted from the number control device 3 via the signal line 16, thereby changing the combustion state. To change. Further, the local control unit 22 transmits a signal used in the number control device 3 to the number control device 3 via the signal line 16. Examples of the signal used in the number control device 3 include an actual combustion state of the boiler 20 and other data.
  • FIG. 3 is a functional block diagram showing the configuration of the control unit 4.
  • the control unit 4 includes a required steam amount calculation unit 41, an output steam amount calculation unit 42, a deviation calculation unit 43, a boiler selection unit 44, a determination unit 45, and an output control unit 46.
  • the required steam amount calculation unit 41 calculates the required steam amount according to the required load based on the steam pressure of the steam header 6.
  • the output steam amount calculation unit 42 calculates the output steam amount that is the steam amount output by the boiler group 2 based on the combustion state of each boiler 20 transmitted from the local control unit 22.
  • the deviation calculation unit 43 calculates a deviation amount between the required steam amount and the output steam amount. Moreover, the deviation calculation part 43, when the vapor
  • the boiler selection unit 44 selects the boiler 20 that changes the steam amount when the required steam amount varies. Specifically, when the required steam amount is larger than the output steam amount, the boiler selection unit 44 selects the boiler 20 having a low load factor among the plurality of boilers 20 and the required steam amount is smaller than the output steam amount. The boiler 20 having a high load factor is selected from the plurality of boilers 20. Moreover, when the load factor of the several boiler 20 is equal, the boiler selection part 44 will select the boiler 20 with the highest priority, when required steam quantity is larger than output steam quantity, and required steam quantity is more than output steam quantity. If it is smaller, the boiler 20 with the lowest priority is selected.
  • the determination unit 45 determines whether the deviation amount calculated by the deviation calculation unit 43 is greater than or equal to the unit steam amount U.
  • the output control unit 46 changes the steam amount of the boiler 20 selected by the boiler selection unit 44 when the determination unit 45 determines that the deviation amount is equal to or greater than the unit steam amount U. Specifically, when the required steam amount is larger than the output steam amount, the output control unit 46 increases the steam amount of the boiler selected by the boiler selecting unit 44 by the unit steam amount U. Further, when the required steam amount is smaller than the output steam amount, the output control unit 46 decreases the steam amount of the boiler selected by the boiler selecting unit 44 by the unit steam amount U.
  • the boiler selection part 44 will stop, if the load factor of the several boiler 20 which is burning becomes more than the load factor prescribed
  • the boiler 20 having the highest priority among the boilers 20 being selected is newly selected as a boiler through operation (hereinafter referred to as “operation start boiler”). Then, when the operation start boiler is selected by the boiler selection unit 44, the output control unit 46 starts the operation of the operation start boiler. At this time, the output control unit 46 burns the operation start boiler at a load factor corresponding to the minimum combustion state S1.
  • the boiler selection part 44 will give the highest priority among the boilers 20 which are combusting, when the load factor of the several boiler 20 which is burning becomes below the load factor (or lower than the load factor) prescribed
  • the boiler 20 with the lower rank is selected as the boiler that stops the operation (hereinafter referred to as “stop boiler”). Then, when the boiler selection unit 44 selects the stop boiler, the output control unit 46 reduces the load factor of the stop boiler from the load factor defined in the reduction line L2 to the load factor corresponding to the minimum combustion state S1. After that, stop the operation of the stop boiler.
  • FIG. 4 shows the operation when increasing the boiler 20 (starting the operation of the operation start boiler)
  • FIG. 5 shows the operation when decreasing the boiler 20 (stopping the operation of the stop boiler).
  • the boiler group 2 is configured by three boilers 20, but even when configured by four or five or more boilers 20, the same operation is performed.
  • the number of boilers 20 can be increased or decreased.
  • the control unit 4 of the number control device 3 increases the load factor preferentially from the No. 2 boiler with a low load factor, and as shown in FIG.
  • the load factor is leveled between the No. 1 and No. 2 boilers.
  • the load factor of the No. 1 boiler may be changed even before the load factor is leveled between the No. 1 boiler and the No. 2 boiler.
  • the control unit 4 of the unit control device 3 The operation of the No. 3 boiler is newly started without increasing the load factor of the No. 1 and No. 2 boilers any more.
  • the load factor of the operation start boiler (No. 3 boiler) is not rapidly increased to a load factor equal to that of the other boilers 20. Since the load factor corresponding to the minimum combustion state S1 is limited to 20% in the present embodiment, the load factor of the No. 1 boiler and the No. 2 boiler need only be reduced by 10%. As a result, fluctuations in the load factor of the burning boiler 20 associated with the start of operation of the operation start boiler can be suppressed.
  • the control unit 4 of the unit control device 3 defines the load factor of the No. 1 boiler and No. 2 boiler in the reduction line L2. Reduce the load factor to As a result, when the load factor of the No. 1 boiler and the No. 2 boiler is reduced to the load factor specified in the can reduction line L2, the control unit 4 of the unit control device 3 has a priority order from the No. 1 boiler and the No. 2 boiler.
  • the low boiler 20 (No. 2 boiler in FIG. 5) is selected as the stop boiler, and the load factor of the stop boiler is reduced.
  • FIGS. 6 and 7 are flowcharts showing the process flow of the boiler system 1.
  • a unit steam amount U is set for each boiler 20 (step ST1), and a can increase line L1 and a can decrease line L2 are set (step ST2). Store in the area.
  • step ST3 the control unit 4 calculates a necessary steam amount and a deviation amount. That is, the required steam amount calculation unit 41 calculates the required steam amount according to the required load based on the steam pressure of the steam header 6, and the output steam amount calculation unit 42 calculates the output steam amount based on the combustion state of each boiler 20. Once calculated, the deviation calculating unit 43 calculates the deviation amount between the required steam amount and the output steam amount.
  • step ST4 the control unit 4 determines whether or not a change in the amount of steam is necessary.
  • the control unit 4 determines that the variation of the steam amount is not necessary when the deviation amount is zero, and determines that the variation of the steam amount is necessary when the deviation amount is not zero. If the change in the amount of steam is not necessary, the process returns to step ST3. If the change in the amount of steam is required, the process proceeds to step ST5.
  • step ST5 the control part 4 performs the fluctuation boiler selection process which selects the boiler 20 which fluctuates the amount of steam.
  • the control unit 4 outputs a combustion instruction to each boiler 20 and controls the amount of steam output from each boiler 20. That is, when the determination unit 45 determines that the variation in the steam amount with respect to the boiler 20 selected in step ST5 does not exceed the deviation amount, the output control unit 48 determines the steam amount of the boiler 20 based on the unit steam amount U or the like. Increase or decrease.
  • the control unit 4 returns to the process of step ST3 and repeats the processes of step ST3 to step ST6.
  • step ST11 the control unit 4 determines whether it is necessary to increase the steam amount or decrease the steam amount. This determination is performed based on the deviation amount calculated by the deviation calculation unit 43, and the control unit 4 determines that the steam amount needs to be increased when the required steam amount is larger, and the process proceeds to step ST12. Transfer. On the other hand, the control unit 4 determines that the steam amount needs to be reduced when the output steam amount is larger, and moves the process to step ST20.
  • step ST12 the control unit 4 determines whether or not it is necessary to increase the capacity. That is, the boiler selection unit 44 of the control unit 4 determines whether or not the load factor of the operating boiler 20 has exceeded the can increase line L1. When this determination is YES, control unit 4 moves the process to step ST13, and when NO, moves the process to ST15.
  • step ST13 the control unit 4 (boiler selection unit 44) selects the boiler 20 having the highest priority from the boilers 20 whose operation has been stopped as the operation start boiler.
  • the minimum combustion state S1 is set for the operation start boiler.
  • the control unit 4 (boiler selection unit 44) waits until the operation start boiler reaches a state where steaming is possible (step ST14), and combustion occurs when the operation start boiler reaches a state where steaming is possible.
  • the load factor of the other boilers 20 is reduced, that is, the load factor of the other boilers 20 that are already combusted is reduced as the load factor of the operation start boiler is increased from 0 to the minimum combustion state S1 ( Step ST15).
  • the control unit 4 ends the variable boiler selection process and moves the process to step ST6 in FIG.
  • step ST16 the control unit 4 (boiler selection unit 44) determines whether or not there is an operation start boiler.
  • the load factor is different between the operation start boiler and the other boilers 20 at the start of operation. Therefore, in order to equalize different load factors, after starting operation at a load factor corresponding to the minimum combustion state S1, the load factor of the operation start boiler is preferentially increased. Therefore, it can be said that the determination of whether or not there is an operation start boiler in step ST16 is a determination of whether or not the load factor is leveled between the operation start boiler and the other boilers 20.
  • the control unit 4 preferentially increases the load factor of the operation start boiler.
  • the priority load factor can be increased by an arbitrary method. The simplest method is to increase the load factor continuously only for the operation start boiler and not to change the load factor of the other boilers 20. .
  • the priority load factor increase is not limited to this method, and if it is not preferable to increase the load factor only for the same boiler several times in succession, the frequency of increasing the load factor of the operation start boiler may be changed to other methods.
  • the load factor between the operation start boiler and the other boilers 20 may be leveled by making the load factor of the boiler 20 higher than the frequency of increasing.
  • step ST18 the control unit 4 (boiler selection unit 44) determines whether or not the load factor of the operation start boiler has reached a predetermined load rate, that is, the load factor between the operation start boiler and another boiler 20. It is determined whether or not leveling has been achieved. When this determination is YES, the control unit 4 (boiler selection unit 44) clears the setting of the operation start boiler (step ST19). Thereby, it will be determined as NO in step ST16 thereafter, and the priority load factor will not be increased. When this process ends, the control unit 4 ends the variable boiler selection process and moves the process to step ST6 in FIG.
  • step ST16 the control part 4 (boiler selection part 44) will select the boiler 20 which raises a load factor so that the operating boiler 20 may become a uniform load factor (step ST20). .
  • step ST20 the control unit 4 ends the variable boiler selection process and moves the process to step ST6 in FIG.
  • step ST21 the control unit 4 (boiler selection unit 44) determines whether the load factor of the operating boiler 20 exceeds the reduction line L2. Determine whether or not. When this determination is YES, control unit 4 moves the process to step ST22, and when NO, moves the process to step ST25.
  • step ST22 the control unit 4 (boiler selection unit 44) selects the boiler 20 having the lowest priority from the operating boilers 20 as a stop boiler, Reduce the load factor.
  • the control unit 4 determines whether or not the load factor of the stop boiler has reached the load factor corresponding to the minimum combustion state S1 (step ST23), and the load factor of the stop boiler is minimum. Wait until the combustion state S1 is reached. After that, when the load factor of the stop boiler reaches the load factor corresponding to the minimum combustion state S1, the control unit 4 (boiler selection unit 44) sets the operation stop for the stop boiler, and other operations are performed along with this operation stop. The load factor of the boiler 20 is increased (step ST24). When this process ends, the control unit 4 ends the variable boiler selection process and moves the process to step ST6 in FIG.
  • step ST21 the control part 4 (boiler selection part 44) will select the boiler 20 which reduces a load factor so that the operating boiler 20 may become a uniform load factor (step). ST25).
  • the control unit 4 ends the variable boiler selection process and moves the process to step ST6 in FIG.
  • the boiler 20 is burned in a state where the boiler 20 has a certain surplus power in order to cope with a rapid load fluctuation (in particular, load increase). Therefore, a rapid load fluctuation steam amount (increase reference steam amount) as a surplus force for such a sudden load fluctuation is set in the boiler group 2, and the other boilers 20 are configured based on the sudden load fluctuation steam amount. It is good also as starting a driving
  • the difference between the maximum steam amount of the boiler 20 during combustion and the steam amount currently generated is referred to as “increased surplus steam amount”, and the increased surplus power in the plurality of boilers 20 during combustion.
  • the sum of the steam amounts is referred to as the “total increase surplus steam amount”.
  • the boiler 20 that has stopped operating has a surplus power equivalent to the maximum steam amount, but is in a stopped state and cannot immediately follow a rapid load fluctuation, so the increased surplus steam amount Becomes 0.
  • the operation of the stopped boiler 20 may be started based on the total increase surplus steam amount and the sudden load fluctuation steam amount. That is, on the condition that the total increase surplus steam amount becomes smaller than the sudden load fluctuation steam amount, the operation of a new boiler 20 may be started to ensure the surplus power.
  • the control unit 4 (remaining power calculation unit) of the number control device 3 calculates the increased remaining steam amount of each of the No. 1 boiler and the No. 2 boiler, and the calculated increased remaining steam amount of the No. 1 boiler and the No. 2 boiler. Calculate the total increase in surplus steam amount that is the sum of.
  • the control unit 4 (boiler selection unit 44) of the number control device 3 newly starts the No. 3 boiler. The remaining power (total increased surplus steam amount) in the boiler group 2 is secured.
  • a minimum combustion state S1 is set for each of the plurality of boilers 20.
  • the control part 4 was set as the structure which burns the boiler 20 which starts combustion newly by minimum combustion state S1, when increasing the number of the boilers 20 to burn.
  • variation of the steam quantity (load factor) of the other boiler 20 accompanying the increase in the new boiler 20 can be limited to the range of minimum combustion state S1, and the number of the boilers 20 which are burning increased.
  • the pressure fluctuation in the case can be suppressed.
  • a can increasing line L1 indicating a load factor as a reference for increasing the number of boilers to be burned in the boiler group 2 was set.
  • the control part 4 includes the boiler selection part 44 which increases the number of the boilers to be burned when the load factor of the boiler in the combustion state among the plurality of boilers 20 reaches the load factor defined by the can increase line L1. Consists of.
  • By appropriately setting such a can line L1 it is possible to suppress an increase in the number of boilers 20 and a subsequent decrease in the number of boilers 20 due to a decrease in required load (inhibition of excessive increase / decrease in the number of combustion units). It is possible to reduce purge loss, heat dissipation loss, start-up loss, etc. associated with the increase / decrease of 20 units. In this case as well, by causing the increasing boiler 20 to burn in the minimum combustion state S1, it is possible to suppress pressure fluctuation when the number of boilers 20 that are burning is increased.
  • An increase reference steam amount serving as a reference for increasing the number of boilers to be fired in the boiler group 2 was set. Then, the control unit 4 calculates an increase surplus steam amount that is a difference between the maximum steam amount and the output steam amount of each of the boilers 20 among the boilers 20 in a combustion state, and calculates the calculated increase.
  • the number of boilers 20 can be increased in a state where the remaining capacity in the boiler group 2 is secured. In this case as well, by causing the increasing boiler 20 to burn in the minimum combustion state S1, it is possible to suppress pressure fluctuation when the number of boilers 20 that are burning is increased.
  • a can reducing line L2 indicating a load factor as a standard for reducing the number of boilers to be burned in the boiler group 2 was set. Then, when the load factor of the boiler in the combustion state among the plurality of boilers 20 reaches the load factor defined by the can reducing line L2, the control unit 4 selects one of the boilers in the combustion state as a stop boiler.
  • the boiler selection unit 44 to be operated, and the load factor of the stop boiler is changed with respect to the required load, and when the load factor of the stop boiler is reduced to the load factor corresponding to the minimum combustion state S1, the output for stopping the combustion of the stop boiler And a control unit 46.
  • the present invention is not limited to the above-described embodiments, and can be modified as appropriate.
  • operation start boiler and a stop boiler is abbreviate
  • the load factor of the boiler 20 that continues combustion other than the operation start boiler and the stop boiler may be changed as necessary to ensure pressure stability in the entire boiler system 1.
  • the present invention is applied to the boiler system including the boiler group 2 including three or five boilers 20, but the present invention is not limited thereto. That is, the present invention may be applied to a boiler system including a boiler group including six or more boilers, or may be applied to a boiler system including a boiler group including two boilers.
  • steam amount output from each of the some boiler 20 was made into the output vapor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

 燃焼しているボイラの台数を増減させる際の圧力変動を抑えること。ボイラシステム(1)は、負荷率を連続的に変更して燃焼可能な複数のボイラ(20)を備えるボイラ群(2)と、要求負荷に応じてボイラ群(2)の燃焼状態を制御する制御部(4)と、を備え、制御部(4)は、燃焼させるボイラ(20)の台数を増加させる場合、新たに燃焼を開始するボイラ(20)を最小燃焼状態(S1)で燃焼させ、燃焼させるボイラ(20)の台数を減少させる場合、燃焼を停止するボイラ(20)を最小燃焼状態(S1)まで低下させた後に停止する。これにより、燃焼中のボイラ(20)の負荷率の変動幅を、最小燃焼状態(S1)に対応する分に抑える。

Description

ボイラシステム
 本発明は、ボイラシステムに関する。より詳しくは、燃焼状態の制御を比例制御で行うボイラシステムに関する。本願は、2013年1月8日に日本に出願された特願2013-001406号に基づき優先権を主張し、その内容をここに援用する。
 従来、複数のボイラを燃焼させて蒸気を発生させるボイラシステムとして、ボイラの燃焼量を連続的に増減させて蒸気の発生量を制御する、いわゆる比例制御方式のボイラシステムが提案されている。
 例えば、特許文献1には、燃焼している複数のボイラを均等な負荷率で運転させ、また、燃焼しているボイラの台数が増減した場合には、増減後に燃焼している全てのボイラを均等な負荷率で運転させる比例制御ボイラの制御方法が提案されている。
特開平11-132405号公報
 しかしながら、特許文献1で提案された手法のように、ボイラの台数を増減した後に燃焼している全てのボイラの負荷率を均等に制御したのでは、台数増減前後においてボイラシステム全体で供給する蒸気量のバランスが崩れ、圧力変動を招くおそれがある。
 この点、図10を参照して具体的に説明する。なお、図10において増缶ラインL1は、燃焼しているボイラを増加する負荷率を示し、一例として80%に設定されているものとする。また、減缶ラインL2は、燃焼しているボイラを減少する負荷率を示し、一例として40%に設定されているものとする。また、均等ラインL3は、燃焼しているボイラを増減した後における、燃焼している全てのボイラにおいて均等な負荷率を示す。
 まず、図10(A)~(C)にボイラの台数を増加する場合を示す。図10(A)において、1号機ボイラ及び2号機ボイラが燃焼しており、その負荷率の上昇が要求されている。この要求に伴い図10(B)に示すように、1号機ボイラ及び2号機ボイラの負荷率が増缶ラインL1に規定する負荷率に達すると、新たに3号機ボイラの運転を開始することになる。このとき、図10(C)に示すように、1号機ボイラから3号機ボイラの全てを均等ラインL3に示す均等な負荷率で運転すると、3号機ボイラの増加前に既に運転していた1号機ボイラ及び2号機ボイラの負荷率が大きく低下することになる。
 具体的には、図10(B)では、負荷率160%(=80×2)を1号機ボイラ及び2号機ボイラの2台のボイラで対応していたものを、図10(C)において1号機ボイラから3号機ボイラの3台のボイラで対応することになると、1号機ボイラから3号機ボイラの負荷率は53.3%(=160/3)となる。その結果、3号機ボイラの53%の上昇に対し、1号機ボイラ及び2号機ボイラの2台のボイラの負荷率が同時に80%から53%に27%も低下することになり、圧力変動の要因となる。
 続いて、図10(D)~(F)にボイラの台数を減少する場合を示す。図10(D)において、1号機ボイラから3号機ボイラが燃焼しており、その負荷率の低下が要求されている。この要求に伴い図10(E)に示すように、1号機ボイラから3号機ボイラの負荷率が減缶ラインL2に規定する負荷率に達すると、3号機ボイラの運転を停止することになる。このとき、図10(F)に示すように、1号機ボイラ及び2号機ボイラを均等ラインL3に示す均等な負荷率で運転すると、3号機ボイラの停止前から運転していた1号機ボイラ及び2号機ボイラの負荷率が大きく上昇することになる。
 具体的には、図10(E)では、負荷率120%(=40×3)を1号機ボイラから3号機ボイラの3台のボイラで対応していたものを、図10(F)において1号機ボイラ及び2号機ボイラの2台のボイラで対応することになると、1号機ボイラ及び2号機ボイラの負荷率は60%(=120/2)となる。その結果、3号機ボイラの40%の低下に対し、1号機ボイラ及び2号機ボイラの2台のボイラの負荷率が同時に40%から60%に20%も上昇することになり、圧力変動の要因となる。
 本発明は、このような問題に鑑みてなされたものであり、燃焼しているボイラの台数を増減させる際の圧力変動を抑えるボイラシステムを提供することを目的とする。
 本発明は、負荷率を連続的に変更して燃焼可能な複数のボイラを備えるボイラ群と、要求負荷に応じて前記ボイラ群の燃焼状態を制御する制御部と、を備えるボイラシステムであって、前記複数のボイラには、最も小さい燃焼状態における蒸気量である最小蒸気量が設定されており、前記制御部は、燃焼させるボイラの台数を増加させる場合、新たに燃焼を開始するボイラを最小蒸気量で燃焼させるボイラシステムに関する。
 また、前記ボイラ群には、燃焼させるボイラの台数を増加させる基準となる負荷率を示す増缶ラインが設定されており、前記制御部は、前記複数のボイラのうち燃焼状態にあるボイラの負荷率が、前記増缶ラインが規定する負荷率に到達すると、燃焼させるボイラの台数を増加させるボイラ選択部、を備えることが好ましい。
 また、前記ボイラ群には、燃焼させるボイラの台数を増加させる基準となる増加基準蒸気量が設定されており、前記制御部は、前記複数のボイラのうち燃焼状態にあるボイラについて、該ボイラそれぞれの最大蒸気量と出力蒸気量との差である増加余力蒸気量を算出すると共に、算出された前記増加余力蒸気量の和である合計増加余力蒸気量を算出する余力算出部と、前記余力算出部により算出された前記合計増加余力蒸気量が前記増加基準蒸気量を下回った場合に、燃焼させるボイラの台数を増加させるボイラ選択部と、を備えることが好ましい。
 また、前記ボイラ群には、燃焼させるボイラの台数を減少させる基準となる負荷率を示す減缶ラインが設定されており、前記制御部は、前記複数のボイラのうち燃焼状態にあるボイラの負荷率が前記減缶ラインが規定する負荷率に到達すると、燃焼状態にあるボイラのうち1のボイラを停止ボイラとして選択するボイラ選択部と、要求負荷に対して前記停止ボイラの負荷率を変更すると共に、前記停止ボイラの負荷率が前記最も小さい燃焼状態に対応する負荷率まで低下すると、該停止ボイラの燃焼を停止する出力制御部と、を備えることが好ましい。
 本発明によれば、燃焼しているボイラの台数が増減した場合であっても圧力変動を抑えることができる。
本発明の一実施形態に係るボイラシステムの全体構成を示す図である。 上記実施形態に係るボイラ群の概略を示す図である。 上記実施形態に係る台数制御装置の機能構成を示すブロック図である。 上記実施形態のボイラシステムの動作の概略を示す図である。 上記実施形態のボイラシステムの動作の概略を示す図である。 上記実施形態のボイラシステムの処理の流れを示すフローチャートである。 上記実施形態のボイラシステムの処理の流れを示すフローチャートである。 別実施形態におけるボイラ群の概略を示す図である。 上記別実施形態のボイラシステムの動作の概略を示す図である。 従来のボイラシステムの動作の概略を示す図である。
 以下、本発明のボイラシステムの好ましい実施形態について、図面を参照しながら説明する。
 まず、本発明のボイラシステム1の全体構成につき、図1を参照しながら説明する。
 ボイラシステム1は、複数(5台)のボイラ20を含むボイラ群2と、これら複数のボイラ20において生成された蒸気を集合させる蒸気ヘッダ6と、この蒸気ヘッダ6の内部の圧力を測定する蒸気圧センサ7と、ボイラ群2の燃焼状態(負荷率)を制御する制御部4を有する台数制御装置3と、を備える。
 ボイラ群2は、負荷機器としての蒸気使用設備18に供給する蒸気を生成する。
 蒸気ヘッダ6は、蒸気管11を介してボイラ群2を構成する複数のボイラ20に接続されている。この蒸気ヘッダ6の下流側は、蒸気管12を介して蒸気使用設備18に接続されている。
 蒸気ヘッダ6は、ボイラ群2で生成された蒸気を集合させて貯留することにより、複数のボイラ20の相互の圧力差及び圧力変動を調整し、圧力が調整された蒸気を蒸気使用設備18に供給する。
 蒸気圧センサ7は、信号線13を介して、台数制御装置3に電気的に接続されている。蒸気圧センサ7は、蒸気ヘッダ6の内部の蒸気圧(ボイラ群2で発生した蒸気の圧力)を測定し、測定した蒸気圧に係る信号(蒸気圧信号)を、信号線13を介して台数制御装置3に送信する。
 台数制御装置3は、信号線16を介して、複数のボイラ20と電気的に接続されている。この台数制御装置3は、蒸気圧センサ7により測定される蒸気ヘッダ6の内部の蒸気圧に基づいて、各ボイラ20の燃焼状態を制御する。台数制御装置3の詳細については、後述する。
 以上のボイラシステム1は、ボイラ群2で発生させた蒸気を、蒸気ヘッダ6を介して、蒸気使用設備18に供給可能とされている。
 ボイラシステム1において要求される負荷(要求負荷)は、蒸気使用設備18における蒸気消費量である。台数制御装置3は、この蒸気消費量の変動に対応して生じる蒸気ヘッダ6の内部の蒸気圧の変動を、蒸気圧センサ7が測定する蒸気ヘッダ6の内部の蒸気圧(物理量)に基づいて算出し、ボイラ群2を構成する各ボイラ20の燃焼量を制御する。
 具体的には、蒸気使用設備18の需要の増大により要求負荷(蒸気消費量)が増加し、蒸気ヘッダ6に供給される蒸気量(後述の出力蒸気量)が不足すれば、蒸気ヘッダ6の内部の蒸気圧が減少することになる。一方、蒸気使用設備18の需要の低下により要求負荷(蒸気消費量)が減少し、蒸気ヘッダ6に供給される蒸気量が過剰になれば、蒸気ヘッダ6の内部の蒸気圧が増加することになる。従って、ボイラシステム1は、蒸気圧センサ7により測定された蒸気圧の変動に基づいて、要求負荷の変動をモニターすることができる。そして、ボイラシステム1は、蒸気ヘッダ6の蒸気圧に基づいて、蒸気使用設備18の消費蒸気量(要求負荷)に応じて必要とされる蒸気量である必要蒸気量を算出する。
 ここで、本実施形態のボイラシステム1を構成する複数のボイラ20について説明する。図2は、本実施形態に係るボイラ群2の概略を示す図である。
 本実施形態のボイラ20は、燃焼量(負荷率)を連続的に変更して燃焼可能な比例制御ボイラからなる。
 比例制御ボイラとは、少なくとも、最小燃焼状態S1(例えば、最大燃焼量の20%の燃焼量における燃焼状態)から最大燃焼状態S2の範囲で、燃焼量が連続的に制御可能とされているボイラである。比例制御ボイラは、例えば、燃料をバーナに供給するバルブや、燃焼用空気を供給するバルブの開度(燃焼比)を制御することにより、燃焼量を調整するようになっている。
 また、燃焼量を連続的に制御するとは、後述のローカル制御部22における演算や信号がデジタル方式とされて段階的に取り扱われる場合(例えば、ボイラ20の出力(燃焼量)が1%刻みで制御される場合)であっても、事実上連続的に出力を制御可能な場合を含む。
 本実施形態では、ボイラ20の燃焼停止状態S0と最小燃焼状態S1との間の燃焼状態の変更は、ボイラ20(バーナ)の燃焼をオン/オフすることで制御される。そして、最小燃焼状態S1から最大燃焼状態S2の範囲においては、燃焼量が連続的に制御可能となっている。
 より具体的には、複数のボイラ20それぞれには、変動可能な蒸気量の単位である単位蒸気量Uが設定されている。これにより、ボイラ20は、最小燃焼状態S1から最大燃焼状態S2の範囲においては、単位蒸気量U単位で、蒸気量を変更可能となっている。なお、以下では、ボイラ20の最小燃焼状態S1における蒸気量を最小蒸気量と呼び、ボイラ20の最大燃焼状態S2における蒸気量を最大蒸気量と呼ぶ。
 単位蒸気量Uは、最大蒸気量に応じて適宜設定できるが、ボイラシステム1における出力蒸気量の必要蒸気量に対する追従性を向上させる観点から、ボイラ20の最大蒸気量の0.1%~20%に設定されることが好ましく、1%~10%に設定されることがより好ましい。
 尚、出力蒸気量とは、ボイラ群2により出力される蒸気量を示し、この出力蒸気量は、複数のボイラ20それぞれから出力される蒸気量の合計値により表される。
 また、複数のボイラ20には、それぞれ優先順位が設定されている。優先順位は、燃焼指示や燃焼停止指示を行うボイラ20を選択するために用いられる。優先順位は、例えば整数値を用いて、数値が小さいほど優先順位が高くなるよう設定することができる。図2に示すように、ボイラ20の1号機ボイラから5号機ボイラのそれぞれに「1」~「5」の優先順位が割り当てられている場合、1号機ボイラの優先順位が最も高く、5号機ボイラの優先順位が最も低い。この優先順位は、通常の場合、後述の制御部4の制御により、所定の時間間隔(例えば、24時間間隔)で変更される。
 以上のボイラ群2には、燃焼するボイラ20の台数を増加する負荷率(燃焼量)を示す増缶ラインL1、及び燃焼するボイラ20の台数を減少する負荷率を示す減缶ラインL2が設定されている。必要蒸気量の変動に伴い燃焼しているボイラ20の負荷率が上昇して増缶ラインL1に規定する負荷率を超えると、新たなボイラ20(バーナ)の燃焼がオンにされ、燃焼するボイラ20の台数が増加する(増缶)。また、必要蒸気量の変動に伴い燃焼しているボイラ20の負荷率が低下して減缶ラインに規定する負荷率を下回ると、燃焼しているボイラ20のうちの1のボイラ20(バーナ)の燃焼がオフにされ、燃焼するボイラ20の台数が減少する(減缶)。
 増缶ラインL1及び減缶ラインL2は適宜設定することができるが、燃焼するボイラ20の台数増減を抑制可能な値に設定することが好ましい。本実施形態では、80%の負荷率に増缶ラインL1を設定し、40%の負荷率に減缶ラインL2を設定している。増缶ラインL1及び減缶ラインL2を適切に設定することで、台数増減を抑制でき(燃焼台数増加過多抑制)、結果、パージ損失、放熱損失及び立上損失等を低減することができる。
 また、増缶ラインL1及び減缶ラインL2は、ボイラ20の運転効率に応じて設定することとしてもよく、このような観点から設定することで、燃焼しているボイラ20の負荷率が上昇しボイラ群2の運転効率が低下すると(増缶ライン)、新たなボイラ20の運転を開始し、ボイラ群2全体における運転効率を維持することができ、同様に、燃焼しているボイラ20の負荷率が減少しボイラ群2の運転効率が低下すると(減缶ライン)、1のボイラ20の負荷率を最小燃焼状態S1に対応する負荷率まで低下した後に当該1のボイラ20の運転を停止することでボイラ群2全体における運転効率を維持することができる。
 次に、本実施形態のボイラシステム1による複数のボイラ20の燃焼状態の制御の詳細について説明する。
 台数制御装置3は、蒸気圧センサ7からの蒸気圧信号に基づいて、要求負荷に応じたボイラ群2の必要燃焼量、及び必要燃焼量に対応する各ボイラ20の燃焼状態を算出し、各ボイラ20(後述のローカル制御部22)に台数制御信号を送信する。この台数制御装置3は、図1に示すように、記憶部5と、制御部4と、を備える。
 記憶部5は、台数制御装置3(制御部4)の制御により各ボイラ20に対して行われた指示の内容や、各ボイラ20から受信した燃焼状態等の情報、複数のボイラ20の優先順位の設定の情報、優先順位の変更(ローテーション)に関する設定の情報等を記憶する。
 制御部4は、信号線16を介して各ボイラ20に各種の指示を行ったり、各ボイラ20から各種のデータを受信したりして、5台のボイラ20の燃焼状態や優先順位を制御する。各ボイラ20は、台数制御装置3から燃焼状態の変更指示の信号を受けると、その指示に従って当該ボイラ20を制御する。
 ボイラ20は、図1に示すように、燃焼が行われるボイラ本体21と、ボイラ20の燃焼状態を制御するローカル制御部22と、を備える。
 ローカル制御部22は、要求負荷に応じてボイラ20の燃焼状態を変更させる。具体的には、ローカル制御部22は、信号線16を介して台数制御装置3から送信される台数制御信号に基づいて、ボイラ20の燃焼量を制御し負荷率を変動させることで、燃焼状態を変更する。
 また、ローカル制御部22は、台数制御装置3で用いられる信号を、信号線16を介して台数制御装置3に送信する。台数制御装置3で用いられる信号としては、ボイラ20の実際の燃焼状態、及びその他のデータが挙げられる。
 図3は、制御部4の構成を示す機能ブロック図である。制御部4は、必要蒸気量算出部41と、出力蒸気量算出部42と、偏差算出部43と、ボイラ選択部44と、判定部45と、出力制御部46と、を備える。
 必要蒸気量算出部41は、蒸気ヘッダ6の蒸気圧に基づいて、要求負荷に応じた必要蒸気量を算出する。
 出力蒸気量算出部42は、ローカル制御部22から送信される各ボイラ20の燃焼状態に基づいて、ボイラ群2により出力される蒸気量である出力蒸気量を算出する。
 偏差算出部43は、必要蒸気量と出力蒸気量との偏差量を算出する。
 また、偏差算出部43は、後述の出力制御部46により、選択されたボイラ20の蒸気量が変更された場合には、必要蒸気量と、蒸気量変更後のボイラ群2の出力蒸気量と、の偏差量を算出する。
 ボイラ選択部44は、必要蒸気量に変動があった場合に蒸気量を変更させるボイラ20を選択する。
 具体的には、ボイラ選択部44は、必要蒸気量が出力蒸気量よりも大きい場合、複数のボイラ20のうち負荷率の低いボイラ20を選択し、必要蒸気量が出力蒸気量よりも小さい場合、複数のボイラ20のうち負荷率の高いボイラ20を選択する。また、ボイラ選択部44は、複数のボイラ20の負荷率が等しい場合、必要蒸気量が出力蒸気量よりも大きいと最も優先順位の高いボイラ20を選択し、必要蒸気量が出力蒸気量よりも小さいと最も優先順位の低いボイラ20を選択する。
 判定部45は、偏差算出部43により算出された偏差量が単位蒸気量U以上であるかを判定する。
 出力制御部46は、判定部45により偏差量が単位蒸気量U以上であると判定された場合に、ボイラ選択部44により選択されたボイラ20の蒸気量を変更させる。具体的には、出力制御部46は、必要蒸気量が出力蒸気量よりも大きい場合、ボイラ選択部44により選択されたボイラの蒸気量を単位蒸気量U分増加させる。また、出力制御部46は、必要蒸気量が出力蒸気量よりも小さい場合、ボイラ選択部44により選択されたボイラの蒸気量を単位蒸気量U分減少させる。
 また、詳細については後述するものの、ボイラ選択部44は、燃焼している複数のボイラ20の負荷率が増缶ラインL1に規定する負荷率以上に(又は同負荷率より高く)なると、停止しているボイラ20のうち最も優先順位の高いボイラ20を、新たに運転を介するボイラ(以下、「運転開始ボイラ」と呼ぶ)として選択する。そして、出力制御部46は、ボイラ選択部44により運転開始ボイラが選択されると、当該運転開始ボイラの運転を開始する。
 このとき、出力制御部46は、運転開始ボイラを最小燃焼状態S1に対応する負荷率で燃焼させる。
 また、ボイラ選択部44は、燃焼している複数のボイラ20の負荷率が減缶ラインL2に規定する負荷率以下(又は同負荷率より低く)なると、燃焼しているボイラ20のうち最も優先順位の低いボイラ20を、運転を停止するボイラ(以下、「停止ボイラ」と呼ぶ)として選択する。そして、出力制御部46は、ボイラ選択部44により停止ボイラが選択されると、当該停止ボイラの負荷率を減缶ラインL2に規定する負荷率から最小燃焼状態S1に対応する負荷率まで低下させた後に、停止ボイラの運転を停止する。
 以上、本実施形態のボイラシステム1の構成について説明した。続いて、本実施形態のボイラシステム1によるボイラ20の台数増減方法の詳細について、図4及び図5を参照して説明する。
 図4は、ボイラ20を増加する(運転開始ボイラの運転を開始する)際の動作を示し、図5は、ボイラ20を減少する(停止ボイラの運転を停止する)際の動作を示す。なお、図4及び図5では、説明の便宜上、ボイラ群2を3台のボイラ20で構成しているが、4台又は5台以上のボイラ20で構成した場合であっても同様の動作によりボイラ20の台数を増減することができる。
 初めに、図4を参照して、ボイラ20を増加する際の動作について説明する。
 図4(1)を参照して、1号機ボイラから3号機ボイラのうち、1号機ボイラのみが燃焼し、2号機ボイラ及び3号機ボイラが運転を停止している。このとき、蒸気使用設備18における蒸気使用により必要蒸気量が増加すると、台数制御装置3の制御部4は、1号機ボイラの負荷率を上昇させて、出力蒸気量を増加する。
 その結果、図4(2)に示すように、1号機ボイラの負荷率が増缶ラインL1に規定する負荷率まで上昇すると、台数制御装置3の制御部4は、停止している2号機ボイラ及び3号機ボイラの中から優先順位の最も高いボイラ20を運転開始ボイラとして選択する。図4では、2号機ボイラが運転開始ボイラとして選択されたものとする。そして、台数制御装置3の制御部4は、新たに2号機ボイラの運転を開始して出力蒸気量を必要蒸気量に追従させる。
 このとき、運転開始に伴いこれまで蒸気量が0であった2号機ボイラから蒸気が生成されることになるため、必要蒸気量と出力蒸気量とを一致させるべく1号機ボイラの蒸気量を減少(負荷率を低下)させる必要がある。
 ここで、従来のボイラ増加方法では、図10(B)に示すように、運転開始ボイラの運転開始に伴い、全てのボイラ20が均等な負荷率となるように負荷率を変動させることとしていた。そのため、運転開始ボイラの負荷率は、0から他のボイラ20と均等な負荷率まで急激に上昇し、また、他のボイラ20の負荷率は、急激に上昇した運転開始ボイラの負荷率分だけ低下してしまっていた。
 この点、本実施形態のボイラシステム1では、図4(3)に示すように、運転開始ボイラ(2号機ボイラ)を最小燃焼状態S1に対応する負荷率(本実施形態では20%)にとどめることとしている。そのため、運転開始ボイラの運転開始に伴い、1号機ボイラ1台のみの負荷率を20%低下させればよいことになり、燃焼しているボイラ20の負荷率の変動を抑えることができる。
 その後、更に必要蒸気量が増加した場合には、台数制御装置3の制御部4は、負荷率の低い2号機ボイラから優先して負荷率を上昇させ、図4(4)に示すように1号機ボイラと2号機ボイラとの間で負荷率を平準化する。もちろん、1号機ボイラと2号機ボイラとの間で負荷率を平準化する前であっても1号機ボイラの負荷率を変更することとしてもよい。
 更に必要蒸気量が増加し図4(5)に示すように、1号機ボイラ及び2号機ボイラの負荷率が増缶ラインL1に規定する負荷率まで上昇すると、台数制御装置3の制御部4は、1号機ボイラ及び2号機ボイラの負荷率をこれ以上上昇させることなく、新たに3号機ボイラの運転を開始する。
 このとき、本実施形態のボイラシステム1では、図4(6)に示すように、運転開始ボイラ(3号機ボイラ)の負荷率を他のボイラ20と均等な負荷率まで急激に上昇させることなく、最小燃焼状態S1に対応する負荷率(本実施形態では20%)にとどめることとしているため、1号機ボイラ及び2号機ボイラの負荷率をそれぞれ10%低下させればよいことになる。その結果、運転開始ボイラの運転開始に伴う燃焼しているボイラ20の負荷率の変動を抑えることができる。
 続いて、図5を参照して、ボイラ20を減少する際の動作について説明する。
 図5(1)では、1号機ボイラから3号機ボイラの全てが燃焼している。このとき、蒸気使用設備18における蒸気使用が減り必要蒸気量が減少すると、台数制御装置3の制御部4は、1号機ボイラの負荷率を低下させて、出力蒸気量を減少する。
 その結果、図5(2)に示すように、1号機ボイラから3号機ボイラの負荷率が減缶ラインL2に規定する負荷率まで低下すると、台数制御装置3の制御部4は、1号機ボイラから3号機ボイラの中から優先順位の最も低いボイラ20を停止ボイラとして選択する。図5では、3号機ボイラが停止ボイラとして選択されたものとする。そして、台数制御装置3の制御部4は、その後必要蒸気量が減少すると、3号機ボイラ(停止ボイラ)の負荷率を減缶ラインL2から低下させる。
 その後、図5(3)に示すように、3号機ボイラの負荷率のみが減缶ラインL2から最小燃焼状態S1に対応する負荷率まで低下すると、3号機ボイラの負荷率を連続的に低下させることができなくなるため、台数制御装置3の制御部4は、3号機ボイラの運転を停止する。
 このとき、運転停止に伴いこれまで単位蒸気量Uに基づき連続的に負荷率が変動(低下)していた3号機ボイラの負荷率が0になり、3号機ボイラから蒸気が生成されないことになるため、必要蒸気量と出力蒸気量とを一致させるべく1号機ボイラ及び2の蒸気量を増加(負荷率を上昇)させる必要がある。
 ここで、従来のボイラ減少方法では、図10(E)に示すように、減缶ラインL2に規定する負荷率になると直ちに停止ボイラの運転を停止することとしていたため、停止ボイラの負荷率は、減缶ラインL2に規定する負荷率(40%)から0まで急激に低下していた。そのため、他のボイラ20は、停止ボイラの停止に伴い40%分負荷率を上昇させなければならず、図10(E)では、2台のボイラ20の負荷率が同時に20%も上昇してしまっていた。
 この点、本実施形態のボイラシステム1では、停止ボイラ(3号機ボイラ)を減缶ラインL2から最小燃焼状態S1に対応する負荷率まで低下させた後に、停止ボイラの運転を停止させることとしている。そのため、図5(4)に示すように、3号機ボイラの運転停止に伴う1号機ボイラ及び2号機ボイラの負荷率の上昇は、最小燃焼状態S1に対応する負荷率分で足り、本実施形態では、1号機ボイラ及び2号機ボイラの負荷率をそれぞれ10%(=最小燃焼状態S1(20%)/2台)上昇させればよいことになり、燃焼しているボイラ20の負荷率の変動を抑えることができる。
 その後、更に必要蒸気量が減少した場合には、図5(5)に示すように、台数制御装置3の制御部4は、1号機ボイラ及び2号機ボイラの負荷率を減缶ラインL2に規定する負荷率まで低下させる。その結果、1号機ボイラ及び2号機ボイラの負荷率が減缶ラインL2に規定する負荷率まで低下すると、台数制御装置3の制御部4は、1号機ボイラ及び2号機ボイラの中から優先順位の低いボイラ20(図5では2号機ボイラ)を停止ボイラとして選択し、停止ボイラの負荷率を低下させる。
 その後、図5(6)に示すように、2号機ボイラの負荷率のみが減缶ラインL2から最小燃焼状態S1に対応する負荷率まで低下すると、2号機ボイラの運転を停止する。
 このとき、2号機ボイラの運転停止に伴い1号機ボイラの負荷率を上昇させる必要があるが、2号機ボイラを減缶ラインL2から最小燃焼状態S1に対応する負荷率まで低下させた後に停止しているため、図5(7)に示すように、1号機ボイラの1台のみ負荷率を20%上昇させればよいことになる。その結果、停止ボイラの運転停止に伴う燃焼しているボイラ20の負荷率の変動を抑えることができる。
 続いて、本実施形態のボイラシステム1の動作を実現するための処理の流れについて、図6及び図7を参照して説明する。図6及び図7は、ボイラシステム1の処理の流れを示すフローチャートである。
 初めに、処理の前準備として各ボイラ20に対して単位蒸気量Uを設定し(ステップST1)、また、増缶ラインL1及び減缶ラインL2を設定(ステップST2)し、記憶部5の所定の領域に記憶する。
 続いて、ステップST3において、制御部4は、必要蒸気量及び偏差量を算出する。即ち、必要蒸気量算出部41が蒸気ヘッダ6の蒸気圧に基づいて要求負荷に応じた必要蒸気量を算出し、出力蒸気量算出部42が各ボイラ20の燃焼状態に基づいて出力蒸気量を算出すると、偏差算出部43は、必要蒸気量と出力蒸気量との偏差量を算出する。
 続いて、ステップST4において、制御部4は、蒸気量の変動が必要であるか否かを判定する。本実施形態では、制御部4は、偏差量が0である場合に蒸気量の変動が必要でないと判定し、偏差量が0でない場合に蒸気量の変動が必要であると判定する。蒸気量の変動が必要でない場合には、ステップST3の処理に戻り、蒸気量の変動が必要な場合には、続いてステップST5の処理に移る。
 ステップST5において、制御部4は、蒸気量を変動するボイラ20を選択する変動ボイラ選択処理を行う。なお、変動ボイラ選択処理の詳細については、図7で後述する。
 続いて、ステップST6において、制御部4は、各ボイラ20へ燃焼指示を出力し、各ボイラ20から出力される蒸気量を制御する。即ち、判定部45が、ステップST5において選択されたボイラ20に対する蒸気量の変動が偏差量を超えないと判定すると、出力制御部48は、このボイラ20の蒸気量を単位蒸気量U等に基づき増加又は減少させる。
 ステップST6の処理が終わると、制御部4は、ステップST3の処理に戻り、ステップST3~ステップST6の処理を繰り返す。
 次に、ステップST5における変動ボイラ選択処理の詳細について、図7を参照して説明する。
 初めに、ステップST11において、制御部4は、蒸気量を増加する必要があるか、蒸気量を減少する必要があるかを判定する。この判定は、偏差算出部43が算出した偏差量に基づいて行われ、制御部4は、必要蒸気量の方が大きい場合に蒸気量を増加する必要があると判定し、処理をステップST12に移す。一方、制御部4は、出力蒸気量の方が大きい場合に蒸気量を減少する必要があると判定し、処理をステップST20に移す。
 蒸気量を増加する必要がある場合、ステップST12において、制御部4は、増缶する必要があるか否かを判定する。即ち、制御部4のボイラ選択部44は、運転しているボイラ20の負荷率が増缶ラインL1を超えたか否かを判定する。この判定がYESのときは、制御部4は、処理をステップST13に移し、NOのときは、処理をST15に移す。
 増缶する必要がある場合、ステップST13において、制御部4(ボイラ選択部44)は、運転を停止しているボイラ20の中から優先順位の最も高いボイラ20を運転開始ボイラとして選択し、この運転開始ボイラに対して最小燃焼状態S1を設定する。続いて、制御部4(ボイラ選択部44)は、運転開始ボイラが給蒸可能な状態に到達したタイミングとなるまで待機し(ステップST14)、運転開始ボイラが給蒸可能な状態に到達すると燃焼している他のボイラ20の負荷率を低下、即ち運転開始ボイラの負荷率が0から最小燃焼状態S1に上昇したことに伴い、既に燃焼している他のボイラ20の負荷率を低下させる(ステップST15)。この処理が終了すると、制御部4は、変動ボイラ選択処理を終了し、図6のステップST6に処理を移す。
 他方、増缶する必要がない場合、ステップST16において、制御部4(ボイラ選択部44)は、運転開始ボイラが存在するか否かを判定する。本実施形態では、運転開始ボイラの運転を、最小燃焼状態S1に対応する負荷率で開始するため、運転開始時には、運転開始ボイラと他のボイラ20との間で負荷率が異なっている。そこで、異なる負荷率を平準化させるべく、最小燃焼状態S1に対応する負荷率で運転を開始した後は、運転開始ボイラの負荷率を優先して上昇させる。そのため、ステップST16における運転開始ボイラが存在するか否かの判定は、運転開始ボイラとその他のボイラ20との間で負荷率の平準化がはかられたか否かの判定であるといえる。
 運転開始ボイラが存在する場合、ステップST17において、制御部4(ボイラ選択部44)は、運転開始ボイラの負荷率を優先して上昇させる。なお、優先した負荷率の上昇は、任意の方法により行うことができ、最も簡易には運転開始ボイラのみ連続して負荷率を上昇させ、他のボイラ20の負荷率を変動させない方法が考えられる。もちろん、優先した負荷率の上昇は、この方法に限られず、同じボイラのみ複数回連続して負荷率を上昇させることが好ましくない場合には、運転開始ボイラの負荷率を上昇させる頻度を他のボイラ20の負荷率を上昇させる頻度よりも高くすることで、運転開始ボイラと他のボイラ20との間の負荷率の平準化をはかることとしてもよい。
 続いて、ステップST18において、制御部4(ボイラ選択部44)は、運転開始ボイラの負荷率が所定負荷率に到達したか否か、即ち運転開始ボイラと他のボイラ20との間で負荷率の平準化がはかられたか否かを判定する。この判定がYESのときは、制御部4(ボイラ選択部44)は、運転開始ボイラの設定をクリアする(ステップST19)。これにより、以降ステップST16においてNOと判定されることになり、優先した負荷率の上昇が行われなくなる。この処理が終了すると、制御部4は、変動ボイラ選択処理を終了し、図6のステップST6に処理を移す。
 ステップST16においてNOと判定されると、制御部4(ボイラ選択部44)は、運転しているボイラ20が均一な負荷率になるように負荷率を上昇させるボイラ20を選択する(ステップST20)。この処理が終了すると、制御部4は、変動ボイラ選択処理を終了し、図6のステップST6に処理を移す。
 ステップST11において、蒸気量を減少する必要があると判定された場合、ステップST21において、制御部4(ボイラ選択部44)は、運転しているボイラ20の負荷率が減缶ラインL2を超えたか否かを判定する。この判定がYESのときは、制御部4は、処理をステップST22に移し、NOのときは、処理をステップST25に移す。
 減缶する必要がある場合、ステップST22において、制御部4(ボイラ選択部44)は、運転しているボイラ20の中から優先順位の最も低いボイラ20を停止ボイラとして選択し、この停止ボイラの負荷率を低下する。
 続いて、制御部4(ボイラ選択部44)は、停止ボイラの負荷率が最小燃焼状態S1に対応する負荷率に到達したか否かを判定し(ステップST23)、停止ボイラの負荷率が最小燃焼状態S1に到達するまで待機する。その後、停止ボイラの負荷率が最小燃焼状態S1に対応する負荷率に到達すると、制御部4(ボイラ選択部44)は、停止ボイラに対して運転停止を設定し、この運転停止に伴い他のボイラ20の負荷率を上昇させる(ステップST24)。この処理が終了すると、制御部4は、変動ボイラ選択処理を終了し、図6のステップST6に処理を移す。
 また、ステップST21においてNOと判定されると、制御部4(ボイラ選択部44)は、運転しているボイラ20が均一な負荷率になるように負荷率を低下させるボイラ20を選択する(ステップST25)。この処理が終了すると、制御部4は、変動ボイラ選択処理を終了し、図6のステップST6に処理を移す。
 以上、本発明のボイラシステム1の好ましい一実施形態について説明した。ところで、上記実施形態のボイラシステム1では、ボイラ20の負荷率が増缶ラインL1に対応する負荷率に達すると他のボイラ20の運転を開始することとしている。この点、他のボイラ20の運転を開始する基準については、増缶ラインL1に限られず、他の基準を採用することとしてもよい。
 ボイラシステム1では、急激な負荷変動(特に、負荷増加)に対応するため、ボイラ20に対して一定の余力を持たせた状態で燃焼させることが好ましい。そこで、ボイラ群2に、このような急激な負荷変動に対する余力としての急負荷変動蒸気量(増加基準蒸気量)を設定しておき、この急負荷変動蒸気量に基づいて、他のボイラ20の運転を開始することとしてもよい。
 ここで、図8を参照して、燃焼中のボイラ20の最大蒸気量と現在生成している蒸気量との差を「増加余力蒸気量」と呼び、燃焼中の複数のボイラ20における増加余力蒸気量の和を「合計増加余力蒸気量」と呼ぶ。なお、運転を停止しているボイラ20では、最大蒸気量分の余力を有することになるが、停止している状態であり急激な負荷変動に対して早急な追従ができないため、増加余力蒸気量は0となる。
 ボイラシステム1では、このような合計増加余力蒸気量と急負荷変動蒸気量とに基づいて、停止しているボイラ20の運転を開始することとしてもよい。即ち、合計増加余力蒸気量が急負荷変動蒸気量よりも小さくなることを条件に、新たなボイラ20の運転を開始し、余力を確保することとしてもよい。
 このような合計増加余力蒸気量及び急負荷変動蒸気量を用いたボイラ20の増加について図9を参照して説明する。
 図9(1)を参照して、1号機ボイラから3号機ボイラのうち、1号機ボイラ及び2号機ボイラが燃焼し、3号機ボイラが運転を停止している。このとき、蒸気使用設備18における蒸気使用により必要蒸気量が増加すると、台数制御装置3の制御部4は、1号機ボイラ及び2号機ボイラの負荷率を上昇させて、出力蒸気量を増加する。
 1号機ボイラ及び2号機ボイラの負荷率が上昇すると、1号機ボイラ及び2号機ボイラの余力が小さくなる。そこで、台数制御装置3の制御部4(余力算出部)は、1号機ボイラ及び2号機ボイラのそれぞれの増加余力蒸気量を算出すると共に、算出した1号機ボイラ及び2号機ボイラの増加余力蒸気量の和である合計増加余力蒸気量を算出する。その結果、図9(2)に示すように、合計増加余力蒸気量が急負荷変動蒸気量よりも小さくなると、台数制御装置3の制御部4(ボイラ選択部44)は、新たに3号機ボイラの運転を開始してボイラ群2における余力(合計増加余力蒸気量)を確保する。
 このとき、運転を開始した3号機ボイラの負荷率を最小燃焼状態S1に対応する負荷率に抑えることで、図9(3)に示すように、1号機ボイラ及び2号機ボイラの負荷率の低下を抑えることができ、3号機ボイラの運転開始に伴う燃焼しているボイラ20の負荷率の変動を抑えることができる。
 以上説明したボイラシステム1によれば、以下のような効果を奏する。
 (1)複数のボイラ20にそれぞれ最小燃焼状態S1を設定した。そして、制御部4は、燃焼させるボイラ20の台数を増加させる場合に、新たに燃焼を開始するボイラ20を最小燃焼状態S1で燃焼させる構成とした。これにより、新たなボイラ20の増加に伴う他のボイラ20の蒸気量(負荷率)の変動を、最小燃焼状態S1の範囲に限定することができ、燃焼しているボイラ20の台数を増加した場合の圧力変動を抑えることができる。
 (2)ボイラ群2に燃焼させるボイラの台数を増加させる基準となる負荷率を示す増缶ラインL1を設定した。そして、制御部4を、複数のボイラ20のうち燃焼状態にあるボイラの負荷率が、増缶ラインL1が規定する負荷率に到達すると、燃焼させるボイラの台数を増加させるボイラ選択部44を含んで構成した。このような増缶ラインL1を適切に設定することで、ボイラ20の台数増加やその後の要求負荷低下に伴うボイラ20の台数減少を抑制することができ(燃焼台数増減過多抑制)、結果、ボイラ20の台数増減に伴うパージ損失、放熱損失及び立上損失等を低減することができる。この場合においても、増加するボイラ20を最小燃焼状態S1で燃焼させることで、燃焼しているボイラ20の台数を増加した場合の圧力変動を抑えることができる。
 (3)ボイラ群2に燃焼させるボイラの台数を増加させる基準となる増加基準蒸気量を設定した。そして、制御部4を、複数のボイラ20のうち燃焼状態にあるボイラについて、該ボイラ20それぞれの最大蒸気量と出力蒸気量との差である増加余力蒸気量を算出すると共に、算出された増加余力蒸気量の和である合計増加余力蒸気量を算出する余力算出部と、算出された合計増加余力蒸気量が増加基準蒸気量を下回った場合に、燃焼させるボイラの台数を増加させるボイラ選択部44と、を含んで構成した。これにより、ボイラ群2における余力を確保した状態でボイラ20の台数を増加することができる。この場合においても、増加するボイラ20を最小燃焼状態S1で燃焼させることで、燃焼しているボイラ20の台数を増加した場合の圧力変動を抑えることができる。
 (4)ボイラ群2に燃焼させるボイラの台数を減少させる基準となる負荷率を示す減缶ラインL2を設定した。そして、制御部4を、複数のボイラ20のうち燃焼状態にあるボイラの負荷率が減缶ラインL2が規定する負荷率に到達すると、燃焼状態にあるボイラのうち1のボイラを停止ボイラとして選択するボイラ選択部44と、要求負荷に対して停止ボイラの負荷率を変更すると共に、停止ボイラの負荷率が最小燃焼状態S1に対応する負荷率まで低下すると、該停止ボイラの燃焼を停止する出力制御部46と、を含んで構成した。これにより、燃焼しているボイラ20の台数を減少させる場合には、停止するボイラ20(停止ボイラ)を最小燃焼状態S1に対応する負荷率まで低下させてから該ボイラ20の燃焼を停止することになる。そのため、ボイラ20の燃焼停止に伴う他のボイラ20の蒸気量(負荷率)の変動を、最小燃焼状態S1の範囲に限定することができ、燃焼しているボイラ20の台数を減少した場合の圧力変動を抑えることができる。
 以上、本発明のボイラシステム1の好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。
 例えば、上記実施形態では、運転開始ボイラ及び停止ボイラ以外の他のボイラ20に対する詳細な説明を省略している。この点、運転開始ボイラ及び停止ボイラ以外の燃焼を継続するボイラ20の負荷率は、必要に応じて変更し、ボイラシステム1全体における圧力安定性を確保することとしてもよい。
 また、上記実施形態では、本発明を、3台の又は5台のボイラ20からなるボイラ群2を備えるボイラシステムに適用したが、これに限らない。即ち、本発明を、6台以上のボイラからなるボイラ群を備えるボイラシステムに適用してもよく、また、2台のボイラからなるボイラ群を備えるボイラシステムに適用してもよい。
 また、本実施形態では、複数のボイラ20それぞれから出力される蒸気量の合計値をボイラ群2の出力蒸気量としたが、これに限らない。即ち、台数制御装置3(制御部4)から複数のボイラ20に送信される燃焼指示信号から算出される蒸気量である指示蒸気量の合計値をボイラ群2の出力蒸気量として扱ってもよい。
 1 ボイラシステム
 2 ボイラ群
 20 ボイラ
 4 制御部
 41 必要蒸気量算出部
 42 出力蒸気量算出部
 43 偏差算出部
 44 ボイラ選択部
 45 判定部
 46 出力制御部
 U 単位蒸気量
 S1 最小燃焼状態
 L1 増缶ライン
 L2 減缶ライン

Claims (4)

  1.  負荷率を連続的に変更して燃焼可能な複数のボイラを備えるボイラ群と、要求負荷に応じて前記ボイラ群の燃焼状態を制御する制御部と、を備えるボイラシステムであって、
     前記複数のボイラには、最も小さい燃焼状態における蒸気量である最小蒸気量が設定されており、
     前記制御部は、燃焼させるボイラの台数を増加させる場合、新たに燃焼を開始するボイラを最小蒸気量で燃焼させるボイラシステム。
  2.  前記ボイラ群には、燃焼させるボイラの台数を増加させる基準となる負荷率を示す増缶ラインが設定されており、
     前記制御部は、
      前記複数のボイラのうち燃焼状態にあるボイラの負荷率が、前記増缶ラインが規定する負荷率に到達すると、燃焼させるボイラの台数を増加させるボイラ選択部、を備える請求項1に記載のボイラシステム。
  3.  前記ボイラ群には、燃焼させるボイラの台数を増加させる基準となる増加基準蒸気量が設定されており、
     前記制御部は、
      前記複数のボイラのうち燃焼状態にあるボイラについて、該ボイラそれぞれの最大蒸気量と出力蒸気量との差である増加余力蒸気量を算出すると共に、算出された前記増加余力蒸気量の和である合計増加余力蒸気量を算出する余力算出部と、
     前記余力算出部により算出された前記合計増加余力蒸気量が前記増加基準蒸気量を下回った場合に、燃焼させるボイラの台数を増加させるボイラ選択部と、を備える請求項1に記載のボイラシステム。
  4.  前記ボイラ群には、燃焼させるボイラの台数を減少させる基準となる負荷率を示す減缶ラインが設定されており、
     前記制御部は、
      前記複数のボイラのうち燃焼状態にあるボイラの負荷率が前記減缶ラインが規定する負荷率に到達すると、燃焼状態にあるボイラのうち1のボイラを停止ボイラとして選択するボイラ選択部と、
      要求負荷に対して前記停止ボイラの負荷率を変更すると共に、前記停止ボイラの負荷率が前記最も小さい燃焼状態に対応する負荷率まで低下すると、該停止ボイラの燃焼を停止する出力制御部と、を備える請求項1から3のいずれかに記載のボイラシステム。
PCT/JP2013/054171 2013-01-08 2013-02-20 ボイラシステム WO2014109069A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-001406 2013-01-08
JP2013001406A JP5672314B2 (ja) 2013-01-08 2013-01-08 ボイラシステム

Publications (1)

Publication Number Publication Date
WO2014109069A1 true WO2014109069A1 (ja) 2014-07-17

Family

ID=51166736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054171 WO2014109069A1 (ja) 2013-01-08 2013-02-20 ボイラシステム

Country Status (2)

Country Link
JP (1) JP5672314B2 (ja)
WO (1) WO2014109069A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107073B2 (ja) * 2018-08-02 2022-07-27 三浦工業株式会社 副生ガス利用システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158601A (ja) * 1989-11-17 1991-07-08 Hirakawa Tekkosho:Kk ボイラ負荷制御方法及びその装置
JPH0420701A (ja) * 1990-05-14 1992-01-24 Hirakawa Tekkosho:Kk ボイラ負荷制御方法及びその装置
JP2006220413A (ja) * 2006-03-27 2006-08-24 Kawasaki Thermal Engineering Co Ltd 連続的に燃焼量を制御するボイラの台数制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233204A (ja) * 1995-03-01 1996-09-10 Miura Co Ltd 流体加熱機の自動台数制御方法
JPH11193903A (ja) * 1997-12-26 1999-07-21 Kawasaki Thermal Eng Co Ltd ボイラの台数制御方法およびボイラの台数制御装置
JP3883800B2 (ja) * 2000-10-19 2007-02-21 川重冷熱工業株式会社 ボイラの台数制御方法
JP5200752B2 (ja) * 2008-08-11 2013-06-05 三浦工業株式会社 ボイラの制御方法及びこの制御方法を用いたボイラシステム
JP5343935B2 (ja) * 2010-06-30 2013-11-13 三浦工業株式会社 ボイラシステム
JP5621365B2 (ja) * 2010-07-09 2014-11-12 三浦工業株式会社 プログラム、制御器及びボイラシステム
JP5647904B2 (ja) * 2011-01-20 2015-01-07 株式会社サムソン ボイラの多缶設置システム
JP5408150B2 (ja) * 2011-02-09 2014-02-05 三浦工業株式会社 ボイラシステム
JP5692807B2 (ja) * 2011-06-03 2015-04-01 株式会社サムソン 多缶設置ボイラ
JP5679908B2 (ja) * 2011-06-03 2015-03-04 株式会社サムソン 多缶設置ボイラ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158601A (ja) * 1989-11-17 1991-07-08 Hirakawa Tekkosho:Kk ボイラ負荷制御方法及びその装置
JPH0420701A (ja) * 1990-05-14 1992-01-24 Hirakawa Tekkosho:Kk ボイラ負荷制御方法及びその装置
JP2006220413A (ja) * 2006-03-27 2006-08-24 Kawasaki Thermal Engineering Co Ltd 連続的に燃焼量を制御するボイラの台数制御方法

Also Published As

Publication number Publication date
JP2014134318A (ja) 2014-07-24
JP5672314B2 (ja) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5200752B2 (ja) ボイラの制御方法及びこの制御方法を用いたボイラシステム
JP5534065B1 (ja) ボイラシステム
JP6102475B2 (ja) ボイラシステム
JP5534055B1 (ja) ボイラシステム
JP5534062B1 (ja) ボイラシステム
JP5672276B2 (ja) ボイラシステム
JP5672314B2 (ja) ボイラシステム
JP6142667B2 (ja) ボイラシステム
JP6550999B2 (ja) ボイラシステム
JP6115093B2 (ja) ボイラシステム
JP2014228180A (ja) ボイラシステム
JP6036376B2 (ja) ボイラシステム
JP6528494B2 (ja) ボイラシステム
JP6044314B2 (ja) ボイラシステム
JP6102505B2 (ja) ボイラシステム
JP6102504B2 (ja) ボイラシステム
JP6102357B2 (ja) ボイラシステム
JP6194634B2 (ja) ボイラシステム
JP6743525B2 (ja) ボイラシステム
WO2014109072A1 (ja) ボイラシステム
JP6330417B2 (ja) ボイラシステム
JP6314502B2 (ja) ボイラシステム
JP2014228170A (ja) ボイラシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870686

Country of ref document: EP

Kind code of ref document: A1