WO2014104359A1 - ガラス微粒子堆積体の製造方法およびガラス母材の製造方法 - Google Patents

ガラス微粒子堆積体の製造方法およびガラス母材の製造方法 Download PDF

Info

Publication number
WO2014104359A1
WO2014104359A1 PCT/JP2013/085249 JP2013085249W WO2014104359A1 WO 2014104359 A1 WO2014104359 A1 WO 2014104359A1 JP 2013085249 W JP2013085249 W JP 2013085249W WO 2014104359 A1 WO2014104359 A1 WO 2014104359A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
raw material
burner
producing
particulate deposit
Prior art date
Application number
PCT/JP2013/085249
Other languages
English (en)
French (fr)
Inventor
石原 朋浩
山崎 卓
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51021420&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014104359(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2014514943A priority Critical patent/JP5935882B2/ja
Priority to US14/380,173 priority patent/US9695080B2/en
Priority to CN201380009868.1A priority patent/CN104125933B/zh
Publication of WO2014104359A1 publication Critical patent/WO2014104359A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/32Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/14Tapered or flared nozzles or ports angled to central burner axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/34Liquid, e.g. mist or aerosol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention is a glass for producing a glass particulate deposit by depositing glass particulates on a starting rod by the OVD method (external method), VAD method (vapor phase axis method), MMD method (multi-burner multilayer method), or the like.
  • the present invention relates to a method for producing a fine particle deposit and a method for producing a glass base material by heating the glass fine particle deposit to make it transparent.
  • Patent Document 1 discloses a precision burner that oxidizes a silicon-containing compound that does not contain a halide such as octamethylcyclotetrasiloxane (OMCTS), which is used when forming a preform (glass base material).
  • a halide such as octamethylcyclotetrasiloxane (OMCTS)
  • OCTS octamethylcyclotetrasiloxane
  • the present invention has been made in view of such problems, and it is possible to prevent the fluctuation of the outer diameter of the glass fine particle deposit and improve the glass raw material yield without problems such as burner clogging. It is an object of the present invention to provide a method for producing a particulate deposit and a method for producing a glass base material.
  • the method for producing a glass particulate deposit according to the present invention includes a starting rod and a glass particulate generation burner installed in a reaction vessel, a glass raw material is introduced into the burner, and the burner is formed.
  • a method for producing a glass particulate deposit having a deposition step of reacting a glass raw material in a flame to produce glass particulates, and depositing the produced glass particulates on the starting rod to produce a glass particulate deposit,
  • a spread angle of the glass raw material ejected from the burner from the central axis of the burner is set to 5 to 70 degrees.
  • the method for producing a glass fine particle deposit according to the present invention may be configured such that the spread angle is set to 10 to 50 degrees in the deposition step.
  • the method for producing a glass particulate deposit according to the present invention may be configured such that the spread angle is 20 to 40 degrees in the deposition step.
  • the shortest distance from the tip opening of the raw material port for jetting the glass raw material of the burner to the tip opening of the combustion gas port for jetting oxygen May be 10 to 100 mm.
  • the shortest distance from the tip opening of the raw material port for jetting the glass raw material of the burner to the tip opening of the combustion gas port for jetting oxygen The thickness may be 20 to 100 mm.
  • the shortest distance from the tip opening of the raw material port for jetting the glass raw material of the burner to the tip opening of the combustion gas port for jetting oxygen May be 30 to 100 mm.
  • the method for producing a glass particulate deposit according to the present invention may be configured such that, in the deposition step, the glass raw material supplied to the burner is siloxane.
  • the method for producing a glass fine particle deposit according to the present invention may be configured such that, in the deposition step, the glass raw material supplied to the burner is octamethylcyclotetrasiloxane (OMCTS).
  • OCTS octamethylcyclotetrasiloxane
  • the method for producing a glass particulate deposit according to the present invention may be configured such that, in the deposition step, the glass raw material ejected from the burner is in a liquid spray state.
  • the method for producing a glass particulate deposit according to the present invention may be configured such that, in the deposition step, the glass raw material ejected from the burner is in a gas state.
  • the method for producing a glass base material of the present invention is a method for producing a glass fine particle deposit by the above-mentioned method for producing a glass fine particle deposit, and heating the produced glass fine particle deposit to produce a transparent glass preform. It has the transparency process, It is characterized by the above-mentioned.
  • the glass base material manufacturing method of the present invention may be configured to deposit the glass fine particle deposit in the deposition step by any one of the OVD method, the VAD method, and the MMD method.
  • the outer diameter variation of the glass fine particle deposit is achieved by optimizing the spread angle of the glass raw material ejected from the glass fine particle generating burner.
  • the glass raw material yield can be improved without problems such as burner clogging.
  • an example of an embodiment of a method for producing a glass particulate deposit and a method for producing a glass base material according to the present invention will be described with reference to the accompanying drawings.
  • an OVD (Outside Vapor-phase Deposition) method will be described as an example, but the present invention is not limited to the OVD method.
  • the present invention can be applied to a method of depositing glass from a glass raw material, for example, a VAD (Vapor Phase Axial Deposition) method or an MMD method.
  • VAD Very Phase Axial Deposition
  • FIG. 1 is a configuration diagram of a manufacturing apparatus 1 that performs the method for manufacturing a glass particulate deposit according to the present embodiment.
  • the production apparatus 1 includes a reaction vessel 2, an elevating and rotating device 3, a raw material supply device 21, a glass particle producing burner 22, and a control unit 5 that controls the operation of each unit.
  • the reaction vessel 2 is a vessel in which the glass particulate deposit M is formed, and includes an exhaust pipe 12 attached to the side surface of the vessel.
  • the lifting / lowering rotating device 3 is a device for moving the glass particulate deposit M up and down and rotating through the support rod 10 and the starting rod 11.
  • the lifting / lowering rotation device 3 controls the operation of the support bar 10 based on a control signal transmitted from the control unit 5.
  • the elevating and rotating device 3 elevates and lowers the glass particulate deposit M while rotating it.
  • the support rod 10 is disposed through a through hole formed in the upper wall of the reaction vessel 2, and a starting rod 11 is provided at one end portion (lower end portion in FIG. 1) disposed in the reaction vessel 2. Is attached. The other end (upper end in FIG. 1) of the support bar 10 is held by the elevating and rotating device 3.
  • the starting rod 11 is a rod on which glass particles are deposited, and is attached to the support rod 10.
  • the exhaust pipe 12 is a pipe for discharging the glass fine particles not attached to the starting rod 11 and the glass fine particle deposit M to the outside of the reaction vessel 2.
  • a liquid source 23 is supplied to the burner 22 by a source supply device 21.
  • the gas supply device that supplies the flame forming gas is omitted.
  • the raw material supply device 21 includes a raw material container 24 that stores the liquid raw material 23, a pump 25 that supplies the liquid raw material 23, a supply pipe 26 that leads the liquid raw material 23 to the burner 22, a raw material container 24, a pump 25, and a supply pipe 26.
  • the booth 27 includes a part of
  • the pump 25 is a device that supplies the liquid raw material 23 sprayed from the burner 22 to the burner 22 via the supply pipe 26.
  • the pump 25 controls the supply amount of the liquid raw material 23 supplied to the burner 22 based on the control signal transmitted from the control unit 5.
  • the supply pipe 26 is a pipe that guides the liquid raw material 23 to the burner 22.
  • a tape heater 28 as a heating element may be wound around the outer periphery of the supply pipe 26 and a part of the outer periphery of the burner 22.
  • the tape heater 28 When the tape heater 28 is energized, the supply pipe 26 and the burner 22 are heated, and the temperature of the liquid raw material 23 sprayed from the burner 22 is such that the liquid raw material 23 does not vaporize, for example, 30 to 170 for OMCTS. Can be raised to temperatures up to ° C.
  • the burner 22 vaporizes the sprayed liquid raw material 23 in the flame, further generates an oxidation reaction of the vaporized raw material, generates glass fine particles 30, and sprays the generated glass fine particles 30 onto the starting rod 11 for deposition.
  • the burner 22 is supplied with a siloxane liquid typified by OMCTS or the like as the liquid raw material 23, H 2 or O 2 or the like as the flame forming gas, and an inert gas such as N 2 or Ar as the burner seal gas.
  • a siloxane liquid typified by OMCTS or the like as the liquid raw material 23, H 2 or O 2 or the like as the flame forming gas
  • an inert gas such as N 2 or Ar as the burner seal gas.
  • glass particles 30 are generated by an oxidation reaction, and the generated glass particles 30 are deposited on the starting rod 11 to produce a glass particle deposit M having a predetermined outer diameter.
  • the control unit 5 controls each operation of the elevating and rotating device 3, the raw material supply device 21, and the like.
  • the control unit 5 transmits a control signal for controlling the ascending / descending speed and the rotating speed of the glass particulate deposit M to the ascending / descending rotation device 3.
  • the control unit 5 transmits a control signal for controlling the flow rate of the liquid raw material 23 sprayed from the burner 22 to the pump 25 of the raw material supply device 21.
  • a multi-nozzle structure or a multi-tube structure such as a nine-fold pipe is used.
  • FIG. 2 shows an embodiment of the burner 22 having a multi-nozzle structure.
  • the burner 22 shown in FIG. 2 has a raw material port 31a for ejecting a liquid raw material 23 or a raw material gas, which is a glass raw material, in the center, and a seal gas made of an inert gas is ejected from an outer peripheral port 31b of the raw material port 31a.
  • the burner 22 is further provided with a plurality of combustion gas ports 32 for injecting combustion gas around it. From the raw material port 31a at the center, for example, a liquid raw material 23 such as OMCTS or a raw material gas is ejected.
  • the combustion gas port 32 has a double structure, and oxygen (O 2 ), which is a combustible gas, is ejected from the central port 32a, and hydrogen (H 2 ), which is a combustible gas, is ejected from the outer peripheral port 32b. Erupted.
  • a glass raw material is ejected into an oxyhydrogen flame generated by the combustion gas, and the glass raw material is generated into silicon oxide (SiO 2 ) particles by the oxyhydrogen flame.
  • the raw material port 31a When supplying the liquid raw material 23 to the raw material port 31a of the burner 22 having a multi-nozzle structure, the raw material port 31a has a structure as shown in FIG. In FIG. 3, the raw material port 31a has a liquid raw material port 31a1 in the center, and has a spray gas port 31a2 on the outer periphery of the liquid raw material port 31a1. From the liquid source port 31a1, for example, an OMCTS liquid or the like is supplied as the liquid source 23 in a liquid state, and from the spray gas port 31a2, for example, a gas such as N 2 , O 2 , or Ar is supplied.
  • a gas such as N 2 , O 2 , or Ar is supplied.
  • the spray gas port 31a2 has a shape in which a tip portion thereof is inclined toward the liquid material port 31a1.
  • the spraying direction of the spray gas is inclined toward a predetermined position on the central axis of the burner 22 that is separated from the tip of the burner 22 by a predetermined dimension so as to collide with the liquid raw material 23 ejected from the liquid raw material port 31a1. It has become.
  • the liquid material 23 ejected from the liquid material port 31a1 is atomized by the collision of the spray gas, and spreads substantially uniformly in the radial direction of the burner 22 in the flame.
  • the flow rate of the gas ejected from the spray gas port 31a2 inclined toward the central axis of the liquid material port 31a1 provided at the center, the flow rate of the liquid material 23 ejected from the liquid material port 31a1, or the liquid By appropriately adjusting the tip structure of the raw material port 31a1, the spread angle X of the liquid raw material 23 ejected from the burner 22 from the central axis of the burner 22 (the central axis C of the liquid raw material port 31a1) (see FIG. 4) Can be adjusted to a desired angle.
  • FIG. 5 shows an embodiment of a burner having a multi-tube burner structure.
  • the burner 22a shown in FIG. 5 is a nine-tube burner.
  • FIG. 5 is a longitudinal (axial direction) cross-sectional view showing only a part of the burner front end side, and since it is axisymmetric, only one side is shown with respect to the burner central axis.
  • a liquid source port 41a1 and a spray gas port 41a2 are provided in the center of the burner.
  • the spray gas port 41a2 has a shape in which a tip portion thereof is inclined toward the liquid material port 41a1.
  • the spraying direction of the spray gas is inclined toward a predetermined position on the central axis of the burner 22a that is a predetermined distance away from the tip of the burner 22a, and collides with the liquid raw material 23 ejected from the liquid raw material port 41a1,
  • the liquid raw material 23 is atomized by the collision of the spray gas and spreads substantially uniformly in the radial direction of the burner 22a.
  • siloxane which is a halogen-free raw material, preferably OMCTS liquid is used as the liquid raw material 23.
  • SiCl 4 used as a glass raw material generates SiO 2 glass fine particles based on the following formula (1).
  • SiCl 4 + 2H 2 0 ⁇ SiO 2 + 4HCl Formula (1) HCl (hydrochloric acid) that adversely affects the environment is generated as a by-product, so that a device for detoxifying hydrochloric acid is required, and the running cost for manufacturing the glass base material becomes very high.
  • SiO 2 glass fine particles are generated based on the following formula (2).
  • SiO (CH 3) 2] 4 + 16O 2 ⁇ 4SiO 2 + 8CO 2 + 12H 2 0 ... formula (2) In this case, since no harmful substances such as hydrochloric acid are discharged, the manufacturing cost of the glass base material can be suppressed.
  • the pump 25 supplies the liquid raw material 23 to the burner 22 (22a in FIG. 5) while controlling the supply amount based on the control signal transmitted from the control unit 5.
  • the liquid raw material 23 and oxyhydrogen gas are supplied to the burners 22 and 22a, and the liquid raw material 23 in a liquid spray state is vaporized in an oxyhydrogen flame, and then oxidized to generate glass fine particles. .
  • the burners 22 and 22a continuously deposit the glass particles generated in the flame on the starting rod 11 that rotates and moves up and down.
  • the spread angle of the liquid raw material 23 ejected from the burners 22 and 22a with respect to the central axis of the burners 22 and 22a is set within a predetermined range.
  • the spread angle of the liquid raw material 23 is small, the atomized liquid raw material 23 concentrates on the center of the flame, and the heating density of the deposition surface of the glass fine particles increases too much.
  • the density of the glass particulate deposit M is increased and the outer diameter is reduced, so that the deposition efficiency of the glass particulates is significantly reduced.
  • the spread angle X of the liquid raw material 23 ejected from the burners 22 and 22a from the central axis of the burners 22 and 22a is 5 to 70 degrees, preferably 10 to 50 degrees, and more preferably 20 to 40 degrees.
  • the flow rate of the spray gas supplied from the spray gas ports 31a2 and 41a2 is changed.
  • the flow rate of the spray gas is adjusted to, for example, about 0.2 to 1.0 L / min.
  • glass fine particles are generated in the flame of the burner 22 by an oxidation reaction of the OMCTS liquid or the like that is the liquid raw material 23. Therefore, by setting the distance between the liquid material ports 31a1 and 41a1 for ejecting the OMCTS liquid and the oxygen gas ports 32a and 42a at the center of the combustion gas ports 32 and 42 for ejecting oxygen within a predetermined range, The flow width of the generated glass fine particles can be optimized. Specifically, the shortest distances Y and Y ′ from the front end openings of the liquid raw material ports 31a1 and 41a1 of the burners 22 and 22a to the front end openings of the oxygen gas ports 32a and 42a for ejecting oxygen (FIGS. 2 and 5).
  • an oxidation reaction exothermic reaction
  • the distribution can be made gentle. Thereby, the change of the outer diameter of the longitudinal direction at the time of becoming the transparent glass base material from the glass particulate deposit M can further be suppressed.
  • the shortest distances Y and Y 'within the above ranges the density of the glass fine particle deposit M is also optimized, and the glass raw material yield is improved.
  • the lifting / lowering rotating device 3 moves up and down and rotates the starting rod 11 and the glass particulate deposit M deposited on the starting rod 11 in the axial direction based on a control signal from the control unit 5.
  • the obtained glass fine particle deposit M is heated to 1100 ° C. in a mixed atmosphere of an inert gas and a chlorine gas, and then heated to 1550 ° C. in a He atmosphere to obtain a transparent glass base material.
  • a transparent glass base material is repeatedly manufactured.
  • siloxane Since siloxane is flammable, the flame temperature rises as the supply amount increases. However, according to the present embodiment, the siloxane is spread uniformly in the radial direction of the burners 22 and 22a in the flames of the burners 22 and 22a, and the siloxane spread in the flame is oxidized (exothermic reaction). Therefore, there is an effect of lowering the heating density of the deposition surface of the glass fine particles and optimizing the temperature of the deposition surface than before. Thereby, the density and outer diameter of the glass particulate deposit M are optimized, and the glass raw material yield can be improved.
  • a spraying method in which the OMCTS liquid is atomized by supplying the OMCTS to the burners 22 and 22a as a liquid and spraying a spray gas from around the OMCTS liquid ejected from the burners 22 and 22a is preferable.
  • the OMCTS liquid may be heated, vaporized to a gas state, and ejected from the burners 22 and 22a.
  • the obtained glass fine particle deposit M is heated to 1100 ° C. in a mixed atmosphere of an inert gas and a chlorine gas, and then heated to 1550 ° C. in a He atmosphere to perform transparent vitrification [translucent step].
  • the burner is made of OMCTS liquid (flow rate: 4 ml / min) as a liquid raw material, N 2 (flow rate: 0.6 SLM) as a spray gas, and flame forming gas H 2 (flow rate: 20 to 50 SLM) and O 2 (flow rate: 30 to 70 SLM) are supplied, and Ar (flow rate: 1 to 5 SLM) is supplied as the burner seal gas.
  • OMCTS liquid flow rate: 4 ml / min
  • N 2 flow rate: 0.6 SLM
  • flame forming gas H 2 flow rate: 20 to 50 SLM
  • O 2 flow rate: 30 to 70 SLM
  • Ar flow rate: 1 to 5 SLM
  • the spread angle X (°) of the OMCTS liquid sprayed from the burner from the center axis of the burner and the opening of the burner source port (liquid source port) to the end opening of the oxygen gas port The shortest distance Y (mm) is appropriately selected.
  • the glass fine particles are deposited by changing the spread angle X (°) and the shortest distance Y, the raw material yield A (%) of the produced glass fine particle deposit, and the outer diameter fluctuation B in the longitudinal direction of the transparent glass base material. (Mm) and the probability C (%) that glass fine particles are deposited on the tip of the burner to clog the burner.
  • the raw material yield A is the glass fine particles 30 actually deposited on the starting rod 11 and the glass fine particle deposit M with respect to the SiO 2 mass when the OMCTS liquid charged into the burner chemically reacts with the 100% quartz glass fine particles. Mass ratio. The results are shown in Table 1.
  • Examples 1 to 7 In Examples 1 to 7, the shortest distance Y is fixed to 30 mm, and the spread angle X is appropriately selected in the range of 5 to 70 °. As a result, in any of the examples, the raw material yield A is 40% or more, the outer diameter fluctuation B in the longitudinal direction of the glass base material is 5 mm or less, and the probability C that the burner is clogged is 0%.
  • Examples 3, 8 to 13 In Examples 3 and 8 to 13, the spread angle X is fixed to 20 °, and the shortest distance Y is appropriately selected within the range of 5 to 110 mm.
  • the raw material yield A is 40% or more
  • the outer diameter fluctuation B in the longitudinal direction of the glass base material is 6 mm or less
  • the probability C of burner clogging is 1% or less. It can be seen that the raw material yield A increases when the shortest distance Y is 30 to 50 mm.
  • Comparative Example 1 In Comparative Example 1, the spread angle X is set to 3 °, and the shortest distance Y is set to 30 mm. As a result, the raw material yield A is 32%, the outer diameter fluctuation B in the longitudinal direction of the glass base material is 10 mm, and the probability C that the burner is clogged is 0%.
  • Comparative Example 2 In Comparative Example 2, the spread angle X is set to 80 °, and the shortest distance Y is set to 4 mm. As a result, the raw material yield A is 35%, the outer diameter variation B in the longitudinal direction of the glass base material is 8 mm, and the probability C that the burner is clogged is 5%.
  • the raw material yield A is 40% or more
  • the outer diameter fluctuation B in the longitudinal direction of the glass base material is 5 mm or less
  • the burner is clogged.
  • the probability C is as good as 0%.
  • the spread angle X is 10 to 50 °
  • the raw material yield A is 45% or more
  • the outer diameter variation in the longitudinal direction of the glass base material is 3 mm or less.
  • the spread angle X is 20 to 40 °
  • the raw material yield A is 46% or more.
  • the raw material yield A is 40% or more
  • the outer diameter fluctuation B in the longitudinal direction of the glass base material is 6 mm or less
  • the burner The probability C of clogging is as good as 1% or less. From the results of Examples 3 and 8 to 13, it can be seen that the raw material yield A tends to be improved when the shortest distance Y is set to 30 to 50 mm. Therefore, the shortest distance Y is preferably set in the range of 20 to 100 mm, more preferably 30 to 100 mm. In Example 10, since the shortest distance Y is as short as 5 mm, the probability that the burner is clogged is slightly worse than in other examples.
  • Comparative Examples 1 and 2 since the spread angle X is set outside the range of 5 to 70 degrees, the raw material yield A is as low as 35% or less, and the outer diameter of the glass base material in the longitudinal direction is low.
  • the variation B is as large as 8 mm or more.
  • the probability that the burner is clogged also deteriorates to 5%.
  • the manufacturing method of the glass particulate deposit body and glass base material of this invention is not limited to embodiment mentioned above, A deformation
  • the liquid raw material 23 is supplied to the burners 22 and 22a by the pump 25 and atomized to generate the glass fine particles, but the present invention is not limited to this example.
  • the OMCTS liquid that is the liquid raw material 23 may be completely vaporized in the raw material container 24 to form OMCTS gas and ejected from the burner 22 in a gas state.
  • the OMCTS liquid is heated to a temperature not lower than the boiling point (for example, 175 ° C., which is the standard boiling point of the OMCTS liquid) in the raw material container 24 and is completely vaporized in the raw material container 24, and the tape heater OMCTS gas is supplied to the burner 22 through a supply pipe 26 heated to a desired temperature at 28.
  • the burner 22 is an eight-tube burner 122a as shown in FIG.
  • the burner 122a has a shape in which the leading end opening 122a1 of the raw material port is opened toward the outlet side, and the opening angle of the OMCTS gas in the flame is optimized by this opening angle.
  • the OMCTS gas can be efficiently chemically converted into glass fine particles in the flame, and the glass raw material yield can be further improved.
  • the OMCTS has been described as an example of siloxane.
  • any type of siloxane has the same effect as the above embodiment.
  • the spread angle of the raw material gas ejected from the burner from the central axis of the burner and the front opening of the combustion gas port from the front opening of the raw material port of the burner By optimizing the shortest distance, the effect of stabilizing the outer diameter in the longitudinal direction of the transparent glass base material and the effect of suppressing burner clogging in which glass fine particles are deposited at the tip of the burner are obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

 ガラス微粒子堆積体の外径変動を防止するとともにガラス原料収率を向上させることができるガラス微粒子堆積体の製造方法を提供する。 反応容器2内に出発ロッド11とガラス微粒子生成用のバーナー22を設置し、バーナー22にガラス原料を導入し、バーナー22が形成する火炎内でガラス原料を火炎分解反応させてガラス微粒子を生成し、生成したガラス微粒子を出発ロッド11に堆積させてガラス微粒子堆積体を作製する。このとき、バーナー22から噴出するガラス原料のバーナー22の中心軸からの広がり角度を5~70度とする。

Description

ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
 本発明は、OVD法(外付け法)、VAD法(気相軸付け法)、MMD法(多バーナー多層付け法)などによりガラス微粒子を出発ロッドに堆積させてガラス微粒子堆積体を製造するガラス微粒子堆積体の製造方法およびこのガラス微粒子堆積体を加熱して透明化するガラス母材の製造方法に関する。
 従来、ガラス母材の製造方法としては、OVD法やVAD法等によりガラス微粒子堆積体を作製する堆積工程と、このガラス微粒子堆積体を加熱して透明なガラス母材を作製する透明化工程とを含む製造方法が知られている。
 例えば、特許文献1には、プリフォーム(ガラス母材)の形成時に用いられる、オクタメチルシクロテトラシロキサン(OMCTS)等のハロゲン化物を含有しないケイ素含有化合物を酸化させる精密バーナーが開示されている。
日本国特表平11-510778号公報
 しかしながら、特許文献1に記載の精密バーナーでは、精密バーナーの火炎内で生成されたガラス微粒子を出発ロッドに堆積させてガラス微粒子堆積体を製造する際の、ガラス微粒子堆積体の外径変動の防止やガラス原料収率の向上に改善の余地があった。
 そこで、本発明は、このような課題に鑑みてなされたものであり、ガラス微粒子堆積体の外径変動を防止するとともに、バーナー詰まりなどの不具合無く、ガラス原料収率を向上させることができるガラス微粒子堆積体の製造方法およびガラス母材の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明のガラス微粒子堆積体の製造方法は、反応容器内に出発ロッドとガラス微粒子生成用のバーナーを設置し、前記バーナーにガラス原料を導入し、前記バーナーが形成する火炎内でガラス原料を反応させてガラス微粒子を生成し、生成したガラス微粒子を前記出発ロッドに堆積させてガラス微粒子堆積体を作製する堆積工程を有するガラス微粒子堆積体の製造方法であって、前記バーナーから噴出するガラス原料の前記バーナーの中心軸からの広がり角度を5~70度とすることを特徴とする。
 また、本発明のガラス微粒子堆積体の製造方法は、前記堆積工程において、前記広がり角度を10~50度とする構成としてもよい。
 また、本発明のガラス微粒子堆積体の製造方法は、前記堆積工程において、前記広がり角度を20~40度とする構成としてもよい。
 また、本発明のガラス微粒子堆積体の製造方法は、前記堆積工程において、前記バーナーの前記ガラス原料を噴出する原料ポートの先端開口部から酸素を噴出する燃焼ガスポートの先端開口部までの最短距離を10~100mmとする構成としてもよい。
 また、本発明のガラス微粒子堆積体の製造方法は、前記堆積工程において、前記バーナーの前記ガラス原料を噴出する原料ポートの先端開口部から酸素を噴出する燃焼ガスポートの先端開口部までの最短距離を20~100mmとする構成としてもよい。
 また、本発明のガラス微粒子堆積体の製造方法は、前記堆積工程において、前記バーナーの前記ガラス原料を噴出する原料ポートの先端開口部から酸素を噴出する燃焼ガスポートの先端開口部までの最短距離を30~100mmとする構成としてもよい。
 また、本発明のガラス微粒子堆積体の製造方法は、前記堆積工程において、前記バーナーに供給する前記ガラス原料をシロキサンとする構成としてもよい。
 また、本発明のガラス微粒子堆積体の製造方法は、前記堆積工程において、前記バーナーに供給する前記ガラス原料をオクタメチルシクロテトラシロキサン(OMCTS)とする構成としてもよい。
 また、本発明のガラス微粒子堆積体の製造方法は、前記堆積工程において、前記バーナーから噴出する前記ガラス原料を液体噴霧状態とする構成としてもよい。
 また、本発明のガラス微粒子堆積体の製造方法は、前記堆積工程において、前記バーナーから噴出する前記ガラス原料をガス状態とする構成としてもよい。
 また、本発明のガラス母材の製造方法は、上述のガラス微粒子堆積体の製造方法によってガラス微粒子堆積体を製造し、当該製造したガラス微粒子堆積体を加熱して透明なガラス母材を製造する透明化工程を有することを特徴とする。
 また、本発明のガラス母材の製造方法は、前記堆積工程におけるガラス微粒子堆積体の堆積をOVD法、VAD法、MMD法のいずれかにより行う構成としてもよい。
 本発明のガラス微粒子堆積体の製造方法およびガラス母材の製造方法によれば、ガラス微粒子生成用バーナーから噴出させるガラス原料の広がり角度などを適正化することで、ガラス微粒子堆積体の外径変動を防止するとともに、バーナー詰まりなどの不具合無く、ガラス原料収率を向上させることができる。
本発明に係るガラス微粒子堆積体の製造方法を実施する製造装置の一形態を示す構成図である。 ガラス微粒子を生成するバーナーの一形態を示す正面図である。 図2に示すバーナーの原料ポートを示す断面図である。 図3に示す原料ポートに液体原料および噴霧ガスを供給した状態を示す断面図である。 ガラス微粒子を生成するバーナーの別の形態を示す断面図である。 ガラス微粒子を生成するバーナーのさらに別の形態を示す断面図である。
 以下、本発明に係るガラス微粒子堆積体の製造方法およびガラス母材の製造方法の実施形態の例を添付図面に基づいて説明する。なお、以下に示す製造方法としては、OVD(Outside Vapor-phase Deposition)法を例に説明するが、本発明はOVD法に限定されるものではない。OVD法と同様にガラス原料からガラスを堆積させる方法、例えば、VAD(Vapor Phase Axial Deposition)法やMMD法等に本発明を適用することも可能である。
 図1は、本実施形態のガラス微粒子堆積体の製造方法を実施する製造装置1の構成図である。製造装置1は、反応容器2と、昇降回転装置3と、原料供給装置21と、ガラス微粒子生成用のバーナー22と、各部の動作を制御する制御部5を備えている。
 反応容器2は、ガラス微粒子堆積体Mが形成される容器であり、容器の側面に取り付けられた排気管12を備えている。
 昇降回転装置3は、支持棒10および出発ロッド11を介してガラス微粒子堆積体Mを昇降動作、および回転動作させる装置である。昇降回転装置3は、制御部5から送信されてくる制御信号に基づいて支持棒10の動作を制御している。昇降回転装置3は、ガラス微粒子堆積体Mを回転させながら昇降させる。
 支持棒10は、反応容器2の上壁に形成された貫通穴を挿通して配置されており、反応容器2内に配置される一方の端部(図1において下端部)には出発ロッド11が取り付けられている。支持棒10は、他方の端部(図1において上端部)を昇降回転装置3により把持されている。
 出発ロッド11は、ガラス微粒子が堆積されるロッドであり、支持棒10に取り付けられている。
 排気管12は、出発ロッド11およびガラス微粒子堆積体Mに付着しなかったガラス微粒子を反応容器2の外部に排出する管である。
 バーナー22には、液体原料23を原料供給装置21により供給する。なお、図1において、火炎形成用ガスを供給するガス供給装置は省略されている。
 原料供給装置21は、液体原料23を貯留する原料容器24と、液体原料23を供給するポンプ25と、液体原料23をバーナー22へ導く供給配管26と、原料容器24とポンプ25と供給配管26の一部とを含むブース27からなる。
 ポンプ25は、バーナー22から噴霧される液体原料23を供給配管26を介してバーナー22へ供給する装置である。ポンプ25は、制御部5から送信されてくる制御信号に基づいてバーナー22へ供給する液体原料23の供給量の制御を行なっている。
 供給配管26は、液体原料23をバーナー22へ導く配管である。供給配管26の温度を高温に保持するために、供給配管26の外周およびバーナー22の外周の一部には、発熱体であるテープヒータ28が巻き付けられていてもよい。このテープヒータ28が通電されることで供給配管26やバーナー22が加熱され、バーナー22から噴霧される液体原料23の温度を液体原料23が気化しない程度の温度、例えばOMCTSであれば30~170℃までの温度に上昇させることができる。
 バーナー22は、噴霧状態の液体原料23を火炎中において気化させて、さらに気化した原料を酸化反応させることでガラス微粒子30を生成し、生成されたガラス微粒子30を出発ロッド11に噴きつけて堆積させる。
 バーナー22には、液体原料23としてOMCTSなどに代表されるシロキサン液、火炎形成ガスとしてHやO等、バーナーシールガスとしてNやAr等の不活性ガスが供給される。このバーナー22の火炎内で、酸化反応によってガラス微粒子30が生成され、生成されたガラス微粒子30が出発ロッド11に堆積されて、所定外径のガラス微粒子堆積体Mが作製される。
 制御部5は、昇降回転装置3、原料供給装置21等の各動作を制御している。制御部5は、昇降回転装置3に対して、ガラス微粒子堆積体Mの昇降速度および回転速度を制御する制御信号を送信している。また、制御部5は、原料供給装置21のポンプ25に対して、バーナー22から噴霧する液体原料23の流量を制御する制御信号を送信している。
 ガラス原料や火炎形成ガスを噴出するために、バーナー22として、例えば、マルチノズル構造のものや9重管などの多重管構造のものが用いられる。
 図2は、マルチノズル構造を有するバーナー22の一形態を示している。
 図2に示すバーナー22は、中央にガラス原料である液体原料23または原料ガスを噴出する原料ポート31aを有し、原料ポート31aの外周のポート31bから不活性ガスからなるシールガスが噴出される。バーナー22は、さらに、その周囲に燃焼用ガスを噴出する燃焼ガスポート32が複数個配置されている。中心の原料ポート31aからは、例えば、OMCTSなどの液体原料23や原料ガスが噴出される。また、燃焼ガスポート32は二重構造になっており、中心のポート32aから助燃性ガスである酸素(O)が噴出され、外周ポート32bから可燃性ガスである水素(H)等が噴出される。
 バーナー22では、燃焼用ガスによって発生した酸水素火炎中にガラス原料が噴出され、ガラス原料が酸水素火炎によって酸化珪素(SiO)粒子に生成される。
 マルチノズル構造を有するバーナー22の原料ポート31aに液体原料23を供給する場合は、原料ポート31aは図3に示すような構造となる。図3では、原料ポート31aは、中央に液体原料用ポート31a1を有し、液体原料用ポート31a1の外周に噴霧ガスポート31a2を有している。液体原料用ポート31a1からは、液体原料23として例えばOMCTS液等が液体状態にて供給され、噴霧ガスポート31a2からは例えばN、O、Ar等のガスが供給される。
 噴霧ガスポート31a2は、その先端部が、液体原料用ポート31a1に向けて傾斜する形状を有している。これにより、噴霧ガスの噴射方向が、バーナー22の先端から所定寸法離れたバーナー22の中心軸上の所定位置に向けて傾けられ、液体原料用ポート31a1から噴出される液体原料23に衝突するようになっている。液体原料用ポート31a1から噴出された液体原料23は噴霧ガスの衝突により霧化され、火炎内においてバーナー22の径方向に略均一に広がることとなる。このように、中央に設けられた液体原料用ポート31a1の中心軸上に向けて傾斜した噴霧ガスポート31a2から噴出するガスの流速や液体原料用ポート31a1から噴出される液体原料23の流量あるいは液体原料用ポート31a1の先端構造を適宜調整することにより、バーナー22から噴出される液体原料23のバーナー22の中心軸(液体原料用ポート31a1の中心軸C)からの広がり角度X(図4参照)を所望の角度に調整することができる。
 図5は、多重管バーナー構造を有するバーナーの一形態を示している。
 図5に示すバーナー22aは、9重管構造のバーナーとなる。なお、図5はバーナー先端側の一部のみを示す縦(軸方向)断面図であり、軸対称であるため、バーナー中心軸に対して一方側のみを示している。
 バーナー中央部には、液体原料用ポート41a1と、噴霧ガスポート41a2が設けられている。噴霧ガスポート41a2の外周には、火炎形成ガスとしてのHおよびO、バーナーシールガスとしてのArが供給されるガスポート42が複数層(ここでは、7層)設けられている。噴霧ガスポート41a2は、その先端部が、液体原料用ポート41a1に向けて傾斜する形状を有している。これにより、噴霧ガスの噴射方向が、バーナー22aの先端から所定寸法離れたバーナー22aの中心軸上の所定位置に向けて傾斜され、液体原料用ポート41a1から噴出される液体原料23に衝突し、液体原料23は噴霧ガスの衝突により霧化されてバーナー22aの径方向に略均一に広がることとなる。
 本実施形態においては、液体原料23として、ハロゲンフリーの原料であるシロキサン、好ましくはOMCTS液を用いている。従来、ガラス原料として用いられたSiClは、以下の式(1)に基づきSiOガラス微粒子が生成される。
 SiCl+2H0→ SiO+4HCl …式(1)
 この場合、副産物として環境へ悪影響を及ぼすHCl(塩酸)が生成されるため、塩酸を無害化する装置が必要となり、ガラス母材を製造するためのランニングコストが非常に高くなってしまう。
 一方、本実施形態のように、シロキサン、例えばOMCTS液やOMCTSガスを用いた場合は、以下の式(2)に基づきSiOガラス微粒子が生成される。
 [SiO(CH]+16O→4SiO+8CO+12H0 …式(2)
 この場合、塩酸のような有害物質を排出しないため、ガラス母材の製造コストを抑えることができる。
 次に、ガラス微粒子堆積体およびガラス母材の製造方法の手順について説明する。
[堆積工程]
 OVD法(外付け法)によってガラス微粒子の堆積を行い、ガラス微粒子堆積体Mを製造する。先ず、図1に示すように、昇降回転装置3に支持棒10を取り付け、さらに支持棒10の下端部に出発ロッド11を取り付けた状態で、出発ロッド11および支持棒10の一部を反応容器2内に納める。
 続いて、ポンプ25は、制御部5から送信されてくる制御信号に基づき、供給量を制御しながら液体原料23をバーナー22(図5では、22a)に供給する。
 バーナー22,22aに、液体原料23および酸水素ガス(火炎形成ガス)を供給し、液体噴霧状態の液体原料23を酸水素火炎内で気化させた後、酸化反応させることでガラス微粒子を生成する。
 そして、バーナー22,22aは、火炎内で生成したガラス微粒子を回転および昇降する出発ロッド11に継続的に堆積させていく。
 このとき、バーナー22,22aから噴出する液体原料23のバーナー22,22aの中心軸に対する広がり角度が所定の範囲となるよう設定する。液体原料23の広がり角度が小さい場合は、霧化された液体原料23が火炎中心部に集中して、ガラス微粒子の堆積面の加熱密度が上がりすぎる。この結果、ガラス微粒子堆積体Mの密度が高くなり、外径が細くなるため、ガラス微粒子の堆積効率が著しく低下する。また、液体原料23の広がり角度が大きい場合は、霧化された原料液が広がりすぎるため、火炎内で生成されるガラス微粒子がターゲットである出発ロッド11やガラス微粒子堆積体Mに衝突する確率が低下し、ガラス原料収率が下がってしまう。さらに、液体原料用ポート31a1,41a1の先端開口部付近にガラス微粒子が付着しやすくなり、液体原料用ポート31a1,41a1が詰まるという問題も発生する。そこで、広がり角度を適正化することが必要となる。具体的には、バーナー22,22aから噴出する液体原料23のバーナー22,22aの中心軸からの広がり角度Xが5~70度、好ましくは10~50度、さらに好ましくは20~40度となるように噴霧ガスポート31a2,41a2から供給する噴霧ガスの流量を変更する。広がり角度Xを調整する具体的な手段の一例としては、噴霧ガスの流量を、例えば、約0.2~1.0L/分に調整する。広がり角度Xを前記範囲とすることで、ガラス原料収率が向上すると共に、液体原料23が火炎内でバーナー22,22aの径方向に均一に広がるため、火炎内で生成されるガラス微粒子が出発ロッド11に均一に堆積される。これにより、ガラス微粒子堆積体Mが焼結されて生成される透明ガラス母材の長手方向の外径変化を抑える効果もある。
 さらに、バーナー22の火炎内において液体原料23であるOMCTS液等の酸化反応によりガラス微粒子が生成される。そのため、OMCTS液を噴出する液体原料用ポート31a1,41a1と酸素を噴出する燃焼ガスポート32,42の中心の酸素ガスポート32a,42aとの距離を所定の範囲に設定することで、火炎内で生成されるガラス微粒子の流れの幅を適性化することができる。具体的には、バーナー22,22aの液体原料用ポート31a1,41a1の先端開口部から酸素を噴出する酸素ガスポート32a,42aの先端開口部までの最短距離Y,Y’(図2および図5参照)を10~100mm、好ましくは20~100mm、さらに好ましくは30~100mmとなるように設定する。このような範囲とすることで、液体原料23が酸素と反応するまでに火炎内の径方向で広がり、原料が適度に広がった状態で酸化反応(発熱反応)がなされるため、火炎内の温度分布をなだらかにすることができる。これにより、ガラス微粒子堆積体Mから透明ガラス母材となる際の長手方向の外径の変化をさらに抑制することができる。また、最短距離Y、Y’を前記範囲に設定する事でガラス微粒子堆積体Mの密度も適正化され、ガラス原料収率も向上する。最短距離Y、Y’が10mmより短い場合は、液体原料用ポート31a1,41a1の先端開口部付近にガラス微粒子が付着し、液体原料用ポート31a1,41a1が詰まりやすくなる問題も発生する。最短距離Y、Y’を前記範囲に設定する事で液体原料用ポート31a1,41a1の詰まりも抑制される。
 昇降回転装置3は、制御部5からの制御信号に基づいて、出発ロッド11および出発ロッド11に堆積されたガラス微粒子堆積体Mを軸方向に昇降および回転させる。
 [透明化工程]
 次に、得られるガラス微粒子堆積体Mを不活性ガスと塩素ガスの混合雰囲気中で1100℃に加熱した後、He雰囲気中で1550℃に加熱して透明ガラス母材を得る。このようなガラス母材の製造を繰り返し行う。
 なお、シロキサンは可燃性であるため、供給量が増えるとともに火炎温度が上昇する。しかし、本実施形態によれば、バーナー22,22aの火炎内においてシロキサンをバーナー22,22aの径方向に均一に広げるとともに、火炎内で広がったシロキサンを酸化反応(発熱反応)させている。そのため、従来よりもガラス微粒子の堆積面の加熱密度を下げて、堆積面の温度を適正化する効果がある。これにより、ガラス微粒子堆積体Mの密度や外径が適正化されて、ガラス原料収率を向上させることができる。
 また、OMCTSは標準沸点が175℃と非常に高温であるため、OMCTSを気化させてガス状態でバーナー22,22aに供給するためには別途高価な処理装置を備える必要がある。そのため、本実施形態においては、OMCTSを液体のままバーナー22,22aに供給し、バーナー22,22aから噴出されるOMCTS液の周囲から噴霧ガスを吹き付けることによりOMCTS液を霧化させる噴霧方式が好ましいが、OMCTS液を加熱し、気化させてガス状態にし、バーナー22,22aから噴出させることとしても良い。なお、噴霧方式の場合は、原料ポート31a,41aと酸素ガスポート32a,42aとの間に可燃性ガスを噴出させるポートを設置することで気化効率を上昇させることが好ましい。
 図1に示す製造装置を使用してOVD法によってガラス微粒子の堆積、すなわちガラス微粒子堆積体Mの製造を行う[堆積工程]。また、得られるガラス微粒子堆積体Mを不活性ガスと塩素ガスとの混合雰囲気中で1100℃に加熱した後、He雰囲気中で1550℃に加熱して透明ガラス化を行う[透明化工程]。
 出発ロッドとして、直径17mm、長さ400mmの純石英ガラスを用い、バーナーには液体原料としてOMCTS液(流量:4ml/分)を、噴霧ガスとしてN(流量:0.6SLM)、火炎形成ガスとしてH(流量:20~50SLM)、O(流量:30~70SLM)を、バーナーシールガスとしてAr(流量:1~5SLM)を供給する。
 堆積工程において、バーナーから噴霧されるOMCTS液のバーナーの中心軸からの広がり角度X(°)と、バーナーの原料ポート(液体原料用ポート)の先端開口部から酸素ガスポートの先端開口部までの最短距離Y(mm)を適宜選択する。広がり角度X(°)、および最短距離Yを変えて、ガラス微粒子の堆積を行い、作製されるガラス微粒子堆積体の原料収率A(%)、透明ガラス母材の長手方向の外径変動B(mm)およびバーナー先端にガラス微粒子が堆積してバーナーが詰まる確率C(%)を評価する。なお、原料収率Aとは、バーナーに投入されるOMCTS液が100%石英ガラス微粒子に化学反応する場合のSiO質量に対する、実際に出発ロッド11およびガラス微粒子堆積体Mに堆積するガラス微粒子30の質量比である。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [実施例1~7]
 実施例1~7においては、最短距離Yは30mmに固定し、広がり角度Xを5~70°の範囲で適宜選択する。
 その結果、いずれの実施例においても、原料収率Aは40%以上、ガラス母材の長手方向の外径変動Bは5mm以下、バーナーが詰まる確率Cは0%という結果が得られる。
 [実施例3、8~13]
 実施例3、8~13においては、広がり角度Xは20°に固定し、最短距離Yを5~110mmの範囲で適宜選択する。
 その結果、いずれの実施例においても、原料収率Aは40%以上、ガラス母材の長手方向の外径変動Bは6mm以下、バーナーが詰まる確率Cは1%以下という結果が得られる。最短距離Yが30~50mmになると、原料収率Aが増加することが分かる。
 [比較例1]
 比較例1においては、広がり角度Xは3°、最短距離Yは30mmに設定する。
 その結果、原料収率Aは32%、ガラス母材の長手方向の外径変動Bは10mm、バーナーが詰まる確率Cは0%という結果が得られる。
 [比較例2]
 比較例2においては、広がり角度Xは80°、最短距離Yは4mmに設定する。
 その結果、原料収率Aは35%、ガラス母材の長手方向の外径変動Bは8mm、バーナーが詰まる確率Cは5%という結果が得られる。
 [測定評価]
 広がり角度Xを5~70°の範囲に設定する実施例1~7では、原料収率Aが40%以上であるとともに、ガラス母材の長手方向の外径変動Bは5mm以下、バーナーが詰まる確率Cは0%と良好である。特に、広がり角度Xが10~50°のときは原料収率Aが45%以上となり、ガラス母材の長手方向の外径変動は3mm以下となる。さらに、広がり角度Xが20~40°のときは原料収率Aは46%以上となる。
 また、最短距離Yを5~110mmに設定する実施例3、8~13においても、原料収率Aが40%以上であるとともに、ガラス母材の長手方向の外径変動Bは6mm以下、バーナーが詰まる確率Cは1%以下と良好である。なお、実施例3、8~13の結果から、最短距離Yを30~50mmにすると、原料収率Aが向上する傾向にあることが分かる。そのため、最短距離Yを好ましくは20~100mm、さらに好ましくは30~100mmの範囲に設定すると良い。実施例10では最短距離Yが5mmと短いため、バーナーが詰まる確率が他の例と比べるとやや悪化する。
 これに対して、比較例1、2では、広がり角度Xを5~70度の範囲外に設定しているため、原料収率Aは35%以下と低く、ガラス母材の長手方向の外径変動Bは8mm以上と大きい。また、比較例2ではバーナーが詰まる確率も5%まで悪化する。
 なお、本発明のガラス微粒子堆積体およびガラス母材の製造方法は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。
 上記実施の形態においては、液体原料23をポンプ25によりバーナー22,22aに供給して霧化させてガラス微粒子を生成する構成となっているが、本発明はこの例に限られない。例えば、液体原料23であるOMCTS液を原料容器24内で完全に気化させてOMCTSガスとし、バーナー22からガス状態で噴出させる構成としてもよい。具体的には、OMCTS液は、原料容器24内で沸点(例えば、OMCTS液の標準沸点である175℃)以上の温度となるように加熱されて原料容器24内で完全に気化され、テープヒータ28で所望の温度に加熱される供給配管26を通じてOMCTSガスがバーナー22へ供給される。このとき、ポンプ25は不要となり、バーナー22は、図6に示されるような8重管構造のバーナー122aが用いられる。バーナー122aは原料ポートの先端開口部122a1を出口側へ向けて開いた形状を有しており、この開口角度によりOMCTSガスの火炎内での広がり角度を適正化する。このような気化方式では、火炎内でOMCTS液を気化する必要がないため、火炎内で効率的にOMCTSガスをガラス微粒子に化学変化させることができ、ガラス原料収率をさらに向上させることができる。
 また、上記実施の形態においては、シロキサンの一例としてOMCTSを例にとって説明したが、シロキサンであればどのような種類でも上記実施の形態と同様の効果を有する。
 また、SiClのようなシロキサン以外の原料であっても、バーナーから噴出される原料ガスのバーナーの中心軸からの広がり角度と、バーナーの原料ポートの先端開口部から燃焼ガスポートの先端開口部までの最短距離とを適正化することで、透明ガラス母材の長手方向の外径を安定化させる効果や、バーナー先端にガラス微粒子が堆積するバーナー詰りを抑制する効果がある。
 なお、本出願は、2012年12月28日付で出願された日本特許出願(特願2012-288336号)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 1:製造装置、2:反応容器、3:昇降回転装置、5:制御部、10:支持棒、11:出発ロッド、21:原料供給装置、22,22a,122a:バーナー、23:液体原料、24:原料容器、25:ポンプ、26:供給配管、27:ブース、28:テープヒータ、30:ガラス微粒子、31a:原料ポート、31a1,41a1:液体原料用ポート、32,42:燃焼ガスポート

Claims (12)

  1.  反応容器内に出発ロッドとガラス微粒子生成用のバーナーを設置し、前記バーナーにガラス原料を導入し、前記バーナーが形成する火炎内でガラス原料を火炎分解反応させてガラス微粒子を生成し、生成したガラス微粒子を前記出発ロッドに堆積させてガラス微粒子堆積体を作製する堆積工程を有するガラス微粒子堆積体の製造方法であって、
     前記バーナーから噴出するガラス原料の前記バーナーの中心軸からの広がり角度を5~70度とすることを特徴とするガラス微粒子堆積体の製造方法。
  2.  前記堆積工程において、前記広がり角度を10~50度とすることを特徴とする請求項1に記載のガラス微粒子堆積体の製造方法。
  3.  前記堆積工程において、前記広がり角度を20~40度とすることを特徴とする請求項1に記載のガラス微粒子堆積体の製造方法。
  4.  前記堆積工程において、前記バーナーの前記ガラス原料を噴出する原料ポートの先端開口部から酸素を噴出する燃焼ガスポートの先端開口部までの最短距離を10~100mmとすることを特徴とする請求項1から請求項3のいずれか一項に記載のガラス微粒子堆積体の製造方法。
  5.  前記堆積工程において、前記バーナーの前記ガラス原料を噴出する原料ポートの先端開口部から酸素を噴出する燃焼ガスポートの先端開口部までの最短距離を20~100mmとすることを特徴とする請求項1から請求項3のいずれか一項に記載のガラス微粒子堆積体の製造方法。
  6.  前記堆積工程において、前記バーナーの前記ガラス原料を噴出する原料ポートの先端開口部から酸素を噴出する燃焼ガスポートの先端開口部までの最短距離を30~100mmとすることを特徴とする請求項1から請求項3のいずれか一項に記載のガラス微粒子堆積体の製造方法。
  7.  前記堆積工程において、前記バーナーに供給する前記ガラス原料をシロキサンとすることを特徴とする請求項1から請求項6のいずれか一項に記載のガラス微粒子堆積体の製造方法。
  8.  前記堆積工程において、前記バーナーに供給する前記ガラス原料をオクタメチルシクロテトラシロキサン(OMCTS)とすることを特徴とする請求項7に記載のガラス微粒子堆積体の製造方法。
  9.  前記堆積工程において、前記バーナーから噴出する前記ガラス原料を液体噴霧状態とすることを特徴とする請求項1から請求項8のいずれか一項に記載のガラス微粒子堆積体の製造方法。
  10.  前記堆積工程において、前記バーナーから噴出する前記ガラス原料をガス状態とすることを特徴とする請求項1から請求項8のいずれか一項に記載のガラス微粒子堆積体の製造方法。
  11.  請求項1から請求項10のいずれか一項に記載のガラス微粒子堆積体の製造方法によってガラス微粒子堆積体を製造し、当該製造したガラス微粒子堆積体を加熱して透明なガラス母材を製造する透明化工程を有することを特徴とするガラス母材の製造方法。
  12.  前記堆積工程におけるガラス微粒子堆積体の堆積をOVD法、VAD法、MMD法のいずれかにより行うことを特徴とする請求項11に記載のガラス母材の製造方法。
PCT/JP2013/085249 2012-12-28 2013-12-27 ガラス微粒子堆積体の製造方法およびガラス母材の製造方法 WO2014104359A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014514943A JP5935882B2 (ja) 2012-12-28 2013-12-27 ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
US14/380,173 US9695080B2 (en) 2012-12-28 2013-12-27 Glass particle deposit producing method and glass preform producing method
CN201380009868.1A CN104125933B (zh) 2012-12-28 2013-12-27 玻璃微粒沉积体的制造方法以及玻璃母材的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012288336 2012-12-28
JP2012-288336 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104359A1 true WO2014104359A1 (ja) 2014-07-03

Family

ID=51021420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085249 WO2014104359A1 (ja) 2012-12-28 2013-12-27 ガラス微粒子堆積体の製造方法およびガラス母材の製造方法

Country Status (4)

Country Link
US (1) US9695080B2 (ja)
JP (1) JP5935882B2 (ja)
CN (1) CN104125933B (ja)
WO (1) WO2014104359A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019182668A (ja) * 2018-04-02 2019-10-24 信越化学工業株式会社 光ファイバ用多孔質ガラス母材の製造装置および製造方法
JP2020090404A (ja) * 2018-12-04 2020-06-11 住友電気工業株式会社 排気装置および排気方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6565556B2 (ja) * 2015-09-30 2019-08-28 住友電気工業株式会社 ガラス母材の昇降装置
US10882777B2 (en) 2017-03-16 2021-01-05 Corning Incorporated Adjustable fume tube burner
CN106915898B (zh) * 2017-04-11 2019-07-23 湖北菲利华石英玻璃股份有限公司 一种大规格二氧化硅疏松体的生产方法
JP2018193279A (ja) * 2017-05-18 2018-12-06 住友電気工業株式会社 ガラス微粒子堆積体の製造方法、ガラス母材の製造方法及びガラス微粒子堆積体
JP2018203576A (ja) * 2017-06-06 2018-12-27 住友電気工業株式会社 ガラス微粒子堆積体の製造方法及びガラス母材の製造方法
JPWO2019044805A1 (ja) * 2017-08-29 2020-10-01 住友電気工業株式会社 ガラス微粒子堆積体の製造方法、ガラス母材の製造方法及びガラス母材
US11242277B2 (en) 2018-08-21 2022-02-08 Corning Incorporated Method of producing soot
JPWO2020054861A1 (ja) * 2018-09-14 2021-08-30 住友電気工業株式会社 ガラス微粒子堆積体の製造方法及びガラス母材の製造方法
CN113227000B (zh) * 2018-12-04 2022-10-21 住友电气工业株式会社 玻璃微粒沉积体的制造装置以及制造方法
JP7404931B2 (ja) * 2020-02-26 2023-12-26 住友電気工業株式会社 ガラス母材の製造装置
JP7428632B2 (ja) 2020-12-14 2024-02-06 信越化学工業株式会社 多孔質ガラス母材の製造方法及び製造装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510778A (ja) * 1994-12-30 1999-09-21 コーニング インコーポレイテッド ハロゲン化物を含有しないケイ素含有化合物を酸化させる精密バーナー
JP2005187319A (ja) * 2003-12-05 2005-07-14 Shin Etsu Chem Co Ltd 合成石英ガラス製造用バーナー及び合成石英ガラスインゴットの製造方法
JP2006117476A (ja) * 2004-10-22 2006-05-11 Nikon Corp 合成石英ガラスの製造方法及び製造装置
JP2007076957A (ja) * 2005-09-14 2007-03-29 Sumitomo Electric Ind Ltd ガラス合成用バーナ及び該バーナを用いたガラス微粒子堆積体の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978487A3 (en) * 1998-08-07 2001-02-21 Corning Incorporated Sealed, nozzle-mix burners for silica deposition
DE10102611B4 (de) * 2001-01-21 2004-07-15 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung eines SiO2-Rohlings
JP4540923B2 (ja) * 2001-11-09 2010-09-08 株式会社フジクラ 光ファイバの製造方法および光ファイバ母材の製造方法
US20050132749A1 (en) 2003-12-05 2005-06-23 Shin-Etsu Chmeical Co., Ltd. Burner and method for the manufacture of synthetic quartz glass
JP4748758B2 (ja) * 2004-03-18 2011-08-17 信越化学工業株式会社 多孔質ガラス母材の製造装置
FI116619B (fi) 2004-07-02 2006-01-13 Liekki Oy Menetelmä ja laite optisen materiaalin tuottamiseksi sekä optinen aaltojohde
US20060185399A1 (en) * 2005-02-23 2006-08-24 Samsung Electronics Co., Ltd Apparatus for fabricating optical fiber preform through external vapor deposition process
JP2011230936A (ja) * 2010-04-23 2011-11-17 Shin-Etsu Chemical Co Ltd 多孔質ガラス母材製造用バーナ
GB201106015D0 (en) 2011-04-08 2011-05-25 Heraeus Quartz Uk Ltd Production of silica soot bodies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510778A (ja) * 1994-12-30 1999-09-21 コーニング インコーポレイテッド ハロゲン化物を含有しないケイ素含有化合物を酸化させる精密バーナー
JP2005187319A (ja) * 2003-12-05 2005-07-14 Shin Etsu Chem Co Ltd 合成石英ガラス製造用バーナー及び合成石英ガラスインゴットの製造方法
JP2006117476A (ja) * 2004-10-22 2006-05-11 Nikon Corp 合成石英ガラスの製造方法及び製造装置
JP2007076957A (ja) * 2005-09-14 2007-03-29 Sumitomo Electric Ind Ltd ガラス合成用バーナ及び該バーナを用いたガラス微粒子堆積体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019182668A (ja) * 2018-04-02 2019-10-24 信越化学工業株式会社 光ファイバ用多孔質ガラス母材の製造装置および製造方法
JP2020090404A (ja) * 2018-12-04 2020-06-11 住友電気工業株式会社 排気装置および排気方法
JP7167674B2 (ja) 2018-12-04 2022-11-09 住友電気工業株式会社 排気装置および排気方法

Also Published As

Publication number Publication date
CN104125933A (zh) 2014-10-29
CN104125933B (zh) 2017-07-28
JPWO2014104359A1 (ja) 2017-01-19
US9695080B2 (en) 2017-07-04
US20150033799A1 (en) 2015-02-05
JP5935882B2 (ja) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5935882B2 (ja) ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
JP5880532B2 (ja) ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
JP6236866B2 (ja) ガラス微粒子堆積体の製造方法およびガラス微粒子堆積体製造用バーナー
JP2683727B2 (ja) 高純度溶融シリカガラスの非多孔質体を作成する方法
EP0978486B1 (en) Method and burner for forming silica-containing soot
JP3705169B2 (ja) 多孔質ガラス体の製造方法
JP2017036172A (ja) 光ファイバ母材の製造方法
US9676657B2 (en) Method for producing glass particulate deposit and method for producing glass preform
WO2020054861A1 (ja) ガラス微粒子堆積体の製造方法及びガラス母材の製造方法
JP2013177297A (ja) ドープ石英ガラスの製造方法
JP6086168B2 (ja) ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
EP2311781B1 (en) Method for producing quartz glass preform
KR20190052234A (ko) 광섬유 모재 증착 시스템
CN111032587B (zh) 玻璃微粒沉积体的制造方法、玻璃母材的制造方法以及玻璃微粒沉积体
WO2022224725A1 (ja) バーナ、ガラス微粒子堆積体の製造装置およびガラス微粒子堆積体の製造方法
JP7404144B2 (ja) 多孔質ガラス微粒子体の製造方法および光ファイバ母材の製造方法
JP5168772B2 (ja) ガラス微粒子堆積体の製造方法
EP4015471A1 (en) Method for the manufacture of synthetic quartz glass
JP2005060118A (ja) ガラス微粒子堆積体の製造方法及びガラスの製造方法
US11981595B2 (en) Burner for producing glass fine particle deposited body, and device and method for producing glass fine particle deposited body
JP3818567B2 (ja) 合成石英ガラスインゴットの製造方法
US20030056538A1 (en) High heat capacity burners for producing fused silica boules
JP2014062022A (ja) ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
JP2003306335A (ja) 多孔質ガラス母材の製造方法及び装置
JP2012131685A (ja) ガラス母材合成用バーナ及びガラス母材の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014514943

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14380173

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869099

Country of ref document: EP

Kind code of ref document: A1