WO2014097574A1 - 新規アルコキシシリル-エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物 - Google Patents

新規アルコキシシリル-エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物 Download PDF

Info

Publication number
WO2014097574A1
WO2014097574A1 PCT/JP2013/007247 JP2013007247W WO2014097574A1 WO 2014097574 A1 WO2014097574 A1 WO 2014097574A1 JP 2013007247 W JP2013007247 W JP 2013007247W WO 2014097574 A1 WO2014097574 A1 WO 2014097574A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ethylene
composition
parts
alkoxysilyl
Prior art date
Application number
PCT/JP2013/007247
Other languages
English (en)
French (fr)
Inventor
坂本 隆文
貴大 山口
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US14/649,030 priority Critical patent/US9644124B2/en
Priority to CN201380067447.4A priority patent/CN104884461B/zh
Priority to JP2014552911A priority patent/JP5997778B2/ja
Priority to EP13865466.0A priority patent/EP2937352B1/en
Priority to KR1020157016320A priority patent/KR102111415B1/ko
Publication of WO2014097574A1 publication Critical patent/WO2014097574A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F130/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F130/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F130/08Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • C08K5/3465Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to an alkoxysilyl-ethylene group-terminated silicon-containing compound, a room temperature curable organopolysiloxane composition, and a molded product obtained by curing the composition.
  • room temperature-curable organopolysiloxane compositions that are crosslinked by condensation reaction and cured into an elastomeric form at room temperature by contacting with moisture in the air, especially room temperature-curable organopolysiloxane compositions, have been known. Although it is a type that cures by releasing alcohol, it is characterized by the fact that it has no unpleasant odor and does not corrode metals, and is preferred for sealing, bonding, and coating of electrical and electronic equipment. in use.
  • Representative examples of this type include room temperature curable organopolysiloxane compositions comprising hydroxyl end-capped polyorganosiloxanes, alkoxysilanes and organotitanium compounds, and room temperature curable organos comprising alkoxysilyl endcapped polyorganosiloxanes, alkoxysilanes and alkoxytitaniums.
  • Polysiloxane composition linear polyorganosiloxane having a terminal end blocked with an alkoxysilyl group containing a silethylene group, a room temperature curable organopolysiloxane composition composed of an alkoxysilane and an alkoxytitanium, and a hydroxyl group endblocked polyorgano Room temperature-curable organopolysiloxane compositions comprising siloxane or alkoxy group-end-capped polyorganosiloxane and an alkoxy- ⁇ -silyl ester compound are disclosed (Patent Documents 1 to 4).
  • compositions have a certain degree of storage stability, water resistance and moisture resistance, but have not yet completely solved these problems. Furthermore, the fast curability is still insufficient.
  • polymers having a reactive alkoxysilyl group at the terminal are conventionally known.
  • the curability hardly changes (decreases) with time, and a composition excellent in storage stability can be obtained.
  • workability viscosity and thixotropy
  • the dealcohol-free room temperature curable organopolysiloxane composition having an organosiloxane polymer terminated with such a reactive alkoxysilyl group as a main component (base polymer) is a deoxime which is another conventionally known cure type.
  • base polymer a deoxime which is another conventionally known cure type.
  • a deacetic acid type, a deacetone type, etc. since the reactivity with the water
  • the present invention has been made in view of the above circumstances.
  • a room temperature curable polyorganosiloxane composition that is excellent in fast curability and storage stability and can provide a cured product excellent in durability, and the composition. It is an object of the present invention to provide a novel base polymer to be used or a curing agent (crosslinking agent) thereof.
  • the present invention has been made in order to solve the above-mentioned problems, and has an alkoxysilyl-ethylene group terminal represented by the following structural formula (a) and containing at least one silyl-ethylene bond in the molecule.
  • a novel room temperature curable composition using a silicon-containing compound for example, an organosilane compound, an organosiloxane compound, etc.
  • the silicon-containing compound as a base polymer or a curing agent (crosslinking agent)
  • R 1 is an optionally substituted monovalent hydrocarbon group having 1 to 20 carbon atoms
  • the hydrocarbon group having 3 or more carbon atoms is a cyclic cycloalkyl group.
  • R 2 is a hydrogen atom or an optionally substituted monovalent hydrocarbon group having 1 to 20 carbon atoms
  • a is an integer of 1 to 3
  • n is 0 to 10.
  • It is an integer.
  • an alkoxysilyl-ethylene group-terminated silicon-containing compound as a base polymer or a curing agent (crosslinking agent), it is possible to give a cured product that is excellent in rapid curing and storage stability and excellent in durability. It can be set as a room temperature curable composition.
  • Such an alkoxysilyl-ethylene group-terminated silicon-containing compound is converted into, for example, a base polymer (linear diorganopolysiloxane) of a room temperature curable organopolysiloxane composition or a crosslinking agent (organosilane and its partial hydrolysis condensate).
  • a base polymer linear diorganopolysiloxane
  • organopolysiloxane composition or a crosslinking agent (organosilane and its partial hydrolysis condensate).
  • the alkoxysilyl-ethylene group-terminated polyorganosiloxane compound is an organosiloxy group having an alkoxysilyl-ethylene structure represented by the following structural formula (2), wherein both ends of the molecular chain are blocked.
  • An organopolysiloxane is preferred. (In the formula, R 1 and R 2 , a and n are the same as described above. M is an integer of 0 to 2000.)
  • Such an alkoxysilyl-ethylene group-terminated polyorganosiloxane compound can give a cured organopolysiloxane (silicone rubber) that is superior in fast curability, storage stability, and durability. .
  • a room temperature curable organopolysiloxane composition comprising: (A) Diorganopolysiloxane having at least two silicon atoms bonded to a hydroxyl group and / or hydrolyzable silyl group in one molecule: 100 parts by mass (B) alkoxysilyl-ethylene group-terminated silicon-containing compound: 0.1 to 30 parts by mass, (C) Curing catalyst: 0.001 to 15 parts by mass, (D) Silane excluding component (B) and / or its partial hydrolysis condensate: 0 to 30 parts by mass, (E) Filler: 0 to 1000 parts by mass (F) Adhesion promoter: 0 to 30 parts by mass, A room temperature curable organopolysiloxane composition is provided.
  • a room temperature curable organopolysiloxane composition that provides a cured product (silicone rubber) that is particularly excellent in fast curability, storage stability, and durability is provided. can do.
  • the room temperature curable organopolysiloxane composition is used as any one of a coating agent, an adhesive and a sealing agent.
  • Such a room temperature curable organopolysiloxane composition is useful as, for example, a coating agent, an adhesive, or a sealant where heat resistance, water resistance and moisture resistance are required.
  • a molded product (silicone rubber molded product) obtained by curing the room temperature curable organopolysiloxane composition of the present invention.
  • Such a molded article can be quickly cured to form a cured rubber elastic body having excellent heat resistance, weather resistance, low temperature characteristics, and various substrates, particularly excellent adhesion to metal.
  • the novel silicon-containing compounds (organosilane compounds, organosiloxane compounds, etc.) of the present invention give a cured product with particularly excellent fast curing properties, and further, for example, in the air even after storage for 12 months. When exposed to, it cures quickly and exhibits excellent physical properties.
  • the composition containing the novel silicon-containing compound as a base polymer or a curing agent (crosslinking agent) is useful as an adhesive or sealant in places where heat resistance, water resistance and moisture resistance are required, and in particular, steam resistance. It can be effectively used as a building application requiring electrical properties and water resistance, and as an adhesive application for electrical and electronic applications.
  • FIG. 1 is an enlarged (around 6.0 to 7.5 ppm) 1 H-NMR chart of Compound 1 (trimethoxysilyl-ethylene-substituted trimethylsilane) obtained in Synthesis Example 1.
  • 2 is a 1 H-NMR chart of Compound 2 (trimethoxysilyl-ethylene-terminated tetramethoxydisiloxane) obtained in Synthesis Example 2.
  • FIG. 1 is an enlarged (around 6.0 to 7.5 ppm) 1 H-NMR chart of Compound 1 (trimethoxysilyl-ethylene-substituted trimethylsilane) obtained in Synthesis Example 1.
  • 2 is a 1 H-NMR chart of Compound 2 (trimethoxysilyl-ethylene-terminated tetramethoxydisiloxane) obtained in Synthesis Example 2.
  • FIG. 1 is an enlarged (around 6.0 to 7.5 ppm) 1 H-NMR chart of Compound 1 (trimethoxysilyl-ethylene-sub
  • FIG. 3 is a 13 C-NMR chart and 29 Si-NMR chart of Compound 2 (trimethoxysilyl-ethylene-terminated tetramethoxydisiloxane) obtained in Synthesis Example 2.
  • FIG. 2 is a 1 H-NMR chart of Compound 3 (dimethoxymethylsilyl-ethylene-terminated tetramethoxydisiloxane) obtained in Synthesis Example 3.
  • FIG. 6 is a 1 H-NMR chart of a raw material (terminal ethynyl group-containing organopolysiloxane compound) used in Synthesis Example 4.
  • FIG. 1 H-NMR chart of a raw material terminal ethynyl group-containing organopolysiloxane compound
  • FIG. 6 is a 1 H-NMR chart of a target product (trimethoxysilyl-ethylene group-terminated organosiloxane compound) obtained in Synthesis Example 4.
  • FIG. 1 is an enlarged (around 6.4 to 7.4 ppm) 1 H-NMR chart of a target product (trimethoxysilyl-ethylene group-terminated organosiloxane compound) obtained in Synthesis Example 4.
  • the present inventor dramatically improves the hydrolyzability of an alkoxy group only when the bonding group adjacent to the alkoxysilyl group is an ethylene hydrocarbon.
  • the silicon compound having an alkoxysilyl-ethylene group at the end represented by the following structural formula (a), particularly the following structural formula (1) is particularly excellent in fast curability, and at the same time storage stability and durability. It has been found that a room temperature curable composition giving a good cured product can be obtained, and the present invention has been made.
  • the novel silicon-containing compound of the present invention is an alkoxysilyl-ethylene group characterized in that it contains at least one organosilyl group having a silyl-ethylene bond represented by the following structural formula (a) in the molecule. It is a terminal silicon-containing organosilicon compound.
  • R 1 is an optionally substituted monovalent hydrocarbon group having 1 to 20 carbon atoms
  • the hydrocarbon group having 3 or more carbon atoms is a cyclic cycloalkyl group
  • R 2 is a hydrogen atom or an optionally substituted monovalent hydrocarbon group having 1 to 20 carbon atoms
  • a is an integer of 1 to 3
  • n is 0 to 10.
  • It is an integer.
  • the alkoxysilyl-ethylene group-terminated silicon-containing compound is a linear diorganopolysiloxane having both molecular chain ends blocked with an organosiloxy group having an alkoxysilyl-ethylene structure represented by the following structural formula (2): It is preferable that (In the formula, R 1 and R 2 , a and n are the same as described above. M is an integer of 0 to 2000.)
  • the alkoxysilyl-ethylene group-terminated silicon-containing compound according to the present invention is an organosilicon compound such as an organosilane compound or an organosiloxane compound containing at least one silyl-ethylene bond in the molecule.
  • R 1 and R 2 are substituted or unsubstituted carbon atoms having 1 to 20, preferably 1 to 10 carbon atoms, more preferably carbon atoms.
  • 1 to 6 monovalent hydrocarbon groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, Alkyl groups such as decyl group and octadecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; and some or all of hydrogen atoms of these groups are halogen atoms such as F, Cl and Br, cyano groups, or A group substituted with a lower alkoxy group such as a methoxy group or an ethoxy group, such as a 3-chloropropyl group,
  • R 2 represents a hydrogen atom, an alkenyl group such as a vinyl group, an allyl group, a propenyl group, a butenyl group, a pentenyl group, or a hexenyl group; a phenyl group, a tolyl group, Aryl groups such as xylyl group, ⁇ -, ⁇ -naphthyl group; aralkyl groups such as benzyl group, 2-phenylethyl group, 3-phenylpropyl group; and some or all of hydrogen atoms of these groups are F And a group substituted with a halogen atom such as Cl, Br, a cyano group, or the like.
  • a halogen atom such as Cl, Br, a cyano group, or the like.
  • the hydrolyzable group at the molecular chain end ((OR 1 ) a in the above structural formulas (a), (1), (2)) is, for example, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, Examples thereof include an alkoxy group having about 1 to 5 carbon atoms such as an isobutoxy group and a tert-butoxy group; an alkoxyalkoxy group having about 1 to 5 carbon atoms such as a methoxyethoxy group, a methoxypropoxy group and an ethoxypropoxy group. Among these, a methoxy group and an ethoxy group are particularly preferable.
  • n is an integer of 0 to 10, preferably 0 to 5, more preferably 0 to 3, and m is 0 to 2000, preferably 0 to 1600, more preferably 0 to 1000, Preferably, it is an integer of 0 to 500, and a is an integer of 1 to 3.
  • n is larger than 10, the reactivity is lowered, resulting in inconvenience.
  • m is smaller than 2000, it is advantageous because workability can be arbitrarily adjusted.
  • the novel silicon-containing compound according to the present invention is an organosilicon compound having an alkoxysilyl-ethylene group at its end, such as an organosilane compound or an organosiloxane compound.
  • an organosilane compound or an organosiloxane compound for example, a room temperature curable organopolysiloxane that cures (crosslinks) by a condensation reaction. It is used as a curing agent or main agent (base polymer) of the siloxane composition, and may be linear or branched.
  • it is particularly useful as a curing agent or main agent of dealcohol type RTV because it has a trifunctional alkoxysilane moiety. is there.
  • the alkoxysilyl-ethylene group-containing organosilicon compound represented by the structural formula (1) is Si—O—Si in the molecule.
  • An organosilane compound having no bonding portion that is, whether the leftmost silicon atom in the structural formula (1) is a triorganosilyl group blocked with a monovalent hydrocarbon group such as R 2 , or the structural formula (2)
  • the alkoxysilyl-ethylene group-containing organosilicon compound represented by the structural formula (1) is, for example, in the structural formula (2).
  • the alkoxysilyl-ethylene group-terminated silicon-containing compound of the present invention has, for example, a polymerization reaction of disiloxane having ethynyl groups at both ends and octamethylcyclotetrasiloxane in an acidic catalyst to have ethynyl groups at both ends.
  • Diorganopolysiloxane can be produced and then trialkoxysilane can be produced by an addition reaction.
  • This reaction formula is represented, for example, by the following formula [1].
  • the disiloxane compound in which m 0 in the structural formula (2) is added with, for example, a disiloxane having an ethynyl group at both ends and an alkoxysilane. It can be produced by reaction.
  • This reaction formula is represented by, for example, the following formula [1 ′]. (Wherein R 1 , R 2 , a and n are as described above.)
  • the addition reaction catalyst examples include platinum group catalysts such as platinum, palladium, and rhodium catalysts, with platinum catalysts being particularly preferred.
  • platinum catalysts such as platinum, palladium, and rhodium catalysts, with platinum catalysts being particularly preferred.
  • the platinum-based material include platinum black, alumina, silica, or the like supported on solid platinum, chloroplatinic acid, alcohol-modified chloroplatinic acid, a complex of chloroplatinic acid and olefin, or platinum and vinylsiloxane. And the like can be exemplified.
  • the amount of platinum used may be a so-called catalytic amount. For example, it can be used in an amount of 0.1 to 1,000 ppm, particularly 0.5 to 100 ppm in terms of platinum group metal relative to trialkoxysilanes.
  • This reaction is generally preferably carried out at a temperature of 50 to 120 ° C., particularly 60 to 100 ° C., for 0.5 to 12 hours, particularly 1 to 6 hours, and can be carried out without using a solvent.
  • an appropriate solvent such as toluene or xylene can be used if necessary.
  • reaction formula [2] a geometric isomer represented by the following reaction formula [2] is generated.
  • E-form trans form
  • the silicon-containing compound of the present invention does not adversely affect the properties thereof, and thus can be used without separation. .
  • n is as described above.
  • alkoxysilyl-ethylene group-terminated silicon-containing compound examples include those represented by the following formula.
  • a room temperature curable organopolysiloxane composition comprising: (A) Diorganopolysiloxane having at least two silicon atoms bonded to a hydroxyl group and / or hydrolyzable group in one molecule: 100 parts by mass (B) the aforementioned alkoxysilyl-ethylene group-terminated silicon-containing compound: 0.1 to 30 parts by mass, (C) Curing catalyst: 0.001 to 15 parts by mass, (D) Silane excluding component (B) and / or its partial hydrolysis condensate: 0 to 30 parts by mass, (E) Filler: 0 to 1000 parts by mass (F) Adhesion promoter: 0 to 30 parts by mass, A room temperature curable organopolysiloxane composition is provided.
  • the diorganopolysiloxane of component (A) is the main component (base polymer) of the room temperature curable organopolysiloxane composition of the present invention, and is a hydroxyl group or hydrolyzable silyl group bonded to at least two silicon atoms in the molecule. It is what has.
  • a diorganopolysiloxane specifically, a hydroxyl group (that is, silanol group) or hydrolyzable silyl having both molecular chains represented by the following general formula (2a) or (3a) bonded to silicon atoms Linear diorganopolysiloxanes blocked with groups are used.
  • R is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12, preferably 1 to 8 carbon atoms
  • X is an oxygen atom or 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms.
  • a divalent hydrocarbon group for example, an alkylene group, etc.
  • Y is a hydrolyzable group
  • b is 2 or 3
  • m ′ is a viscosity of the diorganopolysiloxane at 25 ° C.
  • the degree of polymerization is determined, for example, as the weight average degree of polymerization (or weight average molecular weight) in gel permeation chromatography (GPC) analysis using toluene, tetrahydrofuran (THF) or the like as a developing solvent. be able to.
  • GPC gel permeation chromatography
  • the substituted or unsubstituted monovalent hydrocarbon group of R is methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, heptyl group , Alkyl groups such as octyl group, nonyl group, decyl group, octadecyl group, cycloalkyl groups such as cyclopentyl group, cyclohexyl group, alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, phenyl group, Aryl groups such as tolyl group, xylyl group, ⁇ -, ⁇ -naphthyl group, aralkyl groups such as benzyl group, 2-phenylethyl group, 3-phenylpropyl group
  • X is an oxygen atom or a divalent hydrocarbon group having 1 to 8 carbon atoms, and the divalent hydrocarbon group is represented by — (CH 2 ) p— (p represents an integer of 1 to 8).
  • An alkylene group is preferred. Among these, an oxygen atom and —CH 2 CH 2 — are preferable.
  • Y is a hydrolyzable group at the molecular chain end of the diorganopolysiloxane, for example, an alkoxy group such as a methoxy group, an ethoxy group or a propoxy group, an alkoxyalkoxy such as a methoxyethoxy group, an ethoxyethoxy group or a methoxypropoxy group.
  • Ketoxime groups such as diethyl ketoxime group, amino groups such as dimethylamino group, diethylamino group, butylamino group, cyclohexylamino group, aminoxy groups such as dimethylaminoxy group, diethylaminoxy group, N-methylacetamide group, N Ethylacetamide group, and amide groups such as N- methylbenzamide group.
  • an alkoxy group is preferable, a methoxy group and an ethoxy group are more preferable, and a methoxy group is particularly preferable.
  • the diorganopolysiloxane of component (A) preferably has a viscosity at 25 ° C. of 100 to 1,000,000 mPa ⁇ s, more preferably 300 to 500,000 mPa ⁇ s, particularly preferably 500 to 100,000 mPa ⁇ s, In particular, it is 1,000 to 80,000 mPa ⁇ s.
  • a viscosity of the diorganopolysiloxane is 100 mPa ⁇ s or more, a cured product having excellent physical and mechanical strength can be obtained.
  • the viscosity is 1,000,000 mPa ⁇ s or less, the viscosity of the composition is There is no risk that the workability during use will deteriorate due to the excessive increase.
  • the viscosity is a numerical value obtained by a rotational viscometer (for example, BL type, BH type, BS type, cone plate type, etc.).
  • (A) component diorganopolysiloxane examples include, for example, those represented by the following formula. (In the formula, m ′, R and Y are the same as above, and b ′ is 0 or 1.)
  • the diorganopolysiloxane of component (A) can be used alone or in combination of two or more having different structures and degrees of polymerization.
  • the alkoxysilyl-ethylene group-containing organosilicon compound as component (B) is a particularly important element in the room temperature curable organopolysiloxane composition of the present invention, and acts as a crosslinking agent (curing agent).
  • the organosilane compound ie, the leftmost silicon atom in formula (1) was blocked with three monovalent hydrocarbon groups.
  • the E form in the reaction formula [2] is used because of its high reactivity. It is preferable to use (trans body).
  • the blending amount of the component (B) is preferably 0.1 to 30 parts by mass, particularly 0.5 to 20 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A).
  • the component (C) is a curing catalyst and is used for curing the composition.
  • organometallic catalysts include alkyltin ester compounds such as dibutyltin diacetate, dibutyltin dilaurate and dibutyltin dioctoate, tetraisopropoxy titanium, tetra n-butoxy titanium, tetrakis (2-ethylhexoxy) titanium, dipropoxy bis (acetylacetate).
  • Titanic acid ester or titanium chelate compound such as titanium, titanium isopropoxyoctylene glycol, zinc naphthenate, zinc stearate, zinc-2-ethyl octoate, iron-2-ethylhexoate, cobalt-2-ethyl Organometallic compounds such as hexoate, manganese-2-ethylhexoate, cobalt naphthenate, alkoxyaluminum compounds, 3-aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrime Aminoalkyl group-substituted alkoxysilanes such as toxisilane, amine compounds such as hexylamine and dodecylamine phosphate and salts thereof, quaternary ammonium salts such as benzyltriethylammonium acetate, alkali metals such as potassium acetate, sodium
  • the silane and / or its partial hydrolysis-condensation product excluding the component (B) which is the component (D) is a crosslinking agent.
  • Specific examples include, for example, ethyl silicate, propyl silicate, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, methyltris (methoxyethoxy) silane, vinyltris (methoxyethoxy) silane, methyltripropeno
  • the partially hydrolyzed condensate means that the hydrolyzable silane is partially hydrolyzed and condensed to form at least two, preferably three or more residual hydrolyzable groups in one molecule.
  • the amount of component (D) is usually 0-30 parts by weight per 100 parts by weight of component (A), preferably 0.1-20 parts by weight, more preferably 0.5- 15 parts by mass. If the amount exceeds 30 parts by mass, the cured product may become too hard or economically disadvantageous.
  • Component (E) is a filler and is used to give sufficient mechanical strength to the cured product formed from this composition.
  • the filler known ones can be used. For example, dry silica such as calcined silica, pulverized silica, fumed silica (fumed silica), silica aerogel, etc., wet silica such as precipitated silica, sol-gel method silica and the like.
  • silica-based fine powders such as silica and diatomaceous earth, metal oxides such as iron oxide, zinc oxide and titanium oxide, or those whose surfaces have been hydrophobized with organosilane or organosilazane, calcium carbonate, carbonic acid Metal carbonates such as magnesium and zinc carbonate, asbestos, glass wool, carbon black, fine mica, fused silica powder (quartz powder), synthetic resin powder such as polystyrene, polyvinyl chloride, and polypropylene are used.
  • the blending amount of the filler is preferably 0 to 1000 parts by mass, particularly 1 to 400 parts by mass per 100 parts by mass of the component (A).
  • the cured product obtained from this composition tends to exhibit sufficient mechanical strength, and when used in a larger amount than 1000 parts by mass, the viscosity of the composition increases. Not only is the workability worsened, but the rubber strength after curing tends to decrease, making it difficult to obtain rubber elasticity.
  • Component (F) is an adhesion promoter and is used to give sufficient adhesion to a cured product formed from this composition.
  • aminosilanes such as ⁇ -aminopropyltriethoxysilane, 3-2- (aminoethylamino) propyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxy
  • epoxy silanes such as silane, isocyanate silane and the like.
  • adhesion promoters are preferably 0 to 30 parts by weight, particularly 0.1 to 20 parts by weight, based on 100 parts by weight of the organopolysiloxane of component (A).
  • the room temperature curable composition of the present invention is blended with known additives such as pigments, dyes, anti-aging agents, antioxidants, antistatic agents, antimony oxides, flame retardants such as paraffin chloride, and the like as additives. be able to.
  • a polyether as a thixotropy improver, a fungicide, and an antibacterial agent can be blended.
  • the room temperature curable composition of the present invention can be obtained by uniformly mixing the above-mentioned components and further predetermined amounts of the above-mentioned various additives in a dry atmosphere.
  • the room temperature curable composition of the present invention is cured by allowing it to stand at room temperature, and a known method and conditions corresponding to the type of the composition can be adopted as the molding method and curing conditions.
  • the room temperature curable composition of the present invention thus obtained is a rubber elastic body which is rapidly cured at room temperature by moisture in the air and has excellent heat resistance, weather resistance, low temperature characteristics, and various substrates, particularly adhesion to metals. Form a cured product.
  • the composition of the present invention is particularly excellent in storage stability and curability, for example, it quickly cures when exposed to the air after storage for 12 months, and a cured product having excellent physical properties as described above. give. In particular, no toxic or corrosive gas is emitted during curing, and no rust is produced on the surface to which this composition is applied.
  • this composition does not cause contact failure of electrical and electronic parts, so it is useful as an insulating material and adhesive for electrical and electronic parts, as well as a sealant, coating agent, coating agent, mold release agent for various substrates. It can be widely used as a treating agent and a fiber treating agent.
  • part means “part by mass”, and the viscosity is a value measured by a rotational viscometer at 25 ° C.
  • Example 1 40 parts of a linear dimethylpolysiloxane having both ends of a molecular chain having a viscosity of 700 mPa ⁇ s blocked with hydroxyl groups (silanol groups) and a linear dimethylpolysiloxane having both ends of a molecular chain having a viscosity of 5000 mPa ⁇ s blocked with hydroxyl groups 60 parts is mixed, and then 5.2 parts of Compound 1 and 0.75 parts of tetramethylguanidylpropyltrimethoxysilane are added as a crosslinking agent (curing agent) and mixed until moisture is cut off and uniform. To prepare a composition.
  • a crosslinking agent curing agent
  • Example 2 A composition was prepared in the same manner as in Example 1 except that 5.0 parts of Compound 2 was used instead of Compound 1.
  • Example 3 A composition was prepared in the same manner as in Example 1 except that 4.6 parts of Compound 3 was used instead of Compound 1.
  • Example 2 In Example 1, a composition was prepared in the same manner except that 4.9 parts of the following compound 5 was used instead of compound 1.
  • Example 3 In Example 1, a composition was prepared in the same manner except that 3.5 parts of vinyltrimethoxysilane was used instead of compound 1.
  • each composition immediately after preparation prepared in each Example (1-3) and Comparative Example (1-5) was extruded into a sheet having a thickness of 2 mm and exposed to air at 23 ° C. and 50% RH.
  • the physical properties (initial physical properties) of a cured product obtained by allowing the sheet to stand in the same atmosphere for 7 days were measured according to JIS K-6249.
  • the hardness was measured using a durometer A hardness meter of JIS K-6249.
  • this cured product was stored in a constant temperature and humidity chamber at 85 ° C. and 85% RH for 500 hours and measured in the same manner.
  • each composition was filled in a glass container having an inner diameter of 28 mm and a depth of 15 mm, and exposed to air at 23 ° C. and 50% RH. After 8 hours, 24 hours, and 120 hours had elapsed, The thickness to be cured was measured (cured film thickness).
  • each composition immediately after preparation prepared in each example and comparative example was put in a sealed container, and the cured state of a sheet made from the one left at 150 ° C. for 4 days was confirmed (sealed heat resistance test). .
  • Example 1 has higher fast curability and durability than the corresponding Comparative Examples 1 to 4. Further, it is clear that Examples 2 and 3 are superior in durability as compared with Comparative Example 5. In addition, it is clear that Examples 1 to 3 have higher storage stability than the comparative example.
  • Example 4 Synthesizing according to the method of Synthesis Example 4, 100 parts of polydimethylsiloxane having both ends of a molecular chain having a viscosity of 970 mPa ⁇ s blocked with trimethoxysilyl-ethylene group and 0.1 part of titanium tetraisopropoxide were blocked with moisture. The composition was adjusted by mixing until uniform.
  • Example 5 Uniformly 100 parts of polydimethylsiloxane (base polymer) with both ends of molecular chain with viscosity of 970 mPa ⁇ s blocked with trimethoxysilyl-ethylene group and 0.2 part of titanium tetra-2-ethylhexoxide under moisture blocking The composition was adjusted by mixing.
  • Example 6 100 parts of polydimethylsiloxane blocked with trimethoxysilyl-ethylene groups at both ends of a molecular chain having a viscosity of 970 mPa ⁇ s and 0.5 part of titanium diisopropoxybis (ethylacetoacetate) until uniform under moisture blocking The composition was adjusted by mixing.
  • Example 7 A composition was prepared by mixing 100 parts of polydimethylsiloxane having both ends of a molecular chain having a viscosity of 970 mPa ⁇ s blocked with trimethoxysilyl-ethylene group and 0.3 part of dioctyltin dilaurate under moisture blocking until uniform. did.
  • Example 8 A composition was prepared by mixing 100 parts of polydimethylsiloxane having a viscosity of 970 mPa ⁇ s blocked with a trimethoxysilyl-ethylene group and 0.2 part of diazabicycloundecene until moisture was cut off and uniform. did.
  • each composition immediately after adjustment prepared in each Example and Comparative Example was extruded into a sheet having a thickness of 2 mm, exposed to air at room temperature (23 ° C.) and 50% RH, and then the sheet was the same.
  • the physical properties (initial physical properties) of a cured product obtained by leaving it in an atmosphere for 7 days were measured according to JIS K-6249.
  • the hardness was measured using a durometer A hardness meter of JIS K-6249.
  • Example 4 to 8 have extremely high fast curability as compared with Comparative Examples 6 to 10 and Comparative Examples 11 to 15, respectively. Further, from the results of Table 3, it is clear that in particular, Example 8 has significantly higher durability and storage stability than the corresponding Comparative Examples 6 and 15, respectively.
  • the room temperature curable composition of the present invention and its base polymer give a cured product having fast curability, durability and storage stability.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Silicon Polymers (AREA)
  • Sealing Material Composition (AREA)

Abstract

 本発明は、下記構造式(a)で示される、シリル-エチレン結合を少なくとも分子中に1つ含むものであることを特徴とするアルコキシシリル-エチレン基末端ケイ素含有化合物である。これにより、特に速硬化性、保存安定性に優れ、耐久性に優れた硬化物を与える室温硬化性ポリオルガノシロキサン組成物に用いられる新規なベースポリマーが提供される。

Description

新規アルコキシシリル-エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物
 本発明は、アルコキシシリル-エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物に関する。
 従来、空気中の水分と接触することにより、縮合反応により架橋して室温でエラストマー状に硬化する室温硬化性組成物、特に室温硬化性オルガノポリシロキサン組成物は、種々のタイプのものが公知であるが、とりわけアルコールを放出して硬化するタイプのものは不快臭がないこと、金属類を腐食しないことが特徴となって、電気・電子機器等のシーリング用、接着用、コーティング用に好んで使用されている。
 かかるタイプの代表例として、水酸基末端封鎖ポリオルガノシロキサンとアルコキシシランと有機チタン化合物からなる室温硬化性オルガノポリシロキサン組成物、アルコキシシリル末端封鎖ポリオルガノシロキサンとアルコキシシランとアルコキシチタンからなる室温硬化性オルガノポリシロキサン組成物、シルエチレン基を含むアルコキシシリル基で末端が封鎖された直鎖状のポリオルガノシロキサンとアルコキシシランとアルコキシチタンからなる室温硬化性オルガノポリシロキサン組成物、更に、水酸基末端封鎖ポリオルガノシロキサン又はアルコキシ基末端封鎖ポリオルガノシロキサンとアルコキシ-α-シリルエステル化合物からなる室温硬化性オルガノポリシロキサン組成物が開示されている(特許文献1~4)。
 これらの組成物は、ある程度の保存安定性、耐水性、耐湿性が得られているが、これら問題を完全に解決するには至っていない。さらに、速硬化性に関しては、まだ不十分であった。
 上述の通り、反応性アルコキシシリル基を末端に有するポリマーは、従来公知である。このポリマーは、予め、ポリマー末端基がアルコキシシリル基で封鎖されている為、経時で硬化性が変化(低下)し難く、保存安定性に優れた組成物が得られる。また、作業性(粘度、チキソ性)を任意に調整可能であり、空気中の水分と反応し、架橋、エラストマーを形成し、優れた特性(硬度、引張強さ、切断時伸び)も得られている。
 しかしながら、この様な反応性アルコキシシリル基を末端に有するオルガノシロキサンポリマーを主剤(ベースポリマー)とする脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物は、従来公知の他の硬化タイプである脱オキシムタイプ、脱酢酸タイプ、脱アセトンタイプ等と比較すると、空気中の水分との反応性が低いため、硬化性が不十分であった。
 この対応として、反応性アルコキシ基に隣接する官能基(結合基)に着目した研究が進められており、α-アルコキシシリルメチル末端基は、空気中の水分に対して特に高い反応性を有する事が報告されている(特許文献5)。しかし、未だ硬化性は不十分であり、隣接する官能基(結合基)が耐久性に悪影響を及ぼしたり、硬化物の復元力が低くかったりという欠点を有していた。
特公昭39-27643号公報 特開昭55-43119号公報 特公平7-39547号公報 特開平7-331076号公報 特表2012-511607号公報
 本発明は、上記事情に鑑みなされたもので、例えば速硬化性、保存安定性に優れ、耐久性に優れた硬化物を与えることが可能な室温硬化性ポリオルガノシロキサン組成物及び該組成物に用いられる新規なベースポリマー又はその硬化剤(架橋剤)を提供することを目的とする。
 本発明は、上記課題を解決するためになされたもので、下記構造式(a)で示される、シリル-エチレン結合を少なくとも分子中に1つ含むものであることを特徴とするアルコキシシリル-エチレン基末端ケイ素含有化合物(例えば、オルガノシラン化合物、オルガノシロキサン化合物等)及び該ケイ素含有化合物をベースポリマー又は硬化剤(架橋剤)として用いた新規な室温硬化性組成物を提供する。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは置換基を有してもよい炭素数1から20の1価炭化水素基であり、該炭化水素基のうち炭素数が3以上のものは環状であるシクロアルキル基であってもよい。Rは水素原子、又は置換基を有してもよい炭素数1から20の1価炭化水素基である。aは1から3の整数であり、nは0から10の整数である。)
 このようなアルコキシシリル-エチレン基末端ケイ素含有化合物をベースポリマー又は硬化剤(架橋剤)として用いれば、速硬化性及び保存安定性に優れ、なおかつ、耐久性に優れた硬化物を与えることのできる室温硬化性組成物とすることができる。
 また、前記(a)式が、下記構造式(1)で示される、シリル-エチレン構造を有するオルガノシロキシ基(n=0)であるか、あるいは、該シリル-エチレン構造で置換されたアルキル基を有するオルガノシロキシ基(n≧1)を少なくとも分子中に1つ含むものであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、R及びR、a、nは上記と同じである。)
 このようなアルコキシシリル-エチレン基末端ケイ素含有化合物を、例えば室温硬化性オルガノポリシロキサン組成物のベースポリマー(直鎖状ジオルガノポリシロキサン)又は、架橋剤(オルガノシラン及びその部分加水分解縮合物)として用いれば、特に速硬化性、保存安定性に優れ、耐久性に優れた硬化物を与えるものとすることができる。
 また、前記アルコキシシリル-エチレン基末端ポリオルガノシロキサン化合物が、下記構造式(2)で表される、アルコキシシリル-エチレン構造を有するオルガノシロキシ基で、分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサンであることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、R及びR、a、nは上記と同じである。mは0~2000の整数である。)
 このようなアルコキシシリル-エチレン基末端ポリオルガノシロキサン化合物であれば、より速硬化性、保存安定性に優れ、耐久性に優れたオルガノポリシロキサン硬化物(シリコーンゴム)を与えるものとすることができる。
 また、本発明は、
 室温硬化性オルガノポリシロキサン組成物であって、
(A)水酸基及び/又は加水分解性シリル基が結合した珪素原子を1分子中に少なくとも2個有するジオルガノポリシロキサン:100質量部、
(B)前記アルコキシシリル-エチレン基末端ケイ素含有化合物:0.1~30質量部、
(C)硬化触媒:0.001~15質量部、
(D)(B)成分を除くシラン及び/又はその部分加水分解縮合物:0~30質量部、
(E)充填材:0~1000質量部、
(F)接着促進剤:0~30質量部、
を含有する室温硬化性オルガノポリシロキサン組成物を提供する。
 このような室温硬化性オルガノポリシロキサン組成物であれば、特に速硬化性、保存安定性に優れ、耐久性にも優れた硬化物(シリコーンゴム)を与える室温硬化性オルガノポリシロキサン組成物を提供することができる。
 また、前記室温硬化性オルガノポリシロキサン組成物がコーティング剤、接着剤及びシール剤のいずれかとして用いられるものであることが好ましい。
 このような室温硬化性オルガノポリシロキサン組成物であれば、例えば、耐熱性、耐水性、耐湿性が必要な箇所のコーティング剤、接着剤、シール剤として有用である。
 また、本発明の室温硬化性オルガノポリシロキサン組成物を硬化させた成形物(シリコーンゴム成形物)を提供する。
 このような成形物であれば、すばやく硬化して、耐熱性、耐候性、低温特性、各種基材、特に金属に対する接着性に優れたゴム弾性体硬化物を形成することができる。
 以上説明したように、本発明の新規なケイ素含有化合物(オルガノシラン化合物、オルガノシロキサン化合物等)は、特に速硬化性に優れた硬化物を与え、更に例えば12か月間の貯蔵後でも、空気中に曝すと速やかに硬化して、優れた物性を示す。さらに、この新規なケイ素含有化合物をベースポリマー又は硬化剤(架橋剤)として含む組成物は、耐熱性、耐水性、耐湿性が必要な個所の接着、シール剤として有用であり、とりわけ、耐スチーム性、耐水性が必要な建築用途、電気電子用接着剤用途として有効に使用することができる。
合成実施例1で得られた化合物1(トリメトキシシリル-エチレン置換トリメチルシラン)のH-NMRチャートである。 合成実施例1で得られた化合物1(トリメトキシシリル-エチレン置換トリメチルシラン)のH-NMRチャートを拡大(6.0~7.5ppm付近)したものである。 合成実施例2で得られた化合物2(トリメトキシシリル-エチレン基両末端テトラメトキシジシロキサン)のH-NMRチャートである。 合成実施例2で得られた化合物2(トリメトキシシリル-エチレン基両末端テトラメトキシジシロキサン)の13C-NMRチャート、29Si-NMRチャートである。 合成実施例3で得られた化合物3(ジメトキシメチルシリル-エチレン基両末端テトラメトキシジシロキサン)のH-NMRチャートである。 合成実施例4で用いた原料(末端エチニル基含有オルガノポリシロキサン化合物)のH-NMRチャートである。 合成実施例4で得られた目的物(トリメトキシシリル-エチレン基末端オルガノシロキサン化合物)のH-NMRチャートである。 合成実施例4で得られた目的物(トリメトキシシリル-エチレン基末端オルガノシロキサン化合物)のH-NMRチャートを拡大(6.4~7.4ppm付近)したものである。
 前述のように、特に速硬化性、保存安定性に優れ、耐久性に優れた硬化物を与える室温硬化性オルガノポリシロキサン組成物及び該組成物に用いられる新規なベースポリマー又は硬化剤(架橋剤)の開発が待たれていた。
 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、アルコキシシリル基に隣接する結合基がエチレン系炭化水素である場合に限り、アルコキシ基の加水分解性が飛躍的に向上する事を知見し、下記構造式(a)、特に下記構造式(1)で示されるアルコキシシリル-エチレン基を末端に有するケイ素化合物は、とりわけ速硬化性に優れ、同時に保存安定性、耐久性も良好な硬化物を与える室温硬化性組成物が得られることを見出し、本発明をなすに至った。
 即ち、本発明の新規なケイ素含有化合物は、下記構造式(a)で示される、シリル-エチレン結合を有するオルガノシリル基を少なくとも分子中に1つ含むものであることを特徴とするアルコキシシリル-エチレン基末端ケイ素含有有機ケイ素化合物である。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは置換基を有してもよい炭素数1から20の1価炭化水素基であり、該炭化水素基のうち炭素数が3以上のものは環状であるシクロアルキル基であってもよい。Rは水素原子、又は置換基を有してもよい炭素数1から20の1価炭化水素基である。aは1から3の整数であり、nは0から10の整数である。)
 また、前記(a)式が、下記構造式(1)で示される、シリル-エチレン結合を有するオルガノシロキシ基(n=0)であるか、あるいは、該シリル-エチレン構造で置換されたアルキル基を有するオルガノシロキシ基(n≧1)を少なくとも分子中に1つ含むものであることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、R及びR、a、nは上記と同じである。)
 また、前記アルコキシシリル-エチレン基末端ケイ素含有化合物が、下記構造式(2)で示される、アルコキシシリル-エチレン構造を有するオルガノシロキシ基で分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサンであることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、R及びR、a、nは上記と同じである。mは0~2000の整数である。)
以下、本発明について詳細に説明する。
<アルコキシシリル-エチレン基末端ケイ素含有化合物について>
 本発明に係るアルコキシシリル-エチレン基末端ケイ素含有化合物は、シリル-エチレン結合を少なくとも分子中に1つ含む、オルガノシラン化合物、オルガノシロキサン化合物等の有機ケイ素化合物である。
 ここで、上記構造式(a)、(1)及び(2)において、R、Rの置換又は非置換の、炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~6の一価炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、オクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基、あるいは、メトキシ基、エトキシ基等の低級アルコキシ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基、メトキシエトキシ基等を例示することができる。これらの中でも、メチル基、エチル基が好ましく、メチル基が特に好ましい。
 また、上記構造式(2)において、Rは上述に加えて、水素原子や、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基を例示することができる。
 分子鎖末端における加水分解性基(上記構造式(a)、(1)、(2)における(OR)は、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基等の炭素数1~5程度のアルコキシ基;メトキシエトキシ基、メトキシプロポキシ基、エトキシプロポキシ基等の炭素数1~5程度のアルコキシアルコキシ基、等が挙げられる。これらの中でも、メトキシ基、エトキシ基が特に好ましい。
 また、上述のとおり、nは0~10、好ましくは0~5、より好ましくは0~3の整数であり、mは、0~2000、好ましくは0~1600、より好ましくは0~1000、更に好ましくは0~500の整数であり、aは1~3の整数である。
 nが10より大きいと反応性が低下してしまうため不都合が生じる。また、mが、2000より小さいと作業性を任意に調整可能であるため好都合である。
 本発明に係る新規ケイ素含有化合物は、アルコキシシリル-エチレン基を末端に有する、オルガノシラン化合物やオルガノシロキサン化合物等の有機ケイ素化合物であり、例えば、縮合反応によって硬化(架橋)する室温硬化性オルガノポリシロキサン組成物の硬化剤や主剤(ベースポリマー)として使用され、直鎖、又は分岐状であってもよい。また、分子中、同一ケイ素上に3個のメトキシ基等のアルコキシ基を有する場合(a=3)、3官能のアルコキシシラン部位があるため脱アルコールタイプRTVの硬化剤や主剤として、特に有用である。
 尚、室温硬化性オルガノポリシロキサン組成物の主剤(ベースポリマー)として使用する場合には、構造式(1)で示されるアルコキシシリル-エチレン基含有有機ケイ素化合物は、分子中にSi-O-Si結合部分を有さないオルガノシラン化合物(即ち、構造式(1)において左端のケイ素原子が全てR等の1価炭化水素基で封鎖されたトリオルガノシリル基であるか、構造式(2)において、m=0で示されるジシロキサン化合物(2量体)であるか、あるいは、構造式(2)において、m=1~10程度の低分子シロキサンオリゴマー)であることが好ましい。
 一方、室温硬化性オルガノポリシロキサン組成物の主剤(ベースポリマー)として使用する場合には、構造式(1)で示されるアルコキシシリル-エチレン基含有有機ケイ素化合物は、例えば、構造式(2)において、m≧20、好ましくはm≧24程度の、直鎖状ジオルガノポリシロキサンであることが好ましい。
<アルコキシシリル-エチレン基末端ケイ素含有化合物の製造方法>
 本発明のアルコキシシリル-エチレン基末端ケイ素含有化合物は、例えば、両末端にエチニル基を有するジシロキサンと、オクタメチルシクロテトラシロキサンとを、酸性触媒下、重合反応させ、両末端にエチニル基を有するジオルガノポリシロキサンを製造し、次いで、トリアルコキシシランを付加反応で製造することができる。この反応式は、例えば下記式[1]で表される。
Figure JPOXMLDOC01-appb-C000007
(式中、R、R、n、m、aは前記の通りである。)
 また、本発明のアルコキシシリル-エチレン基末端ケイ素含有化合物のうち、構造式(2)においてm=0であるジシロキサン化合物は、例えば、両末端にエチニル基を有するジシロキサンと、アルコキシシランを付加反応で製造することができる。この反応式は、例えば下記式[1’]で表される。
Figure JPOXMLDOC01-appb-C000008
(式中、R、R、a、nは前記の通りである。)
 付加反応触媒としては、白金族系触媒、例えば白金系、パラジウム系、ロジウム系のものがあるが、白金系のものが特に好適である。この白金系のものとしては、白金黒あるいはアルミナ、シリカ等の担体に固体白金を担持させたもの、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸とオレフィンとの錯体あるいは白金とビニルシロキサンとの錯体等を例示することができる。これらの白金の使用量は、所謂触媒量でよく、例えばトリアルコキシシラン類に対して、白金族金属換算で0.1~1,000ppm、特に0.5~100ppmの量で使用できる。
 この反応は、一般に50~120℃、特に60~100℃の温度で、0.5~12時間、特に1~6時間行うことが望ましく、また溶媒を使用せずに行うことができるが、上記付加反応等に悪影響を与えない限りにおいて、必要によりトルエン、キシレン等の適当な溶剤を使用することができる。
 末端アセチレン基に対する付加反応では、例えば、下記反応式[2]で表される幾何異性体が生成される。E体(trans体)の生成が高選択的であり、反応性も高いが、本発明のケイ素含有化合物では、その特性に悪影響を与えないことから、これらを分離することなく使用することができる。
Figure JPOXMLDOC01-appb-C000009
(式中、nは前記の通りである。)
 アルコキシシリル-エチレン基末端ケイ素含有化合物の具体例としては、例えば、下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000010
<室温硬化性オルガノポリシロキサン組成物>
 また、本発明は、
 室温硬化性オルガノポリシロキサン組成物であって、
(A)水酸基及び/又は加水分解性基が結合した珪素原子を1分子中に少なくとも2個有するジオルガノポリシロキサン:100質量部、
(B)前述のアルコキシシリル-エチレン基末端ケイ素含有化合物:0.1~30質量部、
(C)硬化触媒:0.001~15質量部、
(D)(B)成分を除くシラン及び/又はその部分加水分解縮合物:0~30質量部、
(E)充填材:0~1000質量部、
(F)接着促進剤:0~30質量部、
を含有する室温硬化性オルガノポリシロキサン組成物を提供する。
 以下、本発明の室温硬化性オルガノポリシロキサン組成物につき更に詳しく説明する。
[(A)成分]
 (A)成分のジオルガノポリシロキサンは、本発明の室温硬化性オルガノポリシロキサン組成物の主剤(ベースポリマー)であり、分子中に少なくとも2個の珪素原子に結合した水酸基又は加水分解性シリル基を有するものである。このようなジオルガノポリシロキサンとして、具体的には、下記一般式(2a)又は(3a)で表される分子鎖両末端がケイ素原子に結合した水酸基(即ち、シラノール基)又は加水分解性シリル基で封鎖された直鎖状ジオルガノポリシロキサンが用いられる。
Figure JPOXMLDOC01-appb-C000011
(式中、Rは置換又は非置換の炭素原子数1~12、好ましくは1~8の一価炭化水素基であり、Xは酸素原子又は炭素原子数1~8、好ましくは1~6の二価炭化水素基(例えば、アルキレン基等)であり、Yは加水分解性基であり、bは2又は3であり、m’はこのジオルガノポリシロキサンの25℃における粘度を100~1,000,000mPa・sとする数であり、通常、m=20~2000、好ましくは22~1600、より好ましくは23~1000、更に好ましくは24~500程度の整数である。)
 尚、本発明において、重合度(又は分子量)は、例えば、トルエンやテトラヒドロフラン(THF)等を展開溶媒として、ゲルパーミエーションクロマトグラフィ(GPC)分析における重量平均重合度(又は重量平均分子量)等として求めることができる。
 上記式中、Rの置換又は非置換の一価炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、オクタデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基、ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基、また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、メチル基、エチル基、フェニル基が好ましく、メチル基が特に好ましい。
 Xは、酸素原子又は炭素原子数1~8の二価炭化水素基であり、二価炭化水素基としては、-(CH)p-(pは1~8の整数を表す)で表されるアルキレン基が好ましい。これらの中でも酸素原子、-CHCH-が好ましい。
 Yは、上記ジオルガノポリシロキサンの分子鎖末端における加水分解性基であり、例えば、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基等のアルコキシアルコキシ基、アセトキシ基、オクタノイルオキシ基、ベンゾイルオキシ基等のアシロキシ基、ビニロキシ基、イソプロペニルオキシ基、1-エチル-2-メチルビニルオキシ基等のアルケニルオキシ基、ジメチルケトオキシム基、メチルエチルケトオキシム基、ジエチルケトオキシム基等のケトオキシム基、ジメチルアミノ基、ジエチルアミノ基、ブチルアミノ基、シクロヘキシルアミノ基等のアミノ基、ジメチルアミノキシ基、ジエチルアミノキシ基等のアミノキシ基、N-メチルアセトアミド基、N-エチルアセトアミド基、N-メチルベンズアミド基等のアミド基等が挙げられる。これらの中でも、アルコキシ基が好ましく、メトキシ基、エトキシ基がより好ましく、メトキシ基が特に好ましい。
 (A)成分のジオルガノポリシロキサンは、25℃における粘度が100~1,000,000mPa・sが好ましく、より好ましくは300~500,000mPa・s、特に好ましくは500~100,000mPa・s、とりわけ1,000~80,000mPa・sである。上記ジオルガノポリシロキサンの粘度が100mPa・s以上であると、物理的・機械的強度に優れた硬化物を得ることができ、1,000,000mPa・s以下であれば、組成物の粘度が高くなりすぎて使用時における作業性が悪くなる恐れがない。ここで、粘度は回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型等)による数値である。
 (A)成分のジオルガノポリシロキサンの具体例としては、例えば、下記式で表されるものが挙げられる。
(式中、m’、R、Yは上記と同様であり、b’は0又は1である。)
 (A)成分のジオルガノポリシロキサンは、1種単独でも構造や重合度の異なる2種以上を組み合わせても使用することができる。
[(B)成分]
 (B)成分であるアルコキシシリル-エチレン基含有有機ケイ素化合物は本発明の室温硬化性オルガノポリシロキサン組成物において、特に重要な要素であり、架橋剤(硬化剤)として作用する。このようなものとして、前述のアルコキシシリル-エチレン基末端ケイ素含有有機ケイ素化合物のうち、オルガノシラン化合物(即ち、式(1)において左端のケイ素原子が3個の1価炭化水素基で封鎖されたトリオルガノシリル基であるもの)や、式(2)においてm=0であるジシロキサン化合物、あるいは、m=1~10程度の低分子シロキサンオリゴマーを用いることができ、製造方法等は前述の通りである。
 尚、室温硬化性オルガノポリシロキサン組成物の(B)成分として、前述のアルコキシシリル-エチレン基末端ケイ素含有有機ケイ素化合物を用いる際、反応性が高い点から、前記反応式[2]におけるE体(trans体)を使用する事が好ましい。
 (B)成分の配合量は、上記(A)成分のオルガノポリシロキサン100質量部に対して0.1~30質量部、特に0.5~20質量部が好ましい。
[(C)成分]
 (C)成分は硬化触媒であり、この組成物を硬化させるために使用される。有機金属触媒としては、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジオクトエート等のアルキル錫エステル化合物、テトライソプロポキシチタン、テトラn-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナト)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物、ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト、アルコキシアルミニウム化合物等の有機金属化合物、3-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等のアミノアルキル基置換アルコキシシラン、ヘキシルアミン、リン酸ドデシルアミン等のアミン化合物及びその塩、ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩、酢酸カリウム、酢酸ナトリウム、シュウ酸リチウム等のアルカリ金属の低級脂肪酸塩、ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン、テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン又はシロキサン等が例示されるが、これらはその1種に限定されず、2種以上の混合物として使用してもよい。
 なお、これら硬化触媒の配合量は、上記(A)成分のオルガノポリシロキサン100質量部に対して0.001~15質量部、特に0.01~10質量部が好ましい。
[(D)成分]
 (D)成分である(B)成分を除くシラン及び/又はその部分加水分解縮合物は架橋剤である。具体例としては、例えば、エチルシリケート、プロピルシリケート、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メチルトリス(メトキシエトキシ)シラン、ビニルトリス(メトキシエトキシ)シラン、メチルトリプロペノキシシラン、等及びこれらの部分加水分解縮合物が挙げられる。これらは1種単独でも2種以上を組み合わせても使用することができる。
 尚、本発明において部分加水分解縮合物とは、前記加水分解性シラン同士が部分的に加水分解縮合して生成する、1分子中に残存加水分解性基を少なくとも2個、好ましくは3個以上有するシロキサンオリゴマーを意味する。
 (D)成分の配合量は、上記(A)成分100質量部に対して通常0~30質量部であるが、0.1~20質量部であることが好ましく、より好ましくは0.5~15質量部である。前記配合量が30質量部を超えると硬化物が硬くなりすぎたり、経済的に不利となるという問題が発生する場合がある。
[(E)成分]
 (E)成分は充填剤であり、この組成物から形成される硬化物に十分な機械的強度を与えるために使用される。この充填剤としては公知のものを使用することができ、例えば、焼成シリカ、粉砕シリカ、煙霧質シリカ(ヒュームドシリカ)、シリカエアロゲル等の乾式シリカ、沈降シリカ、ゾル-ゲル法シリカ等の湿式シリカ、けいそう土等の補強性シリカ系微粉末、酸化鉄、酸化亜鉛、酸化チタンなどの金属酸化物、あるいはこれらの表面をオルガノシランやオルガノシラザン等で疎水化処理したもの、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛などの金属炭酸塩、アスベスト、ガラスウール、カーボンブラック、微粉マイカ、溶融シリカ粉末(石英粉)、ポリスチレン、ポリ塩化ビニル、ポリプロピレンなどの合成樹脂粉末等が使用される。
 この充填剤の配合量は、前記(A)成分100質量部当たり、0~1000質量部、特に1~400質量部とすることが好ましい。未配合の場合より配合した方が、この組成物から得られる硬化物が十分な機械的強度を示めす傾向があり、また1000質量部よりも多量に使用すると、組成物の粘度が増大して作業性が悪くなるばかりでなく、硬化後のゴム強度が低下してゴム弾性が得難くなる傾向がある。
[(F)成分]
 (F)成分は接着促進剤であり、この組成物から形成される硬化物に十分な接着性を与えるために使用される。
 特にγ-アミノプロピルトリエトキシシラン、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン等のアミノシラン類、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類、イソシアネートシラン等を配合することが好ましい。これら接着促進剤は(A)成分のオルガノポリシロキサン100質量部に対して0~30質量部、特に0.1~20質量部が好ましい。
[その他の成分]
 また、本発明の室温硬化性組成物には、添加剤として、顔料、染料、老化防止剤、酸化防止剤、帯電防止剤、酸化アンチモン、塩化パラフィン等の難燃剤など公知の添加剤を配合することができる。更に、チクソ性向上剤としてのポリエーテル、防かび剤、抗菌剤、を配合することもできる。
 本発明の室温硬化性組成物は、上記各成分、更にはこれに上記各種添加剤の所定量を、乾燥雰囲気中において均一に混合することにより得ることができる。
 また、本発明の室温硬化性組成物は、室温で放置することにより硬化するが、その成形方法、硬化条件などは、組成物の種類に応じた公知の方法、条件を採用することができる。
 かくして得られる本発明の室温硬化性組成物は、空気中の湿気により、室温で速やかに硬化して耐熱性、耐候性、低温特性、各種基材、特に金属に対する接着性に優れたゴム弾性体硬化物を形成する。また、本発明の組成物は、特に保存安定性、硬化性に優れ、例えば12ヶ月間の貯蔵後も空気中に曝すと速やかに硬化して、上述のように優れた物性を持つ硬化物を与える。特に硬化時に毒性あるいは腐食性のガスを放出せず、この組成物を施した面に錆を生じさせることもない。特にこの組成物は、電気電子部品の接点障害を生じさせることがないので、電気電子部品用絶縁材や接着剤として有用であるほか、各種基材に対するシール剤、コーティング剤、被覆剤、離型処理剤として、また繊維処理剤としても広く使用することができる。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の具体例において、「部」は「質量部」を意味し、また粘度は25℃での回転粘度計による測定値を示したものである。
[合成実施例1]
トリメトキシシリル-エチレン置換トリメチルシランの合成
 機械攪拌機、温度計及び滴下ロートを備えた250mLの四つ口セパラブルフラスコに、エチニルトリメチルシラン98.2g(1.0mol)、塩化白金酸(HPtCl・6HO)の0.5wt%トルエン溶液0.5gを入れ、85℃でトリメトキシシラン128.3g(1.05mol)を約2時間かけて滴下した。その後、90℃で1時間撹拌後、蒸留して下記に示すトリメトキシシリル-エチレン置換トリメチルシラン(化合物1)を213g(収率97%)得た。そして、この化合物のH-NMRチャートを調べ、確かに目的物であるトリメトキシシリル-エチレン置換トリメチルシラン化合物であることを確認した(図1~図2、trans-:cis-=91:9)。この反応式は、下記式[3]で表される。
Figure JPOXMLDOC01-appb-C000013
[合成実施例2]
トリメトキシシリル-エチレン基両末端テトラメチルジシロキサンの合成
 機械攪拌機、温度計及び滴下ロートを備えた500mLの四つ口セパラブルフラスコに、1,3-ジエチニル-1,1,3,3-テトラメチルジシロキサン100g(0.55mol)、塩化白金酸(HPtCl・6HO)の0.5wt%トルエン溶液0.5g、トルエン50mLを入れ、85℃でトリメトキシシラン160g(1.31mol)を約1時間かけて滴下した。その後、90℃で4時間撹拌後、蒸留して上記に示す化合物2を226g(収率96%)得た。そして、この化合物のH-NMRチャートを調べ、確かに目的物であるトリメトキシシリル-エチレン基両末端テトラメトキシジシロキサン(化合物2)であることを確認した(図3~図4、trans-:cis-=91:9)。この反応式は、下記式[4]で表される。
Figure JPOXMLDOC01-appb-C000014
[合成実施例3]
ジメトキシメチルシリル-エチレン基両末端テトラメチルジシロキサンの合成
 機械攪拌機、温度計及び滴下ロートを備えた500mLの四つ口セパラブルフラスコに、1,3-ジエチニル-1,1,3,3-テトラメチルジシロキサン17.0g(0.094mol)、塩化白金酸(HPtCl・6HO)の0.5wt%トルエン溶液0.05g、トルエン10mLを入れ、85℃でジメトキシメチルシラン19.9g(0.187mol)を約10分かけて滴下した。その後、90℃で4時間撹拌後、蒸留して上記に示す化合物3を29.4g(収率80%)得た。そして、この化合物のH-NMRチャートを調べ、確かに目的物であるジメトキシメチルシリル-エチレン基両末端テトラメトキシジシロキサン(化合物3)であることを確認した(図5、trans-:cis-=89:11)。この反応式は、下記式[5]で表される。
Figure JPOXMLDOC01-appb-C000015
 [実施例1]
 粘度700mPa・sの分子鎖両末端が水酸基(シラノール基)で封鎖された直鎖状ジメチルポリシロキサン40部と、粘度5000mPa・sの分子鎖両末端が水酸基で封鎖された直鎖状ジメチルポリシロキサン60部とを混合し、次いで、架橋剤(硬化剤)として、化合物1を5.2部、テトラメチルグアニジルプロピルトリメトキシシランを0.75部加え、湿気遮断下で均一になるまで混合して組成物を調製した。
 [実施例2]
 実施例1において、化合物1の代わりに、化合物2を5.0部用いた以外は同様に組成物を調製した。
 [実施例3]
 実施例1において、化合物1の代わりに、化合物3を4.6部用いた以外は同様に組成物を調製した。
 [比較例1]
 実施例1において、化合物1の代わりに、下記化合物4を5.2部用いた以外は同様に組成物を調製した。
Figure JPOXMLDOC01-appb-C000016
 [比較例2]
 実施例1において、化合物1の代わりに、下記化合物5を4.9部用いた以外は同様に組成物を調製した。
Figure JPOXMLDOC01-appb-C000017
 [比較例3]
 実施例1において、化合物1の代わりに、ビニルトリメトキシシラン3.5部を用いた以外は同様に組成物を調製した。
 [比較例4]
 実施例1において、化合物1の代わりに、メチルトリメトキシシラン3.2部を用いた以外は同様に組成物を調製した。
 [比較例5]
 実施例1において、化合物1の代わりに、ビニルトリスイソプロペノキシシラン5.3部を用いた以外は同様に組成物を調製した。
 次に、各実施例(1~3)及び比較例(1~5)で調製された調製直後の各組成物を厚さ2mmのシート状に押し出し、23℃,50%RHの空気に曝し、次いで、該シートを同じ雰囲気下に7日間放置して得た硬化物の物性(初期物性)を、JIS K-6249に準拠して測定した。なお、硬さは、JIS K-6249のデュロメーターA硬度計を用いて測定した。
 更に、この硬化物を85℃,85%RHの恒温恒湿器に500時間保管したものを同様に測定した。また、各実施例及び比較例で調製された調製直後の各組成物を密閉容器に入れて、70℃の温度で7日間放置したものから作った厚さ2mmのシートについても同様の測定を行った。
 また、内径が28mm、深さが15mmのガラス製容器に各組成物を充填し、23℃,50%RHの空気に曝し、8時間、24時間、120時間経過後、空気に触れた部分から硬化していく厚さを測定した(硬化膜厚)。
 また、各実施例及び比較例で調製された調製直後の各組成物を密閉容器に入れて、150℃の温度で4日間放置したものから作ったシートの硬化状態を確認した(密封耐熱試験)。
 これらの結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、実施例1は、対応する比較例1~4と比べて、速硬化性、耐久性が高いのが明らかである。また、実施例2、3は、比較例5と比べて耐久性に優れていることが明らかである。また、実施例1~3は、比較例に比べ、保存安定性が高いことが明らかである。
[合成実施例4]
 攪拌機、還流冷却管、温度計及び滴下ロートを備えた3000mlの四つ口フラスコに、分子鎖両末端エチニル基含有ポリオルガノシロキサン化合物1500g(末端のエチニル基の官能基量換算0.16モル)、白金触媒0.35gを入れ、加熱撹拌しながら温度を75℃に上げた。ここで末端エチニル基含有ポリオルガノシロキサン化合物として用いた物質のH-NMRチャートを調べ、確かに分子鎖両末端エチニル基含有ポリオルガノシロキサン化合物であることを確認した(図6)。
 次いで、撹拌下で、トリメトキシシラン22.4g(0.18モル)を滴下していくと、発熱が認められ、反応温度は、80~85℃となり、6時間、この温度に反応系を保持した。反応終了後、減圧下にて、小過剰のトリメトキシシランを取り除いた。室温まで、冷却した後、ろ過し、トリメトキシシリル-エチレン基末端ポリオルガノシロキサン化合物を1450g(粘度970mPa・s)得た。そして、この化合物のH-NMRチャートを調べ、確かに目的物である分子鎖両トリメトキシシリル-エチレン基末端ポリオルガノシロキサン化合物であることを確認した(図7、8)。この反応式は、下記式[6]で表される。
Figure JPOXMLDOC01-appb-C000018
(式中、mは280である。)
 [実施例4]
 合成実施例4の方法に従い合成した、粘度970mPa・sの分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたポリジメチルシロキサン100部と、チタンテトライソプロポキシド0.1部を湿気遮断下で均一になるまで混合して組成物を調整した。
 [実施例5]
 粘度970mPa・sの分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたポリジメチルシロキサン(ベースポリマー)100部と、チタンテトラ-2-エチルヘキソキシド0.2部を湿気遮断下で均一になるまで混合して組成物を調整した。
 [実施例6]
 粘度970mPa・sの分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたポリジメチルシロキサン100部と、チタンジイソプロポキシビス(エチルアセトアセテート)0.5部を湿気遮断下で均一になるまで混合して組成物を調整した。
 [実施例7]
 粘度970mPa・sの分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたポリジメチルシロキサン100部と、ジオクチル錫ジラウレート0.3部を湿気遮断下で均一になるまで混合して組成物を調整した。
 [実施例8]
 粘度970mPa・sの分子末端がトリメトキシシリル-エチレン基で封鎖されたポリジメチルシロキサン100部と、ジアザビシクロウンデセン0.2部を湿気遮断下で均一になるまで混合して組成物を調整した。
 [比較例6~10]
 実施例4~8において、分子末端がトリメトキシシリル-エチレン基で封鎖されたポリジメチルシロキサン100部の代わりに、下記構造式(3)で表される分子末端がトリメトキシシリル-エチル基で封鎖されたポリジメチルシロキサン100部を用いた以外は同様に組成物を調整した。
Figure JPOXMLDOC01-appb-C000019
(式中、Aは280である。)
 [比較例11~15]
 実施例4~8において、分子末端がトリメトキシシリル-エチレン基で封鎖されたポリジメチルシロキサン100部の代わりに、下記構造式(4)で表される分子末端がトリメトキシシロキシ基で封鎖されたポリジメチルシロキサン100部を用いた以外は同様に組成物を調整した。
Figure JPOXMLDOC01-appb-C000020
(式中、Bは270である。)
 次に、各実施例及び、比較例で調整された調整直後の各組成物を厚さ2mmのシート状に押し出し、室温(23℃)、50%RHの空気に曝し、次いで、該シートを同じ雰囲気下に7日間放置して得られた硬化物の物性(初期物性)を、JIS K-6249に準拠して測定した。なお、硬さは、JIS K-6249のデュロメーターA硬度計を用いて測定した。
 更に、この硬化物を85℃,85%RHの恒温恒湿器に7日間放置したものについても同様の測定を行った。また、各実施例及び、比較例で調整された調整直後の各組成物を密閉容器に入れて、70℃の温度で7日間保存したものから、作成した厚さ2mmのシートについても同様の測定を行った。
 これらの結果を表2、表3に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2の結果より、実施例4~8は、それぞれ対応する比較例6~10、比較例11~15と比べて、速硬化性が極めて高いことが明らかである。また、表3の結果より、特に実施例8は、それぞれ対応する比較例6、15と比べて、耐久性、保存安定性が顕著に高いことが明らかである。
 以上より、本発明の室温硬化性組成物及びそのベースポリマーであれば、速硬化性、耐久性、保存安定性を有する硬化物を与えることは明らかである。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  下記構造式(a)で示される、シリル-エチレン結合を少なくとも分子中に1つ含むものであることを特徴とするアルコキシシリル-エチレン基末端ケイ素含有化合物。
    Figure JPOXMLDOC01-appb-C000021
    (式中、Rは置換基を有してもよい炭素数1から20の1価炭化水素基であり、該炭化水素基のうち炭素数が3以上のものは環状であるシクロアルキル基であってもよい。Rは水素原子、又は置換基を有してもよい炭素数1から20の1価炭化水素基である。aは1から3の整数であり、nは0から10の整数である。)
  2.  前記(a)式が、下記構造式(1)で示される、シリル-エチレン結合を少なくとも分子中に1つ含むものであることを特徴とする請求項1に記載のアルコキシシリル-エチレン基末端ケイ素含有化合物。
    Figure JPOXMLDOC01-appb-C000022
    (式中、R及びR、a、nは上記と同じである。)
  3.  前記アルコキシシリル-エチレン基末端ケイ素含有化合物が、下記構造式(2)で表されるものであることを特徴とする請求項2に記載のアルコキシシリル-エチレン基末端ケイ素含有化合物。
    Figure JPOXMLDOC01-appb-C000023
    (式中、R及びR、a、nは上記と同じである。mは0~2000の整数である。)
  4.  室温硬化性オルガノポリシロキサン組成物であって、
    (A)水酸基及び/又は加水分解性基が結合した珪素原子を1分子中に少なくとも2個有するジオルガノポリシロキサン:100質量部、
    (B)請求項1乃至請求項3のいずれか一項に記載のアルコキシシリル-エチレン基末端ケイ素含有化合物:0.1~30質量部、
    (C)硬化触媒:0.001~15質量部、
    (D)(B)成分を除くシラン及び/又はその部分加水分解縮合物:0~30質量部、
    (E)充填材:0~1000質量部、
    (F)接着促進剤:0~30質量部、
    を含有するものであることを特徴とする室温硬化性オルガノポリシロキサン組成物。
  5.  前記室温硬化性組成物がコーティング剤、接着剤及びシール剤のいずれかとして用いられるものであることを特徴とする請求項4に記載の室温硬化性オルガノポリシロキサン組成物。
  6.  請求項4に記載の室温硬化性オルガノポリシロキサン組成物を硬化させたものであることを特徴とする成形物。
PCT/JP2013/007247 2012-12-20 2013-12-10 新規アルコキシシリル-エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物 WO2014097574A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/649,030 US9644124B2 (en) 2012-12-20 2013-12-10 Silicon-containing compound having alkoxysilyl-ethylene group at its terminal, room temperature-curable organopolysiloxane composition, and molded product obtained by curing the composition
CN201380067447.4A CN104884461B (zh) 2012-12-20 2013-12-10 烷氧基硅烷基-亚乙基末端含硅化合物、有机聚硅氧烷组合物及由该组合物获得的成型物
JP2014552911A JP5997778B2 (ja) 2012-12-20 2013-12-10 新規アルコキシシリル−エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物
EP13865466.0A EP2937352B1 (en) 2012-12-20 2013-12-10 Novel alkoxysilyl-ethylene-group-terminated silicon-containing compound, room-temperature-curable organopolysiloxane composition, and molded article obtained by curing said composition
KR1020157016320A KR102111415B1 (ko) 2012-12-20 2013-12-10 신규 알콕시실릴-에틸렌기 말단 규소함유 화합물, 실온경화성 오가노폴리실록산 조성물, 및 이 조성물을 경화하여 얻어지는 성형물

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-277863 2012-12-20
JP2012277863 2012-12-20
JP2013-084075 2013-04-12
JP2013084149 2013-04-12
JP2013-084149 2013-04-12
JP2013084075 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014097574A1 true WO2014097574A1 (ja) 2014-06-26

Family

ID=50977937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007247 WO2014097574A1 (ja) 2012-12-20 2013-12-10 新規アルコキシシリル-エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物

Country Status (6)

Country Link
US (1) US9644124B2 (ja)
EP (1) EP2937352B1 (ja)
JP (1) JP5997778B2 (ja)
KR (1) KR102111415B1 (ja)
CN (1) CN104884461B (ja)
WO (1) WO2014097574A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093139A1 (ja) * 2013-12-17 2015-06-25 信越化学工業株式会社 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
WO2015114939A1 (ja) * 2014-01-31 2015-08-06 信越化学工業株式会社 オルガノポリシロキサン化合物及びその製造方法並びに付加硬化型シリコーン組成物
WO2015194340A1 (ja) * 2014-06-16 2015-12-23 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
WO2016157948A1 (ja) * 2015-04-03 2016-10-06 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物である成形物
WO2018159641A1 (ja) * 2017-03-02 2018-09-07 Agc株式会社 含フッ素シラン化合物の製造方法及び含フッ素シラン化合物
JPWO2017195508A1 (ja) * 2016-05-09 2019-03-07 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティングされた基材
KR20190046849A (ko) 2016-08-26 2019-05-07 신에쓰 가가꾸 고교 가부시끼가이샤 탈알코올형 실온 경화성 오가노폴리실록세인 조성물 및 이 조성물의 경화물로 실링된 물품
WO2020209083A1 (ja) 2019-04-10 2020-10-15 信越化学工業株式会社 オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品
JP2021055010A (ja) * 2019-10-01 2021-04-08 株式会社カネカ 硬化性組成物
JP2021055011A (ja) * 2019-10-01 2021-04-08 株式会社カネカ 硬化性組成物
JP2021055018A (ja) * 2019-10-01 2021-04-08 株式会社カネカ 硬化性組成物
JP2021055012A (ja) * 2019-10-01 2021-04-08 株式会社カネカ 硬化性組成物
WO2023204020A1 (ja) * 2022-04-19 2023-10-26 Agc株式会社 化合物、組成物、表面処理剤、物品の製造方法、及び物品
WO2024024453A1 (ja) * 2022-07-25 2024-02-01 信越化学工業株式会社 ビスシラン化合物からなる変性剤、その製造方法及びその使用
WO2024024454A1 (ja) * 2022-07-25 2024-02-01 信越化学工業株式会社 片末端変性オルガノポリシロキサン及びその製造方法、表面処理剤、並びにシリコーン組成物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071537A1 (ja) * 2018-10-05 2020-04-09 中国塗料株式会社 防汚塗料組成物、防汚塗膜、並びに防汚塗膜付き基材及びその製造方法
KR20220111298A (ko) 2019-12-11 2022-08-09 신에쓰 가가꾸 고교 가부시끼가이샤 오르가노폴리실록산 화합물 및 그의 제조 방법, 그리고 해당 화합물을 포함하는 조성물
KR102298513B1 (ko) * 2020-05-29 2021-09-07 주식회사 케이씨씨실리콘 습기경화형 실록산 조성물
EP4180488A4 (en) 2020-07-07 2024-08-07 Shinetsu Chemical Co ROOM TEMPERATURE FAST-CURING TWO-COMPONENT ORGANOPOLYSILOXANE COMPOSITION, CURED PRODUCT THEREOF AND ARTICLES
WO2023032745A1 (ja) 2021-09-03 2023-03-09 信越化学工業株式会社 オルガノポリシロキサン化合物、室温硬化性オルガノポリシロキサン組成物、及び物品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506456B1 (ja) * 1969-07-09 1975-03-14
JPS5543119A (en) 1978-09-20 1980-03-26 Sws Silicones Corp Titanium ester contained vulcanizable organopolysiloxane composition and its manufacture
JPS56122390A (en) * 1980-02-29 1981-09-25 Toshiba Silicone Co Ltd Preparation of bissilylated ethylene
JPH04283589A (ja) * 1991-03-12 1992-10-08 Rikagaku Kenkyusho ビニルシラン類の製造方法
JPH0739547B2 (ja) 1992-01-10 1995-05-01 東レ・ダウコーニング・シリコーン株式会社 室温硬化性オルガノポリシロキサン組成物
JPH07331076A (ja) 1994-06-03 1995-12-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2006216541A (ja) * 2005-01-21 2006-08-17 Internatl Business Mach Corp <Ibm> 誘電体材料、相互接続構造、電子構造、電子センシング構造および該製作方法(改良された靭性および改良されたSi−C結合を有するSiCOH誘電体材料、該誘電体材料を含む半導体デバイスおよび該誘電体材料の製作方法)
JP2012032804A (ja) * 2010-06-30 2012-02-16 Canon Inc 導電部材、プロセスカートリッジおよび電子写真画像形成装置
JP2012511607A (ja) 2008-12-11 2012-05-24 ワッカー ケミー アクチエンゲゼルシャフト アルコキシシラン末端ポリマー含有ポリマー混合物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2998505B2 (ja) 1993-07-29 2000-01-11 富士写真光機株式会社 ラジアル超音波走査装置
JP2718620B2 (ja) * 1993-09-01 1998-02-25 東芝シリコーン株式会社 ポリオルガノシランの製造方法
US7892648B2 (en) 2005-01-21 2011-02-22 International Business Machines Corporation SiCOH dielectric material with improved toughness and improved Si-C bonding
WO2012018596A2 (en) * 2010-07-26 2012-02-09 Waters Technologies Corporation Superficially porous materials comprising a substantially nonporous hybrid core having narrow particle size distribution; process for the preparation thereof; and use thereof for chromatographic separations
DE102010043996A1 (de) 2010-11-16 2012-05-16 Wacker Chemie Ag Verfahren zur Herstellung alkoxysubstituierter 1,2-Bis-Silyl-Ethane
CN103958059B (zh) 2011-12-01 2017-04-26 道康宁公司 硅氢加成反应催化剂和可固化组合物及它们的制备和使用方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506456B1 (ja) * 1969-07-09 1975-03-14
JPS5543119A (en) 1978-09-20 1980-03-26 Sws Silicones Corp Titanium ester contained vulcanizable organopolysiloxane composition and its manufacture
JPS56122390A (en) * 1980-02-29 1981-09-25 Toshiba Silicone Co Ltd Preparation of bissilylated ethylene
JPH04283589A (ja) * 1991-03-12 1992-10-08 Rikagaku Kenkyusho ビニルシラン類の製造方法
JPH0739547B2 (ja) 1992-01-10 1995-05-01 東レ・ダウコーニング・シリコーン株式会社 室温硬化性オルガノポリシロキサン組成物
JPH07331076A (ja) 1994-06-03 1995-12-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2006216541A (ja) * 2005-01-21 2006-08-17 Internatl Business Mach Corp <Ibm> 誘電体材料、相互接続構造、電子構造、電子センシング構造および該製作方法(改良された靭性および改良されたSi−C結合を有するSiCOH誘電体材料、該誘電体材料を含む半導体デバイスおよび該誘電体材料の製作方法)
JP2012511607A (ja) 2008-12-11 2012-05-24 ワッカー ケミー アクチエンゲゼルシャフト アルコキシシラン末端ポリマー含有ポリマー混合物
JP2012032804A (ja) * 2010-06-30 2012-02-16 Canon Inc 導電部材、プロセスカートリッジおよび電子写真画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2937352A4

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015093139A1 (ja) * 2013-12-17 2017-03-16 信越化学工業株式会社 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
WO2015093139A1 (ja) * 2013-12-17 2015-06-25 信越化学工業株式会社 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
US9850349B2 (en) 2013-12-17 2017-12-26 Shin-Etsu Chemical Co., Ltd. Multicomponent room temperature-curable organopolysiloxane composition, cured product of said composition, and molded product comprising said cured product
US9840594B2 (en) 2014-01-31 2017-12-12 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane compound and method for producing the same, and addition-curable silicone composition
WO2015114939A1 (ja) * 2014-01-31 2015-08-06 信越化学工業株式会社 オルガノポリシロキサン化合物及びその製造方法並びに付加硬化型シリコーン組成物
JPWO2015194340A1 (ja) * 2014-06-16 2017-06-01 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
WO2015194340A1 (ja) * 2014-06-16 2015-12-23 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
US10040923B2 (en) 2014-06-16 2018-08-07 Shin-Etsu Chemical Co., Ltd. Room-temperature-curable organopolysiloxane composition, and moulded product comprising cured product of said room-temperature-curable organopolysiloxane composition
WO2016157948A1 (ja) * 2015-04-03 2016-10-06 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物である成形物
CN107429061A (zh) * 2015-04-03 2017-12-01 信越化学工业株式会社 室温固化性有机聚硅氧烷组合物和为该组合物的固化物的成型物
KR20170134568A (ko) 2015-04-03 2017-12-06 신에쓰 가가꾸 고교 가부시끼가이샤 실온 경화성 오르가노폴리실록산 조성물 및 해당 조성물의 경화물인 성형물
CN107429061B (zh) * 2015-04-03 2021-03-19 信越化学工业株式会社 室温固化性有机聚硅氧烷组合物和为该组合物的固化物的成型物
JPWO2016157948A1 (ja) * 2015-04-03 2018-02-15 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物である成形物
KR102508396B1 (ko) * 2015-04-03 2023-03-09 신에쓰 가가꾸 고교 가부시끼가이샤 실온 경화성 오르가노폴리실록산 조성물 및 해당 조성물의 경화물인 성형물
US10442896B2 (en) 2015-04-03 2019-10-15 Shin-Etsu Chemical Co., Ltd. Room temperature-curable organopolysiloxane composition and cured product thereof
JPWO2017195508A1 (ja) * 2016-05-09 2019-03-07 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティングされた基材
KR20190046849A (ko) 2016-08-26 2019-05-07 신에쓰 가가꾸 고교 가부시끼가이샤 탈알코올형 실온 경화성 오가노폴리실록세인 조성물 및 이 조성물의 경화물로 실링된 물품
US11401419B2 (en) 2016-08-26 2022-08-02 Shin-Etsu Chemical Co., Ltd. Dealcoholization room-temperature curable organopolysiloxane composition, and article sealed by cured product of same
WO2018159641A1 (ja) * 2017-03-02 2018-09-07 Agc株式会社 含フッ素シラン化合物の製造方法及び含フッ素シラン化合物
WO2020209083A1 (ja) 2019-04-10 2020-10-15 信越化学工業株式会社 オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品
KR20210151869A (ko) 2019-04-10 2021-12-14 신에쓰 가가꾸 고교 가부시끼가이샤 오일씨일용 실온 경화성 오가노폴리실록산 조성물 및 자동차용 부품
US11970580B2 (en) 2019-04-10 2024-04-30 Shin-Etsu Chemical Co., Ltd. Room-temperature-curable organopolysiloxane composition for oil seal, and automotive part
JP2021055010A (ja) * 2019-10-01 2021-04-08 株式会社カネカ 硬化性組成物
JP2021055011A (ja) * 2019-10-01 2021-04-08 株式会社カネカ 硬化性組成物
JP2021055018A (ja) * 2019-10-01 2021-04-08 株式会社カネカ 硬化性組成物
JP2021055012A (ja) * 2019-10-01 2021-04-08 株式会社カネカ 硬化性組成物
WO2023204020A1 (ja) * 2022-04-19 2023-10-26 Agc株式会社 化合物、組成物、表面処理剤、物品の製造方法、及び物品
WO2024024453A1 (ja) * 2022-07-25 2024-02-01 信越化学工業株式会社 ビスシラン化合物からなる変性剤、その製造方法及びその使用
WO2024024454A1 (ja) * 2022-07-25 2024-02-01 信越化学工業株式会社 片末端変性オルガノポリシロキサン及びその製造方法、表面処理剤、並びにシリコーン組成物

Also Published As

Publication number Publication date
CN104884461B (zh) 2019-09-27
JP5997778B2 (ja) 2016-09-28
CN104884461A (zh) 2015-09-02
US9644124B2 (en) 2017-05-09
EP2937352A4 (en) 2016-07-20
KR102111415B1 (ko) 2020-05-15
EP2937352A1 (en) 2015-10-28
US20150315438A1 (en) 2015-11-05
EP2937352B1 (en) 2019-07-17
KR20150099526A (ko) 2015-08-31
JPWO2014097574A1 (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5997778B2 (ja) 新規アルコキシシリル−エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物
JP5960843B2 (ja) アルコキシシリル−エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物
JP6497390B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
JP6314993B2 (ja) 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
JP6747507B2 (ja) 室温硬化性組成物、シーリング材並びに物品
JP6583114B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び物品
JP2018087348A (ja) 室温硬化性組成物、シーリング材及び物品
JP2010084062A (ja) 室温硬化性オルガノポリシロキサン組成物
KR20200125578A (ko) 수분 경화성 실리콘 중합체 및 그의 용도
WO2019116892A1 (ja) 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
JP6760223B2 (ja) 室温硬化性オルガノポリシロキサン組成物、およびこれを含有するシール剤、コーティング剤、接着剤、成形物
JP2024117823A (ja) 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品、並びに室温速硬化性オルガノポリシロキサン組成物の硬化方法
JP2006131824A (ja) 室温硬化性オルガノポリシロキサン組成物
TWI794401B (zh) 可室溫固化有機聚矽氧烷組成物及電氣/電子設備
JP5177344B2 (ja) 室温硬化性オルガノポリシロキサン組成物
CN118119670A (zh) 室温固化性有机聚硅氧烷组合物、粘合剂、密封剂和涂层剂
JP2017031303A (ja) オルガノポリシルメチレンシロキサン組成物
WO2014185276A1 (ja) アルミニウムキレート化合物及びこれを含有する室温硬化性樹脂組成物
JP2017095603A (ja) 室温硬化性ポリオルガノシロキサン組成物
JP5915599B2 (ja) 室温硬化性樹脂組成物
TW201823364A (zh) 室溫硬化性聚有機矽氧烷組成物及其調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014552911

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14649030

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013865466

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157016320

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE