WO2015194340A1 - 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物 - Google Patents

室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物 Download PDF

Info

Publication number
WO2015194340A1
WO2015194340A1 PCT/JP2015/065317 JP2015065317W WO2015194340A1 WO 2015194340 A1 WO2015194340 A1 WO 2015194340A1 JP 2015065317 W JP2015065317 W JP 2015065317W WO 2015194340 A1 WO2015194340 A1 WO 2015194340A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
parts
component
mass
room temperature
Prior art date
Application number
PCT/JP2015/065317
Other languages
English (en)
French (fr)
Inventor
貴大 山口
坂本 隆文
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020177000830A priority Critical patent/KR102326223B1/ko
Priority to US15/318,994 priority patent/US10040923B2/en
Priority to CN201580032569.9A priority patent/CN106459586B/zh
Priority to JP2016529204A priority patent/JP6497390B2/ja
Priority to EP15809931.7A priority patent/EP3156458B1/en
Publication of WO2015194340A1 publication Critical patent/WO2015194340A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • C08K5/57Organo-tin compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a room temperature curable organopolysiloxane composition and an elastomeric molded product (silicone rubber cured product) obtained by curing the room temperature curable organopolysiloxane, and in particular, hydrolyzable in the molecule.
  • Room temperature curable organopolysiloxane composition comprising an organosilicon compound having a silyl group and a structure in which two silicon atoms are cross-linked by a carbon-carbon double bond as a curing agent (crosslinking agent), and the room temperature curable organopolysiloxane
  • the present invention relates to a molded product obtained by curing a siloxane composition.
  • compositions comprising a hydroxyl-terminated polyorganosiloxane, an alkoxysilane and an organotitanium compound, a composition comprising an alkoxysilyl end-capped polyorganosiloxane, an alkoxysilane and an alkoxytitanium, and an alkoxy containing a silethylene group.
  • a composition comprising a linear polyorganosiloxane blocked with a silyl end, alkoxysilane and alkoxytitanium, and further comprising a hydroxyl endblocked polyorganosiloxane or an alkoxy endblocked polyorganosiloxane and an alkoxy- ⁇ -silyl ester compound. Examples thereof include compositions (Patent Documents 1 to 4).
  • compositions have a certain degree of storage stability, water resistance and moisture resistance, but have not yet fully satisfied these. Furthermore, the fast curability is still insufficient.
  • organosiloxane polymers having a reactive (hydrolyzable) alkoxysilyl group at the terminal are conventionally known. Since the polymer terminal group is previously blocked with an alkoxysilyl group, this polymer is less likely to change (decrease) in curability over time and has excellent storage stability. In addition, workability (viscosity and thixotropy) can be adjusted arbitrarily, reacts with moisture in the air, forms crosslinks and elastomers, and provides excellent properties (hardness, tensile strength, elongation at break). ing.
  • the dealcohol type is low in reactivity with moisture in the air, so the curability is insufficient. there were.
  • a room temperature curable organopolysiloxane composition that is capable of giving a cured product that is excellent in fast curability and excellent in moisture resistance (curability after storage under moisture resistant conditions). No product that can be produced industrially advantageously has been found.
  • the present invention has been made in view of the above circumstances, and provides a cured product that is particularly excellent in rapid curability, excellent in storage stability and durability, and can be advantageously produced industrially by using a more versatile material. It is an object of the present invention to provide a room temperature curable organopolysiloxane composition, particularly a dealcohol type room temperature curable organopolysiloxane composition.
  • the bonding group adjacent to the alkoxysilyl group is vinylene.
  • the alkoxysilyl-vinylene group represented by the following general formula (2) has been found that the hydrolyzability of the alkoxy group in the alkoxysilyl group is dramatically improved only when it is a group (ie, an ethenylene group).
  • the present invention provides a room temperature curable organopolysiloxane composition containing the following components (A), (B) and (D).
  • (A) Organopolysiloxane represented by the following general formula (1)
  • R 1 is a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a plurality of R 1 may be the same or different.
  • N is an integer of 1 or more. .
  • R 1 is a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a plurality of R 1 may be the same or different.
  • R 2 is 1 to 20 carbon atoms
  • the room temperature-curable organopolysiloxane composition described in ⁇ 1> is provided.
  • the present invention further includes (E) filler: (A) 0.1 to 1000 parts by mass with respect to 100 parts by mass of the component.
  • a siloxane composition is provided.
  • ⁇ 4> The present invention is described in any one of ⁇ 1> to ⁇ 3>, further comprising 0.1 to 30 parts by mass with respect to 100 parts by mass of (F) adhesion promoter: component (A).
  • the room temperature-curable organopolysiloxane composition is provided.
  • the present invention further includes (G) an organopolysiloxane represented by the following general formula (3): 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A) Wherein R 1 is a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a plurality of R 1 may be the same or different. M is an integer of 1 to 2000 .)
  • the room temperature-curable organopolysiloxane composition according to any one of ⁇ 1> to ⁇ 4>, which contains
  • this invention provides the sealing agent, coating agent, or adhesive agent containing the room temperature curable organopolysiloxane composition as described in ⁇ 1>.
  • the present invention provides a molded article comprising a cured product of the room temperature-curable organopolysiloxane composition according to ⁇ 1>.
  • the room temperature-curable organopolysiloxane composition of the present invention is particularly excellent in rapid curing in air at room temperature. Further, for example, even after storage for 6 months, it rapidly cures when exposed to air and has excellent physical properties. Indicates. Therefore, the room temperature curable organopolosiloxane composition of the present invention is useful as a sealant, coating agent, and adhesive where heat resistance, water resistance and moisture resistance are required, and in particular, has steam resistance and water resistance. It can be effectively used as a necessary architectural application and adhesive application for electrical and electronic applications.
  • a silicon compound containing two alkoxysilyl-vinylene groups (alkoxysilyl-ethenylene groups) represented by the above general formula (2) on the same silicon atom as the curing agent component (B), it is particularly fast.
  • a cured product having excellent curability and simultaneously good storage stability and durability can be provided.
  • a general-purpose chlorosilane such as diorganodichlorosilane
  • the room temperature curable organopolysiloxane composition of the present invention can be advantageously produced industrially.
  • the component (A) is a linear organopolysiloxane blocked by a hydroxyl group (namely, silanol group or diorganohydroxysiloxy group) represented by the following general formula (1) where both ends of the molecular chain are bonded to silicon atoms. And acts as the main agent (base polymer) in the composition of the present invention.
  • a hydroxyl group namely, silanol group or diorganohydroxysiloxy group
  • R 1 is a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a plurality of R 1 may be the same or different.
  • N is an integer of 1 or more.
  • the substituted or unsubstituted monovalent hydrocarbon group for R 1 has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably about 1 to 8 carbon atoms, and the same or different Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group Group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group,
  • An aryl group such as a phenyl group, a tolyl group, a xylyl group, an ⁇ -, ⁇ -naphthyl group; an aralkyl group such as a benzyl group, a 2-phenylethyl group, a 3-phenylpropyl group; and the hydrogen of these groups Groups in which some or all of the atoms are substituted with halogen atoms such as F, Cl, Br or cyano groups, such as 3-chloropropyl group, 3,3,3-trifluoropropyl group, 2-cyanoethyl group Etc.
  • halogen atoms such as F, Cl, Br or cyano groups
  • a methyl group, an ethyl group, and a phenyl group are preferable, and a methyl group and a
  • the organopolysiloxane of component (A) preferably has a viscosity at 25 ° C. of 10 to 1,000,000 mPa ⁇ s, more preferably 50 to 500,000 mPa ⁇ s, particularly preferably 100 to 100,000 mPa ⁇ s. ⁇ S, more preferably 500 to 80,000 mPa ⁇ s. If the organopolysiloxane has a viscosity of 10 mPa ⁇ s or more, it is easy to obtain a coating film excellent in physical and mechanical strength. If the viscosity is 1,000,000 mPa ⁇ s or less, the composition of This is preferable because the viscosity does not become too high and the workability during use is good.
  • the viscosity is a numerical value obtained by a rotational viscometer (for example, BL type, BH type, BS type, cone plate type, etc.).
  • a rotational viscometer for example, BL type, BH type, BS type, cone plate type, etc.
  • the value of n in the general formula (1) is Usually, it is desirable to be about 10 to 2,000, preferably about 30 to 1,500, more preferably about 50 to 1,200, and still more preferably about 100 to 1,000.
  • the degree of polymerization is obtained, for example, as the number average degree of polymerization (or number average molecular weight) in terms of polystyrene in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent.
  • the organopolysiloxane of component (A) can be used alone or in combination of two or more.
  • the (A) component organopolysiloxane is preferably contained in the room temperature-curable organopolysiloxane composition of the present invention in an amount of 99 to 20% by mass, particularly 95 to 50% by mass.
  • R 1 is a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a plurality of R 1 may be the same or different.
  • R 2 has 1 to 20 carbon atoms.
  • An unsubstituted or substituted alkyl group or an unsubstituted or substituted cycloalkyl group having 3 to 20 carbon atoms, a is an integer of 1 to 3)
  • the substituted or unsubstituted monovalent hydrocarbon group for R 1 has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably about 1 to 8 carbon atoms. May be the same or different, specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl Group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group and the like alkyl groups; cycl
  • the unsubstituted or substituted alkyl group for R 2 has 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms. Specific examples include a methyl group, an ethyl group, and an n-propyl group.
  • the unsubstituted or substituted cycloalkyl group has 3 to 20, preferably 4 to 8, more preferably about 5 to 6 carbon atoms, and examples thereof include a cyclopentyl group and a cyclohexyl group.
  • some or all of the hydrogen atoms of these alkyl groups and cycloalkyl groups may be substituted with halogen atoms such as F, Cl, Br, cyano groups, and the like.
  • halogen-substituted alkyl groups such as propyl group and 3,3,3-trifluoropropyl group, and 2-cyanoethyl group.
  • the R 2 Among these, from the viewpoint of hydrolysis resistance, a methyl group, an ethyl group are preferable, methyl group is particularly preferred.
  • the hydrolyzable organosilicon compound represented by the general formula (2) of the component (B) is mainly used as a curing agent (crosslinking agent).
  • each a is independently an integer of 1 to 3, but 2 or 3 is preferable from the viewpoint of curability.
  • a molecule having three alkoxy groups such as a methoxy group on the same silicon atom (that is, a total of six in the molecule) has two trifunctional alkoxysilane sites in one molecule.
  • a synthesis example of the component (B) is shown below.
  • the silicon-containing compound having two alkoxysilyl-vinylene groups (alkoxysilyl-ethenylene groups) on the same silicon atom includes, for example, a silane having two ethynyl groups on the same silicon atom, and two alkoxy Hydrosilane can be easily produced by addition reaction by hydrosilylation reaction.
  • This reaction formula is represented, for example, by the following reaction formula [1].
  • the addition reaction catalyst used when adding alkoxyhydrosilane includes platinum group metal catalysts such as platinum, palladium, rhodium, and ruthenium, with platinum being particularly preferred.
  • platinum group metal catalysts such as platinum, palladium, rhodium, and ruthenium
  • platinum-based material include platinum black, alumina, silica, or the like supported on solid platinum, chloroplatinic acid, alcohol-modified chloroplatinic acid, a complex of chloroplatinic acid and olefin, or platinum and vinylsiloxane. And the like can be exemplified.
  • the amount of platinum used may be a so-called catalytic amount. For example, it can be used at a mass of 0.1 to 1,000 ppm, particularly 0.5 to 100 ppm, in terms of platinum group metal, with respect to alkoxyhydrosilanes.
  • This reaction is generally preferably carried out at a temperature of 50 to 120 ° C., particularly 60 to 100 ° C., for 0.5 to 12 hours, particularly 1 to 6 hours, and can be carried out without using a solvent.
  • an appropriate solvent such as toluene or xylene can be used if necessary.
  • organosilicon compound having two alkoxysilyl-vinylene groups of the general formula (2) on the same silicon atom include, for example, those represented by the following structural formula. These can be used individually by 1 type or in combination of 2 or more types.
  • the hydrolyzable organosilicon compound of component (B) is 0.1 to 30 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 100 parts by weight of organopolysiloxane of component (A). It is used in the range of 3 to 15 parts by mass. If the amount is less than 0.1 parts by mass, sufficient crosslinking cannot be obtained, and the composition does not have the intended fast curability. The mechanical properties of the rubber properties that are obtained may also be reduced, which may cause a problem of being economically disadvantageous.
  • Specific examples include ethyl silicate, propyl silicate, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, methyltris (methoxyethoxy) silane, vinyltris (methoxyethoxy) silane, methyltripropenoxysilane. , Phenyltripropenoxysilane, and the like, and partial hydrolysis condensates thereof. These can be used singly or in combination of two or more.
  • the amount of component (C) is usually 0-30 parts by weight per 100 parts by weight of component (A), preferably 0.1-20 parts by weight, more preferably 0.5- 15 parts by mass. When the blending amount exceeds 30 parts by mass, there may be a problem that the cured product becomes too hard or is economically disadvantageous.
  • the curing catalyst (D) is used to promote the hydrolysis and condensation reaction between the composition of the present invention and moisture in the air, and is generally called a curing catalyst.
  • a known material usually used for a room temperature curable silicone rubber composition which is cured in the presence of moisture can be used.
  • Examples of the curing catalyst for component (D) include alkyltin ester compounds such as dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctoate, tetraisopropoxytitanium, tetran-butoxytitanium, tetrakis (2-ethylhexoxy) titanium, Dipropoxybis (acetylacetonato) titanium, titanium isopropoxyoctylene glycol and other titanate esters or titanium chelate compounds, zinc naphthenate, zinc stearate, zinc-2-ethyl octoate, iron-2-ethylhexoate Alcolate aluminum compounds such as cobalt-2-ethylhexoate, manganese-2-ethylhexoate, cobalt naphthenate, aluminum isopropylate, aluminum secondary butyrate, aluminum Aluminum chelate compounds such as alkyl acetate diisopropylate
  • the amount of these curing catalysts used may be a so-called catalytic amount, and the amount of component (D) is 0.001 to 20 parts by mass, especially 0.8 parts per 100 parts by mass of organopolysiloxane of component (A). 005 to 10 parts by mass, more preferably 0.01 to 5 parts by mass is preferred. If the amount is less than 0.001 part by mass, good curability cannot be obtained, so that a problem that the curing rate is delayed occurs. On the other hand, if the amount exceeds 20 parts by mass, the curability of the composition is too fast, and there is a risk that the allowable working time after application of the composition will be shortened or the mechanical properties of the resulting rubber will be reduced. is there.
  • -(E) component- Component (E) is a filler (inorganic filler and / or organic resin filler), and is an optional component that can be blended as necessary, and provides sufficient mechanical strength to the cured product formed from this composition.
  • Known fillers can be used, for example, finely divided silica, fumed silica, precipitated silica, silica whose surface is hydrophobized with an organosilicon compound, glass beads, glass balloons, transparent Resin beads, silica airgel, diatomaceous earth, iron oxide, zinc oxide, titanium oxide, metal oxides such as fumed metal oxide, wet silica or those whose surfaces are treated with silane, quartz powder, carbon black, talc, zeolite and Reinforcing agents such as bentonite, metal carbonates such as asbestos, glass fiber, carbon fiber, calcium carbonate, magnesium carbonate, zinc carbonate, synthesis of asbestos, glass wool, fine mica, fused silica powder, polystyrene, polyvinyl chloride, poly
  • the amount of component (E) is 0 to 1000 parts by weight per 100 parts by weight of component (A), preferably 0 to 400 parts by weight, particularly 0.1 to 200 parts by weight, especially 0.5 to 200 parts by weight. Part.
  • component (A) preferably 0 to 400 parts by weight, particularly 0.1 to 200 parts by weight, especially 0.5 to 200 parts by weight.
  • component (A) preferably 0 to 400 parts by weight, particularly 0.1 to 200 parts by weight, especially 0.5 to 200 parts by weight. Part.
  • the component (F) is an adhesion promoter and is an optional component that can be blended as necessary.
  • the component (F) is used for imparting sufficient adhesiveness to a cured product formed from this composition.
  • the adhesion promoter a silane coupling agent such as a functional group-containing hydrolyzable silane
  • known ones are preferably used, such as a vinyl silane coupling agent, a (meth) acryl silane coupling agent, an epoxy silane coupling agent
  • Examples include aminosilane coupling agents, mercaptosilane coupling agents, and the like, specifically, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltri Methoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, N- ⁇ - ⁇
  • aminosilanes such as ⁇ -aminopropyltriethoxysilane, 3-2- (aminoethylamino) propyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl), among others.
  • Epoxy silanes such as ethyltrimethoxysilane and isocyanate silane are preferred.
  • Component (F) is preferably blended in an amount of 0 to 30 parts by weight, preferably 0.1 to 30 parts by weight, particularly 0.5 to 20 parts by weight, based on 100 parts by weight of component (A).
  • component (A) is preferably blended in an amount of 0 to 30 parts by weight, preferably 0.1 to 30 parts by weight, particularly 0.5 to 20 parts by weight, based on 100 parts by weight of component (A).
  • the organopolysiloxane of component (G) is an optional component that can be blended as necessary, and is represented by the following general formula (3), and does not contain a functional group involved in the condensation reaction in the molecule (that is, A linear diorganopolysiloxane (so-called non-functional silicone oil) that does not participate in the condensation curing reaction of the composition.
  • R 1 is a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a plurality of R 1 may be the same or different.
  • M is an integer of 1 to 2000. is there.
  • the substituted or unsubstituted hydrocarbon group represented by R 1 has 1 to 20, preferably 1 to 10, more preferably 1 to 8 carbon atoms, which are the same or different.
  • the organopolysiloxane of component (G) preferably has a viscosity at 25 ° C. of 0.65 to 1,000,000 mPa ⁇ s, more preferably 30 to 500,000 mPa ⁇ s, and particularly preferably 50 to 100. 3,000 mPa ⁇ s, particularly 100 to 80,000 mPa ⁇ s is preferable. If the organopolysiloxane has a viscosity of 10 mPa ⁇ s or more, it is easy to obtain a coating film excellent in physical and mechanical strength. If the viscosity is 1,000,000 mPa ⁇ s or less, the composition of This is preferable because the viscosity does not become too high and the workability during use is good.
  • the viscosity is a numerical value measured by a rotational viscometer.
  • m is an integer of 1 to 2000, but for the same reason, m is preferably about 10 to 1,500, 30 to 1,200, more preferably about 50 to 1,000. It is desirable to be an integer.
  • the amount of component (G) is usually 0 to 100 parts by weight, preferably 0.1 to 80 parts by weight, more preferably 0.5 to 75 parts by weight, based on 100 parts by weight of component (A). Parts, more preferably 5 to 70 parts by weight, particularly preferably 10 to 60 parts by weight.
  • the viscosity of a composition is low and sufficient workability
  • operativity is obtained, it is not necessary to add, and when it exceeds 100 mass parts, rubber
  • the room temperature curable organopolysiloxane composition of the present invention further includes, as additives, known flame retardants such as pigments, dyes, anti-aging agents, antioxidants, antistatic agents, antimony oxides, and paraffin chlorides. Additives can be blended. Furthermore, a polyether as a thixotropy improver, a fungicide, and an antibacterial agent can be blended.
  • the room temperature curable organopolysiloxane composition of the present invention can be obtained by uniformly mixing the above-described components and further predetermined amounts of the above-mentioned various additives in a dry atmosphere.
  • the room temperature curable organopolysiloxane composition is cured by allowing it to stand at room temperature, and the molding method, curing conditions, and the like can employ known methods and conditions according to the type of the composition. .
  • the room temperature curable organopolysiloxane composition of the present invention thus obtained is rapidly cured at room temperature due to moisture in the air, and is excellent in heat resistance, weather resistance, low temperature characteristics, various substrates, particularly adhesion to metals.
  • a rubber elastic body cured product is formed.
  • the composition of the present invention is particularly excellent in storage stability and curability, for example, it quickly cures when exposed to the air after storage for 6 months, and a cured product having excellent physical properties as described above. give. Furthermore, no toxic or corrosive gases are released during curing, and no rust is produced on the surface to which this composition is applied.
  • this composition does not cause contact failure of electrical and electronic parts, it is useful as an insulating material and adhesive for electrical and electronic parts, as well as a sealing agent, coating agent, coating agent for various substrates, It can be widely used as a release treatment agent and also as a fiber treatment agent. Further, the composition can be cured and molded to obtain various molded products, and the molded products have excellent heat resistance, weather resistance, and the like.
  • part means “part by mass”, and the viscosity is a value measured by a rotational viscometer at 25 ° C.
  • Example 1 100 parts of dimethylpolysiloxane having both ends of a molecular chain having a viscosity of 5000 mPa ⁇ s blocked with hydroxyl groups (silanol groups), 4.9 parts of bis (trimethoxysilyl-vinylene) dimethylsilane obtained in Synthesis Example 1, A composition was prepared by adding 0.75 parts of methylguanidylpropyltrimethoxysilane and mixing under moisture blocking until uniform.
  • Example 2 100 parts of dimethylpolysiloxane having both ends of a molecular chain having a viscosity of 5000 mPa ⁇ s blocked with hydroxyl groups (silanol groups) and 4.9 parts of bis (trimethoxysilyl-vinylene) dimethylsilane obtained in Synthesis Example 1, Add 1.0 part of an aluminum chelate compound whose average structure represented by structural formula (2) is a mono (dipivaloylmethane) aluminum bis (ethylacetoacetate) chelate, and mix until it is uniform under moisture blocking. A composition was prepared.
  • Example 3 100 parts of dimethylpolysiloxane having both ends of a molecular chain having a viscosity of 5000 mPa ⁇ s blocked with hydroxyl groups (silanol groups) and 4.9 parts of bis (trimethoxysilyl-vinylene) dimethylsilane obtained in Synthesis Example 1,
  • the compound represented by the structural formula (3) is N, N, N ′, N ′, N ′′, N ′′ -hexamethyl-N ′ ′′-(trimethylsilylmethyl) -phosphorimdic triamide.
  • a composition was prepared by adding a portion and mixing until moisture was cut off until uniform.
  • Example 4 In the same manner as in Example 1, except that 6.6 parts of bis (trimethoxysilyl-vinylene) diphenylsilane obtained in Synthesis Example 2 was used instead of bis (trimethoxysilyl-vinylene) dimethylsilane. was prepared.
  • Example 7 In Example 1, 4.5 parts of 1,6-bis (trimethoxysilyl) hexane [silicon compound represented by the following structural formula (6)] instead of bis (trimethoxysilyl-vinylene) dimethylsilane was used. A composition was prepared in the same manner except that.
  • the room temperature curable organopolysiloxane composition is fast curable and becomes a cured product having excellent durability.
  • Example 5 100 parts of dimethylpolysiloxane having a viscosity of 20000 mPa ⁇ s and having a molecular chain end blocked with a hydroxyl group (silanol group), 13 parts of surface hydrophobized fumed silica, and bis (trimethoxysilyl-vinylene) obtained in Synthesis Example 1 ) 8.0 parts dimethylsilane, 0.58 parts tetramethylguanidylpropyltrimethoxysilane, 0.8 parts 3-aminopropyltriethoxysilane, 3- (2-aminoethylaminopropyl) trimethoxysilane .8 parts was added and mixed under moisture blocking until uniform to prepare a composition.
  • Example 6 100 parts of dimethylpolysiloxane having a viscosity of 20000 mPa ⁇ s and having a molecular chain end blocked with a hydroxyl group (silanol group), 13 parts of surface hydrophobized fumed silica, and bis (trimethoxysilyl-vinylene) obtained in Synthesis Example 1 ) 6.0 parts dimethylsilane, 0.58 parts tetramethylguanidylpropyltrimethoxysilane, 0.8 parts 3-aminopropyltriethoxysilane, 3- (2-aminoethylaminopropyl) trimethoxysilane .8 parts was added and mixed under moisture blocking until uniform to prepare a composition.
  • Example 7 100 parts of dimethylpolysiloxane whose molecular chain end with a viscosity of 20000 mPa ⁇ s is blocked with a hydroxyl group (silanol group), 10 parts of dimethylpolysiloxane whose molecular chain end with a viscosity of 100 mPa ⁇ s is blocked with a trimethylsilyl group, and surface hydrophobicity 13 parts of fumed silica, 7.5 parts of bis (trimethoxysilyl-vinylene) dimethylsilane obtained in Synthesis Example 1, 0.58 parts of tetramethylguanidylpropyltrimethoxysilane, 3-aminopropyl A composition was prepared by adding 0.8 part of triethoxysilane and 0.8 part of 3- (2-aminoethylaminopropyl) trimethoxysilane and mixing under moisture blocking until uniform.
  • silica 7.5 parts of bis (trimethoxysilyl-viny
  • each composition prepared in Examples 5 to 7 was measured. Further, each composition immediately after preparation prepared in Reference Example 5 was extruded into a sheet having a thickness of 2 mm, exposed to air at 23 ° C. and 50% RH, and then the sheet was left in the same atmosphere for 7 days.
  • the physical properties (initial physical properties) of the cured product thus obtained were measured according to JIS K-6249. The hardness was measured using a durometer A hardness meter of JIS K-6249.
  • a shear (shear) adhesion test specimen having an adhesion area of 2.5 mm 2 and an adhesion heat of 1 mm was prepared using an adherend having a width of 25 mm and a length of 100 mm, and 7% at 23 ° C. and 50% RH. After curing for days, the shear adhesive strength was measured.
  • the results of Examples 5 to 7 are shown in Table 4 below.
  • the room temperature curable organopolysiloxane composition of the present invention is fast curable and becomes a cured product excellent in durability.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and it has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same effect hardening is the present invention. Included in the technical scope.

Abstract

下記(A)、(B)及び(D)成分を含有する室温硬化性オルガノポリシロキサン組成物。 (A)下記一般式(1)で示されるオルガノポリシロキサン(式中、R1は水素原子、又は、炭素数1から20の非置換又は置換1価炭化水素基であり、複数のR1は同一でも異なっていてもよい。nは1以上の整数である。) (B)下記一般式(2)で示される同一ケイ素原子上に2つのシリル-ビニレン基を有することを特徴とする有機ケイ素化合物:(A)成分100質量部に対して0.1~30質量部(式中、R1は水素原子、又は、炭素数1から20の非置換又は置換1価炭化水素基であり、複数のR1は同一でも異なっていてもよい。R2は炭素数1から20の非置換又は置換アルキル基又は、炭素数3から20の非置換又は置換シクロアルキル基である。aは1から3の整数である。) (D)硬化触媒:(A)成分100質量部に対して0.001~20質量部

Description

室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
 本発明は、室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサンを硬化して得られるエラストマー状の成形物(シリコーンゴム硬化物)に関するものであり、特に、分子内に加水分解性シリル基と、2つのケイ素原子を炭素-炭素二重結合で架橋する構造とを有する有機ケイ素化合物を硬化剤(架橋剤)として含む室温硬化性オルガノポリシロキサン組成物、並びに該室温硬化性オルガノポリシロキサン組成物を硬化して得られる成形物に関するものである。
 従来、空気中の水分と接触することにより縮合反応により架橋して室温でエラストマー(シリコーンゴム)状に硬化する室温硬化性オルガノポリシロキサン組成物は、種々のタイプのものが公知であるが、とりわけ架橋時の縮合反応によりアルコールを放出して硬化する脱アルコールタイプのものは不快臭がないこと、金属類を腐食しないことが特徴となって、電気・電子機器等のシーリング用、接着用、コーティング用に好んで使用されている。
 かかるタイプの代表例としては、水酸基末端封鎖ポリオルガノシロキサンとアルコキシシランと有機チタン化合物からなる組成物、アルコキシシリル末端封鎖ポリオルガノシロキサンとアルコキシシランとアルコキシチタンからなる組成物、シルエチレン基を含むアルコキシシリル末端が封鎖された直鎖状のポリオルガノシロキサンとアルコキシシランとアルコキシチタンからなる組成物、更に、水酸基末端封鎖ポリオルガノシロキサン又はアルコキシ基末端封鎖ポリオルガノシロキサンとアルコキシ-α-シリルエステル化合物からなる組成物が挙げられる(特許文献1~4)。
 これらの組成物は、ある程度の保存安定性、耐水性、耐湿性が得られているが、これらを完全に満足するには、至っていない。さらに、速硬化性に関しては、まだ不十分であった。
 上述の通り、反応性(加水分解性)アルコキシシリル基を末端に有するオルガノシロキサンポリマーは、従来公知である。このポリマーは、予め、ポリマー末端基がアルコキシシリル基で封鎖されている為、経時で硬化性が変化(低下)し難く、保存安定性に優れている。また、作業性(粘度、チキソ性)を任意に調整可能であり、空気中の水分と反応し、架橋、エラストマーを形成し、優れた特性(硬度、引張強さ、切断時伸び)も得られている。
 しかしながら、脱アルコールタイプは、従来公知の他の硬化タイプである脱オキシムタイプ、脱酢酸タイプ、脱アセトンタイプ等と比較すると、空気中の水分との反応性が低いため、硬化性が不十分であった。
 そこで、速硬化性に優れ、かつ耐湿性(耐湿条件下での保存後の硬化性)に優れた硬化物を与えることが可能な室温硬化性オルガノポリシロキサン組成物の開発がされているが、工業的に有利に製造できるものは見出されていなかった。
特公昭39-27643号公報 特開昭55-43119号公報 特公平7-39547号公報 特開平7-331076号公報
 本発明は、上記事情に鑑みなされたもので、特に速硬化性に優れ、保存安定性、耐久性に優れた硬化物を与え、より汎用性の高い材料を用いて工業的に有利に製造できる室温硬化性オルガノポリシロキサン組成物、特に、脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、アルコキシシリル基(非置換又は置換アルコキシシリル基及び非置換又は置換シクロアルコキシシリル基を包含する)に隣接する結合基がビニレン基(即ち、エテニレン基)である場合に限り、該アルコキシシリル基中のアルコキシ基の加水分解性が飛躍的に向上する事を知見し、下記一般式(2)で示されるアルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)を1分子中に2個含有するオルガノシラン等の加水分解性の有機ケイ素化合物を架橋剤(硬化剤)として使用することにより、とりわけ速硬化性に優れ、同時に保存安定性、耐久性も良好な硬化物を与える脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物が得られることを見出し、さらに、該アルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)含有化合物を製造する際の出発原料の一部として汎用性の高い材料(ジオルガノジクロロシラン等)を使用できることで工業的に有利に製造できる室温硬化性オルガノポリシロキサン組成物の開明をなすに至った。
 即ち、〈1〉本発明は、下記(A)、(B)及び(D)成分を含有する室温硬化性オルガノポリシロキサン組成物を提供するものである。
(A)下記一般式(1)で示されるオルガノポリシロキサン
Figure JPOXMLDOC01-appb-C000004
(式中、R1は水素原子、又は炭素数1から20の非置換又は置換1価炭化水素基であり、複数のR1は同一でも異なっていてもよい。nは1以上の整数である。)
(B)下記一般式(2)で示される同一ケイ素原子上に2つのアルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)を有することを特徴とする有機ケイ素化合物:(A)成分100質量部に対して0.1~30質量部
Figure JPOXMLDOC01-appb-C000005
(式中、R1は水素原子、又は炭素数1から20の非置換又は置換1価炭化水素基であり、複数のR1は同一でも異なっていてもよい。R2は炭素数1から20の非置換又は置換アルキル基又は炭素数3から20の非置換又は置換シクロアルキル基である。aは1から3の整数である。)
(D)硬化触媒:(A)成分100質量部に対して 0.001~20質量部
〈2〉本発明は、更に、(C)(B)成分を除く加水分解性シラン及び/又はその部分加水分解縮合物:(A)成分100質量部に対して0.1~30質量部を含有する〈1〉に記載の室温硬化性オルガノポリシロキサン組成物を提供するものである。
〈3〉本発明は、更に、(E)充填剤:(A)成分100質量部に対して0.1~1000質量部を含有する〈1〉又は〈2〉に記載の室温硬化性オルガノポリシロキサン組成物を提供するものである。
〈4〉本発明は、更に、(F)接着促進剤:(A)成分100質量部に対して0.1~30質量部を含有する〈1〉~〈3〉のいずれか1つに記載の室温硬化性オルガノポリシロキサン組成物を提供するものである。
〈5〉本発明は、更に、(G)下記一般式(3)で示されるオルガノポリシロキサン:(A)成分100質量部に対して0.1~100質量部
Figure JPOXMLDOC01-appb-C000006
(式中、R1は水素原子、又は、炭素数1から20の非置換又は置換1価炭化水素基であり、複数のR1は同一でも異なっていてもよい。mは1から2000の整数である。)
を含有する〈1〉~〈4〉のいずれか1つに記載の室温硬化性オルガノポリシロキサン組成物を提供するものである。
〈6〉 また、本発明は、〈1〉に記載の室温硬化性オルガノポリシロキサン組成物を含有するシール剤、コーティング剤又は接着剤を提供するものである。
〈7〉更に、本発明は、〈1〉に記載の室温硬化性オルガノポリシロキサン組成物の硬化物からなる成形物を提供するものである。
 本発明の室温硬化性オルガノポリシロキサン組成物は、特に、室温における空気中の速硬化性に優れ、さらに例えば6か月間の貯蔵後でも、空気中に曝すと速やかに硬化して、優れた物性を示す。従って、本発明の室温硬化性オルガノポロシロキサン組成物は、耐熱性、耐水性、耐湿性が必要な個所のシール剤、コーティング剤、接着剤として有用であり、とりわけ、耐スチーム性、耐水性が必要な建築用途、電気電子用接着剤用途として有効に使用することができる。さらに、上記一般式(2)で示されるアルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)を同一ケイ素原子上に2つ含有するケイ素化合物を硬化剤成分(B)として使用することにより、とりわけ速硬化性に優れ、同時に保存安定性、耐久性も良好な硬化物を与えることができる。さらに、(B)成分の出発原料としては汎用品のクロロシラン(ジオルガノジクロロシラン等)を用いることができ、本発明室温硬化性オルガノポリシロキサン組成物を工業的に有利に製造することができる。
 以下、本発明を更に詳細に説明する。
<室温硬化性オルガノポリシロキサン組成物>
-(A)成分-
 (A)成分は、下記一般式(1)で示される、分子鎖両末端がケイ素原子に結合した水酸基(即ち、シラノール基あるいはジオルガノヒドロキシシロキシ基)で封鎖された直鎖状のオルガノポリシロキサンであり、本発明の組成物において主剤(ベースポリマー)として作用するものである。
Figure JPOXMLDOC01-appb-C000007
(式中、R1は水素原子又は炭素数1から20の非置換又は置換1価炭化水素基であり、複数のR1は同一でも異なっていてもよい。nは1以上の整数である。)
 上記一般式(1)中、R1の置換又は非置換の1価炭化水素基としては、炭素数が1~20、好ましくは1~10、より好ましくは1~8程度であり、同一または異なっていてもよく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、メチル基、エチル基、フェニル基が好ましく、入手の容易さ、生産性、コストの面からメチル基、フェニル基が特に好ましい。
 また、(A)成分のオルガノポリシロキサンは、25℃における粘度が10~1,000,000mPa・sのものが好ましく、より好ましくは50~500,000mPa・s、特に好ましくは100~100,000mPa・s、更に好ましくは500~80,000mPa・sのものである。前記オルガノポリシロキサンの粘度が10mPa・s以上であれば、物理的・機械的強度に優れたコーティング塗膜を得ることが容易であり、1,000,000mPa・s以下であれば、組成物の粘度が高くなり過ぎず使用時における作業性が良いので好ましい。ここで、粘度は回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型等、以下同様。)による数値である。
 なお、(A)成分のオルガノポリシロキサンが上記の粘度を取り得る範囲として、上記一般式(1)におけるnの値(分子中に存在する2官能性ジオルガノシロキサン単位の数又は重合度)は、通常、10~2,000、好ましくは30~1,500、より好ましくは50~1,200、更に好ましくは100~1,000程度が望ましい。なお、重合度(又は分子量)は、例えば、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めたものである。(A)成分のオルガノポリシロキサンは1種又は2種以上を併用することができる。
 (A)成分のオルガノポリシロキサンは、本発明の室温硬化性オルガノポリシロキサン組成物中、99~20質量%含有することが好ましく、特に95~50質量%含有することが好ましい。
-(B)成分-
 (B)成分である下記一般式(2)で示される同一ケイ素原子上に2つのアルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)を有することを特徴とする加水分解性の有機ケイ素化合物は、本発明の組成物において硬化剤(架橋剤)として作用する成分であり、組成物の速硬化性に寄与し、かつ得られた硬化物(シリコーンゴム)は耐湿性に優れる。
Figure JPOXMLDOC01-appb-C000008
(式中、R1は水素原子又は炭素数1から20の非置換又は置換1価炭化水素基であり、複数のR1は同一でも異なっていてもよい。R2は炭素数1から20の非置換又は置換アルキル基又は炭素数3から20の非置換又は置換シクロアルキル基である。aは1から3の整数である。)
 ここで、上記一般式(2)中、R1の置換又は非置換の1価炭化水素基としては、炭素数が1~20、好ましくは1~10、より好ましくは1~8程度であり、同一または異なっていてもよく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、メチル基、エチル基、フェニル基が好ましく、入手の容易さ、生産性、コストの面からメチル基、フェニル基が特に好ましい。
 R2の非置換又は置換アルキル基としては、炭素数が1~20、好ましくは1~6、より好ましくは1~4程度であり、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等が挙げられる。非置換又は置換シクロアルキル基としては、炭素数が3~20、好ましくは4~8、より好ましくは5~6程度であり、シクロペンチル基、シクロヘキシル基等が挙げられる。また、これらのアルキル基やシクロアルキル基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換されていてもよく、これには、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン置換アルキル基、2-シアノエチル基等が挙げられる。R2としては、これらの中でも、加水分解性などの点から、メチル基、エチル基が好ましく、メチル基が特に好ましい。
 (B)成分の一般式(2)で表される加水分解性有機ケイ素化合物は、主に硬化剤(架橋剤)として使用される。一般式(2)において、aは、それぞれ独立に、1から3の整数であるが、2又は3であることが硬化性の点から好ましい。特に、分子中、同一ケイ素原子上に3個の(即ち、分子中に合計6個の)メトキシ基等のアルコキシ基を有するものは、3官能のアルコキシシラン部位が1分子中に2個あるため脱アルコールタイプのシリコーンRTV(室温硬化性オルガノポリシロキサン組成物)の硬化剤(架橋剤)として有用である。(B)成分の合成例を以下に示す。
<アルコキシシリル-ビニレン基を同一ケイ素原子上に2つ有するケイ素含有化合物の製造>
 (B)成分のアルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)を同一ケイ素原子上に2つ有するケイ素含有化合物は、例えば、同一ケイ素原子上にエチニル基を2つ有するシランと、2つのアルコキシヒドロシランをヒドロシリル化反応による、付加反応で容易に製造することができる。この反応式は、例えば下記反応式[1]で表される。
Figure JPOXMLDOC01-appb-C000009
(式中、R1、R2、aは前記一般式(2)の通りである。)
 アルコキシヒドロシランを付加する際に用いる付加反応触媒としては、白金族金属系触媒、例えば白金系、パラジウム系、ロジウム系、ルテニウム系のものがあるが、白金系のものが特に好適である。この白金系のものとしては、白金黒あるいはアルミナ、シリカ等の担体に固体白金を担持させたもの、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸とオレフィンとの錯体あるいは白金とビニルシロキサンとの錯体等を例示することができる。これらの白金の使用量は、所謂触媒量でよく、例えばアルコキシヒドロシラン類に対して、白金族金属換算で0.1~1,000ppm、特に0.5~100ppmの質量で使用できる。
 この反応は、一般に50~120℃、特に60~100℃の温度で、0.5~12時間、特に1~6時間行うことが望ましく、また溶媒を使用せずに行うことができるが、上記付加反応等に悪影響を与えない限りにおいて、必要によりトルエン、キシレン等の適当な溶剤を使用することができる。
 アルコキシヒドロシランのエチニル基に対する付加反応では、例えば、下記反応式[2]で表される幾何異性体が生成される。E体(trans体)の生成が高選択的であり、反応性も高いが、本発明のケイ素含有化合物では、Z体(cis体)も、その特性に悪影響を与えないことから、これらを分離することなく使用することができる。
Figure JPOXMLDOC01-appb-C000010
 前記一般式(2)のアルコキシシリル-ビニレン基を同一ケイ素原子上に2つ有する有機ケイ素化合物の具体例としては、例えば、下記構造式で表されるものが挙げられ、本願(B)成分としては、これらは1種を単独で又は2種以上を併用して使用することができる。
Figure JPOXMLDOC01-appb-C000011
 上記(B)成分の加水分解性有機ケイ素化合物は、(A)成分のオルガノポリシロキサン100質量部に対して、0.1~30質量部、好ましくは0.5~20質量部、より好ましくは3~15質量部の範囲で使用されるものであり、0.1質量部未満では十分な架橋が得られず、目的とする速硬化性を有する組成物とならず、30質量部を超えると得られるゴム物性の機械特性も低下し、経済的に不利となるという問題が発生する場合がある。
-(C)成分-
 (C)成分である、上記(B)成分以外の加水分解性シラン及び/又はその部分加水分解縮合物は架橋剤であり、必要に応じて配合できる任意成分である。具体例としては、エチルシリケート、プロピルシリケート、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メチルトリス(メトキシエトキシ)シラン、ビニルトリス(メトキシエトキシ)シラン、メチルトリプロペノキシシラン、フェニルトリプロペノキシシラン等及びこれらの部分加水分解縮合物が挙げられる。これらは1種単独でも2種以上を組み合わせても使用することができる。
 (C)成分の配合量は、前記(A)成分100質量部に対して通常0~30質量部であるが、0.1~20質量部であることが好ましく、より好ましくは0.5~15質量部である。前記配合量が30質量部を超えると硬化物が硬くなり過ぎたり、経済的に不利となるという問題が発生する場合がある。
-(D)成分-
 (D)成分の硬化触媒は、本発明の組成物と空気中の水分との加水分解縮合反応を促進させるために使用され、一般的に硬化触媒と呼ばれるものである。これは湿分の存在下で硬化する室温硬化性シリコーンゴム組成物に通常使用されている公知のものを使用することができる。
 (D)成分の硬化触媒としては、例えば、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジオクトエート等のアルキル錫エステル化合物、テトライソプロポキシチタン、テトラn-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナト)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物、ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト、アルミニウムイソプロピレート、アルミニウムセカンダリーブチレートなどのアルコレートアルミニウム化合物、アルミニウムアルキルアセテート・ジイソプロピレート、アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート等のアルミニウムキレート化合物、ネオデカン酸ビスマス(III)、2-エチルヘキサン酸ビスマス(III)、クエン酸ビスマス(III)、オクチル酸ビスマス等の有機金属化合物;N,N,N’,N’,N’’,N’’-ヘキサメチル-N’’’-(トリメチルシリルメチル)-ホスホリミディックトリアミド等のホスファゼン含有化合物、3-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等のアミノアルキル基置換アルコキシシラン;ヘキシルアミン、リン酸ドデシルアミン等のアミン化合物又はその塩;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;酢酸カリウム、酢酸ナトリウム、シュウ酸リチウム等のアルカリ金属の低級脂肪酸塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン及びシロキサン等が例示されるが、(D)成分はこれらに限定されない。また、(D)成分は1種でも2種以上混合して使用してもよい。
 これらの硬化触媒の使用量はいわゆる触媒量でよく、(D)成分の配合量は前記(A)成分のオルガノポリシロキサン100質量部に対して0.001~20質量部であり、特に0.005~10質量部、更に0.01~5質量部が好ましい。0.001質量部未満であると良好な硬化性を得ることができないため、硬化速度が遅れる不具合を生じる。逆に、20質量部を超える量になると、組成物の硬化性が速すぎるため、組成物塗布後の作業時間の許容範囲が短くなったり、得られるゴムの機械特性が低下したりする虞がある。
-(E)成分-
 (E)成分は充填剤(無機質充填剤及び/又は有機樹脂充填剤)であり、必要に応じて配合できる任意成分であり、この組成物から形成される硬化物に十分な機械的強度を与えるために使用される。この充填剤としては公知のものを使用することができ、例えば微粉末シリカ、煙霧質シリカ、沈降性シリカ、これらのシリカ表面を有機ケイ素化合物で疎水化処理したシリカ、ガラスビーズ、ガラスバルーン、透明樹脂ビーズ、シリカエアロゲル、珪藻土、酸化鉄、酸化亜鉛、酸化チタン、煙霧状金属酸化物などの金属酸化物、湿式シリカあるいはこれらの表面をシラン処理したもの、石英粉末、カーボンブラック、タルク、ゼオライト及びベントナイト等の補強剤、アスベスト、ガラス繊維、炭素繊維、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛などの金属炭酸塩、アスベスト、ガラスウール、微粉マイカ、溶融シリカ粉末、ポリスチレン、ポリ塩化ビニル、ポリプロピレンなどの合成樹脂粉末等が使用される。これらの充填剤のうち、シリカ、炭酸カルシウム、ゼオライトなどの無機質充填剤が好ましく、特に表面を疎水化処理した煙霧質シリカ、炭酸カルシウムが好ましい。
 (E)成分の配合量は、前記(A)成分100質量部当たり、0~1000質量部とし、好ましくは0~400質量部、特に0.1~200質量部、とりわけ0.5~200質量部とすることが好ましい。1000質量部よりも多量に使用すると、組成物の粘度が増大して作業性が悪くなるばかりでなく、硬化後のゴム強度が低下してゴム弾性が得難くなる。配合すれば、得られる硬化物の機械的強度を十分高くすることができる。
-(F)成分-
 (F)成分は接着促進剤であり、必要に応じて配合できる任意成分であり、この組成物から形成される硬化物に十分な接着性を与えるために使用される。接着促進剤(官能性基含有加水分解性シラン等のシランカップリング剤)としては公知のものが好適に使用され、ビニルシランカップリング剤、(メタ)アクリルシランカップリング剤、エポキシシランカップリング剤、アミノシランカップリング剤、メルカプトシランカップリング剤などが例示され、具体的には、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-β-(アミノエチル)γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、イソシアネートシラン等が例示される。
 これらの内、特にγ-アミノプロピルトリエトキシシラン、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン等のアミノシラン類、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類、イソシアネートシランが好ましい。
 (F)成分は前記(A)成分100質量部に対して0~30質量部、好ましくは0.1~30質量部、特に0.5~20質量部配合するのが好ましい。充填剤及び被着体により接着促進剤を使用しなくても接着するときは、これを使用しなくてもよい。
-(G)成分-
 (G)成分のオルガノポリシロキサンは、必要に応じて配合できる任意成分であり、下記一般式(3)で示されるものであり、分子中に縮合反応に関与する官能性基を含有しない(即ち、組成物の縮合硬化反応に関与しない)直鎖状のジオルガノポリシロキサン(いわゆる無官能シリコーンオイル)である。
Figure JPOXMLDOC01-appb-C000012
(式中、R1は水素原子、又は炭素数1から20の非置換又は置換1価炭化水素基であり、複数のR1は同一でも異なっていてもよい。mは1から2000の整数である。)
 上記一般式(3)中、R1の置換又は非置換の炭化水素基としては、炭素数が1~20、好ましくは1~10、より好ましくは1~8のものであり、同一または異なっていてもよく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、メチル基、エチル基が好ましく、入手の容易さ、生産性、コストの面からメチル基が特に好ましい。
 また、(G)成分のオルガノポリシロキサンは、25℃における粘度が0.65~1,000,000mPa・sのものが好ましく、より好ましくは30~500,000mPa・s、特に好ましくは50~100,000mPa・s、とりわけ100~80,000mPa・sのものが好ましい。前記オルガノポリシロキサンの粘度が10mPa・s以上であれば、物理的・機械的強度に優れたコーティング塗膜を得ることが容易であり、1,000,000mPa・s以下であれば、組成物の粘度が高くなり過ぎず使用時における作業性が良いので好ましい。ここで、粘度は回転粘度計による数値である。
上記式(3)中、mは1から2000の整数であるが、同様の理由で、mは、好ましくは10~1,500、30~1,200、より好ましくは50~1,000程度の整数であることが望ましい。
 (G)成分の配合量は、(A)成分100質量部に対して、通常、0~100質量部であるが、好ましくは0.1~80質量部、より好ましくは0.5~75質量部、更に好ましくは5~70質量部であり、10~60質量部とすることがとりわけ好ましい。なお、組成物の粘度が低く、十分な作業性が得られている場合は添加する必要がなく、また100質量部を超えるとゴム物性が低下することがある。
-その他の成分-
 また、本発明の室温硬化性オルガノポリシロキサン組成物には、更に、添加剤として、顔料、染料、老化防止剤、酸化防止剤、帯電防止剤、酸化アンチモン、塩化パラフィン等の難燃剤など公知の添加剤を配合することができる。更に、チクソ性向上剤としてのポリエーテル、防かび剤、抗菌剤、を配合することもできる。
 また、本発明の室温硬化性オルガノポリシロキサン組成物は、上記各成分、更にはこれに上記各種添加剤の所定量を、乾燥雰囲気中において均一に混合することにより得ることができる。
 また、前記室温硬化性オルガノポリシロキサン組成物は、室温で放置することにより硬化するが、その成形方法、硬化条件などは、組成物の種類に応じた公知の方法、条件を採用することができる。
 かくして得られる本発明の室温硬化性オルガノポリシロキサン組成物は、空気中の湿気により、室温で速やかに硬化して耐熱性、耐候性、低温特性、各種基材、特に金属に対する接着性に優れたゴム弾性体硬化物を形成する。また、本発明の組成物は、特に保存安定性、硬化性に優れ、例えば6ヶ月間の貯蔵後も空気中に曝すと速やかに硬化して、上述のように優れた物性を持つ硬化物を与える。さらに、硬化時に毒性あるいは腐食性のガスを放出せず、この組成物を施した面に錆を生じさせることもない。さらにまた、この組成物は、電気電子部品の接点障害を生じさせることがないので、電気電子部品用絶縁材や接着剤として有用であるほか、各種基材に対するシール剤、コーティング剤、被覆剤、離型処理剤として、また繊維処理剤としても広く使用することができる。また、この組成物を硬化、成形して種々の成形物を得ることができ、該成形物は、耐熱性、耐候性等に優れたものとなる。
 以下、合成例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の具体例において、「部」は「質量部」を意味し、また粘度は25℃での回転粘度計による測定値を示したものである。
 [合成例]
 (B)成分のアルコキシシリル-ビニレン基を同一ケイ素原子上に2つ有するケイ素含有化合物の合成方法は、以下の通りである。
 [合成例1]
<アルコキシシリル-ビニレン基を同一ケイ素原子上に2つ有するケイ素含有化合物の合成-[ビス(トリメトキシシリル-ビニレン)ジメチルシラン]>
 機械攪拌機、温度計及び滴下ロートを備えた500mLの四つ口セパラブルフラスコに、ジエチニルジメチルシラン35.0g(0.323mol)、塩化白金酸(H2PtCl6・6H2O)の0.5wt%トルエン溶液0.10g、トルエン50mLを入れ、トリメトキシシラン83.01g(0.678mol)を滴下した。その後、85℃で6時間撹拌後、蒸留して下記に示すケイ素化合物[ビス(トリメトキシシリル-ビニレン)ジメチルシラン]を106.2g(収率90%)得た。そして、このケイ素化合物の1HNMRチャートを調べ、確かに目的物であるビス(トリメトキシシリル-ビニレン)ジメチルシラン(下記化合物)であることを確認した(トランス:シス=8:1)。この反応を下記反応式[3]に示す。
Figure JPOXMLDOC01-appb-C000013
この化合物の1H-NMRスペクトルデータは以下の通りである。
 1H-NMR(400MHz,C66,δ(ppm)):0.00(s,6H),3.36(s,18H),6.47(d,2H),7.10(d,2H)
[合成例2]
<アルコキシシリル-ビニレン基を同一ケイ素原子上に2つ有するケイ素含有化合物の合成-[ビス(トリメトキシシリル-ビニレン)ジフェニルシラン]>
 機械攪拌機、温度計及び滴下ロートを備えた500mLの四つ口セパラブルフラスコに、ジエチニルジフェニルシラン34.9g(0.151mol)、塩化白金酸(H2PtCl6・6H2O)の0.5wt%トルエン溶液0.10g、トルエン50mLを入れ、トリメトキシシラン38.5g(0.315mol)を滴下した。その後、85℃で6時間撹拌後、蒸留して下記に示すケイ素化合物[ビス(トリメトキシシリル-ビニレン)ジフェニルシラン]を56.5g(収率88%)得た。そして、このケイ素化合物の1HNMRチャートを調べ、確かに目的物であるビス(トリメトキシシリル-ビニレン)ジフェニルシランであることを確認した(trans:cis==9:1)。この反応を下記反応式[4]に示す。
Figure JPOXMLDOC01-appb-C000014
この化合物の1H-NMRスペクトルデータは以下の通りである。
1H-NMR(400MHz,C66,δ(ppm)):3.61(s,18H),6.45(d,2H),7.31(d,2H),7.36-7.55(m,10H)
[実施例1]
 粘度5000mPa・sの分子鎖両末端が水酸基(シラノール基)で封鎖されたジメチルポリシロキサン100部と、合成例1で得られたビス(トリメトキシシリル-ビニレン)ジメチルシランを4.9部、テトラメチルグアニジルプロピルトリメトキシシランを0.75部加え、湿気遮断下で均一になるまで混合して組成物を調製した。
[実施例2]
 粘度5000mPa・sの分子鎖両末端が水酸基(シラノール基)で封鎖されたジメチルポリシロキサン100部と、合成例1で得られたビス(トリメトキシシリル-ビニレン)ジメチルシランを4.9部、下記構造式(2)で示される平均構造が、モノ(ジピバロイルメタン)アルミニウムビス(エチルアセトアセテート)キレートであるアルミニウムキレート化合物を1.0部加え、湿気遮断下で均一になるまで混合して組成物を調製した。
Figure JPOXMLDOC01-appb-C000015
[実施例3]
 粘度5000mPa・sの分子鎖両末端が水酸基(シラノール基)で封鎖されたジメチルポリシロキサン100部と、合成例1で得られたビス(トリメトキシシリル-ビニレン)ジメチルシランを4.9部、下記構造式(3)で示されるN,N,N’,N’,N’’,N’’-ヘキサメチル-N’’’-(トリメチルシリルメチル)-ホスホリミディックトリアミドである化合物を0.2部加え、湿気遮断下で均一になるまで混合して組成物を調製した。
Figure JPOXMLDOC01-appb-C000016
[実施例4]
 実施例1において、ビス(トリメトキシシリル-ビニレン)ジメチルシランの代わりに、合成例2で得られたビス(トリメトキシシリル-ビニレン)ジフェニルシラン、6.6部を用いた以外は同様に組成物を調製した。
[比較例1~3]
 実施例1~3において、ビス(トリメトキシシリル-ビニレン)ジメチルシランの代わりに、ビニルトリメトキシシラン[下記構造式(4)で示されるケイ素化合物]、4.1部を用いた以外は同様に組成物を調製した。
Figure JPOXMLDOC01-appb-C000017
[比較例4~6]
 実施例1~3において、ビス(トリメトキシシリル-ビニレン)ジメチルシランの代わりに、メチルトリメトキシシラン[下記構造式(5)で示されるケイ素化合物]、3.8部を用いた以外は同様に組成物を調製した。
Figure JPOXMLDOC01-appb-C000018
[比較例7]
 実施例1において、ビス(トリメトキシシリル-ビニレン)ジメチルシランの代わりに、1,6-ビス(トリメトキシシリル)ヘキサン[下記構造式(6)で示されるケイ素化合物]、4.5部を用いた以外は同様に組成物を調製した。
Figure JPOXMLDOC01-appb-C000019
[タックフリータイムの測定]
 実施例1~4及び比較例1~7で調製された各組成物のタックフリータイムを測定した。
 また、実施例1~4及び比較例1~7で調製された調製直後の各組成物を厚さ2mmのシート状に押し出し、23±2℃,50±5%RHの空気に曝し、次いで、該シートを同じ雰囲気下に3日間放置して得た硬化物の物性(初期物性)を、JIS K-6249に準拠して測定した。なお、硬さは、JIS K-6249のデュロメーターA硬度計を用いて測定した。
 更に、この硬化物を85℃,85%RHの恒温恒湿器に7日間保管したものを同様に測定した。また、この硬化物を150℃のオーブンで10日間加熱したものを同様に測定した。
 下記に、実施例1、4、比較例1、4、7の結果を表1に、実施例2、比較例2、5の結果を表2に、実施例3、比較例3、6の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 以上のように、室温硬化性オルガノポリシロキサン組成物は、速硬化性であり、耐久性に優れた硬化物となることが分かる。
[実施例5]
 粘度20000mPa・sの分子鎖量末端が水酸基(シラノール基)で封鎖されたジメチルポリシロキサン100部と、表面疎水化処理ヒュームドシリカ13部、合成例1で得られたビス(トリメトキシシリル-ビニレン)ジメチルシランを8.0部、テトラメチルグアニジルプロピルトリメトキシシランを0.58部、3-アミノプロピルトリエトキシシラン0.8部、3-(2-アミノエチルアミノプロピル)トリメトキシシラン0.8部を加え、湿気遮断下で均一になるまで混合して組成物を調整した。
[実施例6]
 粘度20000mPa・sの分子鎖量末端が水酸基(シラノール基)で封鎖されたジメチルポリシロキサン100部と、表面疎水化処理ヒュームドシリカ13部、合成例1で得られたビス(トリメトキシシリル-ビニレン)ジメチルシランを6.0部、テトラメチルグアニジルプロピルトリメトキシシランを0.58部、3-アミノプロピルトリエトキシシラン0.8部、3-(2-アミノエチルアミノプロピル)トリメトキシシラン0.8部を加え、湿気遮断下で均一になるまで混合して組成物を調整した。
[実施例7]
 粘度20000mPa・sの分子鎖量末端が水酸基(シラノール基)で封鎖されたジメチルポリシロキサン100部と、粘度100mPa・sの分子鎖末端がトリメチルシリル基で封鎖されたジメチルポリシロキサン10部と、表面疎水化処理ヒュームドシリカ13部、合成例1で得られたビス(トリメトキシシリル-ビニレン)ジメチルシランを7.5部、テトラメチルグアニジルプロピルトリメトキシシランを0.58部、3-アミノプロピルトリエトキシシラン0.8部、3-(2-アミノエチルアミノプロピル)トリメトキシシラン0.8部を加え、湿気遮断下で均一になるまで混合して組成物を調整した。
 次に、実施例5~7で調製された各組成物のタックフリータイムを測定した。
また、参照実施例5で調製された調製直後の各組成物を厚さ2mmのシート状に押し出し、23℃,50%RHの空気に曝し、次いで、該シートを同じ雰囲気下に7日間放置して得た硬化物の物性(初期物性)を、JIS K-6249に準拠して測定した。なお、硬さは、JIS K-6249のデュロメーターA硬度計を用いて測定した。
 調製した組成物より、幅25mm、長さ100mmの被着体を用いて接着面積2.5mm2、接着暑さ1mmのせん断(シア)接着試験体を作製し、23℃,50%RHで7日間養生した後、せん断接着力を測定した。
 下記に、実施例5~7の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000023
 以上のように、本発明の室温硬化性オルガノポリシロキサン組成物は、速硬化性であり、耐久性に優れた硬化物となることが分かる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術思考と実質的に同一な構成を有し、同様な作用硬化を奏すものは、いかなるものであっても本発明の技術範囲に包含される。

Claims (7)

  1.  下記(A)、(B)及び(D)成分を含有する室温硬化性オルガノポリシロキサン組成物。
    (A)下記一般式(1)で示されるオルガノポリシロキサン
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子、又は、炭素数1から20の非置換又は置換1価炭化水素基であり、複数のR1は同一でも異なっていてもよい。nは1以上の整数である。)
    (B)下記一般式(2)で示される同一ケイ素原子上に2つのシリル-ビニレン基を有することを特徴とする有機ケイ素化合物:(A)成分100質量部に対して0.1~30質量部
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は水素原子、又は、炭素数1から20の非置換又は置換1価炭化水素基であり、複数のR1は同一でも異なっていてもよい。R2は炭素数1から20の非置換又は置換アルキル基又は、炭素数3から20の非置換又は置換シクロアルキル基である。aは1から3の整数である。)
    (D)硬化触媒:(A)成分100質量部に対して0.001~20質量部
  2.  更に、(C)(B)成分を除く加水分解性シラン及び/又はその部分加水分解縮合物:(A)成分100質量部に対して0.1~30質量部
    を含有することを特徴とする請求項1に記載の室温硬化性オルガノポリシロキサン組成物。
  3.  更に、(E)充填剤:(A)成分100質量部に対して0.1~1000質量部
    を含有することを特徴とする請求項1又は2に記載の室温硬化性オルガノポリシロキサン組成物。
  4.  更に、(F)接着促進剤:(A)成分100質量部に対して0.1~30質量部
    を含有することを特徴とする請求項1~3のいずれか1項に記載の室温硬化性オルガノポリシロキサン組成物。
  5.  更に、(G)下記一般式(3)で示されるオルガノポリシロキサン:(A)成分100質量部に対して0.1~100質量部
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1は水素原子、又は、炭素数1から20の非置換又は置換1価炭化水素基であり、複数のR1は同一でも異なっていてもよい。mは1から2000の整数である。)
    を含有することを特徴とする請求項1~4のいずれか1項に記載の室温硬化性オルガノポリシロキサン組成物。
  6.  請求項1に記載の室温硬化性オルガノポリシロキサン組成物を含有するシール剤、コーティング剤又は接着剤。
  7.  請求項1に記載の室温硬化性オルガノポリシロキサン組成物の硬化物からなる成形物。
PCT/JP2015/065317 2014-06-16 2015-05-27 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物 WO2015194340A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177000830A KR102326223B1 (ko) 2014-06-16 2015-05-27 실온 경화성 오르가노폴리실록산 조성물 및 해당 실온 경화성 오르가노폴리실록산 조성물의 경화물인 성형물
US15/318,994 US10040923B2 (en) 2014-06-16 2015-05-27 Room-temperature-curable organopolysiloxane composition, and moulded product comprising cured product of said room-temperature-curable organopolysiloxane composition
CN201580032569.9A CN106459586B (zh) 2014-06-16 2015-05-27 室温固化性有机聚硅氧烷组合物和为该室温固化性有机聚硅氧烷组合物的固化物的成型物
JP2016529204A JP6497390B2 (ja) 2014-06-16 2015-05-27 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
EP15809931.7A EP3156458B1 (en) 2014-06-16 2015-05-27 Room-temperature-curable organopolysiloxane composition, and moulded product comprising cured product of said room-temperature-curable organopolysiloxane composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-123070 2014-06-16
JP2014123070 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015194340A1 true WO2015194340A1 (ja) 2015-12-23

Family

ID=54935332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065317 WO2015194340A1 (ja) 2014-06-16 2015-05-27 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物

Country Status (6)

Country Link
US (1) US10040923B2 (ja)
EP (1) EP3156458B1 (ja)
JP (1) JP6497390B2 (ja)
KR (1) KR102326223B1 (ja)
CN (1) CN106459586B (ja)
WO (1) WO2015194340A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157948A1 (ja) * 2015-04-03 2016-10-06 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物である成形物
WO2017195508A1 (ja) * 2016-05-09 2017-11-16 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティングされた基材
CN109071798A (zh) * 2016-04-26 2018-12-21 信越化学工业株式会社 含有末端硅烷醇基的聚氧化烯系化合物及其制造方法、室温固化性组合物、密封材料以及物品
WO2019077942A1 (ja) * 2017-10-17 2019-04-25 信越化学工業株式会社 室温硬化性組成物、シーリング材及び物品
WO2019116892A1 (ja) * 2017-12-15 2019-06-20 信越化学工業株式会社 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
WO2022009759A1 (ja) 2020-07-07 2022-01-13 信越化学工業株式会社 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品
WO2023068094A1 (ja) * 2021-10-19 2023-04-27 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物、接着剤、シール剤及びコーティング剤

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255696A (zh) * 2014-04-25 2016-12-21 信越化学工业株式会社 新颖的含有双(烷氧基甲硅烷基‑亚乙烯)基的硅化合物及其制备方法
CA3026619A1 (en) * 2016-06-28 2018-01-04 Threebond Co., Ltd. Curable resin composition, fuel cell, and sealing method
CN107523259B (zh) * 2017-10-12 2020-08-11 济南大学 一种α-570偶联剂改性的有机硅密封胶的制备
CN108034404B (zh) * 2018-01-22 2020-12-15 黑龙江省科学院石油化学研究院 一种高韧性有机/无机杂化耐高温胶黏剂
CN108314987B (zh) * 2018-02-12 2021-01-29 黑龙江奥星能源科技有限公司 一种含有石墨粉的耐高温胶粘剂及其制备方法
CN112481000B (zh) * 2020-11-27 2022-04-22 武汉善达化工有限公司 一种用于耐火材料的环保脱模剂及其制备和使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097574A1 (ja) * 2012-12-20 2014-06-26 信越化学工業株式会社 新規アルコキシシリル-エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物
WO2014097573A1 (ja) * 2012-12-20 2014-06-26 信越化学工業株式会社 新規エチニル基含有オルガノポリシロキサン化合物、分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法、アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物
WO2014185276A1 (ja) * 2013-05-16 2014-11-20 信越化学工業株式会社 アルミニウムキレート化合物及びこれを含有する室温硬化性樹脂組成物
WO2015093139A1 (ja) * 2013-12-17 2015-06-25 信越化学工業株式会社 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059917B2 (ja) 1977-12-21 1985-12-27 東芝シリコ−ン株式会社 シス−1,2−ジシリルアルケン化合物
JPS5543119A (en) 1978-09-20 1980-03-26 Sws Silicones Corp Titanium ester contained vulcanizable organopolysiloxane composition and its manufacture
JPH0739547B2 (ja) 1992-01-10 1995-05-01 東レ・ダウコーニング・シリコーン株式会社 室温硬化性オルガノポリシロキサン組成物
JPH07331076A (ja) 1994-06-03 1995-12-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP3927643B2 (ja) 1997-04-01 2007-06-13 日本たばこ産業株式会社 分岐αデキストリンに親油性香料を包接指せた加香剤を用いた喫煙物品
JP4821958B2 (ja) * 2005-05-13 2011-11-24 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
US8110638B2 (en) * 2006-12-25 2012-02-07 Chugoku Marine Paints, Ltd. Curable composition, antifouling paint composition, antifouling coating film, base material with antifouling coating film and antifouling method for base material
JP5817626B2 (ja) * 2012-04-04 2015-11-18 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097574A1 (ja) * 2012-12-20 2014-06-26 信越化学工業株式会社 新規アルコキシシリル-エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物
WO2014097573A1 (ja) * 2012-12-20 2014-06-26 信越化学工業株式会社 新規エチニル基含有オルガノポリシロキサン化合物、分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法、アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物
WO2014185276A1 (ja) * 2013-05-16 2014-11-20 信越化学工業株式会社 アルミニウムキレート化合物及びこれを含有する室温硬化性樹脂組成物
WO2015093139A1 (ja) * 2013-12-17 2015-06-25 信越化学工業株式会社 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. G. VORONKOV ET AL.: "Derivatives of methyl substituted trans-1,2-disilylethylene, Izvestiya Akademii Nauk SSSR", SERIYA KHIMICHESKAYA, 1974, pages 2066 - 2070, XP009102301 *
M. G. VORONKOV ET AL.: "Synthesis of new derivatives of trans-1,2-disilylethylene by hydrosilylation of ethynylsilanes", IZVESTIYA AKADEMII NAUK SSSR, SERIYA KHIMICHESKAYA, vol. 30, no. 8, 1976, pages 1874 - 1877, XP055244366, ISSN: 0568-5230 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016157948A1 (ja) * 2015-04-03 2018-02-15 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物である成形物
WO2016157948A1 (ja) * 2015-04-03 2016-10-06 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物である成形物
US10442896B2 (en) 2015-04-03 2019-10-15 Shin-Etsu Chemical Co., Ltd. Room temperature-curable organopolysiloxane composition and cured product thereof
US20190135978A1 (en) * 2016-04-26 2019-05-09 Shin-Etsu Chemical Co., Ltd. Silanol-group-terminated polyoxyalkylene compound and production process therefor, room-temperature-curable composition, sealing material, and article
US11859050B2 (en) * 2016-04-26 2024-01-02 Shin-Etsu Chemical Co., Ltd. Silanol-group-terminated polyoxyalkylene compound and production process therefor, room-temperature-curable composition, sealing material, and article
KR102619534B1 (ko) 2016-04-26 2023-12-29 신에쓰 가가꾸 고교 가부시끼가이샤 실온 경화성 조성물, 실링재, 및 물품
CN109071798A (zh) * 2016-04-26 2018-12-21 信越化学工业株式会社 含有末端硅烷醇基的聚氧化烯系化合物及其制造方法、室温固化性组合物、密封材料以及物品
KR20180135943A (ko) * 2016-04-26 2018-12-21 신에쓰 가가꾸 고교 가부시끼가이샤 말단 실란올기 함유 폴리옥시알킬렌계 화합물 및 그 제조 방법, 실온 경화성 조성물, 실링재, 및 물품
US10590286B2 (en) 2016-05-09 2020-03-17 Shin-Etsu Chemical Co., Ltd. Room-temperature-curable organopolysiloxane composition, and base member coated with cured object obtained from said composition
CN109071949B (zh) * 2016-05-09 2021-08-31 信越化学工业株式会社 室温固化性有机聚硅氧烷组合物和涂有所述组合物的固化物的基材
WO2017195508A1 (ja) * 2016-05-09 2017-11-16 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティングされた基材
JPWO2017195508A1 (ja) * 2016-05-09 2019-03-07 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティングされた基材
KR20190006509A (ko) * 2016-05-09 2019-01-18 신에쓰 가가꾸 고교 가부시끼가이샤 실온 경화성 오르가노폴리실록산 조성물 및 해당 조성물의 경화물로 코팅된 기재
CN109071949A (zh) * 2016-05-09 2018-12-21 信越化学工业株式会社 室温固化性有机聚硅氧烷组合物和涂有所述组合物的固化物的基材
KR102325611B1 (ko) 2016-05-09 2021-11-12 신에쓰 가가꾸 고교 가부시끼가이샤 실온 경화성 오르가노폴리실록산 조성물의 경화물로 코팅된 수중 구조물, 수중 구조물 코팅용의 실온 경화성 오르가노폴리실록산 조성물 및 수중 구조물 표면으로의 수생 생물의 부착·생육을 방지하는 방법
WO2019077942A1 (ja) * 2017-10-17 2019-04-25 信越化学工業株式会社 室温硬化性組成物、シーリング材及び物品
JP7300993B2 (ja) 2017-10-17 2023-06-30 信越化学工業株式会社 室温硬化性組成物、シーリング材及び物品
JPWO2019077942A1 (ja) * 2017-10-17 2020-11-05 信越化学工業株式会社 室温硬化性組成物、シーリング材及び物品
JPWO2019116892A1 (ja) * 2017-12-15 2020-12-03 信越化学工業株式会社 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
JP7088211B2 (ja) 2017-12-15 2022-06-21 信越化学工業株式会社 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
US11578209B2 (en) 2017-12-15 2023-02-14 Shtn-Etsu Chemical Co., Ltd. Room temperature moisture-curable silicone gel composition, and cured product and article therefrom
WO2019116892A1 (ja) * 2017-12-15 2019-06-20 信越化学工業株式会社 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
WO2022009759A1 (ja) 2020-07-07 2022-01-13 信越化学工業株式会社 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品
WO2023068094A1 (ja) * 2021-10-19 2023-04-27 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物、接着剤、シール剤及びコーティング剤

Also Published As

Publication number Publication date
EP3156458B1 (en) 2019-06-26
EP3156458A4 (en) 2018-01-24
JPWO2015194340A1 (ja) 2017-06-01
JP6497390B2 (ja) 2019-04-10
KR20170018408A (ko) 2017-02-17
US10040923B2 (en) 2018-08-07
US20170130031A1 (en) 2017-05-11
KR102326223B1 (ko) 2021-11-15
EP3156458A1 (en) 2017-04-19
CN106459586A (zh) 2017-02-22
CN106459586B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
JP6497390B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
JP5997778B2 (ja) 新規アルコキシシリル−エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物
JP6314993B2 (ja) 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
JP5960843B2 (ja) アルコキシシリル−エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物
JP6747507B2 (ja) 室温硬化性組成物、シーリング材並びに物品
JP6627862B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物である成形物
JP6187681B2 (ja) 新規ビス(アルコキシシリル−ビニレン)基含有ケイ素化合物及びその製造方法
JP2018087348A (ja) 室温硬化性組成物、シーリング材及び物品
US10428183B2 (en) Room temperature-curable resin composition containing an aluminum chelate compound
JP6760223B2 (ja) 室温硬化性オルガノポリシロキサン組成物、およびこれを含有するシール剤、コーティング剤、接着剤、成形物
JP5177344B2 (ja) 室温硬化性オルガノポリシロキサン組成物
JP6315100B2 (ja) 新規有機チタン化合物、該有機チタン化合物の製造方法、硬化触媒及び室温硬化性オルガノポリシロキサン組成物
JP7176527B2 (ja) オルガノポリシロキサン組成物、並びに有機ケイ素化合物及びその製造方法
JP5915599B2 (ja) 室温硬化性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529204

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15318994

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015809931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015809931

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177000830

Country of ref document: KR

Kind code of ref document: A