WO2014097573A1 - 新規エチニル基含有オルガノポリシロキサン化合物、分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法、アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物 - Google Patents

新規エチニル基含有オルガノポリシロキサン化合物、分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法、アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物 Download PDF

Info

Publication number
WO2014097573A1
WO2014097573A1 PCT/JP2013/007246 JP2013007246W WO2014097573A1 WO 2014097573 A1 WO2014097573 A1 WO 2014097573A1 JP 2013007246 W JP2013007246 W JP 2013007246W WO 2014097573 A1 WO2014097573 A1 WO 2014097573A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ethynyl
integer
organopolysiloxane compound
producing
Prior art date
Application number
PCT/JP2013/007246
Other languages
English (en)
French (fr)
Inventor
坂本 隆文
貴大 山口
山田 哲郎
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP13864315.0A priority Critical patent/EP2937375B1/en
Priority to JP2014552910A priority patent/JP5960843B2/ja
Priority to KR1020157016334A priority patent/KR102093273B1/ko
Priority to US14/649,788 priority patent/US9475969B2/en
Priority to CN201380067430.9A priority patent/CN104870524B/zh
Publication of WO2014097573A1 publication Critical patent/WO2014097573A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J149/00Adhesives based on homopolymers or copolymers of compounds having one or more carbon-to-carbon triple bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/10Equilibration processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D149/00Coating compositions based on homopolymers or copolymers of compounds having one or more carbon-to-carbon triple bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F238/00Copolymers of compounds having one or more carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/14Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • the present invention relates to a novel ethynyl group-containing organopolysiloxane compound, a method for producing a linear organopolysiloxane compound containing ethynyl groups at both ends of a molecular chain, a method for producing an alkoxysilyl-ethylene group-terminated organosiloxane polymer, a room temperature curable composition, and
  • the present invention relates to a molded product obtained by curing it.
  • Organopolysiloxane compounds having unsaturated hydrocarbons on the terminal silicon are useful as base polymers for addition-curable silicone compositions.
  • Addition-curable silicone compositions are cured and silicones with excellent electrical properties, cold resistance, etc. Since gel or silicone rubber is formed, it is used as an electrical / electronic component, a semiconductor element sealant, a filler or coating agent, an optical semiconductor insulating coating protective agent, and the like.
  • silicon compounds containing both terminal ethynyl groups include low molecular terminal ethynyl group-containing silicon compounds, 1,3-diethynyl-1,1,3,3-tetramethyldisiloxane (CAS Registry Number: 4180-02-3), 1 , 5-diethynyl-1,1,3,3,5,5-hexamethyltrisiloxane (CAS Registry Number: 39490-70-5), 1,7-diethynyl-1,1,3,3,5,5 , 7,7-octamethyltetrasiloxane (CAS Registry Number: 40392-68-5), 1,9-diethynyl-1,1,3,3,5,5,7,7,9,9-decamethylpenta Siloxane (CAS Registry Number: 40392-69-6), 1,11-diethynyl-1, , 3, 3, 5, 5, 7, 7, 9, 9, 11, 11-dodecamethylhexasiloxane (CAS Registry Number: 40392-70-9) and the like.
  • organopolysiloxane compounds having an ethynyl group at the polymer terminal having a higher degree of polymerization There are no reports on organopolysiloxane compounds having an ethynyl group at the polymer terminal having a higher degree of polymerization.
  • a method for producing an organopolysiloxane compound having an ethynyl group at a high polymer terminal has not been reported.
  • various types of room temperature curable compositions that are cured in an elastomeric form at room temperature by contact with moisture in the air are known, and in particular, those that are cured by releasing alcohol. It is characterized by having no unpleasant odor and not corroding metals, and is preferably used for sealing, bonding, and coating of electrical and electronic equipment.
  • Patent Document 3 discloses a composition comprising a hydroxyl-terminated organopolysiloxane, an alkoxysilane, and an organic titanium compound.
  • Patent Document 4 discloses a composition comprising an alkoxysilyl end-capped organopolysiloxane, an alkoxysilane, and an alkoxytitanium.
  • Patent Document 5 discloses a composition comprising a linear organopolysiloxane containing an alkoxysilyl-ethane group, an alkoxysilane, and an alkoxytitanium.
  • Patent Document 6 discloses a composition comprising a hydroxyl group-endcapped organopolysiloxane or an alkoxy group-endcapped organopolysiloxane and an alkoxy- ⁇ -silyl ester compound.
  • these compositions have good characteristics in terms of storage stability and durability (water resistance and moisture resistance), but are still insufficient in terms of fast curability.
  • organosiloxane polymer having a reactive alkoxysilyl group at the terminal is conventionally known.
  • the curability is hardly changed (decreased) over time, and a composition excellent in storage stability can be obtained.
  • workability viscosity and thixotropy
  • the dealcohol-free room temperature curable organopolysiloxane composition having an organosiloxane polymer terminated with such a reactive alkoxysilyl group as a main component (base polymer) is a deoxime which is another conventionally known cure type.
  • base polymer a deoxime which is another conventionally known cure type.
  • a deacetic acid type, a deacetone type, etc. since the reactivity with the water
  • functional groups (bonding groups) adjacent to reactive alkoxy groups has been underway, and ⁇ -alkoxysilylmethyl end groups have particularly high reactivity to moisture in the air.
  • Patent Document 7 has been reported (Patent Document 7).
  • the curability is still inadequate, and the adjacent functional group (bonding group) has an adverse effect on durability and has a drawback that the restoring force of the cured product is low.
  • the present invention has been made in view of the above circumstances, a novel ethynyl group-containing polyorganosiloxane compound, and a linear chain containing ethynyl groups at both ends that can easily adjust the degree of polymerization and are excellent in productivity. It aims at providing the manufacturing method of an organopolysiloxane compound.
  • room temperature curable compositions that give a cured product that is particularly excellent in rapid curability, storage stability, and durability, especially room temperature curable organopolysiloxane compositions, and main ingredients (bases) of these room temperature curable compositions It is an object of the present invention to provide a method for producing a terminal alkoxysilyl group-ethylene-terminated organosiloxane polymer used as a polymer.
  • the present invention has been made to solve the above-described problems, and has at least one unit of the following formula (1) as a partial structure, and is characterized by being either a straight chain or a branched chain (branched chain)
  • An organopolysiloxane compound is provided.
  • R represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
  • M represents an integer of 21 to 2000, and a part of the repeating unit of the siloxane bond may be crosslinked to have a branched structure, and n represents an integer of 0 to 20.
  • Such an organopolysiloxane compound has high hydrosilylation reactivity with a silicon compound having a Si—H bond, and can be expected to be used as a nonvolatile control agent.
  • the present invention also relates to a method for producing a linear organopolysiloxane compound containing ethynyl groups at both ends of a molecular chain represented by the following formula (2), wherein the compound is represented by the following formula (3) in the presence of an acidic catalyst.
  • a method for producing a linear organopolysiloxane compound containing ethynyl groups at both ends of a molecular chain which is produced by an equilibration reaction between the compound and the compound represented by the following general formula (4): (Wherein R represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. Each R may be the same or different.
  • L is an integer of 3 to 20.
  • m represents an integer of 21 to 2000, and a part of the repeating unit of the siloxane bond may be cross-linked to have a branched structure, and n is 0 to 20 Indicates an integer.)
  • the compound of said Formula (2) can be manufactured, and also the compound represented by said Formula (3), and the above-mentioned
  • the degree of polymerization (m) can be easily adjusted and the productivity is excellent.
  • the acidic catalyst is preferably sulfuric acid or trifluoromethanesulfonic acid.
  • Such an acidic catalyst is preferable because the equilibrium reaction can be performed at a relatively low temperature.
  • the present invention also provides: According to the following reaction formula, a hydrogen atom bonded to a silicon atom and an organopolysiloxane compound having at least one unit of the following formula (1 ′) as a partial structure and being either linear or branched (branched) (ie , An alkoxysilane having at least one unit of the following formula (1 ′′) in the molecule by an addition reaction with an alkoxysilane having one hydrosilyl group represented by SiH in the molecule
  • a method for producing an alkoxysilyl-ethylene group-terminated organosiloxane polymer for producing a silyl-ethylene group-terminated organosiloxane polymer is provided.
  • R represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. Each R may be the same or different.
  • M ′ represents an integer of 0 to 2000, and a part of the repeating unit of the siloxane bond may be cross-linked to have a branched structure, n represents an integer of 0 to 20.
  • R 1 represents a substituent.
  • an alkyl group having 1 to 20 carbon atoms which may have a group, and the alkyl group having 3 or more carbon atoms may be a cyclic cycloalkyl group, wherein R 2 is a hydrogen atom, or (It is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
  • A is an integer of 1 to 3.
  • the present invention provides (A) 100 parts by mass of the alkoxysilyl-ethylene group-terminated organosiloxane polymer produced by the method for producing the alkoxysilyl-ethylene group-terminated organosiloxane polymer, (B) 0.001 to 15 parts by mass of a curing catalyst; (C) 0-30 parts by mass of silane and / or its partial hydrolysis-condensation product, (D) 0 to 1000 parts by mass of filler, (E) 0 to 30 parts by mass of an adhesion promoter; A room temperature curable composition (particularly a room temperature curable organopolysiloxane composition) is provided.
  • the main chain of the component (A) is preferably an organopolysiloxane.
  • Such a room temperature curable composition can give a cured product that is more excellent in fast curability, more durable, and has better storage stability.
  • the room temperature curable composition is preferably used as any one of a sealing agent, a coating agent, and an adhesive.
  • Such a room temperature curable composition is useful as a sealant, a coating agent, and an adhesive where heat resistance, water resistance and moisture resistance are required.
  • the present invention also provides a molded product, which is a cured product of the room temperature curable composition.
  • Such a molded product can have excellent heat resistance and durability.
  • the novel ethynyl group-containing organopolysiloxane compound of the present invention is expected to be usable as a nonvolatile control agent. Further, the method for producing a linear organopolysiloxane compound containing ethynyl groups at both ends of the molecular chain of the present invention can synthesize novel compounds represented by the above formulas (1) and (2), and is represented by the above formula (3). Since the degree of polymerization can be easily adjusted by adjusting the molar ratio of the compound represented by formula (4) and the compound represented by the above formula (4), the productivity is also excellent.
  • the room temperature curable composition of the present invention gives a cured product particularly excellent in rapid curing, and further, for example, in the air even after storage for 12 months. When exposed, it cures quickly and exhibits excellent physical properties.
  • This composition is useful as a sealant, coating agent, and adhesive in places where heat resistance, water resistance, and moisture resistance are required, and in particular, for building applications and electrical and electronic adhesives that require steam resistance and water resistance. It can be used effectively as an application.
  • the novel ethynyl group-containing organopolysiloxane compound of the present invention the production method of the molecular chain both-end ethynyl group-containing linear organopolysiloxane compound, the production method of the alkoxysilyl-ethylene group-terminated organosiloxane polymer, the room temperature curable organopolysiloxane
  • the siloxane composition and the molded product that is a cured product thereof will be described in detail, but the present invention is not limited thereto.
  • the present invention has at least one unit of the following formula (1) as a partial structure, and preferably has a structural unit represented by —Si (R) 2 — [CH 2 ] n —C ⁇ CH in the molecule.
  • An organopolysiloxane compound having a degree of polymerization (or the number of repeating diorganosiloxane units in the molecule) of 21 or more characterized by being either a straight chain or a branched chain (branched chain), containing two or more; Particularly, it is a linear organopolysiloxane having a structural unit represented by —Si (R) 2 — [CH 2 ] n —C ⁇ CH at both ends of the molecular chain and having a polymerization degree (m) of 21 or more.
  • R represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. Each R may be the same or different.
  • M represents an integer of 21 to 2000, preferably an integer of 22 to 1600, more preferably an integer of 23 to 1000, still more preferably an integer of 24 to 500, and a part of the repeating unit of the siloxane bond is crosslinked.
  • n represents an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and still more preferably an integer of 0 to 3.
  • the ethynyl group-containing organopolysiloxane compound is characterized by containing an ethynyl group (or a terminal ethynyl group-substituted alkyl group) on at least one terminal silicon of the organosiloxane polymer.
  • Such an organopolysiloxane compound has high hydrosilylation reactivity with a silicon compound having a Si—H bond, and can be expected to be used as a nonvolatile control agent.
  • R in the partial structural formula (1) is not particularly limited as long as it is within the above-mentioned range, and preferably has a hydrogen atom, a saturated aliphatic monovalent hydrocarbon group which may have a substituent, or a substituent.
  • Branched alkyl groups such as alkyl group, isopropyl group, isobutyl group, tert-butyl group, isopentyl group, neopentyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, chloromethyl group, 3-chloropropyl group , 3,3,3-trifluoropropyl groups, halogenated carbon alkyl groups such as bromopropyl groups, etc., having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms. is there.
  • unsaturated aliphatic monovalent hydrocarbon group which may have a substituent include ethenyl group, 1-methylethenyl group, 2-propenyl group, ethynyl group, 2-propynyl group and the like.
  • aryl groups such as phenyl group and tolyl group
  • aralkyl groups such as benzyl group and 2-phenylethyl group
  • ⁇ , ⁇ , ⁇ -trifluorotolyl a group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, such as a halogenated aryl group such as a chlorobenzyl group.
  • a methyl group, an ethyl group, a 3,3,3-trifluoropropyl group, and a phenyl group are preferable, and a methyl group, an ethyl group, and a phenyl group are more preferable.
  • a novel ethynyl group-containing organopolysiloxane compound (terminal ethynyl group-containing organopolysiloxane compound) having at least one of the above formula (1) in the molecule as a partial structure and being either linear or branched
  • Me represents a methyl group
  • Et represents an ethyl group
  • Ph represents a phenyl group.
  • n is 0 to 20, preferably 0 to 10, more preferably 0 to 5, more preferably 0 to 3, m is 21 to 2000, preferably 22 to 1600, more preferably 23 to 1000, Preferably, 24 to 500, p, r, s, and t are each independently an integer of 1 or more, and may be the same or different, preferably p is 1 to 100, more preferably 1 to 50.
  • Is not particularly limited viscosity of the siloxane compound is preferably a viscosity at 25 ° C.
  • the degree of polymerization is, for example, as the weight average degree of polymerization (or weight average molecular weight) in gel permeation chromatography (GPC) analysis using toluene, tetrahydrofuran (THF) or the like as a developing solvent.
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the viscosity 25 ° C.
  • a rotational viscometer for example, BL type, BH type, BS type, cone plate type
  • novel ethynyl group-containing organopolysiloxane compound of the present invention can be produced, for example, by the production method of the molecular chain both terminal ethynyl group-containing linear organopolysiloxane compound of the present invention.
  • the present invention relates to a linear organocontaining ethynyl group produced by equilibration reaction between a compound represented by the following formula (3) and a compound represented by the following general formula (4) in the presence of an acidic catalyst. It is a manufacturing method of a polysiloxane compound.
  • the main raw material of the present invention is a cyclic organosiloxane compound represented by the following formula (3) (where R is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent). Each R may be the same or different, and l is 3 to 20, preferably 4 to 7.
  • R in the above formula (3) is not particularly limited as long as it is within the above-mentioned range, and preferably, it may have a hydrogen atom, a saturated aliphatic monovalent hydrocarbon group which may have a substituent, or a substituent.
  • examples include a good unsaturated aliphatic monovalent hydrocarbon group and an aromatic monovalent hydrocarbon group (including an aromatic heterocycle) which may have a substituent, and more preferably a hydrogen atom and a substituent.
  • Branched alkyl groups such as alkyl group, isopropyl group, isobutyl group, tert-butyl group, isopentyl group, neopentyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, chloromethyl group, 3-chloropropyl group , 3,3,3-trifluoropropyl groups, halogenated carbon alkyl groups such as bromopropyl groups, etc., having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms. Illustrated.
  • unsaturated aliphatic monovalent hydrocarbon group which may have a substituent include ethenyl group, 1-methylethenyl group, 2-propenyl group, ethynyl group, 2-propynyl group and the like.
  • aryl groups such as phenyl and tolyl groups
  • aralkyl groups such as benzyl and 2-phenylethyl groups
  • a group having 1 to 20 carbon atoms preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, such as a halogenated aryl group such as a chlorobenzyl group.
  • a methyl group, an ethyl group, a 3,3,3-trifluoropropyl group, and a phenyl group are preferable, and a methyl group, an ethyl group, and a phenyl group are more preferable. Particularly preferred is a methyl group.
  • Specific examples of the above formula (3) include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, hexaethylcyclotrisiloxane, octaethylcyclotetrasiloxane, hexaphenylcyclotri Examples thereof include siloxane and octaphenylcyclotetrasiloxane.
  • a terminal ethynyl group-containing organodisiloxane compound represented by the following formula (4) R is a hydrogen atom or an optionally substituted substituent having 1 to 20 carbon atoms. Each of R may be the same or different, and n is 0 to 20, preferably an integer of 0 to 10.).
  • R in the above formula (4) is not particularly limited as long as it is within the above-mentioned range.
  • R may have a hydrogen atom, a saturated aliphatic monovalent hydrocarbon group which may have a substituent, or a substituent.
  • Preferred aromatic monovalent hydrocarbon groups (including aromatic heterocycles), more preferably hydrogen atoms, saturated aliphatic monovalent hydrocarbon groups optionally having substituents, particularly preferably substituents.
  • Branched alkyl groups such as alkyl group, isopropyl group, isobutyl group, tert-butyl group, isopentyl group, neopentyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, chloromethyl group, 3-chloropropyl group , 3,3,3-trifluoropropyl groups, halogenated carbon alkyl groups such as bromopropyl groups, etc., having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms. Illustrated.
  • aryl groups such as phenyl and tolyl groups
  • aralkyl groups such as benzyl and 2-phenylethyl groups
  • a group having 1 to 20 carbon atoms preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, such as a halogenated aryl group such as a chlorobenzyl group.
  • a methyl group, an ethyl group, a 3,3,3-trifluoropropyl group and a phenyl group are preferable, and a methyl group and a 3,3,3-trifluoropropyl group are more preferable.
  • Particularly preferred is a methyl group.
  • the terminal ethynyl group-containing organodisiloxane compound is used as a terminal raw material, and this is carried out by a known equilibration reaction, except that an acidic catalyst coexists with the cyclic organosiloxane compound. Done.
  • the acidic catalyst include sulfuric acid and trifluoromethanesulfonic acid.
  • the equilibration reaction is performed at a relatively low temperature, for example, 10 ° C. to 150 ° C., preferably 20 ° C. to 100 ° C.
  • the total amount of the organosiloxane compound is 0.1 to 10% by weight, preferably 1 to 5% by weight.
  • the amount of the terminal ethynyl group-containing organodisiloxane compound used as a raw material varies depending on the degree of polymerization of the molecular chain both-end ethynyl group-containing linear organopolysiloxane compound (that is, m in the formula (2)).
  • the amount can be determined from the content of ethynyl groups bonded to silicon in the terminal ethynyl group-containing organodisiloxane compound.
  • the catalyst is neutralized and filtered, and then the filtrate is subjected to production such as distillation to obtain the target bi-terminal ethynyl group-containing organopolysiloxane compound.
  • the molecular composition of the linear organopolysiloxane compound containing both ends of ethynyl groups to be produced is R 2 SiO 2/2 units 75.0 to 99.5 mol% which are repeating units of diorganosiloxane units constituting the main chain, and HC ⁇ C— [which is a silyl group (siloxy unit) constituting the molecular chain terminal CH 2 ] n — (R) 2 SiO 1/2 unit 0.5 to 15.0 mol% (wherein R is a methyl group, an ethyl group, a phenyl group, etc.), and these siloxane units are By selecting the amount of the cyclic organosiloxane compound and the terminal ethynyl group-containing organodisiloxane compound so that the total
  • the viscosity of the linear organopolysiloxane compound containing ethynyl groups at both ends of the molecular chain is not particularly limited, but the viscosity at 25 ° C. is preferably 10 to 100,000 mP ⁇ s, and preferably 1000 to 10,000 mP ⁇ s. Is more preferable.
  • a linear organopolysiloxane compound containing ethynyl groups at both ends of a molecular chain having such a molecular structure has an improved reaction rate of hydrosilane addition to a terminal unsaturated group by a platinum catalyst compared to a terminal vinyl group organopolysiloxane compound. I can expect. Further, this linear organopolysiloxane compound containing ethynyl groups at both ends of the molecular chain is useful in that it can be expected to be used as a nonvolatile control agent.
  • the above production method is useful in that it can easily produce a linear organopolysiloxane compound containing ethynyl groups at both ends of a molecular chain having a desired degree of polymerization.
  • the organosiloxane polymers having at least one unit of the formula (1) as a partial structure the branched siloxane polymer is a compound represented by the formula (3) and the formula (4) in the presence of the acidic catalyst described above.
  • the present invention also provides: In accordance with the following reaction formula, the organopolysiloxane compound having at least one, preferably two or more units of the following formula (1 ′) as a partial structure, which is either linear or branched (branched), and a silicon atom Linear and branched chains having at least one, preferably two or more units of the following formula (1 ′′) in the molecule by addition reaction with an alkoxysilane having one bonded hydrogen atom (SiH group) in the molecule
  • a method for producing an alkoxysilyl-ethylene group-terminated organosiloxane polymer that produces an alkoxysilyl-ethylene group-terminated organosiloxane polymer that is either (branched).
  • R represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
  • M ′ represents an integer of 0 to 2000, preferably an integer of 21 to 1600, more preferably an integer of 22 to 1000, and still more preferably an integer of 24 to 500, wherein a part of the repeating unit of the siloxane bond is crosslinked.
  • N may be an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and even more preferably an integer of 0 to 3.
  • R 1 Is an alkyl group having 1 to 20 carbon atoms which may have a substituent, and the alkyl group having 3 or more carbon atoms may be a cyclic cycloalkyl group, and R 2 is a hydrogen atom. Or 1 having 1 to 20 carbon atoms which may have a substituent A hydrocarbon group .a is an integer from 1 to 3.)
  • the addition reaction catalyst examples include platinum group catalysts such as platinum, palladium, and rhodium catalysts, with platinum catalysts being particularly preferred.
  • platinum catalysts such as platinum, palladium, and rhodium catalysts, with platinum catalysts being particularly preferred.
  • the platinum-based material include platinum black, alumina, silica, or the like supported on solid platinum, chloroplatinic acid, alcohol-modified chloroplatinic acid, a complex of chloroplatinic acid and olefin, or platinum and vinylsiloxane. And the like can be exemplified.
  • the amount of platinum used may be a so-called catalytic amount. For example, it can be used in an amount of 0.1 to 1,000 ppm, particularly 0.5 to 100 ppm in terms of platinum group metal relative to trialkoxysilanes.
  • This reaction is generally preferably carried out at a temperature of 50 to 120 ° C., particularly 60 to 100 ° C., for 0.5 to 12 hours, particularly 1 to 6 hours, and can be carried out without using a solvent.
  • an appropriate solvent such as toluene or xylene can be used if necessary.
  • reaction formula [X] a geometric isomer represented by the following reaction formula [X] is generated.
  • E form trans form
  • the organopolysiloxane of the present invention does not adversely affect the properties thereof, it can be used without separation. .
  • n is as described above.
  • a room temperature curable composition (especially a room temperature curable organopolysiloxane composition) that gives a cured product that is particularly excellent in fast curability and at the same time has good storage stability and durability.
  • R represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
  • M ′ represents an integer of 0 to 2000, preferably an integer of 21 to 1600, more preferably an integer of 22 to 1000, and still more preferably an integer of 24 to 500, wherein a part of the repeating unit of the siloxane bond is crosslinked.
  • N may be an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and even more preferably an integer of 0 to 3.
  • R 1 Is an alkyl group having 1 to 20 carbon atoms which may have a substituent, and the alkyl group having 3 or more carbon atoms may be a cyclic cycloalkyl group, and R 2 is a hydrogen atom. Or 1 having 1 to 20 carbon atoms which may have a substituent A hydrocarbon group .a is an integer from 1 to 3.)
  • a polymer having at least one alkoxysilyl-ethylene group as a component (A) at the molecular chain terminal, preferably two or more in the molecule is used as a main component (base polymer) of the composition, and is linear or branched. It may be branched.
  • the polymer may be composed of various units, such as polysiloxanes, polyethers, polyurethanes, polyureas, polyesters, polysiloxane-urea / urethane copolymers, polyacrylates and polymethacrylates, polycarbonates, polystyrenes, polyamides, polyvinyl esters.
  • polyolefins such as polyethylene, polybutadiene, ethylene-olefin copolymers, or styrene-butadiene copolymers. Any mixture or combination from these polymers can also be used.
  • description will be made using a unit having at least one, preferably two or more units of the following formula (1a) in the molecule. (In the formula, R, R 1 , R 2 and a are as defined above.)
  • polysiloxane having excellent durability is a novel compound and is preferably used.
  • the polysiloxane represented by the following general formula (2a) and / or (3a) ) A linear or branched diorganopolysiloxane having two or more units at the molecular chain ends is used.
  • R, R 1 , R 2 , a and m ′ are as defined above
  • m ′′ is an integer of 1 to 100, preferably 1 to 50
  • m ′ + m ′′ is (The viscosity of the organopolysiloxane at 25 ° C. is 10 to 1,000,000 mPa ⁇ s.)
  • substituted or unsubstituted monovalent hydrocarbon groups for R 1 and R 2 methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, Alkyl groups such as decyl group and octadecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group; phenyl group, tolyl group, xylyl group, ⁇ Aryl groups such as —, ⁇ -naphthyl group; aralkyl groups such as benzyl group, 2-phenylethyl group, 3-phenylpropyl group; and some or all of hydrogen atoms of these groups are F, Cl,
  • Examples of the hydrolyzable group at the end of the molecular chain include alkoxy groups such as methoxy group, ethoxy group, propoxy group and 2-ethylhexoxy group; alkoxyalkoxy groups such as methoxyethoxy group, ethoxyethoxy group and methoxypropoxy group. It is done. Among these, a methoxy group and an ethoxy group are particularly preferable because of their fast curability.
  • the diorganopolysiloxane as component (A) preferably has a viscosity at 25 ° C. of 10 to 1,000,000 mPa ⁇ s, more preferably 50 to 500,000 mPa ⁇ s, particularly preferably 100 to 100,000 mPa ⁇ s, In particular, it is 100 to 80,000 mPa ⁇ s. If the viscosity of the diorganopolysiloxane is 10 mPa ⁇ s or more, it is easy to obtain a coating film having excellent physical and mechanical strength. If the viscosity is 1,000,000 mPa ⁇ s or less, the composition This is preferable because the viscosity of the resin does not become too high and the workability during use is good.
  • the viscosity is a numerical value measured by a rotational viscometer.
  • diorganopolysiloxane as the component (A) include the following. (Wherein m ′, m ′′, R 1 and R 2 are the same as above)
  • the diorganopolysiloxane of the component (A) can be used alone or in combination of two or more having different structures and molecular weights.
  • the component (B) is a curing catalyst and is used for curing the composition.
  • organometallic catalysts include alkyltin ester compounds such as dibutyltin diacetate, dibutyltin dilaurate, and dibutyltin dioctoate, tetraisopropoxy titanium, tetra n-butoxy titanium, tetrakis (2-ethylhexoxy) titanium, dipropoxy bis (acetylacetate).
  • Titanic acid ester or titanium chelate compound such as titanium, titanium isopropoxyoctylene glycol, zinc naphthenate, zinc stearate, zinc-2-ethyl octoate, iron-2-ethylhexoate, cobalt-2-ethyl Organometallic compounds such as hexoate, manganese-2-ethylhexoate, cobalt naphthenate, alkoxyaluminum compounds, 3-aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrime Aminoalkyl group-substituted alkoxysilanes such as toxisilane, amine compounds such as hexylamine and dodecylamine phosphate and salts thereof, quaternary ammonium salts such as benzyltriethylammonium acetate, alkali metals such as potassium acetate, sodium
  • the silane and / or its partial hydrolysis condensate as component (C) is a crosslinking agent.
  • Specific examples include, for example, ethyl silicate, propyl silicate, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, methyltris (methoxyethoxy) silane, vinyltris (methoxyethoxy) silane, methyltripropeno
  • the partially hydrolyzed condensate means at least 2, preferably 3 or more residual alkoxy groups (or alkoxy-substituted alkoxy groups) in the molecule, which are produced by partial hydrolysis and condensation of a silane compound.
  • the amount of component (C) is usually 0-30 parts by weight per 100 parts by weight of component (A), preferably 0.1-20 parts by weight, more preferably 0.5- 15 parts by mass. When the blending amount exceeds 30 parts by mass, there may be a problem that the cured product becomes too hard or economically disadvantageous.
  • the component (D) is a filler and is used to give sufficient mechanical strength to the cured product formed from this composition.
  • Known fillers can be used, for example, dry silica such as calcined silica, pulverized silica, fumed silica (fumed silica), silica aerogel, etc., wet silica such as precipitated silica, sol-gel method silica, etc.
  • silica-based fine powders such as diatomaceous earth, metal oxides such as iron oxide, zinc oxide and titanium oxide, or those whose surfaces have been hydrophobized with organosilane, organosilazane, etc., calcium carbonate, magnesium carbonate, carbonic acid Metal carbonates such as zinc, asbestos, glass wool, carbon black, fine mica, fused silica powder (quartz powder), synthetic resin powder such as polystyrene, polyvinyl chloride, and polypropylene are used.
  • the blending amount of the component (D) is 0 to 1000 parts by mass, particularly 1 to 400 parts by mass, per 100 parts by mass of the component (A).
  • the blending amount of the component (D) is 0 to 1000 parts by mass, particularly 1 to 400 parts by mass, per 100 parts by mass of the component (A).
  • the component (E) is an adhesion aid and is used to give sufficient adhesion to a cured product formed from this composition.
  • an adhesion aid such as ⁇ -aminopropyltriethoxysilane, 3-2- (aminoethylamino) propyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxy
  • epoxy silanes such as silane, isocyanate silane and the like.
  • Component (E) is preferably blended in an amount of 0 to 30 parts by weight, particularly 0.1 to 20 parts by weight, per 100 parts by weight of component (A).
  • the room temperature curable composition of the present invention is blended with known additives such as pigments, dyes, anti-aging agents, antioxidants, antistatic agents, antimony oxides, flame retardants such as paraffin chloride, and the like as additives. be able to.
  • a polyether as a thixotropy improver, a fungicide, and an antibacterial agent can be blended.
  • the room temperature curable composition of the present invention can be obtained by uniformly mixing the above-mentioned components and further predetermined amounts of the above-mentioned various additives in a dry atmosphere.
  • the said room temperature curable composition hardens
  • the well-known method and conditions according to the kind of composition can be employ
  • the room temperature curable composition of the present invention thus obtained is a rubber elastic body which is rapidly cured at room temperature by moisture in the air and has excellent heat resistance, weather resistance, low temperature characteristics, and various substrates, particularly adhesion to metals. Form a cured product.
  • this composition is particularly excellent in storage stability and curability, and for example, when it is exposed to the air after storage for 6 months, it rapidly cures to give a cured product having excellent physical properties as described above. In particular, no toxic or corrosive gas is emitted during curing, and no rust is produced on the surface to which this composition is applied.
  • this composition does not cause contact failure of electrical and electronic parts, so it is useful as an insulating material and adhesive for electrical and electronic parts, as well as a sealant, coating agent, coating agent, mold release agent for various substrates. It can be widely used as a treating agent and a fiber treating agent. Further, the composition can be cured and molded to obtain various molded products, and the molded products have excellent heat resistance, weather resistance, and the like.
  • Example Synthesis Example 6 ⁇ Synthesis of branched dimethylpolysiloxane compound containing terminal ethynyl group>
  • a 3000 mL four-necked separable flask equipped with a mechanical stirrer, a thermometer and a dropping funnel 1800 g (6080 mmol) of octamethylcyclotetrasiloxane and 108 g (11 mmol) of a branched polydimethylsiloxane compound represented by the following formula (5)
  • 75 g (4 mmol) of a polymer represented by the following formula (6), 26 g (83 mmol) of 1,1,1,3,3,5,5,7,7,7-decamethyltetrasiloxane were added at room temperature to 150 The temperature was raised.
  • the concentrated sulfuric acid 61g was added there, and the polymerization reaction was started. After stirring at 155 to 165 ° C. for 6 hours and returning to room temperature, 500 mL of toluene was added, and after separation of the waste acid, the toluene solution was washed with water until neutral. Toluene and low molecular weight siloxane were stripped under reduced pressure at 150 ° C./8 mmHg to obtain a polymer F having a viscosity of 1200 mPa ⁇ s represented by the following formula (7).
  • Example 1 100 parts of dimethylpolysiloxane (polymer C ′) blocked at both ends of a molecular chain with a viscosity of 970 mPa ⁇ s with trimethoxysilyl-ethylene group and 0.1 part of titanium tetraisopropoxide until moisture is blocked and uniform.
  • a composition was prepared by mixing.
  • Example 2 100 parts of dimethylpolysiloxane having a viscosity of 970 mPa ⁇ s and having both ends of a molecular chain blocked with trimethoxysilyl-ethylene group (polymer C ′) and 0.2 part of titanium tetra-2-ethylhexoxide under moisture blocking. A composition was prepared by mixing until uniform.
  • Example 3 100 parts of dimethylpolysiloxane (polymer C ′) blocked with trimethoxysilyl-ethylene groups at both ends of viscosity 970 mPa ⁇ s and 0.1 part of titanium diisopropoxybis (ethylacetoacetate) under moisture blocking The composition was prepared by mixing until uniform.
  • Example 4 Mix 100 parts of dimethylpolysiloxane (polymer C ′) with both ends of molecular chain with viscosity of 970 mPa ⁇ s blocked with trimethoxysilyl-ethylene group and 0.5 part of dioctyltin dilaurate under moisture blocking until uniform. A composition was prepared.
  • Example 5 Mix 100 parts of dimethylpolysiloxane (Polymer C ′) with both ends of molecular chain blocked with trimethoxysilyl-ethylene group with viscosity of 970 mPa ⁇ s and 1 part of diazabicycloundecene until uniform. A composition was prepared.
  • each composition prepared in Examples 1 to 5 and Comparative Examples 1 to 10 was measured. Further, each composition just prepared in Example 4 and Comparative Examples 4 and 9 was extruded into a sheet having a thickness of 2 mm, exposed to air at 23 ° C. and 50% RH, and then the sheet was subjected to the same atmosphere.
  • the physical properties (initial physical properties) of the cured product obtained by allowing to stand for 7 days were measured in accordance with JIS K-6249.
  • the hardness was measured using a durometer A hardness meter of JIS K-6249. Further, this cured product was measured in the same manner as that stored for 100 hours in a constant temperature and humidity chamber at 85 ° C. and 85% RH.
  • Example 6 100 parts of dimethylpolysiloxane (polymer C ′) having both ends of a molecular chain with a viscosity of 970 mPa ⁇ s blocked with trimethoxysilyl-ethylene group and 10 parts of fumed silica whose surface was treated with dimethyldichlorosilane were uniformly mixed. To this, 5 parts of methyltrimethoxysilane, 0.3 part of dibutyltin dilaurate, and 1 part of 3-aminopropyltriethoxysilane were added and mixed under moisture blocking until uniform, to prepare a composition.
  • Example 6 instead of 100 parts of dimethylpolysiloxane having both ends of the molecular chain blocked with trimethoxysilyl-ethylene groups, dimethylpolysiloxane having a molecular chain end of 1000 mPa ⁇ s blocked with trimethoxysilyl-ethane groups A composition was prepared in the same manner except that 100 parts were used.
  • Example 12 In Example 6, instead of 100 parts of dimethylpolysiloxane blocked at both ends of the molecular chain with trimethoxysilyl-ethylene group, 100 parts of dimethylpolysiloxane having a molecular chain end of 1050 mPa ⁇ s blocked with a trimethoxysiloxy group A composition was prepared in the same manner except that was used.
  • Example 13 In Example 6, except that 100 parts of dimethylpolysiloxane having a viscosity of 1080 mPa ⁇ s represented by the following formula was used instead of 100 parts of dimethylpolysiloxane blocked at both ends of the molecular chain with a trimethoxysilyl-ethylene group. A composition was prepared.
  • each composition immediately after preparation prepared in Example 6 and Comparative Examples 11 to 13 was extruded into a sheet having a thickness of 2 mm, exposed to air at 23 ° C. and 50% RH, and then the sheet was subjected to the same atmosphere.
  • the physical properties (initial physical properties) of the cured product obtained by allowing to stand for 7 days were measured according to JIS K-6249.
  • the hardness was measured using a durometer A hardness meter of JIS K-6249.
  • this cured product was stored in a constant temperature and humidity chamber at 85 ° C. and 85% RH for 240 hours and measured in the same manner.
  • cured material for 240 hours in 150 degreeC oven was measured similarly.
  • Example 1 to 5 have extremely high fast curability as compared with the corresponding Comparative Examples 1 to 10, respectively. From the results in Table 2, it is clear that Example 4 has significantly higher storage stability and durability than Comparative Examples 4 and 9. From the results in Table 3, Example 6 is Comparative Example. It is clear that the storage stability, heat resistance, and durability are significantly higher than those of 11-13.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Sealing Material Composition (AREA)

Abstract

 本発明は、部分構造として下記式(1)単位を少なくとも1つ有し、直鎖及び分鎖のいずれかであることを特徴とするオルガノポリシロキサン化合物である。これにより、新規エチニル基含有ポリオルガノシロキサン化合物、及び重合度の調整を容易にすることができ、かつ生産性に優れる分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法が提供される。 

Description

新規エチニル基含有オルガノポリシロキサン化合物、分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法、アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物
 本発明は、新規エチニル基含有オルガノポリシロキサン化合物、分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法、アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びそれを硬化して得られる成形物に関する。
 末端ケイ素上に不飽和炭化水素を有するオルガノポリシロキサン化合物は付加硬化性シリコーン組成物のベースポリマーとして有用であり、付加硬化性シリコーン組成物は硬化して、電気特性、耐寒性等が優れたシリコーンゲル、シリコーンゴムを形成するので、電気・電子部品、半導体素子の封止剤、充填剤或いはコーティング剤、光半導体絶縁被覆保護剤等として利用される。
 両末端エチニル基含有のケイ素化合物として、低分子末端エチニル基含有ケイ素化合物、1,3-ジエチニル-1,1,3,3-テトラメチルジシロキサン(CAS Registry Number:4180-02-3)、1,5-ジエチニル-1,1,3,3,5,5-ヘキサメチルトリシロキサン(CAS Registry Number:39490-70-5)、1,7-ジエチニル-1,1,3,3,5,5,7,7-オクタメチルテトラシロキサン(CAS Registry Number:40392-68-5)、1,9-ジエチニル-1,1,3,3,5,5,7,7,9,9-デカメチルペンタシロキサン(CAS Registry Number:40392-69-6)、1,11-ジエチニル-1,1,3,3,5,5,7,7,9,9,11,11-ドデカメチルヘキサシロキサン(CAS Registry Number:40392-70-9)等の低分子モノマーが記載されており、これらケイ素化合物と二価のハロゲン化アリーレン化合物とを遷移金属触媒存在下での重縮合反応させることを特徴とする主鎖にアセチレン部位を有するオルガノポリシロキサン化合物を調整する方法が開示されている(特許文献1、2)。また、アセチレン含有高分子ケイ素化合物の合成例が報告されている(非特許文献1)。
 しかしながら、部分構造として下記式(a)単位を少なくとも1つ有し、直鎖及び分鎖のいずれかであるオルガノポリシロキサン化合物は、下記式(a)中のN=0、M=0~20のオルガノポリシロキサン化合物に限られており、より重合度の高いポリマー末端にエチニル基を有するオルガノポリシロキサン化合物については報告例はない。
Figure JPOXMLDOC01-appb-C000001
 また、下記式(b)で示される末端エチニル基含有オルガノポリシロキサン化合物は、下記式(b)中のN=0、M=0~20のオルガノポリシロキサン化合物に限られており、より重合度の高いポリマー末端にエチニル基を有するオルガノポリシロキサン化合物の製造方法については報告されていない。
Figure JPOXMLDOC01-appb-C000002
 例えば、末端エチニル基含有オルガノポリシロキサン化合物をアルカリ平衡化で合成しようとする場合、アルカリ金属がアセチレン部位のC-H結合のHと置換しC-M(Mはアルカリ金属)のような金属アセチリドを形成してしまい、より重合度の高い末端エチニル基含有オルガノポリシロキサン化合物を合成することは難しい。
 また、従来、空気中の水分と接触することにより室温でエラストマー状に硬化する室温硬化性組成物は、種々のタイプのものが公知であるが、とりわけアルコールを放出して硬化するタイプのものは不快臭がないこと、金属類を腐食しないことが特徴となって、電気・電子機器等のシーリング用、接着用、コーティング用に好んで使用されている。
 かかるタイプの代表例としては、特許文献3に記載のものが挙げられ、これには水酸基末端封鎖オルガノポリシロキサンとアルコキシシランと有機チタン化合物からなる組成物が開示されている。また、特許文献4には、アルコキシシリル末端封鎖オルガノポリシロキサンとアルコキシシランとアルコキシチタンからなる組成物が開示されている。特許文献5には、アルコキシシリル-エタン基を含む直鎖状のオルガノポリシロキサンとアルコキシシランとアルコキシチタンからなる組成物が開示されている。更に、特許文献6には、水酸基末端封鎖オルガノポリシロキサン又はアルコキシ基末端封鎖オルガノポリシロキサンとアルコキシ-α-シリルエステル化合物からなる組成物が開示されている。
 しかし、これら組成物は、保存安定性、耐久性(耐水性、耐湿性)に、良好な特性が得られているが、速硬化性に関しては、まだ不十分であった。
 反応性アルコキシシリル基を末端に有するオルガノシロキサンポリマーは、従来公知である。このポリマーは、予め、オルガノシロキサンポリマー末端基がアルコキシシリル基で封鎖されている為、経時で硬化性が変化(低下)し難く、保存安定性に優れた組成物が得られる。また、作業性(粘度、チキソ性)を任意に調整可能であり、空気中の水分と反応し、架橋、エラストマーを形成し、優れた特性(硬度、引張強さ、切断時伸び)も得られている。
 しかしながら、この様な反応性アルコキシシリル基を末端に有するオルガノシロキサンポリマーを主剤(ベースポリマー)とする脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物は、従来公知の他の硬化タイプである脱オキシムタイプ、脱酢酸タイプ、脱アセトンタイプ等と比較すると、空気中の水分との反応性が低いため、硬化性が不十分であった。
 この対応として、反応性アルコキシ基に隣接する官能基(結合基)に着目した研究が進められており、α-アルコキシシリルメチル末端基は、空気中の水分に対して特に高い反応性を有する事が報告されている(特許文献7)。しかし、未だ硬化性は不十分であり、隣接する官能基(結合基)が耐久性に悪影響を及ぼしたり、硬化物の復元力が低いという欠点を有していた。
特開平8-151447号公報 特開平10-110037号公報 特公昭39-27643号公報 特開昭55-43119号公報 特公平7-39547号公報 特開平7-331076号公報 特表2012-511607号公報
Eur.Polym.J.28,1373(1992)
 本発明は、上記事情に鑑みなされたもので、新規エチニル基含有ポリオルガノシロキサン化合物、及び重合度の調整を容易にすることができ、かつ生産性に優れる分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法を提供することを目的とする。
 また、特に速硬化性に優れ、保存安定性、耐久性に優れた硬化物を与える室温硬化性組成物、特に室温硬化性オルガノポリシロキサン組成物、並びに、これら室温硬化性組成物の主剤(ベースポリマー)として使用される末端アルコキシシリル基-エチレン末端オルガノシロキサンポリマーの製造方法を提供することを目的とする。
 本発明は、上記課題を解決するためになされたもので、部分構造として下記式(1)単位を少なくとも1つ有し、直鎖及び分鎖(分岐鎖)のいずれかであることを特徴とするオルガノポリシロキサン化合物を提供する。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子、または、置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。それぞれのRは同一であっても、または異なっていてもよい。mは21~2000の整数を示し、該シロキサン結合のくり返し単位中の一部が架橋して分鎖構造を有してもよい。nは0~20の整数を示す。)
 このようなオルガノポリシロキサン化合物であれば、Si-H結合を有するケイ素化合物とのヒドロシリル化反応性が高く、不揮発性制御剤として使用することが期待できる。
 また、本発明は、下記式(2)で示される分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法であって、酸性触媒存在下、下記式(3)で表される化合物と下記一般式(4)で表される化合物との平衡化反応により製造することを特徴とする分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子、または、置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。それぞれのRは同一であっても、または異なっていてもよい。lは3~20の整数である。mは21~2000の整数を示し、該シロキサン結合のくり返し単位中の一部が架橋して分鎖構造を有してもよい。nは0~20の整数を示す。)
 このような分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法であれば、上記(2)式の化合物を製造することができ、しかも上記式(3)で表わされる化合物と上記式(4)で表わされる化合物のモル比を調整することにより、重合度(m)の調整が容易であり、生産性にも優れる。
 また、この場合、前記酸性触媒を硫酸又はトリフルオロメタンスルホン酸とすることが好ましい。
 このような酸性触媒であれば、前記平衡反応を比較的低温で行うことができるため好ましい。
 また、本発明は、
 下記反応式に従い、部分構造として下記式(1’)単位を少なくとも1つ有し、直鎖及び分鎖(分岐鎖)のいずれかであるオルガノポリシロキサン化合物とケイ素原子に結合した水素原子(即ち、SiHで示されるヒドロシリル基)を分子中に1個有するアルコキシシランとを付加反応させて、下記式(1”)単位を分子中に少なくとも1つ有する直鎖及び分岐鎖のいずれかであるアルコキシシリル-エチレン基末端オルガノシロキサンポリマーを製造するアルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法を提供する。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは水素原子、または、置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。それぞれのRは同一であっても、または異なっていてもよい。m’は0~2000の整数を示し、該シロキサン結合のくり返し単位中の一部が架橋して分鎖構造を有してもよい。nは0~20の整数を示す。Rは置換基を有してもよい炭素数1から20のアルキル基であり、該アルキル基のうち炭素数が3以上のものは環状であるシクロアルキル基であってもよい。Rは水素原子、又は置換基を有してもよい炭素数1から20の1価炭化水素基である。aは1から3の整数である。)
 このようなアルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法であれば、室温硬化性組成物のベースポリマーとして用いて該組成物を硬化させた際に、優れた速硬化性、及び良好な保存安定性、耐久性を付与するアルコキシシリル-エチレン基末端オルガノシロキサンポリマーを製造することができる。
 さらに、本発明は、
 (A)前記アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法により製造されたアルコキシシリル-エチレン基末端オルガノシロキサンポリマーを100質量部と、
 (B)硬化触媒を0.001~15質量部と、
 (C)シラン及び/又はその部分加水分解縮合物を0~30質量部と、
 (D)充填剤を0~1000質量部と、
 (E)接着促進剤を0~30質量部と、
を含有するものであることを特徴とする室温硬化性組成物(特には、室温硬化性オルガノポリシロキサン組成物)を提供する。
 このような室温硬化性組成物を用いれば、とりわけ速硬化性に優れ、同時に保存安定性、耐久性も良好な硬化物を与えることができる。
 またこの場合、前記(A)成分の主鎖がオルガノポリシロキサンであることが好ましい。
 このような室温硬化性組成物であれば、より速硬化性に優れ、より耐久性、保存安定性も良好な硬化物を与えることができる。
 またこの場合、前記室温硬化性組成物が、シール剤、コーティング剤、接着剤のいずれかとして用いられるものであることが好ましい。
 このような室温硬化性組成物であれば、耐熱性、耐水性、耐湿性が必要な箇所のシール剤、コーティング剤、接着剤として有用である。
 また、本発明では、前記室温硬化性組成物の硬化物であることを特徴とする成形物を提供する。
 このような成形物であれば、優れた耐熱性、耐久性を有することができる。
 本発明の新規エチニル基含有オルガノポリシロキサン化合物は、不揮発性制御剤として使用できる可能性が期待されるものである。また、本発明の分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法は、上記(1)、(2)式で表わされる新規化合物を合成でき、また上記式(3)で表わされる化合物と上記式(4)で表わされる化合物のモル比を調整することにより、重合度の調整が容易であるため、生産性にも優れる。
 また、本発明の室温硬化性組成物(特には、室温硬化性オルガノポリシロキサン組成物)は、特に速硬化性に優れた硬化物を与え、更に例えば12ヶ月間の貯蔵後でも、空気中に曝すと速やかに硬化して、優れた物性を示す。この組成物は、耐熱性、耐水性、耐湿性が必要な箇所のシール剤、コーティング剤、接着剤として有用であり、とりわけ、耐スチーム性、耐水性が必要な建築用途、電気電子用接着剤用途として有効に使用することができる。
 以下、本発明の新規エチニル基含有オルガノポリシロキサン化合物、分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法、アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性オルガノポリシロキサン組成物及びその硬化物である成形物について詳細に説明するが、本発明はこれらに限定されるものではない。
<新規エチニル基含有オルガノポリシロキサン化合物(末端エチニル基含有オルガノポリシロキサン化合物)>
 本発明は、部分構造として下記式(1)単位を少なくとも1つ有し、また、好ましくは、分子中に-Si(R)-[CH-C≡CHで示される構造単位を2個以上含有する、直鎖及び分鎖(分岐鎖)のいずれかであることを特徴とする重合度(又は分子中の時ジオルガノシロキサン単位の繰り返し数)が21以上のオルガノポリシロキサン化合物、特には、分子鎖両末端に-Si(R)-[CH-C≡CHで示される構造単位を有する、重合度(m)が21以上の、直鎖状オルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000008
(式中、Rは水素原子、または、置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。それぞれのRは同一であっても、または異なっていてもよい。mは21~2000の整数、好ましくは22~1600の整数、より好ましくは23~1000の整数、更に好ましくは24~500の整数を示し、該シロキサン結合のくり返し単位中の一部が架橋して分鎖構造を有してもよい。nは0~20の整数、好ましくは0~10の整数、より好ましくは0~5の整数、更に好ましくは0~3の整数を示す。)
 前記エチニル基含有オルガノポリシロキサン化合物は、そのオルガノシロキサンポリマーの少なくとも1つの末端のケイ素上にエチニル基(又は、末端エチニル基置換アルキル基)を含有することを特徴とするものである。
 このようなオルガノポリシロキサン化合物であれば、Si-H結合を有するケイ素化合物とのヒドロシリル化反応性が高く、不揮発性制御剤として使用することが期待できる。
 前記部分構造式(1)のRは、前述の範囲であれば特に限定されず、好ましくは、水素原子、置換基を有してもよい飽和脂肪族1価炭化水素基、置換基を有してもよい不飽和脂肪族1価炭化水素基、置換基を有してもよい芳香族1価炭化水素基(芳香族ヘテロ環を含む)が挙げられ、より好ましくは、水素原子、置換基を有してもよい飽和脂肪族1価炭化水素基、置換基を有してもよい芳香族1価炭化水素基、特に好ましくは、置換基を有してもよい飽和脂肪族1価炭化水素基である。
 置換基を有してもよい飽和脂肪族1価炭化水素基として、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖アルキル基、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基等の分鎖アルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、ブロモプロピル基等のハロゲン化炭化アルキル基等の、炭素原子数1~20、好ましくは炭素数1~12、さらに好ましくは、1~6のものである。
 置換基を有してもよい不飽和脂肪族1価炭化水素基として、具体的には、エテニル基、1-メチルエテニル基、2-プロペニル基、エチニル基、2-プロピニル基等の、炭素原子数1~20、好ましくは炭素数1~12、さらに好ましくは、1~6のものである。
 置換基を有してもよい芳香族1価炭化水素基としては、フェニル基、トリル基等のアリール基、ベンジル基、2-フェニルエチル基等のアラルキル基、α,α,α-トリフルオロトリル基、クロロベンジル基等のハロゲン化アリール基等の、炭素数1~20、好ましくは炭素数1~12、さらに好ましくは、1~6のものが例示される。
 これらの中でも、メチル基、エチル基、3,3,3-トリフルオロプロピル基、フェニル基が好ましく、さらに好ましくは、メチル基、エチル基、フェニル基である。
 上記式(1)を部分構造として少なくとも分子中に1つ有し、直鎖及び分鎖のいずれかである新規エチニル基含有オルガノポリシロキサン化合物(末端エチニル基含有オルガノポリシロキサン化合物)の具体例として以下のものが挙げられる。下記具体例において、Meはメチル基、Etはエチル基、Phはフェニル基を表す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
(式中、nは0~20、好ましくは0~10、より好ましくは0~5、更に好ましくは0~3、mは21~2000、好ましくは22~1600、より好ましくは23~1000、更に好ましくは24~500、p、r、s、tはそれぞれ独立に1以上の整数であり、同一であっても、異なっていてもよい。好ましくはpは1~100、より好ましくは1~50、好ましくは、rは20~800、より好ましくは20~500、好ましくはsは1~200、より好ましくは1~100、好ましくはtは20~800、より好ましくは20~500であり、好ましくは、p+r+s又はp+r+s+tはそれぞれ22~1000の整数、より好ましくは23~500の整数であり、p+r=mである。また、この末端エチニル基含有オルガノポリシロキサン化合物の粘度は特に限定されるものではないが、25℃における粘度が10~100000mP・sを満たす正の整数であることが好ましく、1000~10000mP・sがより好ましい。)
 尚、本発明において、重合度(又は分子量)は、例えば、トルエンやテトラヒドロフラン(THF)等を展開溶媒として、ゲルパーミエーションクロマトグラフ(GPC)分析における重量平均重合度(又は重量平均分子量)等として求めることができる。
 また、粘度(25℃)は、回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型)等により測定することができる。
 本発明の新規エチニル基含有オルガノポリシロキサン化合物は、例えば、本発明の分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法で製造することができる。
<分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法>
 本発明は、酸性触媒存在下、下記式(3)で表される化合物と下記一般式(4)で表される化合物との平衡化反応により製造する分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
-原料-
 本発明の主原料としては、下記式(3)で表される環状オルガノシロキサン化合物(Rは水素原子、または、置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。それぞれのRは同一であっても、または異なっていてもよい。lが3~20であり、好ましくは4~7の整数である。)が挙げられる。
Figure JPOXMLDOC01-appb-C000044
 上記式(3)のRは、前述の範囲であれば特に限定されず、好ましくは、水素原子、置換基を有してもよい飽和脂肪族1価炭化水素基、置換基を有してもよい不飽和脂肪族1価炭化水素基、置換基を有してもよい芳香族1価炭化水素基(芳香族ヘテロ環を含む)が挙げられ、より好ましくは、水素原子、置換基を有してもよい飽和脂肪族1価炭化水素基、置換基を有してもよい芳香族1価炭化水素基、特に好ましくは、置換基を有してもよい飽和脂肪族1価炭化水素基である。
 置換基を有してもよい飽和脂肪族1価炭化水素基として、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖アルキル基、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基等の分鎖アルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、ブロモプロピル基等のハロゲン化炭化アルキル基等の、炭素原子数1~20、好ましくは炭素数1~12、さらに好ましくは、1~6のものが例示される。
 置換基を有してもよい不飽和脂肪族1価炭化水素基として、具体的には、エテニル基、1-メチルエテニル基、2-プロペニル基、エチニル基、2-プロピニル基等の、炭素原子数1~20、好ましくは炭素数1~12、さらに好ましくは、1~6のものである。
 置換基を有しても良い芳香族1価炭化水素基としては、フェニル基、トリル基等のアリール基、ベンジル基、2-フェニルエチル基等のアラルキル基、α,α,α-トリフルオロトリル基、クロロベンジル基等のハロゲン化アリール基等の、炭素数1~20、好ましくは炭素数1~12、さらに好ましくは、1~6のものが例示される。
 これらの中でも、メチル基、エチル基、3,3,3-トリフルオロプロピル基、フェニル基が好ましく、さらに好ましくは、メチル基、エチル基、フェニル基である。特に好ましくは、メチル基である。
 上記式(3)の具体例として、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、ヘキサエチルシクロトリシロキサン、オクタエチルシクロテトラシロキサン、ヘキサフェニルシクロトリシロキサン、オクタフェニルシクロテトラシロキサン等が挙げられる。
 また、本発明の末端原料としては、下記式(4)で表される末端エチニル基含有オルガノジシロキサン化合物(Rは水素原子、または、置換基を有していてもよい炭素数1~20の炭化水素基を表す。それぞれのRは同一であっても、または異なっていてもよい。nは0~20であり、好ましくは0~10の整数である。)が挙げられる。
Figure JPOXMLDOC01-appb-C000045
 上記式(4)のRは、前述の範囲であれば特に限定されず、好ましくは、水素原子、置換基を有してもよい飽和脂肪族1価炭化水素基、置換基を有してもよい芳香族1価炭化水素基(芳香族ヘテロ環を含む)が挙げられ、より好ましくは、水素原子、置換基を有してもよい飽和脂肪族1価炭化水素基、特に好ましくは、置換基を有してもよい飽和脂肪族1価炭化水素基である。
 置換基を有してもよい飽和脂肪族1価炭化水素基として、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖アルキル基、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基等の分鎖アルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、ブロモプロピル基等のハロゲン化炭化アルキル基等の、炭素原子数1~20、好ましくは炭素数1~12、さらに好ましくは、1~6のものが例示される。
 置換基を有しても良い芳香族1価炭化水素基としては、フェニル基、トリル基等のアリール基、ベンジル基、2-フェニルエチル基等のアラルキル基、α,α,α-トリフルオロトリル基、クロロベンジル基等のハロゲン化アリール基等の、炭素数1~20、好ましくは炭素数1~12、さらに好ましくは、1~6のものが例示される。
 これらの中でも、メチル基、エチル基、3,3,3-トリフルオロプロピル基、フェニル基が好ましく、さらに好ましくは、メチル基、3,3,3-トリフルオロプロピル基である。特に好ましくは、メチル基である。
 上記式(4)の具体例として、1,3-ジエチニルジシロキサン、1,3-ジエチニル-1,3-ジメチルジシロキサン、1,3-ジエチニル-1,3-ジフェニルジシロキサン、1,3-ジエチニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジエチニル-1,1,3,3-テトラフェニルジシロキサン、1,3-ジエチニル-1,3-ジメチル-1,3-ジフェニルジシロキサン、1,5-ジエチニルトリシロキサン、1,5-ジエチニル-1,3,5-トリメチルトリシロキサン、1,5-ジエチニル-1,3,5-トリフェニルトリシロキサン、1,5-ジエチニル-1,1,3,3,5,5-ヘキサメチルトリシロキサン、1,5-ジエチニル-1,1,3,3,5,5-ヘキサフェニルトリシロキサン、1,5-ジエチニル-1,3,5-トリメチル-1,3,5-トリフェニルトリシロキサン、1,7-ジエチニルテトラシロキサン、1,7-ジエチニル-1,3,5,7-テトラメチルテトラシロキサン、1,7-ジエチニル-1,3,5,7-テトラフェニルテトラシロキサン、1,5-ジエチニル-1,1,3,3,5,5,7,7-オクタメチルテトラシロキサン、1,5-ジエチニル-1,1,3,3,5,5,7,7-オクタフェニルトリシロキサン、1,5-ジエチニル-1,3,5,7-テトラメチル-1,3,5,7-テトラフェニルトリシロキサン等が挙げられる。
-酸性触媒による平衡化反応-
 本発明の製造方法は、末端原料として、前記末端エチニル基含有オルガノジシロキサン化合物を用い、これを前記環状オルガノシロキサン化合物とともに、酸性触媒を共存させることを除けば、それ自体公知の平衡化反応により行われる。例えば、10℃~180℃で、溶剤を使わずに行うことも可能であり、また、適当な溶剤を用いて平衡化反応による重合を行ってもよい。酸性触媒としては、硫酸、またはトリフルオロメタンスルホン酸などが挙げられる。
 一般的に、触媒として硫酸、トリフルオロメタンスルホン酸を用いる場合には、比較的低温、例えば、10℃~150℃、好ましくは、20℃~100℃で平衡化反応が行われ、この酸性触媒は、全原料のオルガノシロキサン化合物当たり、0.1~10重量%、好ましくは、1~5重量%の割合で使用される。
 原料の前記末端エチニル基含有オルガノジシロキサン化合物の使用量は、求めようとする分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の重合度(即ち、前記式(2)のm)により異なり、その量は前記末端エチニル基含有オルガノジシロキサン化合物のケイ素に結合したエチニル基の含有量より求めることができる。
 反応終了後は、触媒の中和及びろ過を行い、次いで、ろ液を蒸留等の生成に供することによって、目的とする両末端エチニル基含有オルガノポリシロキサン化合物を得る。
 本発明の分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法によれば、典型的な一例として、生成する分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の分子組成が主鎖を構成するジオルガノシロキサン単位の繰り返し単位であるRSiO2/2単位75.0~99.5モル%、分子鎖末端を構成するシリル基(シロキシ単位)であるHC≡C-[CH-(R)SiO1/2単位0.5~15.0モル%(式中、Rはメチル基、エチル基、フェニル基等である)からなり、これらのシロキサン単位で、合計が100モル%となるように、前記環状オルガノシロキサン化合物、前記末端エチニル基含有オルガノジシロキサン化合物の量を選択することによって、そのような分子組成を有する分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物を得ることができる。また、この分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の粘度は特に限定されるものではないが、25℃における粘度が10~100000mP・sであることが好ましく、1000~10000mP・sがより好ましい。
 このような分子構造を有する分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物は、末端ビニル基オルガノポリシロキサン化合物に比べ、末端不飽和基への白金触媒によるヒドロシランの付加反応速度の向上が期待できる。また、この分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物は、不揮発性制御剤としての使用が期待できるなどの点で有用である。
 また、上記製造方法は、目的の重合度を有する分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物を容易に製造できる点で有用である。
 なお、部分構造として前記式(1)単位を少なくとも1個有するオルガノシロキサンポリマーのうち、分岐状のシロキサンポリマーについては、前述した酸性触媒の存在下に式(3)で示される化合物と式(4)で示される化合物との平衡化反応による重合において、分岐状単位(RSiO3/2)を共存させて平衡化反応する方法や、官能性基を持たない分岐状のオルガノポリシロキサンと式(4)で示される化合物とを平衡化反応する方法などによって製造することができる。
<アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法>
 また、本発明は、
 下記反応式に従い、部分構造として下記式(1’)単位を少なくとも1つ、好ましくは2個以上有し、直鎖及び分鎖(分岐鎖)のいずれかであるオルガノポリシロキサン化合物とケイ素原子に結合した水素原子(SiH基)を分子中に1個有するアルコキシシランとを付加反応させて、下記式(1”)単位を分子中に少なくとも1つ、好ましくは2個以上有する直鎖及び分鎖(分岐鎖)のいずれかであるアルコキシシリル-エチレン基末端オルガノシロキサンポリマーを製造するアルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法を提供する。
Figure JPOXMLDOC01-appb-C000046
(式中、Rは水素原子、または、置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。それぞれのRは同一であっても、または異なっていてもよい。m’は0~2000の整数、好ましくは21~1600の整数、より好ましくは22~1000の整数、更に好ましくは24~500の整数を示し、該シロキサン結合のくり返し単位中の一部が架橋して分鎖構造を有してもよい。nは0~20の整数、好ましくは0~10の整数、より好ましくは0~5の整数、更に好ましくは0~3の整数を示す。Rは置換基を有してもよい炭素数1から20のアルキル基であり、該アルキル基のうち炭素数が3以上のものは環状であるシクロアルキル基であってもよい。Rは水素原子、又は置換基を有してもよい炭素数1から20の1価炭化水素基である。aは1から3の整数である。)
 付加反応触媒としては、白金族系触媒、例えば白金系、パラジウム系、ロジウム系のものがあるが、白金系のものが特に好適である。この白金系のものとしては、白金黒あるいはアルミナ、シリカ等の担体に固体白金を担持させたもの、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸とオレフィンとの錯体あるいは白金とビニルシロキサンとの錯体等を例示することができる。これらの白金の使用量は、所謂触媒量でよく、例えばトリアルコキシシラン類に対して、白金族金属換算で0.1~1,000ppm、特に0.5~100ppmの量で使用できる。
 この反応は、一般に50~120℃、特に60~100℃の温度で、0.5~12時間、特に1~6時間行うことが望ましく、また溶媒を使用せずに行うことができるが、上記付加反応等に悪影響を与えない限りにおいて、必要によりトルエン、キシレン等の適当な溶剤を使用することができる。
 末端アセチレン基に対する付加反応では、例えば、下記反応式[X]で表される幾何異性体が生成される。E体(trans体)の生成が高選択的であり、反応性も高いが、本発明のオルガノポリシロキサンでは、その特性に悪影響を与えないことから、これらを分離することなく使用することができる。
Figure JPOXMLDOC01-appb-C000047
(式中、nは前記の通りである。)
 本発明者らは、さらに鋭意検討を行った結果、アルコキシシリル基に隣接する結合基がエチレン基である場合に限り、アルコキシ基の加水分解性が飛躍的に向上する事を知見し、上述した製造方法により製造される下記式(1”)単位を分子中に少なくとも1つ、好ましくは2個以上有するアルコキシシリル-エチレン基末端オルガノシロキサンポリマーを、縮合反応により架橋・硬化する室温硬化性組成物(特には、室温硬化性オルガノポリシロキサン組成物)のベースポリマーとして使用することにより、とりわけ速硬化性に優れ、同時に保存安定性、耐久性も良好な硬化物を与える室温硬化性組成物(特には、室温硬化性オルガノポリシロキサン組成物)が得られることを見出し、本発明をなすに至った。
Figure JPOXMLDOC01-appb-C000048
(式中、Rは水素原子、または、置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。それぞれのRは同一であっても、または異なっていてもよい。m’は0~2000の整数、好ましくは21~1600の整数、より好ましくは22~1000の整数、更に好ましくは24~500の整数を示し、該シロキサン結合のくり返し単位中の一部が架橋して分鎖構造を有してもよい。nは0~20の整数、好ましくは0~10の整数、より好ましくは0~5の整数、更に好ましくは0~3の整数を示す。Rは置換基を有してもよい炭素数1から20のアルキル基であり、該アルキル基のうち炭素数が3以上のものは環状であるシクロアルキル基であってもよい。Rは水素原子、又は置換基を有してもよい炭素数1から20の1価炭化水素基である。aは1から3の整数である。)
 以下、本発明を更に詳細に説明する。
<室温硬化性組成物>
-(A)成分-
 (A)成分であるアルコキシシリル-エチレン基を分子鎖末端に少なくとも1個、好ましくは分子中に2個以上有するポリマーは、組成物の主剤(ベースポリマー)として使用され、直鎖状、又は分枝状であってよい。前記ポリマーは、種々の単位から構成されていて良く、例えばポリシロキサン、ポリエーテル、ポリウレタン、ポリ尿素、ポリエステル、ポリシロキサン-尿素/ウレタンコポリマー、ポリアクリレートとポリメタクリレート、ポリカーボネート、ポリスチレン、ポリアミド、ポリビニルエステル、又はポリオレフィン、例えばポリエチレン、ポリブタジエン、エチレン-オレフィンコポリマー、又はスチレン-ブタジエンコポリマーである。これらポリマーから任意の混合物又は組み合わせも使用できる。
 尚、上記式(1”)単位を分子中に少なくとも1つ、好ましくは2個以上有するアルコキシシリル-エチレン基末端オルガノシロキサンポリマーとしては、下記式(1a)単位を分子中に少なくとも1つ、好ましくは2個以上有するもの(即ち、式(1”)において、n=0)が特に好ましい。以下、下記式(1a)単位を分子中に少なくとも1つ、好ましくは2個以上有するものを用いて説明する。
Figure JPOXMLDOC01-appb-C000049
(式中、R、R、R、aは前記の通りである。)
 上述のポリマーの例示の中でも、とりわけ、耐久性に優れるポリシロキサンは新規化合物であり、好適に使用され、具体的には、下記一般式(2a)及び/又は(3a)で表わされる式(1a)単位を分子鎖末端に2個以上有する直鎖状又は分岐鎖状のジオルガノポリシロキサンが用いられる。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
(式中、R、R、R、a、m’は前記の通りであり、m”は1~100の整数、好ましくは1~50の整数であり、m’+m”は、このジオルガノポリシロキサンの25℃における粘度を10~1,000,000mPa・sとする数である。)
 上記式中、R、Rの置換又は非置換の一価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、オクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、メチル基、エチル基が好ましく、メチル基が特に好ましい。
 分子鎖末端における加水分解性基は、例えば、メトキシ基、エトキシ基、プロポキシ基、2-エチルヘキトキシ基等のアルコキシ基;メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基等のアルコキシアルコキシ基、等が挙げられる。これらの中でも、メトキシ基、エトキシ基が、硬化性が速く、特に好ましい。
 (A)成分のジオルガノポリシロキサンは、25℃における粘度が10~1,000,000mPa・sが好ましく、より好ましくは50~500,000mPa・s、特に好ましくは100~100,000mPa・s、とりわけ100~80,000mPa・sである。前記ジオルガノポリシロキサンの粘度が10mPa・s以上であれば、物理的・機械的強度に優れたコーティング塗膜を得ることが容易であり、1,000,000mPa・s以下であれば、組成物の粘度が高くなり過ぎず使用時における作業性が良いので好ましい。ここで、粘度は回転粘度計による数値である。
 前記(A)成分のジオルガノポリシロキサンの具体例としては、例えば、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000052
(式中、m’、m”、R、Rは、上記と同様である)
 前記(A)成分のジオルガノポリシロキサンは、1種単独でも構造や分子量の異なる2種以上を組み合わせても使用することができる。
-(B)成分-
 (B)成分は硬化触媒であり、この組成物を硬化させるために使用される。有機金属触媒としては、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジオクトエート等のアルキル錫エステル化合物、テトライソプロポキシチタン、テトラn-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナト)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物、ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト、アルコキシアルミニウム化合物等の有機金属化合物、3-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等のアミノアルキル基置換アルコキシシラン、ヘキシルアミン、リン酸ドデシルアミン等のアミン化合物及びその塩、ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩、酢酸カリウム、酢酸ナトリウム、シュウ酸リチウム等のアルカリ金属の低級脂肪酸塩、ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン、テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン又はシロキサン等が例示されるが、これらはその1種に限定されず、2種以上の混合物として使用してもよい。
 なお、(B)成分の配合量は、前記(A)成分100質量部に対して0.001~15質量部であり、特に0.005~10質量部が好ましい。
-(C)成分-
 (C)成分であるシラン及び/又はその部分加水分解縮合物は架橋剤である。具体例としては、例えば、エチルシリケート、プロピルシリケート、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メチルトリス(メトキシエトキシ)シラン、ビニルトリス(メトキシエトキシ)シラン、メチルトリプロペノキシシラン、等及びこれらの部分加水分解縮合物が挙げられる。本発明において、部分加水分解縮合物とは、シラン化合物が部分的に加水分解・縮合して生成する、分子中に少なくとも2個、好ましくは3個以上の残存アルコキシ基(又はアルコキシ置換アルコキシ基)を有するオルガノシロキサンポリマーを意味する。これらは1種単独でも2種以上を組み合わせても使用することができる。
 (C)成分の配合量は、前記(A)成分100質量部に対して通常0~30質量部であるが、0.1~20質量部であることが好ましく、より好ましくは0.5~15質量部である。前記配合量が30質量部を超えると硬化物が硬くなり過ぎたり、経済的に不利となるという問題が発生する場合がある。
-(D)成分-
 (D)成分は充填剤であり、この組成物から形成される硬化物に十分な機械的強度を与えるために使用される。この充填剤としては公知のものを使用することができ、例えば焼成シリカ、粉砕シリカ、煙霧質シリカ(ヒュームドシリカ)、シリカエアロゲル等の乾式シリカ、沈降シリカ、ゾル-ゲル法シリカ等の湿式シリカ、珪藻土等の補強性シリカ系微粉末、酸化鉄、酸化亜鉛、酸化チタンなどの金属酸化物、あるいはこれらの表面をオルガノシランやオルガノシラザン等で疎水化処理したもの、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛などの金属炭酸塩、アスベスト、ガラスウール、カーボンブラック、微粉マイカ、溶融シリカ粉末(石英粉)、ポリスチレン、ポリ塩化ビニル、ポリプロピレンなどの合成樹脂粉末等が使用される。
 (D)成分の配合量は、前記(A)成分100質量部当たり、0~1000質量部であり、特に1~400質量部とすることが好ましい。1000質量部よりも多量に使用すると、組成物の粘度が増大して作業性が悪くなるばかりでなく、硬化後のゴム強度が低下してゴム弾性が得難くなる。1質量部以上配合すれば、得られる硬化物の機械的強度を十分高くすることができる。
-(E)成分-
 (E)成分は接着助剤であり、この組成物から形成される硬化物に十分な接着性を与えるために使用される。
 特にγ-アミノプロピルトリエトキシシラン、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン等のアミノシラン類、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類、イソシアネートシラン等を配合することが好ましい。
 (E)成分は前記(A)成分100質量部に対して0~30質量部、特に0.1~20質量部配合するのが好ましい。
 また、本発明の室温硬化性組成物には、添加剤として、顔料、染料、老化防止剤、酸化防止剤、帯電防止剤、酸化アンチモン、塩化パラフィン等の難燃剤など公知の添加剤を配合することができる。更に、チクソ性向上剤としてのポリエーテル、防かび剤、抗菌剤、を配合することもできる。
 また、本発明の室温硬化性組成物は、上記各成分、更にはこれに上記各種添加剤の所定量を、乾燥雰囲気中において均一に混合することにより得ることができる。
 また、前記室温硬化性組成物は、室温で放置することにより硬化するが、その成形方法、硬化条件などは、組成物の種類に応じた公知の方法、条件を採用することができる。
 かくして得られる本発明の室温硬化性組成物は、空気中の湿気により、室温で速やかに硬化して耐熱性、耐候性、低温特性、各種基材、特に金属に対する接着性に優れたゴム弾性体硬化物を形成する。また、この組成物は、特に保存安定性、硬化性に優れ、例えば6ヶ月間の貯蔵後も空気中に曝すと速やかに硬化して、上述のように優れた物性を持つ硬化物を与える。特に硬化時に毒性あるいは腐食性のガスを放出せず、この組成物を施した面に錆を生じさせることもない。特にこの組成物は、電気電子部品の接点障害を生じさせることがないので、電気電子部品用絶縁材や接着剤として有用であるほか、各種基材に対するシール剤、コーティング剤、被覆剤、離型処理剤として、また繊維処理剤としても広く使用することができる。また、この組成物を硬化、成形して種々の成形物を得ることができ、該成形物は、耐熱性、耐候性等に優れたものとなる。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例において、「部」は「質量部」を意味し、また、粘度は回転粘度計により測定した25℃における値を示す。さらに、下記例において、Meはメチル基を示す。
 [実施合成例1]
<両末端エチニル基含有ジメチルポリシロキサン化合物の合成1>
 機械攪拌機、温度計及び滴下ロートを備えた500mLの四つ口セパラブルフラスコに、オクタメチルシクロテトラシロキサン126g(425mmol)、1,3-ジエチニル-1,1,3,3-テトラメチルジシロキサン13g(71mmol)、濃硫酸(HSO)4gを入れ、室温(23℃)で3時間撹拌した。その後、水(HO)2gを加え、1時間以上撹拌し、トルエン50mLを加え、廃酸分離後にトルエン溶液を中性になるまで水洗洗浄した。トルエンと低分子シロキサンを150℃/8mmHgで、減圧下ストリップして下記に示す粘度16mPa・sのポリマーAを得た。
Figure JPOXMLDOC01-appb-C000053
 [実施合成例2]
<両末端エチニル基含有ジメチルポリシロキサン化合物の合成2>
 機械攪拌機、温度計及び滴下ロートを備えた2000mLの四つ口セパラブルフラスコに、オクタメチルシクロテトラシロキサン900g(3040mmol)、1,3-ジエチニル-1,1,3,3-テトラメチルジシロキサン14g(77mmol)、濃硫酸(HSO)45gを入れ、室温(23℃)で3時間撹拌した。その後、水(HO)21gを加え、1時間以上撹拌し、トルエン250mLを加え、廃酸分離後にトルエン溶液を中性になるまで水洗洗浄した。トルエンと低分子シロキサンを150℃/8mmHgで、減圧下ストリップして下記に示す粘度370mPa・sのポリマーBを得た。
Figure JPOXMLDOC01-appb-C000054
 [実施合成例3]
<両末端エチニル基含有ジメチルポリシロキサン化合物の合成3>
 機械攪拌機、温度計及び滴下ロートを備えた5000mLの四つ口セパラブルフラスコに、オクタメチルシクロテトラシロキサン3050g(1030mmol)、1,3-ジエチニル-1,1,3,3-テトラメチルジシロキサン32g(175mmol)、濃硫酸(HSO)154gを入れ、室温(23℃)で3時間以上撹拌した。その後、水(HO)66gを加え、1時間以上撹拌し、トルエン500mLを加え、廃酸分離後にトルエン溶液を中性になるまで水洗洗浄した。トルエンと低分子シロキサンを150℃/8mmHgで、減圧下ストリップして下記に示す粘度935mPa・sのポリマーCを得た。
Figure JPOXMLDOC01-appb-C000055
 [実施合成例4]
<両末端エチニル基含有ジメチルポリシロキサン化合物の合成4>
 機械攪拌機、温度計及び滴下ロートを備えた3000mLの四つ口セパラブルフラスコに、オクタメチルシクロテトラシロキサン1800g(6080mmol)、1,3-ジエチニル-1,1,3,3-テトラメチルジシロキサン13g(71mmol)、濃硫酸(HSO)91gを入れ、室温(23℃)で3時間以上撹拌した。その後、水(HO)39gを加え、1時間以上撹拌し、トルエン500mLを加え、廃酸分離後にトルエン溶液を中性になるまで水洗洗浄した。トルエンと低分子シロキサンを150℃/8mmHgで、減圧下ストリップして下記に示す粘度1980mPa・sのポリマーDを得た。
Figure JPOXMLDOC01-appb-C000056
 [実施合成例5]
<両末端エチニル基含有ジメチルポリシロキサン化合物の合成5>
 機械攪拌機、温度計及び滴下ロートを備えた5000mLの四つ口セパラブルフラスコに、オクタメチルシクロテトラシロキサン2800g(9460mmol)、1,3-ジエチニル-1,1,3,3-テトラメチルジシロキサン3g(16mmol)、濃硫酸(HSO)84gを入れ、室温(23℃)で3時間以上撹拌した。その後、水(HO)36gを加え、1時間以上撹拌し、トルエン1000mLを加え、廃酸分離後にトルエン溶液を中性になるまで水洗洗浄した。トルエンと低分子シロキサンを150℃/8mmHgで、減圧下ストリップして下記に示す粘度96000mPa・sのポリマーEを得た。
Figure JPOXMLDOC01-appb-C000057
 [実施合成例6]
<末端エチニル基含有分岐型ジメチルポリシロキサン化合物の合成>
 機械攪拌機、温度計及び滴下ロートを備えた3000mLの四つ口セパラブルフラスコに、オクタメチルシクロテトラシロキサン1800g(6080mmol)、下記式(5)で表される分岐型ポリジメチルシロキサン化合物108g(11mmol)、下記式(6)で表されるポリマー75g(4mmol)、1,1,1,3,3,5,5,7,7,7-デカメチルテトラシロキサン26g(83mmol)を入れ、室温~150℃昇温した。そこへ濃硫酸61gを加え、重合反応を開始した。155~165℃で6時間撹拌し、室温に戻したのち、トルエン500mLを加え、廃酸分離後にトルエン溶液を中性になるまで水洗洗浄した。トルエンと低分子シロキサンを150℃/8mmHgで、減圧下ストリップして下記式(7)に示す粘度1200mPa・sのポリマーFを得た。
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
 [比較合成例1]
<末端エチニル基含有ジメチルポリシロキサン化合物の合成>
 機械攪拌機、温度計及び滴下ロートを備えた5000mLの四つ口セパラブルフラスコに、オクタメチルシクロテトラシロキサン3050g(10mol)、1,3-ジエチニル-1,1,3,3-テトラメチルジシロキサン32g(175mmol)、水酸化カリウム(KOH)0.056g(1mmol)を入れ、室温(23℃)で3時間以上撹拌した。ここへ、エチレンクロロヒドリン(ECH)0.41g(5mmol)を加え、1時間以上撹拌し、中和後、150℃/8mmHgで、減圧下ストリップしたが、生成物として、ポリマー成分は得られなかった。
<両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン化合物の合成>
 機械攪拌機、温度計及び滴下ロートを備えた5000mLの四つ口セパラブルフラスコに、実施合成例3で得られたポリマーC1000g、トリメトキシシラン6.4g、塩化白金酸(HPtCl・6HO)0.5gを入れ、70℃で3時間撹拌した。その後、120℃/20mmHgで減圧下ストリップして下記に示す粘度970mPa・sのポリマーC’を得た。
Figure JPOXMLDOC01-appb-C000061
[実施例1]
 粘度970mPa・sの分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン(ポリマーC’)100部と、チタンテトライソプロポキシド0.1部を湿気遮断下で均一になるまで混合して組成物を調製した。
[実施例2]
 粘度970mPa・sの分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン(ポリマーC’)100部と、チタンテトラ-2-エチルヘキソキシド0.2部を湿気遮断下で均一になるまで混合して組成物を調製した。
[実施例3]
 粘度970mPa・sの分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン(ポリマーC’)100部と、チタンジイソプロポキシビス(エチルアセトアセテート)0.1部を湿気遮断下で均一になるまで混合して組成物を調製した。
[実施例4]
 粘度970mPa・sの分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン(ポリマーC’)100部と、ジオクチル錫ジラウレート0.5部を湿気遮断下で均一になるまで混合して組成物を調製した。
[実施例5]
 粘度970mPa・sの分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン(ポリマーC’)100部と、ジアザビシクロウンデセン1部を湿気遮断下で均一になるまで混合して組成物を調製した。
[比較例1~5]
 実施例1~5において、分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン100部の代わりに分子鎖末端がトリメトキシシリル-エタン基で封鎖されたジメチルポリシロキサン100部を用いた以外は同様に組成物を調製した。
[比較例6~10]
 実施例1~5において、分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン100部の代わりに分子鎖末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン100部を用いた以外は同様に組成物を調製した。
 その後、実施例1~5及び比較例1~10で調製された各組成物のタックフリータイムを測定した。
 また、実施例4及び比較例4,9で調製された調製直後の各組成物を厚さ2mmのシート状に押し出し、23℃,50%RHの空気に曝し、次いで、該シートを同じ雰囲気下に7日間放置して得た硬化物の物性(初期物性)を、JIS K-6249に準拠して測定した。なお、硬さは、JIS K-6249のデュロメーターA硬度計を用いて測定した。
 更に、この硬化物を85℃,85%RHの恒温恒湿器に100時間保管したものを同様に測定した。また、実施例4及び比較例4,9で調製された調製直後の各組成物を密閉容器に入れて、70℃の温度で7日間放置したものから作った厚さ2mmのシートについても同様の測定を行った。
 これらの結果を表1、2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[実施例6]
 粘度970mPa・sの分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン(ポリマーC’)100部と、表面をジメチルジクロロシランで処理した煙霧状シリカ10部を均一に混合し、これにメチルトリメトキシシラン5部、ジブチル錫ジラウレート0.3部、3-アミノプロピルトリエトキシシラン1部を加え、湿気遮断下で均一になるまで混合して組成物を調製した。
[比較例11]
 実施例6において、分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン100部の代わりに粘度1000mPa・sの分子鎖末端がトリメトキシシリル-エタン基で封鎖されたジメチルポリシロキサン100部を用いた以外は同様に組成物を調製した。
[比較例12]
 実施例6において、分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン100部の代わりに粘度1050mPa・sの分子鎖末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン100部を用いた以外は同様に組成物を調製した。
[比較例13]
 実施例6において、分子鎖両末端がトリメトキシシリル-エチレン基で封鎖されたジメチルポリシロキサン100部の代わりに下記式で示される粘度1080mPa・sのジメチルポリシロキサン100部を用いた以外は同様に組成物を調製した。
Figure JPOXMLDOC01-appb-C000062
 次に、実施例6及び比較例11~13で調製された調製直後の各組成物を厚さ2mmのシート状に押し出し、23℃,50%RHの空気に曝し、次いで、該シートを同じ雰囲気下に7日間放置して得た硬化物の物性(初期物性)を、JIS K-6249に準拠して測定した。なお、硬さは、JIS K-6249のデュロメーターA硬度計を用いて測定した。
 更に、この硬化物を85℃,85%RHの恒温恒湿器に240時間保管したものを同様に測定した。また、この硬化物を150℃のオーブンで240時間加熱したものを同様に測定した。また、実施例6及び比較例11~13で調製された調製直後の各組成物を密閉容器に入れて、70℃の温度で7日間放置したものから作った厚さ2mmのシートについても同様の測定を行った。
 これらの結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 表1の結果より、実施例1~5は、それぞれ対応する比較例1~10と比べて、速硬化性が極めて高いことが明らかである。また、表2の結果より、実施例4は、比較例4、9と比べて、保存安定性、耐久性が著しく高いことが明らかであり、表3の結果より、実施例6は、比較例11~13と比べて保存安定性、耐熱性、耐久性が著しく高いことが明らかである。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1.  部分構造として下記式(1)単位を少なくとも1つ有し、直鎖及び分鎖のいずれかであることを特徴とするオルガノポリシロキサン化合物。
    Figure JPOXMLDOC01-appb-C000063
    (式中、Rは水素原子、または、置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。それぞれのRは同一であっても、または異なっていてもよい。mは21~2000の整数を示し、該シロキサン結合のくり返し単位中の一部が架橋して分鎖構造を有してもよい。nは0~20の整数を示す。)
  2.  下記式(2)で示される分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法であって、酸性触媒存在下、下記式(3)で表される化合物と下記一般式(4)で表される化合物との平衡化反応により製造することを特徴とする分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000064
    Figure JPOXMLDOC01-appb-C000065
    Figure JPOXMLDOC01-appb-C000066
    (式中、Rは水素原子、または、置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。それぞれのRは同一であっても、または異なっていてもよい。lは3~20の整数である。mは21~2000の整数を示し、該シロキサン結合のくり返し単位中の一部が架橋して分鎖構造を有してもよい。nは0~20の整数を示す。)
  3.  前記酸性触媒を硫酸又はトリフルオロメタンスルホン酸とすることを特徴とする請求項2に記載の分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法。
  4.  下記反応式に従い、部分構造として下記式(1’)単位を少なくとも1つ有し、直鎖及び分鎖のいずれかであるオルガノポリシロキサン化合物とアルコキシシランとを付加反応させて、下記式(1”)単位を分子中に少なくとも1つ有する直鎖及び分岐鎖のいずれかであるアルコキシシリル-エチレン基末端オルガノシロキサンポリマーを製造することを特徴とするアルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000067
    (式中、Rは水素原子、または、置換基を有していてもよい炭素数1~20の1価炭化水素基を表す。それぞれのRは同一であっても、または異なっていてもよい。m’は0~2000の整数を示し、該シロキサン結合のくり返し単位中の一部が架橋して分鎖構造を有してもよい。nは0~20の整数を示す。Rは置換基を有してもよい炭素数1から20のアルキル基であり、該アルキル基のうち炭素数が3以上のものは環状であるシクロアルキル基であってもよい。Rは水素原子、又は置換基を有してもよい炭素数1から20の1価炭化水素基である。aは1から3の整数である。)
  5.  (A)請求項4に記載のアルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法により製造されたアルコキシシリル-エチレン基末端オルガノシロキサンポリマーを100質量部と、
     (B)硬化触媒を0.001~15質量部と、
     (C)シラン及び/又はその部分加水分解縮合物を0~30質量部と、
     (D)充填剤を0~1000質量部と、
     (E)接着促進剤を0~30質量部と、
    を含有するものであることを特徴とする室温硬化性組成物。
  6.  前記室温硬化性組成物において、
     前記(A)成分の主鎖がオルガノポリシロキサンであることを特徴とする請求項5に記載の室温硬化性組成物。
  7.  前記室温硬化性組成物が、シール剤、コーティング剤、接着剤のいずれかとして用いられるものであることを特徴とする請求項5又は請求項6に記載の室温硬化性組成物。
  8.  請求項5又は請求項6に記載の室温硬化性組成物の硬化物であることを特徴とする成形物。
PCT/JP2013/007246 2012-12-20 2013-12-10 新規エチニル基含有オルガノポリシロキサン化合物、分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法、アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物 WO2014097573A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13864315.0A EP2937375B1 (en) 2012-12-20 2013-12-10 Novel ethynyl-group-containing organopolysiloxane compound, method for producing straight-chain organopolysiloxane compound containing ethynyl group at both molecular chain ends, method for producing alkoxysilyl-ethynyl-group-terminated organosiloxane polymer, room-temperature-curable composition, and molded article that is cured product of same
JP2014552910A JP5960843B2 (ja) 2012-12-20 2013-12-10 アルコキシシリル−エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物
KR1020157016334A KR102093273B1 (ko) 2012-12-20 2013-12-10 신규 에티닐기함유 오가노폴리실록산 화합물, 분자쇄 양말단 에티닐기함유 직쇄상 오가노폴리실록산 화합물의 제조방법, 알콕시실릴-에틸렌기말단오가노실록산폴리머의 제조방법, 실온경화성 조성물 및 그 경화물인 성형물
US14/649,788 US9475969B2 (en) 2012-12-20 2013-12-10 Organopolysiloxane compound having ethynyl groups, method for preparing linear organopolysiloxane compound having ethynyl groups at both terminals of molecular chain, method for preparing organopolysiloxane polymer having alkoxysilyl-ethylene group at terminal, room temperature curable composition and molded product which is cured product thereof
CN201380067430.9A CN104870524B (zh) 2012-12-20 2013-12-10 烷氧基硅烷基‑亚乙基末端有机硅氧烷聚合物的制造方法、室温固化性组合物及其固化物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-277862 2012-12-20
JP2012-277863 2012-12-20
JP2012277863 2012-12-20
JP2012277862 2012-12-20
JP2012-277861 2012-12-20
JP2012277861 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014097573A1 true WO2014097573A1 (ja) 2014-06-26

Family

ID=50977936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007246 WO2014097573A1 (ja) 2012-12-20 2013-12-10 新規エチニル基含有オルガノポリシロキサン化合物、分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法、アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物

Country Status (6)

Country Link
US (1) US9475969B2 (ja)
EP (1) EP2937375B1 (ja)
JP (1) JP5960843B2 (ja)
KR (1) KR102093273B1 (ja)
CN (1) CN104870524B (ja)
WO (1) WO2014097573A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093139A1 (ja) * 2013-12-17 2015-06-25 信越化学工業株式会社 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
WO2015114939A1 (ja) * 2014-01-31 2015-08-06 信越化学工業株式会社 オルガノポリシロキサン化合物及びその製造方法並びに付加硬化型シリコーン組成物
WO2015194340A1 (ja) * 2014-06-16 2015-12-23 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
WO2016157948A1 (ja) * 2015-04-03 2016-10-06 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物である成形物
JP2017024373A (ja) * 2015-07-28 2017-02-02 セイコーエプソン株式会社 電子デバイス、液体吐出ヘッド、および、電子デバイスの製造方法
JPWO2017195508A1 (ja) * 2016-05-09 2019-03-07 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティングされた基材
JP2021501250A (ja) * 2017-10-26 2021-01-14 サイド・タイムール・アフマド 疎水性、疎油性および親油性コーティングのための非ニュートン流体を含む組成物、およびその使用方法
WO2024024453A1 (ja) * 2022-07-25 2024-02-01 信越化学工業株式会社 ビスシラン化合物からなる変性剤、その製造方法及びその使用
WO2024024454A1 (ja) * 2022-07-25 2024-02-01 信越化学工業株式会社 片末端変性オルガノポリシロキサン及びその製造方法、表面処理剤、並びにシリコーン組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128247B2 (ja) * 2016-03-10 2017-05-17 信越化学工業株式会社 有機ケイ素化合物、並びにそれを用いたゴム用配合剤およびゴム組成物
CN107722266B (zh) * 2017-10-19 2020-06-16 苏州大学 一种超支化聚硅氧烷/氰酸酯树脂及其制备方法
CN107556479B (zh) * 2017-10-19 2020-07-21 苏州大学 一种超支化聚硅氧烷及其制备方法
EP4180488A4 (en) 2020-07-07 2024-08-07 Shinetsu Chemical Co ROOM TEMPERATURE FAST-CURING TWO-COMPONENT ORGANOPOLYSILOXANE COMPOSITION, CURED PRODUCT THEREOF AND ARTICLES

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543119A (en) 1978-09-20 1980-03-26 Sws Silicones Corp Titanium ester contained vulcanizable organopolysiloxane composition and its manufacture
JPS56122390A (en) * 1980-02-29 1981-09-25 Toshiba Silicone Co Ltd Preparation of bissilylated ethylene
JPH04283589A (ja) * 1991-03-12 1992-10-08 Rikagaku Kenkyusho ビニルシラン類の製造方法
JPH04283266A (ja) * 1990-10-01 1992-10-08 General Electric Co <Ge> 一液型熱硬化性オルガノポリシロキサン組成物および製法
JPH06248084A (ja) * 1993-02-25 1994-09-06 Toshiba Silicone Co Ltd エチニル基含有有機ケイ素化合物
JPH0739547B2 (ja) 1992-01-10 1995-05-01 東レ・ダウコーニング・シリコーン株式会社 室温硬化性オルガノポリシロキサン組成物
JPH07331076A (ja) 1994-06-03 1995-12-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JPH08151447A (ja) 1994-11-29 1996-06-11 Sekisui Chem Co Ltd ケイ素系化合物及びその製造方法
JPH10110037A (ja) 1996-10-07 1998-04-28 Sekisui Chem Co Ltd ケイ素系重合体、その製造方法及びその硬化物
JP2002020491A (ja) * 2000-04-19 2002-01-23 General Electric Co <Ge> ジアセチレン系ポリオルガノシロキサン、その中間体およびその硬化組成物
US20020156186A1 (en) * 2001-01-25 2002-10-24 Alexander Bublewitz Two-step curable mixer-suitable materials
JP2004189744A (ja) * 2002-12-12 2004-07-08 Wacker Chemie Gmbh アルキノール基を有する有機ケイ素化合物、それを含有する架橋性材料、この材料から製造された成形品
JP2008520804A (ja) * 2004-11-18 2008-06-19 ダウ・コ−ニング・コ−ポレ−ション シリコーン剥離コーティング組成物
JP2010037561A (ja) * 2008-07-31 2010-02-18 Wacker Chemie Ag クリック反応によって架橋可能な多成分系シリコーン組成物
WO2011107592A1 (en) * 2010-03-05 2011-09-09 Momentive Performance Materials Gmbh Curable polyorganosiloxane composition for use as an encapsulant for a solar cell module
JP2012511607A (ja) 2008-12-11 2012-05-24 ワッカー ケミー アクチエンゲゼルシャフト アルコキシシラン末端ポリマー含有ポリマー混合物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219507B2 (ja) * 1973-05-19 1977-05-28
US5096990A (en) * 1988-10-19 1992-03-17 Tomoegawa Paper Co., Ltd. Resin composition for inner coat of semiconductor chip
JPH0633352B2 (ja) 1988-11-26 1994-05-02 信越化学工業株式会社 硬化性シリコーン組成物
US5231158A (en) 1990-10-01 1993-07-27 General Electric Company One part heat curable organopolysiloxane compositions and method
US5329036A (en) * 1992-09-02 1994-07-12 Hughes Aircraft Company (alpha, omega)phenylethynyl siloxane monomers, oligomers, and polymers thereof
JP2998505B2 (ja) 1993-07-29 2000-01-11 富士写真光機株式会社 ラジアル超音波走査装置
JP2718620B2 (ja) * 1993-09-01 1998-02-25 東芝シリコーン株式会社 ポリオルガノシランの製造方法
US6013711A (en) * 1997-06-18 2000-01-11 Ck Witco Corporation Hydrophilic polysiloxane compositions
US20020082339A1 (en) * 2000-12-21 2002-06-27 Silitek Corporation Organopolysiloxane composition
DE10103446C5 (de) * 2001-01-25 2007-06-28 Kettenbach Gmbh & Co. Kg Zweistufig härtbare mischergängige Materialien
JP5324734B2 (ja) * 2005-01-21 2013-10-23 インターナショナル・ビジネス・マシーンズ・コーポレーション 誘電体材料とその製造方法
US8247515B2 (en) * 2006-08-04 2012-08-21 The University Of Akron Amphiphilic grafts and co-networks and process for making same
US8501893B2 (en) * 2008-01-25 2013-08-06 National Science And Technology Development Agency Synthetic method for preparing dual curable silicone compositions
CN102959473B (zh) * 2010-06-30 2015-07-22 佳能株式会社 导电构件、处理盒和电子照相图像形成设备
US20160083524A1 (en) 2013-05-16 2016-03-24 Shin-Etsu Chemical Co., Ltd. Aluminum chelate compound and room temperature-curable resin composition containing same
JP2015122390A (ja) * 2013-12-21 2015-07-02 ウシオ電機株式会社 光源装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543119A (en) 1978-09-20 1980-03-26 Sws Silicones Corp Titanium ester contained vulcanizable organopolysiloxane composition and its manufacture
JPS56122390A (en) * 1980-02-29 1981-09-25 Toshiba Silicone Co Ltd Preparation of bissilylated ethylene
JPH04283266A (ja) * 1990-10-01 1992-10-08 General Electric Co <Ge> 一液型熱硬化性オルガノポリシロキサン組成物および製法
JPH04283589A (ja) * 1991-03-12 1992-10-08 Rikagaku Kenkyusho ビニルシラン類の製造方法
JPH0739547B2 (ja) 1992-01-10 1995-05-01 東レ・ダウコーニング・シリコーン株式会社 室温硬化性オルガノポリシロキサン組成物
JPH06248084A (ja) * 1993-02-25 1994-09-06 Toshiba Silicone Co Ltd エチニル基含有有機ケイ素化合物
JPH07331076A (ja) 1994-06-03 1995-12-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JPH08151447A (ja) 1994-11-29 1996-06-11 Sekisui Chem Co Ltd ケイ素系化合物及びその製造方法
JPH10110037A (ja) 1996-10-07 1998-04-28 Sekisui Chem Co Ltd ケイ素系重合体、その製造方法及びその硬化物
JP2002020491A (ja) * 2000-04-19 2002-01-23 General Electric Co <Ge> ジアセチレン系ポリオルガノシロキサン、その中間体およびその硬化組成物
US20020156186A1 (en) * 2001-01-25 2002-10-24 Alexander Bublewitz Two-step curable mixer-suitable materials
JP2004189744A (ja) * 2002-12-12 2004-07-08 Wacker Chemie Gmbh アルキノール基を有する有機ケイ素化合物、それを含有する架橋性材料、この材料から製造された成形品
JP2008520804A (ja) * 2004-11-18 2008-06-19 ダウ・コ−ニング・コ−ポレ−ション シリコーン剥離コーティング組成物
JP2010037561A (ja) * 2008-07-31 2010-02-18 Wacker Chemie Ag クリック反応によって架橋可能な多成分系シリコーン組成物
JP2012511607A (ja) 2008-12-11 2012-05-24 ワッカー ケミー アクチエンゲゼルシャフト アルコキシシラン末端ポリマー含有ポリマー混合物
WO2011107592A1 (en) * 2010-03-05 2011-09-09 Momentive Performance Materials Gmbh Curable polyorganosiloxane composition for use as an encapsulant for a solar cell module

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EUR. POLYM. J., vol. 28, 1992, pages 1373
See also references of EP2937375A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850349B2 (en) 2013-12-17 2017-12-26 Shin-Etsu Chemical Co., Ltd. Multicomponent room temperature-curable organopolysiloxane composition, cured product of said composition, and molded product comprising said cured product
JPWO2015093139A1 (ja) * 2013-12-17 2017-03-16 信越化学工業株式会社 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
WO2015093139A1 (ja) * 2013-12-17 2015-06-25 信越化学工業株式会社 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
WO2015114939A1 (ja) * 2014-01-31 2015-08-06 信越化学工業株式会社 オルガノポリシロキサン化合物及びその製造方法並びに付加硬化型シリコーン組成物
US9840594B2 (en) 2014-01-31 2017-12-12 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane compound and method for producing the same, and addition-curable silicone composition
WO2015194340A1 (ja) * 2014-06-16 2015-12-23 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
US10040923B2 (en) 2014-06-16 2018-08-07 Shin-Etsu Chemical Co., Ltd. Room-temperature-curable organopolysiloxane composition, and moulded product comprising cured product of said room-temperature-curable organopolysiloxane composition
JPWO2015194340A1 (ja) * 2014-06-16 2017-06-01 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
CN107429061B (zh) * 2015-04-03 2021-03-19 信越化学工业株式会社 室温固化性有机聚硅氧烷组合物和为该组合物的固化物的成型物
CN107429061A (zh) * 2015-04-03 2017-12-01 信越化学工业株式会社 室温固化性有机聚硅氧烷组合物和为该组合物的固化物的成型物
JPWO2016157948A1 (ja) * 2015-04-03 2018-02-15 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物である成形物
WO2016157948A1 (ja) * 2015-04-03 2016-10-06 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物である成形物
KR20170134568A (ko) 2015-04-03 2017-12-06 신에쓰 가가꾸 고교 가부시끼가이샤 실온 경화성 오르가노폴리실록산 조성물 및 해당 조성물의 경화물인 성형물
US10442896B2 (en) 2015-04-03 2019-10-15 Shin-Etsu Chemical Co., Ltd. Room temperature-curable organopolysiloxane composition and cured product thereof
JP2017024373A (ja) * 2015-07-28 2017-02-02 セイコーエプソン株式会社 電子デバイス、液体吐出ヘッド、および、電子デバイスの製造方法
US10377135B2 (en) * 2015-07-28 2019-08-13 Seiko Epson Corporation Electronic device, liquid ejection head, and method of manufacturing electronic device
JPWO2017195508A1 (ja) * 2016-05-09 2019-03-07 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティングされた基材
JP7104161B2 (ja) 2017-10-26 2022-07-20 サイド・タイムール・アフマド 疎水性、疎油性および親油性コーティングのための非ニュートン流体を含む組成物、およびその使用方法
JP2021501250A (ja) * 2017-10-26 2021-01-14 サイド・タイムール・アフマド 疎水性、疎油性および親油性コーティングのための非ニュートン流体を含む組成物、およびその使用方法
JP2022106729A (ja) * 2017-10-26 2022-07-20 サイド・タイムール・アフマド 疎水性、疎油性および親油性コーティングのための非ニュートン流体を含む組成物、およびその使用方法
WO2024024453A1 (ja) * 2022-07-25 2024-02-01 信越化学工業株式会社 ビスシラン化合物からなる変性剤、その製造方法及びその使用
WO2024024454A1 (ja) * 2022-07-25 2024-02-01 信越化学工業株式会社 片末端変性オルガノポリシロキサン及びその製造方法、表面処理剤、並びにシリコーン組成物

Also Published As

Publication number Publication date
CN104870524A (zh) 2015-08-26
JPWO2014097573A1 (ja) 2017-01-12
KR102093273B1 (ko) 2020-03-25
JP5960843B2 (ja) 2016-08-02
EP2937375B1 (en) 2020-08-05
EP2937375A1 (en) 2015-10-28
KR20150096677A (ko) 2015-08-25
CN104870524B (zh) 2017-07-11
US20150315428A1 (en) 2015-11-05
US9475969B2 (en) 2016-10-25
EP2937375A4 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP5960843B2 (ja) アルコキシシリル−エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物
JP5997778B2 (ja) 新規アルコキシシリル−エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物
JP6497390B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
JP6747507B2 (ja) 室温硬化性組成物、シーリング材並びに物品
WO2015093139A1 (ja) 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
KR101914399B1 (ko) 가교결합성 유기 폴리실록산 조성물
JP2018087348A (ja) 室温硬化性組成物、シーリング材及び物品
JP3899341B2 (ja) アルコキシシリル末端基からのアルコールの脱離下にエラストマーに架橋可能な材料を製造する方法
WO2019116892A1 (ja) 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
JP2024117823A (ja) 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品、並びに室温速硬化性オルガノポリシロキサン組成物の硬化方法
TWI794401B (zh) 可室溫固化有機聚矽氧烷組成物及電氣/電子設備
JP6402690B2 (ja) オルガノポリシルメチレンシロキサン組成物
JP2711621B2 (ja) 耐熱性シリコーンゴム組成物
CN118119670A (zh) 室温固化性有机聚硅氧烷组合物、粘合剂、密封剂和涂层剂
US10858518B2 (en) Arylene group-containing organopolysiloxane and curable organopolysiloxane composition using same
JP2024031517A (ja) 室温硬化性オルガノポリシロキサン組成物及びその製造方法並びに物品
EP3705535A1 (en) Organopolysiloxane composition, and organic silicon compound and production method therefor
JP2019048784A (ja) 有機チタン化合物、湿気硬化型組成物及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014552910

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14649788

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013864315

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157016334

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE