WO2014097509A1 - 電源リレー制御装置及び電動パワーステアリング装置 - Google Patents

電源リレー制御装置及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2014097509A1
WO2014097509A1 PCT/JP2013/005120 JP2013005120W WO2014097509A1 WO 2014097509 A1 WO2014097509 A1 WO 2014097509A1 JP 2013005120 W JP2013005120 W JP 2013005120W WO 2014097509 A1 WO2014097509 A1 WO 2014097509A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
circuit
power
abnormality
detection unit
Prior art date
Application number
PCT/JP2013/005120
Other languages
English (en)
French (fr)
Inventor
友博 三浦
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US14/395,530 priority Critical patent/US9184005B2/en
Priority to CN201380030792.0A priority patent/CN104350570B/zh
Priority to EP13864682.3A priority patent/EP2937885B1/en
Publication of WO2014097509A1 publication Critical patent/WO2014097509A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/60Auxiliary means structurally associated with the switch for cleaning or lubricating contact-making surfaces
    • H01H1/605Cleaning of contact-making surfaces by relatively high voltage pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/62Heating or cooling of contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/001Means for preventing or breaking contact-welding

Definitions

  • the present invention relates to a power relay control device that controls a relay disposed between a power source and an actuator circuit that supplies power from the power source, and an electric power steering device including the power relay control device.
  • a mechanical relay is mounted on a power supply line and a motor line for the purpose of fail-safe.
  • a hermetic sealing type relay is widely used in order to cut off the intrusion of moisture that causes contact freezing in a low temperature environment as much as possible.
  • relays have been further downsized due to demands for system miniaturization and high output, and the internal volume of relays is decreasing.
  • the case material used for relays is generally made of resin, and if this relay is left in a high temperature and high humidity environment for a long time, even if it is a relay that ensures airtightness, In particular, in a relay with a small internal volume, the internal relative humidity is greatly increased. As a result, condensation tends to occur at the relay contact.
  • a system for the purpose of improving heat dissipation, a system is employed in which a relay is directly mounted on a metal substrate and soldered with a reflow layer.
  • the cooling rate is high, and moisture in the relay freezes in a low temperature environment, and there is a possibility that contact failure of the relay contact due to freezing of the contact may occur.
  • Patent Document 1 For example. This technology removes foreign matters such as ice adhering to the relay contact by repeating ON / OFF operation of the relay.
  • Patent Document 2 for example. In this technique, a vibration is generated at a freezing occurrence location, and the freezing is released by this vibration.
  • a first aspect of a power relay control device controls a power relay circuit interposed between a battery and an actuator circuit to which power is supplied from the battery.
  • an abnormality processing unit that opens and closes the relay contact in a state where a predetermined potential difference is provided between the relay contacts when a conduction abnormality between the relay contacts is detected.
  • the second aspect includes a capacitor connected between the actuator circuit side contact of the power relay circuit and the ground, and a precharge circuit that charges the capacitor before closing the relay contact,
  • the abnormality detection unit detects a conduction abnormality between the relay contacts by the abnormality detection unit
  • the abnormality detection unit indicates a charge amount to the capacitor in the precharge circuit
  • a conduction abnormality between the relay contacts is detected by the abnormality detection unit.
  • the relay contact is opened and closed in a state of being limited as compared with the normal state that is not detected. In this way, the amount of charge by the precharge circuit is limited to be smaller than usual, so that a desired potential difference can be provided between the relay contacts.
  • the abnormality detection unit is based on a charge amount charged in the capacitor when the actuator circuit is driven in a state where the relay on command is output from the relay control unit. It is characterized by detecting a continuity abnormality between relay contacts. As described above, when the actuator circuit is driven in a state where the relay contact is not conducted, the fact that the charge of the capacitor is lost is utilized, and therefore, the conduction abnormality between the relay contacts can be detected appropriately.
  • the abnormality detection unit detects the voltage value at both ends of the capacitor as the amount of charge charged in the capacitor, and outputs the relay-on command from the relay control unit.
  • the voltage value when the actuator circuit is driven is equal to or less than an abnormal voltage threshold value, it is determined that a continuity abnormality has occurred between the relay contacts.
  • the voltage value at both ends of the capacitor when the actuator circuit is driven with the relay contact ON is compared with the preset abnormal voltage threshold value. Abnormalities can be detected.
  • the fifth aspect includes a temperature detection unit that detects a temperature in the vicinity of the relay contact, and the abnormality detection unit has a temperature detected by the temperature detection unit equal to or lower than a preset low-temperature environment determination temperature. In this case, it is determined whether or not a conduction abnormality between the relay contacts has occurred. As described above, when the power relay circuit is exposed to a low-temperature environment, it is determined whether or not there is a continuity abnormality between the relay contacts, thus preventing unnecessary continuity abnormality check of the relay contacts. be able to.
  • an electric motor for applying a steering assist force for reducing a steering burden on a driver to a steering system, a battery, and electric power are supplied from the battery.
  • An actuator circuit as a motor drive circuit for driving and controlling an electric motor, a power relay circuit interposed between the battery and the actuator circuit, and any one of the power relay control devices Yes.
  • the relay contact is opened and closed with a predetermined potential difference between the relay contacts, so that the arc attached to the relay contact can be melted by inducing arc discharge of the relay contact.
  • the operation of the power supply relay in a low temperature environment can be ensured without using a special device. Therefore, the electric power steering apparatus to which the power relay control apparatus is applied can perform stable steering assist control.
  • FIG. 1 is an overall configuration diagram showing an electric power steering apparatus according to the present invention. It is a block diagram which shows the specific structure of a control apparatus. It is a flowchart which shows the process sequence at the time of the low temperature environment performed by MCU. It is a time chart explaining operation
  • (A) is a figure when an electrolytic capacitor has an electric charge
  • (b) is a figure when an electrolytic capacitor has no electric charge.
  • FIG. 1 is an overall configuration diagram showing an electric power steering apparatus according to the present invention.
  • reference numeral 1 denotes a steering wheel, and a steering force applied to the steering wheel 1 from a driver is transmitted to a steering shaft 2 having an input shaft 2a and an output shaft 2b.
  • the steering shaft 2 has one end of the input shaft 2a connected to the steering wheel 1 and the other end connected to one end of the output shaft 2b via a steering torque sensor 3 as steering torque detecting means.
  • the steering force transmitted to the output shaft 2 b is transmitted to the intermediate shaft 5 via the universal joint 4 and further transmitted to the pinion shaft 7 via the universal joint 6.
  • the steering force transmitted to the pinion shaft 7 is transmitted to the tie rod 9 via the steering gear 8 and steers steered wheels (not shown).
  • the steering gear 8 is configured in a rack and pinion type having a pinion 8a connected to the pinion shaft 7 and a rack 8b meshing with the pinion 8a, and the rotational motion transmitted to the pinion 8a goes straight in the rack 8b. It has been converted to movement.
  • a steering assist mechanism 10 for transmitting a steering assist force to the output shaft 2b is connected to the output shaft 2b of the steering shaft 2.
  • the steering assist mechanism 10 includes a reduction gear 11 connected to the output shaft 2b, and an electric motor 13 formed of a brush motor that is connected to the reduction gear 11 and generates an auxiliary steering force for the steering system.
  • the steering torque sensor 3 detects the steering torque applied to the steering wheel 1 and transmitted to the input shaft 2a.
  • the steering torque sensor 3 is a torsion bar (not shown) in which the steering torque is interposed between the input shaft 2a and the output shaft 2b. It is configured to convert to a torsional angular displacement, detect this torsional angular displacement with a magnetic signal, and convert it into an electrical signal.
  • the steering torque sensor 3 is for detecting the steering torque applied to the steering wheel 1 and transmitted to the input shaft 2a.
  • the steering torque sensor 3 is a relative force between the input shaft 2a and the output shaft 2b connected by a torsion bar (not shown).
  • the displacement (rotational displacement) is detected in correspondence with the change in the impedance of the coil pair.
  • the detected torque value T output from the steering torque sensor 3 is input to the control device 14.
  • the control device 14 operates by being supplied with power from a battery 15 (for example, 13 V) as a DC power source.
  • a battery 15 for example, 13 V
  • the negative electrode of the battery 15 is grounded, and the positive electrode thereof is connected to the control device 14 via an ignition switch 16 that starts the engine, and is directly connected to the control device 14 without passing through the ignition switch 16.
  • the vehicle speed detection value Vs detected by the vehicle speed sensor 17 is input to the control device 14, and steering assist control is performed to apply a steering assist force corresponding to these to the steering system.
  • a steering assist torque command value for generating the steering assist force by the electric motor 13 is calculated according to a known procedure, and the electric motor 13 is supplied with the calculated steering assist torque command value and the motor current detection value.
  • the drive current to be supplied is feedback controlled.
  • the control device 14 performs a predetermined calculation based on the torque detection value T and the vehicle speed detection value Vs and outputs a motor drive signal Ir and a motor rotation direction signal Ds (hereinafter, referred to as a “micro control unit”). (Referred to as MCU) 101.
  • the control device 14 is interposed between the motor drive circuit 110 that drives the electric motor 13 based on the motor drive signal Ir and the motor rotation direction signal Ds output from the MCU 101, and the battery 15 and the motor drive circuit 110.
  • a power relay circuit 120 that controls power supply from the battery 15 to the motor drive circuit 110.
  • the power relay circuit 120 is directly mounted on a metal substrate and soldered with a reflow layer for the purpose of improving heat dissipation. Further, the power relay circuit 120 is arranged in a resin case in which airtightness is ensured.
  • control device 14 determines the motor angular velocity ⁇ based on the motor current detection circuit 130 that detects the motor current I, the motor terminal voltage Vm, and the motor drive current (current detection value) Im detected by the motor current detection circuit 130.
  • the control device 14 is connected in parallel with the power supply relay circuit 120, and supplies a precharge circuit 150 for supplying a precharge voltage to the motor drive circuit 110 side at the relay contact 121 of the power supply relay circuit 120, and the ignition switch 16.
  • a power supply circuit 160 that is connected to the battery 15 and forms control power in the control device 14 at startup, and a contact voltage detection circuit 170 that detects the contact voltage VR on the motor drive circuit 110 side at the relay contact 121 of the power supply relay circuit 120. I have.
  • the motor drive circuit 110 includes four NPN transistors Q1 to Q4 to which the battery voltage Vb of the battery 15 is input via the relay contact 121 of the power supply relay circuit 120.
  • An H bridge circuit 111 for supplying a motor current I for forward / reverse driving to the electric motor 13 and a gate drive circuit 112 for driving and controlling the transistors Q1 to Q4 of the H bridge circuit 111 are provided.
  • the gate drive circuit 112 receives a motor current command value Ir and a motor rotation direction signal Ds output from the MCU 101, which will be described later, and controls driving of the diagonal transistors Q1 and Q3 or Q2 and Q4 based on them.
  • the electric motor 13 is rotationally driven according to the steering torque detection value T and the vehicle speed detection value Vs.
  • the power relay circuit 120 has a normally open relay contact 121 connected to the battery 15 and a relay coil 122 that opens and closes the relay contact 121.
  • a surge absorbing diode 123 is connected to the relay coil 122 in parallel.
  • One end of the relay coil 122 is connected to the battery 15 via an NPN transistor 124 as a switching element, and the other end is grounded.
  • the precharge circuit 150 includes an electrolytic capacitor 151 interposed between a relay contact on the motor drive circuit 110 side of the power supply relay circuit 120 and the ground, a connection point between the electrolytic capacitor 151 and the relay contact 121, and a battery. It is composed of an NPN transistor 152 as a switching element connected between the relay contact on the 15th side, a reverse current blocking diode 153, and a series circuit composed of a precharge resistor 154.
  • the transistor 124 of the power supply relay circuit 120 is driven and controlled by a relay drive signal (relay on command / relay off command) SR formed by the MCU 101.
  • the transistor 152 of the precharge circuit 150 is driven and controlled by a pulse width modulation signal SP formed by the MCU 101.
  • the MCU 101 includes a watch dog timer (WDT) 102 that monitors its own program runaway. Further, the MCU 101 generates a motor drive signal Ir based on the detected steering torque value T, the detected vehicle speed value Vs, and the detected current value Im, and inputs the motor drive signal Ir to the motor drive circuit 110. Further, as shown in FIG.
  • WDT watch dog timer
  • the MCU 101 includes a ROM (read only memory) 103 that stores a steering assist control processing program, an abnormality detection processing program, and the like, detection data such as a torque detection value T, a motor drive current Im, A RAM (Random Access Memory) 104 that stores data and processing results required in the steering assist control process and precharge drive process executed by the MCU 101 is incorporated.
  • ROM read only memory
  • T torque detection value
  • Im motor drive current Im
  • a RAM Random Access Memory
  • the MCU 101 executes a precharge drive process and a steering assist control process when the ignition switch 16 is turned on and the battery voltage Vb is supplied from the battery 15.
  • the precharge resistor 154 can be set to the minimum necessary resistance value with respect to the transistor 152 of the precharge circuit 150 when a predetermined time has elapsed since the process was started. Output of a pulse width modulation signal SP having a predetermined frequency is started. As a result, the transistor 152 is turned on / off, and the electrolytic capacitor 151 is charged with electric charge based on the battery voltage Vb.
  • the MCU 101 outputs a high-level relay drive signal (relay-on command) SR to the switching element 124 of the power supply relay circuit 120 and the pulse width modulation signal SP to the precharge circuit 150. Stop the output of.
  • the precharge driving process for charging the electrolytic capacitor 151 is performed before the relay contact 121 is closed.
  • the MCU 101 executes the steering assist control process after the precharge driving process is completed and the relay contact 121 is closed.
  • the MCU 101 inputs the temperature in the vicinity of the power relay circuit 120 (temperature detection value Temp) detected by the temperature sensor 180 and determines that the power relay circuit 120 is exposed to a low temperature environment, the freezing of the relay contact 121. Execute processing at low temperature environment for the purpose of prevention.
  • the temperature sensor 180 is disposed on a metal substrate on which the power relay circuit 120 is mounted.
  • FIG. 3 is a flowchart showing a low temperature environment processing procedure executed by the MCU 101 when a relay conduction abnormality is detected.
  • the MCU 101 determines whether or not the temperature detection value Temp of the temperature sensor 180 is equal to or lower than a preset low temperature determination temperature.
  • the low temperature determination temperature is set to a temperature at which the possibility that water in the power relay circuit 120 freezes is increased. If the temperature detection value Temp is equal to or lower than the low temperature determination temperature, it is determined that the power supply relay circuit 120 is exposed to a low temperature environment, and the process proceeds to step S2, and the temperature detection value Temp exceeds the low temperature determination temperature.
  • step S2 the MCU 101 discharges the electrolytic capacitor 151. That is, a relay drive signal (relay off command) SR for opening the relay contact 121 is output and the motor drive circuit 110 is driven.
  • step S3 the MCU 101 determines whether or not the retry operation number N in the process for abnormal conduction for ensuring the conduction of the relay contact 121 is equal to or greater than the preset number n, and N ⁇ n. If so, the process proceeds to step S4. If N ⁇ n, the process proceeds to step S5 described later. Note that the initial value of the retry operation count N is 0.
  • step S4 the MCU 101 starts the charging operation to the electrolytic capacitor 151 by the precharge circuit 150 and determines a predetermined voltage (for example, 3) from the charging voltage of the electrolytic capacitor 151 and the battery voltage Vb for determining the timing for closing the relay contact 121. .5 [V])
  • a low voltage VR1 is set, and the process proceeds to step S6.
  • This voltage VR1 is referred to as a normal relay ON voltage in the following description.
  • step S5 the MCU 101 starts the charging operation to the electrolytic capacitor 151 by the precharge circuit 150 and sets the charging voltage of the electrolytic capacitor 151 that determines the timing for closing the relay contact 121 to the voltage VR2 lower than the voltage VR1. And the process proceeds to step S6.
  • This voltage VR2 is referred to as a limit relay ON voltage in the following description.
  • step S6 the MCU 101 indicates the timing at which the voltage value (VR voltage) across the electrolytic capacitor 151 indicating the amount of charge of the electrolytic capacitor 151 reaches the relay ON voltage VR1 or VR2 set in step S4 or step S5. To close the relay contact 121.
  • step S7 the MCU 101 stops the output of the pulse width modulation signal SP, thereby ending the operation of charging the electrolytic capacitor 151 by the precharge circuit 150 and driving the motor drive circuit 110 (forced drive).
  • step S ⁇ b> 8 the MCU 101 increments the retry operation count N, proceeds to step S ⁇ b> 9, and determines whether a continuity abnormality has occurred in the relay contact 121.
  • the VR voltage is confirmed, and when the VR voltage is equal to or less than the preset abnormal voltage threshold, it is determined that the conduction abnormality of the relay contact 121 has occurred, and the process proceeds to step S10.
  • the VR voltage does not drop, it is determined that the relay contact 121 is normally conducting, and the low temperature environment process is terminated as it is (normal end).
  • step S11 the MCU 101 determines that the continuity abnormality of the relay contact 121 is not eliminated even if Nmax retry operations are performed, notifies the continuity abnormality of the relay contact 121, and ends the low temperature environment processing (abnormal termination). ).
  • the motor drive circuit 110 in FIG. 2 corresponds to the actuator circuit
  • the MCU 101 and the transistor 124 correspond to the relay control unit
  • the temperature sensor 180 corresponds to the temperature detection unit.
  • steps S5 and S6 correspond to the abnormality processing unit
  • steps S7 and S9 correspond to the abnormality detection unit.
  • the operation of this embodiment will be described.
  • control power is supplied from the power supply circuit 160 into the control device 14, and the MCU 101 is activated.
  • the MCU 101 executes a precharge drive process and a steering assist control process.
  • the precharge driving process first, output of a relatively low frequency pulse width modulation signal SP that minimizes the resistance value of the precharge resistor 154 is started with respect to the NTN transistor 152 of the precharge circuit 150.
  • this pulse width modulation signal SP is supplied to the gate of the NTN transistor 152 of the precharge circuit 150, the NTN transistor 152 is repeatedly turned on and off, so that the electrolytic capacitor 151 is charged based on the battery voltage Vb. Go.
  • the contact voltage VR on the motor drive circuit side of the power relay circuit 120 gradually increases and is slightly lower than the battery voltage Vb determined by the frequency of the pulse width modulation signal SP and the resistance value of the precharge resistor 154 with respect to the battery voltage Vb. Increases to the precharge voltage VP. After the motor drive circuit side contact voltage VR reaches the precharge voltage VP, the precharge voltage VP is maintained as it is. Thereafter, when a high-level relay drive signal (relay-on command) SR is output to the NTN transistor 124 of the power supply relay circuit 120, the relay coil 122 is energized from the battery 15, whereby the relay coil 122 is energized. The relay contact 121 is closed.
  • the battery voltage Vb is supplied to the motor drive circuit 110 via the relay contact 121 of the power supply relay circuit 120.
  • the motor drive circuit 110 becomes operable.
  • the potential difference between the battery voltage Vb on the battery 15 side of the relay contact 121 and the precharge voltage VP on the motor drive circuit 110 side is small, the inrush current flowing to the electrolytic capacitor 151 through the relay contact 121 is a small value. Therefore, contact welding of the relay contact 121 can be reliably prevented. Therefore, the potential difference between both ends of the relay contact 121 of the power relay circuit 120 can be reduced, and the inrush current through the relay contact 121 of the power relay circuit 120 can be reliably suppressed.
  • the MCU 101 executes a steering assist control process.
  • a steering assist torque command value for generating a steering assist force by the electric motor 13 is calculated based on the torque detection value T and the vehicle speed detection value Vs, and the calculated steering assist torque command value and motor current are calculated.
  • the drive current supplied to the electric motor 13 is feedback-controlled based on the detected value.
  • the power supply relay circuit 120 of the present embodiment is a hermetically sealed relay, and is further mounted on a metal substrate in order to improve the heat dissipation of electrical components due to higher output.
  • the resin absorbs moisture in a high temperature environment, and the humidity inside the relay is likely to increase.
  • the cooling rate is fast, and when the temperature is below freezing, the water inside the relay is likely to freeze. If ice adheres to the relay contact, even if the relay contact 121 is turned on, the relay contact may not be conducted, and the motor drive circuit 110 may malfunction.
  • the relay ON / OFF operation is performed with a predetermined potential difference between the relay contacts for the purpose of removing the ice film existing between the relay contacts at the time of low temperature determination.
  • the operation at this time will be described with reference to FIG.
  • the electrolytic capacitor 151 in the precharge circuit 150 is discharged, and then the precharge circuit 150 starts charging the electrolytic capacitor 151.
  • the VR voltage reaches the normal relay ON voltage VR1 at time t1
  • the relay contact 121 is turned on, and the charging of the electrolytic capacitor 151 by the precharge circuit 150 is terminated after the VR voltage reaches the precharge voltage VP.
  • the motor drive circuit 110 is forcibly driven to check continuity. That is, a current necessary for power assist is supplied from the battery 15 to the H bridge circuit 111 via the power relay 120.
  • the continuity abnormality of the relay contact 121 can be detected by checking the VR voltage corresponding to the charge amount of the electrolytic capacitor 151 when the motor drive circuit 110 is driven with the relay contact 121 turned ON. it can.
  • the precharge circuit 150 starts charging the electrolytic capacitor 151 again at time t3. That is, at this time t3, the forced drive for checking the continuity is finished and the relay contact 121 is turned off.
  • the VR voltage reaches the normal relay ON voltage VR1 at time t4, the relay contact 121 is turned on. In this way, the first retry operation is performed.
  • the nth retry operation gives a predetermined potential difference between the relay contacts 121.
  • the relay contact 121 is turned ON / OFF. Specifically, when the VR voltage reaches the limit relay ON voltage VR2 at time t5, the relay contact 121 is turned on. At this time, charging of the electrolytic capacitor 151 by the precharge circuit 150 is terminated at time t5.
  • the relay contact 121 can be turned on in a state where there is a potential difference of (Vb ⁇ VR2) between the relay contacts 121. At this time, an arc is generated between the relay contacts due to the potential difference, and ice can be easily removed by the thermal energy. If the n-th retry operation does not completely remove the ice adhering to the relay contact, and if the VR voltage drops when the forced drive for continuity check is performed at time t6, the pre-charge is again performed at time t7.
  • Charging of the electrolytic capacitor 151 by the charging circuit 150 is started, and at time t8 when the VR voltage reaches the limit relay ON voltage VR2, the (n + 1) -th retry operation is performed. This retry operation is repeated until the number of retry operations reaches the upper limit number Nmax. Therefore, it is possible to reliably remove the ice adhering to the relay contact and ensure the conduction of the relay contact 121.
  • the power supply relay control device is useful because it can ensure the operation of the power supply relay in a low temperature environment without using a special device. Therefore, the electric power steering apparatus to which the power supply relay control apparatus is applied can perform stable steering assist control and is useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

 リレーの接触不良を適切に防止することができる電源リレー制御装置及び電動パワーステアリング装置を提供する。リレー接点間に導通異常が発生している場合には、当該リレー接点間に所定の電位差を持たせた状態で電源リレー回路を開閉する。このとき、プリチャージ回路(150)による電解コンデンサ(151)の充電を制限した状態で、リレー接点(121)のON操作を行うようにする。このように、リレー接点間の電位差による接点間アークの熱エネルギーによって、リレー接点間に存在する氷の皮膜を除去する。

Description

電源リレー制御装置及び電動パワーステアリング装置
 本発明は、電源と当該電源から電力を供給するアクチュエータ回路との間に配置したリレーを制御する電源リレー制御装置、及びそれを備える電動パワーステアリング装置に関するものである。
 電動パワーステアリング装置では、一般に、電源ライン及びモータラインに、フェールセーフを目的として機械式リレーを実装している。このようなリレーとしては、低温環境時の接点凍結の原因となる水分の浸入を可能な限り遮断するために、気密封止タイプのリレーが広く用いられている。
 また、近年、システムの小型化、高出力化の要求により、リレーもより小型化されており、リレーの内部容積は減少傾向にある。一方で、リレーに用いられるケース材は樹脂を用いたものが一般的であり、このリレーが長時間高温高湿環境に放置されると、たとえ気密性が確保されたリレーであっても空気中の水分を樹脂部から吸収してしまい、内部容積の少ないリレーでは特に内部の相対湿度が大きく上昇してしまう。その結果、リレー接点に結露が発生しやすい。
 さらに、放熱性の改善を目的として、リレーを金属基板上に直接実装し、リフロー層にて半田付けを行う方式が採用されている。このように、金属基板上に実装すると冷却速度が速く、低温環境下においてリレー内部の水分が氷結し、接点の凍結に起因するリレー接点の接触不良が発生するおそれがある。
 そこで、これを防止するものとして、例えば特許文献1に記載の技術がある。この技術は、リレーのON/OFF動作を繰り返すことで、リレー接点に付着した氷などの異物を除去するものである。また、その他には、例えば特許文献2に記載の技術がある。この技術は、凍結発生箇所に振動を発生させ、この振動により凍結を解除するものである。
特開2007-276552号公報 特開2007-165406号公報
 しかしながら、上記特許文献1及び2に記載の技術にあっては、単にリレーのON/OFF動作を繰り返したり振動を与えたりすることで、リレー接点に発生した氷を除去しようとするものであり、当該氷を確実に除去することができない場合がある。
 そこで、本発明は、リレーの接触不良を適切に防止することができる電源リレー制御装置及び電動パワーステアリング装置を提供することを課題としている。
 上記課題を解決するために、本発明に係る電源リレー制御装置の第1の態様は、バッテリと、該バッテリから電力が供給されるアクチュエータ回路との間に介挿された電源リレー回路を制御するリレー制御部と、前記リレー制御部から前記電源リレー回路のリレー接点を閉成するためのリレーオン指令を出力した状態で、前記リレー接点間の導通異常を検出する異常検出部と、前記異常検出部で前記リレー接点間の導通異常を検出したとき、当該リレー接点間に所定の電位差を持たせた状態で前記リレー接点を開閉する異常時処理部と、を備えることを特徴としている。
 これにより、リレーのON操作によって接点間が近接した場合、リレー接点間に氷の膜が存在している場合であっても、リレー接点間の電位差による接点間アークの熱エネルギーによって当該氷の皮膜を除去することができる。したがって、リレー接点間の導通を確保し易くすることができる。
 また、第2の態様は、前記電源リレー回路の前記アクチュエータ回路側接点と接地との間に接続されたコンデンサと、前記リレー接点を閉じる前に前記コンデンサを充電するプリチャージ回路と、を備え、前記異常時処理部は、前記異常検出部で前記リレー接点間の導通異常を検出したとき、前記プリチャージ回路における前記コンデンサへの充電量を、前記異常検出部で前記リレー接点間の導通異常が非検出である正常時と比較して少なく制限した状態で前記リレー接点を開閉することを特徴としている。
 このように、プリチャージ回路による充電量を通常よりも少なく制限するので、リレー接点間に所望の電位差を持たせるようにすることができる。また、通常、電源リレーをONする前に必ず行うプリチャージ操作に用いるプリチャージ回路の充電、放電を利用してリレー接点間に電位差を持たせるようにするので、特別な部品や装置を追加することなく、既存の部品構造で達成することができる。
 さらに、第3の態様は、前記異常検出部は、前記リレー制御部から前記リレーオン指令を出力した状態で前記アクチュエータ回路を駆動したときの、前記コンデンサに充電されている電荷量に基づいて、前記リレー接点間の導通異常を検出することを特徴としている。
 このように、リレー接点が導通していない状態でアクチュエータ回路を駆動した場合、コンデンサの電荷が失われることを利用するので、適切にリレー接点間の導通異常を検出することができる。
 また、第4の態様は、前記異常検出部は、前記コンデンサに充電されている電荷量として、当該コンデンサの両端の電圧値を検出し、前記リレー制御部から前記リレーオン指令を出力した状態で前記アクチュエータ回路を駆動したときの当該電圧値が異常電圧閾値以下であるとき、前記リレー接点間に導通異常が発生していると判断することを特徴としている。
 このように、リレー接点をON操作した状態でアクチュエータ回路を駆動したときのコンデンサの両端の電圧値と予め設定した異常電圧閾値を比較するので、比較的簡易な構成で適切にリレー接点間の導通異常を検出することができる。
 さらにまた、第5の態様は、前記リレー接点近傍の温度を検出する温度検出部を備え、前記異常検出部は、前記温度検出部で検出した温度が、予め設定した低温環境判定温度以下であるとき、前記リレー接点間の導通異常が発生しているか否かを判定することを特徴としている。
 このように、電源リレー回路が低温環境に曝されているときにリレー接点間の導通異常が発生しているか否かを判定するので、不必要にリレー接点の導通異常チェックを行うのを防止することができる。
 また、本発明に係る電動パワーステアリング装置の第1の態様は、操舵系に運転者の操舵負担を軽減する操舵補助力を付与する電動モータと、バッテリと、前記バッテリから電力が供給され、前記電動モータを駆動制御するモータ駆動回路としてのアクチュエータ回路と、前記バッテリと前記アクチュエータ回路との間に介挿された電源リレー回路と、前記何れかの電源リレー制御装置と、を備えることを特徴としている。
 このように、低温環境下において確実に作動する電源リレーを用いることができるので、安定した操舵補助制御を行う電動パワーステアリング装置とすることができる。
 本発明の電源リレー制御装置では、リレー接点間に所定の電位差を持たせた状態でリレー接点を開閉するので、リレー接点のアーク放電を誘発させてリレー接点に付着した氷を溶かすことができる。このように、特別な装置を用いることなく、低温環境下における電源リレーの作動を確実なものにすることができる。
 したがって、上記電源リレー制御装置を適用した電動パワーステアリング装置では、安定した操舵補助制御を行うことができる。
本発明に係る電動パワーステアリング装置を示す全体構成図である。 制御装置の具体的構成を示すブロック図である。 MCUで実行する低温環境時処理手順を示すフローチャートである。 低温環境時処理の動作を説明するタイムチャートである。 本実施形態の効果を説明するための図である。(a)は電解コンデンサに電荷がある場合の図、(b)は電解コンデンサに電荷がない場合の図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
(第1の実施形態)
 図1は、本発明に係る電動パワーステアリング装置を示す全体構成図である。
 図中、符号1は、ステアリングホイールであり、このステアリングホイール1に運転者から作用される操舵力が入力軸2aと出力軸2bとを有するステアリングシャフト2に伝達される。このステアリングシャフト2は、入力軸2aの一端がステアリングホイール1に連結され、他端は操舵トルク検出手段としての操舵トルクセンサ3を介して出力軸2bの一端に連結されている。
 そして、出力軸2bに伝達された操舵力は、ユニバーサルジョイント4を介して中間シャフト5に伝達され、さらに、ユニバーサルジョイント6を介してピニオンシャフト7に伝達される。このピニオンシャフト7に伝達された操舵力はステアリングギヤ8を介してタイロッド9に伝達され、図示しない転舵輪を転舵させる。ここで、ステアリングギヤ8は、ピニオンシャフト7に連結されたピニオン8aとこのピニオン8aに噛合するラック8bとを有するラックアンドピニオン形式に構成され、ピニオン8aに伝達された回転運動をラック8bで直進運動に変換している。
 ステアリングシャフト2の出力軸2bには、操舵補助力を出力軸2bに伝達する操舵補助機構10が連結されている。この操舵補助機構10は、出力軸2bに連結された減速ギヤ11と、この減速ギヤ11に連結されて操舵系に対して補助操舵力を発生する、ブラシモータでなる電動モータ13とを備えている。
 操舵トルクセンサ3は、ステアリングホイール1に付与されて入力軸2aに伝達された操舵トルクを検出するもので、例えば、操舵トルクを入力軸2a及び出力軸2b間に介挿した図示しないトーションバーの捩れ角変位に変換し、この捩れ角変位を磁気信号で検出し、それを電気信号に変換するように構成されている。
 操舵トルクセンサ3は、ステアリングホイール1に付与されて入力軸2aに伝達された操舵トルクを検出するためのもので、図示しないトーションバーで連結された入力軸2aと出力軸2bとの相対的な変位(回転変位)を、コイル対のインピーダンスの変化に対応させて検出するように構成されている。この操舵トルクセンサ3から出力されるトルク検出値Tは制御装置14に入力される。
 制御装置14には、直流電源としてのバッテリ15(例えば13V)から電源供給されることによって作動する。バッテリ15の負極は接地され、その正極はエンジン始動を行うイグニッションスイッチ16を介して制御装置14に接続されると共に、イグニッションスイッチ16を介さず直接、制御装置14に接続されている。
 制御装置14には、トルク検出値Tの他に車速センサ17で検出した車速検出値Vsが入力され、これらに応じた操舵補助力を操舵系に付与する操舵補助制御を行う。具体的には、上記操舵補助力を電動モータ13で発生するための操舵補助トルク指令値を公知の手順で算出し、算出した操舵補助トルク指令値とモータ電流検出値とにより、電動モータ13に供給する駆動電流をフィードバック制御する。
 制御装置14は、図2に示すように、トルク検出値Tと車速検出値Vsとに基づいて所定の演算を行ってモータ駆動信号Ir及びモータ回転方向信号Dsを出力するマイクロコントロールユニット(以下、MCUと称す)101とを備える。また、制御装置14は、MCU101から出力されるモータ駆動信号Ir及びモータ回転方向信号Dsに基づいて電動モータ13を駆動するモータ駆動回路110と、バッテリ15とモータ駆動回路110との間に介挿されて、バッテリ15からモータ駆動回路110への電源供給を制御する電源リレー回路120とを備える。
 ここで、電源リレー回路120は、放熱性の改善を目的として、金属基板上に直接実装し、リフロー層にて半田付けされている。また、この電源リレー回路120は、気密性が確保された樹脂ケース内に配置されている。
 さらに、制御装置14は、モータ電流Iを検出するモータ電流検出回路130と、モータ端子電圧Vmとモータ電流検出回路130で検出したモータ駆動電流(電流検出値)Imとに基づいてモータ角速度ωを推定するモータ角速度推定回路140とを備える。
 また、制御装置14は、電源リレー回路120と並列に接続され、電源リレー回路120のリレー接点121におけるモータ駆動回路110側にプリチャージ電圧を供給するプリチャージ回路150と、イグニッションスイッチ16を介してバッテリ15に接続され起動時に制御装置14内の制御電力を形成する電源回路160と、電源リレー回路120のリレー接点121におけるモータ駆動回路110側の接点電圧VRを検出する接点電圧検出回路170とを備えている。
 ここで、モータ駆動回路110は、図2に示すように、バッテリ15のバッテリ電圧Vbが電源リレー回路120のリレー接点121を介して入力される4つのNPN形のトランジスタQ1~Q4を有して電動モータ13に正逆転駆動するモータ電流Iを供給するHブリッジ回路111と、このHブリッジ回路111の各トランジスタQ1~Q4を駆動制御するゲート駆動回路112とを備えている。
 ゲート駆動回路112は、後述するMCU101から出力されるモータ電流指令値Irとモータ回転方向信号Dsとを入力し、これらに基づいて対角となるトランジスタQ1及びQ3又はQ2及びQ4を駆動制御して電動モータ13を操舵トルク検出値T及び車速検出値Vsに応じて回転駆動する。
 また、電源リレー回路120は、バッテリ15に接続された常開のリレー接点121と、このリレー接点121を開閉するリレーコイル122とを有する。リレーコイル122には、サージ吸収用のダイオード123が並列に接続されている。リレーコイル122の一端はスイッチング素子としてのNPN形のトランジスタ124を介してバッテリ15に接続され、他端は接地されている。
 さらに、プリチャージ回路150は、電源リレー回路120のモータ駆動回路110側のリレー接点と接地との間に介挿された電解コンデンサ151と、この電解コンデンサ151とリレー接点121との接続点とバッテリ15側のリレー接点との間に接続されたスイッチング素子としてのNPN形のトランジスタ152、逆流阻止用ダイオード153及びプリチャージ抵抗154で構成される直列回路とで構成されている。
 電源リレー回路120のトランジスタ124は、MCU101によって形成されるリレー駆動信号(リレーオン指令/リレーオフ指令)SRによって駆動制御される。また、プリチャージ回路150のトランジスタ152は、MCU101によって形成されるパルス幅変調信号SPによって駆動制御される。
 次に、MCU101の構成について説明する。
 MCU101は、自己のプログラム暴走を監視するウォッチドッグタイマ(WDT)102を内蔵している。また、MCU101は、操舵トルク検出値T、車速検出値Vs、電流検出値Imに基づいてモータ駆動信号Irを生成し、このモータ駆動信号Irをモータ駆動回路110に入力する。
 また、MCU101は、図2に示すように、操舵補助制御処理プログラム、異常検出処理プログラム等を格納するROM(リードオンリメモリ)103と、トルク検出値T、モータ駆動電流Im等の検出データや、MCU101で実行する操舵補助制御処理及びプリチャージ駆動処理の処理過程で必要とするデータや処理結果を記憶するRAM(ランダムアクセスメモリ)104とを内蔵している。
 そして、MCU101は、イグニッションスイッチ16がオン状態となってバッテリ15からバッテリ電圧Vbが供給されたときに、プリチャージ駆動処理及び操舵補助制御処理を実行する。
 プリチャージ駆動処理では、当該処理を開始してから所定時間が経過したときに、プリチャージ回路150のトランジスタ152に対してプリチャージ抵抗154を必要最小限の抵抗値とすることができる比較的低所定周波数のパルス幅変調信号SPの出力を開始する。これにより、トランジスタ152がオン・オフし、電解コンデンサ151にバッテリ電圧Vbに基づいて電荷が充電される。その後、さらに所定時間が経過すると、MCU101は、電源リレー回路120のスイッチング素子124に対して高レベルのリレー駆動信号(リレーオン指令)SRを出力すると共に、プリチャージ回路150へのパルス幅変調信号SPの出力を停止する。このように、リレー接点121を閉じる前に電解コンデンサ151を充電するプリチャージ駆動処理を行う。そして、MCU101は、このプリチャージ駆動処理が終了しリレー接点121を閉じた後、操舵補助制御処理を実行する。
 また、MCU101は、温度センサ180が検出した電源リレー回路120近傍の温度(温度検出値Temp)を入力し、電源リレー回路120が低温環境に曝されていると判断したとき、リレー接点121の凍結防止を目的とした低温環境時処理を実行する。ここで、温度センサ180は、電源リレー回路120が実装された金属基板上に配置されているものとする。
 図3は、リレー導通異常が検出された場合のMCU101で実行する低温環境時処理手順を示すフローチャートである。
 先ずステップS1で、MCU101は、温度センサ180の温度検出値Tempが予め設定した低温判定温度以下であるか否かを判定する。ここで、低温判定温度は、電源リレー回路120内部の水分が氷結する可能性が高まる温度に設定する。そして、温度検出値Tempが低温判定温度以下である場合には、電源リレー回路120が低温環境に曝されていると判断してステップS2に移行し、温度検出値Tempが低温判定温度を上回っている場合には、リレー接点121には凍結による導通不良は発生していないと判断してそのまま低温環境時処理を終了する。
 ステップS2では、MCU101は、電解コンデンサ151を放電する。すなわち、リレー接点121を開状態とするためのリレー駆動信号(リレーオフ指令)SRを出力すると共に、モータ駆動回路110を駆動する。
 次にステップS3で、MCU101は、リレー接点121の導通を確保のための導通異常時処理のリトライ操作回数Nが、予め設定した回数n以上であるか否かを判定し、N<nである場合にはステップS4に移行し、N≧nである場合には後述するステップS5に移行する。なお、リトライ操作回数Nの初期値は0である。
 ステップS4では、MCU101は、プリチャージ回路150による電解コンデンサ151への充電操作を開始すると共に、リレー接点121を閉じるタイミングを決定する電解コンデンサ151の充電電圧、バッテリ電圧Vbより所定電圧(例えば、3.5[V])低い電圧VR1に設定し、ステップS6に移行する。この電圧VR1を、以下の説明では通常リレーON電圧という。
 また、ステップS5では、MCU101は、プリチャージ回路150による電解コンデンサ151への充電操作を開始すると共に、リレー接点121を閉じるタイミングを決定する電解コンデンサ151の充電電圧を、電圧VR1よりも低い電圧VR2に設定し、ステップS6に移行する。この電圧VR2を、以下の説明では制限リレーON電圧という。
 ステップS6では、MCU101は、電解コンデンサ151の電荷量を示す、電解コンデンサ151の両端の電圧値(VR電圧)が、前記ステップS4又は前記ステップS5で設定したリレーON電圧VR1又はVR2に達したタイミングでリレー接点121を閉じる。
 次にステップS7では、MCU101は、パルス幅変調信号SPの出力を停止することで、プリチャージ回路150による電解コンデンサ151への充電操作を終了し、モータ駆動回路110を駆動する(強制駆動)。
 ステップS8では、MCU101は、リトライ操作回数NをインクリメントしてステップS9に移行し、リレー接点121に導通異常が発生しているか否かを判断する。ここでは、VR電圧を確認し、当該VR電圧が予め設定した異常電圧閾値以下である場合にリレー接点121の導通異常が発生していると判断して、ステップS10に移行する。一方、VR電圧が落ち込んでいない場合には、リレー接点121は正常に導通していると判断してそのまま低温環境時処理を終了する(正常終了)。
 ステップS10では、MCU101は、リトライ操作回数Nが予め設定した上限回数Nmaxに達したか否かを判定し、N<Nmaxである場合には前記ステップS2に移行し、N=Nmaxである場合にはステップS11に移行する。
 ステップS11では、MCU101は、Nmax回のリトライ操作を行ってもリレー接点121の導通異常が解消されないと判断し、リレー接点121の導通異常を報知してから低温環境時処理を終了する(異常終了)。
 なお、図2のモータ駆動回路110がアクチュエータ回路に対応し、MCU101及びトランジスタ124がリレー制御部に対応し、温度センサ180が温度検出部に対応している。また、図3において、ステップS5及びS6が異常時処理部に対応し、ステップS7及びS9が異常検出部に対応している。
 次に、本実施形態の動作について説明する。
 運転者がイグニッションスイッチ16をオン状態とすると、電源回路160から制御装置14内に制御電力が供給され、これによってMCU101が作動状態となる。このとき、MCU101は、プリチャージ駆動処理及び操舵補助制御処理を実行する。
 プリチャージ駆動処理では、先ず、プリチャージ回路150のNTNトランジスタ152に対してプリチャージ抵抗154の抵抗値を最小とする比較的低周波数のパルス幅変調信号SPの出力を開始する。このパルス幅変調信号SPがプリチャージ回路150のNTNトランジスタ152のゲートに供給されると、NTNトランジスタ152がオン・オフを繰り返すことにより、電解コンデンサ151にバッテリ電圧Vbに基づいて電荷が充電されていく。
 これにより、電源リレー回路120のモータ駆動回路側接点電圧VRが徐々に増加し、バッテリ電圧Vbに対してパルス幅変調信号SPの周波数及びプリチャージ抵抗154の抵抗値によって決まるバッテリ電圧Vbより若干低いプリチャージ電圧VPまで増加する。モータ駆動回路側接点電圧VRは、プリチャージ電圧VPに達した後、そのままプリチャージ電圧VPを維持する。
 その後、電源リレー回路120のNTNトランジスタ124に対して高レベルのリレー駆動信号(リレーオン指令)SRを出力すると、リレーコイル122にバッテリ15から通電されることにより、このリレーコイル122が付勢されてリレー接点121が閉成される。
 このため、電源リレー回路120のリレー接点121を介してバッテリ電圧Vbがモータ駆動回路110に供給される。これにより、このモータ駆動回路110が動作可能状態となる。このとき、リレー接点121のバッテリ15側のバッテリ電圧Vbと、モータ駆動回路110側のプリチャージ電圧VPとの電位差が小さい状態となるので、リレー接点121を通じて電解コンデンサ151に流れる突入電流を小さい値に抑制することができ、リレー接点121の接点溶着を確実に防止することができる。
 したがって、電源リレー回路120のリレー接点121における両端の電位差を小さくして電源リレー回路120のリレー接点121を通じる突入電流を確実に抑制することができる。
 そして、このプリチャージ駆動処理が終了すると、MCU101は操舵補助制御処理を実行する。操舵補助制御処理では、トルク検出値T及び車速検出値Vsに基づいて、操舵補助力を電動モータ13で発生するための操舵補助トルク指令値を算出し、算出した操舵補助トルク指令値とモータ電流検出値とにより、電動モータ13に供給する駆動電流をフィードバック制御する。これにより、運転者の操舵負担を軽減する操舵補助制御を行うことができる。
 ところで、本実施形態の電源リレー回路120は気密封止型のリレーであり、さらに、高出力化による電気部品の放熱性を向上させるために金属基板上に実装している。また、当該リレーは樹脂ケースを用い小型化されているので、高温環境下において樹脂が吸湿してしまい、リレー内部の湿度が上がり易い。その上、金属基板に実装されると冷却速度も速く、氷点下になるとリレー内部の水分が氷結し易い。リレー接点上に氷が付着すると、リレー接点121をON操作してもリレー接点間が導通せず、モータ駆動回路110の動作不良が発生する場合がある。
 そこで、本実施形態では、低温判定時に、リレー接点間に存在する氷の膜を除去することを目的として、リレー接点間に所定の電位差を持たせた状態でリレーのON/OFF操作を行う。このときの動作を、図4を参照しながら説明する。
 先ずプリチャージ回路150の電解コンデンサ151を放電し、その後、プリチャージ回路150により電解コンデンサ151の充電を開始する。そして、時刻t1でVR電圧が通常リレーON電圧VR1に達すると、リレー接点121をON操作し、VR電圧がプリチャージ電圧VPに達してからプリチャージ回路150による電解コンデンサ151の充電を終了する。次いで時刻t2で、導通チェックのためにモータ駆動回路110を強制駆動する。すなわち、Hブリッジ回路111にバッテリ15から電源リレー120を介してパワーアシストに必要な電流を供給する。
 このとき、リレー接点121上に氷が付着していると、リレー接点121をON操作しても導通がなされず、Hブリッジ回路111にアシスト電流を供給することができない。そのため、この場合には、時刻t2で電解コンデンサ151の電荷が失われ、VR電圧が落ち込む。このように、リレー接点121をON操作した状態でモータ駆動回路110を駆動したときの電解コンデンサ151の電荷量に相当するVR電圧を確認することで、リレー接点121の導通異常を検出することができる。
 リレー接点121の導通異常を検出すると、時刻t3で再びプリチャージ回路150により電解コンデンサ151の充電を開始する。すなわち、この時刻t3では、導通チェックのための強制駆動を終了すると共に、リレー接点121をOFF操作する。そして、時刻t4でVR電圧が通常リレーON電圧VR1に達すると、リレー接点121をON操作する。このようにして、1回目のリトライ操作が行われる。
 その後、複数回(n-1回)のリトライ操作を行ってもリレー接点121上に付着した氷が除去されない場合には、n回目のリトライ操作では、リレー接点121間に所定の電位差を持たせた状態でリレー接点121をON/OFFする。具体的には、時刻t5で、VR電圧が制限リレーON電圧VR2に達したときにリレー接点121をON操作する。このとき、時刻t5では、プリチャージ回路150による電解コンデンサ151の充電を終了するものとする。
 このように、電解コンデンサ151の充電電圧を制限することで、リレー接点121間に(Vb-VR2)の電位差がある状態でリレー接点121のON操作を行うことができる。このとき、当該電位差によりリレー接点間にはアークが発生し、その熱エネルギーによって氷を除去し易くすることができる。
 仮に、n回目のリトライ操作でもリレー接点上に付着した氷が完全に除去されず、時刻t6で導通チェックのための強制駆動を行ったときにVR電圧が落ち込むと、時刻t7で、再度、プリチャージ回路150による電解コンデンサ151の充電を開始し、VR電圧が制限リレーON電圧VR2に達した時刻t8で、(n+1)回目のリトライ操作を行う。このリトライ操作は、リトライ操作回数が上限回数Nmaxとなるまで繰り返し行う。
 したがって、確実にリレー接点上に付着した氷を除去し、リレー接点121の導通を確保することができる。
 上述した1回目のリトライ操作(時刻t4)のように、電解コンデンサ151をプリチャージ電圧VPまで充電する通常プリチャージを行うと、リレー接点間の電位差は(Vb-VP)と比較的小さい状態となる。そのため、この状態でリレー接点121のON操作を行ってもリレー接点間にはアークは発生せず、氷を溶かすことはできない(図5(a))。
 本実施形態では、n回目のリトライ操作(時刻t5)から、電解コンデンサ151の充電を制限し、リレー接点間に(Vb-VR2)の電位差を持たせた状態でリレー接点121のON操作を行う。したがって、リレー接点間が近接したとき、仮に付着した氷によりリレー接点121が接触しなくても、アークの発生に起因する発熱により氷を溶かすことができる(図5(b))。
 以上のように、プリチャージ回路150の電解コンデンサ151の充電、放電を利用して、リレー接点121のアーク放電を誘発し、当該接点に付着した氷を溶かす。したがって、特別な部品や装置を追加することなく、金属基板上に配置したリレーにおいても、低温環境下での作動を確実なものにすることができる。
(変形例)
 なお、上記実施形態においては、温度センサ180の検出温度Tempに基づいて低温環境であると判断した場合にリレー接点121の導通チェックや導通異常時処理を行う場合について説明したが、イグニッションスイッチ16のON時に毎回リレー接点121の導通チェックや導通異常時処理を行うようにしてもよい。
 また、上記実施形態においては、電動モータ13としてブラシモータを用いる場合について説明したが、ブラシレスモータを用いることもできる。
 さらに、上記実施形態においては、バッテリ15とモータ駆動回路110との間に介装された電源リレー回路120に本発明を適用する場合について説明したが、バッテリ15が電力を供給する対象はモータ駆動回路110に限定されない。すなわち、本発明は、電動パワーステアリング装置以外にも適用可能である。
産業上の利用の可能性
 本発明に係る電源リレー制御装置によれば、特別な装置を用いることなく、低温環境下における電源リレーの作動を確実なものにすることができ、有用である。
 したがって、上記電源リレー制御装置を適用した電動パワーステアリング装置では、安定した操舵補助制御を行うことができ、有用である。
 1…ステアリングホイール、2…ステアリングシャフト、3…操舵トルクセンサ、8…ステアリングギヤ、10…操舵補助機構、13…電動モータ、14…制御装置、15…バッテリ、16…イグニッションスイッチ、17…車速センサ、101…MCU、110…モータ駆動回路、111…Hブリッジ回路、112…ゲート駆動回路、120…電源リレー回路、121…リレー接点、122…リレーコイル、124…トランジスタ、130…モータ電流検出回路、140…モータ角速度推定回路、150…プリチャージ回路、151…電解コンデンサ、152…トランジスタ、154…プリチャージ抵抗、155…直列回路、160…電源回路、170…接点電圧検出回路、180…温度センサ

Claims (6)

  1.  バッテリと、該バッテリから電力が供給されるアクチュエータ回路との間に介挿された電源リレー回路を制御するリレー制御部と、
     前記リレー制御部から前記電源リレー回路のリレー接点を閉成するためのリレーオン指令を出力した状態で、前記リレー接点間の導通異常を検出する異常検出部と、
     前記異常検出部で前記リレー接点間の導通異常を検出したとき、当該リレー接点間に所定の電位差を持たせた状態で前記リレー接点を開閉する異常時処理部と、を備えることを特徴とする電源リレー制御装置。
  2.  前記電源リレー回路の前記アクチュエータ回路側接点と接地との間に接続されたコンデンサと、
     前記リレー接点を閉じる前に前記コンデンサを充電するプリチャージ回路と、を備え、
     前記異常時処理部は、前記異常検出部で前記リレー接点間の導通異常を検出したとき、前記プリチャージ回路における前記コンデンサへの充電量を、前記異常検出部で前記リレー接点間の導通異常が非検出である正常時と比較して少なく制限した状態で前記リレー接点を開閉することを特徴とする請求項1に記載の電源リレー制御装置。
  3.  前記異常検出部は、前記リレー制御部から前記リレーオン指令を出力した状態で前記アクチュエータ回路を駆動したときの、前記コンデンサに充電されている電荷量に基づいて、前記リレー接点間の導通異常を検出することを特徴とする請求項2に記載の電源リレー制御装置。
  4.  前記異常検出部は、前記コンデンサに充電されている電荷量として、当該コンデンサの両端の電圧値を検出し、前記リレー制御部から前記リレーオン指令を出力した状態で前記アクチュエータ回路を駆動したときの当該電圧値が異常電圧閾値以下であるとき、前記リレー接点間に導通異常が発生していると判断することを特徴とする請求項3に記載の電源リレー制御装置。
  5.  前記リレー接点近傍の温度を検出する温度検出部を備え、
     前記異常検出部は、前記温度検出部で検出した温度が、予め設定した低温環境判定温度以下であるとき、前記リレー接点間の導通異常が発生しているか否かを判定することを特徴とする請求項1~4の何れか1項に記載の電源リレー制御装置。
  6.  操舵系に運転者の操舵負担を軽減する操舵補助力を付与する電動モータと、
     バッテリと、
     前記バッテリから電力が供給され、前記電動モータを駆動制御するモータ駆動回路としてのアクチュエータ回路と、
     前記バッテリと前記アクチュエータ回路との間に介挿された電源リレー回路と、
     前記請求項1~5の何れか1項に記載の電源リレー制御装置と、を備えることを特徴とする電動パワーステアリング装置。
PCT/JP2013/005120 2012-12-18 2013-08-29 電源リレー制御装置及び電動パワーステアリング装置 WO2014097509A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/395,530 US9184005B2 (en) 2012-12-18 2013-08-29 Power supply relay controller and electric power steering apparatus
CN201380030792.0A CN104350570B (zh) 2012-12-18 2013-08-29 电源继电器控制装置
EP13864682.3A EP2937885B1 (en) 2012-12-18 2013-08-29 Power supply relay control device and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012275717A JP5811081B2 (ja) 2012-12-18 2012-12-18 電源リレー制御装置
JP2012-275717 2012-12-18

Publications (1)

Publication Number Publication Date
WO2014097509A1 true WO2014097509A1 (ja) 2014-06-26

Family

ID=50977879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005120 WO2014097509A1 (ja) 2012-12-18 2013-08-29 電源リレー制御装置及び電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US9184005B2 (ja)
EP (1) EP2937885B1 (ja)
JP (1) JP5811081B2 (ja)
CN (1) CN104350570B (ja)
WO (1) WO2014097509A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101575492B1 (ko) * 2014-06-17 2015-12-07 현대자동차주식회사 전기자동차의 고전압 차단 시스템 및 방법
US10017205B2 (en) * 2014-09-25 2018-07-10 Nsk Ltd. Control apparatus and control method of on-vehicle electronic equipment
JP6451192B2 (ja) * 2014-10-06 2019-01-16 三菱自動車工業株式会社 電動ステアリング装置
WO2017022009A1 (ja) * 2015-07-31 2017-02-09 日産自動車株式会社 車載モータのリレー制御方法及び制御装置
JP6276239B2 (ja) * 2015-10-27 2018-02-07 ファナック株式会社 リレーの接点の接点不良を防ぐ負荷制御装置
CN105977964B (zh) * 2016-05-06 2018-11-06 沈阳东软医疗系统有限公司 一种供电设备
EP3507169B1 (en) * 2016-08-30 2021-09-29 thyssenkrupp Presta AG Moisture sensing in electric motors of motor vehicle steering systems based on galvanic potential
EP3564981B1 (en) * 2016-12-28 2021-03-10 Nissan Motor Co., Ltd. Relay device
JP6922723B2 (ja) * 2017-12-26 2021-08-18 トヨタ自動車株式会社 燃料電池システム
DE102018211137B4 (de) * 2018-07-05 2023-11-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Systeme zur Starterbetätigung
JP6641439B1 (ja) * 2018-09-26 2020-02-05 株式会社Subaru 電磁リレー氷結解消システム
JP7108557B2 (ja) * 2019-02-08 2022-07-28 株式会社Subaru リレー装置
JP7096778B2 (ja) * 2019-02-08 2022-07-06 株式会社Subaru スイッチシステム
CN110763990A (zh) * 2019-11-05 2020-02-07 骆驼集团武汉光谷研发中心有限公司 一种新能源汽车中继电器的诊断方法
JP2022068927A (ja) * 2020-10-23 2022-05-11 プライムプラネットエナジー&ソリューションズ株式会社 電磁リレーの凍結抑制装置および凍結抑制方法
CN112509864B (zh) * 2020-11-06 2024-05-10 联创汽车电子有限公司 继电器控制方法及其控制结构
CN113745052B (zh) * 2021-07-23 2023-07-11 宁波金宸科技有限公司 一种大功率继电器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337055U (ja) * 1989-08-24 1991-04-10
JP2007018927A (ja) * 2005-07-08 2007-01-25 Omron Corp リレー制御装置
JP2007165406A (ja) 2005-12-09 2007-06-28 Nissan Motor Co Ltd 電磁リレーの凍結解除装置及び凍結解除方法
JP2007276552A (ja) 2006-04-04 2007-10-25 Nsk Ltd 電動パワーステアリング装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502609A (en) * 1994-12-08 1996-03-26 General Electric Company Electric circuitry for preventing contactor tip contamination in dry switching applications
US6002559A (en) * 1998-01-30 1999-12-14 General Electric Company Contractor tip cleaning circuit
JP4798779B2 (ja) * 2005-08-17 2011-10-19 タイコ・エレクトロニクス・コーポレイション 界面活性化リレーコンタクト用回路及びリレーコンタクトの界面活性化方法
JP4720896B2 (ja) * 2008-10-08 2011-07-13 株式会社デンソー 電源回路の異常診断装置、及び電源回路
JP2010148274A (ja) * 2008-12-19 2010-07-01 Nsk Ltd モータ制御装置および電動パワーステアリング装置
JP5402068B2 (ja) * 2009-02-19 2014-01-29 日本精工株式会社 モータ制御装置
JP5444992B2 (ja) * 2009-09-24 2014-03-19 株式会社ジェイテクト 電動パワーステアリング装置
JP5205356B2 (ja) * 2009-10-09 2013-06-05 日立オートモティブシステムズ株式会社 電源装置とコンタクタ溶着判定方法
JP5600623B2 (ja) * 2011-03-17 2014-10-01 株式会社東海理化電機製作所 電動ステアリングロック装置
US9093885B2 (en) * 2011-11-14 2015-07-28 Regal Beloit America, Inc. Methods and systems for cleaning relay contacts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337055U (ja) * 1989-08-24 1991-04-10
JP2007018927A (ja) * 2005-07-08 2007-01-25 Omron Corp リレー制御装置
JP2007165406A (ja) 2005-12-09 2007-06-28 Nissan Motor Co Ltd 電磁リレーの凍結解除装置及び凍結解除方法
JP2007276552A (ja) 2006-04-04 2007-10-25 Nsk Ltd 電動パワーステアリング装置

Also Published As

Publication number Publication date
EP2937885A1 (en) 2015-10-28
US9184005B2 (en) 2015-11-10
US20150115740A1 (en) 2015-04-30
JP2014120380A (ja) 2014-06-30
EP2937885A4 (en) 2016-08-17
CN104350570B (zh) 2016-08-17
JP5811081B2 (ja) 2015-11-11
CN104350570A (zh) 2015-02-11
EP2937885B1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP5811081B2 (ja) 電源リレー制御装置
JP5444992B2 (ja) 電動パワーステアリング装置
JP5742356B2 (ja) 電動パワーステアリング装置の制御装置
JP2006211825A (ja) 電動パワーステアリング装置
JP2010074915A (ja) モータ制御装置及び電動パワーステアリング装置
KR101704112B1 (ko) 모터 구동 장치
EP1336547A1 (en) Electric power steering device
JP2007276706A (ja) 電動パワーステアリング制御装置
JP4270978B2 (ja) 電動パワーステアリング装置の故障検出装置
JP2011037362A (ja) 電動パワーステアリング装置の制御装置
US6903524B2 (en) Electric motor-driven power steering apparatus
JP2013121294A (ja) 電動パワーステアリング用モータの故障診断装置
JP5402068B2 (ja) モータ制御装置
JP2015217855A (ja) 電源リレー制御装置
WO2014184888A1 (ja) 電動パワーステアリング装置
JP3948300B2 (ja) 電動パワーステアリング装置の制御装置
JP5407935B2 (ja) 電動パワーステアリング装置
JP2005088861A (ja) パワーステアリング装置
JP6003286B2 (ja) 車載リレー制御装置及びこれを使用した電動パワーステアリング装置
JP2011156988A (ja) 直流昇圧装置及び電動パワーステアリング装置
JP2017060218A (ja) モータ制御装置
JP5458954B2 (ja) 電動パワーステアリング装置
JP3881972B2 (ja) 電動パワーステアリング装置における故障検出装置
WO2023228631A1 (ja) 車両用操向システムの制御装置
JP2011213255A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14395530

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013864682

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE