JP2011156988A - 直流昇圧装置及び電動パワーステアリング装置 - Google Patents

直流昇圧装置及び電動パワーステアリング装置 Download PDF

Info

Publication number
JP2011156988A
JP2011156988A JP2010020951A JP2010020951A JP2011156988A JP 2011156988 A JP2011156988 A JP 2011156988A JP 2010020951 A JP2010020951 A JP 2010020951A JP 2010020951 A JP2010020951 A JP 2010020951A JP 2011156988 A JP2011156988 A JP 2011156988A
Authority
JP
Japan
Prior art keywords
circuit
booster
booster circuit
failure
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010020951A
Other languages
English (en)
Inventor
Hiroshi Kawamura
洋 河村
Hiroaki Kato
博章 加藤
Satoru Mikamo
悟 三鴨
Takehiro Ito
健宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2010020951A priority Critical patent/JP2011156988A/ja
Publication of JP2011156988A publication Critical patent/JP2011156988A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

【課題】昇圧回路の故障検出を簡単な構成で行い、直流昇圧装置の小型化及び低コスト化を実現できるようにする。
【解決手段】直流昇圧装置2は、整流素子31,41、容量素子32,42、及び容量素子32,42を入力電源及びグランドの間で切り替え接続するスイッチ回路33,43を有する昇圧回路20と、昇圧回路20の出力電圧を検出し、検出電圧が所定の目標電圧に到達したか否かを判定する出力電圧判定回路60と、スイッチ回路33,43の接続を所定間隔で切り替え駆動する駆動制御回路70と、昇圧回路20の故障を判定する故障判定部81と、を備え、駆動制御回路70は、出力電圧判定回路60の判定結果が未到達の場合にスイッチ回路33,43を駆動状態にし、故障判定部81は、スイッチ回路33,43の駆動状態が所定時間継続した場合に昇圧回路20の故障を判定することができる。
【選択図】図3

Description

本発明は、故障検出手段を備えた直流昇圧装置、及びこの直流昇圧装置を備えた電動パワーステアリング装置に関するものである。
従来から、車両用パワーステアリング装置として、モータを駆動源とする電動パワーステアリング装置(EPS)が広く採用されるようになっており、モータ駆動回路は、たとえば、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)からなる複数のスイッチング素子をブリッジ接続して構成されている。駆動源に3相ブラシレスモータを用いる場合、モータ駆動回路は、電源の高電位側及び低電位側にそれぞれ接続されたハイサイド(上アーム)のスイッチング素子とローサイド(下アーム)のスイッチング素子との直列回路を、3個並列に接続して構成される。
下記特許文献1には、スイッチング素子を駆動するためにドライバ回路が設けられ、ドライバ回路用として昇圧回路が設けられている。昇圧回路は、車載バッテリが発生する電源電圧を昇圧する。これによりハイサイドのスイッチング素子のゲートに、昇圧された電圧が印加されるようになっている。
このような電動パワーステアリング装置では、装置の一部が故障などによって本来の機能を果たせない状態になった場合でも、装置全体として致命的な障害とならないように安全性を確保することが要求されている。そのため、昇圧回路についても故障を検出し適切に対処する必要がある。
例えば、特許文献2に記載の昇圧回路は、出力ショート検出回路がコンパレータで構成され、出力電圧フィードバック用抵抗の抵抗分割値と基準電圧とに基づいて出力ショートを検出する。出力ショートが検出されると、昇圧回路を駆動するスイッチをオフに切り替えて昇圧回路の破壊を防止する。
特開2004−322863号公報 特開2008−131731号公報
しかしながら、上記特許文献2に開示された技術は、昇圧回路の故障検出にコンパレータを用いて行うので装置が複雑化し、大型化及び高コスト化してしまうという課題がある。
本発明は、このような課題を解決するためになされたものであって、昇圧回路の故障検出を簡単な構成で行い、直流昇圧装置の小型化及び低コスト化を実現できるようにすることを目的とする。
上記の課題を解決するため、請求項1に係る直流昇圧装置の構成上の特徴は、入力端と出力端の間に接続した整流素子と、前記整流素子の出力側に一端が接続された容量素子と、前記容量素子の他端を入力電源及びグランドの間で切り替え接続するスイッチ回路と、を有する一又は複数の昇圧回路ユニットを直列に接続して構成される昇圧回路と、前記昇圧回路の出力電圧を検出し、検出電圧が所定の目標電圧に到達したか否かを判定する出力電圧判定回路と、前記スイッチ回路の接続を所定間隔で切り替え駆動する駆動制御回路と、前記昇圧回路の故障を判定する昇圧回路故障判定手段と、を備え、前記駆動制御回路は、前記出力電圧判定回路の判定結果が未到達の場合に前記スイッチ回路を駆動状態にし、前記昇圧回路故障判定手段は、前記スイッチ回路の駆動状態が所定時間継続した場合に前記昇圧回路の故障を判定することである。
上記構成によれば、昇圧回路ユニットは、スイッチ回路を駆動して容量素子の一端をグランドに接続することで容量素子を充電する。このとき、昇圧回路ユニットの出力端の電圧は、入力電源の電圧近くに上昇する。その後、昇圧回路ユニットは、容量素子の一端を入力電源に接続し、容量素子を入力電源と直列にする。これにより昇圧回路ユニットの出力端の電圧は、入力電源の2倍近くにまで昇圧される。
直流昇圧装置は、このような昇圧回路ユニットを一又は複数直列に接続して昇圧回路を構成し、駆動制御回路によってスイッチ回路を駆動することで、入力電源の電圧を(昇圧回路ユニット数+1)倍近くまで昇圧する。
直流昇圧装置は、出力電圧判定回路によって、昇圧回路の出力電圧を検出し、検出電圧が所定の目標電圧に未到達の場合には、駆動制御回路によってスイッチ回路を駆動して電圧を昇圧する。また、検出電圧が目標電圧に到達した場合には、スイッチ回路の駆動を停止して、電圧の昇圧を停止する。即ち、直流昇圧装置は、スイッチ回路を駆動させることで、昇圧回路の出力電圧を所望の電圧(目標電圧)にまで昇圧させることができる。
ここで、昇圧回路ユニットを構成する整流素子や容量素子が故障し、昇圧回路ユニットによって昇圧されない場合が考えられる。このような場合、直流昇圧装置では、スイッチ回路を駆動させても、出力電圧を目標電圧にまで昇圧できない。そこで請求項1の直流昇圧装置は、スイッチ回路の駆動状態が所定時間継続しても、出力電圧が目標電圧にまで昇圧されない状態が続いた場合には、昇圧回路が故障したものと判定することとした。これにより、請求項1の直流昇圧装置は、簡単な構成で昇圧回路の故障検出を行うことができ、装置の小型化及び低コスト化を実現できる。
請求項2に係る直流昇圧装置の構成上の特徴は、前記昇圧回路故障判定手段による前記昇圧回路の故障の判定を記憶する昇圧回路故障記憶手段を有し、前記駆動制御回路は、前記昇圧回路の故障の判定が前記昇圧回路故障記憶手段に記憶された場合に前記スイッチ回路の駆動を停止することである。
上記構成によれば、請求項1により昇圧回路の故障を判定した場合に故障の判定を記憶し、スイッチ回路の駆動を停止することにより昇圧回路の昇圧を安全に停止することができる。また、故障判定を記憶したデータをメンテナンス等に役立てることができる。
請求項3に係る電動パワーステアリング装置の構成上の特徴は、請求項1又は請求項2に記載の直流昇圧装置により入力電源の電圧を昇圧することである。
上記構成によれば、電動パワーステアリング装置の昇圧回路の故障を検出することにより、電動パワーステアリング装置全体として致命的な障害とならないように安全性を確保することができる。また、装置の小型化及び低コスト化が可能となる。
本発明によれば、昇圧回路の故障検出を専用の部品を追加することなく簡単な構成で行うことができる。そのため直流昇圧装置及び電動パワーステアリング装置の小型化及び低コスト化を実現できる。
電動パワーステアリング装置(EPS)の構成を示す概略図である。 パワーステアリング装置(EPS)の制御ブロック図である。 直流昇圧装置の構成を示す概略図である。 直流昇圧装置の昇圧の動作を示すタイミングチャートである。 直流昇圧装置の昇圧回路が故障時の動作を示すタイミングチャートである。 直流昇圧装置の昇圧回路を故障検出するマイコン4の処理を示すフローチャートである。
以下、本発明をコラム型の電動パワーステアリング装置に具体化した実施形態について図面を参照しつつ説明する。
図1に示すように、本実施形態の電動パワーステアリング装置(以下、「EPS」ともいう)1において、ステアリング102が固定されたステアリングシャフト103は、ラックアンドピニオン機構104を介してラック軸105と連結されており、ステアリング操作に伴うステアリングシャフト103の回転は、ラックアンドピニオン機構104によりラック軸105の往復直線運動に変換される。尚、本実施形態のステアリングシャフト103は、コラムシャフト108、インターミディエイトシャフト109、及びピニオンシャフト110を連結してなる。そして、このステアリングシャフト103の回転に伴うラック軸105の往復直線運動が、同ラック軸105の両端に連結されたタイロッド111を介して図示しないナックルに伝達されることにより、転舵輪112の舵角が変更されるようになっている。
また、EPS1は、モータ13を駆動源として操舵系にステアリング操作を補助するためのアシスト力を付与する操舵力補助装置としてのEPSアクチュエータ122と、該EPSアクチュエータ122の作動を制御する制御手段としてのECU123とを備えている。
本実施形態のEPSアクチュエータ122は、所謂コラム型のEPSアクチュエータであり、その駆動源であるモータ13は、減速機構124を介してコラムシャフト108と駆動連結されている。そして、同モータ13の回転を減速機構124により減速してコラムシャフト108に伝達することによって、そのモータトルクをアシスト力として操舵系に付与する構成となっている。
一方、ECU123には、車速センサ6、トルクセンサ5、及び操舵角センサ7が接続されており、ECU123は、これら各センサの出力信号に基づいて、車速V、操舵トルクτ及び操舵角θsを検出する。
詳述すると、本実施形態では、コラムシャフト108の途中、詳しくは、その上記減速機構124よりもステアリング102側には、トーションバー130が設けられている。そして、本実施形態のトルクセンサ5は、このトーションバー130の両端に設けられた一対の回転角センサ(レゾルバ)131,132を備えた所謂ツインレゾルバ型のトルクセンサとして構成されている。
即ち、ECU123は、トルクセンサ5を構成するこれらの各回転角センサ131,132の出力信号Sa,Sbに基づいて、トーションバー130の両端における各回転角を検出する。そして、その両回転角の差分、即ちトーションバー130の捻れ角に基づいて、操舵トルクτを検出する。
また、本実施形態の操舵角センサ7は、トルクセンサ5よりもステアリング102側においてコラムシャフト108に固定された回転子133と、該回転子133の回転に伴う磁束変化を検出するホールIC134とを備えた磁気式の回転角センサにより構成されている。
そして、ECU123は、これら検出される各状態量に基づいて目標アシスト力を演算し、当該目標アシスト力をEPSアクチュエータ122に発生させるべく、その駆動源であるモータ13への駆動電力の供給を通じて、該EPSアクチュエータ122の作動、即ち操舵系に付与するアシスト力を制御する構成となっている。
図2は、EPS1の要部構成を示す制御ブロック図である。このEPS1は、ステアリング102に加えられたトルクを検出するトルクセンサ5が検出した操舵トルクτがマイクロコンピュータ(以下、マイコンと記述)4へ与えられ、車速を検出する車速センサ6が検出した車速Vがマイコン4へ与えられ、ステアリング102の操舵角を検出する操舵角センサ7が検出した操舵角θsがマイコン4へ与えられる。
また、モータ13が回転する際、回転角センサ8が検出したモータ回転角θmがマイコン4へ与えられ、モータ13に流れるモータ電流は、モータ電流検出回路9により検出され、モータ電流値Iとしてマイコン4に与えられる。
直流電源10(本実施形態では、12V)は、モータ駆動回路12に電力を供給し、モータ駆動回路12は、MOSFETによる3相ブリッジ回路よりなる。モータ13は、3相ブラシレスモータであり、モータ駆動回路12により駆動される。直流電源10が昇圧部3に接続され、その出力電圧がゲート駆動回路11に印加される。
マイコン4は、入力される操舵トルクτ、車速V、操舵角θs、モータ電流値I、及びモータ回転角θmに基づいて、適切なアシスト力を発生させるべく、ゲート駆動回路11を介してモータ駆動回路12を動作させ、モータ13を駆動させる。
本発明の主要部である直流昇圧装置2は、本実施例では、昇圧部3と制御手段としてのマイコン4により構成されている。直流昇圧装置2は、直流電源10から入力される電圧を昇圧しゲート駆動回路11に印加する。
図3は、直流昇圧装置2の要部構成を示すブロック図である。この直流昇圧装置2は、昇圧回路20、平滑回路50、出力電圧判定回路60、駆動制御回路70、及びマイコン4により構成されている。
昇圧回路20は、2個の昇圧回路ユニット30,40を直列接続して構成されている。昇圧回路ユニット30,40は、入力端34,44と出力端35,45の間に接続した整流素子31,41と、整流素子31,41の出力側に一端が接続された容量素子32,42と、容量素子32,42の他端を入力電源及びグランドの間で切り替え接続するスイッチ回路33,43と、を備える。
昇圧回路20は、昇圧回路ユニット30のスイッチ回路33を駆動して容量素子32の一端をグランドに接続することで容量素子32を充電する。このとき、昇圧回路ユニット30の出力端35の電圧は、入力電圧Vin近くに上昇する。その後、昇圧回路20は、スイッチ回路33を駆動してグランドに接続されていた容量素子32の一端を入力電源に接続し、容量素子32を入力電源と直列にする。これにより昇圧回路ユニット30の出力端35の電圧は、入力電圧Vinの2倍近くにまで昇圧される。
また、本実施形態の昇圧回路20においては、昇圧回路ユニット40が昇圧回路ユニット30の出力端35に接続されている。昇圧回路20は、昇圧回路ユニット40のスイッチ回路43を駆動して容量素子42の一端をグランドに接続することで容量素子42を充電する。このとき、昇圧回路ユニット40の出力端45の電圧は、昇圧回路ユニット30の出力端35の電圧、即ち、入力電圧Vinの2倍近くになる。その後、昇圧回路20は、スイッチ回路43を駆動してグランドに接続されていた容量素子42の一端を入力電源に接続し、容量素子42を入力電源と直列にする。これにより昇圧回路ユニット40の出力端45の電圧、即ち、昇圧回路20の出力端45の電圧は、入力電圧Vinを3倍近くにまで昇圧する。
平滑回路50は、入力端53と出力端54との間に接続された整流素子51と、一端が整流素子51の出力側に接続され、他端がグランドに接続された容量素子52と、により構成されている。平滑回路50の入力端53は、昇圧回路20の出力端45に接続され、出力端54は、直流昇圧装置2の出力端55に接続される。平滑回路50は、昇圧回路20がスイッチ駆動により脈動的に変化する電流・電圧を容量素子52にて平滑化する。
出力電圧判定回路60は、出力電圧フィードバック用抵抗61,62、基準電圧63,及びコンパレータ64を備える。出力電圧フィードバック用抵抗61は、一端が直流昇圧装置2の出力端55に接続され、他端が出力電圧フィードバック用抵抗62の一端に接続される。出力電圧フィードバック用抵抗62の他端はグランドに接続される。また、コンパレータ64の一方の入力には、直列に接続された出力電圧フィードバック用抵抗61,62の接続部が接続され、他方の入力には、基準電圧63が接続される。
コンパレータ64は、出力電圧フィードバック用抵抗61,62の抵抗分割値が基準電圧63を超えたときには、「L」レベルの判定出力65を出力し、基準電圧63を超えないときには、「H」レベルの判定出力65を出力する。即ち、出力電圧判定回路60は、昇圧回路20の出力電圧Voutが目標電圧に到達したと判定する場合には、「L」レベルの判定出力65を出力し、出力電圧Voutが目標電圧に未到達と判定する場合には、「H」レベルの判定出力65を出力する。本実施例では、目標電圧は、(入力電圧Vin+13.45V)に設定されている。
駆動制御回路70は、クロック信号発生部71、AND回路72、及びインバータ回路73を備える。
クロック信号発生部71は、ハイレベルの「H」信号及びロウレベルの「L」信号を所定周期で交互に発生し、直流昇圧装置2の各構成における動作の基準となるクロック信号とする。本実施例では、クロック信号の周波数は、20KHzに設定されている。
AND回路72の入力は、クロック信号発生部71、コンパレータ64の出力、及びマイコン4に接続される。AND回路72は、入力される3個の信号をANDして、演算結果を駆動指令74として出力する。即ち、コンパレータ64から出力される判定出力65及びマイコン4から出力される昇圧停止指令88が共に「H」レベルのときに、クロック信号発生部71から出力されるクロック信号が「H」レベルであるときにのみAND回路72は「H」レベルの駆動指令74を出力する。また、AND回路72の出力は、スイッチ回路33の入力、インバータ回路73の入力、及びマイコン4に接続される。
インバータ回路73は、出力がスイッチ回路43の入力に接続されており、AND回路72から入力される駆動指令74を反転させてスイッチ回路43に出力する。
駆動制御回路70は、出力電圧判定回路60から昇圧回路20の出力電圧Voutが目標電圧に未到達である旨の判定が入力された場合、クロック信号をスイッチ回路33,43に出力しスイッチ回路33,43を駆動する。また、駆動制御回路70は、出力電圧判定回路60から昇圧回路20の出力電圧Voutが目標電圧に到達した旨の判定が入力された場合、スイッチ回路33,43へのクロック信号の出力を停止し、スイッチ回路33,43の駆動を停止する。
マイコン4は、故障判定部81、故障記憶部84、故障停止制御部86、及びアシスト力演算部87を備える。
故障判定部81は、駆動制御回路70から駆動指令74が入力され、スイッチ回路33,43の駆動状態が所定時間継続したとき、即ち、スイッチ回路33,43を所定時間駆動させても、出力電圧Voutが目標電圧にまで昇圧できないときに、昇圧回路20が故障したものとして判定する。
また、故障判定部81は、スイッチ回路33,43の駆動状態が継続した時間を計測する駆動継続カウンタ82を備える。さらに、故障判定部81は、駆動指令74が入力されてから所定時間経過したときに駆動継続カウンタ82をクリアするクリア用タイマ83を備える。駆動継続カウンタ82及びクリア用タイマ83の具体的な動作形態は、後述するフローチャートにて説明する。
故障記憶部84は、故障判定部81が昇圧回路20の故障を判定した場合、故障の判定を故障記憶メモリ85に記憶する。
故障停止制御部86は、故障記憶メモリ85に故障の判定が記憶された場合、「L」レベルの昇圧停止指令88を出力する。昇圧停止指令88がAND回路72に入力されると、AND回路72の演算結果が「L」レベルの駆動指令74となり駆動指令74の変動が停止する。これにより、故障停止制御部86は、スイッチ回路33,43の駆動を停止し、昇圧回路20の昇圧を安全に停止することができる。
アシスト力演算部87は、マイコン4に入力される操舵トルクτ、車速V、操舵角θs、モータ電流値I、及びモータ回転角θmに基づいて、目標アシスト力を演算する。そして、それらは周知の技術であるため、説明は省略する。
ここで、故障判定部81が本発明の昇圧回路故障判定手段に、故障記憶部84が本発明の昇圧回路故障記憶手段に、各々相当する。
次に、本実施形態の直流昇圧装置2における昇圧の動作を、図4のタイミングチャートを参照しつつ説明する。ここで、時刻T00、T01、・・・、T12は、動作の基準となるクロック信号が、「H」レベルから「L」レベルに変化する時刻及び「L」レベルから「H」レベルに変化する時刻を示す。
時刻T00と時刻T01の間のある時刻T00aで、昇圧回路20の出力電圧Voutが目標電圧よりも低下すると、出力電圧判定回路60におけるフィードバック抵抗61,62の抵抗分割値が基準電圧63以下となり、コンパレータ64から出力される判定出力65が「H」レベルに変化する。コンパレータ64から「H」レベルの判定出力65が入力すると、駆動制御回路70は、AND回路72において、「H」レベルの判定出力65、「H」レベルの昇圧停止指令88、及びクロック信号発生部71から出力されるクロック信号とのANDをとり、その演算結果を「H」レベルの駆動指令74としてスイッチ回路33に出力する。また同時に、AND回路72から出力された「H」レベルの駆動指令74は、インバータ回路73で反転されて「L」レベルの駆動指令74がスイッチ回路43に出力される。
その結果、昇圧回路20において、スイッチ回路33は入力電源に切り替わり、スイッチ回路43はグランドに切り替わる。これにより、昇圧回路ユニット30の容量素子32が入力電源と直列接続されるため、昇圧回路ユニット30の出力電圧Vout1は、入力電圧Vinと同等程度の値から入力電圧Vinの2倍近くにまで昇圧される。また同時に、昇圧回路ユニット40の容量素子42がグランドに接続されるため、昇圧回路ユニット40の出力電圧Vout2は、入力電圧Vinの3倍程度の値から入力電圧Vinの2倍程度の値にまで低下する。
その後、時刻T01になるとクロック信号発生部71から出力されるクロック信号が「L」レベルに切り替わる。そのため、AND回路72から出力される駆動指令74が「L」レベルになり、スイッチ回路33には「L」レベルの駆動指令74が出力され、スイッチ回路43には「H」レベルが出力される。その結果、スイッチ回路33はグランドに切り替わり、スイッチ回路43は入力電源に切り替わる。
これにより、昇圧回路ユニット30の容量素子32がグランドに接続され、容量素子32が充電される。その結果、昇圧回路ユニット30の出力電圧Vout1は、入力電圧Vinの2倍程度の値から入力電圧Vinと同等程度の値にまで低下する。このとき、昇圧回路ユニット40の出力電圧Vout2は、容量素子42が入力電源と直列接続され入力電圧Vinの3倍近くにまで昇圧される。
直流昇圧装置2は、昇圧回路ユニット40の出力電圧Vout2を平滑回路50によって平滑し、出力電圧Voutを出力する。その結果、出力電圧Voutが目標電圧よりも大きくなると、出力電圧判定回路60におけるフィードバック抵抗61,62の抵抗分割値が基準電圧63よりも大きくなり、コンパレータから出力される判定出力65が「L」レベルに変化する。
その後、出力電圧Voutは、徐々に低下し、時刻T09と時刻T10の間のある時刻T09aで目標電圧を下回ると、上記と同じ動作を繰り返す。本実施形態の直流昇圧装置2は、このようにして、出力電圧Voutを目標電圧近くに維持している。
次に、容量素子32がショート故障した場合の動作を、図5のタイミングチャートを参照しつつ説明する。ここで、時刻T20、T21、・・・、T34は、動作の基準となるクロック信号が、「H」レベルから「L」レベルに変化する時刻及び「L」レベルから「H」レベルに変化する時刻を示す。
図5に示すように、直流昇圧装置2は、時刻T20と時刻T21の間のある時刻T20a〜時刻T23までの間、図4の時刻T00a〜時刻T03までの間と同じ動作をする。
次に、時刻T24で容量素子32がショート故障した場合、昇圧回路ユニット30の出力電圧Vout1がグランド近くに低下する。
その後、出力電圧Voutは、徐々に低下し、時刻T29と時刻T30の間のある時刻T29aで出力電圧Voutが目標電圧を下回る。出力電圧Voutが目標電圧を下回ると、出力電圧判定回路60から出力される判定出力65が「H」レベルに変化する。
その後、クロック信号が「H」レベルとなるタイミング(時刻T30)で、駆動制御回路70から出力される駆動指令74が「H」レベルとなる。これにより、昇圧回路ユニット30のスイッチ回路33が入力電源に切り替わるため、正常時には昇圧回路ユニット30の出力電圧Vout1が、入力電圧Vinと同等程度の値から入力電圧Vinの2倍近くにまで上昇する。しかし、この時点において昇圧回路ユニット30の容量素子32はショート故障しているため、昇圧回路ユニット30の出力電圧Vout1は、グランド近くの状態から入力電圧Vin近くにまでしか上昇しない。また、このとき、昇圧回路ユニット40では、スイッチ回路43がグランドに切り替わるため、昇圧回路ユニット40の出力電圧Vout2は、入力電圧Vinの3倍程度の値から入力電圧Vinと同等程度の値にまで低下する。
その後、時刻T31になって、クロック信号が「L」レベルに切り替わると、昇圧回路ユニット30のスイッチ回路33がグランドに切り替わる。これにより、昇圧回路ユニット30の出力電圧Vout1は、グランド近くに低下する。このとき昇圧回路ユニット40では、スイッチ回路43が入力電源に切り替わり、容量素子42が入力電源と直列に接続されるため、出力電圧Vout2は、入力電圧Vinの2倍近くにまで昇圧される。その後、直流昇圧装置2では、同様の動作が繰り返されるため、出力電圧Voutは、徐々に低下し、入力電圧Vinの2倍近くに収束する。
さらに、容量素子32がショート故障した場合におけるマイコン4の処理を、図6のフローチャートを参照しつつ説明する。
マイコン4は、駆動指令74を常時監視し、駆動指令74が「L」レベルから「H」レベルに変化したか否かを判定する(S1)。そして、駆動指令74が「L」レベルから「H」レベルに変化していない場合、クリア用タイマ83のタイマ値が閾値以上であるか否かを判定する(S2)。ここでクリア用タイマ83の閾値は、駆動指令74が連続して2回出力される時間より長く、昇圧するのに十分な時間を設定する。そして、クリア用タイマ83のタイマ値が閾値以上である場合、駆動継続カウンタ82のカウント値をクリアし(S3)、クリア用タイマ83のタイマ値をクリアする(S4)。
一方、ステップS1において、駆動指令が「L」レベルから「H」レベルに変化した場合、駆動継続カウンタ82のカウント値を+1し(S5)、クリア用タイマ83のタイマ値をクリアする(S6)。続いて、駆動継続カウンタ82のカウント値が閾値以上であるか否かを判定する(S7)。ここで駆動継続カウンタ82の閾値は、前記クリア用タイマ83が閾値に達する時間より十分に長い時間となるようにクロック信号周期との関係から設定する。そして、駆動継続カウンタ82のカウント値が閾値以上である場合、昇圧回路20が故障と判定する(S8)。さらに、昇圧回路20の故障の判定を記憶し(S9)、昇圧停止指令88を出力する(S10)。
クリア用タイマ83のタイマ値、駆動継続カウンタ82のカウント値、及び故障停止指令88のタイムチャートは、図5に示す通りである。
ここで、ステップS1〜S8の処理が本発明の昇圧回路故障判定手段が実行する処理に、ステップ9の処理が本発明の昇圧回路故障記憶手段が実行する処理に、各々相当する。
以上のように、本実施の形態に係る直流昇圧装置2によれば、昇圧回路の故障検出を専用の部品を追加することなく簡単な構成で行うことができる。そのため直流昇圧装置は、小型化及び低コスト化を実現できる。また、直流昇圧装置は、昇圧回路の故障を判定した場合に故障の判定を記憶すると共に昇圧回路の昇圧を安全に停止することができる。さらに、本実施の形態に係る電動パワーステアリング装置1によれば、電動パワーステアリング装置1の昇圧回路20の故障を検出し昇圧を停止することにより、電動パワーステアリング装置1全体として致命的な障害とならないように安全性を確保することができる。例えば、昇圧回路の昇圧を停止することにより、電動パワーステアリング装置がにおい、発煙、及び発火することを回避できる。
また、本実施の形態では、容量素子32がショート故障した場合に故障判定するとしたが、これ以外の整流素子31や容量素子42が故障した場合についても故障判定が可能である。本実施形態における故障判定は、昇圧回路を駆動しているにもかかわらず、駆動状態が所定時間継続しても目標電圧にまで昇圧できないときに故障として判定する。そのため、昇圧回路20全体のいずれかにおいて故障があったときに故障を判定できる。
さらに、本実施の形態では、昇圧回路20は、2個の昇圧回路ユニット30,40を直列接続して構成されたが、昇圧回路は、昇圧回路ユニットが1個であってもよいし、3個以上の昇圧回路ユニットを直列接続して構成してもよい。
加えて、本実施の形態では、直流昇圧装置2は、電動パワーステアリング装置1に適用としたが、これ以外の装置に適用してもよい。
1:電動パワーステアリング装置(EPS)、 2:直流昇圧装置、 3:昇圧部、 4:マイクロコンピュータ(マイコン)、 20:昇圧回路、 30,40:昇圧回路ユニット、 31,41:整流素子、 32,42:容量素子、 33,43:スイッチ回路、 50:平滑回路、 60:出力電圧判定回路、 70:駆動制御回路、 81:故障判定部(昇圧回路故障判定手段)、 84:故障記憶部(昇圧回路故障記憶手段)、 86:故障停止制御部

Claims (3)

  1. 入力端と出力端の間に接続した整流素子と、前記整流素子の出力側に一端が接続された容量素子と、前記容量素子の他端を入力電源及びグランドの間で切り替え接続するスイッチ回路と、を有する一又は複数の昇圧回路ユニットを直列に接続して構成される昇圧回路と、
    前記昇圧回路の出力電圧を検出し、検出電圧が所定の目標電圧に到達したか否かを判定する出力電圧判定回路と、
    前記スイッチ回路の接続を所定間隔で切り替え駆動する駆動制御回路と、
    前記昇圧回路の故障を判定する昇圧回路故障判定手段と、を備え、
    前記駆動制御回路は、前記出力電圧判定回路の判定結果が未到達の場合に前記スイッチ回路を駆動状態にし、
    前記昇圧回路故障判定手段は、前記スイッチ回路の駆動状態が所定時間継続した場合に前記昇圧回路の故障を判定することを特徴とする直流昇圧装置。
  2. 前記昇圧回路故障判定手段による前記昇圧回路の故障の判定を記憶する昇圧回路故障記憶手段を有し、
    前記駆動制御回路は、前記昇圧回路の故障の判定が前記昇圧回路故障記憶手段に記憶された場合に前記スイッチ回路の駆動を停止することを特徴とする請求項1に記載の直流昇圧装置。
  3. 請求項1又は請求項2に記載の直流昇圧装置により入力電源の電圧を昇圧することを特徴とする電動パワーステアリング装置。
JP2010020951A 2010-02-02 2010-02-02 直流昇圧装置及び電動パワーステアリング装置 Pending JP2011156988A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020951A JP2011156988A (ja) 2010-02-02 2010-02-02 直流昇圧装置及び電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020951A JP2011156988A (ja) 2010-02-02 2010-02-02 直流昇圧装置及び電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
JP2011156988A true JP2011156988A (ja) 2011-08-18

Family

ID=44589337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020951A Pending JP2011156988A (ja) 2010-02-02 2010-02-02 直流昇圧装置及び電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP2011156988A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069473A1 (ja) * 2011-11-07 2013-05-16 株式会社ジェイテクト 電動パワーステアリング装置
WO2014073032A1 (ja) * 2012-11-06 2014-05-15 日本精工株式会社 電動パワーステアリング装置
JP2016101921A (ja) * 2016-01-05 2016-06-02 日本精工株式会社 電動パワーステアリング装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069473A1 (ja) * 2011-11-07 2013-05-16 株式会社ジェイテクト 電動パワーステアリング装置
CN103857582A (zh) * 2011-11-07 2014-06-11 株式会社捷太格特 电动助力转向设备
JPWO2013069473A1 (ja) * 2011-11-07 2015-04-02 株式会社ジェイテクト 電動パワーステアリング装置
US9030135B2 (en) 2011-11-07 2015-05-12 Jtekt Corporation Electrically operated power steering device
CN103857582B (zh) * 2011-11-07 2016-06-01 株式会社捷太格特 电动助力转向设备
WO2014073032A1 (ja) * 2012-11-06 2014-05-15 日本精工株式会社 電動パワーステアリング装置
CN104903178A (zh) * 2012-11-06 2015-09-09 日本精工株式会社 电动动力转向装置
JP5867622B2 (ja) * 2012-11-06 2016-02-24 日本精工株式会社 電動パワーステアリング装置
US9407190B2 (en) 2012-11-06 2016-08-02 Nsk Ltd. Electric power steering apparatus
JPWO2014073032A1 (ja) * 2012-11-06 2016-09-08 日本精工株式会社 電動パワーステアリング装置
CN104903178B (zh) * 2012-11-06 2017-02-22 日本精工株式会社 电动动力转向装置
JP2016101921A (ja) * 2016-01-05 2016-06-02 日本精工株式会社 電動パワーステアリング装置

Similar Documents

Publication Publication Date Title
US8680808B2 (en) Motor drive apparatus and electric power steering apparatus using the same
JP5311233B2 (ja) モータ制御装置、および、これを用いた電動パワーステアリング装置
US9787240B2 (en) Controller and control method for motor
US8660755B2 (en) Electric power steering system
US8659260B2 (en) Motor drive apparatus and electric power steering apparatus using the same
US8436568B2 (en) Motor drive apparatus and electric power steering system using the same
US20140055887A1 (en) Motor drive device
JP2012188101A (ja) 電動パワーステアリング装置の制御装置
JP2012224298A (ja) 電動パワーステアリング装置
JP4428140B2 (ja) 電子制御装置,電動パワーステアリング装置,および伝達比可変操舵装置
JP2008094342A (ja) 電動パワーステアリング装置
US20140229066A1 (en) Electronic control device for electric power steering apparatus
JPWO2005081386A1 (ja) リレー溶着防止装置およびモータ駆動装置
JP2006069328A (ja) 電動パワーステアリング装置
EP3530548A1 (en) Steering control device
JP7096679B2 (ja) モータ制御装置
JP2011156988A (ja) 直流昇圧装置及び電動パワーステアリング装置
JP2009232569A (ja) モータ駆動制御装置及びこれを使用した電動パワーステアリング装置
CN110871840B (zh) 车辆控制装置
JP5574155B2 (ja) モータ制御装置
JP5471207B2 (ja) 電動パワーステアリング装置
JP2007151251A (ja) モータ制御装置及び電動パワーステアリング装置
JP2011178245A (ja) 電動パワーステアリング装置
JP2017060218A (ja) モータ制御装置
JP4957039B2 (ja) 電動パワーステアリング装置