WO2014091714A1 - Magnetic sensor and magnetic sensor device, and magnetic sensor manufacturing method - Google Patents

Magnetic sensor and magnetic sensor device, and magnetic sensor manufacturing method Download PDF

Info

Publication number
WO2014091714A1
WO2014091714A1 PCT/JP2013/007097 JP2013007097W WO2014091714A1 WO 2014091714 A1 WO2014091714 A1 WO 2014091714A1 JP 2013007097 W JP2013007097 W JP 2013007097W WO 2014091714 A1 WO2014091714 A1 WO 2014091714A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
pellet
lead terminal
lead
insulating layer
Prior art date
Application number
PCT/JP2013/007097
Other languages
French (fr)
Japanese (ja)
Inventor
敏昭 福中
長谷川 秀則
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to KR1020167011246A priority Critical patent/KR20160052798A/en
Priority to KR1020147020169A priority patent/KR20140113964A/en
Priority to CN201380012069.XA priority patent/CN104170109B/en
Priority to JP2014529369A priority patent/JP5676826B2/en
Publication of WO2014091714A1 publication Critical patent/WO2014091714A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18165Exposing the passive side of the semiconductor or solid-state body of a wire bonded chip

Definitions

  • the present invention relates to a magnetic sensor, a magnetic sensor device, and a method for manufacturing a magnetic sensor, and more particularly, a magnetic sensor, a magnetic sensor device, and a magnetic sensor that can prevent an increase in leakage current even when the pellet is reduced in size and thickness. Regarding the method.
  • Patent Document 1 discloses a magnetic sensor including a lead frame, a pellet (that is, a magnetic sensor chip), and a thin metal wire.
  • the lead frame has terminals arranged at the four corners to obtain electrical connection with the outside, and the pellet is mounted on the island of the lead frame.
  • the electrode which a pellet has and each terminal which a lead frame has are connected with the metal fine wire.
  • the size of the magnetic sensor after packaging (that is, the package size) is 1.6 mm in length, 0.8 mm in width, and 0.38 mm in thickness. Further, the package size can be reduced to 0.30 mm by further thinning the pellet.
  • a structure in which an island is omitted that is, an islandless structure
  • FIG. 10A and 10B are a configuration diagram of a magnetic sensor 400 according to a comparative embodiment of the present invention and a conceptual diagram for explaining the problem.
  • the pellet 310 is fixed by a mold resin 350.
  • the island-less structure magnetic sensor 310 is attached to the wiring board 450, the back surface of each lead terminal of the lead frame 320 exposed from the mold resin 350 is connected to the wiring board 450 via solder (solder) 370. Connect to wiring pattern 451.
  • solder solder
  • the contact surface becomes a Schottky junction between the semiconductor and the metal.
  • the lead terminal 325 is a terminal connected to a power source (that is, a power terminal)
  • the solder 370 protruding from the bottom of the power terminal 325 contacts the back surface of the pellet 310
  • a forward bias is applied to the Schottky junction.
  • the semiconductor for example, GaAs
  • the pellet 310 is semi-insulating ( ⁇ very high resistance)
  • a forward bias is applied to the Schottky junction. Almost no current flowed when applied.
  • an object of the present invention is to provide a magnetic sensor, a magnetic sensor device, and a method for manufacturing the magnetic sensor that can prevent an increase in leakage current.
  • a magnetic sensor includes a pellet, a plurality of lead terminals arranged around the pellet, a plurality of electrode portions included in the pellet, and the plurality of lead terminals.
  • a plurality of conductive wires that electrically connect each of the plurality of conductive wires, an insulating layer that covers a surface of the pellet opposite to the surface having the plurality of electrode portions, and a resin member that covers the pellet and the plurality of conductive wires.
  • the insulating layer and the resin member are made of different materials (for example, the components contained are different, or the content ratios are different even if the components contained are the same).
  • the insulating layer may be in contact with the surface of the pellet opposite to the surface having the plurality of electrode portions.
  • the resin member may be a mold resin that seals the pellet, the plurality of conductive wires, and a surface of each of the plurality of lead terminals connected to the conductive wires.
  • the plurality of lead terminals include a first lead terminal, a second lead terminal facing the first lead terminal across the pellet, a third lead terminal, You may have a 4th lead terminal facing the said 3rd lead terminal on both sides of the said pellet.
  • the pellet may include a magnetoelectric conversion element.
  • the first lead terminal is a power supply lead terminal that supplies a predetermined voltage to the magnetoelectric conversion element, and the second lead terminal supplies a ground potential to the magnetoelectric conversion element.
  • the third lead terminal and the fourth lead terminal may be signal lead terminals for extracting a Hall electromotive force signal of the magnetoelectric transducer.
  • the insulating layer may include a thermosetting resin.
  • the insulating layer may further include an ultraviolet curable resin.
  • a thickness of a portion of the insulating layer that covers the opposite surface of the pellet may be at least 2 ⁇ m or more.
  • a magnetic sensor device electrically connects the magnetic sensor, a wiring board to which the magnetic sensor is mounted, and the plurality of lead terminals provided in the magnetic sensor to a wiring pattern of the wiring board. Solder.
  • a method of manufacturing a magnetic sensor according to one aspect of the present invention includes a step of preparing a lead frame in which a plurality of lead terminals are formed on one surface of a substrate, and the plurality of lead terminals on one surface of the substrate.
  • a step of placing a pellet in an area surrounded by an insulating layer, a step of electrically connecting a plurality of electrode portions of the pellet and the plurality of lead terminals with a plurality of conductive wires, and the base A step of sealing the surface of the material on which the pellets are placed with a resin member, and a step of separating the base material from the resin member and the insulating layer, The insulating layer is left on the surface of the pellet opposite to the surface having the plurality of electrode portions.
  • the manufacturing method of said magnetic sensor after the process of isolate
  • the back surface of the pellet is covered with the insulating layer.
  • a Schottky junction is formed between the pellet (semiconductor) and the solder (metal) even when, for example, the solder protrudes from under the power supply terminal to below the pellet. It is possible to prevent current from flowing in the forward direction of the Schottky junction (that is, the direction from the metal to the semiconductor). Therefore, even when the pellet is thinned in the islandless structure magnetic sensor, an increase in leakage current can be prevented.
  • the figure which shows the structural example of the magnetic sensor 100 which concerns on 1st Embodiment of this invention The figure shown in order of the process which shows the manufacturing method of the magnetic sensor 100.
  • FIG. The figure shown in order of the process which shows the manufacturing method of the magnetic sensor 100.
  • FIG. The figure which shows the structural example of the magnetic sensor apparatus 200 which concerns on 1st Embodiment of this invention.
  • the magnetic sensor according to the present embodiment includes a pellet, a plurality of lead terminals arranged around the pellet, a plurality of lead wires that electrically connect the plurality of electrode portions of the pellet and the plurality of lead terminals, respectively. And an insulating layer that covers at least a part of the surface of the pellet opposite to the surface having the plurality of electrode portions, and a resin member that covers the pellet and the plurality of conductive wires, and at least the insulating layer A part and at least a part of the surface of the plurality of lead terminals opposite to the surface connected to the conducting wire are exposed from the resin member.
  • the insulating layer include an insulating resin layer and an insulating sheet.
  • the insulating layer may have a resistance higher than that of the pellet.
  • the volume resistivity of the insulating layer is preferably 10 8 to 10 20 ( ⁇ ⁇ cm). More preferably, the volume resistivity of the insulating layer is 10 10 to 10 18 ( ⁇ ⁇ cm).
  • the resistance of the insulating layer is 10 10 to 10 18 ( ⁇ )
  • the resistance of the pellet is usually about 10 9 ⁇ or less. There is.
  • FIGS. 1A to 1D are a cross-sectional view, a plan view, a bottom view, and an external view showing a configuration example of the magnetic sensor 100 according to the first embodiment of the present invention.
  • FIG. 1A shows a cross section of FIG. 1B cut along a broken line AA ′.
  • the mold resin (resin member) is omitted. As shown in FIGS.
  • the magnetic sensor 100 includes a pellet (that is, a magnetic sensor chip) 10, a lead terminal 20, a plurality of fine metal wires 31 to 34, an insulating paste 40, a mold, and the like. A resin 50 and an exterior plating layer 60 are provided.
  • the lead terminal 20 has a plurality of lead terminals 22 to 25.
  • the pellet 10 is a magnetoelectric conversion element such as a Hall element.
  • the pellet 10 is electrically connected to, for example, a semi-insulating gallium arsenide (GaAs) substrate 11, an active layer (that is, a sensing part) 12 made of a semiconductor thin film formed on the GaAs substrate 11, and the active layer 12. And electrodes 13a to 13d to be connected.
  • the active layer 12 has, for example, a cross shape in plan view, and electrodes 13a to 13d are provided on the four tip portions of the cross, respectively.
  • a pair of electrodes 13a and 13c facing each other in plan view are input terminals for flowing current to the Hall element, and another pair of electrodes 13b and 13d facing each other in a direction orthogonal to the line connecting the electrodes 13a and 13c in plan view are holes. This is an output terminal for outputting a voltage from the element.
  • the thickness of the pellet 10 is, for example, 0.10 mm or less.
  • the magnetic sensor 100 has an islandless structure and has a plurality of lead terminals 22 to 25 for obtaining an electrical connection with the outside.
  • the lead terminals 22 to 25 are arranged around the pellet 10 (for example, near the four corners of the magnetic sensor 100).
  • the lead terminal 22 and the lead terminal 24 are disposed so as to face each other with the pellet 10 interposed therebetween.
  • the lead terminal 23 and the lead terminal 25 are arranged so as to face each other with the pellet 10 interposed therebetween.
  • the lead terminals 22 to 25 are arranged so that a straight line (imaginary line) connecting the lead terminal 22 and the lead terminal 24 and a straight line connecting the lead terminal 23 and the lead terminal 25 (virtual line) intersect each other in plan view.
  • the lead terminal 20 (lead terminals 22 to 25) is made of a metal such as copper (Cu), for example. Further, the lead terminal 20 may be etched (that is, half-etched) on a part of the surface side or the back surface thereof.
  • the front and back surfaces of the lead terminal 20 may be plated with nickel (Ni) -palladium (Pd) -gold (Au) or the like instead of the exterior plating layer 60.
  • Ni nickel
  • Pd palladium
  • Au gold
  • the fine metal wires 31 to 34 are conductive wires that electrically connect the electrodes 13a to 13d of the pellet 10 and the lead terminals 22 to 25, respectively, and are made of, for example, gold (Au). As shown in FIG. 1B, the fine metal wire 31 connects the lead terminal 22 and the electrode 13a, and the fine metal wire 32 connects the lead terminal 23 and the electrode 13b. Further, the fine metal wire 33 connects the lead terminal 24 and the electrode 13c, and the fine metal wire 34 connects the lead terminal 25 and the electrode 13d.
  • the insulating paste 40 includes, for example, an epoxy thermosetting resin as its components and silica (SiO 2 ) as a filler.
  • the insulating paste 40 is in contact with the back surface of the pellet 10 (that is, the surface opposite to the surface having the active layer 12 (that is, the surface having the electrode portions 13a to 13d)).
  • the back surface of the pellet 10 is covered.
  • the thickness of the portion of the insulating paste 40 covering the back surface of the pellet 10 is determined by the filler size and is, for example, 5 ⁇ m or more.
  • the mold resin 50 covers and protects (that is, resin-encapsulates) the pellet 10, at least the surface side of the lead terminal 20 (that is, the surface connected to the fine metal wire), and the fine metal wires 31 to 34. .
  • the mold resin 50 is made of, for example, an epoxy-based thermosetting resin, and can withstand high heat during reflow.
  • the mold resin 50 and the insulating paste 40 are different from each other even in the case of, for example, the same epoxy-based thermosetting resin (for example, the components contained are different or the components contained are the same). The ratio is different.) As shown in FIGS.
  • the exterior plating layer 60 is formed on the back surfaces of the lead terminals 22 to 25 exposed from the mold resin 50.
  • the exterior plating layer 60 is made of, for example, tin (Sn).
  • the lead terminal 24 is a ground lead terminal that supplies a ground potential to the pellet 10.
  • the lead terminals 23 and 25 are signal extraction lead terminals for taking out the Hall electromotive force signal of the pellet 10.
  • the magnetic sensor manufacturing method of the present embodiment is surrounded by a step of preparing a lead frame in which a plurality of lead terminals are formed on one surface of a substrate, and the plurality of lead terminals on one surface of the substrate.
  • the insulating layer is left on the surface opposite to the surface having the plurality of electrode portions.
  • FIGS. 2A to 2E and FIGS. 3A to 3D are a plan view and cross-sectional views showing a method of manufacturing the magnetic sensor 100 in the order of steps. 2A to 2E, the dicing blade width (ie, the kerf width) is not shown.
  • a lead frame 120 on which the aforementioned lead terminals are formed is prepared.
  • the lead frame 120 is a substrate in which a plurality of lead terminals 20 shown in FIG. 1B are connected in the vertical direction and the horizontal direction in plan view.
  • one surface of the heat-resistant film 80 is attached to the back side of the lead frame 120 as a base material.
  • an insulating adhesive layer is applied to one surface of the heat resistant film 80.
  • the adhesive layer is based on, for example, a silicone resin as a component. This adhesive layer makes it easy to attach the lead frame 120 to the heat resistant film 80. By sticking the heat resistant film 80 to the back surface side of the lead frame 120, the penetration region penetrating the lead frame 120 is closed with the heat resistant film 80 from the back surface side.
  • the heat resistant film 80 which is a base material, it is preferable to use the resin-made tape which has adhesiveness and has heat resistance.
  • the one where the paste thickness of the adhesion layer is thinner is preferable.
  • heat resistance it is necessary to withstand temperatures of about 150 ° C. to 200 ° C.
  • a heat-resistant film 80 for example, a polyimide tape can be used.
  • the polyimide tape has heat resistance that can withstand about 280 ° C.
  • Such a polyimide tape having high heat resistance can withstand high heat applied during subsequent molding or wire bonding.
  • the following tape may be used as the heat resistant film 80.
  • -Polyester tape Heat-resistant temperature, about 130 ° C (however, the heat-resistant temperature reaches about 200 ° C depending on use conditions).
  • the insulating paste 40 is applied to the region surrounded by the lead terminals 22 to 25 on the surface of the heat resistant film 80 having the adhesive layer.
  • the application conditions of the insulating paste 40 for example, the application range, the application thickness, etc.
  • the pellet 10 is mounted in the area
  • heat treatment that is, curing
  • heat treatment that is, curing
  • a mold resin 50 is formed (that is, resin sealing is performed). This resin sealing is performed using, for example, a transfer mold technique.
  • a mold die 90 including a lower die 91 and an upper die 92 is prepared, and the lead frame 20 after wire bonding is placed in the cavity of the mold die 90. .
  • the mold resin 50 heated and melted is injected and filled into the side of the cavity having the adhesive layer of the heat resistant film 80 (that is, the surface bonded to the lead frame 20).
  • the pellet 10 at least the surface side of the lead frame 20, and the fine metal wires 31 to 34 are resin-sealed.
  • the mold resin 50 is taken out from the mold.
  • the heat resistant film 80 is peeled from the insulating paste 40 and the mold resin 50.
  • the heat resistant film 80 is peeled from the insulating paste 40 and the mold resin 50 while leaving the insulating paste 40 on the back surface of the pellet 10.
  • exterior plating is applied to the surface exposed from the mold resin 50 of the lead frame 20 (at least the back surface exposed from the mold resin 50 of each lead terminal 22 to 25).
  • the exterior plating layer 60 is formed.
  • a dicing tape 93 is attached to the upper surface of the mold resin 50 (that is, the surface opposite to the surface having the exterior plating layer 60 of the magnetic sensor 100).
  • the blade is moved relative to the lead frame 120 to cut the mold resin 50 and the lead frame 120 (that is, dicing is performed). Do.) That is, the mold resin 50 and the lead frame 120 are diced for each of the plurality of pellets 10 and separated into individual pieces. The diced lead frame 120 becomes the lead terminal 20.
  • the magnetic sensor 100 shown in FIGS. 1A to 1D is completed.
  • FIG. 4 is a cross-sectional view showing a configuration example of the magnetic sensor device 200 according to the first embodiment of the present invention.
  • a wiring board 250 is prepared as shown in FIG. 4, for example, and the magnetic sensor 100 is mounted on one surface of the wiring board 250.
  • the back surface of each of the lead terminals 22 to 25 that is exposed from the mold resin 50 and is covered with the exterior plating layer 60 is connected to the wiring pattern 251 of the wiring board 250 via the solder 70.
  • This soldering can be performed by a reflow method, for example.
  • a solder paste is applied (that is, printed) on the wiring pattern 251, and the magnetic sensor 100 is disposed on the wiring substrate 250 so that the exterior plating layer 60 is overlaid thereon. It is a method of melting solder by adding. After the mounting process, as shown in FIG. 4, the magnetic sensor 100, the wiring board 250 to which the magnetic sensor 100 is attached, and the lead terminals 22 to 25 of the magnetic sensor 100 are electrically connected to the wiring pattern 251 of the wiring board 250. The magnetic sensor device 200 including the solder 70 to be connected is completed.
  • the thin metal wires 31 to 34 correspond to “a plurality of conductive wires” of the present invention
  • the insulating paste 40 corresponds to the “insulating layer” of the present invention
  • the mold resin 50 corresponds to the “resin member” of the present invention. Is supported.
  • the lead terminal 22 corresponds to the “first lead terminal” of the present invention
  • the lead terminal 24 corresponds to the “second lead terminal” of the present invention.
  • One of the lead terminals 23 and 25 corresponds to the “third lead terminal” of the present invention, and the other corresponds to the “fourth lead terminal” of the present invention.
  • the heat resistant film 80 corresponds to the “base material” of the present invention.
  • the first embodiment of the present invention has the following effects.
  • the pellet 10 It is possible to prevent a Schottky junction from being formed between the semiconductor) and the solder 70 (metal), and to prevent current from flowing in the forward direction of the Schottky junction (that is, the direction from the metal toward the semiconductor). be able to. For example, as shown in FIG.
  • the current flows from the solder 70 to the pellet 10. Can be prevented from flowing. Therefore, even when the pellet 10 is reduced in size and thickness in the islandless magnetic sensor 100, an increase in leakage current can be prevented.
  • the magnetic sensor 100 and the magnetic sensor device 200 can be further reduced in size and thickness.
  • FIG. 6 is a diagram schematically showing the effect of reducing variation in the offset voltage Vu with respect to the input voltage Vin.
  • the horizontal axis of FIG. 6 indicates the input voltage Vin for the magnetic sensor, and the vertical axis indicates the offset voltage Vu of the magnetic sensor.
  • the input voltage Vin is a potential difference between the input terminals of the magnetic sensor, and a plus (+) of Vin is a minus of Vin when a voltage is applied in a forward direction (that is, a direction in which a current flows from the lead terminal 22 to the lead terminal 24).
  • (-) Shows a case where a voltage is applied in the reverse direction (that is, the direction in which current flows from the lead terminal 24 to the lead terminal 22).
  • the offset voltage Vu is a potential difference between the output terminals in an environment without magnetism.
  • the offset voltage Vu is ideally zero (0) regardless of the magnitude of the input voltage Vin.
  • the insulating paste 40 is provided between the pellet 10 and the solder 70. Even under the above assumption, no Schottky junction is formed. For this reason, even if the pellet 10 is thinned, no current flows between the pellet 10 and the solder 70, and the variation in the offset voltage Vu can be suppressed as shown by the solid line in FIG.
  • the insulating paste 40 includes, for example, an epoxy thermosetting resin as its component. For this reason, by performing the curing after die bonding, the insulating paste 40 can be easily cured, and the back surface of the pellet 10 can be sealed with the cured insulating paste 40.
  • an insulating layer having adhesive strength (as an example, the insulating paste 40) is applied on the adhesive layer of the heat resistant film 80. And the pellet is attached on it. Since both the adhesive strength of the heat resistant film 80 and the adhesive strength of the insulating paste 40 are used for attaching the pellet 10, the adhesion between the heat resistant film 80 and the pellet 10 can be enhanced. Thereby, for example, in the resin sealing step shown in FIG. 3A, it is possible to prevent the molten mold resin 50 from permeating between the heat resistant film 80 and the pellet 10. Further, it is possible to prevent the relative positional relationship between the pellet 10 and the lead frame 20 from fluctuating due to bonding impact in the wire bonding step after resin sealing.
  • the thickness of the part which covers the back surface of the pellet 10 among the insulating paste 40 is ensured at least 2 micrometers or more. According to the knowledge of the present inventor, if the thickness is at least 2 ⁇ m or more, even when the solder 70 protrudes to the lower side of the pellet 10, the reliability of insulation between the pellet 10 and the solder 70 is improved, Formation of a Schottky junction can be prevented.
  • the pellet 10 may be a Hall IC instead of a Hall element. Even with such a configuration, the effects (1) to (4) of the first embodiment are obtained.
  • Second Embodiment In said 1st Embodiment, the case where the insulating paste 40 was used as an insulating layer which covers the back surface of the pellet 10 was demonstrated.
  • the insulating layer is not limited to the insulating paste 40.
  • an adhesive layer of a die attach film that is, a dicing / die bonding integrated film
  • this point will be described.
  • FIGS. 7A to 7C are a cross-sectional view, a plan view, and an external view showing a configuration example of a magnetic sensor 300 according to the second embodiment of the present invention.
  • FIG. 7A shows a cross section of FIG. 7B cut along a broken line BB ′.
  • the mold resin 50 is omitted in order to avoid complication of the drawing.
  • the magnetic sensor 300 includes a pellet 10, a lead terminal 20, a plurality of fine metal wires 31 to 34, an insulating adhesive layer 130, and a mold resin 50.
  • the adhesive layer 130 includes, for example, an epoxy thermosetting resin, an ultraviolet (UV) curable resin, and a binder resin as its components.
  • the entire back surface of the pellet 10 is covered with the adhesive layer 130.
  • the thickness of the part which covers the back surface of the pellet 10 among the adhesion layers 130 is 10 micrometers or more, for example.
  • the configuration of the magnetic sensor 300 other than the adhesive layer 130 is the same as that of the magnetic sensor 100 described in the first embodiment, for example.
  • the operation of the magnetic sensor 300 is the same as that of the magnetic sensor 100.
  • FIG. 8A is a cross-sectional views showing the method of manufacturing the magnetic sensor 300 according to the second embodiment of the present invention in the order of steps.
  • a die attach film 140 is prepared.
  • the die attach film 140 includes a film substrate 135 and an insulating adhesive layer 130 disposed on one surface of the film substrate 135.
  • the back surface of the semiconductor wafer 160 in which the plurality of pellets 10 are formed (that is, the surface opposite to the surface having the active layer 12) is brought into contact with and adhered to the adhesive layer 130 of the die attach film 140 (that is, the wafer). Mount).
  • the adhesion between the pellet 10 and the film substrate 135 by the adhesive layer 130 is maintained in the process of FIG.
  • the adhesive layer 130 is formed in the process of FIG. 8C.
  • a process for adjusting the adhesive force of the adhesive layer 130 may be performed.
  • the process for adjusting the adhesive force is performed at the timing of wafer mounting or at the timing before and after.
  • the die attach film 140 when performing wafer mounting, the die attach film 140 is heated through a stage to increase the adhesive strength of the binder resin component, which is one of the components of the adhesive layer 130, thereby making the semiconductor wafer 160 and the adhesive layer 130 stronger. You may adjust to the direction to adhere.
  • UV is irradiated toward the die attach film 140 from the side opposite to the surface having the adhesive layer 130 of the die attach film 140, which is one of the components of the adhesive layer 130.
  • the UV curable resin component may be cured and hardened so that dicing is facilitated, and the adhesive force between the film substrate 135 and the adhesive layer 130 may be reduced during die bonding.
  • the semiconductor wafer 160 is diced using, for example, a blade 170, and a plurality of pellets 10 formed in the semiconductor wafer 160 are separated into pieces.
  • the adhesive layer 130 is diced together.
  • the back surface of the pellet 10 is pushed up by the needle-like push-up pins 180 and the surface of the pellet 10 is attracted and lifted by the collet 190 (that is, picked up).
  • the pressure-sensitive adhesive layer 130 of the die attach film 140 is adjusted in advance so as to reduce the pressure-sensitive adhesive force by performing at least one of heating and UV irradiation, for example.
  • the adhesive layer 130 is peeled off from the film substrate 135 in a state where it is adhered to the back surface of the pellet 10. That is, the adhesive layer 130 is peeled off from the film substrate 135 together with the pellet 10.
  • the traces of the pins may remain on the adhesive layer 130 of the die attach film 140.
  • the adhesive layer 130 of the die attach film 140 is used as an insulating layer.
  • a lead frame 120 is prepared, and one surface of a heat resistant film 80, for example, is pasted on the back side thereof. As described above, for example, an insulating adhesive layer is applied to one surface of the heat resistant film 80.
  • the penetration region through which the lead frame 120 penetrates is closed with the heat resistant film 80 from the back surface side.
  • the pellets 10 are arranged in a region surrounded by the lead terminals 22 to 25 in the heat resistant film 80 (ie, die bonding is performed).
  • the back surface side of the pellet 10 is attached to one surface of the heat resistant film 80 via the adhesive layer 130.
  • heat treatment is performed to cure the components of the pressure-sensitive adhesive layer 130 (for example, an epoxy resin thermal effect resin component) to obtain sufficient adhesive strength.
  • the subsequent steps are the same as those in the first embodiment. That is, wire bonding is performed as shown in FIG. 2D, and resin sealing is performed as shown in FIG.
  • the heat resistant film 80 is peeled from the adhesive layer 130 and the mold resin 50. Thereby, the heat resistant film 80 is peeled from the adhesive layer 130 and the mold resin 50 while leaving the insulating adhesive layer 130 on the back surface of the pellet 10.
  • the exterior plating layer 60 is formed on the surface exposed from the mold resin 50 of the lead frame 20.
  • the mold resin 50 and the lead frame substrate 120 are diced along the kerf width.
  • the semiconductor wafer 160 corresponds to the “substrate” of the present invention
  • the adhesive layer 130 corresponds to the “insulating adhesive layer” of the present invention
  • the film substrate 135 corresponds to the “film substrate of the present invention. Is supported. Other correspondences are the same as those in the first embodiment.
  • the second embodiment of the present invention exhibits the following effects in addition to the effects (1) to (5) of the first embodiment.
  • the adhesive layer 130 of the die attach film 140 is used as an insulating layer that covers the back surface of the pellet 10. Thereby, since the application
  • the adhesion layer 130 contains binder resin and UV curable resin as the component, for example.
  • the adhesive force of the adhesive layer 130 is increased by performing heat treatment in a direction in which the semiconductor wafer 160 and the adhesive layer 130 are more strongly adhered, and in the direction in which dicing is facilitated by performing UV irradiation, and The adhesive force between the film substrate 135 and the adhesive layer 130 can be adjusted to be reduced. Thereby, in the process of picking up the pellet 10, the adhesive layer 130 can be easily peeled off from the film substrate 135 together with the pellet 10.
  • the adhesive layer 130 has a high viscosity, it is possible to make the creeping of the side surface of the pellet 10 extremely small as compared with the case where the insulating paste 40 is used. Thereby, there is no defect that the resin adheres to the surface of the pellet 10, and there is an advantage that the thickness of the adhesive layer 130 is not reduced and the thickness can be made uniform.
  • the adhesion layer 130 when using the adhesion layer 130, there exists an advantage that it can be stored by refrigeration instead of freezing about the storage conditions. In the case of refrigerated storage, thawing of the insulating adhesive layer is unnecessary, and there is an advantage that it can be used immediately when necessary. Further, the process conditions also have advantages such as no need to manage the coating amount, small wetting spread, small creeping, and small thickness variation.
  • the modification described in the first embodiment may also be applied to the second embodiment. That is, the pellet 10 may be a Hall IC instead of a Hall element. Even with such a configuration, the effects (1) to (4) of the second embodiment are obtained in addition to the effects (1) to (5) of the first embodiment.
  • the magnetic sensor 300 may be configured by mounting the magnetic sensor 300 described in the second embodiment on the wiring board 250 instead of the magnetic sensor 100. Even with such a configuration, the effects (1) to (4) of the second embodiment are obtained in addition to the effects (1) to (5) of the first embodiment. ⁇ Others>
  • the present invention is not limited to the embodiments described above. Based on the knowledge of those skilled in the art, design changes and the like can be made to each embodiment, and an aspect in which such changes and the like are added is also included in the scope of the present invention.

Abstract

The present invention is provided with the following: a pellet (10); a plurality of lead terminals (22)-(25) disposed on the periphery of the pellet (10); a plurality of thin metal wires (31)-(34) that electrically connect a plurality of electrode parts of the pellet (10) and each of the lead terminals (22)-(25) respectively; an insulative paste (40) that covers the rear surface of the pellet (10); and a molded resin (50) that covers the pellet (10) and the plurality of thin metal wires (31)-(34). At least a portion of the insulative paste (40) and at least a portion of the rear surfaces of the lead terminals (22)-(25) are exposed from the molded resin (50).

Description

磁気センサ及び磁気センサ装置、磁気センサの製造方法Magnetic sensor, magnetic sensor device, and method of manufacturing magnetic sensor
 本発明は、磁気センサ及び磁気センサ装置、磁気センサの製造方法に関し、特に、ペレットを小型薄型化した場合でも、リーク電流の増大を防止できるようにした磁気センサ及び磁気センサ装置、磁気センサの製造方法に関する。 The present invention relates to a magnetic sensor, a magnetic sensor device, and a method for manufacturing a magnetic sensor, and more particularly, a magnetic sensor, a magnetic sensor device, and a magnetic sensor that can prevent an increase in leakage current even when the pellet is reduced in size and thickness. Regarding the method.
 ホール効果を利用した磁気センサとして、例えば、磁気(磁界)を検出してその大きさに比例したアナログ信号を出力するホール素子や、磁気を検出してデジタル信号を出力するホールICが知られている。例えば特許文献1には、リードフレームと、ペレット(即ち、磁気センサチップ)及び金属細線を備えた磁気センサが開示されている。この磁気センサにおいて、リードフレームは外部との電気的接続を得るために四隅に配置された端子を有し、ペレットはリードフレームのアイランドに搭載されている。そして、ペレットが有する電極とリードフレームが有する各端子とが金属細線で接続されている。 As a magnetic sensor using the Hall effect, for example, a Hall element that detects magnetism (magnetic field) and outputs an analog signal proportional to the magnitude, or a Hall IC that detects magnetism and outputs a digital signal is known. Yes. For example, Patent Document 1 discloses a magnetic sensor including a lead frame, a pellet (that is, a magnetic sensor chip), and a thin metal wire. In this magnetic sensor, the lead frame has terminals arranged at the four corners to obtain electrical connection with the outside, and the pellet is mounted on the island of the lead frame. And the electrode which a pellet has and each terminal which a lead frame has are connected with the metal fine wire.
特開2007-95788号公報JP 2007-95788 A
 ところで、近年では電子機器の小型化等に伴い、磁気センサの小型、薄型化も進展している。例えば、磁気センサのパッケージング後の大きさ(即ち、パッケージサイズ)は、縦1.6mm、横0.8mm、厚さ0.38mmを実現している。また、ペレットをさらに薄くすることによって、パッケージサイズの厚さを0.30mmとすることも可能である。また、磁気センサの小型、薄型化をさらに進展させるために、アイランドを省いた構造(即ち、アイランドレス構造)も考えられる。 By the way, in recent years, with the downsizing of electronic devices, etc., the downsizing and thinning of magnetic sensors are also progressing. For example, the size of the magnetic sensor after packaging (that is, the package size) is 1.6 mm in length, 0.8 mm in width, and 0.38 mm in thickness. Further, the package size can be reduced to 0.30 mm by further thinning the pellet. In order to further advance the reduction in size and thickness of the magnetic sensor, a structure in which an island is omitted (that is, an islandless structure) is also conceivable.
 図10(a)及び(b)は、本発明の比較形態に係る磁気センサ400の構成例と、課題を説明するための概念図である。図10(a)に示すように、アイランドレス構造では、ペレット310はモールド樹脂350で固定される。また、アイランドレス構造の磁気センサ310を配線基板450に取り付ける場合は、リードフレーム320の各リード端子のうち、モールド樹脂350から露出している裏面をハンダ(半田)370を介して配線基板450の配線パターン451に接続する。
 ここで、磁気センサ400が小型、薄型化し、その投影面積が小さくなると、リードフレーム320の各リード端子間の距離が短くなる。これにより、各リード端子の裏面を配線パターン451にハンダ付けする際に、リード端子下からハンダ370がはみ出して、ペレット310下に到達する可能性が高くなる。例えば図10(a)に示すように、リード端子325下からはみ出したハンダ370がペレット310の裏面に接触する可能性が高くなる。
10A and 10B are a configuration diagram of a magnetic sensor 400 according to a comparative embodiment of the present invention and a conceptual diagram for explaining the problem. As shown in FIG. 10A, in an islandless structure, the pellet 310 is fixed by a mold resin 350. Further, when the island-less structure magnetic sensor 310 is attached to the wiring board 450, the back surface of each lead terminal of the lead frame 320 exposed from the mold resin 350 is connected to the wiring board 450 via solder (solder) 370. Connect to wiring pattern 451.
Here, when the magnetic sensor 400 is reduced in size and thickness and its projected area is reduced, the distance between the lead terminals of the lead frame 320 is reduced. Thereby, when soldering the back surface of each lead terminal to the wiring pattern 451, the possibility that the solder 370 protrudes from under the lead terminal and reaches under the pellet 310 increases. For example, as shown in FIG. 10A, the possibility that the solder 370 that protrudes from under the lead terminal 325 contacts the back surface of the pellet 310 is increased.
 リード端子325下からはみ出したハンダ370がペレット10の裏面に接触すると、その接触面は半導体と金属のショットキー接合となる。また、図10(b)に示すように、リード端子325が電源に接続される端子(即ち、電源端子)の場合、電源端子325下からはみ出したハンダ370がペレット310の裏面に接触すると、上記のショットキー接合には順バイアスが印加されることになる。ここで、ペレット310を構成している半導体(例えば、GaAs)は半絶縁性(≒超高抵抗)であるため、従来のようにペレット310が厚いときは、上記のショットキー接合に順バイアスを印加しても電流はほとんど流れなかった。 When the solder 370 protruding from under the lead terminal 325 contacts the back surface of the pellet 10, the contact surface becomes a Schottky junction between the semiconductor and the metal. Further, as shown in FIG. 10B, when the lead terminal 325 is a terminal connected to a power source (that is, a power terminal), when the solder 370 protruding from the bottom of the power terminal 325 contacts the back surface of the pellet 310, A forward bias is applied to the Schottky junction. Here, since the semiconductor (for example, GaAs) constituting the pellet 310 is semi-insulating (≈very high resistance), when the pellet 310 is thick as in the prior art, a forward bias is applied to the Schottky junction. Almost no current flowed when applied.
 しかしながら、ペレット310を薄くしていくと、その厚みの減少分に比例して抵抗値が減少する。このため、ペレット310の薄型化に伴い、ショットキー接合の順方向に電流が流れ易くなり、電源端子325→ハンダ370→ペレット310→金属細線343→接地電位に接続されたリード端子(即ち、接地端子)327という経路でリーク電流が流れ易くなる。
 そこで、本発明は、上記のように磁気センサの小型、薄型化を進展させる過程で顕在化する課題に鑑みてなされたものであって、アイランドレス構造の磁気センサにおいてペレットを小型薄型化した場合でも、リーク電流の増大を防止できるようにした磁気センサ及び磁気センサ装置、磁気センサの製造方法の提供を目的とする。
However, as the pellet 310 is made thinner, the resistance value decreases in proportion to the thickness reduction. For this reason, as the pellet 310 is made thinner, a current easily flows in the forward direction of the Schottky junction, and the lead terminal connected to the power supply terminal 325 → solder 370 → pellet 310 → metal thin wire 343 → ground potential (that is, ground) A leakage current easily flows through a route of (terminal) 327.
Therefore, the present invention has been made in view of the problems that have become apparent in the process of making the magnetic sensor small and thin as described above, and in the case where the pellet is made small and thin in the islandless structure magnetic sensor. However, an object of the present invention is to provide a magnetic sensor, a magnetic sensor device, and a method for manufacturing the magnetic sensor that can prevent an increase in leakage current.
 上記課題を解決するために、本発明の一態様に係る磁気センサは、ペレットと、前記ペレットの周囲に配置された複数のリード端子と、前記ペレットが有する複数の電極部と前記複数のリード端子とをそれぞれ電気的に接続する複数の導線と、前記ペレットの前記複数の電極部を有する面の反対側の面を覆う絶縁層と、前記ペレットと前記複数の導線とを覆う樹脂部材と、を備え、前記絶縁層の少なくとも一部と、前記複数のリード端子の各々の前記導線と接続する面の反対側の面の少なくとも一部は、前記樹脂部材からそれぞれ露出している。ここで、絶縁層と樹脂部材は、異なる材料からなる(例えば、含有する成分が異なる、又は、含有する成分が同一であっても含有比が異なる。)。 In order to solve the above problems, a magnetic sensor according to one embodiment of the present invention includes a pellet, a plurality of lead terminals arranged around the pellet, a plurality of electrode portions included in the pellet, and the plurality of lead terminals. A plurality of conductive wires that electrically connect each of the plurality of conductive wires, an insulating layer that covers a surface of the pellet opposite to the surface having the plurality of electrode portions, and a resin member that covers the pellet and the plurality of conductive wires. And at least part of the insulating layer and at least part of the surface of each of the plurality of lead terminals opposite to the surface connected to the conducting wire are exposed from the resin member. Here, the insulating layer and the resin member are made of different materials (for example, the components contained are different, or the content ratios are different even if the components contained are the same).
 また、上記の磁気センサにおいて、前記絶縁層は、前記ペレットの前記複数の電極部を有する面の反対側の面に接していてもよい。
 また、上記の磁気センサにおいて、前記樹脂部材は、前記ペレットと、前記複数の導線と、前記複数のリード端子の各々の前記導線と接続する面とを封止するモールド樹脂であってもよい。
 また、上記の磁気センサにおいて、前記複数のリード端子は、第一のリード端子と、前記ペレットを挟んで前記第一のリード端子と対向する第二のリード端子と、第三のリード端子と、前記ペレットを挟んで前記第三のリード端子と対向する第四のリード端子と、を有してもよい。
In the above magnetic sensor, the insulating layer may be in contact with the surface of the pellet opposite to the surface having the plurality of electrode portions.
In the above magnetic sensor, the resin member may be a mold resin that seals the pellet, the plurality of conductive wires, and a surface of each of the plurality of lead terminals connected to the conductive wires.
Further, in the above magnetic sensor, the plurality of lead terminals include a first lead terminal, a second lead terminal facing the first lead terminal across the pellet, a third lead terminal, You may have a 4th lead terminal facing the said 3rd lead terminal on both sides of the said pellet.
 また、上記の磁気センサにおいて、前記ペレットは、磁電変換素子を有してもよい。
 また、上記の磁気センサにおいて、前記第一のリード端子は、前記磁電変換素子に所定電圧を供給する電源用リード端子であり、前記第二のリード端子は、前記磁電変換素子に接地電位を供給する接地用リード端子であり、前記第三のリード端子と前記第四のリード端子は、前記磁電変換素子のホール起電力信号を取り出す信号取出用リード端子であってもよい。
 また、上記の磁気センサにおいて、前記絶縁層は、熱硬化型樹脂を含んでもよい。
 また、上記の磁気センサにおいて、前記絶縁層は、紫外線硬化型樹脂をさらに含んでもよい。
 また、上記の磁気センサにおいて、前記絶縁層のうち、前記ペレットの前記反対側の面を覆う部分の厚さは、少なくとも2μm以上であってもよい。
In the above magnetic sensor, the pellet may include a magnetoelectric conversion element.
In the above magnetic sensor, the first lead terminal is a power supply lead terminal that supplies a predetermined voltage to the magnetoelectric conversion element, and the second lead terminal supplies a ground potential to the magnetoelectric conversion element. The third lead terminal and the fourth lead terminal may be signal lead terminals for extracting a Hall electromotive force signal of the magnetoelectric transducer.
In the above magnetic sensor, the insulating layer may include a thermosetting resin.
In the above magnetic sensor, the insulating layer may further include an ultraviolet curable resin.
In the above magnetic sensor, a thickness of a portion of the insulating layer that covers the opposite surface of the pellet may be at least 2 μm or more.
 本発明の一態様に係る磁気センサ装置は、上記の磁気センサと、前記磁気センサが取り付けられる配線基板と、前記磁気センサが備える前記複数のリード端子を前記配線基板の配線パターンに電気的に接続するハンダと、を備える。
 本発明の一態様に係る磁気センサの製造方法は、基材の一方の面に複数のリード端子が形成されたリードフレームを準備する工程と、前記基材の一方の面の前記複数のリード端子で囲まれる領域に、絶縁層を介してペレットを載置する工程と、前記ペレットが有する複数の電極部と前記複数のリード端子とを複数の導線でそれぞれ電気的に接続する工程と、前記基材の前記ペレットが載置された面側を樹脂部材で封止する工程と、前記樹脂部材及び前記絶縁層から前記基材を分離する工程と、を備え、前記基材を分離する工程では、前記ペレットの前記複数の電極部を有する面の反対側の面に前記絶縁層を残す。
A magnetic sensor device according to an aspect of the present invention electrically connects the magnetic sensor, a wiring board to which the magnetic sensor is mounted, and the plurality of lead terminals provided in the magnetic sensor to a wiring pattern of the wiring board. Solder.
A method of manufacturing a magnetic sensor according to one aspect of the present invention includes a step of preparing a lead frame in which a plurality of lead terminals are formed on one surface of a substrate, and the plurality of lead terminals on one surface of the substrate. A step of placing a pellet in an area surrounded by an insulating layer, a step of electrically connecting a plurality of electrode portions of the pellet and the plurality of lead terminals with a plurality of conductive wires, and the base A step of sealing the surface of the material on which the pellets are placed with a resin member, and a step of separating the base material from the resin member and the insulating layer, The insulating layer is left on the surface of the pellet opposite to the surface having the plurality of electrode portions.
 また、上記の磁気センサの製造方法において、前記基材を分離する工程の後、さらに、前記樹脂部材を前記複数のペレットの各々ごとにダイシングして個片化する工程を備えてもよい。
 また、上記の磁気センサの製造方法において、前記基材として、耐熱性フィルムを用いてもよい。
 また、上記の磁気センサの製造方法において、前記絶縁層として、絶縁シートを用いてもよい。
 また、上記の磁気センサの製造方法において、前記ペレットを載置する工程の前に、前記ペレットが複数作り込まれた基板の、前記複数の電極部を有する面の反対側の面に絶縁性接着層を有するダイアタッチフィルムを貼付する工程と、前記ダイアタッチフィルムが貼付された前記基板をダイシングして、該基板に作り込まれた複数の前記ペレットを個片化する工程と、前記個片化されたペレットを、前記ダイアタッチフィルムから分離する工程と、をさらに備え、前記ダイアタッチフィルムから分離する工程では、前記ペレットと共に前記絶縁性接着層を前記ダイアタッチフィルムのフィルム基材から剥離し、前記ペレットを載置する工程では、前記絶縁層として、前記フィルム基材から剥離した前記絶縁性接着層を用いてもよい。
Moreover, in the manufacturing method of said magnetic sensor, after the process of isolate | separating the said base material, you may further provide the process of dicing and dividing the said resin member into each of these pellets.
Moreover, in the manufacturing method of said magnetic sensor, you may use a heat resistant film as said base material.
In the above magnetic sensor manufacturing method, an insulating sheet may be used as the insulating layer.
Further, in the above magnetic sensor manufacturing method, before the step of placing the pellet, insulating bonding is performed on a surface of the substrate on which a plurality of the pellets are formed opposite to the surface having the plurality of electrode portions. A step of attaching a die attach film having a layer, a step of dicing the substrate to which the die attach film is attached, and singulating the plurality of pellets formed on the substrate, and the singulation Separating the formed pellets from the die attach film, and in the step of separating from the die attach film, the insulating adhesive layer is peeled off from the film base of the die attach film together with the pellets, In the step of placing the pellets, the insulating adhesive layer peeled off from the film base material may be used as the insulating layer.
 本発明の一態様によれば、アイランドレス構造の磁気センサにおいて、ペレットの裏面は絶縁層で覆われている。これにより、磁気センサを配線基板に取り付ける際に、例えば電源端子下からペレットの下方までハンダがはみ出した場合でも、ペレット(半導体)とハンダ(金属)との間でショットキー接合が形成されることを防ぐことができ、該ショットキー接合の順方向(即ち、金属から半導体に向かう方向)に電流が流れることを防ぐことができる。従って、アイランドレス構造の磁気センサにおいてペレットを薄型化した場合でも、リーク電流の増大を防止することができる。 According to one aspect of the present invention, in the islandless structure magnetic sensor, the back surface of the pellet is covered with the insulating layer. As a result, when the magnetic sensor is attached to the wiring board, a Schottky junction is formed between the pellet (semiconductor) and the solder (metal) even when, for example, the solder protrudes from under the power supply terminal to below the pellet. It is possible to prevent current from flowing in the forward direction of the Schottky junction (that is, the direction from the metal to the semiconductor). Therefore, even when the pellet is thinned in the islandless structure magnetic sensor, an increase in leakage current can be prevented.
本発明の第1実施形態に係る磁気センサ100の構成例を示す図。The figure which shows the structural example of the magnetic sensor 100 which concerns on 1st Embodiment of this invention. 磁気センサ100の製造方法を示す工程順に示す図。The figure shown in order of the process which shows the manufacturing method of the magnetic sensor 100. FIG. 磁気センサ100の製造方法を示す工程順に示す図。The figure shown in order of the process which shows the manufacturing method of the magnetic sensor 100. FIG. 本発明の第1実施形態に係る磁気センサ装置200の構成例を示す図。The figure which shows the structural example of the magnetic sensor apparatus 200 which concerns on 1st Embodiment of this invention. 第1実施形態の効果を説明するための図。The figure for demonstrating the effect of 1st Embodiment. 入力電圧Vinに対するオフセット電圧Vuのばらつき低減の効果を模式的に示した図。The figure which showed typically the effect of the dispersion | variation reduction of the offset voltage Vu with respect to the input voltage Vin. 本発明の第2実施形態に係る磁気センサ300の構成例を示す図。The figure which shows the structural example of the magnetic sensor 300 which concerns on 2nd Embodiment of this invention. 第2実施形態に係る磁気センサ300の製造方法を示す図。The figure which shows the manufacturing method of the magnetic sensor 300 which concerns on 2nd Embodiment. 絶縁性接着層として、絶縁ペースト40を用いる場合と、ダイアタッチフィルム140の粘着層130を用いる場合とを比較した図。The figure which compared the case where the insulating paste 40 is used as an insulating contact bonding layer, and the case where the adhesion layer 130 of the die attach film 140 is used. 本発明の比較形態に係る磁気センサ400の構成例と、課題を説明するための図。The figure for demonstrating the structural example of the magnetic sensor 400 which concerns on the comparison form of this invention, and a subject.
 本実施形態の磁気センサは、ペレットと、前記ペレットの周囲に配置された複数のリード端子と、前記ペレットが有する複数の電極部と前記複数のリード端子とをそれぞれ電気的に接続する複数の導線と、前記ペレットの前記複数の電極部を有する面の反対側の面の少なくとも一部を覆う絶縁層と、前記ペレットと前記複数の導線とを覆う樹脂部材と、を備え、前記絶縁層の少なくとも一部と、前記複数のリード端子の各々の前記導線と接続する面の反対側の面の少なくとも一部は、前記樹脂部材からそれぞれ露出している。 The magnetic sensor according to the present embodiment includes a pellet, a plurality of lead terminals arranged around the pellet, a plurality of lead wires that electrically connect the plurality of electrode portions of the pellet and the plurality of lead terminals, respectively. And an insulating layer that covers at least a part of the surface of the pellet opposite to the surface having the plurality of electrode portions, and a resin member that covers the pellet and the plurality of conductive wires, and at least the insulating layer A part and at least a part of the surface of the plurality of lead terminals opposite to the surface connected to the conducting wire are exposed from the resin member.
 アイランドレス構造の磁気センサにおいて、ペレット裏面の少なくとも一部が絶縁層で覆われており、その絶縁層が樹脂部材から露出する形態であることにより、リーク電流の増大を抑制することができる。
 本実施形態において、絶縁層としては、絶縁樹脂層、絶縁シート等が挙げられる。絶縁層としては、ペレットの抵抗よりも高い抵抗であればよい。例えば、絶縁層の体積抵抗率が10~1020(Ω・cm)であることが好ましい。より好ましくは、絶縁層の体積抵抗率が1010~1018(Ω・cm)である。絶縁層が数mm四方で、厚み数μmの場合、絶縁層の抵抗は、1010~1018(Ω)となり、ペレットの抵抗は、通常、約10Ω以下であるため、十分な絶縁性がある。
In the islandless structure magnetic sensor, at least a part of the pellet back surface is covered with an insulating layer, and the insulating layer is exposed from the resin member, so that an increase in leakage current can be suppressed.
In the present embodiment, examples of the insulating layer include an insulating resin layer and an insulating sheet. The insulating layer may have a resistance higher than that of the pellet. For example, the volume resistivity of the insulating layer is preferably 10 8 to 10 20 (Ω · cm). More preferably, the volume resistivity of the insulating layer is 10 10 to 10 18 (Ω · cm). When the insulating layer is several mm square and the thickness is several μm, the resistance of the insulating layer is 10 10 to 10 18 (Ω), and the resistance of the pellet is usually about 10 9 Ω or less. There is.
 以下、本発明による実施形態を、図面を用いて説明する。なお、以下に説明する各図において、同一の構成を有する部分には同一の符号を付し、その繰り返しの説明は省略する場合もある。
<第1実施形態>
(構成)
図1(a)~(d)は、本発明の第1実施形態に係る磁気センサ100の構成例を示す断面図と平面図と底面図、及び外観図である。図1(a)は、図1(b)を破線A-A´で切断した断面を示している。また、図1(b)では、図面の複雑化を回避するために、モールド樹脂(樹脂部材)を省略して示している。
 図1(a)~(d)に示すように、磁気センサ100は、ペレット(即ち、磁気センサチップ)10と、リード端子20と、複数の金属細線31~34と、絶縁ペースト40と、モールド樹脂50と、外装めっき層60とを備える。また、リード端子20は、複数のリード端子22~25を有する。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings. Note that, in each drawing described below, parts having the same configuration are denoted by the same reference numerals, and repeated description thereof may be omitted.
<First Embodiment>
(Constitution)
1A to 1D are a cross-sectional view, a plan view, a bottom view, and an external view showing a configuration example of the magnetic sensor 100 according to the first embodiment of the present invention. FIG. 1A shows a cross section of FIG. 1B cut along a broken line AA ′. Further, in FIG. 1B, in order to avoid complication of the drawing, the mold resin (resin member) is omitted.
As shown in FIGS. 1A to 1D, the magnetic sensor 100 includes a pellet (that is, a magnetic sensor chip) 10, a lead terminal 20, a plurality of fine metal wires 31 to 34, an insulating paste 40, a mold, and the like. A resin 50 and an exterior plating layer 60 are provided. The lead terminal 20 has a plurality of lead terminals 22 to 25.
 ペレット10は、例えばホール素子等の磁電変換素子である。ペレット10は、例えば半絶縁性のガリウムヒ素(GaAs)基板11と、このGaAs基板11上に形成された半導体薄膜からなる活性層(即ち、受感部)12と、活性層12に電気的に接続する電極13a~13dとを有する。活性層12は、例えば平面視で十字(クロス)型であり、クロスの4つの先端部上にそれぞれ電極13a~13dが設けられている。平面視で向かい合う一対の電極13a、13cがホール素子に電流を流すための入力端子であり、電極13a、13cを結ぶ線と平面視で直交する方向で向かい合う他の一対の電極13b、13dがホール素子から電圧を出力するための出力端子である。ペレット10の厚さは、例えば0.10mm以下である。 The pellet 10 is a magnetoelectric conversion element such as a Hall element. The pellet 10 is electrically connected to, for example, a semi-insulating gallium arsenide (GaAs) substrate 11, an active layer (that is, a sensing part) 12 made of a semiconductor thin film formed on the GaAs substrate 11, and the active layer 12. And electrodes 13a to 13d to be connected. The active layer 12 has, for example, a cross shape in plan view, and electrodes 13a to 13d are provided on the four tip portions of the cross, respectively. A pair of electrodes 13a and 13c facing each other in plan view are input terminals for flowing current to the Hall element, and another pair of electrodes 13b and 13d facing each other in a direction orthogonal to the line connecting the electrodes 13a and 13c in plan view are holes. This is an output terminal for outputting a voltage from the element. The thickness of the pellet 10 is, for example, 0.10 mm or less.
 磁気センサ100は、アイランドレス構造であり、外部との電気的接続を得るための複数のリード端子22~25を有する。図1(b)に示すように、リード端子22~25は、ペレット10の周囲(例えば、磁気センサ100の四隅近傍)に配置されている。例えば、リード端子22とリード端子24とがペレット10を挟んで対向するように配置されている。また、リード端子23とリード端子25とがペレット10を挟んで対向するように配置されている。さらに、リード端子22とリード端子24とを結ぶ直線(仮想線)と、リード端子23とリード端子25とを結ぶ直線(仮想線)とが平面視で交差するように、リード端子22~25はそれぞれ配置されている。リード端子20(リード端子22~25)は、例えば銅(Cu)等の金属からなる。また、リード端子20は、その面側又は裏面の一部がエッチング(即ち、ハーフエッチング)されていてもよい。 The magnetic sensor 100 has an islandless structure and has a plurality of lead terminals 22 to 25 for obtaining an electrical connection with the outside. As shown in FIG. 1B, the lead terminals 22 to 25 are arranged around the pellet 10 (for example, near the four corners of the magnetic sensor 100). For example, the lead terminal 22 and the lead terminal 24 are disposed so as to face each other with the pellet 10 interposed therebetween. Further, the lead terminal 23 and the lead terminal 25 are arranged so as to face each other with the pellet 10 interposed therebetween. Further, the lead terminals 22 to 25 are arranged so that a straight line (imaginary line) connecting the lead terminal 22 and the lead terminal 24 and a straight line connecting the lead terminal 23 and the lead terminal 25 (virtual line) intersect each other in plan view. Each is arranged. The lead terminal 20 (lead terminals 22 to 25) is made of a metal such as copper (Cu), for example. Further, the lead terminal 20 may be etched (that is, half-etched) on a part of the surface side or the back surface thereof.
 なお、図示しないが、リード端子20の表面で(図1(a)における上面側)、金属細線31~34で接続されるリード端子22~25の表面には、Agめっきが施されていることが電気的接続の観点から好ましい。
 また、別の態様で、リード端子20の表面及び裏面には、外装めっき層60に代えて、ニッケル(Ni)-パラジウム(Pd)-金(Au)等のめっきが施されていてもよい。磁気センサであるが、アイランドレスのため、磁性体であるNiめっき膜の影響を受けにくいため実施が可能となる。
 金属細線31~34は、ペレット10が有する電極13a~13dと、リード端子22~25をそれぞれ電気的に接続する導線であり、例えば金(Au)からなる。図1(b)に示すように、金属細線31はリード端子22と電極13aとを接続し、金属細線32はリード端子23と電極13bとを接続している。また、金属細線33はリード端子24と電極13cとを接続し、金属細線34はリード端子25と電極13dとを接続している。
Although not shown, Ag plating is applied to the surfaces of the lead terminals 22 to 25 connected by the thin metal wires 31 to 34 on the surface of the lead terminal 20 (the upper surface side in FIG. 1A). Is preferable from the viewpoint of electrical connection.
In another aspect, the front and back surfaces of the lead terminal 20 may be plated with nickel (Ni) -palladium (Pd) -gold (Au) or the like instead of the exterior plating layer 60. Although it is a magnetic sensor, since it is island-less, it is difficult to be affected by the Ni plating film, which is a magnetic material, and can be implemented.
The fine metal wires 31 to 34 are conductive wires that electrically connect the electrodes 13a to 13d of the pellet 10 and the lead terminals 22 to 25, respectively, and are made of, for example, gold (Au). As shown in FIG. 1B, the fine metal wire 31 connects the lead terminal 22 and the electrode 13a, and the fine metal wire 32 connects the lead terminal 23 and the electrode 13b. Further, the fine metal wire 33 connects the lead terminal 24 and the electrode 13c, and the fine metal wire 34 connects the lead terminal 25 and the electrode 13d.
 絶縁ペースト40は、その成分として例えば、エポキシ系の熱硬化型樹脂と、フィラーとしてシリカ(SiO)とを含むことがより好ましい。第1実施形態では、絶縁ペースト40はペレット10の裏面(即ち、活性層12を有する面(つまり、電極部13a~13dを有する面)の反対側の面)に接しており、この絶縁ペースト40によってペレット10の裏面が覆われている。第1実施形態では、ペレット10の裏面全体が絶縁ペースト40により覆われていることが、リーク電流増大抑制の観点から好ましい。絶縁ペースト40のうち、ペレット10の裏面を覆っている部分の厚さは、フィラーサイズで決まり、例えば5μm以上である。 It is more preferable that the insulating paste 40 includes, for example, an epoxy thermosetting resin as its components and silica (SiO 2 ) as a filler. In the first embodiment, the insulating paste 40 is in contact with the back surface of the pellet 10 (that is, the surface opposite to the surface having the active layer 12 (that is, the surface having the electrode portions 13a to 13d)). Thus, the back surface of the pellet 10 is covered. In the first embodiment, it is preferable from the viewpoint of suppressing increase in leakage current that the entire back surface of the pellet 10 is covered with the insulating paste 40. The thickness of the portion of the insulating paste 40 covering the back surface of the pellet 10 is determined by the filler size and is, for example, 5 μm or more.
 モールド樹脂50は、ペレット10と、リード端子20の少なくとも表面側(即ち、金属細線と接続する側の面)と、金属細線31~34とを覆って保護(即ち、樹脂封止)している。モールド樹脂50は、例えばエポキシ系の熱硬化型樹脂からなり、リフロー時の高熱に耐えられるようになっている。なお、モールド樹脂50と絶縁ペースト40は、例えば同じエポキシ系の熱硬化型樹脂の場合でも、その材料は互いに異なる(例えば、含有する成分が異なる、又は、含有する成分が同一であっても含有比が異なる。)。
 図1(a)及び(d)に示すように、磁気センサ100の底面側(即ち、配線基板に実装する側)では、各リード端子22~25の裏面の少なくとも一部と、絶縁ペースト40の少なくとも一部とが、モールド樹脂50からそれぞれ露出している。
 また、外装めっき層60は、モールド樹脂50から露出しているリード端子22~25の裏面に形成されている。外装めっき層60は、例えばスズ(Sn)等からなる。
The mold resin 50 covers and protects (that is, resin-encapsulates) the pellet 10, at least the surface side of the lead terminal 20 (that is, the surface connected to the fine metal wire), and the fine metal wires 31 to 34. . The mold resin 50 is made of, for example, an epoxy-based thermosetting resin, and can withstand high heat during reflow. The mold resin 50 and the insulating paste 40 are different from each other even in the case of, for example, the same epoxy-based thermosetting resin (for example, the components contained are different or the components contained are the same). The ratio is different.)
As shown in FIGS. 1A and 1D, on the bottom surface side of the magnetic sensor 100 (that is, the side mounted on the wiring board), at least a part of the back surface of each lead terminal 22 to 25 and the insulating paste 40 At least a part of each is exposed from the mold resin 50.
The exterior plating layer 60 is formed on the back surfaces of the lead terminals 22 to 25 exposed from the mold resin 50. The exterior plating layer 60 is made of, for example, tin (Sn).
(動作)
 上記の磁気センサ100を用いて磁気(磁界)を検出する場合は、例えば、リード端子22を電源電位(+)に接続すると共に、リード端子24を接地電位(GND)に接続して、リード端子22からリード端子24に電流を流す。そして、リード端子23、25間の電位差V1-V2(=ホール出力電圧VH)を測定する。ホール出力電圧VHの大きさから磁界の大きさを検出し、ホール出力電圧VHの正負から磁界の向きを検出する。
 即ち、リード端子22は、ペレット10に所定電圧を供給する電源用リード端子である。
 リード端子24は、ペレット10に接地電位を供給する接地用リード端子である。リード端子23、25は、ペレット10のホール起電力信号を取り出す信号取出用リード端子である。
(Operation)
In the case of detecting magnetism (magnetic field) using the magnetic sensor 100, for example, the lead terminal 22 is connected to the power supply potential (+), the lead terminal 24 is connected to the ground potential (GND), and the lead terminal is connected. A current is passed from 22 to the lead terminal 24. Then, the potential difference V1−V2 (= Hall output voltage VH) between the lead terminals 23 and 25 is measured. The magnitude of the magnetic field is detected from the magnitude of the Hall output voltage VH, and the direction of the magnetic field is detected from the positive / negative of the Hall output voltage VH.
That is, the lead terminal 22 is a power supply lead terminal that supplies a predetermined voltage to the pellet 10.
The lead terminal 24 is a ground lead terminal that supplies a ground potential to the pellet 10. The lead terminals 23 and 25 are signal extraction lead terminals for taking out the Hall electromotive force signal of the pellet 10.
(製造方法)
 本実施形態の磁気センサの製造方法は、基材の一方の面に複数のリード端子が形成されたリードフレームを準備する工程と、前記基材の一方の面の前記複数のリード端子で囲まれる領域に、絶縁層を介してペレットを載置する工程と、前記ペレットが有する複数の電極部と前記複数のリード端子とを複数の導線でそれぞれ電気的に接続する工程と、前記基材の前記ペレットが載置された面側を樹脂部材で封止する工程と、前記樹脂部材及び前記絶縁層から前記基材を分離する工程と、を備え、前記基材を分離する工程では、前記ペレットの前記複数の電極部を有する面の反対側の面に前記絶縁層を残す。
(Production method)
The magnetic sensor manufacturing method of the present embodiment is surrounded by a step of preparing a lead frame in which a plurality of lead terminals are formed on one surface of a substrate, and the plurality of lead terminals on one surface of the substrate. A step of placing a pellet on the region through an insulating layer, a step of electrically connecting a plurality of electrode portions of the pellet and the plurality of lead terminals, respectively, with a plurality of conductors, and A step of sealing the surface on which the pellet is placed with a resin member, and a step of separating the base material from the resin member and the insulating layer. In the step of separating the base material, The insulating layer is left on the surface opposite to the surface having the plurality of electrode portions.
 図2(a)~(e)及び図3(a)~(d)は、磁気センサ100の製造方法を示す工程順に示す平面図と断面図である。なお、図2(a)~(e)において、ダイシングのブレード幅(即ち、カーフ幅)の図示は省略している。
 図2(a)に示すように、まず、前述のリード端子が形成されたリードフレーム120を用意する。このリードフレーム120は、図1(b)に示したリード端子20が平面視で縦方向及び横方向に複数繋がっている基板である。
FIGS. 2A to 2E and FIGS. 3A to 3D are a plan view and cross-sectional views showing a method of manufacturing the magnetic sensor 100 in the order of steps. 2A to 2E, the dicing blade width (ie, the kerf width) is not shown.
As shown in FIG. 2A, first, a lead frame 120 on which the aforementioned lead terminals are formed is prepared. The lead frame 120 is a substrate in which a plurality of lead terminals 20 shown in FIG. 1B are connected in the vertical direction and the horizontal direction in plan view.
 次に、図2(b)に示すように、リードフレーム120の裏面側に、例えば、基材として耐熱性フィルム80の一方の面を貼付する。この耐熱性フィルム80の一方の面には例えば絶縁性の粘着層が塗布されている。粘着層は、その成分として、例えばシリコーン樹脂がベースとなっている。この粘着層によって、耐熱性フィルム80にリードフレーム120を貼付し易くなっている。リードフレーム120の裏面側に耐熱性フィルム80を貼付することによって、リードフレーム120の貫通している貫通領域を、裏面側から耐熱性フィルム80で塞いだ状態となる。
 なお、基材である耐熱性フィルム80としては、粘着性を有すると共に、耐熱性を有する樹脂製のテープが用いられることが好ましい。
Next, as shown in FIG. 2B, for example, one surface of the heat-resistant film 80 is attached to the back side of the lead frame 120 as a base material. For example, an insulating adhesive layer is applied to one surface of the heat resistant film 80. The adhesive layer is based on, for example, a silicone resin as a component. This adhesive layer makes it easy to attach the lead frame 120 to the heat resistant film 80. By sticking the heat resistant film 80 to the back surface side of the lead frame 120, the penetration region penetrating the lead frame 120 is closed with the heat resistant film 80 from the back surface side.
In addition, as the heat resistant film 80 which is a base material, it is preferable to use the resin-made tape which has adhesiveness and has heat resistance.
 粘着性については、粘着層の糊厚がより薄いほうが好ましい。また、耐熱性については、約150℃~200℃の温度に耐えることが必要とされる。このような耐熱性フィルム80として、例えばポリイミドテープを用いていることができる。ポリイミドテープは、約280℃に耐える耐熱性を有している。このような高い耐熱性を有するポリイミドテープは、後のモールドやワイヤーボンディング時に加わる高熱にも耐えることが可能である。また、耐熱性フィルム80としては、ポリイミドテープの他に、以下のテープを用いることも可能である。
・ポリエステルテープ 耐熱温度、約130℃(但し使用条件次第で耐熱温度は約200℃にまで達する)。
・テフロン(登録商標)テープ 耐熱温度:約180℃
・PPS(ポリフェニレンサルファイド) 耐熱温度:約160℃
・ガラスクロス 耐熱温度:約200℃
・ノーメックペーパー 耐熱温度:約150~200℃
・他に、アラミド、クレープ紙が耐熱性フィルム80として利用し得る。
About adhesiveness, the one where the paste thickness of the adhesion layer is thinner is preferable. As for heat resistance, it is necessary to withstand temperatures of about 150 ° C. to 200 ° C. As such a heat-resistant film 80, for example, a polyimide tape can be used. The polyimide tape has heat resistance that can withstand about 280 ° C. Such a polyimide tape having high heat resistance can withstand high heat applied during subsequent molding or wire bonding. In addition to the polyimide tape, the following tape may be used as the heat resistant film 80.
-Polyester tape Heat-resistant temperature, about 130 ° C (however, the heat-resistant temperature reaches about 200 ° C depending on use conditions).
・ Teflon (registered trademark) tape Heat-resistant temperature: about 180 ℃
・ PPS (polyphenylene sulfide) Heat-resistant temperature: about 160 ℃
・ Glass cloth heat resistant temperature: about 200 ℃
・ Nomek Paper Heat-resistant temperature: about 150-200 ℃
In addition, aramid and crepe paper can be used as the heat resistant film 80.
 次に、耐熱性フィルム80の粘着層を有する面のうち、リード端子22~25で囲まれた領域に絶縁ペースト40を塗布する。ここでは、完成後の磁気センサ100において、ペレット10の裏面の一部がモールド樹脂50から露出することがないように、絶縁ペースト40の塗布条件(例えば、塗布する範囲、塗布する厚さ等)を調整する。
 次に、図2(c)に示すように、耐熱性フィルム80のうち、絶縁ペースト40が塗布された領域にペレット10を載置する(即ち、ダイボンディングを行う。)。そして、ボンディング後に熱処理(即ち、キュア)を行って、絶縁ペースト40を硬化させて絶縁層とする。
 次に、図2(d)に示すように、金属細線31~34の一端を各リード端子22~25にそれぞれ接続し、金属細線31~34の他端を電極13a~13dにそれぞれ接続する(即ち、ワイヤーボンディングを行う。)。そして、図2(e)に示すように、モールド樹脂50を形成する(即ち、樹脂封止を行う。)。この樹脂封止は、例えばトランスファーモールド技術を用いて行う。
Next, the insulating paste 40 is applied to the region surrounded by the lead terminals 22 to 25 on the surface of the heat resistant film 80 having the adhesive layer. Here, in the completed magnetic sensor 100, the application conditions of the insulating paste 40 (for example, the application range, the application thickness, etc.) so that a part of the back surface of the pellet 10 is not exposed from the mold resin 50. Adjust.
Next, as shown in FIG.2 (c), the pellet 10 is mounted in the area | region where the insulating paste 40 was apply | coated among the heat resistant films 80 (namely, die bonding is performed). Then, after bonding, heat treatment (that is, curing) is performed to cure the insulating paste 40 to form an insulating layer.
Next, as shown in FIG. 2D, one end of each of the fine metal wires 31 to 34 is connected to each of the lead terminals 22 to 25, and the other end of each of the fine metal wires 31 to 34 is connected to each of the electrodes 13a to 13d ( That is, wire bonding is performed.) Then, as shown in FIG. 2E, a mold resin 50 is formed (that is, resin sealing is performed). This resin sealing is performed using, for example, a transfer mold technique.
 例えば図3(a)に示すように、下金型91と上金型92とを備えるモールド金型90を用意し、このモールド金型90のキャビティ内にワイヤーボンディング後のリードフレーム20を配置する。次に、キャビティ内であって、耐熱性フィルム80の粘着層を有する面(即ち、リードフレーム20と接着している面)の側に加熱し溶融したモールド樹脂50を注入し、充填する。これにより、ペレット10と、リードフレーム20の少なくとも表面側と、金属細線31~34とを樹脂封止する。モールド樹脂50が更に加熱し硬化したら、該モールド樹脂50をモールド金型から取り出す。なお、樹脂封止後は任意の工程で、モールド樹脂50の表面に例えば符号等(図示せず)をマーキングしてもよい。 For example, as shown in FIG. 3A, a mold die 90 including a lower die 91 and an upper die 92 is prepared, and the lead frame 20 after wire bonding is placed in the cavity of the mold die 90. . Next, the mold resin 50 heated and melted is injected and filled into the side of the cavity having the adhesive layer of the heat resistant film 80 (that is, the surface bonded to the lead frame 20). As a result, the pellet 10, at least the surface side of the lead frame 20, and the fine metal wires 31 to 34 are resin-sealed. When the mold resin 50 is further heated and cured, the mold resin 50 is taken out from the mold. In addition, you may mark a code | symbol etc. (not shown) on the surface of the mold resin 50 by arbitrary processes after resin sealing.
 次に、図3(b)に示すように、絶縁ペースト40及びモールド樹脂50から耐熱性フィルム80を剥離する。これにより、ペレット10の裏面に絶縁ペースト40を残しつつ、絶縁ペースト40及びモールド樹脂50から耐熱性フィルム80を剥離する。
そして、図3(c)に示すように、リードフレーム20のモールド樹脂50から露出している面(少なくとも、各リード端子22~25のモールド樹脂50から露出している裏面)に外装めっきを施して、外装めっき層60を形成する。
 次に、図3(d)に示すように、モールド樹脂50の上面(即ち、磁気センサ100の外装めっき層60を有する面の反対側の面)にダイシングテープ93を貼付する。そして、例えば図2(e)に示した仮想の2点鎖線に沿って、リードフレーム120に対してブレードを相対的に移動させて、モールド樹脂50及びリードフレーム120を切断する(即ち、ダイシングを行う。)。つまり、モールド樹脂50及びリードフレーム120を複数のペレット10の各々ごとにダイシングして個片化する。ダイシングされたリードフレーム120は、リード端子20となる。
 以上の工程を経て、図1(a)~(d)に示した磁気センサ100が完成する。
Next, as shown in FIG. 3B, the heat resistant film 80 is peeled from the insulating paste 40 and the mold resin 50. Thereby, the heat resistant film 80 is peeled from the insulating paste 40 and the mold resin 50 while leaving the insulating paste 40 on the back surface of the pellet 10.
Then, as shown in FIG. 3C, exterior plating is applied to the surface exposed from the mold resin 50 of the lead frame 20 (at least the back surface exposed from the mold resin 50 of each lead terminal 22 to 25). Then, the exterior plating layer 60 is formed.
Next, as shown in FIG. 3D, a dicing tape 93 is attached to the upper surface of the mold resin 50 (that is, the surface opposite to the surface having the exterior plating layer 60 of the magnetic sensor 100). Then, for example, along the virtual two-dot chain line shown in FIG. 2E, the blade is moved relative to the lead frame 120 to cut the mold resin 50 and the lead frame 120 (that is, dicing is performed). Do.) That is, the mold resin 50 and the lead frame 120 are diced for each of the plurality of pellets 10 and separated into individual pieces. The diced lead frame 120 becomes the lead terminal 20.
Through the above steps, the magnetic sensor 100 shown in FIGS. 1A to 1D is completed.
 図4は、本発明の第1実施形態に係る磁気センサ装置200の構成例を示す断面図である。磁気センサ100が完成した後は、例えば図4に示すように配線基板250を用意し、この配線基板250の一方の面に磁気センサ100を実装する。この実装工程では、例えば、各リード端子22~25のうち、モールド樹脂50から露出し且つ外装めっき層60で覆われている裏面を、ハンダ70を介して配線基板250の配線パターン251に接続する。このハンダ付けは、例えばリフロー方式で行うことができる。リフロー方式は、配線パターン251上にハンダペーストを塗布(即ち、印刷)し、その上に外装めっき層60が重なるように配線基板250上に磁気センサ100を配置し、この状態でハンダペーストに熱を加えてハンダを溶かす方法である。実装工程を経て、図4に示すように、磁気センサ100と、磁気センサ100が取り付けられる配線基板250と、磁気センサ100の各リード端子22~25を配線基板250の配線パターン251に電気的に接続するハンダ70と、を備えた磁気センサ装置200が完成する。 FIG. 4 is a cross-sectional view showing a configuration example of the magnetic sensor device 200 according to the first embodiment of the present invention. After the magnetic sensor 100 is completed, a wiring board 250 is prepared as shown in FIG. 4, for example, and the magnetic sensor 100 is mounted on one surface of the wiring board 250. In this mounting process, for example, the back surface of each of the lead terminals 22 to 25 that is exposed from the mold resin 50 and is covered with the exterior plating layer 60 is connected to the wiring pattern 251 of the wiring board 250 via the solder 70. . This soldering can be performed by a reflow method, for example. In the reflow method, a solder paste is applied (that is, printed) on the wiring pattern 251, and the magnetic sensor 100 is disposed on the wiring substrate 250 so that the exterior plating layer 60 is overlaid thereon. It is a method of melting solder by adding. After the mounting process, as shown in FIG. 4, the magnetic sensor 100, the wiring board 250 to which the magnetic sensor 100 is attached, and the lead terminals 22 to 25 of the magnetic sensor 100 are electrically connected to the wiring pattern 251 of the wiring board 250. The magnetic sensor device 200 including the solder 70 to be connected is completed.
 この第1実施形態では、金属細線31~34が本発明の「複数の導線」に対応し、絶縁ペースト40が本発明の「絶縁層」に対応し、モールド樹脂50が本発明の「樹脂部材」に対応している。また、リード端子22が本発明の「第1のリード端子」に対応し、リード端子24が本発明の「第2のリード端子」に対応している。リード端子23、25の一方が本発明の「第3のリード端子」に対応し、その他方が本発明の「第4のリード端子」に対応している。また、耐熱性フィルム80が本発明の「基材」に対応している。 In the first embodiment, the thin metal wires 31 to 34 correspond to “a plurality of conductive wires” of the present invention, the insulating paste 40 corresponds to the “insulating layer” of the present invention, and the mold resin 50 corresponds to the “resin member” of the present invention. Is supported. The lead terminal 22 corresponds to the “first lead terminal” of the present invention, and the lead terminal 24 corresponds to the “second lead terminal” of the present invention. One of the lead terminals 23 and 25 corresponds to the “third lead terminal” of the present invention, and the other corresponds to the “fourth lead terminal” of the present invention. Further, the heat resistant film 80 corresponds to the “base material” of the present invention.
(第1実施形態の効果)
 本発明の第1実施形態は、以下の効果を奏する。
(1)アイランドレス構造の磁気センサ100において、ペレット10の裏面は絶縁ペースト40で覆われている。これにより、磁気センサ100を配線基板150に取り付ける際に、例えば、電源電位に接続されるリード端子(即ち、電源端子)22下からペレット10の下方までハンダ70がはみ出した場合でも、ペレット10(半導体)とハンダ70(金属)との間でショットキー接合が形成されることを防ぐことができ、該ショットキー接合の順方向(即ち、金属から半導体に向かう方向)に電流が流れることを防ぐことができる。
 例えば図5に示すように、電源端子22→金属細線31→電極13a→活性層12→電極13c→金属細線33→リード端子24の方向に電流を流した場合でも、ハンダ70からペレット10へ電流が流れることを防ぐことができる。従って、アイランドレス構造の磁気センサ100においてペレット10を小型薄型化した場合でも、リーク電流の増大を防止することができる。磁気センサ100や、磁気センサ装置200のさらなる小型、薄型化に寄与することができる。
(Effect of 1st Embodiment)
The first embodiment of the present invention has the following effects.
(1) In the islandless magnetic sensor 100, the back surface of the pellet 10 is covered with the insulating paste 40. Thereby, when the magnetic sensor 100 is attached to the wiring board 150, for example, even when the solder 70 protrudes from the bottom of the lead terminal (that is, the power terminal) 22 connected to the power supply potential to the bottom of the pellet 10, the pellet 10 ( It is possible to prevent a Schottky junction from being formed between the semiconductor) and the solder 70 (metal), and to prevent current from flowing in the forward direction of the Schottky junction (that is, the direction from the metal toward the semiconductor). be able to.
For example, as shown in FIG. 5, even when a current flows in the direction of the power supply terminal 22 → the metal thin wire 31 → the electrode 13a → the active layer 12 → the electrode 13c → the metal thin wire 33 → the lead terminal 24, the current flows from the solder 70 to the pellet 10. Can be prevented from flowing. Therefore, even when the pellet 10 is reduced in size and thickness in the islandless magnetic sensor 100, an increase in leakage current can be prevented. The magnetic sensor 100 and the magnetic sensor device 200 can be further reduced in size and thickness.
 図6は、入力電圧Vinに対するオフセット電圧Vuのばらつき低減の効果を模式的に示した図である。図6の横軸は磁気センサに対する入力電圧Vinを示し、縦軸は磁気センサのオフセット電圧Vuを示す。入力電圧Vinは磁気センサの入力端子間の電位差であり、Vinのプラス(+)は順方向(即ち、リード端子22からリード端子24へ電流を流す方向)に電圧を印加した場合、Vinのマイナス(-)は逆方向(即ち、リード端子24からリード端子22へ電流を流す方向)に電圧を印加した場合をそれぞれ示す。また、オフセット電圧Vuは、磁気の無い環境下での出力端子間の電位差である。オフセット電圧Vuは、入力電圧Vinの大きさに関わらずゼロ(0)となることが理想的である。 FIG. 6 is a diagram schematically showing the effect of reducing variation in the offset voltage Vu with respect to the input voltage Vin. The horizontal axis of FIG. 6 indicates the input voltage Vin for the magnetic sensor, and the vertical axis indicates the offset voltage Vu of the magnetic sensor. The input voltage Vin is a potential difference between the input terminals of the magnetic sensor, and a plus (+) of Vin is a minus of Vin when a voltage is applied in a forward direction (that is, a direction in which a current flows from the lead terminal 22 to the lead terminal 24). (-) Shows a case where a voltage is applied in the reverse direction (that is, the direction in which current flows from the lead terminal 24 to the lead terminal 22). The offset voltage Vu is a potential difference between the output terminals in an environment without magnetism. The offset voltage Vu is ideally zero (0) regardless of the magnitude of the input voltage Vin.
 ここでは、例えば図5に示したように、リード端子22下からペレット10の下方までハンダ70がはみ出している場合を想定する。この想定下で、比較形態に係る構造(即ち、アイランドレスで、ペレットの裏面に絶縁ペーストが存在しない構造。つまり、ペレットの裏面がモールド樹脂から露出している構造)では、ペレットとハンダとの間にショットキー接合が形成される。入力電圧Vinがプラス(+)のときは、このショットキー接合に対して順バイアスとなりハンダからペレットへ電流が流れる。ペレットを薄型化するとショットキー接合の順方向に流れる電流が大きくなるため、図6の破線で示すようにオフセット電圧Vuのばらつきが大きくなる。
 これに対して、本発明の第1実施形態で説明した構造(即ち、アイランドレスで、ペレット10の裏面に絶縁ペースト40が存在する構造)では、ペレット10とハンダ70との間は絶縁ペースト40で絶縁されており、上記の想定下でもショットキー接合は形成されない。このため、ペレット10を薄型化してもペレット10とハンダ70との間で電流は流れず、図6の実線で示すように、オフセット電圧Vuのばらつきを小さく抑えることができる。
Here, for example, as shown in FIG. 5, it is assumed that the solder 70 protrudes from the bottom of the lead terminal 22 to the bottom of the pellet 10. Under this assumption, in the structure according to the comparative form (that is, an islandless structure in which the insulating paste does not exist on the back surface of the pellet. In other words, the structure in which the back surface of the pellet is exposed from the mold resin) A Schottky junction is formed between them. When the input voltage Vin is positive (+), a forward bias is applied to the Schottky junction, and a current flows from the solder to the pellet. When the pellet is thinned, the current flowing in the forward direction of the Schottky junction increases, and therefore the variation in the offset voltage Vu increases as shown by the broken line in FIG.
On the other hand, in the structure described in the first embodiment of the present invention (that is, the structure in which the insulating paste 40 exists on the back surface of the pellet 10 without islands), the insulating paste 40 is provided between the pellet 10 and the solder 70. Even under the above assumption, no Schottky junction is formed. For this reason, even if the pellet 10 is thinned, no current flows between the pellet 10 and the solder 70, and the variation in the offset voltage Vu can be suppressed as shown by the solid line in FIG.
(2)また、リーク電流の増大を防止できるため、消費電力の増大を抑制することができる。
(3)また、絶縁ペースト40は、その成分として例えばエポキシ系の熱硬化型樹脂を含む。このため、ダイボンディング後にキュアを行うことにより、絶縁ペースト40を容易に硬化させることができ、ペレット10の裏面を硬化した絶縁ペースト40で封止することができる。
(2) Since an increase in leakage current can be prevented, an increase in power consumption can be suppressed.
(3) The insulating paste 40 includes, for example, an epoxy thermosetting resin as its component. For this reason, by performing the curing after die bonding, the insulating paste 40 can be easily cured, and the back surface of the pellet 10 can be sealed with the cured insulating paste 40.
(4)また、図2(b)及び(c)に示したペレット10の取付工程では、耐熱性フィルム80の粘着層上に、粘着力を有する絶縁層(一例として、絶縁ペースト40)を塗布し、その上にペレットを取り付けている。ペレット10の取り付けに、耐熱性フィルム80の粘着力と絶縁ペースト40の粘着力の両方を利用するため、耐熱性フィルム80とペレット10との密着性を高めることができる。これにより、例えば図3(a)に示した樹脂封止の工程で、耐熱性フィルム80とペレット10との間に溶融したモールド樹脂50が染み込むことを防ぐことができる。また、樹脂封止後のワイヤーボンディング工程で、ペレット10とリードフレーム20との相対的な位置関係がボンディングの衝撃により変動することを防ぐことができる。 (4) Also, in the step of attaching the pellet 10 shown in FIGS. 2B and 2C, an insulating layer having adhesive strength (as an example, the insulating paste 40) is applied on the adhesive layer of the heat resistant film 80. And the pellet is attached on it. Since both the adhesive strength of the heat resistant film 80 and the adhesive strength of the insulating paste 40 are used for attaching the pellet 10, the adhesion between the heat resistant film 80 and the pellet 10 can be enhanced. Thereby, for example, in the resin sealing step shown in FIG. 3A, it is possible to prevent the molten mold resin 50 from permeating between the heat resistant film 80 and the pellet 10. Further, it is possible to prevent the relative positional relationship between the pellet 10 and the lead frame 20 from fluctuating due to bonding impact in the wire bonding step after resin sealing.
(5)なお、絶縁ペースト40のうち、ペレット10の裏面を覆う部分の厚さは、少なくとも2μm以上確保されていることが好ましい。本発明者の知見によれば、上記厚さが少なくとも2μm以上であれば、ペレット10の下方までハンダ70がはみ出している場合でも、ペレット10とハンダ70との間の絶縁の信頼性を高め、ショットキー接合が形成されることを防ぐことができる。 (5) In addition, it is preferable that the thickness of the part which covers the back surface of the pellet 10 among the insulating paste 40 is ensured at least 2 micrometers or more. According to the knowledge of the present inventor, if the thickness is at least 2 μm or more, even when the solder 70 protrudes to the lower side of the pellet 10, the reliability of insulation between the pellet 10 and the solder 70 is improved, Formation of a Schottky junction can be prevented.
(変形例)
 上記の第1実施形態において、ペレット10はホール素子ではなく、ホールICでもよい。このような構成であっても、第1実施形態の効果(1)~(4)を奏する。
<第2実施形態>
 上記の第1実施形態では、ペレット10の裏面を覆う絶縁層として、絶縁ペースト40を用いる場合について説明した。しかしながら、本発明において、絶縁層は絶縁ペースト40に限定されるものではない。絶縁層として、例えばダイアタッチフィルム(即ち、ダイシング・ダイボンディング一体型フィルム)の粘着層を用いてもよい。第2実施形態では、この点について説明する。
(Modification)
In the first embodiment, the pellet 10 may be a Hall IC instead of a Hall element. Even with such a configuration, the effects (1) to (4) of the first embodiment are obtained.
Second Embodiment
In said 1st Embodiment, the case where the insulating paste 40 was used as an insulating layer which covers the back surface of the pellet 10 was demonstrated. However, in the present invention, the insulating layer is not limited to the insulating paste 40. As the insulating layer, for example, an adhesive layer of a die attach film (that is, a dicing / die bonding integrated film) may be used. In the second embodiment, this point will be described.
(構成)
 図7(a)~(c)は、本発明の第2実施形態に係る磁気センサ300の構成例を示す断面図と平面図、及び外観図である。図7(a)は、図7(b)を破線B-B´で切断した断面を示している。また、図7(b)では、図面の複雑化を回避するために、モールド樹脂50を省略して示している。
 図7(a)~(c)に示すように、磁気センサ300は、ペレット10と、リード端子20と、複数の金属細線31~34と、絶縁性の粘着層130と、モールド樹脂50とを備える。これらの中で、粘着層130は、その成分として、例えばエポキシ系の熱硬化型樹脂と、紫外線(UV)硬化型樹脂と、バインダ樹脂とを含む。第2実施形態では、この粘着層130によって、ペレット10の裏面全体が覆われている。粘着層130のうち、ペレット10の裏面を覆っている部分の厚さは例えば10μm以上である。
 なお、磁気センサ300の、粘着層130以外の構成は、例えば第1実施形態で説明した磁気センサ100と同じである。また、磁気センサ300の動作も、磁気センサ100と同じである。
(Constitution)
7A to 7C are a cross-sectional view, a plan view, and an external view showing a configuration example of a magnetic sensor 300 according to the second embodiment of the present invention. FIG. 7A shows a cross section of FIG. 7B cut along a broken line BB ′. In FIG. 7B, the mold resin 50 is omitted in order to avoid complication of the drawing.
As shown in FIGS. 7A to 7C, the magnetic sensor 300 includes a pellet 10, a lead terminal 20, a plurality of fine metal wires 31 to 34, an insulating adhesive layer 130, and a mold resin 50. Prepare. Among these, the adhesive layer 130 includes, for example, an epoxy thermosetting resin, an ultraviolet (UV) curable resin, and a binder resin as its components. In the second embodiment, the entire back surface of the pellet 10 is covered with the adhesive layer 130. The thickness of the part which covers the back surface of the pellet 10 among the adhesion layers 130 is 10 micrometers or more, for example.
The configuration of the magnetic sensor 300 other than the adhesive layer 130 is the same as that of the magnetic sensor 100 described in the first embodiment, for example. The operation of the magnetic sensor 300 is the same as that of the magnetic sensor 100.
(製造方法)
 図8(a)~(e)は、本発明の第2実施形態に係る磁気センサ300の製造方法を工程順に示す断面図である。
 図8(a)に示すように、まず、ダイアタッチフィルム140を用意する。ダイアタッチフィルム140は、フィルム基材135と、フィルム基材135の一方の面上に配置された絶縁性の粘着層130とを有する。このダイアタッチフィルム140の粘着層130に、複数のペレット10が作り込まれた半導体ウエーハ160の裏面(即ち、活性層12を有する面の反対側の面)を接触させて接着する(即ち、ウエーハマウントを行う)。
 なお、この第2実施形態では、後述する図8(b)の工程では粘着層130によるペレット10とフィルム基材135との接着を維持しつつ、図8(c)の工程では粘着層130がフィルム基材135から剥がれ易くするために、粘着層130の粘着力を調整する処理を行っても良い。この粘着力を調整する処理は、ウエーハマウントを行うタイミング又はその前後のタイミングで行う。
(Production method)
8A to 8E are cross-sectional views showing the method of manufacturing the magnetic sensor 300 according to the second embodiment of the present invention in the order of steps.
As shown in FIG. 8A, first, a die attach film 140 is prepared. The die attach film 140 includes a film substrate 135 and an insulating adhesive layer 130 disposed on one surface of the film substrate 135. The back surface of the semiconductor wafer 160 in which the plurality of pellets 10 are formed (that is, the surface opposite to the surface having the active layer 12) is brought into contact with and adhered to the adhesive layer 130 of the die attach film 140 (that is, the wafer). Mount).
In the second embodiment, while the adhesion between the pellet 10 and the film substrate 135 by the adhesive layer 130 is maintained in the process of FIG. 8B described later, the adhesive layer 130 is formed in the process of FIG. 8C. In order to make it easy to peel off from the film substrate 135, a process for adjusting the adhesive force of the adhesive layer 130 may be performed. The process for adjusting the adhesive force is performed at the timing of wafer mounting or at the timing before and after.
 例えば、ウエーハマウントを行う際に、ダイアタッチフィルム140をステージを介して加熱して、粘着層130の成分の一つであるバインダ樹脂成分の粘着力を高め半導体ウエーハ160と粘着層130をより強く粘着する方向に調整してもよい。また、ウエーハマウントを行った後で、ダイアタッチフィルム140の粘着層130を有する面の反対側から、該ダイアタッチフィルム140に向けてUVを照射して、粘着層130の成分の一つであるUV硬化型樹脂成分を硬化させ、固くなることによりダイシングが容易になる方向に、またダイボンド時にフィルム基材135と粘着層130との粘着力を小さくする方向に調整してもよい。上記のように、ステージを介した加熱又はUV照射の少なくとも一方を行うことにより、粘着層130の粘着力を高めたり、多少硬化させて、その粘着力を小さくする方向に調整することが可能である。 For example, when performing wafer mounting, the die attach film 140 is heated through a stage to increase the adhesive strength of the binder resin component, which is one of the components of the adhesive layer 130, thereby making the semiconductor wafer 160 and the adhesive layer 130 stronger. You may adjust to the direction to adhere. In addition, after wafer mounting, UV is irradiated toward the die attach film 140 from the side opposite to the surface having the adhesive layer 130 of the die attach film 140, which is one of the components of the adhesive layer 130. The UV curable resin component may be cured and hardened so that dicing is facilitated, and the adhesive force between the film substrate 135 and the adhesive layer 130 may be reduced during die bonding. As described above, by performing at least one of heating through the stage or UV irradiation, it is possible to increase the adhesive force of the adhesive layer 130, or to slightly cure it, and to adjust the adhesive force in the direction of decreasing. is there.
 次に、図8(b)に示すように、例えばブレード170を用いて半導体ウエーハ160をダイシングして、半導体ウエーハ160に作り込まれた複数のペレット10を個片化する。ここでは、半導体ウエーハ160のみならず粘着層130も一緒にダイシングする。
 次に、図8(c)に示すように、針状の突き上げピン180でペレット10の裏面を押し上げると共に、ペレット10の表面をコレット190で吸着して持ち上げる(即ち、ピックアップする)。なお、ダイアタッチフィルム140の粘着層130は、上述したように、例えば加熱又はUV照射の少なくとも一方を行うことによってその粘着力を小さくする方向に予め調整されている。このため、ペレット10をピックアップする工程では、粘着層130はペレット10の裏面に接着した状態で、フィルム基材135から剥離する。つまり、ペレット10と共に粘着層130をフィルム基材135から剥離する。
Next, as shown in FIG. 8B, the semiconductor wafer 160 is diced using, for example, a blade 170, and a plurality of pellets 10 formed in the semiconductor wafer 160 are separated into pieces. Here, not only the semiconductor wafer 160 but also the adhesive layer 130 is diced together.
Next, as shown in FIG. 8C, the back surface of the pellet 10 is pushed up by the needle-like push-up pins 180 and the surface of the pellet 10 is attracted and lifted by the collet 190 (that is, picked up). Note that, as described above, the pressure-sensitive adhesive layer 130 of the die attach film 140 is adjusted in advance so as to reduce the pressure-sensitive adhesive force by performing at least one of heating and UV irradiation, for example. For this reason, in the process of picking up the pellet 10, the adhesive layer 130 is peeled off from the film substrate 135 in a state where it is adhered to the back surface of the pellet 10. That is, the adhesive layer 130 is peeled off from the film substrate 135 together with the pellet 10.
 ここで、図8(c)工程において針状の突き上げピン180でペレット10の裏面を押し上げる際、ピンの跡がダイアタッチフィルム140の粘着層130に残ることがある。例えば、完成後の磁気センサ300において、粘着層130にピンの跡が残されていれば、ダイアタッチフィルム140の粘着層130を絶縁層として用いたことがわかる場合もある。
 次に、図8(d)に示すように、リードフレーム120を用意すると共に、その裏面側に、例えば耐熱性フィルム80の一方の面を貼付する。上述したように、耐熱性フィルム80の一方の面には例えば絶縁性の粘着層が塗布されている。リードフレーム基板120の裏面側に耐熱性フィルム80を貼付することによって、リードフレーム120の貫通している貫通領域を、裏面側から耐熱性フィルム80で塞いだ状態となる。
 次に、図8(e)に示すように、耐熱性フィルム80のうち、リード端子22~25で囲まれた領域にペレット10を配置する(即ち、ダイボンディングを行う。)。ここでは、ペレット10の裏面側を粘着層130を介して耐熱性フィルム80の一方の面に取り付ける。この取り付け後、熱処理(キュア)を実施し、粘着層130の成分(例えば、エポキシ樹脂系の熱効果型樹脂成分)を硬化させて、十分な接着強度を得る。
Here, when the back surface of the pellet 10 is pushed up with the needle-like push-up pins 180 in the step of FIG. 8C, the traces of the pins may remain on the adhesive layer 130 of the die attach film 140. For example, in the completed magnetic sensor 300, if a pin mark is left on the adhesive layer 130, it may be understood that the adhesive layer 130 of the die attach film 140 is used as an insulating layer.
Next, as shown in FIG. 8D, a lead frame 120 is prepared, and one surface of a heat resistant film 80, for example, is pasted on the back side thereof. As described above, for example, an insulating adhesive layer is applied to one surface of the heat resistant film 80. By sticking the heat resistant film 80 to the back surface side of the lead frame substrate 120, the penetration region through which the lead frame 120 penetrates is closed with the heat resistant film 80 from the back surface side.
Next, as shown in FIG. 8 (e), the pellets 10 are arranged in a region surrounded by the lead terminals 22 to 25 in the heat resistant film 80 (ie, die bonding is performed). Here, the back surface side of the pellet 10 is attached to one surface of the heat resistant film 80 via the adhesive layer 130. After this attachment, heat treatment (curing) is performed to cure the components of the pressure-sensitive adhesive layer 130 (for example, an epoxy resin thermal effect resin component) to obtain sufficient adhesive strength.
 これ以降の工程は、第1実施形態と同じである。即ち、図2(d)に示したようにワイヤーボンディングを行い、図3(a)に示したように樹脂封止を行う。次に、図3(b)に示したように、粘着層130及びモールド樹脂50から耐熱性フィルム80を剥離する。これにより、ペレット10の裏面に絶縁性の粘着層130を残しつつ、粘着層130及びモールド樹脂50から耐熱性フィルム80を剥離する。次に、図3(c)に示したように、リードフレーム20のモールド樹脂50から露出している面に外装めっき層60を形成する。そして、図3(d)に示したように、モールド樹脂50及びリードフレーム基板120をカーフ幅に沿ってダイシングする。このような工程を経て、図7(a)~(d)に示した磁気センサ300が完成する。
 この第2実施形態では、半導体ウエーハ160が本発明の「基板」に対応し、粘着層130が本発明の「絶縁性接着層」に対応し、フィルム基材135が本発明の「フィルム基材」に対応している。その他の対応関係は第1実施形態と同じである。
The subsequent steps are the same as those in the first embodiment. That is, wire bonding is performed as shown in FIG. 2D, and resin sealing is performed as shown in FIG. Next, as shown in FIG. 3B, the heat resistant film 80 is peeled from the adhesive layer 130 and the mold resin 50. Thereby, the heat resistant film 80 is peeled from the adhesive layer 130 and the mold resin 50 while leaving the insulating adhesive layer 130 on the back surface of the pellet 10. Next, as shown in FIG. 3C, the exterior plating layer 60 is formed on the surface exposed from the mold resin 50 of the lead frame 20. Then, as shown in FIG. 3D, the mold resin 50 and the lead frame substrate 120 are diced along the kerf width. Through these steps, the magnetic sensor 300 shown in FIGS. 7A to 7D is completed.
In this second embodiment, the semiconductor wafer 160 corresponds to the “substrate” of the present invention, the adhesive layer 130 corresponds to the “insulating adhesive layer” of the present invention, and the film substrate 135 corresponds to the “film substrate of the present invention. Is supported. Other correspondences are the same as those in the first embodiment.
(第2実施形態の効果)
 本発明の第2実施形態は、第1実施形態の効果(1)~(5)の効果に加え、以下の効果を奏する。
(1)ペレット10の裏面を覆う絶縁層として、ダイアタッチフィルム140の粘着層130を用いる。これにより、絶縁ペーストの塗布工程を省くことができるので、工程数の削減に寄与することができる。
(2)また、粘着層130は、例えば、その成分としてバインダ樹脂と、UV硬化型樹脂とを含む。このため、熱処理を行うことによって、粘着層130の粘着力を高め半導体ウエーハ160と粘着層130をより強く粘着する方向に、また、UV照射を行うことによって、ダイシングが容易になる方向に、そしてフィルム基材135と粘着層130との粘着力を小さくする方向に調整することができる。これにより、ペレット10をピックアップする工程では、ペレット10と共に、粘着層130をフィルム基材135から容易に剥がすことができる。
(Effect of 2nd Embodiment)
The second embodiment of the present invention exhibits the following effects in addition to the effects (1) to (5) of the first embodiment.
(1) The adhesive layer 130 of the die attach film 140 is used as an insulating layer that covers the back surface of the pellet 10. Thereby, since the application | coating process of insulating paste can be skipped, it can contribute to reduction of the number of processes.
(2) Moreover, the adhesion layer 130 contains binder resin and UV curable resin as the component, for example. For this reason, the adhesive force of the adhesive layer 130 is increased by performing heat treatment in a direction in which the semiconductor wafer 160 and the adhesive layer 130 are more strongly adhered, and in the direction in which dicing is facilitated by performing UV irradiation, and The adhesive force between the film substrate 135 and the adhesive layer 130 can be adjusted to be reduced. Thereby, in the process of picking up the pellet 10, the adhesive layer 130 can be easily peeled off from the film substrate 135 together with the pellet 10.
(3)また、粘着層130は粘性が高いので、絶縁ペースト40を用いる場合と比べて、ペレット10の側面における這い上がりを極めて小さくすることができる。これにより、ペレット10の表面に樹脂が付着する不良が発生することは無く、また粘着層130の厚さも薄くならず厚さを均一化できるという利点がある。
(4)また、図9に示すように、粘着層130を用いる場合は、その保管条件について、冷凍ではなく冷蔵で保管することができる、という利点がある。冷蔵保管の場合は、絶縁性接着層の解凍は不要であり、必要なときに直ぐに使用することができるという利点がある。さらに、工程条件についても、塗布量の管理が不要で、濡れ広がりが小さく、這い上がりが小さく、厚みのばらつきが小さい等の利点がある。
(3) Moreover, since the adhesive layer 130 has a high viscosity, it is possible to make the creeping of the side surface of the pellet 10 extremely small as compared with the case where the insulating paste 40 is used. Thereby, there is no defect that the resin adheres to the surface of the pellet 10, and there is an advantage that the thickness of the adhesive layer 130 is not reduced and the thickness can be made uniform.
(4) Moreover, as shown in FIG. 9, when using the adhesion layer 130, there exists an advantage that it can be stored by refrigeration instead of freezing about the storage conditions. In the case of refrigerated storage, thawing of the insulating adhesive layer is unnecessary, and there is an advantage that it can be used immediately when necessary. Further, the process conditions also have advantages such as no need to manage the coating amount, small wetting spread, small creeping, and small thickness variation.
(変形例)
(1)第2実施形態においても、第1実施形態で説明した変形例を適用してよい。即ち、ペレット10はホール素子ではなく、ホールICでもよい。このような構成であっても、第1実施形態の効果(1)~(5)に加え、第2実施形態の効果(1)~(4)を奏する。
(2)また、図4において、磁気センサ100ではなく、第2実施形態で説明した磁気センサ300を配線基板250に実装して、磁気センサ装置を構成してもよい。このような構成であっても、第1実施形態の効果(1)~(5)に加え、第2実施形態の効果(1)~(4)を奏する。
<その他>
 本発明は、以上に記載した各実施形態に限定されうるものではない。当業者の知識に基づいて各実施形態に設計の変更等を加えることが可能であり、そのような変更等を加えた態様も本発明の範囲に含まれる。
(Modification)
(1) The modification described in the first embodiment may also be applied to the second embodiment. That is, the pellet 10 may be a Hall IC instead of a Hall element. Even with such a configuration, the effects (1) to (4) of the second embodiment are obtained in addition to the effects (1) to (5) of the first embodiment.
(2) In FIG. 4, the magnetic sensor 300 may be configured by mounting the magnetic sensor 300 described in the second embodiment on the wiring board 250 instead of the magnetic sensor 100. Even with such a configuration, the effects (1) to (4) of the second embodiment are obtained in addition to the effects (1) to (5) of the first embodiment.
<Others>
The present invention is not limited to the embodiments described above. Based on the knowledge of those skilled in the art, design changes and the like can be made to each embodiment, and an aspect in which such changes and the like are added is also included in the scope of the present invention.
10 ペレット
11 GaAs基板
12 活性層
13a~13d 電極
20 リード端子
22 リード端子(例えば、電源端子)
23、25 リード端子
24 リード端子(例えば、接地端子)
31~34 金属細線
13a~13d 電極
40 絶縁ペースト
50 モールド樹脂
60 めっき層
70 ハンダ
80 耐熱性フィルム
90 モールド金型
91 下金型
92 上金型
93 ダイシングテープ
100、200 磁気センサ
120 リードフレーム
130 粘着層
135 フィルム基材
140 ダイアタッチフィルム
150 配線基板
160 半導体ウエーハ
170 ブレード
180 ピン
190 コレット
250 配線基板
251 配線パターン
300 磁気センサ装置
10 Pellet 11 GaAs substrate 12 Active layers 13a to 13d Electrode 20 Lead terminal 22 Lead terminal (for example, power supply terminal)
23, 25 Lead terminal 24 Lead terminal (for example, ground terminal)
31 to 34 Fine metal wires 13a to 13d Electrode 40 Insulating paste 50 Mold resin 60 Plating layer 70 Solder 80 Heat resistant film 90 Mold die 91 Lower die 92 Upper die 93 Dicing tape 100, 200 Magnetic sensor 120 Lead frame 130 Adhesive layer 135 Film substrate 140 Die attach film 150 Wiring board 160 Semiconductor wafer 170 Blade 180 Pin 190 Collet 250 Wiring board 251 Wiring pattern 300 Magnetic sensor device

Claims (15)

  1.  ペレットと、
     前記ペレットの周囲に配置された複数のリード端子と、
     前記ペレットが有する複数の電極部と前記複数のリード端子とをそれぞれ電気的に接続する複数の導線と、
     前記ペレットの前記複数の電極部を有する面の反対側の面を覆う絶縁層と、
     前記ペレットと前記複数の導線とを覆う樹脂部材と、を備え、
     前記絶縁層の少なくとも一部と、前記複数のリード端子の各々の前記導線と接続する面の反対側の面の少なくとも一部は、前記樹脂部材からそれぞれ露出している磁気センサ。
    Pellets,
    A plurality of lead terminals arranged around the pellet;
    A plurality of conductive wires for electrically connecting the plurality of electrode portions of the pellet and the plurality of lead terminals;
    An insulating layer covering a surface of the pellet opposite to the surface having the plurality of electrode portions;
    A resin member that covers the pellet and the plurality of conductive wires,
    A magnetic sensor in which at least a part of the insulating layer and at least a part of a surface of each of the plurality of lead terminals opposite to a surface connected to the conducting wire are exposed from the resin member.
  2.  前記絶縁層は、前記ペレットの前記複数の電極部を有する面の反対側の面に接している請求項1に記載の磁気センサ。 The magnetic sensor according to claim 1, wherein the insulating layer is in contact with a surface of the pellet opposite to a surface having the plurality of electrode portions.
  3.  前記樹脂部材は、前記ペレットと、前記複数の導線と、前記複数のリード端子の各々の前記導線と接続する面とを封止するモールド樹脂である請求項1又は2に記載の磁気センサ。 3. The magnetic sensor according to claim 1, wherein the resin member is a mold resin that seals the pellet, the plurality of conductors, and a surface of each of the plurality of lead terminals connected to the conductors.
  4.  前記複数のリード端子は、第一のリード端子と、前記ペレットを挟んで前記第一のリード端子と対向する第二のリード端子と、第三のリード端子と、前記ペレットを挟んで前記第三のリード端子と対向する第四のリード端子と、を有する請求項1~3のいずれか一項に記載の磁気センサ。 The plurality of lead terminals include a first lead terminal, a second lead terminal facing the first lead terminal across the pellet, a third lead terminal, and the third lead terminal sandwiching the pellet. The magnetic sensor according to any one of claims 1 to 3, further comprising a fourth lead terminal facing the lead terminal.
  5.  前記ペレットは、磁電変換素子を有する請求項4に記載の磁気センサ。 The magnetic sensor according to claim 4, wherein the pellet has a magnetoelectric conversion element.
  6.  前記第一のリード端子は、前記磁電変換素子に所定電圧を供給する電源用リード端子であり、
     前記第二のリード端子は、前記磁電変換素子に接地電位を供給する接地用リード端子であり、
     前記第三のリード端子と前記第四のリード端子は、前記磁電変換素子のホール起電力信号を取り出す信号取出用リード端子である請求項5に記載の磁気センサ。
    The first lead terminal is a power lead terminal for supplying a predetermined voltage to the magnetoelectric conversion element,
    The second lead terminal is a ground lead terminal for supplying a ground potential to the magnetoelectric transducer,
    The magnetic sensor according to claim 5, wherein the third lead terminal and the fourth lead terminal are signal extraction lead terminals for extracting a Hall electromotive force signal of the magnetoelectric transducer.
  7.  前記絶縁層は、熱硬化型樹脂を含む請求項1~6のいずれか一項に記載の磁気センサ。 The magnetic sensor according to any one of claims 1 to 6, wherein the insulating layer includes a thermosetting resin.
  8.  前記絶縁層は、紫外線硬化型樹脂をさらに含む請求項7に記載の磁気センサ。 The magnetic sensor according to claim 7, wherein the insulating layer further includes an ultraviolet curable resin.
  9.  前記絶縁層のうち、前記ペレットの前記反対側の面を覆う部分の厚さは、少なくとも2μm以上である請求項1~8のいずれか一項に記載の磁気センサ。 The magnetic sensor according to any one of claims 1 to 8, wherein a thickness of a portion of the insulating layer covering the opposite surface of the pellet is at least 2 µm or more.
  10.  請求項1~9のいずれか一項に記載の磁気センサと、
     前記磁気センサが取り付けられる配線基板と、
     前記磁気センサが備える前記複数のリード端子を前記配線基板の配線パターンに電気的に接続するハンダと、を備える磁気センサ装置。
    A magnetic sensor according to any one of claims 1 to 9,
    A wiring board to which the magnetic sensor is attached;
    And a solder for electrically connecting the plurality of lead terminals provided in the magnetic sensor to a wiring pattern of the wiring board.
  11.  基材の一方の面に複数のリード端子が形成されたリードフレームを準備する工程と、
     前記基材の一方の面の前記複数のリード端子で囲まれる領域に、絶縁層を介してペレットを載置する工程と、
     前記ペレットが有する複数の電極部と前記複数のリード端子とを複数の導線でそれぞれ電気的に接続する工程と、
     前記基材の前記ペレットが載置された面側を樹脂部材で封止する工程と、
     前記樹脂部材及び前記絶縁層から前記基材を分離する工程と、を備え、
     前記基材を分離する工程では、前記ペレットの前記複数の電極部を有する面の反対側の面に前記絶縁層を残す磁気センサの製造方法。
    Preparing a lead frame in which a plurality of lead terminals are formed on one surface of the substrate;
    Placing a pellet via an insulating layer in a region surrounded by the plurality of lead terminals on one surface of the substrate;
    Electrically connecting the plurality of electrode portions of the pellet and the plurality of lead terminals with a plurality of conductive wires, respectively;
    Sealing the surface of the substrate on which the pellets are placed with a resin member;
    Separating the base material from the resin member and the insulating layer,
    In the step of separating the base material, a method of manufacturing a magnetic sensor that leaves the insulating layer on the surface of the pellet opposite to the surface having the plurality of electrode portions.
  12.  前記基材を分離する工程の後、さらに、
     前記樹脂部材を前記複数のペレットの各々ごとにダイシングして個片化する工程を備える請求項11に記載の磁気センサの製造方法。
    After the step of separating the substrate,
    The method for manufacturing a magnetic sensor according to claim 11, further comprising a step of dicing the resin member into pieces for each of the plurality of pellets.
  13.  前記基材として、耐熱性フィルムを用いる請求項11又は12に記載の磁気センサの製造方法。 The method for manufacturing a magnetic sensor according to claim 11 or 12, wherein a heat resistant film is used as the substrate.
  14.  前記絶縁層として、絶縁シートを用いる請求項11~13のいずれか一項に記載の磁気センサの製造方法。 The method of manufacturing a magnetic sensor according to any one of claims 11 to 13, wherein an insulating sheet is used as the insulating layer.
  15.  前記ペレットを載置する工程の前に、
     前記ペレットが複数作り込まれた基板の、前記複数の電極部を有する面の反対側の面に絶縁性接着層を有するダイアタッチフィルムを貼付する工程と、
     前記ダイアタッチフィルムが貼付された前記基板をダイシングして、該基板に作り込まれた複数の前記ペレットを個片化する工程と、
     前記個片化されたペレットを、前記ダイアタッチフィルムから分離する工程と、をさらに備え、
     前記ダイアタッチフィルムから分離する工程では、前記ペレットと共に前記絶縁性接着層を前記ダイアタッチフィルムのフィルム基材から剥離し、
     前記ペレットを載置する工程では、前記絶縁層として、前記フィルム基材から剥離した前記絶縁性接着層を用いる請求項11~14のいずれか一項に記載の磁気センサの製造方法。
    Before the step of placing the pellets,
    A step of attaching a die attach film having an insulating adhesive layer on a surface opposite to the surface having the plurality of electrode portions of the substrate in which a plurality of the pellets are formed;
    Dicing the substrate to which the die attach film is affixed, and dividing the plurality of pellets made on the substrate into pieces,
    Separating the singulated pellets from the die attach film, and
    In the step of separating from the die attach film, the insulating adhesive layer is peeled off from the film substrate of the die attach film together with the pellets,
    The method of manufacturing a magnetic sensor according to any one of claims 11 to 14, wherein in the step of placing the pellet, the insulating adhesive layer peeled off from the film base material is used as the insulating layer.
PCT/JP2013/007097 2012-12-14 2013-12-03 Magnetic sensor and magnetic sensor device, and magnetic sensor manufacturing method WO2014091714A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167011246A KR20160052798A (en) 2012-12-14 2013-12-03 Magnetic sensor and magnetic sensor device, and magnetic sensor manufacturing method
KR1020147020169A KR20140113964A (en) 2012-12-14 2013-12-03 Magnetic sensor and magnetic sensor device, and magnetic sensor manufacturing method
CN201380012069.XA CN104170109B (en) 2012-12-14 2013-12-03 Magnetic Sensor and magnet sensor arrangement
JP2014529369A JP5676826B2 (en) 2012-12-14 2013-12-03 Manufacturing method of magnetic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-273481 2012-12-14
JP2012273481 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091714A1 true WO2014091714A1 (en) 2014-06-19

Family

ID=50934022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007097 WO2014091714A1 (en) 2012-12-14 2013-12-03 Magnetic sensor and magnetic sensor device, and magnetic sensor manufacturing method

Country Status (5)

Country Link
JP (1) JP5676826B2 (en)
KR (2) KR20160052798A (en)
CN (2) CN106848055A (en)
TW (1) TWI543417B (en)
WO (1) WO2014091714A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021549A (en) * 2014-06-17 2016-02-04 旭化成エレクトロニクス株式会社 Hall sensor
WO2016047130A1 (en) * 2014-09-22 2016-03-31 旭化成エレクトロニクス株式会社 Hall sensor and lens module
WO2016051726A1 (en) * 2014-10-03 2016-04-07 旭化成エレクトロニクス株式会社 Hall sensor manufacturing method, hall sensor, and lens module
JP2016103533A (en) * 2014-11-27 2016-06-02 旭化成エレクトロニクス株式会社 Hall sensor and manufacturing method for hall sensor
JP2017005017A (en) * 2015-06-05 2017-01-05 旭化成エレクトロニクス株式会社 Hall sensor
JP2017108077A (en) * 2015-12-11 2017-06-15 旭化成エレクトロニクス株式会社 Hall sensor and method for manufacturing the same
JP2018066722A (en) * 2016-10-14 2018-04-26 旭化成エレクトロニクス株式会社 Semiconductor device
JP2018074067A (en) * 2016-11-01 2018-05-10 旭化成エレクトロニクス株式会社 Semiconductor device
CN110376537A (en) * 2017-12-19 2019-10-25 大连理工大学 A kind of semiconductor three-dimensional Hall sensor production method suitable for high-temperature work environment
JP7138261B1 (en) 2022-06-30 2022-09-15 旭化成エレクトロニクス株式会社 Semiconductor package and driver
JP7360906B2 (en) 2019-11-15 2023-10-13 ローム株式会社 Manufacturing method of semiconductor device and semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10535812B2 (en) 2017-09-04 2020-01-14 Rohm Co., Ltd. Semiconductor device
CN108171299A (en) * 2017-12-19 2018-06-15 中电智能卡有限责任公司 A kind of processing technology of smart card
JP2023036447A (en) * 2021-09-02 2023-03-14 新電元工業株式会社 Lead frame integrated substrate, semiconductor device, manufacturing method of lead frame integrated substrate, and manufacturing method of semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124273A (en) * 1987-11-10 1989-05-17 Asahi Chem Ind Co Ltd Mounting structure of magnetoelectric transducer
JP2003243646A (en) * 2002-02-13 2003-08-29 Asahi Kasei Electronics Co Ltd Composite semiconductor element and its manufacturing method
JP2005123383A (en) * 2003-10-16 2005-05-12 Asahi Kasei Electronics Co Ltd Electromagnetic transducer element
JP2005294443A (en) * 2004-03-31 2005-10-20 Sony Corp Semiconductor device and its manufacturing method
JP2009049253A (en) * 2007-08-22 2009-03-05 Sumitomo Bakelite Co Ltd Adhesive film
WO2010090075A1 (en) * 2009-02-05 2010-08-12 アルプス電気株式会社 Magnetic detector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477152A (en) * 1987-09-18 1989-03-23 Hitachi Ltd Lead frame
KR20030019082A (en) * 2001-08-27 2003-03-06 산요 덴키 가부시키가이샤 Manufacturing method of circuit device
US6703075B1 (en) * 2002-12-24 2004-03-09 Chipmos Technologies (Bermuda) Ltd. Wafer treating method for making adhesive dies
CN101310379B (en) * 2005-11-17 2010-09-15 富士通半导体股份有限公司 Semiconductor device
JP2008103700A (en) * 2006-09-19 2008-05-01 Hitachi Chem Co Ltd Multi-layered die bond sheet, semiconductor device with semiconductor adhesive film, semiconductor device, and method of manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124273A (en) * 1987-11-10 1989-05-17 Asahi Chem Ind Co Ltd Mounting structure of magnetoelectric transducer
JP2003243646A (en) * 2002-02-13 2003-08-29 Asahi Kasei Electronics Co Ltd Composite semiconductor element and its manufacturing method
JP2005123383A (en) * 2003-10-16 2005-05-12 Asahi Kasei Electronics Co Ltd Electromagnetic transducer element
JP2005294443A (en) * 2004-03-31 2005-10-20 Sony Corp Semiconductor device and its manufacturing method
JP2009049253A (en) * 2007-08-22 2009-03-05 Sumitomo Bakelite Co Ltd Adhesive film
WO2010090075A1 (en) * 2009-02-05 2010-08-12 アルプス電気株式会社 Magnetic detector

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021549A (en) * 2014-06-17 2016-02-04 旭化成エレクトロニクス株式会社 Hall sensor
JPWO2016047130A1 (en) * 2014-09-22 2017-04-27 旭化成エレクトロニクス株式会社 Hall sensor and lens module
WO2016047130A1 (en) * 2014-09-22 2016-03-31 旭化成エレクトロニクス株式会社 Hall sensor and lens module
KR101868760B1 (en) * 2014-10-03 2018-06-18 아사히 가세이 일렉트로닉스 가부시끼가이샤 Hall sensor manufacturing method, hall sensor, and lens module
WO2016051726A1 (en) * 2014-10-03 2016-04-07 旭化成エレクトロニクス株式会社 Hall sensor manufacturing method, hall sensor, and lens module
JP6085726B2 (en) * 2014-10-03 2017-02-22 旭化成エレクトロニクス株式会社 Hall sensor manufacturing method, hall sensor, and lens module
KR20170028378A (en) 2014-10-03 2017-03-13 아사히 가세이 일렉트로닉스 가부시끼가이샤 Hall sensor manufacturing method, hall sensor, and lens module
JPWO2016051726A1 (en) * 2014-10-03 2017-04-27 旭化成エレクトロニクス株式会社 Hall sensor manufacturing method, hall sensor, and lens module
JP2016103533A (en) * 2014-11-27 2016-06-02 旭化成エレクトロニクス株式会社 Hall sensor and manufacturing method for hall sensor
JP2017005017A (en) * 2015-06-05 2017-01-05 旭化成エレクトロニクス株式会社 Hall sensor
JP2017108077A (en) * 2015-12-11 2017-06-15 旭化成エレクトロニクス株式会社 Hall sensor and method for manufacturing the same
JP2018066722A (en) * 2016-10-14 2018-04-26 旭化成エレクトロニクス株式会社 Semiconductor device
JP2018074067A (en) * 2016-11-01 2018-05-10 旭化成エレクトロニクス株式会社 Semiconductor device
CN110376537A (en) * 2017-12-19 2019-10-25 大连理工大学 A kind of semiconductor three-dimensional Hall sensor production method suitable for high-temperature work environment
CN110376537B (en) * 2017-12-19 2020-07-24 大连理工大学 Manufacturing method of semiconductor three-dimensional Hall sensor suitable for high-temperature working environment
JP7360906B2 (en) 2019-11-15 2023-10-13 ローム株式会社 Manufacturing method of semiconductor device and semiconductor device
JP7138261B1 (en) 2022-06-30 2022-09-15 旭化成エレクトロニクス株式会社 Semiconductor package and driver
JP2024005900A (en) * 2022-06-30 2024-01-17 旭化成エレクトロニクス株式会社 Semiconductor package, and driving device

Also Published As

Publication number Publication date
TW201436313A (en) 2014-09-16
JPWO2014091714A1 (en) 2017-01-05
TWI543417B (en) 2016-07-21
CN104170109A (en) 2014-11-26
JP5676826B2 (en) 2015-02-25
CN106848055A (en) 2017-06-13
KR20160052798A (en) 2016-05-12
CN106784300A (en) 2017-05-31
KR20140113964A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP5676826B2 (en) Manufacturing method of magnetic sensor
JP6105898B2 (en) Magnetic sensor and manufacturing method thereof
JP6480622B2 (en) Hall sensor
US8980687B2 (en) Semiconductor device and method of manufacturing thereof
US9142472B2 (en) Integrated circuit and method of making
JP2015090350A (en) Magnetic sensor, magnetic sensor device, and method of manufacturing magnetic sensor
KR101868760B1 (en) Hall sensor manufacturing method, hall sensor, and lens module
JP6353287B2 (en) Hall sensor
JP6553416B2 (en) Hall sensor
JP5546972B2 (en) Electronic device, bottom electrode type solid electrolytic capacitor and manufacturing method thereof
CN104170109B (en) Magnetic Sensor and magnet sensor arrangement
JP4408015B2 (en) Manufacturing method of semiconductor device
JP2011103337A (en) Semiconductor device and method of manufacturing the same
JP2009302427A (en) Semiconductor device, and method of manufacturing the same
JP2011044585A (en) Semiconductor device and method of manufacturing the same, as well as electronic apparatus
TW200824052A (en) A submember for electrical device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014529369

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147020169

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863426

Country of ref document: EP

Kind code of ref document: A1