WO2014088104A1 - 対物レンズ及びそれを備えた観察装置 - Google Patents

対物レンズ及びそれを備えた観察装置 Download PDF

Info

Publication number
WO2014088104A1
WO2014088104A1 PCT/JP2013/082876 JP2013082876W WO2014088104A1 WO 2014088104 A1 WO2014088104 A1 WO 2014088104A1 JP 2013082876 W JP2013082876 W JP 2013082876W WO 2014088104 A1 WO2014088104 A1 WO 2014088104A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
observation state
conditional expression
observation
Prior art date
Application number
PCT/JP2013/082876
Other languages
English (en)
French (fr)
Inventor
圭輔 高田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2014551159A priority Critical patent/JP6205369B2/ja
Publication of WO2014088104A1 publication Critical patent/WO2014088104A1/ja
Priority to US14/733,328 priority patent/US9739997B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • G02B23/2438Zoom objectives

Definitions

  • the present invention relates to an objective lens provided with a movable lens group that moves along an optical axis, and an observation apparatus provided with the objective lens.
  • the observation state is changed from a state suitable for normal observation (hereinafter referred to as “normal observation state”) to a state suitable for close observation (hereinafter referred to as “proximity observation state”) by moving the lens group.
  • normal observation state a state suitable for normal observation
  • proximity observation state a state suitable for close observation
  • An objective lens is known that can be reversibly and continuously scaled as described above, and a specific subject arbitrarily selected by the observer from among a plurality of subjects present in the observation region can be observed in detail .
  • an objective lens for example, it comprises, in order from the object side, a first lens group having a positive power, a second lens group having a negative power, and a third lens group having a positive power.
  • zoom lenses that change magnification by moving the second lens group along the optical axis (see Patent Documents 1 and 2).
  • JP, 2010-32680 A Japanese Patent Application Laid-Open No. 11-316339
  • Patent Documents 1 and 2 have a problem that the incident angle of the light beam incident on the image plane is large, and the peripheral light amount is reduced.
  • the present invention has been made in view of the problems of the prior art as described above, and the objective of the present invention is an objective lens and an observation apparatus which can obtain a sufficient peripheral light amount with little variation of aberration during zooming. It is to provide.
  • the objective lens according to the present invention has a first lens group which is fixed at the time of zooming from a normal observation state to a close-up observation state, with the most object side lens having negative power;
  • a second lens group that is disposed on the image side of the lens group and that moves along the optical axis during zooming, and a third lens group that is disposed on the image side of the second lens group and that is fixed during the zooming
  • the zoom lens according to the present invention is characterized in that it comprises a lens group and an aperture stop which is disposed between the second lens group and the image plane and fixed at the time of the magnification change.
  • the observation apparatus of the present invention includes the above objective lens and an autofocus mechanism for moving the second lens group, and focusing is performed by the second lens group. It is characterized by
  • an objective lens and an observation apparatus capable of obtaining a sufficient amount of peripheral light with less variation of aberration during zooming.
  • FIG. 1 It is sectional drawing in alignment with the optical axis which shows the structure of the optical system with which the observation apparatus based on Example 1 is equipped, and a moving direction, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a proximity observation state
  • FIG. It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 1, astigmatism, distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state.
  • FIG. 1 It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 1, astigmatism, distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state.
  • FIG. 1 It is an aberrational figure which shows the spherical aberration of the optical system
  • FIG. 1 It is sectional drawing in alignment with the optical axis which shows the structure of the optical system with which the observation apparatus based on Example 2 is equipped, and a moving direction, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a proximity observation state
  • FIG. It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 3, astigmatism, distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state.
  • FIG. 5 It is sectional drawing in alignment with the optical axis which shows the structure of the optical system with which the observation apparatus based on Example 3 is equipped, and a moving direction, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a proximity observation state FIG. It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 5, astigmatism, distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state FIG.
  • FIG. 7 It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 7, astigmatism, a distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state.
  • FIG. 7 It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 7, astigmatism, a distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state.
  • FIG. 9 It is sectional drawing in alignment with the optical axis which shows the structure of the optical system with which the observation apparatus based on Example 5 is equipped, and a moving direction, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a proximity observation state FIG. It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 9, astigmatism, a distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state FIG.
  • FIG. 1 It is sectional drawing in alignment with the optical axis which shows the structure of the optical system with which the observation apparatus based on Example 6 is equipped, and a moving direction, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a proximity observation state FIG. It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 11, astigmatism, distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state FIG.
  • FIG. 13 It is sectional drawing in alignment with the optical axis which shows the structure of the optical system with which the observation apparatus based on Example 7 is equipped, and a moving direction, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a proximity observation state FIG. It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 13, astigmatism, distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state FIG.
  • FIG. 1 It is sectional drawing in alignment with the optical axis which shows the structure of the optical system with which the observation apparatus based on Example 8 is equipped, and a moving direction, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a proximity observation state FIG. It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 15, astigmatism, distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state FIG.
  • FIG. 17 It is sectional drawing in alignment with the optical axis which shows the structure of the optical system with which the observation apparatus based on Example 9 is equipped, and a moving direction, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a proximity observation state FIG. It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 17, astigmatism, a distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state FIG.
  • FIG. 19 It is sectional drawing in alignment with the optical axis which shows the structure of the optical system with which the observation apparatus based on Example 10 is equipped, and a moving direction, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a proximity observation state FIG. It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 19, astigmatism, distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state FIG.
  • FIG. 21 It is sectional drawing in alignment with the optical axis which shows the structure of the optical system with which the observation apparatus based on Example 11 is equipped, and a moving direction, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a proximity observation state FIG. It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 21, astigmatism, distortion aberration, and magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state FIG.
  • FIG. 1 It is sectional drawing in alignment with the optical axis which shows the structure and moving direction of an optical system with which the observation apparatus which concerns on Example 12 is equipped, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a proximity observation state
  • FIG. It is an aberrational figure which shows the spherical aberration of the optical system shown in FIG. 23, astigmatism, a distortion aberration, and a magnification chromatic aberration, (a) is a normal observation state, (b) is an intermediate observation state, (c) is a close observation state.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a general view of the endoscope apparatus which is an observation apparatus provided with the objective lens of a present Example.
  • the state in which the magnification is the smallest is the “normal observation” state
  • the state in which the magnification is the largest is the “proximity observation”
  • the state of the magnification between the normal observation and the proximity observation is “intermediate It is called a state.
  • the lens closest to the object side has a negative power, and is disposed closer to the image side than the first lens group which is fixed at the time of zooming from the normal observation state to the close observation state
  • the objective lens of the present embodiment is such that the lens on the most object side of the first lens group is a lens having negative power.
  • the objective lens of the present embodiment has a wide angle of view, and facilitates observation close to a subject, that is, close observation.
  • the field of view can be broadened.
  • the objective lens of the present embodiment has the first lens group and the third lens group fixed in this manner, and is disposed on the object side relative to the aperture stop and at a relatively low height of light rays. By moving the second lens group along the optical axis, zooming from the normal observation state to the close observation state is performed.
  • the objective lens of the present embodiment can reduce variation in astigmatism.
  • the objective lens of the present embodiment is thus provided with a fixed aperture stop at the time of zooming between the second lens group, which is the movable lens group, and the image plane.
  • the optical system provided with the lens configuration as in this embodiment the height of the ray at the surface on the image side of the first lens group is high particularly in the close-up observation state. Then, where the ray height is high, the amount of refraction of the ray becomes large, which causes curvature of field, astigmatism and coma.
  • the brightness diaphragm by disposing the brightness diaphragm at a characteristic position, it is possible to suppress unnecessary increase in the height of the light beam and to suppress the occurrence of these aberrations.
  • the objective lens of this embodiment satisfies the following conditional expression (1). 1.24 ⁇
  • This conditional expression (1) defines the power of the lens disposed closest to the object side of the objective lens. If the lens system is configured so as not to fall below the lower limit value of the conditional expression (1), the focal length of the lens can be increased, and the occurrence of various aberrations can be easily suppressed. In addition, the focal length of the entire objective lens system can be reduced, and a sufficient depth of field can be easily ensured. On the other hand, if it is configured not to exceed the upper limit value of this conditional expression (1), the ray height of the lens can be reduced, that is, the diameter of the lens can be reduced, and the outer diameter of the entire objective lens is reduced. Cheap.
  • conditional expressions (1-1) and (1-2) instead of the conditional expression (1).
  • the upper limit value or the lower limit value of the conditional expression (1-1) may be used as the upper limit value or the lower limit value of the conditional expressions (1), (1-2), or the upper limit value of the conditional expression (1-2)
  • the lower limit value may be the upper limit value or the lower limit value of the conditional expressions (1) and (1-1).
  • the objective lens of this embodiment satisfies the following conditional expression (2). 0.8 ⁇
  • F 1 f is the focal length of the lens disposed closest to the object side of the first lens group
  • F c is the focal length of the entire system in the close observation state.
  • This conditional expression (2) defines the power of the lens disposed closest to the object side of the objective lens. If the lens system is configured so as not to fall below the lower limit value of the conditional expression (2), the focal length of the lens can be increased, and the occurrence of various aberrations can be easily suppressed. In addition, the focal length of the entire objective lens system can be reduced, and a sufficient depth of field can be easily ensured. On the other hand, if the lens is constructed so as not to exceed the upper limit value of this conditional expression (2), the ray height of the lens can be lowered, that is, the diameter of the lens can be reduced. It can be made smaller.
  • conditional expressions (2-1) and (2-2) instead of the conditional expression (2).
  • the upper limit value or the lower limit value of the conditional expression (2-1) may be used as the upper limit value or the lower limit value of the conditional expressions (2), (2-2), or the upper limit value of the conditional expression (2-2)
  • the lower limit value may be the upper limit value or the lower limit value of the conditional expressions (2) and (2-1).
  • the objective lens of this embodiment satisfies the following conditional expression (3). 0.7 ⁇
  • ⁇ c is the incident angle of the chief ray to the image plane in the close-up observation state
  • ⁇ n is the incident angle of the chief ray to the image plane in the normal observation state.
  • the image pickup element disposed so as to make the light receiving surface coincide with the image plane
  • a light quantity loss occurs in the light receiving surface, and especially the peripheral light quantity decreases. Therefore, the light quantity loss is usually suppressed by devising the structure of a micro lens or a color filter disposed between the objective lens and the imaging device.
  • the incident angle largely changes as in the objective lens of this embodiment
  • optimization of the incident angle by such a method is not easy. Therefore, in the objective lens of the present embodiment, it is preferable to satisfy the conditional expression (3).
  • the conditional expression (3) defines the relationship between the incident angle of the light beam incident on the image plane in the normal observation state and the close observation state.
  • the conditional expression (3) is satisfied, the fluctuation of the incident angle does not become too large, and the optimization of the incident angle becomes easy even when the imaging device is disposed, and the decrease of the peripheral light amount is suppressed. Cheap.
  • conditional expression (3) 0.8 ⁇
  • the upper limit value or the lower limit value of the conditional expression (3-1) may be used as the upper limit value or the lower limit value of the conditional expressions (3), (3-2), or the upper limit value of the conditional expression (3-2)
  • the lower limit value may be the upper limit value or the lower limit value of the conditional expressions (3) and (3-1).
  • the objective lens of this embodiment satisfies the following conditional expression (4).
  • ⁇ nP is a paraxial angle of view in the normal observation state
  • ⁇ nMax is a maximum angle of view in the normal observation state.
  • I n is the height of the maximum image plane in the normal observation state
  • F n is the focal length in the normal observation state.
  • This conditional expression (4) defines the ratio of the maximum angle of view and the paraxial angle of view in the normal observation state. If the conditional expression (4) is satisfied, for example, the resolution near the center of the observation range can be easily increased, and the peripheral light amount can be easily increased. it can.
  • the objective lens of this embodiment satisfies the following conditional expression (5). -4 ⁇ ( r3lf + r3lb ) / ( r3lf -r3lb ) ⁇ 2 (5)
  • r 3lf is the radius of curvature of the object-side surface of the lens disposed closest to the image side of the third lens group
  • r 3 lb the image-side surface of the lens disposed closest to the image of the third lens group Is the radius of curvature of
  • This conditional expression (5) defines the shape of the lens disposed on the most image side of the third lens group, that is, the most image side of the objective lens. If this conditional expression is satisfied, astigmatism and lateral chromatic aberration can be easily corrected, and suitable optical performance can be easily ensured.
  • conditional expressions (5-1) and (5-2) instead of the conditional expression (5).
  • -3.5 ⁇ ( r3lf + r3lb ) / ( r3lf -r3lb ) ⁇ 1
  • 5-1) -2.7 ⁇ ( r3lf + r3lb ) / ( r3lf -r3lb ) ⁇ 0.6
  • the upper limit value or the lower limit value of conditional expression (5-1) may be used as the upper limit value or the lower limit value of conditional expressions (5), (5-2), or the upper limit value of conditional expression (5-2)
  • the lower limit value may be the upper limit value or the lower limit value of the conditional expressions (5) and (5-1).
  • the objective lens of this embodiment satisfies the following conditional expression (6).
  • ⁇ DT is a variation of distortion when the second lens unit slightly varies.
  • the minute variation is a variation along the optical axis of the second lens unit necessary to change the image plane by (F number x 0.005) mm.
  • This conditional expression (6) represents the amount of fluctuation of distortion when the second lens unit, that is, the movable lens unit moves and the image plane fluctuates minutely ((F number x 0.005) mm). It is a thing. If it is configured not to exceed the upper limit value of the conditional expression (6), it is easy to suppress the fluctuation amount of distortion, that is, the fluctuation of the observation image at the time of object observation.
  • the objective lens of this embodiment satisfies the following conditional expression (7). 0.15 ⁇
  • ⁇ c2 is the lateral magnification of the second lens group in the close observation state
  • ⁇ c3 is the lateral magnification of the third lens group in the close observation state.
  • This conditional expression (7) defines the amount of fluctuation of the image plane when the second lens unit, that is, the movable lens unit moves in the proximity observation state. If the lower limit value of conditional expression (7) is not exceeded, the amount of fluctuation of the image surface with respect to the amount of movement of the movable lens unit does not become too small. As a result, the necessary amount of movement can be suppressed small. , It is easy to miniaturize the whole optical system. On the other hand, when the upper limit value is not exceeded, the amount of fluctuation of the image plane with respect to the amount of movement of the movable lens unit does not become too large. As a result, the aberration fluctuation of curvature of field can be suppressed small.
  • conditional expression (7-1) 0.25 ⁇
  • the second lens group is configured of a single lens component.
  • the configuration of the objective lens can be simplified and reduced in weight. Further, since the configuration of the objective lens is simplified, the configuration of the observation apparatus incorporating the objective lens can be simplified and reduced in weight.
  • the lens component means a single lens or a cemented lens.
  • the third lens group have positive power.
  • such a configuration With such a configuration, it is easy to suppress variations in curvature of field aberration, astigmatism, and coma. Moreover, in addition to fixing the aperture stop, such a configuration makes it easy to suppress changes in the incident angle of the light flux due to the movement of the second lens group, which is a movable lens group, and the peripheral light amount decreases. Will be easier to prevent.
  • the first lens group has a negative power
  • the second lens group has a negative power
  • the second lens group when the first lens group has negative power and the third lens group has positive power, the second lens group has negative power. preferable.
  • the first and second lens groups can be constituted by the same negative group, the second lens group can share the aberration generated in the first lens group, and therefore it is easy to control the curvature of field aberration and astigmatism. .
  • the first lens group have positive power and the second lens group have negative power.
  • the two positive lens groups are arranged symmetrically, so that the aberration generated in the positive first lens group can be corrected by the positive third lens group. It is easy to suppress astigmatism and distortion.
  • the objective lens of this embodiment satisfies the following conditional expression (8).
  • Fno n is the F-number of the entire system at the normal observation state
  • Fno c is the F-number of the entire system at the close observation state.
  • observation apparatus of the present embodiment is characterized by including any one of the above objective lenses and an autofocusing mechanism for moving the second lens group, and performing focusing with the second lens group.
  • the autofocusing mechanism is, for example, a drive mechanism for moving a movable lens group performing focusing along an optical axis, and predetermined information (formed on an imaging element such as a CCD disposed on the image side of the objective lens).
  • Control means for controlling the drive mechanism on the basis of the image information, the distance information from the tip of the objective lens to the observation object, and the like).
  • the numbers shown as subscripts in r 1 , r 2 , ... and d 1 , d 2 , ... in the cross-sectional view along the optical axis of the optical system are the surface numbers 1, 2, It corresponds to ....
  • s represents a surface number
  • r represents a radius of curvature of each surface
  • d represents a surface distance
  • nd represents a refractive index at d-line
  • dd represents an Abbe number at d-line.
  • the position of the aperture stop S is clearly indicated by an arrow.
  • the diameter of the stop is shown larger than the actual diameter of the stop.
  • the actual aperture diameter can be appropriately calculated by those skilled in the art using the F-number and the like described in each embodiment.
  • FIG. 1 is a cross-sectional view along the optical axis showing the configuration and movement direction of the optical system included in this observation apparatus, (a) shows a normal observation state, (b) shows an intermediate observation state, and (c) shows a proximity It is a figure which shows an observation state.
  • FIG. 2 is an aberration diagram showing spherical aberration, astigmatism, distortion and magnification chromatic aberration of the optical system shown in FIG. 1, (a) shows a normal observation state, (b) shows an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a negative power, a second lens group G 2 is movable during zooming it has a positive power along the optical axis, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed between the second lens group G 2 and the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, a lens L 11 is a plano-concave lens having a concave surface facing the has image side a negative power, a lens L 12 which is a flat lens, a positive image side has a power is composed of a lens L 13 is a meniscus lens having a convex surface directed toward the.
  • the second lens group G 2 is composed of a lens L 21 is a biconvex lens having a positive power.
  • the third lens group G 3 is composed of, in order from the object side, a lens L 31 is a biconcave lens having a negative power, a lens L 32 is a biconvex lens having a positive power, the concave surface to the positive image side has a power a lens L 33 is a meniscus lens of which a lens L 34 is a biconvex lens having a positive power, is composed of a lens L 35 is a meniscus lens having a convex surface facing the has image side a negative power There is.
  • the lens L 31 and a lens L 32, the lens L 34 and the lens L 35 are cemented.
  • this observation apparatus by moving the object along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Start focal length 1 1-3.87 2 7 2.51 3 10 2.25
  • Conditional Expression (1) 1.24 ⁇
  • the observation apparatus provided with the objective lens according to the second embodiment will be described in detail below with reference to FIGS. 3 and 4.
  • FIG. 3 is a cross-sectional view along the optical axis showing the configuration and movement direction of the optical system included in this observation apparatus, (a) shows a normal observation state, (b) shows an intermediate observation state, and (c) shows a proximity It is a figure which shows an observation state.
  • FIG. 4 is an aberration diagram showing spherical aberration, astigmatism, distortion and magnification chromatic aberration of the optical system shown in FIG. 3, (a) shows a normal observation state, (b) shows an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a negative power, a second lens group G 2 is movable during zooming it has a positive power along the optical axis, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed between the second lens group G 2 and the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, a lens L 11 is a plano-concave lens having a concave surface facing the has image side a negative power, a lens L 12 which is a flat lens, a positive image side has a power is composed of a lens L 13 is a meniscus lens having a convex surface directed toward the.
  • the second lens group G 2 is composed of a lens L 21 is a meniscus lens having a concave surface facing the positive image side has a power.
  • the third lens group G 3 is composed of, in order from the object side, is a biconvex lens having a lens L 31 is a biconcave lens, a lens L 32 is a biconvex lens having a positive power, a positive power having a negative power a lens L 33, a lens L 34 is a biconvex lens having a positive power is composed of a lens L 35 is a meniscus lens having a convex surface facing the has image side a negative power.
  • the lens L 31 and a lens L 32, the lens L 34 and the lens L 35 are cemented.
  • this observation apparatus by moving the object along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Start focal length 1 1-6.16 2 7 3.10 3 10 2.21
  • Conditional Expression (1) 1.24 ⁇
  • FIG. 5 is a cross-sectional view along the optical axis showing the configuration and movement direction of the optical system included in this observation apparatus, where (a) is a normal observation state, (b) an intermediate observation state, and (c) a proximity It is a figure which shows an observation state.
  • FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, distortion and magnification chromatic aberration of the optical system shown in FIG. 5, (a) shows a normal observation state, (b) shows an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a negative power, a second lens group G 2 is movable during zooming it has a positive power along the optical axis, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed between the second lens group G 2 and the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, a lens L 11 is a plano-concave lens having a concave surface facing the has image side a negative power, a lens L 12 which is a flat lens, the image side has a negative power is composed of a lens L 13 is a meniscus lens having a convex surface directed toward the.
  • the second lens group G 2 includes, in order from the object side, a lens L 21 is a biconvex lens having a positive power is composed of a lens L 22 is a meniscus lens having a convex surface facing the has image side a negative power ing.
  • the lens L 21 and a lens L 22 are cemented.
  • the third lens group G 3 is composed of, in order from the object side, is a biconvex lens having a lens L 31 is a biconcave lens, a lens L 32 is a biconvex lens having a positive power, a positive power having a negative power a lens L 33, and is constituted by a lens L 34 is a meniscus lens having a convex surface facing the has image side a negative power.
  • the lens L 33 and the lens L 34 are cemented.
  • this observation apparatus by moving the object along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Start focal length 1 1-1.67 2 7 2.10 3 11 3.44
  • Conditional Expression (1) 1.24 ⁇
  • FIG. 7 is a cross-sectional view along the optical axis showing the configuration and movement direction of the optical system included in this observation apparatus, (a) shows a normal observation state, (b) shows an intermediate observation state, and (c) shows a proximity It is a figure which shows an observation state.
  • FIG. 8 is an aberration diagram showing spherical aberration, astigmatism, distortion and lateral chromatic aberration of the optical system shown in FIG. 7, (a) showing a normal observation state, (b) an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a positive power, a second lens group G 2 is movable along the optical axis during zooming has a negative power, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed between the second lens group G 2 and the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, a lens L 11 is a plano-concave lens having a concave surface facing the has image side a negative power, a lens L 12 which is a flat lens, a positive image side has a power composed of a lens L 13 is a meniscus lens having a convex surface directed toward a lens L 14 is a meniscus lens having a concave surface on having the image side a negative power, a lens L 15 is a biconvex lens having a positive power in It is done.
  • the lens L 14 and a lens L 15 are cemented.
  • the second lens group G 2 is composed of a lens L 21 which is located at the meniscus lens having a concave surface facing the has image side a negative power.
  • the third lens group G 3 is composed of, in order from the object side, a lens L 31 is a biconvex lens having a positive power, a lens L 32 is a biconvex lens having a positive power, the convex surface on the image side has a negative power is composed of a lens L 33 is a meniscus lens having a.
  • the lens L 32 and the lens L 33 are cemented.
  • this observation apparatus by moving toward the image side along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Start focal length 1 1 1.56 2 10-3.33 3 13 2.73
  • Conditional Expression (1) 1.24 ⁇
  • FIG. 9 is a cross-sectional view along the optical axis showing the configuration of the optical system included in this observation apparatus, where (a) shows a normal observation state, (b) shows an intermediate observation state, and (c) shows a close observation state.
  • FIG. FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, distortion and lateral chromatic aberration of the optical system shown in FIG. 9, (a) showing a normal observation state, (b) showing an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a negative power, a second lens group G 2 is movable along the optical axis during zooming has a negative power, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed between the second lens group G 2 and the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, a lens L 11 is a plano-concave lens having a concave surface facing the has image side a negative power, is constituted by the lens L 12 is a planar lens.
  • the second lens group G 2 is composed of a lens L 21 is a meniscus lens having a concave surface on having the image side a negative power.
  • the third lens group G 3 is composed of, in order from the object side, a lens L 31 is a biconvex lens having a positive power, a lens L 32 is a meniscus lens having a concave surface on having the image side a negative power, positive a lens L 33 is a biconvex lens having power, and the lens L 34 is a biconvex lens having a positive power is composed of a lens L 35 is a biconcave lens having a negative power.
  • the lens L 32 and the lens L 33 , and the lens L 34 and the lens L 35 are cemented.
  • this observation apparatus by moving the object along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Start focal length 1 1 -1.30 2 5-5.72 3 8 1.85
  • Conditional Expression (1) 1.24 ⁇
  • FIG. 11 is a cross-sectional view along the optical axis showing the configuration of the optical system included in this observation apparatus, where (a) shows a normal observation state, (b) shows an intermediate observation state, and (c) shows a close observation state.
  • FIG. FIG. 12 is an aberration diagram showing spherical aberration, astigmatism, distortion and magnification chromatic aberration of the optical system shown in FIG. 11, (a) shows a normal observation state, (b) shows an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a negative power, a second lens group G 2 is movable along the optical axis during zooming has a negative power, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed in the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, a lens L 11 is a plano-concave lens having a concave surface facing the has image side a negative power, is composed of a lens L 12 is a planar lens.
  • the second lens group G 2 is composed of a lens L 21 is a meniscus lens having a concave surface on having the image side a negative power.
  • the third lens group G 3 is composed of, in order from the object side, a lens L 31 is a biconvex lens having a positive power, a lens L 32 is a biconvex lens having a positive power, the concave surface on the image side has a negative power a lens L 33 is a meniscus lens of which a lens L 34 is a biconvex lens having a positive power, a lens L 35 is a biconvex lens having a positive power, a biconcave lens having a negative power lens And L 36 .
  • the lens L 33 and the lens L 34, the lens L 35 and a lens L 36 are cemented.
  • this observation apparatus by moving the object along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Starting surface Focal length 1 1-1.31 2 5-6.55 3 7 2.04
  • Conditional Expression (1) 1.24 ⁇
  • FIG. 13 is a cross-sectional view along the optical axis showing the configuration of the optical system included in this observation apparatus, where (a) shows a normal observation state, (b) shows an intermediate observation state, and (c) shows a close observation state.
  • FIG. FIG. 14 is an aberration diagram showing spherical aberration, astigmatism, distortion and magnification chromatic aberration of the optical system shown in FIG. 13, (a) shows a normal observation state, (b) shows an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a negative power, a second lens group G 2 is movable during zooming it has a positive power along the optical axis, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed in the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, a lens L 11 is a plano-concave lens having a concave surface facing the has image side a negative power, a lens L 12 which is a flat lens, a positive image side has a power is composed of a lens L 13 is a meniscus lens having a convex surface directed toward the.
  • the second lens group G 2 is composed of a lens L 21 is a biconvex lens having a positive power.
  • the third lens group G 3 is composed of, in order from the object side, a lens L 31 is a meniscus lens having a concave surface on having the image side a negative power, a lens L 32 is a biconcave lens having a negative power, positive
  • the lens L 33 which is a biconvex lens having power
  • the lens L 34 which is a biconvex lens having positive power
  • the lens L 35 which is a biconvex lens having positive power
  • a convex surface facing the image side having negative power It is constituted by a lens L 36 which is a meniscus lens directed.
  • the lens L 32 and the lens L 33 , and the lens L 35 and the lens L 36 are cemented.
  • this observation apparatus by moving the object along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It can be changed.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Start focal length 1 1-7.15 2 7 4.02 3 9 2.01
  • Conditional Expression (1) 1.24 ⁇
  • FIG. 15 is a cross-sectional view along the optical axis showing the configuration of the optical system included in this observation apparatus, where (a) shows a normal observation state, (b) shows an intermediate observation state, and (c) shows a close observation state.
  • FIG. FIG. 16 is an aberration diagram showing spherical aberration, astigmatism, distortion and magnification chromatic aberration of the optical system shown in FIG. 15, (a) shows a normal observation state, (b) shows an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a negative power, a second lens group G 2 is movable during zooming it has a positive power along the optical axis, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed between the second lens group G 2 and the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, both the lens L 11 is a concave lens, a lens L 12 which is a flat lens, a positive meniscus lens having a convex surface directed toward the image side has a power having a negative power is composed of a lens L 13 it is.
  • the second lens group G 2 is composed of a lens L 21 is a biconvex lens having a positive power.
  • the third lens group G 3 is composed of, in order from the object side, a lens L 31 is a biconcave lens having a negative power, a lens L 32 is a biconvex lens having a positive power, the concave surface to the positive image side has a power a lens L 33 is a meniscus lens of which a lens L 34 is a biconvex lens having a positive power, is composed of a lens L 35 is a meniscus lens having a convex surface facing the has image side a negative power There is.
  • the lens L 31 and a lens L 32, the lens L 34 and the lens L 35 are cemented.
  • this observation apparatus by moving the object along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Start focal length 1 1-4.70 2 7 2.88 3 10 2.39
  • Conditional Expression (1) 1.24 ⁇
  • FIG. 17 is a cross-sectional view along the optical axis showing the configuration and movement direction of the optical system included in this observation device, where (a) is a normal observation state, (b) an intermediate observation state, and (c) proximity. It is a figure which shows an observation state.
  • FIG. 18 is an aberration diagram showing spherical aberration, astigmatism, distortion and magnification chromatic aberration of the optical system shown in FIG. 17, (a) showing a normal observation state, (b) showing an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a negative power, a second lens group G 2 is movable along the optical axis during zooming has a negative power, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed between the second lens group G 2 and the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, a plano-concave negative lens L 11 with a concave surface facing the image side is constituted by a flat lens L 12.
  • the second lens group G 2 includes, in order from the object side, a negative meniscus lens L 21 having a convex surface directed toward the image side, and a negative meniscus lens L 22 having a convex surface directed toward the image side.
  • a negative meniscus lens L 21, a negative meniscus lens L 22, are joined.
  • the third lens group G 3 is composed of, in order from the object side, a positive meniscus lens L 31 having a convex surface directed toward the object side, a negative meniscus lens L 32 with a convex surface on the object side, a biconvex positive lens L 33, both convex positive lens L 34, and is constituted by a biconcave negative lens L 35.
  • a negative meniscus lens L 32, a biconvex positive lens L 33 are joined.
  • a biconvex positive lens L 34, a biconcave negative lens L 35 are joined.
  • this observation apparatus by moving the object along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Start focal length 1 1 -1.30 2 5-8.14 3 8 2.11
  • Conditional Expression (1) 1.24 ⁇
  • the observation apparatus provided with the objective lens according to Example 10 will be described in detail below with reference to FIGS. 19 and 20.
  • FIG. 19 is a cross-sectional view along the optical axis showing the configuration and movement direction of the optical system included in this observation apparatus, (a) shows a normal observation state, (b) shows an intermediate observation state, and (c) shows a proximity It is a figure which shows an observation state.
  • FIG. 20 is an aberration diagram showing spherical aberration, astigmatism, distortion and magnification chromatic aberration of the optical system shown in FIG. 19, (a) showing a normal observation state, (b) showing an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a negative power, a second lens group G 2 is movable along the optical axis during zooming has a negative power, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed between the second lens group G 2 and the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, a plano-concave negative lens L 11 with a concave surface facing the image side, a plano lens L 12, it is constituted by a positive meniscus lens L 13 with a convex surface on the object side ing.
  • the second lens group G 2 includes, in order from the object side, a negative meniscus lens L 21 with a convex surface facing the object side, a negative meniscus lens L 22 with a convex surface facing the object side.
  • a negative meniscus lens L 21, a negative meniscus lens L 22, are joined.
  • the third lens group G 3 is composed of, in order from the object side, a biconvex positive lens L 31, a negative meniscus lens L 32 with a convex surface on the object side, a biconvex positive lens L 33, a biconvex positive lens L 34 It is constituted by a biconcave negative lens L 35.
  • the negative meniscus lens L 32 and the biconvex positive lens L 33 are cemented. Further, a biconvex positive lens L 34, a biconcave negative lens L 35, are joined.
  • this observation apparatus by moving the object along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Start focal length 1 1-1.77 2 7-3.57 3 10 1.85
  • Conditional Expression (1) 1.24 ⁇
  • FIG. 21 is a cross-sectional view along the optical axis showing the configuration and movement direction of the optical system included in this observation apparatus, (a) shows a normal observation state, (b) shows an intermediate observation state, and (c) shows a proximity It is a figure which shows an observation state.
  • FIG. 22 is an aberration diagram showing spherical aberration, astigmatism, distortion and magnification chromatic aberration of the optical system shown in FIG. 21, (a) shows a normal observation state, (b) shows an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a negative power, a second lens group G 2 is movable along the optical axis during zooming has a negative power, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed between the second lens group G 2 and the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, a plano-concave negative lens L 11 with a concave surface facing the image side, a plano lens L 12, it is constituted by a positive meniscus lens L 13 with a convex surface on the object side ing.
  • the second lens group G 2 is composed of a negative meniscus lens L 21 having a convex surface directed toward the image side.
  • the third lens group G 3 is composed of, in order from the object side, a negative meniscus lens L 31 with a convex surface on the object side, a biconvex positive lens L 32, a biconvex positive lens L 33, a biconcave negative lens L 34 It is composed of Incidentally, a negative meniscus lens L 31, a biconvex positive lens L 32, are joined. Further, a biconvex positive lens L 33, a biconcave negative lens L 34, are joined.
  • this observation apparatus by moving the object along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Starting surface Focal length 1 1-1.45 2 7-13.65 3 9 2.11
  • Conditional Expression (1) 1.24 ⁇
  • FIG. 23 is a cross-sectional view along the optical axis showing the configuration of the optical system included in this observation apparatus, where (a) is a normal observation state, (b) an intermediate observation state, and (c) a close observation state.
  • FIG. FIG. 24 is an aberration diagram showing spherical aberration, astigmatism, distortion and lateral chromatic aberration of the optical system shown in FIG. 23, (a) shows a normal observation state, (b) shows an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a positive power, a second lens group G 2 is movable along the optical axis during zooming has a negative power, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed in the third lens group G 3.
  • the first lens group G 1 is a plano-concave negative lens L 11 with a concave surface facing the image side, a plano lens L 12, a positive meniscus lens L 13 having a convex surface directed toward the image side, a biconvex positive lens L 14 It is composed of
  • the second lens group G 2 is composed of a negative meniscus lens L 21 having a convex surface directed toward the object side.
  • the third lens group G 3 is composed of, in order from the object side, a biconvex positive lens L 31, a biconvex positive lens L 32, and is constituted by a negative meniscus lens L 33 having a convex surface directed toward the image side.
  • a biconvex positive lens L 32, a negative meniscus lens L 33 are joined.
  • this observation apparatus by moving toward the image side along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group Data group Starting surface Focal length 1 1 1.84 2 9-3.91 3 11 2.59
  • Conditional Expression (1) 1.24 ⁇
  • FIG. 25 is a cross-sectional view along the optical axis showing the configuration and movement direction of the optical system included in this observation apparatus, where (a) shows a normal observation state, (b) shows an intermediate observation state, and (c) shows a proximity It is a figure which shows an observation state.
  • FIG. 26 is an aberration diagram showing spherical aberration, astigmatism, distortion and lateral chromatic aberration of the optical system shown in FIG. 25, (a) showing a normal observation state, (b) an intermediate observation state, (c) These are figures which show proximity observation state.
  • this observation apparatus includes an objective optical system OL and a flat lens PL optical system having substantially no refractive power disposed on the image side of the objective optical system OL, and an objective optical system OL. It has an aperture stop S disposed therein, and an imaging element such as a CCD that shows only the imaging plane IM. These are all arranged on the optical axis Lc.
  • Objective optical system OL includes, in order from the object side, a first lens group G 1 having a positive power, a second lens group G 2 is movable along the optical axis during zooming has a negative power, a positive and a third lens group G 3 Metropolitan with power.
  • S aperture stop is disposed between the second lens group G 2 and the third lens group G 3.
  • the first lens group G 1 includes, in order from the object side, a plano-concave negative lens L 11 with a concave surface facing the image side, a plano lens L 12, a positive meniscus lens L 13 having a convex surface facing the image side, a biconvex It is composed of a positive lens L 14.
  • the second lens group G 2 includes, in order from the object side, a negative meniscus lens L 21 with a convex surface facing the object side, a negative meniscus lens L 22 with a convex surface facing the object side.
  • a negative meniscus lens L 21, a negative meniscus lens L 22, are joined.
  • the third lens group G 3 includes a biconvex positive lens L 31, a biconvex positive lens L 32, and is constituted by a negative meniscus lens L 33 having a convex surface directed toward the image side.
  • a biconvex positive lens L 32, a negative meniscus lens L 33, are joined.
  • this observation apparatus by moving toward the image side along the second lens group G 2 to the optical axis, reversible observed from normal viewing to a close observation state, and, by continuously changed, It is possible to perform scaling.
  • S first lens group G 1 and the stop third lens group G 3 and the brightness is fixed.
  • Lens group data group Start focal length 1 1 1.62 2 9-3.13 3 12 2.55
  • Conditional expression (1) 1.24 ⁇
  • the lens which comprises the objective lens of this invention is not limited to the shape shown by said each Example.
  • the lens on the most object side of the first lens group may be configured to have positive power.
  • the lens group constituting the objective lens of the present invention is not limited to the shape and the number of lenses shown in the above-mentioned embodiment.
  • a lens having substantially no refractive power is disposed in or out of each lens unit (for example, the first embodiment of the first embodiment) flat lens PL which are disposed on the image side of the lens L 12 and the objective lens OL disposed in the lens group G 1), or may be these lenses are not necessarily disposed.
  • a lens not illustrated in the above embodiments and having substantially no refractive power may be disposed in or outside each lens group.
  • a CCD cover glass or the like may be disposed on the image side of the flat lens disposed on the image side of the objective lens.
  • the objective lens of the present invention may be used in an endoscope apparatus as shown in FIG.
  • the endoscope apparatus includes an insertion unit 1 for insertion into a patient's body, an endoscope operation unit 2, a control unit 3 having a light source unit and an image processing unit inside, and a control unit 3 It consists of the monitor 4 which displays the output image.
  • the insertion part 1 equips the front-end

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Nonlinear Science (AREA)

Abstract

 変倍時に収差の変動が少なく、十分な周辺光量が得られる対物レンズを提供すること。 対物レンズ(OL)は、最も物体側のレンズが負のパワーを持つ第1レンズ群(G)と、前記第1レンズ群(G)よりも像側に配置されていて通常観察状態から近接観察状態への変倍時に光軸に沿って移動する第2レンズ群(G)と、前記第2レンズ群(G)よりも像側に配置されている第3レンズ群(G)と、前記第2レンズ群(G)と像面との間に配置されていて前記変倍時に固定の明るさ絞り(S)と、を備える。

Description

対物レンズ及びそれを備えた観察装置
 本発明は、光軸に沿って移動する可動レンズ群を備えた対物レンズ及びそれを備えた観察装置に関する。
 従来、レンズ群を移動させることによって通常観察に適した状態(以下、「通常観察状態」という。)から近接観察に適した状態(以下、「近接観察状態」という。)へ観察状態を変更するように可逆的、且つ、連続的に変倍し、観察領域内に複数存在する被写体の中から観察者が任意に選択した特定の被写体を詳細に観察することができる対物レンズが知られている。
 そのような対物レンズとしては、例えば、物体側から順に、正のパワーを持つ第1レンズ群と、負のパワーを持つ第2レンズ群と、正のパワーを持つ第3レンズ群と、からなり、第2レンズ群を光軸に沿って移動させることによって変倍を行うものがある(特許文献1、2参照。)。
特開2010-32680号公報 特開平11-316339号公報
 しかし、特許文献1、2に記載の対物レンズは、通常観察状態から近接観察状態への変倍時に収差の変動が大きいという問題があった。
 また、特許文献1、2に記載の対物レンズは、像面へ入射する光束の入射角が大きく、周辺光量が低下してしまうという問題があった。
 本発明は、このような従来技術の問題点に鑑みてなされたものであり、その目的とするところは、変倍時に収差の変動が少なく、十分な周辺光量が得られる対物レンズ及び観察装置を提供することである。
 上記の目的を達成するために、本発明の対物レンズは、最も物体側のレンズが負のパワーを持ち通常観察状態から近接観察状態への変倍時に固定の第1レンズ群と、前記第1レンズ群よりも像側に配置されていて前記変倍時に光軸に沿って移動する第2レンズ群と、前記第2レンズ群よりも像側に配置されていて前記変倍時に固定の第3レンズ群と、前記第2レンズ群と像面との間に配置されていて前記変倍時に固定の明るさ絞りと、を備えていることを特徴とする。
 また、上記の目的を達成するために、本発明の観察装置は、上記の対物レンズと、前記第2レンズ群を移動させるオートフォーカス機構と、を備え、前記第2レンズ群によりフォーカシングを行うことを特徴とする。
 本発明によれば、変倍時に収差の変動が少なく、十分な周辺光量が得られる対物レンズ及び観察装置を提供することができる。
実施例1に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図1に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例2に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図3に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例3に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図5に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例4に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図7に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例5に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図9に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例6に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図11に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例7に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図13に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例8に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図15に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例9に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図17に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例10に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図19に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例11に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図21に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例12に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図23に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 実施例13に係る観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 図25に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。 本実施例の対物レンズを備えた観察装置である内視鏡装置の全体図である。
 実施例の説明に先立ち、本実施形態の作用効果を説明する。なお、本実施形態の作用効果を具体的に説明するに際しては、具体的な例を示して説明することになる。しかし、後述する実施例の場合と同様に、それらの例示される態様はあくまでも本発明に含まれる態様のうちの一部に過ぎず、その態様には数多くのバリエーションが存在する。したがって、本発明は例示される態様に限定されるものではない。
 なお、以下において、拡大倍率が一番小さい状態を「通常観察」状態、拡大倍率が一番大きい状態を「近接観察」状態、拡大倍率が通常観察状態と近接観察状態の間の状態を「中間」状態という。
 本実施形態の対物レンズは、最も物体側のレンズが負のパワーを持ち通常観察状態から近接観察状態への変倍時に固定の第1レンズ群と、前記第1レンズ群よりも像側に配置されていて前記変倍時に光軸に沿って移動する第2レンズ群と、前記第2レンズ群よりも像側に配置されていて前記変倍時に固定の第3レンズ群と、前記第2レンズ群と像面との間に配置されていて前記変倍時に固定の明るさ絞りと、を備えていることを特徴とする。
 本実施形態の対物レンズは、このように第1レンズ群の最も物体側のレンズを負のパワーを持つレンズとしている。
 このような構成を備えているため、本実施形態の対物レンズは、画角が広く、被写体に近づいての観察、すなわち、近接観察を行いやすい。また、視野を広くすることができる。
 また、本実施形態の対物レンズは、このように、第1レンズ群と第3レンズ群を固定とするとともに、明るさ絞りより物体側であり、且つ、光線高の比較的低い位置に配置されている第2レンズ群を光軸に沿って移動させることによって、通常観察状態から近接観察状態への変倍を行っている。
 このような構成を備えているため、本実施形態の対物レンズは、非点収差の変動を小さくすることができる。
 さらに、本実施形態の対物レンズは、このように、可動レンズ群である第2レンズ群と像面との間に変倍時に固定の明るさ絞りを備えている。
 このような構成を備えているため、可動レンズ群である第2レンズ群が移動しても、第2レンズ群の射出瞳の位置の変動、すなわち、像面へ入射する光束の入射角の変化を抑えることができる。その結果として、撮像素子の最適化が容易であり、この対物レンズを用いた観察装置では、周辺光量の低下も抑えることができる。
 また、このような構成を備えているため、近接観察状態での非点収差やコマ収差を抑えることができる。一般的に、本実施形態のようなレンズ構成を備えている光学系は、特に近接観察状態では、第1レンズ群の像側の面における光線高が高い。そして、光線高が高いところでは光線の屈折量が大きくなるため、像面湾曲、非点収差やコマ収差が発生してしまう。本実施形態の対物レンズでは、特徴的な位置に明るさ絞りを配置することにより、光線高が不要に高くなることを抑え、これらの収差の発生を抑えることができる。
 また、本実施形態の対物レンズは、以下の条件式(1)を満足することが好ましい。
   1.24<|F1f/Fn|<1.8         ・・・(1)
 ただし、F1fは前記第1レンズ群の最も物体側に配置されたレンズの焦点距離、Fnは前記通常観察状態での全系の焦点距離である。
 この条件式(1)は、対物レンズの最も物体側に配置されるレンズのパワーを規定したものである。この条件式(1)の下限値を下回らないように構成すると、そのレンズの焦点距離を大きくすることができ、諸収差の発生を抑えやすい。また、対物レンズ全系の焦点距離を小さくすることができ、十分な被写界深度を確保しやすい。一方、この条件式(1)の上限値を上回らないように構成すると、そのレンズの光線高を低くする、すなわち、そのレンズの径を小さくすることができ、対物レンズ全体の外径を小さくしやすい。
 なお、条件式(1)に代わり、次の条件式(1-1)、(1-2)のいずれかを満足するように構成するとさらに好ましい。
   1.25<|F1f/Fn|<1.7         ・・・(1-1)
   1.27<|F1f/Fn|<1.6         ・・・(1-2)
 また、条件式(1-1)の上限値又は下限値を、条件式(1)、(1-2)の上限値又は下限値としても良いし、条件式(1-2)の上限値又は下限値を、条件式(1)、(1-1)の上限値又は下限値としても良い。
 また、本実施形態の対物レンズは、以下の条件式(2)を満足することが好ましい。
   0.8<|F1f/Fc|<1.7          ・・・(2)
 ただし、F1fは前記第1レンズ群の最も物体側に配置されたレンズの焦点距離、Fcは前記近接観察状態での全系の焦点距離である。
 この条件式(2)は、対物レンズの最も物体側に配置されるレンズのパワーを規定したものである。この条件式(2)の下限値を下回らないように構成すると、そのレンズの焦点距離を大きくすることができ、諸収差の発生を抑えやすい。また、対物レンズ全系の焦点距離を小さくすることができ、十分な被写界深度を確保しやすい。一方、この条件式(2)の上限値を上回らないように構成すると、そのレンズの光線高を低くする、すなわち、そのレンズの径を小さくすることができ、ひいては、対物レンズ全体の外径を小さくすることができる。
 なお、条件式(2)に代わり、次の条件式(2-1)、(2-2)のいずれかを満足するように構成するとさらに好ましい。
   0.9<|F1f/Fc|<1.6          ・・・(2-1)
   0.95<|F1f/Fc|<1.55        ・・・(2-2)
 また、条件式(2-1)の上限値又は下限値を、条件式(2)、(2-2)の上限値又は下限値としても良いし、条件式(2-2)の上限値又は下限値を、条件式(2)、(2-1)の上限値又は下限値としても良い。
 また、本実施形態の対物レンズは、以下の条件式(3)を満足することが好ましい。
   0.7<|θc/θn|<1.5           ・・・(3)
 ただし、θcは前記近接観察状態での前記像面への主光線の入射角度、θnは前記通常観察状態での前記像面への主光線の入射角度である。
 一般に、像面へ光束が斜入射する場合、その像面に受光面を一致させるように配置された撮像素子においては、その受光面で光量損失が生じ、特に、周辺光量が低下してしまう。そこで、通常、対物レンズと撮像素子との間に配置するマイクロレンズやカラーフィルターの構造を工夫することによって、光量損失を抑えるようにしている。しかし、本実施形態の対物レンズのように入射角度が大きく変化する場合、そのような方法による入射角の最適化は容易ではない。そこで、本実施形態の対物レンズにおいては、条件式(3)を満足することが好ましい。
 この条件式(3)は、通常観察状態と近接観察状態における像面へ入射する光束の入射角の関係を規定したものである。この条件式(3)を満足するように構成すると、入射角の変動が大きくなりすぎず、撮像素子を配置した場合にあっても入射角の最適化が容易になり、周辺光量の低下を抑えやすい。
 なお、条件式(3)に代わり、次の条件式(3-1)、(3-2)のいずれかを満足するように構成するとさらに好ましい。
   0.8<|θc/θn|<1.4          ・・・(3-1)
   0.9<|θc/θn|<1.2          ・・・(3-2)
 また、条件式(3-1)の上限値又は下限値を、条件式(3)、(3-2)の上限値又は下限値としても良いし、条件式(3-2)の上限値又は下限値を、条件式(3)、(3-1)の上限値又は下限値としても良い。
 また、本実施形態の対物レンズは、以下の条件式(4)を満足することが好ましい。
   ωnP/ωnMax<0.8               ・・・(4)
 ただし、ωnPは前記通常観察状態での近軸画角であり、ωnMaxは前記通常観察状態での最大画角である。
 なお、前記通常観察状態の近軸画角は、
   In=Fn×tan(ωnP
であらわされる値であり、Inは前記通常観察状態での最大像面の高さ、Fnは前記通常観察状態での焦点距離である。
 この条件式(4)は、通常観察状態における最大画角と近軸画角の比を規定したものである。この条件式(4)を満足するように構成すると、例えば、観察範囲の中心付近の解像度を上げやすく、また、周辺光量を上げやすくなるため、観察範囲の広い使い勝手の良い光学系にすることができる。
 なお、条件式(4)に代わり、次の条件式(4-1)を満足するように構成するとさらに好ましい。
   ωnP/ωnMax<0.7               ・・・(4-1)
 また、本実施形態の対物レンズは、以下の条件式(5)を満足することが好ましい。
   -4<(r3lf+r3lb)/(r3lf-r3lb)<2     ・・・(5)
 ただし、r3lfは前記第3レンズ群の最も像側に配置されたレンズの物体側の面の曲率半径、r3lb、前記第3レンズ群の最も像側に配置されたレンズの像側の面の曲率半径である。
 この条件式(5)は、第3レンズ群の最も像側、すなわち、対物レンズの最も像側に配置されたレンズの形状を規定したものである。この条件式を満足するように構成すると、非点収差や倍率色収差を補正しやすく、好適な光学性能を確保しやすくなる。
 なお、条件式(5)に代わり、次の条件式(5-1)、(5-2)のいずれかを満足するように構成するとさらに好ましい。
   -3.5<(r3lf+r3lb)/(r3lf-r3lb)<1  ・・・(5-1)
   -2.7<(r3lf+r3lb)/(r3lf-r3lb)<0.6・・・(5-2)
 また、条件式(5-1)の上限値又は下限値を、条件式(5)、(5-2)の上限値又は下限値としても良いし、条件式(5-2)の上限値又は下限値を、条件式(5)、(5-1)の上限値又は下限値としても良い。
 また、本実施形態の対物レンズは、以下の条件式(6)を満足することが好ましい。
   |ΔDTn|<8                  ・・・(6)
 ただし、ΔDTは前記第2レンズ群が微小変動した時の歪曲収差の変動量である。
 なお、微小変動とは像面を(Fナンバー×0.005)mm変動させるために必要な前記第2レンズ群の光軸に沿った変動である。
 この条件式(6)は、第2レンズ群、すなわち、可動レンズ群が移動して微小((Fナンバー×0.005)mm)に像面が変動した時の歪曲収差の変動量を表したものである。この条件式(6)の上限値を上回らないように構成すると、歪曲収差の変動量、すなわち、被写体観察時に観察画像の変動を小さく抑えやすい。
 なお、条件式(6)に代わり、次の条件式(6-1)、(6-2)のいずれかを満足するように構成するとさらに好ましい。
   |ΔDTn|<6.5              ・・・(6-1)
   |ΔDTn|<5                ・・・(6-2)
 また、本実施形態の対物レンズは、以下の条件式(7)を満足することが好ましい。
   0.15<|(1‐βc2・βc2)×βc3・βc3|<1.5  ・・・(7)
 ただし、βc2は前記近接観察状態での前記第2レンズ群の横倍率、βc3は前記近接観察状態での前記第3レンズ群の横倍率である。
 この条件式(7)は、近接観察状態において、第2レンズ群、すわなち、可動レンズ群が移動する際の像面の変動量を規定したものである。この条件式(7)の下限値を下回らないように構成すると、可動レンズ群の移動量に対する像面の変動量が小さくなりすぎず、その結果として、必要な移動量を小さく抑えることができるため、光学系全体を小型化しやすい。一方、上限値を上回らないように構成すると、可動レンズ群の移動量に対する像面の変動量が大きくなりすぎず、その結果として、像面湾曲の収差変動を小さく抑えることができる。
 なお、条件式(7)に代わり、次の条件式(7-1)、(7-2)のいずれかを満足するように構成するとさらに好ましい。
  0.2<|(1‐βc2・βc2)×βc3・βc3|<1.4  ・・・(7-1)
  0.25<|(1‐βc2・βc2)×βc3・βc3|<1.3 ・・・(7-2)
 また、条件式(7-1)の上限値又は下限値を、条件式(7)、(7-2)の上限値又は下限値としても良いし、条件式(7-2)の上限値又は下限値を、条件式(7)、(7-1)の上限値又は下限値としても良い。
 また、本実施形態の対物レンズは、前記第2レンズ群が、単一のレンズ成分により構成されていることが好ましい。
 このように構成すると、対物レンズの構成を簡略化・軽量化しやすくなる。また、対物レンズの構成が簡単になるので、この対物レンズを組み込んだ観察装置の構成も簡略化・軽量化しやすくなる。なお、ここでレンズ成分とは、レンズ単体又は接合レンズのことをいう。
 また、本実施形態の対物レンズは、前記第3レンズ群が、正のパワーを持つことを持つことが好ましい。
 このような構成にすると、像面湾曲収差、非点収差、コマ収差の変動を抑えやすい。また、明るさ絞りを固定とすることに加えて、このような構成とすることにより、可動レンズ群である第2レンズ群の移動による光束の入射角の変化を抑えやすくなり、周辺光量の低下を防ぎやすくなる。
 また、本実施形態の対物レンズは、前記第1レンズ群が、負のパワーを持ち、前記第2レンズ群が、負のパワーを持つことが好ましい。
 本実施形態の対物レンズは、前記第1レンズ群が、負のパワーを持ち、前記第3レンズ群が正のパワーを持つ場合には、前記第2レンズ群が、負のパワーを持つことが好ましい。
 このように構成すると、第1、2レンズ群を同じ負群で構成できるため、第1レンズ群で発生する収差を第2レンズ群が分担できるため像面湾曲収差、非点収差を制御しやすい。また、通常観察状態から近接観察状態への歪曲収差の変動を制御しやすい。
 また、本実施形態の対物レンズは、前記第1レンズ群が、正のパワーを持ち、前記第2レンズ群が負のパワーを持つことが好ましい。
 このように構成すると、2つの正レンズ群が対称的に配置されることになるため、正の第1レンズ群で発生する収差を正の第3レンズ群で補正することができ、倍率色収差、非点収差、歪曲収差を抑制しやすい。
 また、本実施形態の対物レンズは、以下の条件式(8)を満足することが好ましい。
   0.9<Fnon/Fnoc             ・・・(8)
 ただし、Fnonは前記通常観察状態での全系のFナンバー、Fnocは前記近接観察状態での全系のFナンバーである。
 この条件式(8)を満足するように構成すると、対物レンズと高画素化された撮像素子とを組み合わせて使用しても、通常観察状態から近接観察状態までの各状態において十分な焦点深度を確保しやすい。これは、通常観察状態のFナンバーが近接観察状態のFナンバーとほぼ同じになるため、近接観察状態において回折の影響を受けないようにFナンバーを小さくしても通常観察状態におけるFナンバーを必要以上に小さくする必要がなくなるためである。
 また、本実施形態の観察装置は、上記のいずれかの対物レンズと、前記第2レンズ群を移動させるオートフォーカス機構と、を備え、前記第2レンズ群によりフォーカシングを行うことを特徴とする。
 なお、オートフォーカス機構とは、例えば、フォーカシングを行う可動レンズ群を光軸に沿って移動させる駆動機構と、所定の情報(対物レンズの像側に配置されたCCD等の撮像素子上に形成された画像情報や対物レンズの先端から観察対象までの距離情報等)に基づき、駆動機構を制御する制御手段と、により構成したものである。
 以下に、本発明の対物レンズを備えた観察装置に係る実施例について図面を参照しながら説明する。
 なお、光学系の光軸に沿う断面図のr1,r2,・・・及びd1,d2,・・・において下付き文字として示した数字は、数値データにおける面番号1,2,・・・に対応している。
 また、数値データにおいては、sは面番号、rは各面の曲率半径、dは面間隔、ndはd線における屈折率、νdはd線におけるアッベ数をそれぞれ示している。また、各実施例の図において、明るさ絞りSの位置を矢印で明示している。ここで、当該明るさ絞りSの位置はレンズ面の位置と近接しているため、絞り径は実際の絞り径より大きく図示されている。しかしながら、実際の絞り径は各実施例に記載のFナンバー等を用いて、当業者であれば適宜算出することが可能である。
 以下に、図1及び図2を用いて、実施例1に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図1は、この観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図2は、図1に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図1に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、負のパワーを持つ第1レンズ群G1と、正のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
 第1レンズ群G1は、物体側から順に、負のパワーを持ち像側に凹面を向けた平凹レンズであるレンズL11と、平レンズであるレンズL12と、正のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL13とにより構成されている。
 第2レンズ群G2は、正のパワーを持つ両凸レンズであるレンズL21により構成されている。
 第3レンズ群G3は、物体側から順に、負のパワーを持つ両凹レンズであるレンズL31と、正のパワーを持つ両凸レンズであるレンズL32と、正のパワーを持ち像側に凹面を向けたメニスカスレンズであるレンズL33と、正のパワーを持つ両凸レンズであるレンズL34と、負のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL35とにより構成されている。なお、レンズL31とレンズL32、レンズL34とレンズL35は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って物体側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
 次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ1
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
    1              ∞       0.36     1.88300    40.76
    2              1.150   0.78
    3              ∞       0.31     1.51400    73.43
    4              ∞       0.45 
    5             -3.219   0.54    1.81600   46.62 
    6             -1.949   D6
    7              1.633   0.74    1.58913   61.14 
    8            -13.006   D8
    9(絞り面)    ∞       0.03 
   10             -1.186   0.44    1.59270   35.31 
   11              0.800   0.43    1.48749   70.23 
   12             -2.732   0.45
   13              2.257   0.47    1.58913   61.14 
   14             47.501   0.45
   15              3.795   0.92    1.88300   40.76 
   16             -2.335   0.30    1.92286   18.90 
   17             -8.306   0.45
   18              ∞       0.40     1.52300    58.50
   19              ∞       0.50 
   20(像面)      ∞
対物光学系に係る各種データ
 ズーム比:1.36
       観察状態       通常観察   中間   近接観察
       焦点距離          0.95    1.14     1.29
      Fナンバー          8.34     8.16      8.00 
     画角(2ω)      121.47   93.26    78.18
         像高            0.80    0.80     0.80
 レンズ全長(in air)    9.44    9.18     8.97
    BF(in air)        1.16     0.90      0.69 
面間隔
 観察状態 通常観察   中間   近接観察
   D6     1.16     0.79     0.54
   D8     0.45     0.82     1.07
レンズ群データ
 群 始面 焦点距離
  1   1   -3.87
  2   7    2.51
  3  10    2.25
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.368
 条件式(2):0.8<|F1f/Fc|<1.7:-1.007
 条件式(3):0.7<|θc/θn|<1.5:1.00
 条件式(4):ωnP/ωnMax<0.7:0.659
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:-1.78
 条件式(6):|ΔDTn|<8:-4.543
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:0.411
 条件式(8):0.9<Fnon/Fnoc:1.04
 以下に、図3及び図4を用いて、実施例2に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図3は、この観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図4は、図3に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図3に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、負のパワーを持つ第1レンズ群G1と、正のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
 第1レンズ群G1は、物体側から順に、負のパワーを持ち像側に凹面を向けた平凹レンズであるレンズL11と、平レンズであるレンズL12と、正のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL13とにより構成されている。
 第2レンズ群G2は、正のパワーを持ち像側に凹面を向けたメニスカスレンズであるレンズL21により構成されている。
 第3レンズ群G3は、物体側から順に、負のパワーを持つ両凹レンズであるレンズL31と、正のパワーを持つ両凸レンズであるレンズL32と、正のパワーを持つ両凸レンズであるレンズL33と、正のパワーを持つ両凸レンズであるレンズL34と、負のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL35とにより構成されている。なお、レンズL31とレンズL32、レンズL34とレンズL35は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って物体側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
 次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ2
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
    1              ∞       0.36     1.88300    40.76
    2              1.200   0.83
    3              ∞       0.31     1.51400    73.43
    4              ∞       0.47 
    5             -3.541   0.68    1.88300   40.76 
    6             -2.056   D6
    7              1.753   0.78    1.58913   61.14 
    8             36.011   D8
    9(絞り面)    ∞       0.03 
   10             -1.383   0.52    1.58144   40.75 
   11              0.900   0.44    1.48749   70.23 
   12             -5.939   0.45
   13              2.524   0.60    1.69680   55.53 
   14             -5.573   0.45
   15              6.380   0.79    1.88300   40.76 
   16             -2.509   0.30    1.92286   18.90 
   17            -10.370   0.45
   18              ∞       0.40     1.52300    58.50
   19              ∞       0.50 
   20(像面)      ∞
対物光学系に係る各種データ
 ズーム比:1.40
       観察状態       通常観察   中間   近接観察
       焦点距離          0.95    1.15     1.33
      Fナンバー          8.36     8.17      8.00 
     画角(2ω)      120.05   92.40    77.32
         像高            0.80    0.80     0.80
 レンズ全長(in air)    9.92    9.66     9.43
    BF(in air)        1.16     0.91      0.68 
面間隔
 観察状態 通常観察   中間   近接観察
   D6     1.31     0.83     0.50
   D8     0.45     0.93     1.26
レンズ群データ
 群 始面 焦点距離
  1   1   -6.16
  2   7    3.10
  3  10    2.21
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.428
 条件式(2):0.8<|F1f/Fc|<1.7:-1.021
 条件式(3):0.7<|θc/θn|<1.5:1.00
 条件式(4):ωnP/ωnMax<0.7:0.667
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:-1.63
 条件式(6):|ΔDTn|<8:-3.779
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:0.321
 条件式(8):0.9<Fnon/Fnoc:1.04
 以下に、図5及び図6を用いて、実施例3に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図5は、この観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図6は、図5に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図5に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、負のパワーを持つ第1レンズ群G1と、正のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
 第1レンズ群G1は、物体側から順に、負のパワーを持ち像側に凹面を向けた平凹レンズであるレンズL11と、平レンズであるレンズL12と、負のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL13とにより構成されている。
 第2レンズ群G2は、物体側から順に、正のパワーを持つ両凸レンズであるレンズL21と、負のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL22とにより構成されている。なお、レンズL21とレンズL22は接合されている。
 第3レンズ群G3は、物体側から順に、負のパワーを持つ両凹レンズであるレンズL31と、正のパワーを持つ両凸レンズであるレンズL32と、正のパワーを持つ両凸レンズであるレンズL33と、負のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL34とにより構成されている。なお、レンズL33とレンズL34は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って物体側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
 次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ3
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
   1               ∞       0.36     1.88300    40.76
   2               1.186    0.65 
   3               ∞       0.31     1.51400    73.43
   4               ∞       0.45 
   5              -2.347    1.12     1.92286    18.90
   6              -2.862    D6
   7               2.437    0.86     1.80100    34.97
   8              -1.065    0.30     1.92286    18.90
   9              -3.061    D9
  10(絞り面)    ∞       0.03 
  11              -3.146    0.30     1.48749    70.23
  12               1.331    1.23 
  13               2.556    0.50     1.65160    58.55
  14             -21.046    0.45 
  15               2.200    1.23     1.58913    61.14
  16              -1.800    0.30     1.92286    18.90
  17              -9.377    0.45 
  18               ∞       0.40     1.52300    58.50
  19               ∞       0.50 
  20(像面)      ∞
対物光学系に係る各種データ
 ズーム比:1.30
       観察状態       通常観察   中間   近接観察
       焦点距離          0.94    1.09     1.22
      Fナンバー          8.40     8.18      8.00 
     画角(2ω)      125.06   97.78    82.25
         像高            0.80    0.80     0.80
 レンズ全長(in air)   10.68   10.44    10.23
    BF(in air)        1.16     0.92      0.72 
面間隔
 観察状態 通常観察   中間   近接観察
   D6     0.98     0.69     0.45
   D9     0.45     0.74     0.98
レンズ群データ
 群 始面 焦点距離
  1   1   -1.67
  2   7    2.10
  3  11    3.44
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.427
 条件式(2):0.8<|F1f/Fc|<1.7:-1.100
 条件式(3):0.7<|θc/θn|<1.5:1.00
 条件式(4):ωnP/ωnMax<0.7:0.645
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:-1.47
 条件式(6):|ΔDTn|<8:-5.205
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:0.373
 条件式(8):0.9<Fnon/Fnoc:1.05
 以下に、図7及び図8を用いて、実施例4に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図7は、この観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図8は、図7に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図7に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、正のパワーを持つ第1レンズ群G1と、負のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
 第1レンズ群G1は、物体側から順に、負のパワーを持ち像側に凹面を向けた平凹レンズであるレンズL11と、平レンズであるレンズL12と、正のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL13と、負のパワーを持ち像側に凹面を向けたメニスカスレンズであるレンズL14と、正のパワーを持つ両凸レンズであるレンズL15とにより構成されている。なお、レンズL14とレンズL15は接合されている。
 第2レンズ群G2は、負のパワーを持ち像側に凹面を向けたメニスカスレンズであるであるレンズL21により構成されている。
 第3レンズ群G3は、物体側から順に、正のパワーを持つ両凸レンズであるレンズL31と、正のパワーを持つ両凸レンズであるレンズL32と、負のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL33とにより構成されている。なお、レンズL32とレンズL33は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って像側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
 次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ4
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
   1               ∞       0.36     1.88300    40.76
   2               1.102    1.02 
   3               ∞       0.31     1.51400    73.43
   4               ∞       0.70 
   5              -3.585    1.23     1.74951    35.33
   6              -2.641    0.45 
   7               4.735    0.30     1.92286    18.90
   8               2.496    0.65     1.88300    40.76
   9              -9.184    D9
  10               4.876    0.30     1.80400    46.57
  11               1.681   D11
  12(絞り面)    ∞       0.48 
  13               3.309    0.35     1.69680    55.53
  14              -9.254    0.94 
  15               2.751    1.07     1.48749    70.23
  16              -2.743    0.70     1.92286    18.90
  17             -10.460    0.72 
  18               ∞       0.40     1.52300    58.50
  19               ∞       0.50 
  20(像面)      ∞
対物光学系に係る各種データ
 ズーム比:1.26
       観察状態       通常観察   中間   近接観察
       焦点距離          0.95    1.12     1.20
      Fナンバー          8.85     8.36      8.00 
     画角(2ω)      123.11   88.85    76.64
         像高            0.80    0.80     0.80
 レンズ全長(in air)   12.18   11.93    11.74
    BF(in air)        1.44     1.18      1.00 
面間隔
 観察状態 通常観察   中間   近接観察
   D9     0.45     1.09     1.43
  D11     1.43      0.79      0.45 
レンズ群データ
 群 始面 焦点距離
  1   1    1.56
  2  10   -3.33
  3  13    2.73
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.309
 条件式(2):0.8<|F1f/Fc|<1.7:-1.037
 条件式(3):0.7<|θc/θn|<1.5:0.998
 条件式(4):ωnP/ωnMax<0.7:0.649
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:-1.71
 条件式(6):|ΔDTn|<8:-4.351
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:0.380
 条件式(8):0.9<Fnon/Fnoc:1.10
 以下に、図9及び図10を用いて、実施例5に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図9は、この観察装置が備える光学系の構成を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図10は、図9に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図9に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、負のパワーを持つ第1レンズ群G1と、負のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
 第1レンズ群G1は、物体側から順に、負のパワーを持ち像側に凹面を向けた平凹レンズであるレンズL11と、平レンズであるレンズL12により構成されている。
 第2レンズ群G2は、負のパワーを持ち像側に凹面を向けたメニスカスレンズであるレンズL21により構成されている。
 第3レンズ群G3は、物体側から順に、正のパワーを持つ両凸レンズであるレンズL31と、負のパワーを持ち像側に凹面を向けたメニスカスレンズであるレンズL32と、正のパワーを持つ両凸レンズであるレンズL33と、正のパワーを持つ両凸レンズであるレンズL34と、負のパワーを持つ両凹レンズであるレンズL35とにより構成されている。なお、レンズL32とレンズL33、レンズL34とレンズL35は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って物体側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
 次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ5
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
   1               ∞       0.36     1.88300    40.76
   2               1.150    0.68 
   3               ∞       0.31     1.51400    73.43
   4               ∞       D4
   5               1.575    0.30     1.92286    18.90
   6               1.102    D6
   7(絞り面)    ∞       0.03 
   8               6.042    0.35     1.69895    30.13
   9              -3.072    0.45 
  10               5.578    0.30     1.92286    18.90
  11               1.350    1.04     1.69895    30.13
  12             -20.059    2.55 
  13               1.438    0.98     1.48749    70.23
  14              -6.190    0.30     1.92286    18.90
  15               2.046    0.45 
  16               ∞       0.40     1.52300    58.50
  17               ∞       0.50 
  18(像面)      ∞
対物光学系に係る各種データ
 ズーム比:0.93
       観察状態       通常観察   中間   近接観察
       焦点距離          0.93    0.88     0.87
      Fナンバー          8.51     8.10      8.00 
     画角(2ω)      124.98  126.12   126.74
         像高            0.80    0.80     0.80
 レンズ全長(in air)   12.32   12.14    12.10
    BF(in air)        1.16     0.99      0.96 
面間隔
 観察状態 通常観察   中間   近接観察
   D4     1.14     0.95     0.90
   D6     2.37     2.56     2.61
レンズ群データ
 群 始面 焦点距離
  1   1   -1.30
  2   5   -5.72
  3   8    1.85
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.396
 条件式(2):0.8<|F1f/Fc|<1.7:-1.500
 条件式(3):0.7<|θc/θn|<1.5:0.998
 条件式(4):ωnP/ωnMax<0.7:0.650
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:0.503
 条件式(6):|ΔDTn|<8:-0.632
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:0.948
 条件式(8):0.9<Fnon/Fnoc:1.06
 以下に、図11及び図12を用いて、実施例6に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図11は、この観察装置が備える光学系の構成を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図12は、図11に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図11に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、負のパワーを持つ第1レンズ群G1と、負のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第3レンズ群G3中に配置されている。
 第1レンズ群G1は、物体側から順に、負のパワーを持ち像側に凹面を向けた平凹レンズであるレンズL11と、平レンズであるレンズL12とにより構成されている。
 第2レンズ群G2は、負のパワーを持ち像側に凹面を向けたメニスカスレンズであるレンズL21により構成されている。
 第3レンズ群G3は、物体側から順に、正のパワーを持つ両凸レンズであるレンズL31と、正のパワーを持つ両凸レンズであるレンズL32と、負のパワーを持ち像側に凹面を向けたメニスカスレンズであるレンズL33と、正のパワーを持つ両凸レンズであるレンズL34と、正のパワーを持つ両凸レンズであるレンズL35と、負のパワーを持つ両凹レンズであるレンズL36とにより構成されている。なお、レンズL33とレンズL34、レンズL35とレンズL36は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って物体側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
 次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ6
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
   1               ∞       0.36     1.88300    40.76
   2               1.156    0.68 
   3               ∞       0.31     1.51400    73.43
   4               ∞       D4
   5               3.324    0.30     1.92286    18.90
   6               2.052    D6
   7             181.427    0.37     1.58313    59.38
   8             -11.991    0.45 
   9(絞り面)    ∞       0.03 
  10               3.405    0.34     1.69895    30.13
  11             -13.877    0.53 
  12               4.040    0.33     1.92286    18.90
  13               1.261    0.41     1.69895    30.13
  14            -106.024    2.65 
  15               1.517    0.92     1.48749    70.23
  16              -4.277    0.30     1.92286    18.90
  17               2.561    0.46 
  18               ∞       0.40     1.52300    58.50
  19               ∞       0.50 
  20(像面)      ∞
対物光学系に係る各種データ
 ズーム比:0.94
       観察状態       通常観察   中間   近接観察
       焦点距離          0.92    0.88     0.86
      Fナンバー          8.48     8.16      8.00 
     画角(2ω)      126.22  126.58   126.62
         像高            0.80    0.80     0.80
 レンズ全長(in air)   12.31   12.18    12.11
    BF(in air)        1.18     1.04      0.97 
面間隔
 観察状態 通常観察   中間   近接観察
   D4     1.21     1.02     0.90
   D6     1.97     2.16     2.28
レンズ群データ
 群 始面 焦点距離
  1   1   -1.31
  2   5   -6.55
  3   7    2.04
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.427
 条件式(2):0.8<|F1f/Fc|<1.7:-1.522
 条件式(3):0.7<|θc/θn|<1.5:0.998
 条件式(4):ωnP/ωnMax<0.7:0.651
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:0.250
 条件式(6):|ΔDTn|<8:-1.113
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:0.693
 条件式(8):0.9<Fnon/Fnoc:1.05
 以下に、図13及び図14を用いて、実施例7に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図13は、この観察装置が備える光学系の構成を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図14は、図13に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図14に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、負のパワーを持つ第1レンズ群G1と、正のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第3レンズ群G3中に配置されている。
 第1レンズ群G1は、物体側から順に、負のパワーを持ち像側に凹面を向けた平凹レンズであるレンズL11と、平レンズであるレンズL12と、正のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL13とにより構成されている。
 第2レンズ群G2は、正のパワーを持つ両凸レンズであるレンズL21により構成されている。
 第3レンズ群G3は、物体側から順に、負のパワーを持ち像側に凹面を向けたメニスカスレンズであるレンズL31と、負のパワーを持つ両凹レンズであるレンズL32と、正のパワーを持つ両凸レンズであるレンズL33と、正のパワーを持つ両凸レンズであるレンズL34と、正のパワーを持つ両凸レンズであるレンズL35と、負のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL36とにより構成されている。なお、レンズL32とレンズL33、レンズL35とレンズL36は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って物体側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変更することができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
 次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ7
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
   1               ∞       0.36     1.88300    40.76
   2               1.230    1.00 
   3               ∞       0.31     1.51400    73.43
   4               ∞       0.64 
   5              -4.539    0.83     1.81600    46.62
   6              -2.328    D6
   7               2.832    0.57     1.58913    61.14
   8             -13.345    D8
   9               3.894    0.30     1.92286    18.90
  10               3.265    0.11 
  11(絞り面)    ∞       0.03 
  12              -2.862    0.80     1.59270    35.31
  13               1.100    0.50     1.48749    70.23
  14              -5.306    1.47 
  15               4.016    0.96     1.58913    61.14
  16              -4.368    0.25 
  17               4.818    1.09     1.88300    40.76
  18              -2.669    0.30     1.92286    18.90
  19             -27.226    0.43 
  20               ∞       0.40     1.52300    58.50
  21               ∞       0.50 
  22(像面)      ∞
対物光学系に係る各種データ
 ズーム比:1.55
       観察状態       通常観察   中間   近接観察
       焦点距離          0.93    1.18     1.44
      Fナンバー          7.51     7.76      8.00 
     画角(2ω)      124.67   92.77    76.42
         像高            0.80    0.80     0.80
 レンズ全長(in air)   12.24   11.98    11.72
    BF(in air)        1.15     0.89      0.62 
面間隔
 観察状態 通常観察   中間   近接観察
   D6     1.35     0.67     0.20
   D8     0.24     0.92     1.39
レンズ群データ
 群 始面 焦点距離
  1   1   -7.15
  2   7    4.02
  3   9    2.01
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.499
 条件式(2):0.8<|F1f/Fc|<1.7:-0.9652
 条件式(3):0.7<|θc/θn|<1.5:1.00
 条件式(4):ωnP/ωnMax<0.7:0.6533
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:-1.21
 条件式(6):|ΔDTn|<8:-3.215
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:0.203
 条件式(8):0.9<Fnon/Fnoc:0.939
 以下に、図15及び図16を用いて、実施例8に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図15は、この観察装置が備える光学系の構成を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図16は、図15に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図15に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、負のパワーを持つ第1レンズ群G1と、正のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
 第1レンズ群G1は、物体側から順に、負のパワーを持つ両凹レンズであるレンズL11と、平レンズであるレンズL12と、正のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL13とにより構成されている。
 第2レンズ群G2は、正のパワーを持つ両凸レンズであるレンズL21により構成されている。
 第3レンズ群G3は、物体側から順に、負のパワーを持つ両凹レンズであるレンズL31と、正のパワーを持つ両凸レンズであるレンズL32と、正のパワーを持ち像側に凹面を向けたメニスカスレンズであるレンズL33と、正のパワーを持つ両凸レンズであるレンズL34と、負のパワーを持ち像側に凸面を向けたメニスカスレンズであるレンズL35とにより構成されている。なお、レンズL31とレンズL32、レンズL34とレンズL35は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って物体側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
 次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ8
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
   1              -8.111    0.36     1.88300    40.76
   2               1.258    0.78 
   3               ∞       0.31     1.51400    73.43
   4               ∞       0.46 
   5              -3.124    0.60     1.81600    46.62
   6              -1.836    D6
   7               1.719    0.55     1.58913    61.14
   8            -114.439    D8
   9(絞り面)    ∞       0.03 
  10              -1.792    0.50     1.59270    35.31
  11               0.744    0.94     1.48749    70.23
  12              -2.973    0.45 
  13               2.762    0.47     1.58913    61.14
  14             138.170    0.45 
  15               5.220    0.97     1.88300    40.76
  16              -2.636    0.35     1.92286    18.90
  17              -9.384    0.47 
  18               ∞       0.40     1.52300    58.50
  19               ∞       0.50 
  20(像面)      ∞
対物光学系に係る各種データ
 ズーム比:1.33
       観察状態       通常観察   中間   近接観察
       焦点距離          0.95    1.12     1.26
      Fナンバー          8.20     8.09      8.00 
     画角(2ω)      121.38   92.43    78.15
         像高            0.80    0.80     0.80
 レンズ全長(in air)   10.13    9.88     9.68
    BF(in air)        1.18     0.93      0.72 
面間隔
 観察状態 通常観察   中間   近接観察
   D6     1.29     0.89     0.62
   D8     0.45     0.85     1.12
レンズ群データ
 群 始面 焦点距離
  1   1   -4.70
  2   7    2.88
  3  10    2.39
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.278
 条件式(2):0.8<|F1f/Fc|<1.7:-0.9608
 条件式(3):0.7<|θc/θn|<1.5:0.999
 条件式(4):ωnP/ωnMax<0.7:-0.661
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:-1.78
 条件式(6):|ΔDTn|<8:-3.927
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:0.399
 条件式(8):0.9<Fnon/Fnoc:1.02
 以下に、図17及び図18を用いて、実施例9に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図17は、この観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図18は、図17に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図17に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、負のパワーを持つ第1レンズ群G1と、負のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
 第1レンズ群G1は、物体側から順に、像側に凹面を向けた平凹負レンズL11と、平レンズL12とにより構成されている。
 第2レンズ群G2は、物体側から順に、像側に凸面を向けた負メニスカスレンズL21と、像側に凸面を向けた負メニスカスレンズL22とにより構成されている。なお、負メニスカスレンズL21と、負メニスカスレンズL22と、は接合されている。
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、両凸正レンズL33と、両凸正レンズL34と、両凹負レンズL35とにより構成されている。なお、負メニスカスレンズL32と、両凸正レンズL33と、は接合されている。また、両凸正レンズL34と、両凹負レンズL35と、は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って物体側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
 次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
   1               ∞      0.36     1.88300    40.76
   2               1.150    0.64 
   3               ∞       0.31     1.51400    73.43
   4               ∞       D4
   5              -3.393    0.38     1.48749    70.23
   6             -11.131    0.42     1.92286    18.90
   7             -16.191    D7
   8 (絞り面)     ∞     0.03
   9              8.463    0.30     1.69895    30.13
   10               9.477    0.45 
  11               2.400    0.30     1.92286    18.90
  12               1.155    1.80     1.69895    30.13
  13              -3.708    2.19 
  14               1.604    1.05     1.48749    70.23
  15              -2.464    0.46     1.92286    18.90
  16               3.441    0.50 
  17               ∞       0.40     1.52300    58.50
  18               ∞       0.50 
  19 (像面)      ∞
 対物光学系に係る各種データ
  ズーム比:0.94
    観察状態       通常観察   中間   近接観察
       焦点距離         0.90      0.86      0.85
       Fナンバー       8.40      8.14     8.00
       画角(2ω)    127.27    127.46    126.81
          像高            0.80      0.80      0.80
   レンズ全長(in air)  12.27     12.13     12.06
     BF(in air)    1.23      1.09      1.02 
 面間隔
    観察状態       通常観察  中間  近接観察
     D4           1.04      0.68     0.45
     D7            1.32      1.68      1.91
 レンズ群データ
  群 始面 焦点距離
  1    1     -1.30
    2    5     -8.14
    3    8      2.11
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.453
 条件式(2):0.8<|F1f/Fc|<1.7:-1.536
 条件式(3):0.7<|θc/θn|<1.5:0.999
 条件式(4):ωnP/ωnMax<0.7:-0.656
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:-0.165
 条件式(6):|ΔDTn|<8:-1.802
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:0.328
 条件式(8):0.9<Fnon/Fnoc:1.051
 以下に、図19及び図20を用いて、実施例10に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図19は、この観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図20は、図19に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図19に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、負のパワーを持つ第1レンズ群G1と、負のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
 第1レンズ群G1は、物体側から順に、像側に凹面を向けた平凹負レンズL11と、平レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とにより構成されている。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22とにより構成されている。なお、負メニスカスレンズL21と、負メニスカスレンズL22と、は接合されている。
 第3レンズ群G3は、物体側から順に、両凸正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、両凸正レンズL33と、両凸正レンズL34と、両凹負レンズL35とにより構成されている。負メニスカスレンズL32と、両凸正レンズL33と、は接合されている。また、両凸正レンズL34と、両凹負レンズL35と、は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って物体側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
  次に、この観察装置に備えられた光学系に係る数値データを示す。 
数値データ
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
   1               ∞      0.36     1.88300    40.76
   2               1.170    0.72 
   3               ∞       0.31     1.51400    73.43
   4               ∞       0.45 
   5               2.297    0.36     1.80400    46.57
   6               3.138    D6
   7              10.414    0.30     1.48749    70.23
   8               3.897    0.03     1.92286    18.90
   9              2.038    D9 
  10  (絞り面)     ∞       0.03 
  11               3.705    0.35     1.69895    30.13
  12              -4.842    0.45 
  13               3.989    0.30     1.92286    18.90
  14               1.227    1.21     1.69895    30.13
  15             -23.098    2.09 
  16               1.565    0.94     1.48749    70.23
  17              -3.191    0.30     1.92286    18.90
  18               2.996    0.47 
  19           ∞       0.40     1.52300    58.50
  20               ∞    0.50
   21  (像面)   ∞
 対物光学系に係る各種データ
  ズーム比:0.98
    観察状態       通常観察   中間   近接観察
       焦点距離         0.94      0.89      0.88
       Fナンバー       8.48      8.10     8.00
       画角(2ω)    124.86    126.27    126.75
          像高            0.80      0.80      0.80
 レンズ全長(in air)   12.31     12.15     12.11
   BF(in air)      1.18      1.02      0.97
   面間隔
   観察状態        通常観察  中間  近接観察
        D6            0.64     0.49      0.45
    D9             2.03      2.18      2.22 
レンズ群データ
 群 始面 焦点距離
  1  1    -1.77
   2    7    -3.57
   3   10     1.85
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.407
 条件式(2):0.8<|F1f/Fc|<1.7:-1.513
 条件式(3):0.7<|θc/θn|<1.5:0.999
 条件式(4):ωnP/ωnMax<0.7:-0.646
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:0.032
 条件式(6):|ΔDTn|<8:-0.690
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:1.223
 条件式(8):0.9<Fnon/Fnoc:1.060
 以下に、図21及び図22を用いて、実施例11に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図21は、この観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図22は、図21に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図21に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、負のパワーを持つ第1レンズ群G1と、負のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
 第1レンズ群G1は、物体側から順に、像側に凹面を向けた平凹負レンズL11と、平レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とにより構成されている。
 第2レンズ群G2は、像側に凸面を向けた負メニスカスレンズL21により構成されている。
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と、両凸正レンズL32と、両凸正レンズL33と、両凹負レンズL34とにより構成されている。なお、負メニスカスレンズL31と、両凸正レンズL32と、は接合されている。また、両凸正レンズL33と、両凹負レンズL34と、は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って物体側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
 次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
   1               ∞      0.36     1.88300    40.76
   2               1.193    0.77 
   3               ∞       0.31     1.51400    73.43
   4               ∞       0.20 
   5               2.098    0.34     1.88300    40.76
   6               2.235    D6
   7              -3.023    0.53     1.69895    30.13
   8              -4.742    D8
   9  (絞り面)     ∞       0.03 
  10               2.565    0.30     1.92286    18.90
  11               1.490    1.00     1.64769    33.79
  12              -3.277    1.89 
  13               1.660    0.94     1.48749    70.23
  14              -2.547    0.75     1.92286    18.90
  15               3.677    0.55 
  16               ∞     0.40     1.52300    58.50
  17               ∞     0.50 
  18 (像面)                ∞
 対物光学系に係る各種データ
  ズーム比:0.94
    観察状態       通常観察   中間   近接観察
       焦点距離         0.94      0.90      0.88
       Fナンバー       8.53      8.16     8.00
       画角(2ω)    124.77    125.39    124.74
          像高       0.80      0.80      0.80
    レンズ全長(in air) 11.69     11.54     11.48
        BF(in air)    1.26      1.12      1.05
 面間隔
    観察状態       通常観察  中間  近接観察
     D6           1.87      1.26     0.93
     D8            1.17      1.78      2.11
 レンズ群データ
  群 始面 焦点距離
   1    1     -1.45
  2    7    -13.65
    3    9      2.11
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.434
 条件式(2):0.8<|F1f/Fc|<1.7:-1.541
 条件式(3):0.7<|θc/θn|<1.5:0.999
 条件式(4):ωnP/ωnMax<0.7:-0.646
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:-0.182
 条件式(6):|ΔDTn|<8:-2.005
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:0.206
 条件式(8):0.9<Fnon/Fnoc:1.066
 以下に、図23及び図24を用いて、実施例12に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図23は、この観察装置が備える光学系の構成を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
図24は、図23に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図23に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、正のパワーを持つ第1レンズ群G1と、負のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第3レンズ群G3中に配置されている。
 第1レンズ群G1は、像側に凹面を向けた平凹負レンズL11と、平レンズL12と、像側に凸面を向けた正メニスカスレンズL13と、両凸正レンズL14とにより構成されている。
 第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL21により構成されている。
 第3レンズ群G3は、物体側から順に、両凸正レンズL31と、両凸正レンズL32と、像側に凸面を向けた負メニスカスレンズL33とにより構成されている。なお、両凸正レンズL32と、負メニスカスレンズL33と、は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って像側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
   1               ∞      0.36     1.88300    40.76
   2               1.228    0.79 
   3               ∞       0.31     1.51400    73.43
   4               ∞       0.45 
   5              -3.600    1.66     1.75500    52.32
   6              -2.753    0.45 
   7               3.617    0.55     1.88300    40.76
   8             -72.464    D8
   9              2.374    0.30     1.88300    40.76
  10               1.323   D10
  11 (絞り面)       ∞     1.24
  12               2.908    0.41     1.71999    50.23
  13             -19.996    0.51 
  14               3.136    0.68     1.48749    70.23
  15              -4.487    1.00     1.92286    18.90
  16              -9.899    0.72 
  17               ∞     0.40      1.52300   58.50
  18               ∞       0.50
  19 (像面)      ∞
 対物光学系に係る各種データ
  ズーム比:1.38
    観察状態       通常観察   中間   近接観察
       焦点距離         0.95      1.18      1.31
       Fナンバー       8.55      8.24     8.00
       画角(2ω)    130.01     91.50     76.77
    像高       0.80      0.80      0.80
    レンズ全長(in air) 12.32     12.06     11.85
        BF(in air)    1.45      1.18      0.97
 面間隔
    観察状態       通常観察  中間  近接観察
     D8           0.45      1.25     1.72
     D10          1.72      0.92      0.45
 レンズ群デ-タ
  群      始面     焦点距離
    1        1         1.84
     2         9         -3.91
     3        11          2.59
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.460
 条件式(2):0.8<|F1f/Fc|<1.7:-1.065
 条件式(3):0.7<|θc/θn|<1.5:0.999
 条件式(4):ωnP/ωnMax<0.7:-0.616
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:-2.658
 条件式(6):|ΔDTn|<8:-4.540
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:-0.267
 条件式(8):0.9<Fnon/Fnoc:1.069
 以下に、図25及び図26を用いて、実施例13に係る対物レンズを備えた観察装置について詳細に説明する。
 なお、図25は、この観察装置が備える光学系の構成及び移動方向を示す光軸に沿う断面図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。図26は、図25に示した光学系の球面収差、非点収差、歪曲収差、倍率色収差を示す収差図であり、(a)は通常観察状態、(b)は中間観察状態、(c)は近接観察状態を示す図である。
 図25に示すように、この観察装置は、対物光学系OLとその対物光学系OLの像側に配置された実質的には屈折力を有さない平レンズPL光学系と、対物光学系OL中に配置された明るさ絞りSと、撮像面IMのみを示したCCD等の撮像素子とを備えている。なお、これらはすべて光軸Lc上に配置されている。
 対物光学系OLは、物体側から順に、正のパワーを持つ第1レンズ群G1と、負のパワーを持ち変倍時に光軸に沿って移動可能である第2レンズ群G2と、正のパワーを持つ第3レンズ群G3とからなる。なお、明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
 第1レンズ群G1は、物体側から順に、像側に凹面を向けた平凹負レンズL11と、平レンズL12と、像側に凸面を向けた正メニスカスレンズL13と、両凸正レンズL14とにより構成されている。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22とにより構成されている。なお、負メニスカスレンズL21と、負メニスカスレンズL22と、は接合されている。
 第3レンズ群G3は、両凸正レンズL31と、両凸正レンズL32と、像側に凸面を向けた負メニスカスレンズL33とにより構成されている。なお、両凸正レンズL32と、負メニスカスレンズL33と、は接合されている。
 そして、この観察装置では、第2レンズ群G2を光軸に沿って像側に移動させることによって、通常観察状態から近接観察状態へ観察状態を可逆的、且つ、連続的に変更させて、変倍を行うことができるようになっている。なお、この変倍時に、第1レンズ群G1と第3レンズ群G3と明るさ絞りSは固定である。
次に、この観察装置に備えられた光学系に係る数値データを示す。
数値データ
単位  mm
面データ
 面番号         曲率半径  面間隔    屈折率   アッベ数
   s              r        d       nd     νd
   1               ∞      0.36     1.88300    40.76
   2               1.192    0.89 
   3               ∞       0.31     1.51400    73.43
   4               ∞       0.57 
   5              -3.897    1.80     1.72916    54.68
   6              -2.754    0.45 
   7               3.633    0.54     1.78800    47.37
   8             -28.129    D8
   9              6.980    0.30     1.92286    18.90
  10               6.037    0.130   1.78590    44.20
  11           1.758    D11
  12 (絞り面)       ∞      0.48
  13               4.210    0.35     1.65160    58.55
  14              -5.197    0.77 
  15               2.728    0.84     1.51633    64.14
  16              -3.507    0.74     1.84666    23.78
  17             -14.269   0.90 
  18               ∞       0.40      1.52300   58.50
  19               ∞      0.50 
  20 (像面)
 対物光学系に係る各種データ
  ズーム比:1.35
    観察状態       通常観察   中間   近接観察
       焦点距離         0.92      1.13      1.24
       Fナンバー       8.86      8.38     8.00
       画角(2ω)    131.22     88.88     74.24 
        像高              0.80       0.80      0.80
     レンズ全長(in air)12.33      12.08     11.88
        BF(in air)    1.62       1.38      1.17
 面間隔
    観察状態      通常観察  中間  近接観察
     D8          0.45     1.15      1.54
     D11         1.54      0.84      0.45 
レンズ群データ
 群   始面   焦点距離
 1      1      1.62 
 2      9      -3.13
 3     12       2.55
条件式に係るデータ
 条件式(1):1.24<|F1f/Fn|<1.8:-1.467
 条件式(2):0.8<|F1f/Fc|<1.7:-1.092
 条件式(3):0.7<|θc/θn|<1.5:0.998
 条件式(4):ωnP/ωnMax<0.7:-0.625
 条件式(5):-3<(r3lf+r3lb)/(r3lf-r3lb)<2:-1.652
 条件式(6):|ΔDTn|<8:-5.263
 条件式(7):0.2<|(1‐βc2・βc2)×βc3・βc3|<1.2:-0.337
 条件式(8):0.9<Fnon/Fnoc:1.107
 なお、本発明の対物レンズを構成するレンズは、上記各実施例により示された形状に限定されるものではない。例えば、第1レンズ群の最も物体側のレンズが正のパワーを持つように構成しても構わない。
 また、本発明の対物レンズを構成するレンズ群は、上記実施例により示された形状や枚数に限定されるものではない。
 また、本発明の対物レンズは、上記実施例においては、各レンズ群内又は各レンズ群外に実質的に屈折力を有さないレンズを配置しているが(例えば、実施例1の第1レンズ群G1内に配置されているレンズL12や対物レンズOLの像側に配置されている平レンズPL)、これらのレンズは必ずしも配置しなくてもよい。また、逆に、各レンズ群内又は各レンズ群外に、上記各実施例に図示されていないレンズであって、実質的に屈折力を有さないレンズを配置してもよい。例えば、対物レンズの像側に配置されている平レンズの像側にCCDカバーガラス等を配置しても構わない。
 さらに、本発明の対物レンズは、図22に示すような内視鏡装置に用いても良い。なお、この内視鏡装置は、患者の体内へ挿入するための挿入部1と、内視鏡操作部2と、内部に光源ユニットと画像処理ユニットを備えた制御ユニット3と、制御ユニット3から出力された画像を表示するモニター4とからなる。そして、挿入部1は、その先端部1aに、本発明の対物レンズを備えている。
 G1      第1レンズ群
 G2      第2レンズ群
 G3      第3レンズ群
 IM     撮像面
 Lc     光軸
 L11,L12,L13,L14,L15,L21,L22,L31,L32,L33,L34,L35,L36     レンズ
 OL     対物レンズ
 PL     平レンズ
 S      明るさ絞り
 1      挿入部
 1a     先端部
 2      内視鏡操作部
 3      制御ユニット
 4      モニター

Claims (13)

  1.  最も物体側のレンズが負のパワーを持ち通常観察状態から近接観察状態への変倍時に固定の第1レンズ群と、
     前記第1レンズ群よりも像側に配置されていて前記変倍時に光軸に沿って移動する第2レンズ群と、
     前記第2レンズ群よりも像側に配置されていて前記変倍時に固定の第3レンズ群と、
     前記第2レンズ群と像面との間に配置されていて前記変倍時に固定の明るさ絞りと、
    を備えていることを特徴とする対物レンズ。
  2.  以下の条件式を満足することを特徴とする請求項1に記載の対物レンズ。
       1.24<|F1f/Fn|<1.8
     ただし、F1fは前記第1レンズ群の最も物体側に配置されたレンズの焦点距離、Fnは前記通常観察状態での全系の焦点距離である。
  3.  以下の条件式を満足することを特徴とする請求項1又は2に記載の対物レンズ。
       0.8<|F1f/Fc|<1.7
     ただし、F1fは前記第1レンズ群の最も物体側に配置されたレンズの焦点距離、Fcは前記近接観察状態での全系の焦点距離である。
  4.  以下の条件式を満足することを特徴とする請求項1~3のいずれか1項に記載の対物レンズ。
       0.7<|θc/θn|<1.5
     ただし、θcは前記近接観察状態での前記像面への主光線の入射角度、θnは前記通常観察状態での前記像面への主光線の入射角度である。
  5.  以下の条件式を満足することを特徴とする請求項1~4のいずれか1項に記載の対物レンズ。
       ωnP/ωnMax<0.8
     ただし、ωnPは前記通常観察状態での近軸画角であり、ωnMaxは前記通常観察状態での最大画角である。
     なお、前記通常観察状態の近軸画角は、
       In=Fn×tan(ωnP
    であらわされる値であり、Inは前記通常観察状態での最大像面の高さ、Fnは前記通常観察状態での焦点距離である。
  6.  以下の条件式を満足することを特徴とする請求項1~5のいずれか1項に記載の対物レンズ。
       -4<(r3lf+r3lb)/(r3lf-r3lb)<2
       -3.5<(r3lf+r3lb)/(r3lf-r3lb)<1
       -2.7<(r3lf+r3lb)/(r3lf-r3lb)<0.6
     ただし、r3lfは前記第3レンズ群の最も像側に配置されたレンズの物体側の面の曲率半径、r3lb、前記第3レンズ群の最も像側に配置されたレンズの像側の面の曲率半径である。
  7.  以下の条件式を満足することを特徴とする請求項1~6のいずれか1項に記載の対物レンズ。
       |ΔDTn|<8
     ただし、ΔDTは前記第2レンズ群が微小変動した時の歪曲収差の変動量である。
     なお、微小変動とは像面を(Fナンバー×0.005)mm変動させるために必要な前記第2レンズ群の光軸に沿った変動である。
  8.  以下の条件式を満足することを特徴とする請求項1~7のいずれか1項に記載の対物レンズ。
       0.15<|(1‐βc2・βc2)×βc3・βc3|<1.5
       0.2<|(1‐βc2・βc2)×βc3・βc3|<1.4
       0.25<|(1‐βc2・βc2)×βc3・βc3|<1.3
     ただし、βc2は前記近接観察状態での前記第2レンズ群の横倍率、βc3は前記近接観察状態での前記第3レンズ群の横倍率である。
  9.  前記第2レンズ群が、単一のレンズ成分により構成されていることを特徴とする請求項1~8のいずれか1項に記載の対物レンズ。
  10.  前記第3レンズ群が、正のパワーを持つことを特徴とする請求項1~9のいずれか1項に記載の対物レンズ。
  11.  前記第1レンズ群が、負のパワーを持ち、
     前記第2レンズ群が、正のパワーを持つことを特徴とする請求項1~10のいずれか1項に記載の対物レンズ。
  12.  前記第1レンズ群が、負のパワーを持ち、
     前記第2レンズ群が、負のパワーを持つことを特徴とする請求項10に記載の対物レンズ。
  13.  前記第1レンズ群が、正のパワーを持ち、
     前記第2レンズ群が、負のパワーを持つことを特徴とする請求項10に記載の対物レンズ。
PCT/JP2013/082876 2012-12-07 2013-12-06 対物レンズ及びそれを備えた観察装置 WO2014088104A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014551159A JP6205369B2 (ja) 2012-12-07 2013-12-06 対物レンズ及びそれを備えた観察装置
US14/733,328 US9739997B2 (en) 2012-12-07 2015-06-08 Objective lens and observation apparatus having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012268496 2012-12-07
JP2012-268496 2012-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/733,328 Continuation US9739997B2 (en) 2012-12-07 2015-06-08 Objective lens and observation apparatus having the same

Publications (1)

Publication Number Publication Date
WO2014088104A1 true WO2014088104A1 (ja) 2014-06-12

Family

ID=50883516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082876 WO2014088104A1 (ja) 2012-12-07 2013-12-06 対物レンズ及びそれを備えた観察装置

Country Status (3)

Country Link
US (1) US9739997B2 (ja)
JP (1) JP6205369B2 (ja)
WO (1) WO2014088104A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194311A1 (ja) * 2014-06-20 2015-12-23 オリンパス株式会社 内視鏡用対物光学系
WO2016006486A1 (ja) * 2014-07-11 2016-01-14 オリンパス株式会社 対物光学系
WO2016047421A1 (ja) * 2014-09-22 2016-03-31 オリンパス株式会社 内視鏡対物光学系
JP2016062019A (ja) * 2014-09-19 2016-04-25 富士フイルム株式会社 撮像レンズおよび撮像装置
JP2017161847A (ja) * 2016-03-11 2017-09-14 株式会社ニコン 光学系、光学機器および光学系の製造方法
WO2017221600A1 (ja) * 2016-06-20 2017-12-28 オリンパス株式会社 内視鏡用対物光学系
JP2018025591A (ja) * 2016-08-08 2018-02-15 Hoya株式会社 内視鏡用対物光学系及び内視鏡
EP3226054A4 (en) * 2014-11-26 2018-07-25 Olympus Corporation Objective optical system
CN110095926A (zh) * 2018-01-29 2019-08-06 佳能株式会社 投影镜头和使用投影镜头的投影显示装置
WO2019187195A1 (ja) * 2018-03-27 2019-10-03 オリンパス株式会社 内視鏡用対物光学系
WO2019207699A1 (ja) * 2018-04-26 2019-10-31 オリンパス株式会社 対物光学系及びそれを用いた撮像装置
JP2019211637A (ja) * 2018-06-05 2019-12-12 富士フイルム株式会社 撮像レンズ及び撮像装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312653A1 (en) * 2015-06-18 2018-04-25 Olympus Corporation Endoscope objective optical system
WO2018008460A1 (ja) * 2016-07-04 2018-01-11 オリンパス株式会社 内視鏡光学系
CN111527435B (zh) * 2018-02-27 2022-04-05 奥林巴斯株式会社 内窥镜用物镜光学系统
CN112424665B (zh) * 2018-05-14 2022-05-17 奥林巴斯株式会社 内窥镜光学系统
CN112639569B (zh) * 2019-03-01 2022-09-27 奥林巴斯株式会社 广角光学系统及具备该广角光学系统的摄像装置
CN114994889B (zh) * 2022-08-02 2022-10-25 浙江大华技术股份有限公司 一种镜头及摄像装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247615A (ja) * 1988-08-09 1990-02-16 Konica Corp 大口径広角可変焦点距離レンズ
JP2007233036A (ja) * 2006-03-01 2007-09-13 Olympus Medical Systems Corp 拡大内視鏡光学系
JP2008170720A (ja) * 2007-01-11 2008-07-24 Nikon Corp 広角レンズ、撮像装置、広角レンズの合焦方法
WO2010119640A1 (ja) * 2009-04-16 2010-10-21 オリンパスメディカルシステムズ株式会社 対物光学系
WO2011070930A1 (ja) * 2009-12-11 2011-06-16 オリンパスメディカルシステムズ株式会社 対物光学系
WO2011077716A1 (ja) * 2009-12-25 2011-06-30 パナソニック株式会社 撮像光学系、交換レンズ装置及びカメラシステム
JP2012027451A (ja) * 2010-06-23 2012-02-09 Nikon Corp 撮影レンズ、この撮影レンズを有する光学機器、及び、撮影レンズの製造方法
WO2013021744A1 (ja) * 2011-08-10 2013-02-14 オリンパスメディカルシステムズ株式会社 内視鏡装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316339A (ja) 1998-03-03 1999-11-16 Olympus Optical Co Ltd 対物光学系
JP5148403B2 (ja) 2008-07-28 2013-02-20 オリンパスメディカルシステムズ株式会社 内視鏡用対物光学系
US20110317282A1 (en) 2010-06-23 2011-12-29 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247615A (ja) * 1988-08-09 1990-02-16 Konica Corp 大口径広角可変焦点距離レンズ
JP2007233036A (ja) * 2006-03-01 2007-09-13 Olympus Medical Systems Corp 拡大内視鏡光学系
JP2008170720A (ja) * 2007-01-11 2008-07-24 Nikon Corp 広角レンズ、撮像装置、広角レンズの合焦方法
WO2010119640A1 (ja) * 2009-04-16 2010-10-21 オリンパスメディカルシステムズ株式会社 対物光学系
WO2011070930A1 (ja) * 2009-12-11 2011-06-16 オリンパスメディカルシステムズ株式会社 対物光学系
WO2011077716A1 (ja) * 2009-12-25 2011-06-30 パナソニック株式会社 撮像光学系、交換レンズ装置及びカメラシステム
JP2012027451A (ja) * 2010-06-23 2012-02-09 Nikon Corp 撮影レンズ、この撮影レンズを有する光学機器、及び、撮影レンズの製造方法
WO2013021744A1 (ja) * 2011-08-10 2013-02-14 オリンパスメディカルシステムズ株式会社 内視鏡装置

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930257B1 (ja) * 2014-06-20 2016-06-08 オリンパス株式会社 内視鏡用対物光学系
WO2015194311A1 (ja) * 2014-06-20 2015-12-23 オリンパス株式会社 内視鏡用対物光学系
US9568726B2 (en) 2014-06-20 2017-02-14 Olympus Corporation Objective optical system for endoscope
EP3168668A4 (en) * 2014-07-11 2018-03-07 Olympus Corporation Objective optical system
WO2016006486A1 (ja) * 2014-07-11 2016-01-14 オリンパス株式会社 対物光学系
CN106062609B (zh) * 2014-07-11 2018-11-27 奥林巴斯株式会社 物镜光学系统
CN106062609A (zh) * 2014-07-11 2016-10-26 奥林巴斯株式会社 物镜光学系统
JPWO2016006486A1 (ja) * 2014-07-11 2017-04-27 オリンパス株式会社 対物光学系
US9846295B2 (en) 2014-07-11 2017-12-19 Olympus Corporation Objective optical system
JP5948530B2 (ja) * 2014-07-11 2016-07-06 オリンパス株式会社 対物光学系
JP2016062019A (ja) * 2014-09-19 2016-04-25 富士フイルム株式会社 撮像レンズおよび撮像装置
JP6001229B2 (ja) * 2014-09-22 2016-10-05 オリンパス株式会社 内視鏡対物光学系
WO2016047421A1 (ja) * 2014-09-22 2016-03-31 オリンパス株式会社 内視鏡対物光学系
JPWO2016047421A1 (ja) * 2014-09-22 2017-04-27 オリンパス株式会社 内視鏡対物光学系
US9817226B2 (en) 2014-09-22 2017-11-14 Olympus Corporation Endoscope objective optical system
EP3226054A4 (en) * 2014-11-26 2018-07-25 Olympus Corporation Objective optical system
JP2017161847A (ja) * 2016-03-11 2017-09-14 株式会社ニコン 光学系、光学機器および光学系の製造方法
US10739577B2 (en) 2016-06-20 2020-08-11 Olympus Corporation Objective optical system for endoscope
CN109313324A (zh) * 2016-06-20 2019-02-05 奥林巴斯株式会社 内窥镜用物镜光学系统
WO2017221600A1 (ja) * 2016-06-20 2017-12-28 オリンパス株式会社 内視鏡用対物光学系
CN109313324B (zh) * 2016-06-20 2021-02-23 奥林巴斯株式会社 内窥镜用物镜光学系统
JP2018025591A (ja) * 2016-08-08 2018-02-15 Hoya株式会社 内視鏡用対物光学系及び内視鏡
CN110095926A (zh) * 2018-01-29 2019-08-06 佳能株式会社 投影镜头和使用投影镜头的投影显示装置
US11513307B2 (en) 2018-01-29 2022-11-29 Canon Kabushiki Kaisha Projection lens and projection display apparatus using the same
CN110095926B (zh) * 2018-01-29 2021-10-08 佳能株式会社 投影镜头和使用投影镜头的投影显示装置
WO2019187195A1 (ja) * 2018-03-27 2019-10-03 オリンパス株式会社 内視鏡用対物光学系
JPWO2019187195A1 (ja) * 2018-03-27 2021-02-25 オリンパス株式会社 対物光学系、撮像装置、内視鏡及び内視鏡システム
JP6995978B2 (ja) 2018-03-27 2022-01-17 オリンパス株式会社 内視鏡用対物光学系、撮像装置、内視鏡及び内視鏡システム
US11903560B2 (en) 2018-03-27 2024-02-20 Olympus Corporation Objective optical system, image pickup apparatus, endoscope and endoscope system
WO2019207699A1 (ja) * 2018-04-26 2019-10-31 オリンパス株式会社 対物光学系及びそれを用いた撮像装置
WO2019235202A1 (ja) * 2018-06-05 2019-12-12 富士フイルム株式会社 撮像レンズ及び撮像装置
JP2019211637A (ja) * 2018-06-05 2019-12-12 富士フイルム株式会社 撮像レンズ及び撮像装置
US11886040B2 (en) 2018-06-05 2024-01-30 Fujifilm Corporation Imaging lens and imaging apparatus

Also Published As

Publication number Publication date
US9739997B2 (en) 2017-08-22
US20150268460A1 (en) 2015-09-24
JPWO2014088104A1 (ja) 2017-01-05
JP6205369B2 (ja) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6205369B2 (ja) 対物レンズ及びそれを備えた観察装置
JP4138324B2 (ja) ズームレンズ及びそれを用いたビデオカメラ
JP6210208B2 (ja) インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム
JP4380086B2 (ja) ズームレンズ
JP5942193B2 (ja) レンズ系、交換レンズ装置及びカメラシステム
WO2015146067A1 (ja) ズームレンズ系、交換レンズ装置、及びカメラシステム
JP6165675B2 (ja) リアアタッチメントレンズ
JP5891447B2 (ja) ズームレンズ系、交換レンズ装置及びカメラシステム
JP7035508B2 (ja) 撮像光学系とそれを備える撮像装置およびカメラシステム
JP2017068164A (ja) 広角光学系及びそれを備えた撮像装置
JP6749632B2 (ja) 大口径レンズ
CN110208922B (zh) 成像镜头及摄像装置
JP2016173481A (ja) ズームレンズおよび撮像装置
JP2019008148A (ja) コンバータレンズ及びそれを有するカメラ装置
JP5530308B2 (ja) 投射用ズームレンズおよび投射型画像表示装置
JP2016139087A (ja) 結像光学系
JP2008249842A (ja) ズームレンズ及び撮像装置
JP5807166B2 (ja) ズームレンズ系、交換レンズ装置及びカメラシステム
WO2012086154A1 (ja) ズームレンズ系、交換レンズ装置及びカメラシステム
JP2002323654A (ja) 小形ズームレンズ
JP2011048320A (ja) ズームレンズ
JP2010113248A (ja) 結像レンズおよびカメラおよび携帯情報端末装置
JP5129520B2 (ja) ズームレンズ
JPH11352402A (ja) ズームレンズ
JPWO2016129054A1 (ja) ズーム撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551159

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859657

Country of ref document: EP

Kind code of ref document: A1