WO2011077716A1 - 撮像光学系、交換レンズ装置及びカメラシステム - Google Patents

撮像光学系、交換レンズ装置及びカメラシステム Download PDF

Info

Publication number
WO2011077716A1
WO2011077716A1 PCT/JP2010/007423 JP2010007423W WO2011077716A1 WO 2011077716 A1 WO2011077716 A1 WO 2011077716A1 JP 2010007423 W JP2010007423 W JP 2010007423W WO 2011077716 A1 WO2011077716 A1 WO 2011077716A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens element
lens
image
optical system
imaging optical
Prior art date
Application number
PCT/JP2010/007423
Other languages
English (en)
French (fr)
Inventor
宣幸 安達
卓也 今岡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/391,289 priority Critical patent/US8587877B2/en
Priority to CN201080034606.7A priority patent/CN102472884B/zh
Priority to JP2011547304A priority patent/JPWO2011077716A1/ja
Publication of WO2011077716A1 publication Critical patent/WO2011077716A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • G02B9/10Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only one + and one - component

Definitions

  • the present invention relates to an imaging optical system suitable for a so-called interchangeable lens digital camera system.
  • the present invention also relates to an interchangeable lens apparatus and a camera system using the imaging optical system.
  • an interchangeable lens apparatus having a camera body having an imaging element such as a CCD (Charge Coupled Device), CMOS (Complementary Metal-Oxide Semiconductor), and an imaging optical system for forming an optical image on a light receiving surface of the imaging element;
  • CCD Charge Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • imaging optical system for forming an optical image on a light receiving surface of the imaging element
  • a method of extending the entire constituent lens and a so-called floating method of moving the front group and the rear group independently are known.
  • Patent Documents 1 and 2 disclose a configuration in which the front group and the rear group are moved to the object side during focusing.
  • Patent Document 3 discloses a configuration in which the first lens element is fixed and the second and subsequent lens elements are moved during focusing.
  • Patent Document 4 discloses a configuration in which the entire optical system is extended to the object side during focusing.
  • the focus lens group is vibrated at high speed in the optical axis direction (hereinafter referred to as “wobbling”), and a certain frequency band within a part of the image area from the output signal of the image sensor.
  • Wobbling the optical axis direction
  • this autofocus method it is necessary to make the outer diameter of the lens constituting the focus lens group as small as possible and the lens weight as small as possible from the viewpoint of portability and power consumption.
  • JP 2004-126522 A Japanese Patent Laid-Open No. 5-273459 JP 2007-94371 A JP 2008-3108 A
  • Patent Documents 1 to 4 use a large number of lenses for the focus lens group, and it is difficult to continuously move the lenses at high speed.
  • an object of the present invention is to provide an imaging optical system that can realize high-speed autofocus and that is small and has good imaging performance, an interchangeable lens device that includes the imaging optical system, and a camera system that includes the imaging device. Is to provide.
  • the imaging optical system according to the present invention includes, in order from the object side to the image side, a front group in which a negative lens is disposed closest to the object side, an aperture stop, and a rear group having positive power.
  • a front group in which a negative lens is disposed closest to the object side an aperture stop, and a rear group having positive power.
  • the negative lens and aperture stop closest to the object are fixed with respect to the imaging surface, and some lenses in the front group or rear group move along the optical axis. Moving.
  • the imaging optical system according to the present invention satisfies the following condition (1).
  • R an average value of the image side curvature radius of the negative lens element arranged closest to the object side and the image side curvature radius of the second negative lens element from the object side among all the negative lens elements;
  • f The focal length of the entire system.
  • An interchangeable lens device includes a lens mount unit connected to a camera body including the imaging optical system described above and an imaging sensor that receives an optical image formed by the imaging optical system and converts the optical image signal into an electrical image signal.
  • a camera system includes an interchangeable lens device including the above-described imaging optical system, and an interchangeable lens device that is detachably connected to the camera mount unit, and receives an optical image formed by the imaging optical system to electrically
  • a camera body including an image sensor for converting into a typical image signal.
  • a compact imaging optical system capable of high-speed autofocus that can support moving image shooting, good imaging characteristics, and an interchangeable lens apparatus and camera system including the imaging optical system can be realized.
  • FIG. 1 is a lens arrangement diagram of the imaging optical system according to the first embodiment.
  • FIG. 2 is a longitudinal aberration diagram of the imaging optical system according to Embodiment 1 in the infinitely focused state.
  • FIG. 3 is a longitudinal aberration diagram of the imaging optical system according to Embodiment 1 at an object distance of 1 m.
  • FIG. 4 is a lens arrangement diagram of the imaging optical system according to the second embodiment.
  • FIG. 5 is a longitudinal aberration diagram of the imaging optical system according to Embodiment 2 in the infinitely focused state.
  • FIG. 6 is a longitudinal aberration diagram of the imaging optical system according to Embodiment 2 at an object distance of 1 m.
  • FIG. 7 is a lens arrangement diagram of the imaging optical system according to the third embodiment.
  • FIG. 8 is a longitudinal aberration diagram of the imaging optical system according to Embodiment 3 in the infinite focus state.
  • FIG. 9 is a longitudinal aberration diagram of the imaging optical system according to Embodiment 3 at an object distance of 1 m.
  • FIG. 10 is a lens arrangement diagram of the imaging optical system according to the fourth embodiment.
  • FIG. 11 is a longitudinal aberration diagram of the imaging optical system according to Embodiment 4 in the state of focusing on infinity.
  • FIG. 12 is a longitudinal aberration diagram of the imaging optical system according to Embodiment 4 at an object distance of 1 m.
  • FIG. 13 is a lens arrangement diagram of the imaging optical system according to the fifth embodiment.
  • FIG. 14 is a longitudinal aberration diagram of the imaging optical system according to Embodiment 5 in the infinitely focused state.
  • FIG. 15 is a longitudinal aberration diagram of the imaging optical system according to Embodiment 5 at an object distance of 1 m.
  • FIG. 16 is a schematic configuration diagram of a camera system according to
  • FIG. 5 (Embodiments 1 to 5) 1, 4, 7, 10, and 13 are lens arrangement diagrams of the imaging optical system according to Embodiments 1, 2, 3, 4, and 5, respectively.
  • Each figure represents the imaging optical system in an infinitely focused state.
  • An arrow attached to the lens indicates a moving direction during focusing from an infinitely focused state to a close object focused state.
  • a symbol (+) and a symbol ( ⁇ ) attached to the reference numerals of each lens group indicate the power of each lens group.
  • the straight line described on the rightmost side represents the position of the image plane S.
  • the imaging optical system according to each embodiment includes, in order from the object side to the image side, a front group G1 having a negative power, an aperture A, and a rear group G2 having a positive power.
  • the front group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface directed toward the object side;
  • a negative meniscus second lens element L2 having a convex surface facing the object side, a positive meniscus third lens element L3 having a convex surface facing the image side, and a negative meniscus fourth lens having a convex surface facing the image side It comprises an element L4 and a positive meniscus fifth lens element L5 with a convex surface facing the object side.
  • the rear group G2 in order from the object side to the image side, has a positive meniscus sixth lens element L6 with a convex surface facing the image side, and a positive meniscus seventh lens element L7 with a convex surface facing the image side. It comprises a negative meniscus eighth lens element L8 with a convex surface facing the image side, a positive meniscus ninth lens element L9 with a convex surface facing the image side, and a biconvex tenth lens element L10.
  • the seventh lens element L7 and the eighth lens element L8 are cemented.
  • the stop A is disposed between the front group G1 and the rear group G2. At the time of focusing from the infinitely focused state to the close object focused state, the ninth lens L9 in the rear group G2 moves toward the object side along the optical axis.
  • the first lens element L1 and the second lens element L2 having a strong diverging action cause a light beam having an incident angle of about 90 degrees with respect to the optical axis to be parallel to the optical axis. It is responsible for bending greatly in the direction.
  • the field curvature and lateral chromatic aberration generated by the two negative lens elements are a fourth negative lens arranged with a slight air gap between the positive third lens element L3 and the third lens element L3. Correction is performed by the lens element L4 and the positive fifth lens element L5.
  • the rear group G2 having a positive power has a function of forming an image of the light beam from the front group G1, and mainly corrects spherical aberration and coma aberration.
  • the positive sixth lens element L6 the seventh lens element L7, and the negative eighth lens element L8, the diameters of light beams formed at the respective image heights are widened. Therefore, the spherical aberration sensitivity and the coma aberration sensitivity due to the surface shape error are particularly high.
  • the positive power is divided into the sixth lens element L6 and the seventh lens element L7 behind the diaphragm A. This is to disperse spherical aberration and coma sensitivity due to surface shape errors.
  • the tenth lens element L10 fixed at the time of focusing is disposed on the most image side. This is in consideration of the case where the present invention is used as an imaging optical system for an interchangeable lens camera system. If the lens element closest to the image side is fixed, it is possible to prevent the focus mechanism from being affected by an external force such as a finger when the interchangeable lens device is removed from the camera body.
  • the front group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface directed toward the object side; It comprises a negative meniscus second lens element L2 having a convex surface facing the object side, and a biconvex third lens element L3.
  • the rear group G2 in order from the object side to the image side, has a positive meniscus fourth lens element L4 with a convex surface facing the image side, a biconvex fifth lens element L5, and a convex surface facing the image side.
  • It comprises a negative meniscus sixth lens element L6, a negative meniscus seventh lens element L7 with a convex surface facing the image side, and a biconvex eighth lens element L8.
  • the fifth lens element L5 and the sixth lens element L6 are cemented.
  • the stop A is disposed between the front group G1 and the rear group G2. At the time of focusing from the infinitely focused state to the close object focused state, the seventh lens element L7 in the rear group G2 moves toward the image side along the optical axis.
  • the first lens element L1 and the second lens element L2 which have a strong diverging action, emit a light beam having an incident angle of about 90 degrees with respect to the optical axis in a direction parallel to the optical axis. It is responsible for bending greatly.
  • the field curvature and lateral chromatic aberration generated by the two negative lens elements are corrected by disposing a positive lens L3 with an air gap on the image side of the second lens element L2.
  • the rear group G2 having a positive refractive power has a function of forming an image of the light beam from the front group G1, and mainly corrects spherical aberration and coma aberration.
  • the positive fourth lens element L4 the fifth lens element L5, and the negative sixth lens element L6, since the diameter of the light beam formed at each image height is widened, the spherical aberration sensitivity and the coma aberration sensitivity due to the surface shape error are particularly large. Get higher.
  • the positive power is divided into two for the positive lens L4 and the positive lens L5 behind the stop A. This is to disperse spherical aberration and coma sensitivity due to surface shape errors.
  • the eighth lens element L8 that is fixed at the time of focusing is disposed on the most image side. This is in consideration of the case where the present invention is used as an imaging optical system for an interchangeable lens camera system. If the lens element closest to the image side is fixed, it is possible to prevent the focus mechanism from being affected by an external force by a finger or the like when the interchangeable lens device is removed from the camera body.
  • the front group G1 has a negative lens L1 with a convex surface facing the object side and a concave surface facing the image side in order from the object side to the image side.
  • the third lens element L3 and the fourth lens element L4 are cemented.
  • the sixth lens element L6 and the seventh lens element L7 are cemented.
  • the rear group G2 includes, in order from the object side to the image side, a biconcave eighth lens element L8, a biconvex ninth lens element L9, and a biconvex tenth lens element L10.
  • the stop A is disposed between the front group G1 and the rear group G2.
  • the second lens element L2 in the front group G1 moves toward the object side along the optical axis.
  • the first lens element L1 and the second lens element L2 having a strong diverging action cause a light beam having an incident angle of 90 degrees with respect to the optical axis in a direction parallel to the optical axis. It is responsible for bending greatly.
  • the curvature of field and lateral chromatic aberration generated by the two negative lenses are the doublet lens of the third lens element L3 and the fourth lens element L4, with an air space on the image side of the second lens element L2, and the second lens element L2. Correction is performed by arranging doublet lenses of a fifth lens element L5, a sixth lens element L6, and a seventh lens element L7.
  • the rear group G2 having a positive refractive power has a function of forming an image of the light beam from the front group G1, and corrects aberrations of the off-axis light beam, and particularly corrects coma.
  • the air space between the ninth lens element L9 and the tenth lens element L10 is for ensuring the telecentricity of off-axis rays, and it is desirable to satisfy the following conditions. 3.0 ⁇ FL / D3 ⁇ 9.0 here, FL: focal length of the positive tenth lens element L10, D3: an air space between the positive ninth lens element L9 and the positive tenth lens element L10.
  • the focal length of the tenth lens element L10 exceeds the upper limit, it is desirable to ensure telecentricity, but it is not desirable because the field curvature becomes excessive. On the other hand, if the focal length of the tenth lens element L10 becomes shorter than the lower limit, the curvature of field is excessively lowered, which is not desirable.
  • the front group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface directed toward the object side; A negative meniscus second lens element L2 with a convex surface facing the object side, a positive meniscus third lens element L3 with a convex surface facing the image side, a biconcave fourth lens element L4, and an object replacement ring And a positive meniscus fifth lens element L5 with a convex surface facing the surface.
  • the rear group G2 in order from the object side to the image side, has a positive meniscus sixth lens element L6 with a convex surface facing the image side, and a positive meniscus seventh lens element L7 with a convex surface facing the image side.
  • a negative meniscus eighth lens element L8 having a convex surface facing the image side, a biconvex ninth lens element L9, and a biconvex tenth lens element L10.
  • the seventh lens element L7 and the eighth lens element L8 are cemented.
  • the stop A is disposed between the front group G1 and the rear group G2. At the time of focusing from the infinitely focused state to the close object focused state, the ninth lens L9 in the rear group G2 moves toward the object side along the optical axis.
  • the first lens element L1 and the second lens element L2 which have a strong diverging action, emit a light beam having an incident angle of about 90 degrees with respect to the optical axis in a direction parallel to the optical axis. It is responsible for bending greatly.
  • the curvature of field and lateral chromatic aberration generated by the two negative lens elements are arranged such that a negative fourth lens element L4 is arranged with a slight air gap on the image side with respect to the positive third lens element L3. Correction is made by arranging a positive fifth lens element L5 with an air gap on the image side of the fourth lens element L4.
  • the rear group G2 having positive refractive power has a function of forming an image of the light beam from the front group G1, and mainly corrects spherical aberration and coma.
  • the positive sixth lens element L6, the seventh lens element L7, and the negative eighth lens element L8 the diameters of the light beams formed at the respective image heights are widened. Therefore, the spherical aberration sensitivity and the coma aberration sensitivity due to the surface shape error are particularly large. Get higher.
  • a positive sixth lens element L6 and a doublet lens of a positive seventh lens element L7 and a negative eighth lens element L8 are used, and aberration due to surface shape error. The sensitivity is distributed.
  • the tenth lens element L10 fixed at the time of focusing is disposed on the most image side. This is in consideration of the case where the present invention is used as an imaging optical system for an interchangeable lens camera system. If the lens element closest to the image side is fixed, it is possible to prevent the focus mechanism from being affected by an external force by a finger or the like when the interchangeable lens device is removed from the camera body.
  • the front group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface directed toward the object side; Negative meniscus second lens element L2 having a convex surface facing the object side, biconvex third lens element L3, biconcave fourth lens element L4, and positive meniscus shape having a convex surface facing the object side
  • the rear group G2 in order from the object side to the image side, includes a plano-convex sixth lens element L6 having a convex surface directed to the image side, and a plano-convex seventh lens element L7 having a convex surface directed to the image side.
  • a negative meniscus eighth lens element L8 having a convex surface facing the image side and a plano-convex ninth lens element L9 having a convex surface facing the image side.
  • the seventh lens element L7 and the eighth lens element L8 are cemented.
  • the stop A is disposed between the front group G1 and the rear group G2. At the time of focusing from the infinite focus state to the close object focus state, the ninth lens element L9 in the rear group G2 moves toward the object side along the optical axis.
  • the first lens element L1 and the second lens element L2 having a strong diverging action cause a light beam having an incident angle of 90 degrees with respect to the optical axis in a direction parallel to the optical axis. It is responsible for bending greatly.
  • the curvature of field and the lateral chromatic aberration generated by the two negative lenses are positive with an air space on the image side of the positive third lens element L3, the negative fourth lens element L4, and the fourth lens element L4.
  • the fifth lens element L5 is arranged for correction.
  • the rear group G2 having positive refractive power has a function of forming an image of the light beam from the front group G1, and mainly corrects spherical aberration and coma.
  • a positive sixth lens element L6, a doublet lens of a positive seventh lens element L7, and a negative eighth lens element L8 are arranged on the image side from the stop A, and aberration due to surface shape error. Disperses sensitivity.
  • no fixed lens is arranged on the most image side. Thus, even when no fixed lens is arranged on the most image side, an imaging optical system suitable for high-speed autofocus is achieved.
  • the lens unit includes the front group in which the negative lens element is disposed closest to the object side, the aperture stop, and the rear group having a positive power in order from the object side to the image side.
  • the negative lens closest to the object and the aperture stop are fixed with respect to the imaging surface, and some lenses in the front group or the rear group move along the optical axis.
  • the moving imaging optical system satisfies the following condition (1).
  • R an average value of the image side curvature radius of the negative lens element arranged closest to the object side and the image side curvature radius of the second negative lens element from the object side among all the negative lens elements;
  • f The focal length of the entire system.
  • Condition (1) is a condition for suppressing the enlargement of the lens barrel size, ensuring the workability of the negative lens element arranged on the object side in the imaging optical system, and further making the back focus appropriate. If the lower limit of the condition (1) is not reached, the radius of curvature on the image plane side of the negative lens becomes small, so that it is difficult to ensure the surface accuracy of the lens periphery during polishing. As a result, the number of processing steps is remarkably increased and the cost is increased, and the back focus is increased and the compactness is deteriorated. On the contrary, if the upper limit of condition (1) is exceeded, the radius of curvature of the negative lens element on the image plane side becomes large, and the negative power of the negative lens element arranged on the object side becomes weak. As a result, an increase in the lens diameter of the front group and a decrease in the amount of peripheral light are undesirable.
  • the lens that moves along the optical axis during focusing is a single lens element.
  • a lens element that can be reduced in weight such as a single lens element, a pair of cemented lenses, a resin lens element, or a composite aspheric lens element in which an aspherical resin layer is provided on the surface of a glass lens, is used. It is desirable.
  • the imaging optical system according to Embodiments 1 to 5 preferably satisfies the following condition (2). 2.0 ⁇ d / f ⁇ 12.0 (2) here, ⁇ d: distance on the optical axis from the most object side surface to the most image side surface in the entire system, f: The focal length of the entire system.
  • Condition (2) is a conditional expression for obtaining an optimum size between the back focus and the outer diameter of the lens barrel. If the lower limit of the condition (2) is not reached, the total length becomes too short, and when used in an interchangeable lens apparatus, a part of the photographer's body or a protruding part such as the camera body or grip part is reflected. It appears and is not desirable. On the contrary, if the upper limit of the condition (2) is exceeded, not only the total length becomes long, but also the diameter of the front lens is increased, so that it becomes impossible to make a compact imaging optical system.
  • the imaging optical systems according to Embodiments 1 to 5 more preferably satisfy at least one of the following conditions (2) ′ and (2) ′′.
  • the effect exhibited when the condition (2) is satisfied is further improved. 7.0 ⁇ d / f (2) ′ ⁇ d / f ⁇ 11.0 (2) ''
  • the imaging optical system according to Embodiments 1 to 5 preferably satisfies the following condition (3). 20 ⁇ Vn ⁇ Vp ⁇ 50 (3) here, Vn: an average Abbe number with respect to the d-line of the negative lens element included in the front group, Vp: an average Abbe number with respect to the d-line of the positive lens elements included in the front group.
  • Condition (3) is a conditional expression for correcting the lateral chromatic aberration generated on the object side surface of the negative lens element arranged closest to the object side by the subsequent lens element in the front group G1. If the lower limit of the condition (3) is not reached, the lateral chromatic aberration due to the negative lens element in the front group G1 cannot be corrected by the subsequent lens element, which is not desirable. On the contrary, if the upper limit of the condition (3) is exceeded, not only will it be difficult to correct the lateral chromatic aberration, but it will also be difficult to construct a lens with an actual glass material.
  • the imaging optical systems according to Embodiments 1 to 5 preferably satisfy the following conditions (4) and (5). -4.0 ⁇ ff / fG ⁇ 3.0 (4) 1.1 ⁇ f2 / f ⁇ 4.2 (5) here, ff: focal length of the lens element that moves during focusing, fG: the combined focal length of the lens group to which the lens element that moves at the time of focusing belongs, f2: rear group composite focal length, f: The focal length of the entire system.
  • Condition (4) defines the focal length of the focus lens while maintaining high imaging performance by suppressing aberration fluctuations in the imaging optical system. If the lower limit of condition (4) is not reached, the focal length of the focus lens will be shortened, which is effective in reducing the size of the lens barrel by reducing the amount of movement of the focus lens, but correcting lateral chromatic aberration and astigmatism. This makes it difficult to manufacture and demands strict manufacturing accuracy, which increases the difficulty of manufacturing. On the other hand, if the upper limit of condition (4) is exceeded, the focal length of the focus lens increases, the amount of movement required for focusing increases, and this leads to an increase in the length of the lens and lens barrel, which is not desirable.
  • Condition (5) defines the focal length of the rear group in order to ensure a short overall length and sufficient back focus while correcting various aberrations satisfactorily. If the lower limit of the condition (5) is not reached, the focal length of the rear group becomes short, the outward coma aberration is remarkably generated, the field curvature becomes too low, and the imaging performance cannot be maintained. Not desirable. On the contrary, if the upper limit of the condition (5) is exceeded, the focal length of the rear group becomes longer and the total length becomes shorter, but the internal coma aberration is remarkably generated, and the field curvature is over and the image is formed. This is not desirable because performance cannot be maintained.
  • the imaging optical systems according to Embodiments 1 to 5 preferably satisfy the following condition (6) or (7). 0.2 ⁇ p ⁇ 0.8 (6) 1.0 ⁇ n ⁇ 1.8 (7) here, ⁇ p: Paraxial imaging magnification in the infinitely focused state of the positive lens element that moves during focusing; ⁇ n: Paraxial imaging magnification in the infinitely focused state of the negative lens element that moves during focusing.
  • Condition (6) is for improving the balance between the length on the optical axis of the rear group including the focus lens and the imaging performance. If the lower limit of the condition (6) is not reached, the amount of movement required at the time of focusing increases, leading to an increase in the total optical length, which is not desirable. On the contrary, if the upper limit of the condition (6) is exceeded, the moving amount at the time of focusing is shortened and effective for shortening the entire length, but it is not desirable because it causes deterioration of the imaging performance at the closest point.
  • Condition (7) is for improving the balance between the length on the optical axis of the front group or rear group including the focus lens and the imaging performance. If the lower limit of the condition (7) is not reached, the magnification becomes small, and the amount of movement necessary for focusing increases, leading to an increase in the total optical length, which is not desirable. In particular, when a focus lens is arranged in the front group, it is not desirable because it is accompanied by an increase in the front lens diameter and at the same time it is difficult to ensure the peripheral light amount ratio. On the other hand, if the upper limit of condition (7) is exceeded, the magnification will increase, and if there is a focus lens in the front group, the field curvature will fall too far down, and the optical system will be configured with a small number of lenses.
  • the focus lens movement amount is shortened and the overall length is shortened, but the focus lens strongly jumps off-axis rays, so the outer diameter of the subsequent lens element is enlarged.
  • the outer shape of the rear part of the lens barrel cannot be kept to a desired size, which is not desirable.
  • the imaging optical system according to Embodiments 1 to 5 preferably satisfies the following condition (8). 0.01 ⁇ D1 / f ⁇ 0.20 (8) here, D1: Air spacing between the positive lens element arranged closest to the object side and the negative lens element arranged adjacent to the image side of the positive lens element; f: The focal length of the entire system.
  • Condition (8) defines an air space between the positive lens element arranged closest to the object side and the negative lens element arranged close to the image side among all the lens elements.
  • Condition (8) is a particularly necessary condition for correcting the astigmatic difference from the 60% image height to the 100% image height. If the lower limit of the condition (8) is not reached, the air interval becomes small, and the meridional image plane falls over when focusing on an object at infinity, so that it is not desirable because the imaging performance cannot be secured. On the contrary, if the upper limit of the condition (8) is exceeded, the air interval becomes large, the meridional image plane falls down, and the imaging performance cannot be secured, which is not desirable.
  • Each lens element constituting the imaging optical system according to Embodiments 1 to 5 is a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes)
  • the present invention is not limited to this.
  • a diffractive lens element that deflects incident light by diffraction a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffractive action and refractive action, and a refractive index that deflects incident light according to the refractive index distribution in the medium A distributed lens element or the like may be used.
  • a refractive / diffractive hybrid lens element it is preferable to form a diffractive structure at the interface of media having different refractive indexes, since the wavelength dependency of diffraction efficiency is improved.
  • FIG. 16 is a schematic configuration diagram of a camera system according to the sixth embodiment.
  • the camera system according to Embodiment 6 includes a camera body 100 and an interchangeable lens device 200.
  • the camera body 100 includes a camera controller 101, an image sensor 102, a shutter unit 103, an image display control unit 104, an image sensor control unit 105, a contrast detection unit 106, a shutter control unit 107, an image recording control unit 108, a display 110, and a release button. 111, a memory 112, a power source 113, and a camera mount 114.
  • the camera controller 101 is an arithmetic device that controls the entire camera system.
  • the camera controller 101 is electrically connected to the image display control unit 104, the image sensor control unit 105, the contrast detection unit 106, the shutter control unit 107, the image recording control unit 108, the memory 112, and the camera mount 114.
  • signals can be exchanged with each other.
  • the camera controller 101 is electrically connected to the release button 111 and receives a signal generated by operating the release button 111. Furthermore, the camera controller 101 is connected to a power source 113.
  • the imaging sensor 102 is, for example, a C-MOS sensor.
  • the imaging sensor 102 converts the optical image incident on the light receiving surface into image data and outputs the image data.
  • the image sensor 102 is driven in accordance with a drive signal from the image sensor control unit 105.
  • the image sensor control unit 105 outputs a drive signal for driving the image sensor 102 according to a control signal from the camera controller 101 and outputs image data output from the image sensor 102 to the camera controller 101.
  • the contrast detection unit 106 calculates and detects contrast from image data output from the image sensor 102 in accordance with a control signal from the camera controller 101, and outputs the contrast to the camera controller 101.
  • the shutter unit 103 includes a shutter plate that blocks an optical path of image light incident on the image sensor 102.
  • the shutter unit 103 is driven in accordance with a drive signal from the shutter control unit 107.
  • the shutter control unit 107 controls the opening / closing timing of the shutter plate of the shutter unit 103 in accordance with a control signal from the camera controller 101.
  • the display 110 is, for example, a liquid crystal display device.
  • the display 110 is driven according to a drive signal from the image display control unit 104 and displays an image on the display surface.
  • the image display control unit 104 outputs image data to be displayed on the display 110 and a drive signal for driving the display in accordance with a control signal from the camera controller 101.
  • the image recording control unit 108 outputs image data to the detachably connected memory card 109 in accordance with a control signal from the camera controller 101.
  • the camera mount 114 mechanically connects the camera body 100 and an interchangeable lens device 200 described later.
  • the camera mount 114 also functions as an interface for electrically connecting the camera body 100 and an interchangeable lens device 200 described later.
  • the interchangeable lens apparatus 200 includes a lens controller 201, an aperture control unit 202, a focus control unit 203, a memory 204, an aperture unit 206, an imaging optical system 207, and a lens mount 210.
  • the lens controller 201 is an arithmetic device that controls the entire interchangeable lens apparatus 200, and is connected to the camera controller 101 in the camera body described above via the lens mount 210 and the camera mount 114.
  • the lens controller 201 is electrically connected to the aperture control unit 202, the focus control unit 203, the memory 204, and the shake detection unit 205, and can exchange signals with each other.
  • the imaging optical system 207 is the imaging optical system according to the first embodiment described above.
  • the imaging optical system 207 includes a focusing lens group 207a. Note that the focusing lens group 207a is schematically shown for the sake of simplicity, and thus does not directly show the configuration of the actual imaging optical system.
  • the focusing lens group 207a is moved in the direction along the optical axis to perform focusing.
  • the diaphragm control unit 202 detects and outputs the current position of the diaphragm unit 206 in accordance with a control signal from the lens controller 201.
  • the diaphragm control unit 202 outputs a drive signal for driving the diaphragm blades included in the diaphragm unit 206 to open and close the diaphragm, thereby changing the F number of the optical system.
  • the focus control unit 203 detects and outputs the current position of the focusing lens group 207a in accordance with a control signal from the lens controller 201. Further, the focus control unit 203 outputs a drive signal for driving the focusing lens group 207a, and drives the focusing lens group 207a in a direction along the optical axis.
  • the camera controller 101 executes an autofocus routine. First, the camera controller 101 communicates with the lens controller 201 via the camera mount 114 and the lens mount 210 to detect the states of the focusing lens group 207a and the aperture unit 206.
  • the lens controller 201 controls the focus control unit 203 based on the control signal to drive the focusing lens group 207a by wobbling.
  • the camera controller 101 simultaneously communicates with the lens controller 201 via the camera mount 114 and the lens mount 210, and outputs a control signal that instructs the lens controller 201 so that the aperture value becomes a predetermined value.
  • the lens controller 201 controls the diaphragm control unit 202 based on the control signal to drive the diaphragm blades of the diaphragm unit 206 so as to have a predetermined F number.
  • the camera controller 101 outputs a control signal to the imaging sensor control unit 105 and the contrast detection unit 106.
  • the imaging sensor control unit 105 and the contrast detection unit 106 obtain the output from the imaging sensor 102 in association with the sampling frequency of the wobbling drive of the focusing lens group 207a.
  • the image sensor control unit 105 transmits image data corresponding to the optical image to the camera controller 101 based on a control signal from the camera controller 101.
  • the camera controller 101 performs predetermined image processing on the image data and transmits the image data to the image display control unit 104.
  • the image display control unit 104 displays the image data on the display 110 as a visible image.
  • the contrast detection unit 106 calculates the contrast value of the image data in association with wobbling and transmits it to the camera controller 101. Based on the detection result of the contrast detection unit 106, the camera controller 101 determines the focusing movement direction and the movement amount of the focusing lens group to the lens controller 201, and transmits information regarding these to the lens controller 201.
  • the lens controller 201 outputs a control signal to the focus control unit 203 so as to move the focusing lens group 207a.
  • the focus control unit 203 drives the focusing lens group 207a based on a control signal from the lens controller 201.
  • the imaging optical system according to Embodiment 1 has a small change in image magnification during wobbling and is lightweight, and thus is suitable for live view conditions and moving image shooting.
  • an imaging apparatus including the imaging optical system according to Embodiments 1 to 5 described above and an imaging element such as a CCD or a CMOS is used as an interchangeable lens camera system, a surveillance camera in a surveillance system, a Web camera, an in-vehicle system. It can also be applied to cameras and the like.
  • 2, 5, 8, 11, and 14 are longitudinal aberration diagrams of the imaging optical system according to Embodiments 1, 2, 3, 4, and 5 in an infinitely focused state.
  • 3, 6, 9, 12, and 15 are longitudinal aberration diagrams of the imaging optical system according to Embodiments 1, 2, 3, 4, and 5 at an object distance of 1 m.
  • spherical aberration SA (mm)
  • astigmatism AST (mm)
  • distortion DIS (%)
  • the vertical axis represents the F number (indicated by F in the figure)
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line (C- line).
  • the vertical axis represents the half angle of view (indicated by W in the figure)
  • the solid line represents the sagittal plane (indicated in the figure by s)
  • the broken line represents the meridional plane (indicated by m in the figure). It is.
  • the vertical axis represents the half field angle (indicated by W in the figure).
  • the imaging optical system of Numerical Example 1 corresponds to Embodiment 1 shown in FIG. Table 1 shows surface data of the imaging optical system of Numerical Example 1, and Table 2 shows various data.
  • Table 1 (Surface data) Surface number r d nd vd Surface ⁇ Variable 1 37.341 1.700 1.80610 40.7 2 14.839 6.839 3 76.145 1.500 1.71300 53.9 4 9.969 7.965 5 -25.963 2.150 1.80518 25.5 6 -15.329 0.509 7 -13.756 0.800 1.61800 63.4 8 -45.140 0.150 9 19.039 3.200 1.80518 25.5 10 102.845 6.930 11 (Aperture) ⁇ 1.800 12 -750.000 1.780 1.80610 40.7 13 -19.930 0.170 14 -33.275 2.900 1.62041 60.3 15 -7.039 1.300 1.84666 23.8 16 -22.096 Variable 17 -118.519 2.800 1.61800 63.4 18 -19.7
  • Table 11 shows corresponding values of the conditions in the imaging optical system according to each numerical example.
  • Table 11 (Corresponding values of conditions: Numerical examples 1 to 5)
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 (1) R / f 1.6 1.4 1.6 1.6 1.7 (2) ⁇ d / f 9.1 8.4 7.9 8.8 9.9 (3)
  • Vn-Vp 27.2 26.5 26.5 34.8 22.7
  • Focal length of front group -24.64 -31.88 -63.12 -110.85 -13.31 Rear group focal length 18.33 18.05 16.42 19.59 16.80 ff 37.89 -64.11 -20.95 37.22 39.88
  • the imaging optical system according to the present invention can be applied to an interchangeable lens camera system, a surveillance camera in a surveillance system, a Web camera, an in-vehicle camera, and the like, and particularly an imaging optical system that requires high image quality, such as an interchangeable lens camera system. Ideal for.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 フォーカスレンズが軽量でコンパクトな撮像光学系を提供する。撮像光学系は物体側から像側へと順に、最も物体側に負レンズを配置した前群と、開口絞りと、正の屈折力からなる後群とからなる。無限遠物体から近距離物体への合焦に際し、最も物体側の負レンズと開口絞りとが撮像面に対して固定され、前群または後群中にある一部のレンズが光軸に沿って移動する。この撮像光学系は、条件(1):0.9<R/f<2.0(R:最も物体側に配置される負レンズ素子の像側曲率半径と、全ての負レンズ素子の中で物体側から2番目の負レンズ素子の像側曲率半径との平均値、f:全系の焦点距離)を満足する。

Description

撮像光学系、交換レンズ装置及びカメラシステム
 本発明は、いわゆるレンズ交換式デジタルカメラシステムに好適な撮像光学系に関する。また、本発明は、当該撮像光学系を用いた交換レンズ装置及びカメラシステムに関する。
 近年、CCD(Charge Coupled Device)、CMOS(Complementary Metal-Oxide Semiconductor)などの撮像素子を持つカメラ本体と、撮像素子の受光面に光学像を形成するための撮像光学系を備えた交換レンズ装置とを備え、撮像レンズをカメラ本体から着脱可能にしたレンズ交換式カメラシステム(以下、単に「カメラシステム」ともいう)の市場が急速に拡大している。このようなカメラシステムは、静止画を撮影するに留まらず、動画撮影にも利用されており、静止画撮影だけでなく、動画撮影にも適した交換レンズ装置に人気がある。
 撮像光学系のフォーカス方式としては、構成レンズ全体を繰出す方式と、前群と後群を独立に移動させる、所謂フローティング方式とが知られている。
 特許文献1及び2はフォーカス時に、前群と後群とを物体側に動かす構成を開示している。特許文献3はフォーカス時に、第1レンズ素子を固定し、第2レンズ素子以降を動かす構成を開示している。特許文献4はフォーカス時に、光学系全体を物体側に繰出す構成を開示している。
 交換レンズ装置に適した撮像光学系を用いて動画を撮影する場合、オートフォーカスを高速で連続して行う必要がある。オートフォーカスを高速で連続して行うために、フォーカスレンズ群を光軸方向に高速で振動させて(以下、「ウォブリング」という)、撮像素子の出力信号から一部の画像領域内のある周波数帯の信号成分を検出して、合焦状態となるフォーカスレンズ群の最適位置を求め、その最適位置にフォーカスレンズ群を移動させるといった、一連の動作を繰り返す方法が知られている。このオートフォーカス方法を採用する場合、携帯性や消費電力の観点からフォーカスレンズ群を構成するレンズの外径を極力小さくし、レンズ重量を極力軽くする必要がある。
特開2004-126522号公報 特開平5-273459号公報 特開2007-94371号公報 特開2008-3108号公報
 しかしながら、特許文献1~4に開示の光学系はいずれも、フォーカスレンズ群に多くのレンズ枚数を使っており、高速でレンズを連続移動させることが難しい構成となっている。
 そこで、本発明の目的は、高速オートフォーカスを実現でき、かつ、小型で良好な結像性能を有する撮像光学系、該撮像光学系を含む交換レンズ装置、及び該撮像装置を備えたカメラシステムを提供することである。
 本発明に係る撮像光学系は、物体側から像側へと順に、最も物体側に負レンズを配置した前群と、開口絞りと、正のパワーを有する後群とからなる。無限遠物体から近距離物体への合焦に際し、最も物体側の負レンズと開口絞りとが撮像面に対して固定され、前群または後群中にある一部のレンズが光軸に沿って移動する。本発明に係る撮像光学系は、以下の条件(1)を満足する。
  0.9<R/f<2.0 ・・・(1)
ここで、
 R:最も物体側に配置される負レンズ素子の像側曲率半径と、全ての負レンズ素子の中で物体側から2番目の負レンズ素子の像側曲率半径との平均値、
 f:全系の焦点距離
である。
 本発明に係る交換レンズ装置は、上記の撮像光学系と、撮像光学系が形成する光学像を受光して、電気的な画像信号に変換する撮像センサを含むカメラ本体に接続されるレンズマウント部とを備える。
 本発明に係るカメラシステムは、上記の撮像光学系を含む交換レンズ装置と、交換レンズ装置とカメラマウント部を介して着脱可能に接続され、撮像光学系が形成する光学像を受光して、電気的な画像信号に変換する撮像センサを含むカメラ本体とを備える。
 本発明によれば、動画撮影に対応できる高速オートフォーカスが可能で、結像特性が良好でコンパクトな撮像光学系、これを備えた交換レンズ装置及びカメラシステムを実現できる。
図1は、実施の形態1に係る撮像光学系のレンズ配置図である。 図2は、実施の形態1に係る撮像光学系の無限遠合焦状態での縦収差図である。 図3は、実施の形態1に係る撮像光学系の物体距離1mでの縦収差図である。 図4は、実施の形態2に係る撮像光学系のレンズ配置図である。 図5は、実施の形態2に係る撮像光学系の無限遠合焦状態での縦収差図である。 図6は、実施の形態2に係る撮像光学系の物体距離1mでの縦収差図である。 図7は、実施の形態3に係る撮像光学系のレンズ配置図である。 図8は、実施の形態3に係る撮像光学系の無限遠合焦状態での縦収差図である。 図9は、実施の形態3に係る撮像光学系の物体距離1mでの縦収差図である。 図10は、実施の形態4に係る撮像光学系のレンズ配置図である。 図11は、実施の形態4に係る撮像光学系の無限遠合焦状態での縦収差図である。 図12は、実施の形態4に係る撮像光学系の物体距離1mでの縦収差図である。 図13は、実施の形態5に係る撮像光学系のレンズ配置図である。 図14は、実施の形態5に係る撮像光学系の無限遠合焦状態での縦収差図である。 図15は、実施の形態5に係る撮像光学系の物体距離1mでの縦収差図である。 図16は、実施の形態6に係るカメラシステムの概略構成図である。
 (実施の形態1~5)
 図1、4、7、10、13は、各々実施の形態1、2、3、4、5に係る撮像光学系のレンズ配置図である。各図は、無限遠合焦状態にある撮像光学系を表している。またレンズに付された矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際の移動方向を示している。各図において、各レンズ群の符号に付された記号(+)及び記号(-)は、各レンズ群のパワーを表す。また各図において、最も右側に記載された直線は、像面Sの位置を表している。
 各実施の形態に係る撮像光学系は、物体側から像側へ順に、負のパワーを有する前群G1と、絞りAと、正のパワーを有する後群G2とを備えている。以下、各実施の形態に係る撮像光学系の詳細な構成を説明する。
 (実施の形態1)
 図1に示すように、実施の形態1に係る撮像光学系において、前群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた負メニスカス形状の第2レンズ素子L2と、像側に凸面を向けた正メニスカス形状の第3レンズ素子L3と、像側に凸面を向けた負メニスカス形状の第4レンズ素子L4と、物体側に凸面を向けた正メニスカス形状の第5レンズ素子L5とからなる。後群G2は、物体側から像側へと順に、像側に凸面を向けた正メニスカス形状の第6レンズ素子L6と、像側に凸面を向けた正メニスカス形状の第7レンズ素子L7と、像側に凸面を向けた負メニスカス形状の第8レンズ素子L8と、像側に凸面を向けた正メニスカス形状の第9レンズ素子L9と、両凸形状の第10レンズ素子L10とからなる。第7レンズ素子L7と第8レンズ素子L8とは接合されている。絞りAは前群G1と後群G2との間に配置されている。無限遠合焦状態から近接物体合焦状態へのフォーカスに際して、後群G2中の第9レンズL9が光軸に沿って物体側へ移動する。
 実施の形態1に係る前群G1では、強い発散作用を持つ第1レンズ素子L1と第2レンズ素子L2とが、光軸に対しておよそ90度の入射角度を持つ光束を光軸と平行な方向へ大きく曲げる働きを担っている。この2枚の負レンズ素子によって発生した像面湾曲及び倍率色収差を、正の第3レンズ素子L3と、第3レンズ素子L3との間に僅かな空気間隔を空けて配置される負の第4レンズ素子L4と、正の第5レンズ素子L5とにより補正している。正のパワーを持つ後群G2は、前群G1からの光束を結像させる働きを持っており、主に球面収差、コマ収差の補正を行っている。正の第6レンズ素子L6、第7レンズ素子L7、負の第8レンズ素子L8では、各像高に結像する光束径が広がるため、特に面形状誤差による球面収差感度、コマ収差感度が高くなる。本実施の形態では、絞りAより後方において、正のパワーを第6レンズ素子L6と、第7レンズ素子L7とに2分割している。これは面形状誤差による球面収差やコマ収差感度を分散させるためである。
 本実施の形態では、最も像側に、フォーカス時に固定の第10レンズ素子L10を配置している。これは、本発明をレンズ交換式カメラシステム用の撮像光学系として用いる場合を考慮してのことである。最も像側のレンズ素子を固定しておけば、カメラ本体から交換レンズ装置を外した際にフォーカス機構が指などの外力の影響を受けることを防止できる。
 (実施の形態2)
 図4に示すように、実施の形態2に係る撮像光学系において、前群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた負メニスカス形状の第2レンズ素子L2と、両凸形状の第3レンズ素子L3とからなる。後群G2は、物体側から像側へと順に、像側に凸面を向けた正メニスカス形状の第4レンズ素子L4と、両凸形状の第5レンズ素子L5と、像側に凸面を向けた負メニスカス形状の第6レンズ素子L6と、像側に凸面を向けた負メニスカス形状の第7レンズ素子L7と、両凸形状の第8レンズ素子L8とからなる。第5レンズ素子L5と第6レンズ素子L6とは接合されている。絞りAは前群G1と後群G2との間に配置されている。無限遠合焦状態から近接物体合焦状態へのフォーカスに際して、後群G2中の第7レンズ素子L7が光軸に沿って像側へ移動する。
 実施の形態2の前群G1では、強い発散作用を持つ第1レンズ素子L1と第2レンズ素子L2とが、光軸に対しておよそ90度の入射角度を持つ光束を光軸と平行な方向へ大きく曲げる働きを担っている。この2枚の負レンズ素子によって発生した像面湾曲及び倍率色収差は、第2レンズ素子L2の像側に空気間隔を空けて正のレンズL3を配置することで補正している。正の屈折力を持つ後群G2は、前群G1からの光束を結像させる働きを持っており、主に球面収差、コマ収差の補正を行っている。正の第4レンズ素子L4、第5レンズ素子L5、負の第6レンズ素子L6では、各像高に結像する光束径が広がるため、特に面形状誤差による、球面収差感度、コマ収差感度が高くなる。本実施の形態では、絞りAより後方において、正レンズL4と、正レンズL5とに正のパワーを2分割している。これは、面形状誤差による球面収差やコマ収差感度を分散させるためである。
 本実施の形態では、最も像側に、フォーカス時に固定の第8レンズ素子L8を配置している。これは、本発明をレンズ交換式カメラシステム用の撮像光学系として用いる場合を考慮してのことである。最も像側のレンズ素子を固定しておけば、カメラ本体から交換レンズ装置を外した際にフォーカス機構が指などによる外力の影響を受けることを防止できる。
 (実施の形態3)
 図7に示すように、実施の形態3に係る撮像光学系において、前群G1は、物体側から像側へと順に、物体側に凸面を向けた負レンズL1と、像側に凹面を向けた平凹形状の第2レンズ素子L2と、両凹形状の第3レンズ素子L3と、両凸形状の第4レンズ素子L4と、両凸形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、両凹形状の第7レンズ素子L7とからなる。第3レンズ素子L3と第4レンズ素子L4とは接合されている。また、第6レンズ素子L6と第7レンズ素子L7とは接合されている。後群G2は、物体側から像側へと順に、両凹形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凸形状の第10レンズ素子L10とからなる。絞りAは前群G1と後群G2との間に配置されている。無限遠合焦状態から近接物体合焦状態へのフォーカスに際して、前群G1中の第2レンズ素子L2が光軸に沿って物体側へ移動する。
 実施の形態3の前群G1では、強い発散作用を持つ第1レンズ素子L1と第2レンズ素子L2とが、光軸に対して90度の入射角度を持つ光束を光軸と平行な方向へ大きく曲げる働きを担っている。この2枚の負レンズによって発生した像面湾曲及び倍率色収差は、第2レンズ素子L2の像側に空気間隔を空けて、第3レンズ素子L3と第4レンズ素子L4とのダブレットレンズと、第5レンズ素子L5と、第6レンズ素子L6と第7レンズ素子L7とのダブレットレンズを配置することで補正している。
 正の屈折力を持つ後群G2は、前群G1からの光束を結像させる働きを持ちつつ、軸外光束の収差補正を良好に行い、特にコマ収差の補正を行っている。第9レンズ素子L9と第10レンズ素子L10との空気間隔は、軸外光線のテレセントリック性を確保するためのものであり、以下の条件を満足する事が望ましい。
  3.0<FL/D3<9.0
ここで、
 FL:正の第10レンズ素子L10の焦点距離、
 D3:正の第9レンズ素子L9と正の第10レンズ素子L10との空気間隔
である。
 上限を超えて第10レンズ素子L10の焦点距離が長くなると、テレセントリック性を確保する上では望ましいが、像面湾曲がオーバーになり過ぎるため望ましくない。一方、下限を下回って第10レンズ素子L10の焦点距離が短くなると、逆に像面湾曲がアンダーになり過ぎるため望ましくない。
 (実施の形態4)
 図10に示すように、実施の形態4に係る撮像光学系において、前群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた負メニスカス形状の第2レンズ素子L2と、像側に凸面を向けた正メニスカス形状の第3レンズ素子L3と、両凹形状の第4レンズ素子L4と、物体替え輪に凸面を向けた正メニスカス形状の第5レンズ素子L5とからなる。後群G2は、物体側から像側へと順に、像側に凸面を向けた正メニスカス形状の第6レンズ素子L6と、像側に凸面を向けた正メニスカス形状の第7レンズ素子L7と、像側に凸面を向けた負メニスカス形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凸形状の第10レンズ素子L10とからなる。第7レンズ素子L7と第8レンズ素子L8とは接合されている。絞りAは前群G1と後群G2との間に配置されている。無限遠合焦状態から近接物体合焦状態へのフォーカスに際して、後群G2中の第9レンズL9が光軸に沿って物体側へ移動する。
 実施の形態4の前群G1では、強い発散作用を持つ第1レンズ素子L1と第2レンズ素子L2とが、光軸に対しておよそ90度の入射角度を持つ光束を光軸と平行な方向へ大きく曲げる働きを担っている。この2枚の負レンズ素子によって発生した像面湾曲及び倍率色収差は、正の第3レンズ素子L3との像側に僅かな空気間隔を空けて負の第4レンズ素子L4を配置し、更に、第4レンズ素子L4の像側に空気間隔を空けて正の第5レンズ素子L5を配置することにより補正している。
 正の屈折力を持つ後群G2は、前群G1からの光束を結像させる働きを持っており、主に球面収差、コマ収差の補正をしている。正の第6レンズ素子L6、第7レンズ素子L7、負の第8レンズ素子L8では、各像高に結像する光束径が広がるため、特に面形状誤差による、球面収差感度、コマ収差感度が高くなる。本実施の形態では、絞りAの像側に、正の第6レンズ素子L6と、正の第7レンズ素子L7及び負の第8レンズ素子L8のダブレットレンズにて構成し、面形状誤差による収差感度を分散させる構成としている。
 本実施の形態では、最も像側に、フォーカス時に固定の第10レンズ素子L10を配置している。これは、本発明をレンズ交換カメラシステム用の撮像光学系として用いる場合を考慮してのことである。最も像側のレンズ素子を固定しておけば、カメラ本体から交換レンズ装置を外した際にフォーカス機構が指などによる外力の影響を受けることを防止できる。
 (実施の形態5)
 図13に示すように、実施の形態5に係る撮像光学系において、前群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた負メニスカス形状の第2レンズ素子L2と、両凸形状の第3レンズ素子L3と、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた正メニスカス形状の第5レンズ素子L5とからなる。後群G2は、物体側から像側へと順に、像側に凸面を向けた平凸形状の第6レンズ素子L6と、像側に凸面を向けた平凸形状の第7レンズ素子L7と、像側に凸面を向けた負メニスカス形状の第8レンズ素子L8と、像側に凸面を向けた平凸形状の第9レンズ素子L9とからなる。第7レンズ素子L7と第8レンズ素子L8とは接合されている。絞りAは前群G1と後群G2との間に配置されている。無限遠合焦状態から近接物体合焦状態へのフォーカスに際して、後群G2中の第9レンズ素子L9が光軸に沿って物体側へ移動する。
 実施の形態5の前群G1では、強い発散作用を持つ第1レンズ素子L1と第2レンズ素子L2とが、光軸に対して90度の入射角度を持つ光束を光軸と平行な方向へ大きく曲げる働きを担っている。この2枚の負レンズによって発生した像面湾曲及び倍率色収差は、正の第3レンズ素子L3と、負の第4レンズ素子L4と、第4レンズ素子L4の像側に空気間隔を空けて正の第5レンズ素子L5とを配置することにより補正している。
 正の屈折力を持つ後群G2は、前群G1からの光束を結像させる働きを持っており、主に球面収差、コマ収差の補正をしている。正の第6レンズ素子L6、第7レンズ素子L7、そして負の第8レンズ素子L8では、各像高に結像する光束径が広がるため、特に面形状誤差による、球面収差感度、コマ収差感度が高くなる。本実施の形態では、絞りAより像側に、正の第6レンズ素子L6と、正の第7レンズ素子L7と負の第8レンズ素子L8のダブレットレンズとを配置し、面形状誤差による収差感度を分散させている。また実施の形態5では、最も像側に固定レンズを配置していない。このように、最も像側に固定レンズを配置しない場合でも、高速オートフォーカスに適した撮像光学系は達成される。
 以下、実施の形態1~5に係る撮像光学系が満足することが好ましい条件を説明する。ここでは、複数の満足することが好ましい条件が規定されるが、これらの複数の条件全てを満足する撮像光学系の構成が最も望ましい。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏する撮像光学系を得ることも可能である。
 実施の形態1~5に示した、物体側から像側へと順に、最も物体側に負レンズ素子を配置した前群と、開口絞りと、正のパワーを有する後群とからなり、無限遠物体から近距離物体への合焦に際し、最も物体側の負レンズと開口絞りとが撮像面に対して固定され、かつ、前群または後群中にある一部のレンズが光軸に沿って移動する撮像光学系は、以下の条件(1)を満足する。
  0.9<R/f<2.0 ・・・(1)
ここで、
 R:最も物体側に配置される負レンズ素子の像側曲率半径と、全ての負レンズ素子の中で物体側から2番目の負レンズ素子の像側曲率半径との平均値、
 f:全系の焦点距離
である。
 条件(1)は、鏡筒サイズの拡大を抑え、撮像光学系中で物体側に配置される負レンズ素子の加工性を確保し、さらにバックフォーカスを適切にする為の条件である。条件(1)の下限を下回ると、負レンズの像面側の曲率半径が小さくなるので、研磨加工の際、レンズ周辺部の面精度の確保が難しくなる。この結果、加工工数が著しく増えてコストが高くなるだけでなく、バックフォーカスが長くなってコンパクト性を損なうため望ましくない。逆に、条件(1)の上限を上回ると、負レンズ素子の像面側の曲率半径が大きくなり、物体側に配置される負レンズ素子の負のパワーが弱くなる。この結果、前群のレンズ径の増大と周辺光量の低下とを招くため望ましくない。
 また、実施の形態1~5に示したように、合焦に際して光軸に沿って移動するレンズが、単レンズ素子であることが好ましい。
 フォーカスレンズには、1枚のレンズ素子、1組の接合レンズ、樹脂レンズ素子、ガラスレンズの表面に非球面形状の樹脂層を設けた複合非球面レンズ素子などの軽量化が図れるレンズ素子を用いることが望ましい。
 実施の形態1~5に係る撮像光学系は、以下の条件(2)を満足することが好ましい。
  2.0<Σd/f<12.0 ・・・(2)
ここで、
 Σd:全系で最も物体側の面から最も像側の面までの光軸上の距離、
 f:全系の焦点距離
である。
 条件(2)は、バックフォーカスと鏡筒外径との最適なサイズを得るための条件式である。条件(2)の下限を下回ると、全長が短くなり過ぎ、交換レンズ装置に使用した場合に、撮影者の体の一部またはカメラ本体やグリップ部分などの突出部分が写り込んでしまうという弊害が現れてしまい望ましくない。逆に、条件(2)の上限を上回ると全長が長くなるだけでなく、前玉径の拡大も招くので、コンパクトな撮像光学系をじつげんすることが出来なくなる。
 上記の条件(2)を満たす場合、実施の形態1~5に係る撮像光学系は、更に以下の条件(2)’及び(2)’’の少なくとも1つを満足することがより好ましい。条件(2)’及び(2)’’の少なくとも一方を満足する場合、条件(2)を満足したときに奏される効果が更に向上する。
  7.0<Σd/f ・・・(2)’
  Σd/f<11.0 ・・・(2)’’
 実施の形態1~5に係る撮像光学系は、以下の条件(3)を満足することが好ましい。
  20<Vn-Vp<50 ・・・(3)
ここで、
 Vn:前群に含まれる負レンズ素子のd線に対する平均アッベ数、
 Vp:前群に含まれる正レンズ素子のd線に対する平均アッベ数
である。
 条件(3)は、最も物体側に配置された負レンズ素子の物体側面で発生した倍率色収差を、前群G1内の後続するレンズ素子で補正するための条件式である。条件(3)の下限を下回ると、前群G1内の負レンズ素子による倍率色収差を後続のレンズ素子で補正しきれなくなり望ましくない。逆に、条件(3)の上限を上回ると、倍率色収差の補正が困難となるだけでなく、実在する硝材でレンズを構成することが困難になる。
 実施の形態1~5に係る撮像光学系は、以下の条件(4)及び(5)を満足することが好ましい。
  -4.0<ff/fG<3.0 ・・・(4)
  1.1<f2/f<4.2 ・・・(5)
ここで、
 ff:合焦時に移動するレンズ素子の焦点距離、
 fG:合焦時に移動するレンズ素子が属するレンズ群の合成焦点距離、
 f2:後群の合成焦点距離、
 f:全系の焦点距離
である。
 条件(4)は、撮像光学系の収差変動を抑えて高い結像性能を維持しながら、フォーカスレンズの焦点距離を規定する。条件(4)の下限を下回ると、フォーカスレンズの焦点距離が短くなるので、フォーカスレンズの移動量低減による鏡筒サイズのコンパクト化には効果があるが、倍率色収差や非点収差を補正することが困難となり、厳しい製造精度が要求されるので製造面の難易度が上昇する。逆に、条件(4)の上限を上回ると、フォーカスレンズの焦点距離が大きくなり、フォーカスに必要な移動量が増大し、レンズや鏡筒長の大型化を招くため望ましくない。
 条件(5)は、諸収差を良好に補正しつつ、短い全長と十分なバックフォーカスを確保するための、後群の焦点距離を規定する。条件(5)の下限を下回ると、後群の焦点距離が短くなり、外方性のコマ収差が著しく発生し、像面湾曲がアンダーになり過ぎ、結像性能を維持することができなくなるため望ましくない。逆に、条件(5)の上限を上回ると、後群の焦点距離が長くなり、全長は短くなるが、内方性のコマ収差が著しく発生する上、像面湾曲がオーバー側になり結像性能を維持する事が出来なくなるため望ましくない。
 実施の形態1~5に係る撮像光学系は、以下の条件(6)もしくは(7)を満足することが好ましい。
  0.2<βp<0.8 ・・・(6)
  1.0<βn<1.8 ・・・(7)
ここで、
 βp:合焦の際に移動する正レンズ素子の無限遠合焦状態における近軸結像倍率、
 βn:合焦の際に移動する負レンズ素子の無限遠合焦状態における近軸結像倍率
である。
 条件(6)は、フォーカスレンズを含む後群の光軸上の長さと結像性能とのバランス良くするためのものである。条件(6)の下限を下回ると、フォーカス時に必要な移動量が増大し、光学全長の増大を招くため望ましくない。逆に、条件(6)の上限を上回ると、フォーカス時の移動量は短くなり全長短縮には効果があるものの、至近時の結像性能の悪化を伴うため望ましくない。
 条件(7)は、フォーカスレンズを含む前群または後群の光軸上の長さと結像性能とのバランスを良くするためのものである。条件(7)の下限を下回ると、倍率が小さくなり、フォーカス時に必要な移動量が増大し光学全長の増大を招くため望ましくない。特に、前群にフォーカスレンズを配置する場合、前玉径の増大を伴うと同時に周辺光量比の確保が難しくなるため望ましくない。逆に、条件(7)の上限を上回ると、倍率が大きくなり、前群中にフォーカスレンズが有る場合には、像面湾曲がアンダー側に倒れすぎ、少ないレンズ枚数で光学系を構成することが困難となる。一方、後群中にフォーカスがある場合には、フォーカスレンズ移動量は短くなり全長短縮には効果があるものの、フォーカスレンズが軸外光線を強く跳ね上げるため、後続するレンズ素子の外径の拡大を伴い、鏡筒後部の外形が所望のサイズを守れなくなるので望ましくない。
 実施の形態1~5に係る撮像光学系は、以下の条件(8)を満足することが好ましい。
  0.01<D1/f<0.20 ・・・(8)
ここで、
 D1:最も物体側に配置される正レンズ素子と、当該正レンズ素子の像側に隣接して配置される負レンズ素子との空気間隔、
 f:全系の焦点距離
である。
 条件(8)は、全レンズ素子の中で、最も物体側に配置される正レンズ素子と、その像側に近接して配置される負レンズ素子との空気間隔を規定する。条件(8)は、6割像高から10割像高へかけての非点隔差を補正する上で特に必要な条件である。条件(8)の下限を下回ると、空気間隔が小さくなり、無限遠物体への合焦時にメリディオナル像面がオーバーに倒れ、結像性能を確保できなくなり望ましくない。逆に条件(8)の上限を上回ると、空気間隔が大きくなり、メリディオナル像面がアンダーに倒れ、結像性能が確保できなくなるため望ましくない。
 実施の形態1~5に係る撮像光学系を構成している各レンズ素子は、入射光線を屈折により偏向させる屈折型レンズ素子(すなわち、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ素子)のみで構成されているが、これに限定されるものではない。例えば、回折により入射光線を偏向させる回折型レンズ素子、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ素子、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ素子等で構成してもよい。特に、屈折・回折ハイブリッド型レンズ素子において、屈折率の異なる媒質の界面に回折構造を形成すると、回折効率の波長依存性が改善されるので、好ましい。
 (実施の形態6)
 図16は、実施の形態6に係るカメラシステムの概略構成図である。実施の形態6に係るカメラシステムは、カメラ本体100と、交換レンズ装置200とを含む。
 カメラ本体100は、カメラコントローラ101、撮像センサ102、シャッタユニット103、画像表示制御部104、撮像センサ制御部105、コントラスト検出部106、シャッタ制御部107、画像記録制御部108、ディスプレイ110、レリーズ釦111、メモリ112、電源113及びカメラマウント114を含む。
 カメラコントローラ101は、カメラシステム全体を制御する演算装置である。カメラコントローラ101は、画像表示制御部104と、撮像センサ制御部105と、コントラスト検出部106と、シャッタ制御部107と、画像記録制御部108と、メモリ112と、カメラマウント114と電気的に接続され相互に信号のやり取りが可能である。また、カメラコントローラ101は、レリーズ釦111と電気的に接続され、レリーズ釦111の操作による信号を受信する。さらに、カメラコントローラ101は、電源113と接続される。
 撮像センサ102は、例えばC-MOSセンサである。撮像センサ102は、受光面に入射した光学像を画像データに変換して出力する。撮像センサ102は、撮像センサ制御部105からの駆動信号に応じて駆動される。撮像センサ制御部105は、カメラコントローラ101からの制御信号に応じて、撮像センサ102を駆動する駆動信号を出力するとともに、撮像センサ102から出力される画像データをカメラコントローラ101へ出力する。コントラスト検出部106は、カメラコントローラ101からの制御信号に応じて、撮像センサ102から出力される画像データからコントラストを演算して検出し、カメラコントローラ101へ出力する。
 シャッタユニット103は、撮像センサ102に入射する画像光の光路を遮断するシャッタ板を含む。シャッタユニット103は、シャッタ制御部107からの駆動信号に応じて駆動される。シャッタ制御部107は、カメラコントローラ101からの制御信号に応じて、シャッタユニット103のシャッタ板の開閉タイミングを制御する。
 ディスプレイ110は、例えば液晶表示装置である。ディスプレイ110は、画像表示制御部104からの駆動信号に応じて駆動され、表示面に画像を表示する。画像表示制御部104は、カメラコントローラ101からの制御信号に応じて、ディスプレイ110に表示する画像データとディスプレイを駆動する駆動信号を出力する。
 画像記録制御部108は、カメラコントローラ101からの制御信号に応じて、画像データを着脱可能に接続されたメモリカード109に出力する。
 カメラマウント114は、カメラ本体100と後述する交換レンズ装置200とを機構的に接続する。また、カメラマウント114は、カメラ本体100と後述する交換レンズ装置200とを電気的に接続するインターフェースとしても機能する。
 交換レンズ装置200は、レンズコントローラ201、絞り制御部202、フォーカス制御部203、メモリ204、絞りユニット206、撮像光学系207、及びレンズマウント210を含む。
 レンズコントローラ201は、交換レンズ装置200の全体を制御する演算装置であり、レンズマウント210及びカメラマウント114を介して前述したカメラ本体にあるカメラコントローラ101と接続される。レンズコントローラ201は、絞り制御部202、フォーカス制御部203、メモリ204及びぶれ検出部205と電気的に接続され相互に信号のやり取りが可能である。
 撮像光学系207は、上述した実施の形態1の撮像光学系である。撮像光学系207は、フォーカシングレンズ群207aを含む。なお、フォーカシングレンズ群207aは、説明を簡単にするために模式化しているので、実際の撮像光学系の構成を直接示してはいない。フォーカシングレンズ群207aを光軸に沿った方向に移動させて、フォーカシングを行う。
 絞り制御部202は、レンズコントローラ201からの制御信号に応じて、絞りユニット206の現在の位置を検出して出力する。また、絞り制御部202は、絞りユニット206に含まれる絞り羽根を駆動する駆動信号を出力して絞りを開閉し、光学系のFナンバーを変更する。
 フォーカス制御部203は、レンズコントローラ201からの制御信号に応じて、フォーカシングレンズ群207aの現在の位置を検出して出力する。また、フォーカス制御部203は、フォーカシングレンズ群207aを駆動する駆動信号を出力して、フォーカシングレンズ群207aを光軸に沿った方向に駆動する。
 以上の構成において、レリーズ釦111が半押しされると、カメラコントローラ101は、オートフォーカスのルーチンを実行する。はじめに、カメラコントローラ101は、カメラマウント114及びレンズマウント210を介して、レンズコントローラ201と通信し、フォーカシングレンズ群207a及び絞りユニット206の状態を検出する。
 次に、レンズコントローラ201は、制御信号に基づいてフォーカス制御部203を制御して、フォーカシングレンズ群207aをウォブリング駆動する。カメラコントローラ101は、同時にカメラマウント114及びレンズマウント210を介して、レンズコントローラ201と通信し、レンズコントローラ201に絞り値が所定の値となるように指示する制御信号を出力する。レンズコントローラ201は、制御信号に基づいて絞り制御部202を制御して、絞りユニット206の絞り羽根を所定のFナンバーとなるように駆動する。
 一方、カメラコントローラ101は、撮像センサ制御部105及びコントラスト検出部106に、制御信号を出力する。撮像センサ制御部105及びコントラスト検出部106は、それぞれフォーカシングレンズ群207aのウォブリング駆動のサンプリング周波数と関連付けて、撮像センサ102からの出力を得る。撮像センサ制御部105は、カメラコントローラ101からの制御信号に基づいて、光学像に対応する画像データをカメラコントローラ101へ送信する。カメラコントローラ101は、画像データに所定の画像処理を施し、画像表示制御部104へ送信する。画像表示制御部104は、画像データをディスプレイ110に可視像として表示させる。
 また、コントラスト検出部106は、ウォブリングと関連付けて画像データのコントラスト値を演算により求めてカメラコントローラ101へ送信する。カメラコントローラ101は、コントラスト検出部106の検出結果に基づいて、レンズコントローラ201へフォーカシングレンズ群のフォーカシング移動方向と移動量を決定し、これらに関する情報をレンズコントローラ201へ送信する。レンズコントローラ201は、フォーカシングレンズ群207aを移動するように、フォーカス制御部203へ制御信号を出力する。フォーカス制御部203は、レンズコントローラ201からの制御信号に基づいてフォーカシングレンズ群207aを駆動する。
 ライブビュー状態でオートフォーカスを行う場合、以上の動作が繰り返される。このように、ライブビュー状態でオートフォーカスを行う場合、フォーカシングレンズ群207aのウォブリングが継続して行われる。このとき、実施の形態1に係る撮像光学系は、ウォブリングの際の像倍率変化が小さく、軽量であるので、ライブビュー状態や動画撮影に好適である。
 以上説明した実施の形態6では、実施の形態1に記載した撮像光学系に適用した例を説明したが、他の実施の形態に係る撮像光学系を適用しても良いことは言うまでもない。
 また、以上説明した実施の形態1~5に係る撮像光学系と、CCDやCMOS等の撮像素子とから構成される撮像装置を、レンズ交換式カメラシステム、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用することもできる。
 以下、実施の形態1~5に係る撮像光学系を具体的に実施した数値実施例を説明する。後述するように、数値実施例1~5は、それぞれ実施の形態1~5に対応する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、vdはd線に対するアッベ数である。
 図2、5、8、11、14は、実施の形態1、2、3、4、5に係る撮像光学系の無限遠合焦状態での縦収差図である。また、図3、6、9、12、15は、実施の形態1、2、3、4、5に係る撮像光学系の物体距離1mでの縦収差図である。
 各縦収差図において、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。非点収差図において、縦軸は半画角(図中、Wで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は半画角(図中、Wで示す)を表す。
 (数値実施例1)
 数値実施例1の撮像光学系は、図1に示した実施の形態1に対応する。数値実施例1の撮像光学系の面データを表1に、各種データを表2に示す。
 表1 (面データ)
  面番号         r           d           nd         vd                
    物面           ∞        可変
     1         37.341       1.700       1.80610    40.7
     2         14.839       6.839
     3         76.145       1.500       1.71300    53.9
     4          9.969       7.965
     5        -25.963       2.150       1.80518    25.5
     6        -15.329       0.509
     7        -13.756       0.800       1.61800    63.4
     8        -45.140       0.150
     9         19.039       3.200       1.80518    25.5
    10        102.845       6.930
    11(絞り)       ∞       1.800
    12       -750.000       1.780       1.80610    40.7
    13        -19.930       0.170
    14        -33.275       2.900       1.62041    60.3
    15         -7.039       1.300       1.84666    23.8
    16        -22.096        可変
    17       -118.519       2.800       1.61800    63.4
    18        -19.730        可変
    19         97.641       3.100       1.49700    81.6
    20        -97.641        BF
    像面           ∞
 表2 (各種データ)
                無限      1m
  焦点距離      7.735     7.733
 Fナンバー     3.607     3.611
    画角       89.90     89.90
    像高       10.824    10.836
 レンズ全長    68.874    68.874
    BF       16.965    16.965
    d0             ∞   929.700
    d16         4.566     4.458
    d18         1.750     1.858
 前群の焦点距離                 -24.64
 後群の焦点距離                  18.33
 フォーカスレンズ素子の焦点距離  37.89
 (数値実施例2)
 数値実施例2の撮像光学系は、図2に示した実施の形態2に対応する。数値実施例2の撮像光学系の面データを表3に、各種データを表4に示す。
 表3 (面データ)
  面番号         r           d           nd         vd                
    物面           ∞        可変
     1         41.323       2.000       1.80420    46.5
     2         13.889       6.831
     3         72.755       2.000       1.71300    53.9
     4          8.108       8.015
     5         19.814       6.300       1.84666    23.8
     6       -500.000       1.761
     7(絞り)       ∞       2.097
     8        -26.810       4.400       1.71300    53.9
     9        -14.932       0.150
    10         61.554       4.300       1.61800    63.4
    11         -7.660       0.824       1.84666    23.8
    12        -17.322        可変
    13        -18.819       0.800       1.84666    23.8
    14        -29.367        可変
    15        192.518       3.000       1.61800    63.4
    16        -27.082        BF
    像面 ∞
 表4 (各種データ)
                無限      1m
  焦点距離      7.839     7.835
 Fナンバー     3.601     3.604
    画角       89.900    89.900
    像高       10.822    10.829
 レンズ全長    64.073    64.073
    BF       15.072    15.073
    d0             ∞   935.835
    d12         2.564     2.7050024
    d14         3.958     3.818
 (数値実施例3)
 数値実施例3の撮像光学系は、図3に示した実施の形態3に対応する。数値実施例3の撮像光学系の面データを表5に、各種データを表6に示す。
 表5 (面データ)
  面番号         r           d           nd         vd                
    物面           ∞        可変
     1         58.961       2.000       1.72916    54.7
     2         15.372        可変
     3             ∞       1.500       1.48749    70.4
     4         10.211        可変
     5        -19.482       1.000       1.48749    70.4
     6         29.757       2.332       1.76182    26.6
     7        -27.431       0.150
     8         27.364       1.663       1.84666    23.8
     9       -124.052       0.150
    10         12.742       2.441       1.63980    34.6
    11        -15.336       1.041       1.84666    23.8
    12         13.429       1.600
    13(絞り)       ∞       1.600
    14       -298.950       0.600       1.84666    23.8
    15         11.806       3.182       1.61800    63.4
    16        -13.239       4.650
    17         29.475       3.835       1.61800    63.4
    18        -33.359        BF
    像面           ∞
 表6 (各種データ)
                無限      1m
  焦点距離      8.007     7.980
 Fナンバー     3.607     3.607
    画角       90.000    90.000
    像高       10.829    10.805
 レンズ全長    61.586    61.586
    BF       15.423    15.423
    d0             ∞   936.899
    d2         10.580    10.462
    d4          7.841     7.958
 (数値実施例4)
 数値実施例4の撮像光学系は、図4に示した実施の形態4に対応する。数値実施例4の撮像光学系の面データを表7に、各種データを表8に示す。
 表7 (面データ)
  面番号         r           d           nd         vd                
    物面           ∞        可変
     1         48.254       1.700       1.69680    55.5
     2         14.299       7.180
     3        142.500       1.500       1.69680    55.5
     4         11.257       6.270
     5        -47.621       2.900       1.80518    25.5
     6        -19.391       0.560
     7        -17.239       0.800       1.49700    81.6
     8        750.000       3.060
     9         14.505       2.200       1.80610    33.3
    10         52.423       4.608
    11(絞り)       ∞       2.402
    12        -86.523       1.600       1.77250    49.6
    13        -16.697       0.230
    14        -16.036       3.000       1.58913    61.3
    15         -6.087       1.820       1.84666    23.8
    16        -14.719        可変
    17        500.000       2.800       1.61800    63.4
    18        -24.060        可変
    19        106.240       2.400       1.51680    64.2
    20       -106.240        BF
    像面           ∞
 表8 (各種データ)
                無限      1m
  焦点距離      7.850     7.847
 Fナンバー     2.951     2.955
    画角       89.900    89.900
    像高       10.831    10.842
 レンズ全長    67.817    67.817
    BF       16.169    16.169
    d0             ∞   930.741
    d16         4.513     4.405
    d18         2.105     2.214
 (数値実施例5)
 数値実施例5の撮像光学系は、図5に示した実施の形態5に対応する。数値実施例5の撮像光学系の面データを表9に、各種データを表10に示す。
 表9 (面データ)
  面番号         r           d           nd         vd                
    物面           ∞        可変
     1         49.082       2.000       1.60311    60.7
     2         16.284       7.932
     3        100.849       2.000       1.69680    55.5
     4         10.253       9.105
     5         18.230       3.500       1.71736    29.5
     6        -32.781       0.500
     7        -46.143       1.000       1.80610    40.7
     8          8.795       1.000
     9         12.807       3.400       1.71736    29.5
    10        311.930       3.715
    11(絞り)       ∞       2.454
    12        -58.765       3.400       1.77250    49.6
    13        -12.403       0.200
    14             ∞       4.000       1.58913    61.3
    15         -8.780       2.300       1.84666    23.8
    16        -31.509        可変
    17             ∞       2.952       1.61800    63.4
    18        -24.646        BF
    像面           ∞
 表10 (各種データ)
                無限      1m
  焦点距離      7.592     7.582
 Fナンバー     3.606     3.605
    画角       89.900    89.900
    像高       10.816    10.815
 レンズ全長    73.217    73.217
    BF       17.513    17.602
    d0             ∞   926.701
    d16         6.246     6.157
 以下の表11に、各数値実施例に係る撮像光学系における各条件の対応値を示す。
 表11 (条件の対応値:数値実施例1~5)
                実施例1    実施例2    実施例3    実施例4    実施例5
(1) R/f       1.6         1.4         1.6         1.6         1.7
(2) Σd/f      9.1         8.4         7.9         8.8         9.9
(3) Vn-Vp  27.2        26.5        26.5        34.8        22.7
(4) ff/fG   2.1        -3.6         0.3         1.9         2.4
(5) f2/f     2.4         2.3         2.1         2.5         2.2
(6) βp         0.35         -           -          0.38        0.56
(7) βn          -          1.51        0.34         -           -
(8) D1/f     0.07         -           -          0.07        0.07
 前群の焦点距離 -24.64      -31.88      -63.12     -110.85      -13.31
 後群の焦点距離  18.33       18.05       16.42       19.59       16.80
     ff        37.89      -64.11      -20.95       37.22       39.88
 本発明に係る撮像光学系は、レンズ交換式カメラシステム、監視システムにおける監視
カメラ、Webカメラ、車載カメラ等に適用可能であり、特にレンズ交換式カメラシステ
ム等の高画質が要求される撮像光学系に最適である。
 G1 前群
 G2 後群
 L1 第1レンズ素子
 L2 第2レンズ素子
 L3 第3レンズ素子
 L4 第4レンズ素子
 L5 第5レンズ素子
 L6 第6レンズ素子
 L7 第7レンズ素子
 L8 第8レンズ素子
 L9 第9レンズ素子
 L10 第10レンズ素子
 A 開口絞り
 S 像面

Claims (9)

  1.  撮像光学系であって、
     物体側から像側へと順に、最も物体側に負レンズを配置した前群と、開口絞りと、正のパワーを有する後群とからなり、
     無限遠物体から近距離物体への合焦に際し、前記最も物体側の負レンズと前記開口絞りとが撮像面に対して固定され、前記前群または後群中にある一部のレンズが光軸に沿って移動し、
     以下の条件(1)を満足する、撮像光学系:
      0.9<R/f<2.0 ・・・(1)
    ここで、
     R:最も物体側に配置される負レンズ素子の像側曲率半径と、全ての負レンズ素子の中で物体側から2番目の負レンズ素子の像側曲率半径との平均値、
     f:全系の焦点距離
    である。
  2.  合焦に際し光軸に沿って移動するレンズが、単レンズ素子である、請求項1に記載の撮像光学系。
  3.  以下の条件(2)を満足する、請求項1に記載の撮像光学系:
      2.0<Σd/f<12.0 ・・・(2)
    ここで、
     Σd:全系で最も物体側の面から最も像側の面までの光軸上の距離、
     f:全系の焦点距離
    である。
  4.  以下の条件(3)を満足する、請求項1に記載の撮像光学系:
      20<Vn-Vp<50 ・・・(3)
    ここで、
     Vn:前群に含まれる負レンズ素子のd線に対する平均アッベ数、
     Vp:前群に含まれる正レンズ素子のd線に対する平均アッベ数
    である。
  5. 前群・後群の焦点距離データにあり?
     以下の条件(4)及び(5)を満足する、請求項1に記載の撮像光学系:
      -4.0<ff/fG<3.0 ・・・(4)
      1.1<f2/f<4.2 ・・・(5)
    ここで、
     ff:合焦時に移動するレンズ素子の焦点距離、
     fG:合焦時に移動するレンズ素子が属するレンズ群の合成焦点距離、
     f2:後群の合成焦点距離、
     f:全系の焦点距離
    である。
  6.  合焦に際し光軸に沿って移動するレンズ素子は、以下の条件(6)もしくは(7)を満足する、請求項1に記載の撮像光学系:
      0.2<βp<0.8 ・・・(6)
      1.0<βn<1.8 ・・・(7)
    ここで、
     βp:合焦の際に移動する正レンズ素子の無限遠合焦状態における近軸結像倍率、
     βn:合焦の際に移動する負レンズ素子の無限遠合焦状態における近軸結像倍率
    である。
  7.  以下の条件(8)を満足する、請求項3に記載の撮像光学系:
      0.01<D1/f<0.20 ・・・(8)
    ここで、
     D1:最も物体側に配置される正レンズ素子と、当該正レンズ素子の像側に隣接して配置される負レンズ素子との空気間隔、
     f:全系の焦点距離
    である。
  8.  交換レンズ装置であって、
     請求項1に記載の撮像光学系と、
     前記撮像光学系が形成する光学像を受光して、電気的な画像信号に変換する撮像センサを含むカメラ本体に接続されるレンズマウント部とを備える、交換レンズ装置。
  9.  カメラシステムであって、
     請求項1に記載の撮像光学系を含む交換レンズ装置と、
     前記交換レンズ装置とカメラマウント部を介して着脱可能に接続され、前記撮像光学系が形成する光学像を受光して、電気的な画像信号に変換する撮像センサを含むカメラ本体とを備える、カメラシステム。
PCT/JP2010/007423 2009-12-25 2010-12-22 撮像光学系、交換レンズ装置及びカメラシステム WO2011077716A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/391,289 US8587877B2 (en) 2009-12-25 2010-12-22 Imaging optical system, interchangeable lens apparatus and camera system
CN201080034606.7A CN102472884B (zh) 2009-12-25 2010-12-22 光学成像系统、可换镜头装置及相机系统
JP2011547304A JPWO2011077716A1 (ja) 2009-12-25 2010-12-22 撮像光学系、交換レンズ装置及びカメラシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009294157 2009-12-25
JP2009-294157 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011077716A1 true WO2011077716A1 (ja) 2011-06-30

Family

ID=44195269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007423 WO2011077716A1 (ja) 2009-12-25 2010-12-22 撮像光学系、交換レンズ装置及びカメラシステム

Country Status (4)

Country Link
US (1) US8587877B2 (ja)
JP (1) JPWO2011077716A1 (ja)
CN (1) CN102472884B (ja)
WO (1) WO2011077716A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227351A (ja) * 2010-04-21 2011-11-10 Hoya Corp 広角レンズ系
JP2012173435A (ja) * 2011-02-18 2012-09-10 Tamron Co Ltd 固定焦点レンズ
WO2013118467A1 (ja) * 2012-02-06 2013-08-15 富士フイルム株式会社 超広角レンズおよび撮像装置
WO2014088104A1 (ja) * 2012-12-07 2014-06-12 オリンパス株式会社 対物レンズ及びそれを備えた観察装置
JP2014206744A (ja) * 2014-05-28 2014-10-30 オリンパスイメージング株式会社 結像光学系及びそれを用いた撮像装置
JP2015102620A (ja) * 2013-11-22 2015-06-04 キヤノン株式会社 光学系及びそれを有する撮像装置
CN104730684A (zh) * 2013-12-18 2015-06-24 富士胶片株式会社 摄像透镜和摄像装置
JP2016006469A (ja) * 2014-05-26 2016-01-14 オリンパス株式会社 広角レンズ及びそれを有する撮像装置
JP2016139087A (ja) * 2015-01-29 2016-08-04 株式会社シグマ 結像光学系
JP2018054911A (ja) * 2016-09-29 2018-04-05 富士フイルム株式会社 撮像レンズおよび撮像装置
JPWO2021065319A1 (ja) * 2019-09-30 2021-04-08
CN114924376A (zh) * 2022-06-13 2022-08-19 苏州协尔智能光电有限公司 一种筒镜光学系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944912B2 (ja) * 2010-10-28 2016-07-05 エンドチョイス イノベーション センター リミテッド マルチセンサ内視鏡のための光学系
CN103809264A (zh) * 2014-02-22 2014-05-21 中山联合光电科技有限公司 一种光学调焦系统结构
KR101691351B1 (ko) * 2014-10-28 2016-12-30 주식회사 코렌 촬영 렌즈 광학계
US10362203B2 (en) * 2017-08-14 2019-07-23 Aptiv Technologies Limited Camera assembly method with adhesive shrink offset based on individual lens characteristic
US11089197B1 (en) 2020-01-27 2021-08-10 Aptiv Technologies Limited Camera with phased metalens
US11089188B1 (en) 2020-11-02 2021-08-10 Aptiv Technologies Limited Phased metalens for adjusting a focus of an image

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261082A (ja) * 1994-03-24 1995-10-13 Sigma Corp 超広角ズームレンズ
JPH09171139A (ja) * 1995-12-19 1997-06-30 Nikon Corp ズームレンズ
JP2004093593A (ja) * 2002-08-29 2004-03-25 Konica Minolta Holdings Inc ズームレンズ
JP2004177435A (ja) * 2002-11-22 2004-06-24 Ricoh Co Ltd 広角レンズ、カメラおよび投写型表示装置
JP2007094176A (ja) * 2005-09-29 2007-04-12 Nikon Corp 2群ズームレンズ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371139A (ja) * 1989-08-11 1991-03-26 Tosoh Corp ポジ型フォトレジスト組成物
JPH05273459A (ja) 1992-03-26 1993-10-22 Nikon Corp 近距離補正機能を備えた魚眼レンズ
JP4565262B2 (ja) 2002-08-01 2010-10-20 株式会社ニコン 魚眼レンズ
JP4862263B2 (ja) 2004-03-31 2012-01-25 株式会社ニコン 超広角レンズ、該超広角レンズを備えた撮影装置
JP4951278B2 (ja) 2005-08-30 2012-06-13 ペンタックスリコーイメージング株式会社 魚眼レンズ系及び魚眼ズームレンズ系
JP4919712B2 (ja) 2006-06-20 2012-04-18 株式会社シグマ 魚眼レンズ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261082A (ja) * 1994-03-24 1995-10-13 Sigma Corp 超広角ズームレンズ
JPH09171139A (ja) * 1995-12-19 1997-06-30 Nikon Corp ズームレンズ
JP2004093593A (ja) * 2002-08-29 2004-03-25 Konica Minolta Holdings Inc ズームレンズ
JP2004177435A (ja) * 2002-11-22 2004-06-24 Ricoh Co Ltd 広角レンズ、カメラおよび投写型表示装置
JP2007094176A (ja) * 2005-09-29 2007-04-12 Nikon Corp 2群ズームレンズ

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227351A (ja) * 2010-04-21 2011-11-10 Hoya Corp 広角レンズ系
JP2012173435A (ja) * 2011-02-18 2012-09-10 Tamron Co Ltd 固定焦点レンズ
JPWO2013118467A1 (ja) * 2012-02-06 2015-05-11 富士フイルム株式会社 超広角レンズおよび撮像装置
WO2013118467A1 (ja) * 2012-02-06 2013-08-15 富士フイルム株式会社 超広角レンズおよび撮像装置
US9164261B2 (en) 2012-02-06 2015-10-20 Fujifilm Corporation Super wide angle lens and imaging apparatus
JP5616539B2 (ja) * 2012-02-06 2014-10-29 富士フイルム株式会社 超広角レンズおよび撮像装置
WO2014088104A1 (ja) * 2012-12-07 2014-06-12 オリンパス株式会社 対物レンズ及びそれを備えた観察装置
JPWO2014088104A1 (ja) * 2012-12-07 2017-01-05 オリンパス株式会社 対物レンズ及びそれを備えた観察装置
JP2015102620A (ja) * 2013-11-22 2015-06-04 キヤノン株式会社 光学系及びそれを有する撮像装置
CN104730684A (zh) * 2013-12-18 2015-06-24 富士胶片株式会社 摄像透镜和摄像装置
JP2015118212A (ja) * 2013-12-18 2015-06-25 富士フイルム株式会社 撮像レンズおよび撮像装置
US9851529B2 (en) 2013-12-18 2017-12-26 Fujifilm Corporation Imaging lens and imaging apparatus
CN104730684B (zh) * 2013-12-18 2018-07-10 富士胶片株式会社 摄像透镜和摄像装置
JP2016006469A (ja) * 2014-05-26 2016-01-14 オリンパス株式会社 広角レンズ及びそれを有する撮像装置
JP2014206744A (ja) * 2014-05-28 2014-10-30 オリンパスイメージング株式会社 結像光学系及びそれを用いた撮像装置
JP2016139087A (ja) * 2015-01-29 2016-08-04 株式会社シグマ 結像光学系
JP2018054911A (ja) * 2016-09-29 2018-04-05 富士フイルム株式会社 撮像レンズおよび撮像装置
JPWO2021065319A1 (ja) * 2019-09-30 2021-04-08
JP7288617B2 (ja) 2019-09-30 2023-06-08 株式会社ニコン 光学系及び光学機器
CN114924376A (zh) * 2022-06-13 2022-08-19 苏州协尔智能光电有限公司 一种筒镜光学系统
CN114924376B (zh) * 2022-06-13 2023-12-08 苏州协尔智能光电有限公司 一种筒镜光学系统

Also Published As

Publication number Publication date
US20120147254A1 (en) 2012-06-14
CN102472884B (zh) 2014-03-19
JPWO2011077716A1 (ja) 2013-05-02
US8587877B2 (en) 2013-11-19
CN102472884A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2011077716A1 (ja) 撮像光学系、交換レンズ装置及びカメラシステム
US9110231B2 (en) Inner focus lens system, interchangeable lens apparatus and camera system
US8755132B2 (en) Wide angle optical system and image pickup apparatus using the same
JP6260003B2 (ja) レンズ系、交換レンズ装置及びカメラシステム
JP5714925B2 (ja) インナーフォーカス式レンズ
JP6548590B2 (ja) 撮像レンズおよび撮像装置
JP6152972B2 (ja) インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム
JPWO2015146067A1 (ja) ズームレンズ系、交換レンズ装置、及びカメラシステム
WO2017119188A1 (ja) 対物光学系
US10079964B2 (en) Lens system, interchangeable lens apparatus, and camera system
US20230305278A1 (en) Zoom lens system, image capture device, and camera system
CN105308491A (zh) 单焦点透镜系统
JP2018109757A (ja) 撮像光学系とそれを備える撮像装置およびカメラシステム
JP5807166B2 (ja) ズームレンズ系、交換レンズ装置及びカメラシステム
US11513316B2 (en) Single focus image pickup optical system, and image pickup device and camera system using single focus image pickup optical system
JP5588790B2 (ja) レンズ系、交換レンズ装置、及びカメラシステム
US11668914B2 (en) Zoom lens system, and lens barrel, image capture device, and camera system including the zoom lens system
JP6355076B2 (ja) ズームレンズ系、交換レンズ装置及びカメラシステム
CN102597844B (zh) 变焦透镜系统、可更换镜头装置及相机系统
JP2012022019A (ja) ズームレンズ系、交換レンズ装置及びカメラシステム
JP6625425B2 (ja) 光学系及び撮像装置
JP5796919B2 (ja) レトロフォーカス型広角レンズおよび撮像装置
JP2014021341A (ja) インナーフォーカス式レンズ
JP4581042B2 (ja) ズームレンズ
CN115685493A (zh) 光学系统及摄像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034606.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838954

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547304

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13391289

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838954

Country of ref document: EP

Kind code of ref document: A1