WO2014080612A1 - 冷凍サイクル装置及びそれを備えた温水生成装置 - Google Patents
冷凍サイクル装置及びそれを備えた温水生成装置 Download PDFInfo
- Publication number
- WO2014080612A1 WO2014080612A1 PCT/JP2013/006775 JP2013006775W WO2014080612A1 WO 2014080612 A1 WO2014080612 A1 WO 2014080612A1 JP 2013006775 W JP2013006775 W JP 2013006775W WO 2014080612 A1 WO2014080612 A1 WO 2014080612A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- bypass
- compressor
- temperature
- evaporator
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
- F25B47/025—Defrosting cycles hot gas defrosting by reversing the cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/003—Indoor unit with water as a heat sink or heat source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/031—Sensor arrangements
- F25B2313/0314—Temperature sensors near the indoor heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/031—Sensor arrangements
- F25B2313/0315—Temperature sensors near the outdoor heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2509—Economiser valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
Definitions
- the present invention relates to a refrigeration cycle apparatus for supercooling a refrigerant and a hot water generator provided with the refrigeration cycle apparatus.
- a supercooling heat exchanger is provided downstream of a radiator of a refrigerant circuit, and a part of the mainstream refrigerant is expanded and flows into the supercooling heat exchanger, The mainstream refrigerant flowing out of the radiator is supercooled.
- FIG. 5 shows a conventional refrigeration cycle apparatus described in Patent Document 1.
- the refrigeration cycle apparatus 100 includes a refrigerant circuit 110 that circulates a refrigerant and a bypass 120.
- the refrigerant circuit 110 is configured by connecting a compressor 111, a radiator 112, a supercooling heat exchanger 113, a main expansion valve 114, and an evaporator 115 in an annular shape by piping.
- the bypass 120 branches from the refrigerant circuit 110 between the supercooling heat exchanger 113 and the main expansion valve 114, and enters the refrigerant circuit 110 between the evaporator 115 and the compressor 111 via the supercooling heat exchanger 113. It is connected.
- the bypass passage 120 is provided with a bypass expansion valve 121 upstream of the supercooling heat exchanger 113.
- the refrigeration cycle apparatus 100 includes a temperature sensor 141 that detects the temperature of the refrigerant discharged from the compressor 111 (compressor discharge pipe temperature) Td, and the temperature of the refrigerant that flows into the evaporator 115 (evaporator inlet temperature).
- a temperature sensor 142 for detecting Te a temperature sensor 143 for detecting the temperature (bypass side inlet temperature) Tbi of the refrigerant flowing into the supercooling heat exchanger 113 in the bypass passage 120, and the supercooling heat exchanger 113 in the bypass passage 120
- a temperature sensor 144 for detecting the temperature of the refrigerant flowing out of the refrigerant (bypass side outlet temperature) Tbo is provided.
- the target temperature Td (target) of the discharge pipe of the compressor is set from the evaporator inlet temperature Te detected by the temperature sensor 142.
- the main expansion valve 114 is controlled so that the discharge pipe temperature Td detected by the temperature sensor 141 becomes the target temperature Td (target), and the bypass side outlet temperature Tbo and the bypass side inlet in the supercooling heat exchanger 113 are controlled.
- the bypass expansion valve 121 is controlled so that the difference (Tbo ⁇ Tbi) from the temperature Tbi becomes a predetermined target value.
- This invention is made
- An object is to provide a refrigeration cycle apparatus.
- a refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, a radiator, a supercooling heat exchanger, a main expansion device, and an evaporator are sequentially connected in an annular shape by a refrigerant pipe, Branching from the refrigerant circuit between the radiator and the main expansion device, via the supercooling heat exchanger, the compression chamber of the compressor, or the evaporator and the compressor A bypass path connected to the refrigerant circuit; and a control device, wherein the control device removes frost adhering to the evaporator by the heat of the heating operation for heating the heat medium used by the radiator and the evaporator.
- the control device performs a heat storage operation for lowering the flow rate of the refrigerant flowing through the bypass path than during the heating operation before the start of the defrosting operation. To do.
- Refrigeration cycle apparatus Refrigerant circuit 3 Bypass path 21 Compressor 22 Radiator 23 Supercooling heat exchanger 24 Main expansion valve (main expansion apparatus) 25 Evaporator 31 Bypass expansion valve (Bypass expansion device) 51 Pressure sensor (saturation temperature detector) 61 1st temperature sensor 62 2nd temperature sensor 63 3rd temperature sensor
- a first invention is a refrigerant circuit in which a compressor, a radiator, a supercooling heat exchanger, a main expansion device, and an evaporator are sequentially connected in a ring shape by a refrigerant pipe, and between the radiator and the main expansion device, A bypass branching from the refrigerant circuit and connected to the compression chamber of the compressor or the refrigerant circuit between the evaporator and the compressor via the supercooling heat exchanger;
- the control device performs a heating operation for heating the heat medium used by the radiator and a defrosting operation for removing frost attached to the evaporator by the heat of the refrigerant, and the control device.
- Is a refrigeration cycle apparatus that performs a heat storage operation for lowering the flow rate of the refrigerant flowing through the bypass path than during the heating operation before the start of the defrosting operation.
- the defrosting time is shortened and the energy saving performance is improved.
- a bypass expansion device connected to the bypass passage upstream of the supercooling heat exchanger, and a first temperature sensor for detecting a discharge refrigerant temperature of the compressor
- the control device controls the operation of the bypass expansion device during the heat storage operation so that the detected value of the first temperature sensor is larger than during the heating operation.
- bypass expansion device is controlled in a direction to decrease the flow rate of the refrigerant flowing through the bypass passage, so that the discharge temperature of the compressor can be increased.
- a saturation temperature detection unit that detects a saturation temperature of the refrigerant in the bypass passage and a second temperature sensor that detects a refrigerant temperature at the outlet of the bypass passage are provided.
- the control device is configured such that a superheat degree of the refrigerant at the outlet of the bypass passage determined based on a detection value of the saturation temperature detection unit and a detection value of the second temperature sensor is a predetermined superheat degree. The operation of the bypass expansion device is controlled so that
- the refrigerant state at the outlet of the bypass passage becomes a desired overheat state (enthalpy), and the discharge temperature of the compressor can be raised to a desired temperature.
- a third temperature sensor for detecting a refrigerant temperature between the radiator and the supercooling heat exchanger is provided. It is determined based on the detection value of the detection unit and the detection value of the third temperature sensor.
- control device operates the bypass expansion device so that the refrigerant sucked into the compressor is wet during the defrosting operation. It is characterized by controlling.
- the amount of heat stored in the compressor body can be absorbed using the latent heat of the refrigerant.
- the amount of heat stored in the compressor body can be absorbed by the refrigerant more efficiently.
- the sixth invention is a hot water generating device comprising the refrigeration cycle device according to any one of the first to fifth aspects, wherein the heat medium used is water or antifreeze liquid, and the radiator
- the use heat medium heated in step (b) is used for hot water supply or heating.
- radiator such as a refrigerant-water heat exchanger or a refrigerant-antifreeze liquid heat exchanger.
- the heat medium heated by the radiator can be widely used in heating equipment (hot air machines, radiators, floor heating panels, etc.), hot water supply equipment, etc.
- heating equipment hot air machines, radiators, floor heating panels, etc.
- hot water supply equipment etc.
- the same as in the first to fifth inventions An effect can be obtained.
- FIG. 1 shows a schematic configuration diagram of a refrigeration cycle apparatus and a hot water generator in a first embodiment of the present invention.
- the refrigeration cycle apparatus 1 ⁇ / b> A includes a refrigerant circuit 2 that circulates refrigerant, a bypass 3, and a control device 4.
- the refrigerant for example, a non-azeotropic refrigerant mixture such as R407C, a pseudo-azeotropic refrigerant mixture such as R410A, or a single refrigerant can be used.
- the refrigerant circuit 2 includes a compressor 21, a radiator 22, a supercooling heat exchanger 23, a main expansion valve (main expansion device) 24, and an evaporator 25 that are annularly connected by piping.
- a sub-accumulator 26 and a main accumulator 27 that perform gas-liquid separation are provided between the evaporator 25 and the compressor 21.
- the refrigerant circuit 2 is provided with a four-way valve 28 for switching between normal operation and defrosting operation.
- the refrigeration cycle apparatus 1A constitutes the heating means of the hot water generating device that uses the hot water generated by the heating means for heating and hot water supply, and the radiator 22 is heated between the refrigerant and water. It is a heat exchanger that heats water by exchanging.
- a supply pipe 71 and a recovery pipe 72 are connected to the radiator 22, water is supplied to the radiator 22 through the supply pipe 71, and water (hot water) heated by the radiator 22 is the recovery pipe 72. Collected through.
- the hot water recovered by the recovery pipe 72 is sent, for example, directly to a heater such as a radiator or via a hot water storage tank, whereby heating and hot water are performed.
- the bypass passage 3 branches from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and the evaporator 25 and the compressor 21 are connected via the supercooling heat exchanger 23. In between, it is connected to the refrigerant circuit 2 between the sub-accumulator 26 and the main accumulator 27. Further, a bypass expansion valve (bypass expansion device) 31 is provided in the bypass passage 3 upstream from the supercooling heat exchanger 23.
- FIG. 1 the flow direction of the refrigerant during the normal heating operation is indicated by a solid line arrow.
- the state change of the refrigerant in the heating operation will be described.
- the high-pressure refrigerant discharged from the compressor 21 flows into the radiator 22 through the four-way valve 28 and dissipates heat to a heat medium such as water or antifreeze that passes through the radiator 22.
- the high-pressure refrigerant that has flowed out of the radiator 22 flows into the supercooling heat exchanger 23.
- the high-pressure refrigerant that has flowed into the supercooling heat exchanger 23 is supercooled by the low-pressure refrigerant decompressed by the bypass expansion valve 31.
- the high-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 is distributed to the refrigerant circuit 2 and the bypass passage 3.
- the high-pressure refrigerant flowing through the refrigerant circuit 2 is decompressed and expanded by the main expansion valve 24 and then flows into the evaporator 25.
- the low-pressure refrigerant flowing into the evaporator 25 absorbs heat from the air.
- the high-pressure refrigerant flowing through the bypass passage 3 is decompressed and expanded by the bypass expansion valve 31 and then flows into the supercooling heat exchanger 23.
- the low-pressure refrigerant that has flowed into the supercooling heat exchanger 23 is heated by the high-pressure refrigerant that has flowed out of the radiator 22. Thereafter, the low-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 merges with the low-pressure refrigerant that has flowed out of the evaporator 25, and is sucked into the compressor 21 again.
- the refrigeration cycle apparatus 1A of the present embodiment causes a part of the high-pressure liquid refrigerant to flow into the bypass passage 3 during the heating operation and bypass it via the supercooling heat exchanger 23, whereby the enthalpy in the evaporator 25 is obtained. Increase the difference. Moreover, the pressure loss in the low-pressure side portion of the refrigerant circuit 2 is reduced by suppressing the amount of the gas-phase refrigerant having a small endothermic effect flowing through the low-pressure side portion of the refrigerant circuit 2, thereby improving the heating capacity or the coefficient of performance.
- Typical examples of defrosting operation methods include reverse cycle defrosting and hot gas defrosting.
- the reverse cycle defrosting the four-way valve 28 is switched to reverse the refrigerant circulation direction, the high-temperature high-pressure gas refrigerant discharged from the compressor 21 is introduced into the evaporator 25, and the frost is melted by the heat of condensation of the gas refrigerant.
- the hot gas defrosting the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is directly switched to the evaporator 25 without switching the four-way valve 28 to melt the frost.
- the state change of the refrigerant will be described taking reverse cycle defrosting as an example.
- the high-pressure refrigerant discharged from the compressor 21 flows into the evaporator 25 through the four-way valve 28, dissipates heat to the accumulated frost, and melts the frost.
- the liquid refrigerant flowing out of the evaporator 25 passes through the main expansion valve 24 and enters the radiator 22 where it absorbs heat and returns to the compressor 21 again.
- the heat used during the defrosting operation compresses the refrigerant in the compressor 21 and is dissipated from the main body of the compressor 21, the high-pressure side portion of the refrigerant circuit 2, the radiator 22 main body, hot water, and the like, and absorbs heat into the refrigerant. Is done.
- the defrosting operation is indispensable for stably continuing the heating operation.
- the heat of the discharged refrigerant that is originally used for warm water heating is not only consumed for melting frost, but is also absorbed from warm water by the radiator 22 and used for defrosting. For this reason, there are disadvantages such as a decrease in the coefficient of performance and a decrease in hot water temperature and the comfort of heating.
- the control device 4 sets the refrigerant superheat degree at the outlet of the bypass passage 3 to a predetermined superheat degree before the refrigeration cycle apparatus 1A starts the defrosting operation.
- a heat storage operation for controlling the bypass expansion valve 31 and decreasing the refrigerant flow rate of the bypass passage 3 to increase the discharge refrigerant temperature of the compressor 21 is performed for a predetermined time.
- the enthalpy of the refrigerant state at the outlet of the bypass passage 3 increases from the point a to the point a ′ in FIG. 2, so that the suction refrigerant enthalpy of the compressor 21 after joining the mainstream refrigerant is also from the point b in FIG. 2. It increases like b 'point.
- the refrigerant whose enthalpy has increased as indicated by point c ′ in FIG. 2 is discharged from the compression chamber of the compressor 21, and heat is applied to the main body of the compressor 21, the high pressure side portion of the refrigerant circuit 2, and the main body of the radiator 22.
- Each amount of heat storage is increased.
- the compressor 21 is a high-pressure shell type
- the refrigerant discharged from the compression chamber passes through the inside of the compressor 21 main body, so that heat is also stored in the shell main body and oil.
- control device 4 controls the bypass expansion valve 31 so that the suction refrigerant of the compressor 21 is in a wet state.
- the refrigerant circuit 2 includes a first temperature sensor 61 that detects the temperature (discharge temperature) Td of the refrigerant discharged from the compressor 21, and the temperature of the refrigerant that flows out of the radiator 22 and flows into the supercooling heat exchanger 23. (High temperature side refrigerant temperature) Third temperature sensor 63 for detecting Th, and refrigerant temperature (evaporation temperature) Te provided in the refrigerant circuit 2 between the main expansion valve 24 and the evaporator 25 and flowing into the evaporator 25 And a fourth temperature sensor 64 for detecting.
- the bypass passage 3 is provided in the bypass passage 3 between the bypass expansion valve 31 and the subcooling heat exchanger 23 and detects a pressure (bypass refrigerant pressure) Pb of the refrigerant flowing through the bypass passage 3.
- the 2nd temperature sensor 62 which detects the temperature (bypass exit refrigerant
- the control device 4 Based on the detection values detected by the various sensors 51, 61, 62, 63, 64, the control device 4 switches the rotation speed of the compressor 21, the four-way valve 28, the main expansion valve 24 and the bypass expansion valve. The opening of 31 is operated.
- control device 4 calculates the bypass outlet refrigerant temperature Tb detected by the second temperature sensor 62 based on the bypass refrigerant pressure Pb detected by the pressure sensor 51 during normal heating operation.
- the bypass expansion valve 31 is operated so as to reach the bypass refrigerant saturation temperature Ts.
- the control device 4 detects frost formation on the evaporator 25 based on the evaporation temperature Te detected by the fourth temperature sensor 64 and the operation time. When it is determined that the defrosting operation is necessary, the control device 4 performs the heat storage operation.
- the bypass outlet refrigerant superheat degree SHb obtained by the difference between the bypass outlet refrigerant temperature Tb and the bypass refrigerant saturation temperature Ts is determined based on the temperature difference between the high temperature side refrigerant temperature Th and the bypass refrigerant saturation temperature Ts, The opening degree of the bypass expansion valve 31 is operated so that the bypass outlet refrigerant superheat degree target value SHt, which is a value larger than that during normal heating operation, is obtained. Then, after the heat storage operation is executed for a predetermined time, the defrosting operation is started.
- control device 4 switches the four-way valve 28 and then opens the main expansion valve 24 to the maximum valve opening. Then, the control device 4 operates the opening degree of the bypass expansion valve 31 so that the bypass refrigerant outlet superheat degree SHb becomes zero K.
- the control device 4 monitors whether or not the defrosting condition is satisfied based on the evaporation temperature Te detected by the fourth temperature sensor 64 during the normal heating operation and the heating operation time from the end of the previous defrosting operation. is doing.
- the defrosting condition is satisfied (step S1)
- the heat storage operation is started.
- the control device 4 detects the bypass refrigerant pressure Pb with the pressure sensor 51, and detects the high-temperature side refrigerant temperature Th with the third temperature sensor 63 (step S2).
- bypass refrigerant saturation temperature Ts at the refrigerant pressure flowing through the bypass passage 3 is calculated from the bypass refrigerant pressure Pb detected by the pressure sensor 51 (step S3).
- the calculation of the bypass refrigerant saturation temperature Ts is performed using a refrigerant physical property formula.
- the function f ( ⁇ Tr) experimentally obtains a bypass outlet refrigerant superheat target value SHt that can secure a sufficient amount of heat storage without abnormally increasing the discharge temperature Td under a large number of operating conditions using the temperature difference ⁇ Tr as a parameter. This is the formula derived from
- step S9 the control device 4 monitors and determines whether or not the heat storage operation has been executed for a predetermined time set in advance (step S9).
- the execution time of the heat storage operation is less than the predetermined time (NO in step S9), it is determined that the heat storage amount is insufficient, and the process returns to step S2 as it is.
- the heat storage operation is terminated, and the defrosting operation is started.
- control device 4 switches the four-way valve 28 to open the main expansion valve 24 to the maximum valve opening (step S10). Then, the opening degree of the bypass expansion valve 31 is adjusted so that the bypass refrigerant outlet superheat degree SHb becomes zero K (step S11).
- the control device 4 determines whether or not the defrosting termination condition is satisfied based on the evaporation temperature Te detected by the fourth temperature sensor 64 and the defrosting operation time (step S12). To do. If the defrost termination condition is not satisfied (NO in step S12), it is determined that frost remains, and the process returns to step S2.
- step S12 when the defrost termination condition is satisfied (YES in step S12), it is determined that the frost has completely melted, and the defrost operation is terminated. Then, the four-way valve 28 is switched again to start the heating operation.
- the refrigerant circuit 2 includes the first temperature sensor 61 that detects the temperature of the refrigerant discharged from the compressor 21 and the temperature of the refrigerant flowing into the supercooling heat exchanger 23. From the third temperature sensor 63 to detect, the fourth temperature sensor to detect the temperature of the refrigerant flowing into the evaporator 25, the pressure sensor 51 to detect the pressure of the refrigerant flowing through the bypass path 3, and the supercooling heat exchanger 23 A second temperature sensor 62 that detects the temperature of the refrigerant flowing out and the control device 4 are provided.
- the control device 4 controls the bypass expansion valve 31 so that the refrigerant superheat degree at the outlet of the bypass passage 3 becomes a predetermined superheat degree before the refrigeration cycle apparatus 1A starts the defrosting operation, and the refrigerant flow rate of the bypass passage 3 is controlled.
- the heat storage operation is performed for a predetermined time to lower the temperature and raise the discharged refrigerant temperature of the compressor 21.
- the discharge temperature of the compressor 21 can be increased in a state where the pressure loss reduction effect in the evaporator 25 and the suction side piping of the compressor 21 is ensured by bypassing a part of the refrigerant. While the high-temperature refrigerant discharged from the chamber passes through the inside of the compressor 21 main body, more heat is applied to the shell main body and oil, so that the amount of heat stored in the compressor 21 main body increases.
- the defrosting time is shortened and the energy saving performance is improved.
- control device 4 controls the bypass expansion valve 31 so that the refrigerant sucked in the compressor 21 is wet during the defrosting operation, the evaporation of the two-phase refrigerant is reduced while reducing the heat absorption amount from the hot water.
- the amount of heat stored in the compressor body before the defrosting operation can be absorbed more efficiently by the refrigerant, and energy saving is further improved.
- the pressure sensor 51 is provided upstream of the supercooling heat exchanger 23 in the bypass passage 3, but if the pressure sensor 51 is between the bypass expansion valve 31 and the compressor 21, the bypass passage 3. And it may be provided at any position in the refrigerant circuit 2.
- the bypass refrigerant saturation temperature is calculated by the pressure sensor 51.
- the bypass refrigerant saturation temperature is detected by detecting the temperature of the portion of the bypass passage 3 where the low-pressure two-phase refrigerant flows. May be.
- bypass passage 3 is not necessarily branched from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and the refrigerant circuit 2 is interposed between the radiator 22 and the supercooling heat exchanger 23. You may branch from.
- the connecting portion of the bypass passage 3 does not necessarily need to be a suction pipe of the compressor 21.
- it may be connected to an injection port.
- the main expansion device and the bypass expansion device of the present invention are not necessarily expansion valves, and may be an expander that recovers power from the expanding refrigerant.
- the rotational speed of the expander may be controlled by changing the load with a generator connected to the expander.
- the present invention is particularly useful for a hot water generating apparatus that generates hot water by a refrigeration cycle apparatus and uses the hot water for heating or hot water supply.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
圧縮機21、放熱器22、過冷却熱交換器23、主膨張装置24、蒸発器25が順に冷媒配管によって環状に接続された冷媒回路2と、放熱器22と主膨張装置24の間で分岐し、過冷却熱交換器23を経由して、圧縮機21の圧縮室、または、蒸発器25と圧縮機21との間の冷媒回路2に接続したバイパス路3と、制御装置4と、を備え、制御装置4は、蒸発器25に付着した霜を冷媒の熱によって除去する除霜運転の開始前に、バイパス路3を流れる冷媒の流量を低下させる蓄熱運転を実行して蓄熱量を増加させるので、蒸発器の着霜時においてもバイパス路3を有効に活用し、除霜運転を短時間かつ効率的に行うことで省エネルギー性能と快適性を向上させることができる。
Description
本発明は、冷媒を過冷却する冷凍サイクル装置およびその冷凍サイクル装置を備えた温水生成装置に関するものである。
従来、この種の冷凍サイクル装置および温水生成装置は、冷媒回路の放熱器の下流に過冷却熱交換器が設けられ、この過冷却熱交換器に主流冷媒の一部を膨張させて流入し、放熱器から流出した主流冷媒を過冷却している。これにより、蒸発器でのエンタルピー差を増大させるとともに、主流冷媒の一部をバイパスさせることにより蒸発器内および圧縮機の吸入側配管での圧力損失を減少させることができる。したがって、システムの加熱/冷却能力や成績係数を向上させることができる。(例えば、特許文献1参照)。
図5は、特許文献1に記載された従来の冷凍サイクル装置を示すものである。
図5に示すように、冷凍サイクル装置100は、冷媒を循環させる冷媒回路110と、バイパス路120とを備えている。冷媒回路110は、圧縮機111、放熱器112、過冷却熱交換器113、主膨張弁114および蒸発器115が配管により環状に接続されて構成されている。
バイパス路120は、過冷却熱交換器113と主膨張弁114の間で冷媒回路110から分岐し、過冷却熱交換器113を経由して蒸発器115と圧縮機111の間で冷媒回路110に接続されている。また、バイパス路120には、過冷却熱交換器113よりも上流にバイパス膨張弁121が設けられている。
さらに、冷凍サイクル装置100には、圧縮機111から吐出される冷媒の温度(圧縮機吐出管温度)Tdを検出する温度センサ141と、蒸発器115に流入する冷媒の温度(蒸発器入口温度)Teを検出する温度センサ142と、バイパス路120において過冷却熱交換器113に流入する冷媒の温度(バイパス側入口温度)Tbiを検出する温度センサ143と、バイパス路120において過冷却熱交換器113から流出する冷媒の温度(バイパス側出口温度)Tboを検出する温度センサ144が設けられている。
通常の加熱/冷却運転時は、温度センサ142で検出される蒸発器入口温度Teから圧縮機の吐出管の目標温度Td(target)が設定される。温度センサ141で検出された吐出管温度Tdが、その目標温度Td(target)となるように主膨張弁114を制御するとともに、過冷却熱交換器113でのバイパス側出口温度Tboとバイパス側入口温度Tbiとの差(Tbo-Tbi)が所定の目標値となるようにバイパス膨張弁121を制御している。
しかしながら、前記従来の冷凍サイクル装置においては、通常の加熱/冷却運転時にバイパス回路を利用するだけであり、冷媒の熱で蒸発器に付着した霜を融解する除霜運転(デフロスト運転)時におけるバイパス回路の利用方法については開示されていない。
本発明は、このような事情に鑑みてなされたものであって、蒸発器の着霜時においてもバイパス回路を有効に活用することにより、除霜運転を短時間かつ効率的に行うことができる冷凍サイクル装置を提供することを目的とする。
前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮機、放熱器、過冷却熱交換器、主膨張装置、蒸発器が順に冷媒配管によって環状に接続された冷媒回路と、前記放熱器と前記主膨張装置の間で前記冷媒回路から分岐し、前記過冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続したバイパス路と、制御装置と、を備え、前記制御装置は、前記放熱器にて利用熱媒体を加熱する加熱運転と、前記蒸発器に付着した霜を冷媒の熱によって除去する除霜運転とを実行させるとともに、前記制御装置は、前記除霜運転の開始前に、前記加熱運転時よりも前記バイパス路を流れる前記冷媒の流量を低下させる蓄熱運転を実行させることを特徴とする。
これにより、バイパス流量が減少することで、バイパス出口冷媒のエンタルピーが増加して圧縮機の吸入エンタルピーが増加する。したがって、バイパス路に冷媒の一部を導入して低圧側の冷媒配管の圧力損失を低減しながら、圧縮機の吐出温度を上昇させることができるので、圧縮機の本体や高圧側の冷媒回路の蓄熱量を増加させることができる。
本発明によれば、蒸発器の着霜時においてもバイパス回路を有効に活用することにより、除霜運転を短時間かつ効率的に行うことができる冷凍サイクル装置を提供できる。
1A 冷凍サイクル装置
2 冷媒回路
3 バイパス路
21 圧縮機
22 放熱器
23 過冷却熱交換器
24 主膨張弁(主膨張装置)
25 蒸発器
31 バイパス膨張弁(バイパス膨張装置)
51 圧力センサ(飽和温度検出部)
61 第1温度センサ
62 第2温度センサ
63 第3温度センサ
2 冷媒回路
3 バイパス路
21 圧縮機
22 放熱器
23 過冷却熱交換器
24 主膨張弁(主膨張装置)
25 蒸発器
31 バイパス膨張弁(バイパス膨張装置)
51 圧力センサ(飽和温度検出部)
61 第1温度センサ
62 第2温度センサ
63 第3温度センサ
第1の発明は、圧縮機、放熱器、過冷却熱交換器、主膨張装置、蒸発器が順に冷媒配管によって環状に接続された冷媒回路と、前記放熱器と前記主膨張装置の間で前記冷媒回路から分岐し、前記過冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続したバイパス路と、制御装置と、を備え、前記制御装置は、前記放熱器にて利用熱媒体を加熱する加熱運転と、前記蒸発器に付着した霜を冷媒の熱によって除去する除霜運転とを実行させるとともに、前記制御装置は、前記除霜運転の開始前に、前記加熱運転時よりも前記バイパス路を流れる前記冷媒の流量を低下させる蓄熱運転を実行させることを特徴とする冷凍サイクル装置である。
これにより、除霜運転前の所定時間において、バイパス路を流れる冷媒量が減少し、バイパス路出口冷媒のエンタルピーが増加する。これに伴い圧縮機の吸入エンタルピーが増加して圧縮機の吐出温度が上昇する。
つまり、冷媒の一部をバイパスさせることにより、蒸発器の内部および圧縮機の吸入側配管での圧力損失の低減効果を確保した状態で、圧縮機の吐出温度を上昇させることができる。特に高圧シェル型圧縮機の場合は圧縮室から吐出された高温冷媒が圧縮機本体内部を通過する間にシェル本体やオイルに、より多くの熱を与えるので圧縮機本体の蓄熱量が増加する。
したがって、除霜運転前に運転効率の低下を抑制しながら除霜運転時に利用する熱量を増加することができるので、除霜時間が短縮され、省エネ性が向上する。
第2の発明は、特に、第1の発明において、前記過冷却熱交換器より上流の前記バイパス路に接続されたバイパス膨張装置と、前記圧縮機の吐出冷媒温度を検出する第1温度センサとを設け、前記制御装置は、前記蓄熱運転時に、前記加熱運転時よりも前記第1温度センサの検出値が大きくなるように前記バイパス膨張装置の動作を制御することを特徴とするものである。
これにより、バイパス膨張装置がバイパス路を流れる冷媒流量を減少させる方向に制御されるので、圧縮機の吐出温度を上昇させることができる。
したがって、圧縮機の吐出温度が上昇した状態に確実に制御されるので、蓄熱量が確実に増加する。
第3の発明は、特に、第1の発明において、前記バイパス路における前記冷媒の飽和温度を検出する飽和温度検出部と、前記バイパス路の出口の冷媒温度を検出する第2温度センサとを設け、前記制御装置は、前記蓄熱運転時に、前記飽和温度検出部の検出値と前記第2温度センサの検出値に基づいて定まる前記バイパス路の前記出口の前記冷媒の過熱度が、所定の過熱度となるように前記バイパス膨張装置の動作を制御することを特徴とするものである。
これにより、バイパス路出口の冷媒状態が所望する過熱状態(エンタルピー)となり、圧縮機の吐出温度を所望する温度に上昇させることができる。
したがって、圧縮機の吐出温度上昇に過不足がなく、常に適正な蓄熱状態が形成できる。
第4の発明は、特に、第3の発明において、前記放熱器と前記過冷却熱交換器との間の冷媒温度を検出する第3温度センサを設け、前記所定の過熱度は、前記飽和温度検出部の検出値と前記第3温度センサの検出値に基づいて決定されることを特徴とするものである。
これにより、過冷却熱交換器における高温側冷媒と低温側冷媒の温度差を把握することができるので、運転条件によって異なるバイパス路出口冷媒過熱度の適正値を導出することができる。
したがって、様々な運転条件下においても、常に最適な蓄熱状態が形成できる。
第5の発明は、特に、第2~第4の発明において、前記制御装置は、前記除霜運転時に、前記圧縮機に吸入される前記冷媒が湿り状態となるように前記バイパス膨張装置の動作を制御することを特徴とするものである。
これにより、吸入冷媒が二相状態となることにより、圧縮機本体に蓄熱された熱量を冷媒の潜熱を利用して吸熱することができる。
したがって、除霜時において、圧縮機本体に蓄熱された熱量をより効率よく冷媒に吸熱させることができる。
第6の発明は、特に、第1~第5のいずれか1項に記載の冷凍サイクル装置を備えた温水生成装置であって、前記利用熱媒体を、水、または、不凍液とし、前記放熱器にて加温された前記利用熱媒体を、給湯又は暖房に用いることを特徴とするものである。
これにより、放熱器は、冷媒-水熱交換器や、冷媒-不凍液熱交換器など、種類を限定する必要がない。
したがって、放熱器により加温された熱媒体を、暖房機器(温風機、ラジエータ、床暖房パネル等)や給湯機器などに幅広く使用することができ、加えて第1~第5の発明と同様の効果を得ることができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態における冷凍サイクル装置および温水生成装置の概略構成図を示すものである。図1において、冷凍サイクル装置1Aは、冷媒を循環させる冷媒回路2と、バイパス路3と、制御装置4とを備えている。冷媒としては、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、または単一冷媒等を用いることができる。
図1は、本発明の第1の実施の形態における冷凍サイクル装置および温水生成装置の概略構成図を示すものである。図1において、冷凍サイクル装置1Aは、冷媒を循環させる冷媒回路2と、バイパス路3と、制御装置4とを備えている。冷媒としては、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、または単一冷媒等を用いることができる。
冷媒回路2は、圧縮機21、放熱器22、過冷却熱交換器23、主膨張弁(主膨張装置)24および蒸発器25が配管により環状に接続されて構成されている。本実施の形態では、蒸発器25と圧縮機21の間に、気液分離を行うサブアキュムレータ26および主アキュムレータ27が設けられている。また、冷媒回路2には、通常運転と除霜運転を切り換えるための四方弁28が設けられている。
本実施の形態では、冷凍サイクル装置1Aが、加熱手段により生成した温水を暖房や給湯に利用する温水生成装置の加熱手段を構成しており、放熱器22が、冷媒と水との間で熱交換を行わせて水を加熱する熱交換器となっている。
具体的には、放熱器22に供給管71と回収管72が接続されており、供給管71を通じて放熱器22に水が供給され、放熱器22で加熱された水(温水)が回収管72を通じて回収される。回収管72により回収された温水は、例えばラジエータ等の暖房機に直接的または貯湯タンクを介して送られ、これにより暖房や給湯が行われる。
本実施の形態では、バイパス路3は、過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐し、過冷却熱交換器23を経由して蒸発器25と圧縮機21の間における、サブアキュムレータ26と主アキュムレータ27の間の冷媒回路2に接続されている。また、過冷却熱交換器23より上流のバイパス路3にバイパス膨張弁(バイパス膨張装置)31が設けられている。
図1では、通常の加熱運転時の冷媒の流れ方向を実線矢印で示している。以下、加熱運転における冷媒の状態変化を説明する。
圧縮機21から吐出された高圧冷媒は、四方弁28を介して放熱器22に流入し、放熱器22を通過する水や不凍液などの利用熱媒体に放熱する。放熱器22から流出した高圧冷媒は、過冷却熱交換器23に流入する。過冷却熱交換器23に流入した高圧冷媒は、バイパス膨張弁31で減圧された低圧冷媒によって過冷却される。過冷却熱交換器23から流出した高圧冷媒は、冷媒回路2とバイパス路3とに分配される。
冷媒回路2を流れる高圧冷媒は、主膨張弁24によって減圧されて膨張した後に、蒸発器25に流入する。蒸発器25に流入した低圧冷媒は、ここで空気から吸熱する。
一方、バイパス路3を流れる高圧冷媒は、バイパス膨張弁31によって減圧されて膨張した後に、過冷却熱交換器23に流入する。過冷却熱交換器23に流入した低圧冷媒は、放熱器22から流出した高圧冷媒によって加熱される。その後、過冷却熱交換器23から流出した低圧冷媒は、蒸発器25から流出した低圧冷媒と合流し、再度、圧縮機21に吸入される。
本実施の形態の冷凍サイクル装置1Aは、加熱運転時に高圧液冷媒の一部をバイパス路3へと流入させ、過冷却熱交換器23を経由してバイパスさせることにより、蒸発器25でのエンタルピー差を増大させる。また、冷媒回路2の低圧側部分を流れる吸熱効果の小さい気相冷媒の量を抑えることにより冷媒回路2の低圧側部分での圧力損失を低減させて、加熱能力または成績係数を向上させる。
ここで、加熱運転を行うと、空気中の水分等が、低温となる蒸発器25で氷結して着霜し、蒸発器25の伝熱性能低下による加熱能力低下や成績係数の低下が生じる。このような場合、外気温度や運転時間または蒸発器の温度などから着霜度合いを判断し、霜を冷媒の熱で融解して除去する除霜運転を実施する必要がある。
除霜運転の方式として代表的なものには、リバースサイクル除霜及びホットガス除霜などが一般的である。リバースサイクル除霜は、四方弁28を切り替えて冷媒の循環方向を逆転させ、圧縮機21から吐出された高温高圧のガス冷媒を蒸発器25に導入し、ガス冷媒の凝縮熱で霜を融解する。ホットガス除霜は、四方弁28は切り替えずに、圧縮機21から吐出された高温高圧のガス冷媒を、蒸発器25に直接に導入させるバイパス回路を設けて、霜を融解する。本実施の形態ではリバースサイクル除霜を例にとって、冷媒の状態変化を説明する。
図1中の破線矢印は、一般的なリバースサイクル除霜運転時の冷媒の流れ方向を示している。
圧縮機21から吐出された高圧冷媒は四方弁28を介して蒸発器25に流入し、堆積した霜に放熱して霜を融解する。蒸発器25から流出した液冷媒は、主膨張弁24を通り、放熱器22に入り、ここで吸熱して再び圧縮機21に戻る。このサイクルにおいて、除霜運転時に用いられる熱は、圧縮機21において冷媒を圧縮し、圧縮機21の本体、冷媒回路2の高圧側部分、放熱器22本体、温水などから放熱され、冷媒に吸熱される。
このように除霜運転は、加熱運転を安定的に継続するためには必要不可欠ではある。一方で本来温水加熱に使用する吐出冷媒の熱を霜の融解に消費するばかりか、放熱器22にて温水からも吸熱して除霜に利用する。そのために、成績係数の低下や、温水温度が低下して暖房の快適性が損なわれるなどのデメリットがある。
これらのデメリットを低減し、省エネ性および快適性を向上するためには、温水からの吸熱量を低減しながら除霜時間を短縮することが必要となる。
そこで、本実施の形態では、詳しくは後述するが、制御装置4は、冷凍サイクル装置1Aが除霜運転を開始する前に、バイパス路3出口の冷媒過熱度が所定の過熱度となるようにバイパス膨張弁31を制御し、バイパス路3の冷媒流量を低下させて圧縮機21の吐出冷媒温度を上昇させる蓄熱運転を所定時間実施する。
これにより、バイパス路3出口の冷媒状態は図2中のa点からa′点のようにエンタルピーが増加するので、主流冷媒と合流後の圧縮機21の吸入冷媒エンタルピーも図2中b点からb′点のように増加する。
よって、図2中c′点のようにエンタルピーが増加した冷媒が圧縮機21の圧縮室から吐出され、圧縮機21本体、冷媒回路2の高圧側部分、放熱器22の本体に熱を与えるので、それぞれの蓄熱量が増加される。特に、圧縮機21が高圧シェル型の場合は、圧縮室から吐出された冷媒が圧縮機21本体内部を通過するので、シェル本体やオイルにも蓄熱される。
したがって、例えば、従来のように主膨張弁24の開度を絞って蒸発温度を低下させて蒸発器25における吸熱量を多くするとともに冷媒回路2の冷媒循環量を少なくすることで圧縮機21の吐出冷媒温度を上昇させる方法や、また、圧縮機21の回転数を増加させることで圧縮機21の吐出冷媒温度を上昇させる方法のように加熱運転中の成績係数が大幅に低下する蓄熱方法とは異なり、蓄熱運転時においても冷媒の一部をバイパスして冷媒回路2の低圧側部分での圧力損失が低減されるので、成績係数の低下が抑制された状態で蓄熱運転を行って、除霜運転時に利用する熱量が増加する。
さらに、本実施の形態では、冷凍サイクル装置1Aの除霜運転時において、制御装置4が圧縮機21の吸入冷媒が湿り状態となるようにバイパス膨張弁31を制御する。
これにより、除霜運転時において、蒸発器25で放熱し、液化された冷媒の一部がバイパス路3を通じて圧縮機21に戻り、放熱器22に流入する冷媒流量が減少する。従って、除霜運転中は、図3の点線で示すバイパスしない場合の冷媒状態から実線で示す冷媒状態のようになる。つまり、放熱器22における温水からの吸熱量が減少し、さらに圧縮機21に吸入される気液二相冷媒の潜熱により圧縮機21本体吸入部からの吸熱量が増加する。更に、圧縮機21の圧縮室から吐出される冷媒のエンタルピーが低下して、事前に蓄熱した圧縮機21本体や冷媒回路2の高圧側部分からの吸熱量が増加する。
以下、運転制御の動作について説明する。冷媒回路2には、圧縮機21から吐出される冷媒の温度(吐出温度)Tdを検出する第1温度センサ61と、放熱器22から流出し、過冷却熱交換器23に流入する冷媒の温度(高温側冷媒温度)Thを検出する第3温度センサ63と、主膨張弁24と蒸発器25との間の冷媒回路2に設けられ、蒸発器25に流入する冷媒の温度(蒸発温度)Teを検出する第4温度センサ64と、が設けられている。
一方、バイパス路3には、バイパス膨張弁31と過冷却熱交換器23との間のバイパス路3に設けられ、バイパス路3を流れる冷媒の圧力(バイパス冷媒圧力)Pbを検出する圧力センサ51と、過冷却熱交換器23から流出する冷媒の温度(バイパス出口冷媒温度)Tbを検出する第2温度センサ62が設けられている。
制御装置4は、各種のセンサ51、61、62、63、64で検出される検出値等に基づいて、圧縮機21の回転数、四方弁28の切り換え、ならびに主膨張弁24およびバイパス膨張弁31の開度を動作させる。
本実施の形態では、制御装置4は、通常の加熱運転時に、第2温度センサ62で検出されるバイパス出口冷媒温度Tbが、圧力センサ51で検出されるバイパス冷媒圧力Pbに基づいて算出されるバイパス冷媒飽和温度Tsになるようにバイパス膨張弁31を動作させる。
また、制御装置4は、第4温度センサ64で検出される蒸発温度Teと運転時間とにより蒸発器25の着霜を検知する。制御装置4は、除霜運転が必要と判断した場合に、蓄熱運転を実行する。蓄熱運転では、バイパス出口冷媒温度Tbとバイパス冷媒飽和温度Tsとの差で求められるバイパス出口冷媒過熱度SHbが、高温側冷媒温度Thとバイパス冷媒飽和温度Tsとの温度差に基づいて決定され、通常の加熱運転時よりも大きい値である、バイパス出口冷媒過熱度目標値SHtとなるようにバイパス膨張弁31の開度を動作させる。そして、蓄熱運転を予め定められた所定時間実行した後に、除霜運転を開始する。
除霜運転において、制御装置4は、四方弁28を切り替えた後、主膨張弁24を最大弁開度まで開く。そして、制御装置4はバイパス冷媒出口過熱度SHbが零Kになるようにバイパス膨張弁31の開度を動作させる。
次に、蓄熱運転および除霜運転時における制御装置4の制御を図4に示すフローチャートを参照して詳細に説明する。
まず、制御装置4は、通常の加熱運転時に第4温度センサ64で検出した蒸発温度Teと、前回の除霜運転終了からの加熱運転時間に基づいて除霜条件が成立するか否かを監視している。除霜条件が成立(ステップS1)すると、まず蓄熱運転に移行する。蓄熱運転において制御装置4は、圧力センサ51でバイパス冷媒圧力Pbを検出するとともに、第3温度センサ63で高温側冷媒温度Thを検出する(ステップS2)。
ついで、圧力センサ51で検出したバイパス冷媒圧力Pbからバイパス路3を流れる冷媒圧力でのバイパス冷媒飽和温度Tsを算出する(ステップS3)。このバイパス冷媒飽和温度Tsの算出は、冷媒物性式を用いて行われる。
次に、制御装置4は、高温側冷媒温度Thとバイパス冷媒飽和温度Tsの温度差ΔTrを算出し(ステップS4)、所定のバイパス出口冷媒過熱度目標値SHtを、SHt=f(ΔTr)により算出して決定する(ステップS5)。関数f(ΔTr)は、温度差ΔTrをパラメータとした多数の運転条件下において、吐出温度Tdが異常上昇せずに十分な蓄熱量が確保できるバイパス出口冷媒過熱度目標値SHtを実験的に求めて導出した式である。
その後、制御装置4は、第2温度センサ62でバイパス出口冷媒温度Tbを検出し(ステップS6)、バイパス出口冷媒過熱度SHbを、SHb=Tb-Tsにより算出する(ステップS7)。そして、バイパス出口冷媒過熱度SHbがバイパス出口冷媒過熱度目標値SHtに等しくなるようにバイパス膨張弁31の開度を調整する(ステップS8)。
ついで、制御装置4は蓄熱運転が予め設定された所定時間実行されたか否かを監視して判断する(ステップS9)。蓄熱運転の実行時間が所定時間に満たない場合(ステップS9でNO)は蓄熱量が不十分であると判断し、そのままステップS2に戻る。一方、蓄熱運転が所定時間以上実行された場合(ステップS9でYES)は十分に蓄熱されたと判断して蓄熱運転を終了し、除霜運転を開始する。
除霜運転において、制御装置4は、四方弁28を切り替えて、主膨張弁24を最大弁開度まで開ける(ステップS10)。そして、バイパス冷媒出口過熱度SHbが零Kになるようにバイパス膨張弁31の開度を調整する(ステップS11)。
制御装置4は、除霜運転中において、第4温度センサ64で検出した蒸発温度Teと、除霜運転時間に基づいて除霜終了条件が成立するか否かを監視して判断(ステップS12)する。除霜終了条件が成立していない場合(ステップS12でNO)は霜が残っていると判断し、ステップS2に戻る。
一方、除霜終了条件が成立した場合(ステップS12でYES)は、霜が完全に融解したと判断し、除霜運転を終了する。そして、再び四方弁28を切り替えて加熱運転を開始する。
以上のように、本実施の形態においては、冷媒回路2に、圧縮機21から吐出される冷媒の温度を検出する第1温度センサ61と、過冷却熱交換器23に流入する冷媒の温度を検出する第3温度センサ63と、蒸発器25に流入する冷媒の温度を検出する第4温度センサと、バイパス路3を流れる冷媒の圧力を検出する圧力センサ51と、過冷却熱交換器23から流出する冷媒の温度を検出する第2温度センサ62と、制御装置4とを備える。制御装置4は、冷凍サイクル装置1Aが除霜運転を開始する前に、バイパス路3出口の冷媒過熱度が所定の過熱度となるようにバイパス膨張弁31を制御し、バイパス路3の冷媒流量を低下させて圧縮機21の吐出冷媒温度を上昇させる蓄熱運転を所定時間実施する。
これによって、冷媒の一部をバイパスさせることによる蒸発器25内および圧縮機21の吸入側配管での圧力損失低減効果を確保した状態で、圧縮機21の吐出温度を上昇させることができ、圧縮室から吐出された高温冷媒が圧縮機21本体内部を通過する間にシェル本体やオイルに、より多くの熱を与えるので圧縮機21本体の蓄熱量が増加する。
したがって、除霜運転前に運転効率の低下を抑制しながら除霜運転時に利用する熱量を増加させることができるので、除霜時間が短縮され、省エネ性が向上する。
また、制御装置4は、除霜運転時において、圧縮機21の吸入冷媒が湿り状態となるようにバイパス膨張弁31を制御するので、温水からの吸熱量を低減しながら、二相冷媒の蒸発潜熱を利用して、除霜運転前に圧縮機本体に蓄熱された熱量をより効率よく冷媒に吸熱させることができ、さらに省エネ性が向上する。
なお、図1では、圧力センサ51がバイパス路3における過冷却熱交換器23の上流に設けられているが、圧力センサ51は、バイパス膨張弁31と圧縮機21の間であればバイパス路3および冷媒回路2のどの位置に設けられていてもよい。
また、本実施の形態では、圧力センサ51によりバイパス冷媒飽和温度を算出しているが、バイパス冷媒飽和温度は、バイパス路3における低圧の二相冷媒が流通する部分の温度を検出して代用してもよい。
さらに、バイパス路3は、必ずしも過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐している必要はなく、放熱器22と過冷却熱交換器23の間で冷媒回路2から分岐していてもよい。
また、バイパス路3の接続部は、必ずしも圧縮機21の吸入配管である必要はなく、インジェクション機構のある圧縮機の場合は、例えば、インジェクションポートに接続すればよい。
さらに、本発明の主膨張装置およびバイパス膨張装置は、必ずしも膨張弁である必要はなく、膨張する冷媒から動力を回収する膨張機であってもよい。この場合、例えば、膨張機と連結された発電機によって負荷を変化させることにより、膨張機の回転数を制御すればよい。
本発明は、冷凍サイクル装置によって温水を生成し、その温水を暖房や給湯に利用する温水生成装置に特に有用である。
Claims (6)
- 圧縮機、放熱器、過冷却熱交換器、主膨張装置、蒸発器が順に冷媒配管によって環状に接続された冷媒回路と、
前記放熱器と前記主膨張装置の間で前記冷媒回路から分岐し、前記過冷却熱交換器を経由して、前記圧縮機の圧縮室、または、前記蒸発器と前記圧縮機との間の前記冷媒回路に接続したバイパス路と、
制御装置と、を備え、
前記制御装置は、前記放熱器にて利用熱媒体を加熱する加熱運転と、前記蒸発器に付着した霜を冷媒の熱によって除去する除霜運転とを実行させるとともに、
前記制御装置は、前記除霜運転の開始前に、前記加熱運転時よりも前記バイパス路を流れる前記冷媒の流量を低下させる蓄熱運転を実行させることを特徴とする冷凍サイクル装置。 - 前記過冷却熱交換器より上流の前記バイパス路に接続されたバイパス膨張装置と、前記圧縮機の吐出冷媒温度を検出する第1温度センサとを設け、
前記制御装置は、前記蓄熱運転時に、前記加熱運転時よりも前記第1温度センサの検出値が大きくなるように前記バイパス膨張装置の動作を制御することを特徴とする請求項1に記載の冷凍サイクル装置。 - 前記バイパス路における前記冷媒の飽和温度を検出する飽和温度検出部と、前記バイパス路の出口の冷媒温度を検出する第2温度センサとを設け、
前記制御装置は、前記蓄熱運転時に、前記飽和温度検出部の検出値と前記第2温度センサの検出値に基づいて定まる前記バイパス路の前記出口の前記冷媒の過熱度が、所定の過熱度となるように前記バイパス膨張装置の動作を制御することを特徴とする請求項1に記載の冷凍サイクル装置。 - 前記放熱器と前記過冷却熱交換器との間の冷媒温度を検出する第3温度センサを設け、
前記所定の過熱度は、前記飽和温度検出部の検出値と前記第3温度センサの検出値に基づいて決定されることを特徴とする請求項3に記載の冷凍サイクル装置。 - 前記制御装置は、前記除霜運転時に、前記圧縮機に吸入される前記冷媒が湿り状態となるように前記バイパス膨張装置の動作を制御することを特徴とする請求項2~4のいずれかに記載の冷凍サイクル装置。
- 請求項1~5のいずれか1項に記載の冷凍サイクル装置を備えた温水生成装置であって、
前記利用熱媒体を、水、または、不凍液とし、
前記放熱器にて加温された前記利用熱媒体を、給湯又は暖房に用いることを特徴とする温水生成装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380009594.6A CN104114964B (zh) | 2012-11-26 | 2013-11-19 | 制冷循环装置和具备其的热水生成装置 |
EP13856947.0A EP2924375B1 (en) | 2012-11-26 | 2013-11-19 | Refrigeration cycle device and hot water generation device provided therewith |
DK13856947.0T DK2924375T3 (da) | 2012-11-26 | 2013-11-19 | Køleprocesanordning og tilhørende varmtvandsproduktionsanordning |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-257050 | 2012-11-26 | ||
JP2012257050A JP2014105891A (ja) | 2012-11-26 | 2012-11-26 | 冷凍サイクル装置及びそれを備えた温水生成装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014080612A1 true WO2014080612A1 (ja) | 2014-05-30 |
Family
ID=50775807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/006775 WO2014080612A1 (ja) | 2012-11-26 | 2013-11-19 | 冷凍サイクル装置及びそれを備えた温水生成装置 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2924375B1 (ja) |
JP (1) | JP2014105891A (ja) |
CN (1) | CN104114964B (ja) |
DK (1) | DK2924375T3 (ja) |
WO (1) | WO2014080612A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113237258A (zh) * | 2021-05-31 | 2021-08-10 | 青岛海尔空调电子有限公司 | 空调机组及其除霜控制方法 |
CN113498468A (zh) * | 2019-03-06 | 2021-10-12 | 三菱电机株式会社 | 制冷循环装置 |
WO2023238181A1 (ja) * | 2022-06-06 | 2023-12-14 | 三菱電機株式会社 | 空気調和装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105276874A (zh) * | 2014-07-10 | 2016-01-27 | 南京理工大学 | 一种利用储存液体过冷热除霜的热泵空调机组 |
JP6402661B2 (ja) | 2015-03-20 | 2018-10-10 | ダイキン工業株式会社 | 冷凍装置 |
CN105571076B (zh) * | 2016-01-20 | 2019-08-20 | 青岛海尔空调电子有限公司 | 一种水冷多联机制冷的控制方法 |
CN106440552A (zh) * | 2016-09-12 | 2017-02-22 | 重庆美的通用制冷设备有限公司 | 热泵机组 |
JP7012208B2 (ja) * | 2019-01-18 | 2022-01-28 | パナソニックIpマネジメント株式会社 | 冷凍サイクル装置及びそれを備えた液体加熱装置 |
JP2020183850A (ja) * | 2019-05-09 | 2020-11-12 | パナソニックIpマネジメント株式会社 | 冷凍サイクル装置およびそれを備えた液体加熱装置 |
CN112178871A (zh) * | 2020-09-21 | 2021-01-05 | 广东Tcl智能暖通设备有限公司 | 一种空调控制方法、空调及存储介质 |
US20240077238A1 (en) * | 2021-02-02 | 2024-03-07 | Mitsubishi Electric Corporation | Refrigeration cycle device |
JP7157353B1 (ja) * | 2021-03-31 | 2022-10-20 | ダイキン工業株式会社 | 冷凍サイクル装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62158951A (ja) * | 1986-01-07 | 1987-07-14 | 松下電器産業株式会社 | ヒ−トポンプ式空調機 |
JPS63161371A (ja) * | 1986-12-24 | 1988-07-05 | 松下電器産業株式会社 | ヒ−トポンプ式空気調和機 |
JPS63163751A (ja) * | 1986-12-26 | 1988-07-07 | 松下電器産業株式会社 | ヒ−トポンプ式空気調和機の運転制御方法 |
JPH1068553A (ja) | 1996-08-27 | 1998-03-10 | Daikin Ind Ltd | 空気調和機 |
JP2008196798A (ja) * | 2007-02-14 | 2008-08-28 | Matsushita Electric Ind Co Ltd | 空気調和機 |
JP2009228979A (ja) * | 2008-03-24 | 2009-10-08 | Mitsubishi Electric Corp | 空気調和装置 |
JP2010196950A (ja) * | 2009-02-24 | 2010-09-09 | Daikin Ind Ltd | ヒートポンプシステム |
JP2011158125A (ja) * | 2010-01-29 | 2011-08-18 | Panasonic Corp | 冷凍サイクル装置および温水暖房装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5316941A (en) * | 1976-07-30 | 1978-02-16 | Hitachi Ltd | Freezer |
JPS61175430A (ja) * | 1985-01-31 | 1986-08-07 | Tohoku Electric Power Co Inc | 冷凍サイクル |
JPH07122534B2 (ja) * | 1989-12-14 | 1995-12-25 | ダイキン工業株式会社 | 空気調和機のデフロスト運転制御装置 |
JP2894421B2 (ja) * | 1993-02-22 | 1999-05-24 | 三菱電機株式会社 | 蓄熱式空気調和装置及び除霜方法 |
JPH06307743A (ja) * | 1993-04-23 | 1994-11-01 | Hitachi Ltd | 冷凍・冷蔵ユニット |
JPH07286765A (ja) * | 1994-04-15 | 1995-10-31 | Mitsubishi Heavy Ind Ltd | 冷凍装置 |
US20080098760A1 (en) * | 2006-10-30 | 2008-05-01 | Electro Industries, Inc. | Heat pump system and controls |
JP4920316B2 (ja) * | 2006-06-16 | 2012-04-18 | 株式会社コロナ | ヒートポンプ給湯機 |
EP2407735B1 (en) * | 2010-04-30 | 2016-07-20 | Daikin Industries, Ltd. | Heat pump system |
EP2623898A4 (en) * | 2010-09-27 | 2018-01-17 | Toshiba Carrier Corporation | Hot water supply system |
JP5278451B2 (ja) * | 2011-01-27 | 2013-09-04 | パナソニック株式会社 | 冷凍サイクル装置及びそれを用いた温水暖房装置 |
-
2012
- 2012-11-26 JP JP2012257050A patent/JP2014105891A/ja active Pending
-
2013
- 2013-11-19 DK DK13856947.0T patent/DK2924375T3/da active
- 2013-11-19 WO PCT/JP2013/006775 patent/WO2014080612A1/ja active Application Filing
- 2013-11-19 CN CN201380009594.6A patent/CN104114964B/zh active Active
- 2013-11-19 EP EP13856947.0A patent/EP2924375B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62158951A (ja) * | 1986-01-07 | 1987-07-14 | 松下電器産業株式会社 | ヒ−トポンプ式空調機 |
JPS63161371A (ja) * | 1986-12-24 | 1988-07-05 | 松下電器産業株式会社 | ヒ−トポンプ式空気調和機 |
JPS63163751A (ja) * | 1986-12-26 | 1988-07-07 | 松下電器産業株式会社 | ヒ−トポンプ式空気調和機の運転制御方法 |
JPH1068553A (ja) | 1996-08-27 | 1998-03-10 | Daikin Ind Ltd | 空気調和機 |
JP2008196798A (ja) * | 2007-02-14 | 2008-08-28 | Matsushita Electric Ind Co Ltd | 空気調和機 |
JP2009228979A (ja) * | 2008-03-24 | 2009-10-08 | Mitsubishi Electric Corp | 空気調和装置 |
JP2010196950A (ja) * | 2009-02-24 | 2010-09-09 | Daikin Ind Ltd | ヒートポンプシステム |
JP2011158125A (ja) * | 2010-01-29 | 2011-08-18 | Panasonic Corp | 冷凍サイクル装置および温水暖房装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113498468A (zh) * | 2019-03-06 | 2021-10-12 | 三菱电机株式会社 | 制冷循环装置 |
CN113237258A (zh) * | 2021-05-31 | 2021-08-10 | 青岛海尔空调电子有限公司 | 空调机组及其除霜控制方法 |
WO2023238181A1 (ja) * | 2022-06-06 | 2023-12-14 | 三菱電機株式会社 | 空気調和装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2014105891A (ja) | 2014-06-09 |
EP2924375A4 (en) | 2016-01-06 |
CN104114964A (zh) | 2014-10-22 |
EP2924375A1 (en) | 2015-09-30 |
DK2924375T3 (da) | 2020-02-24 |
EP2924375B1 (en) | 2020-01-01 |
CN104114964B (zh) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014080612A1 (ja) | 冷凍サイクル装置及びそれを備えた温水生成装置 | |
JP5421717B2 (ja) | 冷凍サイクル装置および温水暖房装置 | |
JP5533491B2 (ja) | 冷凍サイクル装置及び温水暖房装置 | |
JP5816789B2 (ja) | 冷凍サイクル装置及びそれを備えた温水暖房装置 | |
JP5637053B2 (ja) | 冷凍サイクル装置及びそれを備えた温水暖房装置 | |
JP6161005B2 (ja) | 冷凍サイクル装置およびそれを備えた温水生成装置 | |
JP5278451B2 (ja) | 冷凍サイクル装置及びそれを用いた温水暖房装置 | |
JP5411643B2 (ja) | 冷凍サイクル装置および温水暖房装置 | |
JP2011174672A (ja) | 冷凍サイクル装置および温水暖房装置 | |
EP3211350B1 (en) | Refrigeration cycle device, and hot water heating device provided with the same | |
EP2918921B1 (en) | Hot water generator | |
EP3220078A1 (en) | Refrigeration cycle device and hot water heating device provided with the same | |
JP2011185507A (ja) | 冷凍サイクル装置およびそれを備えた温水暖房装置 | |
JP5233960B2 (ja) | 冷凍サイクル装置及びそれを用いた温水暖房装置 | |
JP2015172452A (ja) | 温水生成装置 | |
JP5440100B2 (ja) | 冷凍サイクル装置及びそれを用いた温水暖房装置 | |
JP2014031930A (ja) | 冷凍サイクル装置 | |
JP7038277B2 (ja) | 冷凍サイクル装置およびそれを備えた液体加熱装置 | |
JP5421716B2 (ja) | 冷凍サイクル装置および温水暖房装置 | |
JP4996974B2 (ja) | 冷凍装置、空気調和装置及びこれらの制御方法 | |
JP2016125724A (ja) | 蓄熱式空気調和機 | |
JP2008224050A (ja) | ヒートポンプ装置 | |
JP3915636B2 (ja) | 給湯装置 | |
JP5764029B2 (ja) | ヒートポンプ給湯機及び冷凍サイクル | |
JP7133817B2 (ja) | 冷凍サイクル装置およびそれを備えた液体加熱装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13856947 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013856947 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |