WO2014069621A1 - 熱硬化性シリコーンゴム組成物 - Google Patents

熱硬化性シリコーンゴム組成物 Download PDF

Info

Publication number
WO2014069621A1
WO2014069621A1 PCT/JP2013/079693 JP2013079693W WO2014069621A1 WO 2014069621 A1 WO2014069621 A1 WO 2014069621A1 JP 2013079693 W JP2013079693 W JP 2013079693W WO 2014069621 A1 WO2014069621 A1 WO 2014069621A1
Authority
WO
WIPO (PCT)
Prior art keywords
imide
trifluoromethanesulfonyl
bis
component
silicone rubber
Prior art date
Application number
PCT/JP2013/079693
Other languages
English (en)
French (fr)
Inventor
田貝秀文
飯島宏義
高橋英雄
Original Assignee
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 filed Critical モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority to CN201380057803.4A priority Critical patent/CN104781344B/zh
Priority to EP13851390.8A priority patent/EP2915852B1/en
Priority to US14/438,103 priority patent/US9487639B2/en
Priority to KR1020157008207A priority patent/KR102151512B1/ko
Priority to JP2013552031A priority patent/JP5462425B1/ja
Publication of WO2014069621A1 publication Critical patent/WO2014069621A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/10Equilibration processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/242Applying crosslinking or accelerating agent onto compounding ingredients such as fillers, reinforcements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/549Silicon-containing compounds containing silicon in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Definitions

  • the present invention relates to a thermosetting silicone rubber composition from which a molded article having high antistatic performance can be obtained, and a method for producing the same.
  • thermosetting silicone rubber has an at-curing step of, for example, 200 ° C. for 4 hours after the primary curing in order to further remove and cure the curing agent decomposition product.
  • a technique for imparting such high heat resistance it has been proposed to blend a lithium salt as disclosed in JP-A-2006-225422. It is important for antistatic products to exhibit an antistatic effect on the surface, but since lithium salts are in the form of solids or powders, it takes time to develop the antistatic effect when a small amount is added. There is a problem that it takes. Furthermore, from the viewpoint of quality, there is a problem that a difference in dispersion state is likely to occur and it is difficult to obtain stable quality. For this reason, although such a subject can be avoided by increasing the addition amount, there arises a problem that the heat resistance inherent in the silicone rubber and the strain required for compression are extremely deteriorated.
  • ionic liquid into a rubber / plastic composition.
  • examples of addition to silicone rubber include JP-A-2005-298661 and JP-A-2006-83211.
  • dimethyl silicone polymer is non-polar, and its solubility constant (SP value) is as low as 14.9 (MPa) 1/2 , which makes it compatible with polymers such as urethane, epichlorohydrin, acrylonitrile butadiene, and chloroprene with high SP value. It has low compatibility with excellent ionic liquids and is difficult to add stably to silicone rubber. Even when an ionic liquid is added, many of them immediately bleed on the rubber surface and the effect is not sustained. Further, the proposal of adding the ionic liquid to the silicone rubber is not the addition to the thermosetting silicone rubber but the addition to the room temperature curing condensation curing system.
  • An ionic conductive rubber composition in which a polyether-modified organohydrogenpolysiloxane and an ionic conductive compound are added to an organopolysiloxane is known (Japanese Patent Laid-Open No. 2005-344102).
  • Japanese Patent Laid-Open No. 2005-344102 Japanese Patent Laid-Open No. 2005-344102
  • a combination with a polyether-modified organohydrogenpolysiloxane is essential and is limited to an addition reaction. Further, there is no description about the polymerization method of organopolysiloxane.
  • WO 2009/084730 and WO 2009/084733 propose a method of adding a small amount of a specific ionic substance to a thermosetting silicone rubber.
  • the amount of a specific ionic substance is increased in order to obtain higher antistatic performance, the antistatic performance is improved, but the inherent properties of silicone rubber may not be maintained. There are issues such as worsening.
  • Japanese Patent Application Laid-Open No. 2011-201951 discloses (A) an organopolysiloxane having at least two alkenyl groups in one molecule, (B) reinforcing silica, (C) an ion conductive antistatic agent, and (D) an alkali. Silicone rubber compositions containing (E) organic peroxide curing agents such as metal hydroxides are described. In this composition, the polymerization method of the component (A) is not described at all, and since the alkali metal hydroxide is contained as the component (D) (KOH in Example 1), the polymer chain is cleaved. There is a risk.
  • the present invention solves the above-mentioned problems of the prior art, and can stably provide antistatic performance for a long period of time to a silicone polymer having poor compatibility with an ionic substance as an antistatic component. Even if more ionic substances such as ionic liquids are added for the purpose of obtaining excellent antistatic performance, it is high without deteriorating the inherent properties of silicone rubber such as appearance (no discoloration) and thermal stability. It is an object of the present invention to provide a thermosetting silicone rubber composition having antistatic performance and a method for producing the same.
  • the present inventor uses a polymer polymerized with an alkali metal hydroxide catalyst as a base polymer, so that the composition has high antistatic performance, appearance (no discoloration) and heat
  • the inventors have found that the properties inherent to silicone rubber, such as stability, can be maintained, and the present invention has been completed.
  • the present invention comprises (A) 100 parts by mass of a mixture containing a polyorganosiloxane obtained by polymerization using an alkali metal hydroxide as a polymerization catalyst and neutralized with an acid, and a curing agent; (B) A thermosetting silicone rubber composition comprising an anionic component and a cation component, wherein the anionic component contains bis (trifluoromethanesulfonyl) imide anion in an amount of 50 to 1000 ppm. And a manufacturing method thereof.
  • the present invention also provides an antistatic silicone rubber cured product obtained by curing the silicone rubber composition.
  • an antistatic performance can be stably imparted over a long period to a silicone polymer having poor compatibility with an ionic substance serving as an antistatic component, and appearance (no discoloration) High antistatic performance can be imparted without deteriorating the inherent properties of silicone rubber such as thermal stability.
  • the polyorganosiloxane serving as the base polymer contained in the component (A) is obtained by polymerization and neutralization using an alkali metal polymerization catalyst.
  • an alkali metal hydroxide used as the polymerization catalyst cesium hydroxide, rubidium hydroxide, potassium hydroxide, and sodium hydroxide are disclosed.
  • the polymerization method of the polyorganosiloxane used as a base polymer using the alkali metal hydroxide used as a polymerization catalyst can be carried out as follows. The case where the batch polymerization method is carried out will be described. A siloxane monomer such as dimethyltetramer (octamethylcyclotetrapolysiloxane) and a chain terminator are placed in a polymerization vessel and dried by distillation or refluxing siloxane vapor through a molecular sieve column.
  • potassium hydroxide as a polymerization catalyst is added in the form of a pulverized slurry of methyl tetramer, and polymerization is allowed to proceed under stirring. As the polymerization reaction proceeds, monomers are added to the ends of the polymer chain, forming progressively longer polymers. In this way, when the polymerization proceeds and a siloxane polymer having a desired viscosity is obtained, potassium hydroxide added as a polymerization catalyst is neutralized with a neutralizing agent such as phosphoric acid to stop the polymerization reaction. Finally, the unreacted monomer is separated and removed by distillation to obtain a polyorganosiloxane that becomes the base polymer of the component (A).
  • a polymerization method of polyorganosiloxane used in the silicone rubber composition a polymerization method of cyclic siloxane using an alkali catalyst (thermal decomposition base catalyst) is known, and tetramethylammonium hydroxide is used as the thermal decomposition base catalyst.
  • alkali catalysts pyrolytic base catalysts
  • the polyorganosiloxane used as the base polymer has a monovalent substituted or unsubstituted hydrocarbon group as an organic group bonded to a silicon atom, and includes a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and dodecyl.
  • An unsubstituted hydrocarbon group such as an alkyl group such as an aryl group, an aryl group such as a phenyl group, an aralkyl group such as a ⁇ -phenylethyl group and a ⁇ -phenylpropyl group, a chloromethyl group, 3, 3, 3 -Substituted hydrocarbon groups such as trifluoropropyl group are exemplified, but methyl group and phenyl group are preferable.
  • the polyorganosiloxane serving as the base polymer polydiorganosiloxane in which at least two of the organic groups bonded to silicon atoms in one molecule are vinyl groups is preferable, and linear ones are particularly preferably used. Without being limited thereto, those having no vinyl group and branched or cyclic polyorganosiloxane can also be used.
  • the component contains a curing agent.
  • a curing agent for applying a crosslinking reaction by a known organic peroxide or a crosslinking reaction by an addition reaction can be used.
  • Curing agents for applying the organic peroxide crosslinking reaction include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methylbenzoyl peroxide, dicumyl peroxide, cumyl-t- Butyl peroxide, 2,5
  • organic peroxide curing agents such as -dimethyl-2,5-di-t-butylperoxyhexane and di-t-butylperoxide are used.
  • dicumyl peroxide cumyl-t-butyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxyhexane and di-t-butyl peroxide are preferred because they give low compression set.
  • curing agent can be used as a 1 type, or 2 or more types of mixture.
  • the compounding amount of the organic peroxide as the curing agent is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the silicone base polymer.
  • a platinum catalyst such as chloroplatinic acid, platinum olefin complex, platinum vinylsiloxane complex, platinum black, platinum triphenylphosphine complex is used as a curing catalyst
  • the cross-linking agent polydiorganosiloxane having an average of more than two hydrogen atoms bonded to silicon atoms per molecule is used.
  • the blending amount of the curing catalyst is 0.1 to 1000 ppm, preferably 0.5 to 100 ppm, more preferably 1 to 50 ppm in terms of platinum element with respect to the silicone base polymer.
  • the amount of the curing catalyst is within the above range as the amount of platinum element since the curing proceeds sufficiently.
  • the amount of the crosslinking agent is preferably such that the number of hydrogen atoms bonded to silicon atoms in the crosslinking agent is 0.5 to 4.0 with respect to one alkenyl group in the silicone base polymer, more preferably 1.0 to 3.0. The amount is such that When the amount of hydrogen atoms is 0.5 or more, the curing of the composition is sufficiently advanced, the hardness of the composition after curing is increased, and the amount of hydrogen atoms is If it is 4.0 or less, the physical properties and heat resistance of the cured composition will be high.
  • additives such as fillers, pigments, heat resistance improvers and flame retardants can be further blended as necessary, and it is particularly preferable to blend reinforcing silica as a filler.
  • reinforcing silica include dry silica such as fumed silica and arc silica; wet silica such as precipitated silica and silica aerogel; and hexamethyldisilazane, trimethylchlorosilane, dimethyldichlorosilane, trimethylmethoxysilane, and octamethyl.
  • Hydrophobic silica treated with an organosilicon compound such as cyclotetrasiloxane can be exemplified, and among these, salt-mist silica and silica obtained by hydrophobizing it are preferred.
  • the reinforcing silica preferably has a specific surface area of usually 50 m 2 / g or more, more preferably 100 to 700 m 2 / g, still more preferably 130 to 500 m 2 / g. is there.
  • the reinforcing silica When the reinforcing silica is blended, it is preferably 5 to 100 parts by weight, more preferably 10 to 80 parts by weight, and still more preferably 20 to 50 parts by weight with respect to 100 parts by weight of the silicone base polymer.
  • pulverized quartz powder, clay, calcium carbonate, diatomaceous earth, titanium dioxide and the like can be blended.
  • the heat resistance improver include iron oxide, cerium oxide, cerium hydroxide, and iron octylate.
  • a saturated aliphatic hydrocarbon such as isoparaffin
  • a release agent such as a fatty acid metal salt and a fatty acid amide
  • a blowing agent such as azodicarbonamide and azobisisobutyronitrile, and the like can also be blended.
  • known organosilicon compounds, surfactants, processing aids, and the like can also be blended.
  • the component (B) is an ionic substance including an anion component and a cation component, and includes a bis (trifluoromethanesulfonyl) imide anion as an anion component.
  • Other anions of ionic substances include alkyl sulfate anions, tosylate anions, sulfonate anions, bis (trifluoromethanesulfonyl) imide anions, hexafluorophosphate anions, tetrafluoroborate anions, Although many things, such as a halide anion, are known, in the present invention, an ionic substance containing a bis (trifluoromethanesulfonyl) imide anion is necessary to achieve the object of the present application.
  • Cations of ionic substances include lithium cation and imidazolium cation, pyrrolidinium cation, pyridinium cation, ammonium cation, phosphonium cation, sulfonium cation used in ionic liquids It is.
  • an imidazolium cation, a pyrrolidinium cation, a pyridinium cation, an ammonium cation, and a lithium cation are preferable.
  • ionic substances include 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide, 1-methyl-1-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide, 3-methyl-1-propylpyridinium bis (trifluoromethanesulfonyl) imide, N-butyl-3-methylpyridinium bis (trifluoromethanesulfonyl) imide, 1-methyl-1-propylpyridinium bis (trifluoromethanesulfonyl) imide, Diallyldimethylammonium bis (trifluoromethanesulfonyl) imide, Methyltrioctylammonium bis (trifluoromethanesulfonyl) imide, 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1,2-dimethyl-3-propylimi
  • the blending amount (mass basis) of the component (B) is 50 to 1000 ppm, preferably 70 to 700 ppm, more preferably 100 to 500 ppm with respect to 100 parts by mass of the component (A).
  • the blending amount of the component (B) is less than 50 ppm, the antistatic effect is not sufficient, and when the blending amount exceeds 1000 ppm, the effect is not only saturated but also commercially disadvantageous.
  • thermosetting silicone rubber composition of the present invention can be added with more ionic substances as antistatic agents than ever, and not only has excellent antistatic performance, Silicone rubber has excellent appearance (no discoloration) and thermal stability, so that it can be used to make copies of portable music players, portable games, mobile phones, game console controllers, urethane resins, etc. It is suitably used for silicone rubber molds used in coatings, silicone rubber coatings on fabrics, and the like.
  • the composition of the present invention can be produced by mixing the component (A), the component (B), and other components blended as necessary.
  • the composition of the present invention is an ionic substance as the component (B) in order to more uniformly mix the component (A) and the component (B) and to keep the antistatic performance stably over a long period of time.
  • a filler containing reinforcing silica are mixed, an ionic substance is supported on the filler, and then mixed with the component (A).
  • the filler containing reinforcing silica may be only reinforcing silica or a mixture of reinforcing silica and other fillers. When a mixture of reinforcing silica and other fillers is used, the proportion of reinforcing silica is preferably 50% by mass or more.
  • the filler containing reinforcing silica is added as component (A). This is a very small amount compared to the blending amount. For this reason, even when a filler containing reinforcing silica is used in the production process, the amount is negligible compared to the amount of filler containing reinforcing silica as the component (A).
  • the use amount of the filler containing reinforcing silica is preferably 0.005 to 1 part by mass, more preferably 0.01 to 0.5 part by mass with respect to 100 parts by mass of the base polymer of component (A).
  • Production Example 1 A 5000 ml four-necked flask was equipped with a stirrer, condenser, nitrogen inlet tube, thermometer, and decompressor, and 2000 g of octamethylcyclotetrasiloxane (TSF404, manufactured by Momentive Performance Materials Japan) and 2, KOH, mixed with 25g of 4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane and the required amount of linear polydimethylsiloxane as a chain terminator, and then ground in a mortar 1.0 g of (potassium hydroxide) was charged. While maintaining the reaction temperature at 150 ° C.
  • the equilibration reaction was performed for 5 hours. After completion of the reaction, neutralization was performed with phosphoric acid. Thereafter, unreacted hexamethylcyclotrisiloxane and low molecular weight impurities were distilled off from the reaction solution under the condition of 0.1 kPa for 2 hours to obtain 1600 g of a colorless and transparent liquid.
  • Example 1 100 parts of vinyl group-containing polydimethylorganosiloxane having an average degree of polymerization of 5000 and 0.20 mol% of methylvinylsiloxane units obtained in Production Example 1, and 30 parts of dry silica (manufactured by Nippon Aerosil Co., Ltd.) with a specific surface area of 150 m 2 / g 3 parts of polydimethylsiloxane of silanol (average polymerization degree 10) was mixed and heated and mixed at 150 ° C. for 2 hours to obtain a silicone rubber base compound as component (A).
  • dry silica manufactured by Nippon Aerosil Co., Ltd.
  • Example 2 component 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide 240 ppm and specific surface area 150 m with respect to 100 parts of the base compound of component (A) of Example 1 2 / g dry silica (manufactured by Nippon Aerosil Co., Ltd.) is mixed to 0.2 part, and the ionic substance of component (B) is supported on dry silica and then added to the base compound of component (A). And mixed. Then, it evaluated similarly to Example 1.
  • FIG. 1 component 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide 240 ppm and specific surface area 150 m with respect to 100 parts of the base compound of component (A) of Example 1 2 / g dry silica (manufactured by Nippon Aerosil Co., Ltd.) is mixed to 0.2 part, and the ionic substance of component (B) is supported on dry silic
  • Example 3 Dry silica (manufactured by Nippon Aerosil Co., Ltd.) having 240 ppm diallyldimethylammonium bis (trifluoromethanesulfonyl) imide and 150 m 2 / g specific surface area, which is liquid at room temperature, with respect to 100 parts of the base compound of component (A) of Example 1 The mixture was mixed so as to be 2 parts, and the ionic substance of the component (B) was supported on dry silica, and then added to the vinyl group-containing polydimethylorganosiloxane of the component (A) and mixed. Then, it evaluated similarly to Example 1.
  • FIG. 1 Dry silica (manufactured by Nippon Aerosil Co., Ltd.) having 240 ppm diallyldimethylammonium bis (trifluoromethanesulfonyl) imide and 150 m 2 / g specific surface area, which is liquid at room temperature, with respect to 100 parts of the base compound of component
  • Example 4 Lithium bis (trifluoromethanesulfonyl) imide that is solid at room temperature as a 50% aqueous solution at 480 ppm (lithium bis (trifluoromethanesulfonyl) imide as 240 ppm with respect to 100 parts of the base compound of component (A) of Example 1 ) And dry silica (manufactured by Nippon Aerosil Co., Ltd.) with a specific surface area of 150 m 2 / g so as to be 0.2 parts, and the ionic substance of component (B) is supported on dry silica, The vinyl group-containing polydimethylorganosiloxane was added and mixed. Then, it evaluated similarly to Example 1.
  • FIG. 1 Lithium bis (trifluoromethanesulfonyl) imide that is solid at room temperature as a 50% aqueous solution at 480 ppm (lithium bis (trifluoromethanesulfonyl) imide as 240
  • Example 5 100 parts of the base compound of the component (A) of Example 1 is dry-treated with 500 ppm of 1-methyl-1-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide that is liquid at room temperature and a specific surface area of 150 m 2 / g.
  • Silica manufactured by Nippon Aerosil Co., Ltd.
  • the ionic substance of component (B) is supported on dry silica, and then added to the vinyl group-containing polydimethylorganosiloxane of component (A). And mixed. Then, it evaluated similarly to Example 1.
  • FIG. 1 100 parts of the base compound of the component (A) of Example 1 is dry-treated with 500 ppm of 1-methyl-1-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide that is liquid at room temperature and a specific surface area of 150 m 2 / g.
  • Silica manufactured by Nippon Aerosil Co., Ltd.
  • Example 6 Dry silica (100 ppm of 1-methyl-1-propylpyridinium bis (trifluoromethanesulfonyl) imide and 150 m 2 / g of specific surface area, which is liquid at room temperature, with respect to 100 parts of the base compound of component (A) of Example 1 (Made by Nippon Aerosil Co., Ltd.) After mixing to 0.2 parts and supporting the ionic substance of component (B) on dry silica, adding to the vinyl group-containing polydimethylorganosiloxane of component (A) and mixing did. Then, it evaluated similarly to Example 1.
  • Example 7 Dry silica (manufactured by Nippon Aerosil Co., Ltd.) having 100 ppm of methyltrioctylammonium bis (trifluoromethanesulfonyl) imide that is liquid at room temperature and a specific surface area of 150 m 2 / g with respect to 100 parts of the base compound of component (A) of Example 1 After mixing to 0.2 parts, the ionic substance of component (B) was supported on dry silica, and then added to and mixed with the vinyl group-containing polydimethylorganosiloxane of component (A). Then, it evaluated similarly to Example 1.
  • FIG. 1 Dry silica (manufactured by Nippon Aerosil Co., Ltd.) having 100 ppm of methyltrioctylammonium bis (trifluoromethanesulfonyl) imide that is liquid at room temperature and a specific surface area of 150 m 2 / g with respect to 100 parts of the base compound of component (
  • Production Example 2 A 5000 ml four-necked flask is equipped with a stirrer, condenser, nitrogen inlet tube, thermometer and decompression device, and 2000 g of octamethylcyclotetrasiloxane (TSF404, manufactured by Momentive Performance Materials Japan) and 2,4 , 6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane 25 g and the necessary amount of linear polydimethylsiloxane as a chain terminator are mixed, and then tetramethylammonium silanolate 1 0.0 g was charged. While maintaining the reaction temperature at 90 ° C. ⁇ 1 ° C., the equilibration reaction was performed for 5 hours.
  • reaction solution was brought to 150 ° C., and the heat decomposable catalyst was fully activated to complete the reaction. Thereafter, the unreacted hexamethylcyclotrisiloxane and low molecular weight impurities were distilled off from the reaction solution under the condition of 0.1 kPa for 2 hours to obtain 1600 g of a colorless and transparent liquid.
  • Example 1 was used except that instead of the polydimethylorganosiloxane obtained in Production Example 1, the vinyl group-containing polydimethylorganosiloxane having an average degree of polymerization of 5000 and 0.20 mol% of methylvinylsiloxane units obtained in Production Example 2 was used. In the same manner, a silicone rubber composition was obtained. However, the addition amount of 1-butyl-3-methylpyridinium bis (trifluoromethanesulfonyl) imide was 5 ppm. Then, it evaluated similarly to Example 1.
  • Comparative Example 7 As in Example 1, 240 ppm of 1-butyl-3-methylpyridinium bis (trifluoromethanesulfonyl) imide as the component (B) was added to 100 parts of the base compound as the component (A). However, the component (B) and the dry silica were not mixed, and the ionic liquid was not supported on the dry silica, and the component (B) was simply added to the base compound of the component (A) and mixed. Thereafter, a rubber sheet for an environmental test was obtained in the same manner as in Example 1. Here, an environmental test was performed using the rubber sheets obtained in Comparative Example 7 and Example 1.
  • Example 3 A colorless and transparent liquid was obtained in the same manner as in Production Example 1 except that KOH (potassium hydroxide) in Production Example 1 was changed to ScOH (cesium hydroxide).
  • Example 8 A silicone rubber composition was obtained in exactly the same manner as in Example 1, except that the polydimethylorganosiloxane obtained in Production Example 3 was used instead of the polydimethylorganosiloxane obtained in Production Example 1. Then, it evaluated similarly to Example 1. FIG.
  • Table 1 shows the results of evaluating the physical properties of the obtained rubber sheet according to the following criteria. ⁇ appearance ⁇ It was evaluated with the naked eye. [Withstand voltage half-life] After charging the test piece with 6 KV corona discharge using a static acid meter H-0110 made by Sidido static electricity, the time (seconds) that the withstand voltage was reduced by half was measured. [Measurement of rubber properties] After the sheet was prepared, the hardness was measured according to JIS K 6249. [Heat resistance test] Vulcanization was performed in an air circulation oven at 200 ° C for 4 hours, and changes in hardness were observed. The + sign indicates that the hardness has increased. For example, 1 in the example indicates that the hardness has increased by 1.
  • thermosetting silicone rubber composition of the present invention includes a cover for a portable music player, a portable game, a mobile phone, a game machine controller, etc., a silicone rubber mold, a fabric used for producing a replica with urethane resin, etc. It can be used as a production material such as a silicone rubber coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

 本発明は、熱安定性などのシリコーンゴムが本来有する特性を悪化させることなく、長期間にわたり安定的な高い帯電防止性能を付与することができる熱硬化性シリコーンゴム組成物を提供する。(A)アルカリ金属水酸化物を重合触媒として用いて重合され、中和して得られたポリオルガノシロキサンと硬化剤を含む混合物100質量部と、(B)陰イオン成分と陽イオン成分を含むイオン性物質であって、陰イオン成分としてビス(トリフルオロメタンスルホニル)イミドであるイオン性物質50~1000ppmを含有する、熱硬化性シリコーンゴム組成物である。

Description

熱硬化性シリコーンゴム組成物
 本発明は、高い帯電防止性能を有する成形体が得られる熱硬化性シリコーンゴム組成物とその製造方法に関する。
 従来、帯電防止ゴムにおいて帯電防止剤としてポリエーテル系化合物を使用した組成物が提案されている(特公昭62-15584号公報)。
 しかし、ポリエーテル系化合物を使用したものは、シリコーンポリマーとポリエーテル系帯電防止剤との相溶性が悪いことから硬化物が白濁してしまう問題がある.
 このため、用途上、透明性が必要であるポータブルミュージックプレイヤー、ポータブルゲーム、携帯電話、ゲーム機のコントローラーなどのカバーやウレタン樹脂などで複製品をするために使用するシリコーンゴム型、布地へのシリコーンゴムコーティングなどに使用されるシリコーンゴム材料には使用が困難である。
 また、ポリエーテル系化合物を使用した組成物は、高温ではポリエーテル系化合物が熱分解してしまい、十分な帯電防止効果が発現しないという問題がある。
 また、熱硬化性シリコーンゴムは、硬化剤分解物の除去や硬化をより進めるために、一次硬化後に例えば200℃、4時間のアト硬化工程を有する。
 このような高い耐熱性を付与する技術として、特開2006-225422号公報に示されるようなリチウム塩を配合することが提案されている。
 帯電防止製品はその表面で帯電防止効果を発現することが重要であるが、リチウム塩は固体または粉末状の性状のものであることから、少量を添加した場合は帯電防止効果の発現まで時間を要するという問題がある。さらに、品質面からも分散状態に差が生じやすく、安定した品質が得られにくいなどの問題を有する。このため、添加量を多くすることでこのような課題を回避できるものの、シリコーンゴムが本来有する耐熱性や圧縮請求歪が極めて悪化するという問題が生じる。
 ゴム・プラスチック組成物にイオン液体を配合することも多く提案されている。例えば、シリコーンゴムへの添加例としては、特開2005-298661号公報及び特開2006-83211号公報がある。
 しかし、ジメチルシリコーンポリマーは非極性であり、その溶解度定数(SP値)は14.9(MPa)1/2と低く、SP値の高いウレタン、エピクロルヒドリン、アクリルニトリルブタジエン、クロルプレンなどのポリマーとの相溶性に優れるイオン液体とは相溶性が低く、シリコーンゴムへ安定的に添加することが困難である。イオン液体を添加しても、多くは直ぐにゴム表面にブリードしていまい、その効果が持続しない。
 また、上記のシリコーンゴムへイオン液体を添加する提案は、加熱硬化型シリコーンゴムへの添加ではなく、室温硬化の縮合硬化系への添加である。
 オルガノポリシロキサンに対して、ポリエーテル変性オルガノハイドロジェンポリシロキサンとイオン導電性化合物を添加したイオン導電性ゴム組成物が知られている(特開2005-344102号公報)。
 しかし、この組成物では、ポリエーテル変性オルガノハイドロジェンポリシロキサンとの組み合わせが必須であり、付加反応に限定される。また、オルガノポリシロキサンの重合方法については全く記載されていない。
 これらの課題を解決する方法として、WO2009/084730号公報およびWO2009/084733号公報では、熱硬化性シリコーンゴムに特定のイオン性物質を微量添加する方法が提案されている。ところが、より高い帯電防止性能を得るために特定のイオン性物質の配合量を増すと、確かに帯電防止性能は向上するものの、シリコーンゴムが本来有する特性を維持できないことがあり、例えば、耐熱性などが悪化するなどの課題がある。
 特開2011-201951号公報には、(A)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(B)補強性シリカ、(C)イオン導電性帯電防止剤、(D)アルカリ金属水酸化物等、(E)有機過酸化物硬化剤を含むシリコーンゴム組成物が記載されている。
 この組成物では、(A)成分の重合方法は全く記載されておらず、(D)成分としてアルカリ金属水酸化物を含有していることから(実施例1ではKOH)、ポリマー鎖が切断されるおそれがある。
 本発明は、上記従来技術の課題を解決するもので、帯電防止成分となるイオン性物質との相溶性に乏しいシリコーンポリマーに対して、長期間にわたり安定的に帯電防止性能を付与することができ、優れた帯電防止性能を得る目的でイオン液体などのイオン性物質を従来より多く添加しても、外観(変色なし)や熱安定性などのシリコーンゴムが本来有する特性を悪化させることなく、高い帯電防止性能を有する熱硬化性シリコーンゴム組成物とその製造方法を提供することを課題とする。
 本発明者は、ベースポリマーとなるシリコーンポリマーとして、アルカリ金属水酸化物触媒を用いで重合されたものを使用することで、組成物が高い帯電防止性能を有し、外観(変色なし)や熱安定性などのシリコーンゴムが本来有する特性を維持できることを見出し、本発明を完成した。
 本発明は、(A)アルカリ金属水酸化物を重合触媒として用いて重合され、酸で中和されて得られたポリオルガノシロキサンと硬化剤を含む混合物100質量部と、
 (B)陰イオン成分と陽イオン成分を含むイオン性物質であって、陰イオン成分としてビス(トリフルオロメタンスルホニル)イミド陰イオンをイオン性物質50~1000ppmを含有する、熱硬化性シリコーンゴム組成物とその製造方法を提供する。
 本発明はまた、上記のシリコーンゴム組成物を硬化させて成る帯電防止性シリコーンゴム硬化物を提供する。
 本発明の組成物によれば、帯電防止成分となるイオン性物質との相溶性に乏しいシリコーンポリマーに対して、長期間にわたり安定的に帯電防止性能を付与することができ、外観(変色なし)や熱安定性などのシリコーンゴムが本来有する特性を悪化させることなく、高い帯電防止性能を付与することができる。
発明の詳細な説明
 <熱硬化性シリコーンゴム組成物>
 〔(A)成分〕
 (A)成分に含まれるベースポリマーとなるポリオルガノシロキサンは、アルカリ金属重合触媒を用いて重合され、中和されて得られたものである。
 重合触媒として用いるアルカリ金属水酸化物としては、水酸化セシウム、水酸化ルビジウム、水酸化カリウム、水酸化ナトリウムが開示される。
 重合触媒として用いるアルカリ金属水酸化物を用いて、ベースポリマーとなるポリオルガノシロキサンの重合方法は、次のように実施することができる。
 バッチ式重合法を実施した場合により説明する。
 シロキサンモノマー、例えばジメチルテトラマー(オクタメチルシクロテトラポリシロキサン)と連鎖停止剤を重合容器に入れ、蒸留もしくはシロキサン蒸気をモルキュラーシーブカラムで還流させることにより乾燥する。
 次に、この乾燥シロキサンモノマーを約155 ℃に加熱した後、重合触媒としてたとえば水酸化カリウムをメチルテトラマーの粉砕スラリーの形態で加えて、撹拌下で重合を進行させる。
 重合反応が進むにつれて、モノマーがポリマー鎖の末端に付加し、次第に長いポリマーを形成していく。
 このようにして重合が進み所望の粘度のシロキサンポリマーが得られたところで、重合触媒として加えた水酸化カリウムを中和剤たとえば燐酸で中和し、重合反応を停止させる。
 最後に蒸留して未反応のモノマーを分離除去することにより、(A)成分のベースポリマーとなるポリオルガノシロキサンを得ることができる。
 なお、シリコーンゴム組成物で使用されるポリオルガノシロキサンの重合方法としては、アルカリ触媒(熱分解型塩基触媒)による環状シロキサンの重合方法が公知であり、熱分解型塩基触媒として水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウムや、これらをシラノレート化したテトラアルキルアンモニウムシラノレートなどが使用されているが、これらのアルカリ触媒(熱分解型塩基触媒)は、本発明の(A)成分の重合で使用するアルカリ金属重合触媒には含まれない。
 ベースポリマーとなるポリオルガノシロキサンは、ケイ素原子に結合する有機基として1価の置換または非置換の炭化水素基を有するものであり、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基のようなアルキル基、フェニル基のようなアリール基、β-フェニルエチル基、β-フェニルプロピル基のようなアラルキル基等の非置換の炭化水素基や、クロロメチル基、3,3,3-トリフルオロプロピル基等の置換炭化水素基が例示されるが、メチル基、フェニル基が好ましい。
 ベースポリマーとなるポリオルガノシロキサンとしては、1分子中のケイ素原子に結合する有機基のうち、少なくとも2個がビニル基であるポリジオルガノシロキサンが好ましく、直鎖状のものが特に好ましく用いられるが、これらに限定されることなく、ビニル基を持たないものや分岐状もしくは環状のポリオルガノシロキサンも使用することができる。
 (A)成分は硬化剤を含有している。硬化剤は、公知の有機過酸化物による架橋反応や付加反応による架橋反応を適用するときの硬化剤を使用することができる。
 有機過酸化物の架橋反応を適用するときの硬化剤としては、ベンゾイルペルオキシド、2,4 -ジクロロベンゾイルペルオキシド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、ジクミルペルオキシド、クミル-t-ブチルペルオキシド、2,5
-ジメチル-2,5 -ジ-t-ブチルペルオキシヘキサン、ジ-t-ブチルペルオキシド等の各種の有機過酸化物硬化剤が用いられる。
 特に、低い圧縮永久歪を与えることから、ジクミルペルオキシド、クミル-t-ブチルペルオキシド、2,5 -ジメチル-2,5 -ジ-t-ブチルペルオキシヘキサン、ジ-t-ブチルペルオキシドが好ましい。
 有機過酸化物硬化剤は、1種または2種以上の混合物として用いることができる。
 硬化剤である有機過酸化物の配合量は、シリコーンベースポリマー100質量部に対し0.05~10質量部が好ましく、0.1~2.0質量部がより好ましい。
 付加反応による架橋反応を適用するときの硬化剤としては、硬化用触媒として、塩化白金酸、白金オレフィン錯体、白金ビニルシロキサン錯体、白金黒、白金トリフェニルホスフィン錯体等の白金系触媒が用いられ、架橋剤として、ケイ素原子に結合した水素原子が1分子中に少なくとも平均2個を超える数を有するポリジオルガノシロキサンが用いられる。
 硬化用触媒の配合量は、シリコーンベースポリマーに対し白金元素量で0.1~1000ppmであり、好ましくは0.5~100ppm、より好ましくは1~50ppmである。硬化用触媒の配合量が白金元素量として前記範囲内であると硬化が十分に進行されるので好ましい。
 架橋剤の配合量は、シリコーンベースポリマー中のアルケニル基1個に対し、架橋剤中のケイ素原子に結合した水素原子が0.5~4.0 個となるような量が好ましく、さらに好ましくは 1.0~3.0 個となるような量である。水素原子の量が 0.5個以上である場合は、組成物の硬化が充分に進行して、硬化後の組成物の硬さが高くなり、また水素原子の量が
4.0個以下であると硬化後の組成物の物理的性質と耐熱性が高くなる。
 (A)成分には、さらに必要に応じて充填剤、顔料、耐熱性向上剤、難燃剤などの添加剤を配合することができ、特に充填剤として補強性シリカを配合することが好ましい。
 補強性シリカとしては、煙霧質シリカ、アークシリカのような乾式シリカ;沈殿シリカ、シリカエアロゲルのような湿式シリカ;およびそれらをヘキサメチルジシラザン、トリメチルクロロシラン、ジメチルジクロロシラン、トリメチルメトキシシラン、オクタメチルシクロテトラシロキサンのような有機ケイ素化合物で処理した疎水性シリカなどを挙げることができ、これらの中でも塩霧質シリカおよびそれを疎水化したシリカが好ましい。
 優れた補強効果を得るために、補強性シリカは、比表面積が通常50m2/g以上のものが好ましく、より好ましくは100~700m2/g、さらに好ましくは130~500m2/gのものである。
 補強性シリカを配合するときは、シリコーンベースポリマー100質量部に対し、5~100質量部が好ましく、10~80質量部がより好ましく、20~50質量部がさらに好ましい。
 その他の充填剤として、粉砕石英紛、クレイ、炭酸カルシウム、ケイソウ土、ニ酸化チタンなどを配合することができる。
 耐熱性向上剤としては、酸化鉄、酸化セリウム、水酸化セリウム、オクチル酸鉄などが挙げられる。
 その他、イソパラフィンなどの飽和脂肪族炭化水素、脂肪酸金属塩、脂肪酸アミド類などの離型剤、アゾジカルボンアミド、アゾビスイソブチロニトリルなどの発泡剤なども配合することができる。
 また、補強性シリカなどの充填剤の分散性などを高める目的で、公知の有機ケイ素化合物や、界面活性剤、加工助剤なども配合することができる。
 <(B)成分>
 (B)成分は、陰イオン成分と陽イオン成分を含むイオン性物質であって、陰イオン成分としてビス(トリフルオロメタンスルホニル)イミド陰イオンを含んでものである。
 イオン性物質の陰イオンとしては、他にもアルキルサルフェート系陰イオン、トシレート陰イオン、スルフォナート系陰イオン、ビス(トリフルオロメタンスルホニル)イミド陰イオン、ヘキサフルオロフォスフェイト陰イオン、テトラフルオロボレート陰イオン、ハライド陰イオンなど多数のものが知られているが、本発明においてはビス(トリフルオロメタンスルホニル)イミド陰イオンを含んだイオン性物質が本願の目的を達成するにあたっては必要となる。
 イオン物質の陽イオンとしては、リチウム陽イオンやイオン液体に用いられているイミダゾリウム系陽イオン、ピロリジニウム系陽イオン、ピリジニウム系陽イオン、アンモニウム系陽イオン、フォスホニウム系陽イオン、スルホニウム系陽イオンなどである。特に本発明においては、イミダゾリウム系陽イオン、ピロリジニウム系陽イオン、ピリジニウム系陽イオン、アンモニウム系陽イオン、リチウム陽イオンが好ましい。
 イオン性物質の具体例としては、
 1-ブチル-1-メチルピロリジニウム・ビス(トリフルオロメタンスルホニル)イミド、
 1-メチル-1-プロピルピロリジニウム・ビス(トリフルオロメタンスルホニル)イミド、
 3-メチルー1-プロピルピリジニウム・ビス(トリフルオロメタンスルホニル)イミド、
 N-ブチル-3-メチルピリジニウム・ビス(トリフルオロメタンスルホニル)イミド、
 1-メチルー1-プロピルピリジニウム・ビス(トリフルオロメタンスルホニル)イミド、
 ジアリルジメチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミド、
 メチルトリオクチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミド、
 1-ブチル-3-メチルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド、
 1,2-ジメチルー3-プロピルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド、
 1-エチルー3-メチルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド、
 1-ビニルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド、
 1-アリルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド、
 1-アリル-3-メチルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド、
 リチウム・ビス(トリフルオロメタンスルホニル)イミド
などをあげることができる。
 なお、本発明に用いるイオン液体はこれまで例示したものに制限されるものではない。
 (B)成分の配合量(質量基準)は、(A)成分100質量部に対して、50~1000ppmであり、好ましくは70~700ppm、より好ましくは100~500ppmである。
 (B)成分の配合量が50ppm未満では帯電防止効果が十分でなく、1000ppmを超えて配合しても効果が飽和するだけでなく、商業的に不利となるという問題がある。
 本発明の熱硬化性シリコーンゴム組成物から得られた成形体は、従来より多くの帯電防止剤としてのイオン性物質を添加することが可能となり、優れた帯電防止性能を保持するだけでなく、シリコーンゴムが本来有する外観(変色なし)や熱安定性などに優れているため、ポータブルミュージックプレイヤー、ポータブルゲーム、携帯電話、ゲーム機のコントローラーなどのカバーや、ウレタン樹脂等で複製品を製造するために使用されるシリコーンゴム型、布地へのシリコーンゴムコーティング等に好適に用いられる。
 <熱硬化性シリコーンゴム組成物の製造方法>
 本発明の組成物は、(A)成分と(B)成分及び必要に応じて配合されるその他の成分を混合して製造することができる。
 また本発明の組成物は、(A)成分と(B)成分とをより均一に混合し、長期間にわたり安定的に帯電防止性能を保持するためには、(B)成分であるイオン性物質と補強性シリカを含む充填剤を混合して、前記充填剤にイオン性物質を担持させた後、さらに(A)成分と混合する方法が好ましい。
 補強性シリカを含む充填剤は、補強性シリカのみでもよいし、補強性シリカと他の充填剤との混合物でもよい。補強性シリカと他の充填剤との混合物にする場合は、補強性シリカの割合が50質量%以上になるようにすることが好ましい。
 補強性シリカを含む充填剤の使用量は、(B)成分であるイオン性物質の組成物中の配合量がごく少量であることから、(A)成分として補強性シリカを含む充填剤を配合するときの配合量と比べると非常に少ない量である。このため、製造工程で補強性シリカを含む充填剤を使用した場合であっても、(A)成分としての補強性シリカを含む充填剤の配合量と比べると無視できる程度の量である。
 補強性シリカを含む充填剤の使用量は、(A)成分のベースポリマー100質量部に対して0.005~1質量部が好ましく、0.01~0.5質量部がより好ましい。
 次の実施例は本発明の実施について述べる。実施例は本発明の例示について述べるものであり、本発明を限定するためではない。
 以下において「部」は「質量部」を意味し、ppmは質量基準を意味する。
 製造例1
 5000ミリリットルの四つ口フラスコに攪拌装置、コンデンサー、窒素導入管、温度計、および減圧装置を取り付けて、オクタメチルシクロテトラシロキサン(TSF404、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)2000gと2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサン25gと連鎖停止剤である直鎖状のポリジメチルシロキサン必要量とを混合し、その後、乳鉢ですりつぶしたKOH(水酸化カリウム)1.0gを仕込んだ。
 反応温度を150℃±1℃に保ちながら5時間平衡化反応を行った。反応終了後、燐酸により中和を行った。その後反応液を0.1kPaの条件で2時間、未反応のヘキサメチルシクロトリシロキサンおよび低分子量不純物を留去させ、1600gの無色透明の液体を得た。
 実施例1
 製造例1で得られた平均重合度5000、メチルビニルシロキサン単位0.20モル%を有するビニル基含有ポリジメチルオルガノシロキサン100部に、比表面積150m2/gの乾式シリカ(日本アエロジル製)30部と末端シラノールのポリジメチルシロキサン(平均重合度10)3部を混合し、加熱混合150℃、2時間を経て、(A)成分となるシリコーンゴムベースコンパウンドを得た。
 次に、(A)成分のベースコンパウンド100部に対して、常温で液体である(B)成分の1-ブチル-3-メチルピリジニウム・ビス(トリフルオロメタンスルホニル)イミド240ppmと比表面積150m2/gの乾式シリカ(日本アエロジル製)0.2部になるように混合して、(B)成分のイオン液体を乾式シリカに担持させた後、(A)成分のベースコンパウンドに添加して混合した。
 その後、付加型硬化剤 TC-25A(硬化触媒)0.5部とTC-25B(架橋剤)2.0部(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)を配合して、170℃、10分の条件でプレス硬化し特性評価用のゴム試験片を得た。
 実施例2
 実施例1の(A)成分のベースコンパウンド100部に対して、常温で液体である(B)成分の1-ブチル-1-メチルピロリジニウム・ビス(トリフルオロメタンスルホニル)イミド240ppmと比表面積150m2/gの乾式シリカ(日本アエロジル製)0.2部になるように混合して、(B)成分のイオン性物質を乾式シリカに担持させた後、(A)成分のベースコンパウンドに添加して混合した。その後、実施例1と同様に評価した。
 実施例3
 実施例1の(A)成分のベースコンパウンド100部に対して、常温で液体であるジアリルジメチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミド240ppmと比表面積150m2/gの乾式シリカ(日本アエロジル製)0.2部になるように混合して、(B)成分のイオン性物質を乾式シリカに担持させた後、(A)成分のビニル基含有ポリジメチルオルガノシロキサンに添加して混合した。その後、実施例1と同様に評価した。
 実施例4
 実施例1の(A)成分のベースコンパウンド100部に対して、常温で固体であるリチウム・ビス(トリフルオロメタンスルホニル)イミドを50%水溶液として480ppm(リチウム・ビス(トリフルオロメタンスルホニル)イミドとしては240ppm)と比表面積150m2/gの乾式シリカ(日本アエロジル製)0.2部になるように混合して、(B)成分のイオン性物質を乾式シリカに担持させた後、(A)成分のビニル基含有ポリジメチルオルガノシロキサンに添加して混合した。その後、実施例1と同様に評価した。
 実施例5
 実施例1の(A)成分のベースコンパウンド100部に対して、常温で液体である1-メチル-1-プロピルピロリジニウム・ビス(トリフルオロメタンスルホニル)イミド500ppmと比表面積150m2/gの乾式シリカ(日本アエロジル製)0.4部になるように混合して、(B)成分のイオン性物質を乾式シリカに担持させた後、(A)成分のビニル基含有ポリジメチルオルガノシロキサンに添加して混合した。その後、実施例1と同様に評価した。
 実施例6
 実施例1の(A)成分のベースコンパウンド100部に対して、常温で液体である1-メチル-1-プロピルピリジニウム・ビス(トリフルオロメタンスルホニル)イミド100ppmと比表面積150m2/gの乾式シリカ(日本アエロジル製)0.2部になるように混合して、(B)成分のイオン性物質を乾式シリカに担持させた後、(A)成分のビニル基含有ポリジメチルオルガノシロキサンに添加して混合した。その後、実施例1と同様に評価した。
 実施例7
 実施例1の(A)成分のベースコンパウンド100部に対して、常温で液体であるメチルトリオクチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミド100ppmと比表面積150m2/gの乾式シリカ(日本アエロジル製)0.2部になるように混合して、(B)成分のイオン性物質を乾式シリカに担持させた後、(A)成分のビニル基含有ポリジメチルオルガノシロキサンに添加して混合した。その後、実施例1と同様に評価した。
 製造例2
5000ミリリットルの四つ口フラスコに攪拌装置、コンデンサー、窒素導入管、温度計および減圧装置を取り付けて、オクタメチルシクロテトラシロキサン(TSF404、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)2000gと2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサン25gと連鎖停止剤である直鎖状のポリジメチルシロキサン必要量とを混合し、その後、テトラメチルアンモニウムシラノレート1.0gを仕込んだ。
 反応温度を90℃±1℃に保ちながら5時間平衡化反応を行った。反応終了後、反応液を150℃にし、熱分分解性触媒を充分に死活させ反応を終了させた。その後、反応液を0.1kPaの条件で2時間、未反応のヘキサメチルシクロトリシロキサンおよび低分子量不純物を留去させ、1600gの無色透明の液体を得た。
 比較例1
 製造例1で得たポリジメチルオルガノシロキサンの代わりに、製造例2で得られた平均重合度5000、メチルビニルシロキサン単位0.20モル%を有するビニル基含有ポリジメチルオルガノシロキサンを用いた以外は実施例1と同様にしてシリコーンゴム組成物を得た。ただし、1-ブチル-3-メチルピリジニウム・ビス(トリフルオロメタンスルホニル)イミドの添加量は5ppmとした。その後、実施例1と同様に評価した。
 比較例2
 製造例1で得たポリジメチルオルガノシロキサンの代わりに、製造例2で得られたポリジメチルオルガノシロキサンを用いた以外は実施例1と全く同様にシリコーンゴム組成物を得た。その後、実施例1と同様に評価した。
 比較例3
 製造例1で得たポリジメチルオルガノシロキサンの代わりに、製造例2で得られたポリジメチルオルガノシロキサンを用いた以外は実施例2と同様にシリコーンゴム組成物を得た。その後、実施例1と同様に評価した。
 比較例4
 製造例1で得たポリジメチルオルガノシロキサンの代わりに、製造例2で得られたポリジメチルオルガノシロキサンを用いた以外は実施例3と同様にシリコーンゴム組成物を得た。その後、実施例1と同様に評価した。
 比較例5
 製造例1で得たポリジメチルオルガノシロキサンの代わりに、製造例2で得られたポリジメチルオルガノシロキサンを用いた以外は実施例4と同様にシリコーンゴム組成物を得た。その後、実施例1と同様に評価した。
 比較例6
 製造例1で得たポリジメチルオルガノシロキサンの代わりに、製造例2で得られたポリジメチルオルガノシロキサンを用いた以外は実施例1と同様にシリコーンゴム組成物を得た。ただし、(B)成分の1-ブチル-3-メチルピリジニウム・ビス(トリフルオロメタンスルホニル)イミドは添加しなかった。
 その後、実施例1と同様に評価した。
 比較例7
 実施例1同様に、(A)成分のベースコンパウンド100部に対して、(B)成分の1-ブチル-3-メチルピリジニウム・ビス(トリフルオロメタンスルホニル)イミド240ppmを添加した。ただし、(B)成分と乾式シリカとは混合せずに、イオン液体を乾式シリカに担持させることなく、(A)成分のベースコンパウンドに単に(B)成分を添加して混合した。
 その後、実施例1と同様に環境試験用のゴムシートを得た。
 ここで、比較例7と実施例1で得たゴムシートを用いて環境試験を実施した。
 その結果、実施例1の耐電圧半減期は0.2秒(初期値0.1秒)であり大きな変化はなかったが、比較例2では3.6秒(初期値0.1秒)と変化が認められた。
製造例3
 製造例1のKOH(水酸化カリウム)に変えてScOH(水酸化セシウム)に変更した以外は、製造例1と同様にして無色透明の液体を得た。
実施例8
 製造例1で得たポリジメチルオルガノシロキサンの代わりに、製造例3で得られたポリジメチルオルガノシロキサンを用いた以外は実施例1と全く同様にシリコーンゴム組成物を得た。その後、実施例1と同様に評価した。
 得られたゴムシートの物性を以下の基準で評価した結果を表1に示す。
 〔外観〕
 肉眼で評価した。
 〔耐電圧半減期〕
 シシド静電気製スタチックオネストメーターH-0110を用いて、試験片に6KVのコロナ放電により帯電させた後、耐電圧が半減する時間(秒)を測定した。
 〔ゴム物性測定〕
 シート作成後、JIS K 6249に準じ、硬さを測定した。
 〔耐熱試験〕
 200℃,4時間の空気循環式オーブン中で加硫を行い、硬さ変化を観察した。+表示は硬さが増加したことを示し、例えば実施例の1は硬さが1増加したことを示す。つまり、大きな硬さの変化は認められない。
-表示は硬さが減少したことを示し、例えば比較例2の-15は硬さが15減少したことを示す。すなわち、大きく硬さが変化しており、本来有する硬さを維持できていない。
 〔圧縮永久ひずみ〕
 JIS K 6249に従い試験片を作製して、25%圧縮、180℃×22時間の条件で試験を行った。
 〔環境試験〕
 サンシャインウェザーメーターによる環境試験をJIS A 1439の試験条件にて実施した。試験装置は、スガ試験器機株式会社製サンシャインスーパーロングライフウェザーメーター(WEL-SUN型)を使用して、2000時間の暴露を実施した後、帯電圧半減期を測定した
Figure JPOXMLDOC01-appb-T000001
 本発明の熱硬化性シリコーンゴム組成物は、ポータブルミュージックプレイヤー、ポータブルゲーム、携帯電話、ゲーム機のコントローラーなどのカバーや、ウレタン樹脂等で複製品を製造するために使用されるシリコーンゴム型、布地へのシリコーンゴムコーティング等などの製造材料として使用することができる。

Claims (7)

  1.  (A)アルカリ金属水酸化物を重合触媒として用いて重合され、中和して得られたポリオルガノシロキサンと硬化剤を含む混合物100質量部と、
     (B)陰イオン成分と陽イオン成分を含むイオン性物質であって、陰イオン成分としてビス(トリフルオロメタンスルホニル)イミド陰イオンであるイオン性物質50~1000ppmを含有する、熱硬化性シリコーンゴム組成物。
  2.  (A)成分の重合で使用するアルカリ金属重合触媒が、水酸化セシウム、水酸化ルビジウム、水酸化カリウム、水酸化ナトリウムから選ばれるアルカリ金属水酸化物触媒である、請求項1記載の熱硬化性シリコーンゴム組成物。
  3.  (A)成分がさらに補強性シリカを含有している請求項1又は2記載の熱硬化性シリコーンゴム組成物。
  4.  (B)成分の陽イオンがイミダゾリウム系陽イオン、ピロリジニウム系陽イオン、ピリジニウム系陽イオン、アンモニウム系陽イオン、リチウム陽イオンである、請求項1~3のいずれか1項記載の熱硬化性付加反応型シリコーンゴム組成物。
  5.  (B)成分が、
     1-ブチル-1-メチルピロリジニウム・ビス(トリフルオロメタンスルホニル)イミド、1-メチル-1-プロピルピロリジニウム・ビス(トリフルオロメタンスルホニル)イミド
     3-メチルー1-プロピルピリジニウム・ビス(トリフルオロメタンスルホニル)イミド、
     N-ブチル-3-メチルピリジニウム・ビス(トリフルオロメタンスルホニル)イミド、
     1-メチルー1-プロピルピリジニウム・ビス(トリフルオロメタンスルホニル)イミド、
     ジアリルジメチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミド、
     メチルトリオクチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミド、
     1-ブチル-3-メチルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド、
     1,2-ジメチルー3-プロピルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド、
     1-エチルー3-メチルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド
     1-ビニルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド、
     1-アリルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド、
     1-アリル-3-メチルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド及び
     リチウム・ビス(トリフルオロメタンスルホニル)イミド
    より選ばれる請求項1~4のいずれか1項記載の熱硬化性シリコーンゴム組成物。
  6.  請求項1~5のいずれか1項記載の熱硬化性シリコーンゴム組成物の製造方法であって、(B)成分であるイオン性物質と補強シリカを含む充填剤を混合して、前記充填剤にイオン性物質を担持させた後、さらに(A)成分と混合する、熱硬化性シリコーンゴム組成物の製造方法。
  7.  請求項1~5のいずれか1項記載のシリコーンゴム組成物を硬化させて成る帯電防止性シリコーンゴム硬化物。
PCT/JP2013/079693 2012-11-05 2013-11-01 熱硬化性シリコーンゴム組成物 WO2014069621A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380057803.4A CN104781344B (zh) 2012-11-05 2013-11-01 热固性硅橡胶组合物
EP13851390.8A EP2915852B1 (en) 2012-11-05 2013-11-01 Heat curable silicone rubber composition
US14/438,103 US9487639B2 (en) 2012-11-05 2013-11-01 Heat curable silicone rubber composition
KR1020157008207A KR102151512B1 (ko) 2012-11-05 2013-11-01 열경화성 실리콘 고무 조성물
JP2013552031A JP5462425B1 (ja) 2012-11-05 2013-11-01 熱硬化性シリコーンゴム組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-243428 2012-11-05
JP2012243428 2012-11-05

Publications (1)

Publication Number Publication Date
WO2014069621A1 true WO2014069621A1 (ja) 2014-05-08

Family

ID=50627515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079693 WO2014069621A1 (ja) 2012-11-05 2013-11-01 熱硬化性シリコーンゴム組成物

Country Status (6)

Country Link
US (1) US9487639B2 (ja)
EP (1) EP2915852B1 (ja)
KR (1) KR102151512B1 (ja)
CN (1) CN104781344B (ja)
TW (1) TWI601788B (ja)
WO (1) WO2014069621A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7527770B2 (ja) 2018-11-29 2024-08-05 キヤノン株式会社 硬化性シリコーンゴム混合物、電子写真用部材、および電子写真画像形成装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624063B (zh) * 2018-05-28 2020-12-01 广东聚合科技有限公司 硫化硅橡胶及其制备方法
KR20210061342A (ko) 2018-09-13 2021-05-27 모멘티브 퍼포먼스 머티리얼즈 게엠베하 기능성 폴리실록산
CN114213660B (zh) * 2021-12-30 2022-07-22 杭州崇耀科技发展有限公司 有机硅油制备方法及催化剂

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215584B2 (ja) 1978-01-13 1987-04-08 Gen Electric
JP2005298661A (ja) 2004-04-12 2005-10-27 Shin Etsu Chem Co Ltd 室温硬化型導電性シリコーンゴム組成物
JP2005344102A (ja) 2004-05-07 2005-12-15 Shin Etsu Chem Co Ltd イオン導電性ゴム組成物およびそれを用いたイオン導電性ゴムロール
JP2006083211A (ja) 2004-09-14 2006-03-30 Shin Etsu Chem Co Ltd 防汚性縮合硬化型オルガノポリシロキサン組成物及び水中構造物
JP2006225422A (ja) 2005-02-15 2006-08-31 Shin Etsu Chem Co Ltd 絶縁性シリコーンゴム組成物
WO2009084730A1 (ja) 2007-12-27 2009-07-09 Momentive Performance Materials Japan Llc 熱硬化性シリコーンゴム組成物
WO2009084733A1 (ja) 2007-12-27 2009-07-09 Momentive Performance Materials Japan Llc 熱硬化性シリコーンゴムコンパウンド組成物
JP2009173922A (ja) * 2007-12-27 2009-08-06 Momentive Performance Materials Inc 導電性シリコーンゴム組成物
JP2011021105A (ja) * 2009-07-16 2011-02-03 Momentive Performance Materials Inc 非帯電性熱硬化性シリコーンゴム組成物
JP2011201951A (ja) 2010-03-24 2011-10-13 Shin-Etsu Chemical Co Ltd シリコーンゴム組成物及び帯電防止性シリコーンゴム硬化物の耐圧縮永久歪性を向上する方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623255B2 (ja) * 1988-10-05 1994-03-30 信越化学工業株式会社 パーフルオロアルキル基含有オルガノポリシロキサンの製造方法
JP4873167B2 (ja) * 2006-09-22 2012-02-08 信越化学工業株式会社 工業用大型延伸ロール形成用縮合反応硬化型シリコーンゴム組成物
US7781555B2 (en) * 2007-09-03 2010-08-24 Shin-Etsu Chemical Co., Ltd. Microcontact printing stamp
JP5533906B2 (ja) 2011-02-28 2014-06-25 信越化学工業株式会社 付加反応硬化型オルガノポリシルメチレンシロキサンコポリマー組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215584B2 (ja) 1978-01-13 1987-04-08 Gen Electric
JP2005298661A (ja) 2004-04-12 2005-10-27 Shin Etsu Chem Co Ltd 室温硬化型導電性シリコーンゴム組成物
JP2005344102A (ja) 2004-05-07 2005-12-15 Shin Etsu Chem Co Ltd イオン導電性ゴム組成物およびそれを用いたイオン導電性ゴムロール
JP2006083211A (ja) 2004-09-14 2006-03-30 Shin Etsu Chem Co Ltd 防汚性縮合硬化型オルガノポリシロキサン組成物及び水中構造物
JP2006225422A (ja) 2005-02-15 2006-08-31 Shin Etsu Chem Co Ltd 絶縁性シリコーンゴム組成物
WO2009084730A1 (ja) 2007-12-27 2009-07-09 Momentive Performance Materials Japan Llc 熱硬化性シリコーンゴム組成物
WO2009084733A1 (ja) 2007-12-27 2009-07-09 Momentive Performance Materials Japan Llc 熱硬化性シリコーンゴムコンパウンド組成物
JP2009173922A (ja) * 2007-12-27 2009-08-06 Momentive Performance Materials Inc 導電性シリコーンゴム組成物
JP2011021105A (ja) * 2009-07-16 2011-02-03 Momentive Performance Materials Inc 非帯電性熱硬化性シリコーンゴム組成物
JP2011201951A (ja) 2010-03-24 2011-10-13 Shin-Etsu Chemical Co Ltd シリコーンゴム組成物及び帯電防止性シリコーンゴム硬化物の耐圧縮永久歪性を向上する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2915852A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7527770B2 (ja) 2018-11-29 2024-08-05 キヤノン株式会社 硬化性シリコーンゴム混合物、電子写真用部材、および電子写真画像形成装置

Also Published As

Publication number Publication date
US20150291766A1 (en) 2015-10-15
EP2915852B1 (en) 2019-10-09
KR102151512B1 (ko) 2020-09-03
TW201430063A (zh) 2014-08-01
KR20150082185A (ko) 2015-07-15
CN104781344B (zh) 2016-10-26
TWI601788B (zh) 2017-10-11
CN104781344A (zh) 2015-07-15
EP2915852A4 (en) 2016-06-15
US9487639B2 (en) 2016-11-08
EP2915852A1 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5422394B2 (ja) 熱硬化性シリコーンゴム組成物
JP4437458B2 (ja) イオン導電性ゴム組成物およびそれを用いたイオン導電性ゴムロール
JP5174270B1 (ja) 熱硬化性シリコーンゴム組成物
JP5350925B2 (ja) 非帯電性熱硬化性シリコーンゴム組成物
WO2014069621A1 (ja) 熱硬化性シリコーンゴム組成物
JP2010155961A (ja) オルガノポリシロキサン及びその製造方法並びにフルオロシリコーンゴム組成物
JP2009173922A (ja) 導電性シリコーンゴム組成物
JP2014040522A (ja) シリコーンゴム硬化物の難燃性向上方法
JP5462425B1 (ja) 熱硬化性シリコーンゴム組成物
JP6274082B2 (ja) 付加硬化性シリコーンゴム組成物
TWI607059B (zh) Millable type polyoxime rubber composition and its cured product
TWI679245B (zh) 硬化性聚矽氧烷橡膠組成物及聚矽氧烷橡膠構件
JP6789091B2 (ja) 型取り用シリコーンゴム組成物
JP5555385B1 (ja) 熱硬化性付加反応型シリコーン樹脂組成物
JP5831399B2 (ja) ロール用付加硬化型ゴム組成物及びイオン導電性ゴムロール
JP2015209451A (ja) 液状付加硬化型シリコーンゴム組成物及びシリコーンゴムの金型(金属)離型性向上方法
JP2014214210A (ja) ロール用付加硬化型ゴム組成物及びイオン導電性ゴムロール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013552031

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157008207

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14438103

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013851390

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE