WO2014068867A1 - 蓄電池モジュール及び蓄電池システム - Google Patents

蓄電池モジュール及び蓄電池システム Download PDF

Info

Publication number
WO2014068867A1
WO2014068867A1 PCT/JP2013/006084 JP2013006084W WO2014068867A1 WO 2014068867 A1 WO2014068867 A1 WO 2014068867A1 JP 2013006084 W JP2013006084 W JP 2013006084W WO 2014068867 A1 WO2014068867 A1 WO 2014068867A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
nickel
metal hydride
series
battery module
Prior art date
Application number
PCT/JP2013/006084
Other languages
English (en)
French (fr)
Inventor
敏宏 坂谷
裕政 杉井
越智 誠
龍二 川瀬
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014544232A priority Critical patent/JP6200897B2/ja
Publication of WO2014068867A1 publication Critical patent/WO2014068867A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a storage battery module in which a plurality of nickel metal hydride storage batteries are connected in series, and a storage battery system in which the storage battery module and a lead storage battery are connected in parallel.
  • Lead-acid batteries have relatively stable performance even when short-time high-current discharge or shallow depth of discharge (DOD) discharge is performed, compared to nickel-metal hydride batteries and lithium-ion secondary batteries. Although it is inexpensive, it has the property of shortening its life unless it is fully charged.
  • lead-acid batteries are often used for idle-stop and energy regenerative batteries. In such applications, the alternator of the vehicle is stopped while the lead-acid battery is discharged to improve the fuel efficiency by reducing the engine load, and the brake energy of the vehicle is recovered as regenerative energy. Things are also done.
  • the lead storage battery when a lead storage battery is used in a vehicle having an idle stop function or a deceleration energy regeneration system that recovers energy during deceleration as electrical energy, the lead storage battery deteriorates early because frequent discharge is performed on the lead storage battery. . If the lead storage battery is replaced with a nickel metal hydride storage battery or a lithium ion secondary battery, such a problem can be solved, but the cost becomes very high.
  • a sub-battery connected in parallel with a lead-acid battery is selected from a plurality of nickel-metal hydride batteries connected in series or in series-parallel.
  • Nickel metal hydride storage batteries and storage battery modules in which a plurality of them are connected in series are used so that the space in the battery is placed vertically or horizontally so that the space portion faces upward. This is because when the space in the battery faces downward, the electrolyte accumulates in the space, and thus the amount of the electrolyte retained by the electrode group may decrease and the durability may decrease. .
  • the battery may not be placed vertically or horizontally so that the space in the battery faces upward.
  • the outer periphery is covered with an exterior body or case, so it cannot be clearly confirmed whether or not the space inside the battery faces upward from the outside. There are many things. Therefore, at least the storage battery module is required to have a durability that is not easily lowered regardless of the mounting direction.
  • the present invention it is possible to provide a storage battery module with good durability and a storage battery system in which this storage battery module and a lead storage battery are connected in parallel regardless of the mounting direction.
  • a storage battery module in which a plurality of nickel metal hydride storage batteries are connected in series with each other, In each of the adjacent nickel-metal hydride storage batteries, the positive electrode terminal and the negative electrode terminal are inverted and connected in series with each other,
  • Each of the plurality of nickel metal hydride storage batteries is An electrode group in which a positive electrode and a negative electrode are wound in a state of being insulated from each other via a separator, and a positive electrode current collector and a negative electrode current collector are provided at both ends in the axial direction;
  • the outer electrode body in which the electrode group and the alkaline electrolyte are housed and one end is opened, A sealing body attached in a state of being electrically insulated from the exterior body so as to seal the opening of the exterior body,
  • One of the positive electrode current collector and the negative electrode current collector is electrically connected to the sealing body, and the other is electrically connected to the exterior body,
  • the amount of the alkaline electrolyte is 2.4 g / Ah or more and
  • At least one selected from a tungsten compound, a molybdenum compound, and a niobium compound is contained in an amount of 20 mg or more and 50 mg or less per 1 g of the alkaline electrolyte in terms of each metal. Provided.
  • a storage battery system in which the nickel hydride storage battery module and the lead storage battery are connected in parallel.
  • a storage battery module with good durability can be obtained regardless of the mounting direction.
  • a storage battery system of another aspect of the present invention a storage battery system in which the deterioration of the lead storage battery is suppressed even when used as an in-vehicle storage battery system is obtained.
  • a nickel positive electrode is a nickel sintered substrate that has a nickel sintered substrate filled with a positive electrode active material containing nickel hydroxide as a main component and added with any compound selected from zinc hydroxide and cobalt hydroxide. Using. In this case, the nickel sintered substrate was prepared as follows.
  • Nickel (Ni) powder was mixed and kneaded with methyl cellulose (MC) as a thickener, for example, a polymer hollow microsphere having a pore size of 60 ⁇ m, and water to prepare a nickel slurry.
  • MC methyl cellulose
  • nickel slurry was applied on both sides of the punching metal made of nickel-plated steel plate, it was heated at 1000 ° C in a reducing atmosphere to eliminate the thickener and polymer hollow microspheres, and to sinter the nickel powder together By doing so, a porous nickel sintered substrate was obtained.
  • the obtained porous nickel substrate was measured with a mercury intrusion porosimeter (Pascal 140 manufactured by Faisons Instruments), the porosity was 85%.
  • the resulting porous nickel sintered substrate was impregnated with a mixed aqueous solution of nickel nitrate (Ni (NO 3 ) 2 ) and zinc nitrate (Zn (NO 3 ) 2 ) or cobalt nitrate (Co (NO 3 ) 2 ). Then, the substrate was immersed in an alkaline solution (for example, an aqueous sodium hydroxide solution) at 80 ° C. (8 mol / L) for alkali treatment. Thereby, nickel nitrate and zinc nitrate or cobalt nitrate were converted into nickel hydroxide (Ni (OH) 2 ), zinc hydroxide (Zn (OH) 2 ), or cobalt hydroxide (Co (OH) 2 ). . Thereafter, the substrate was sufficiently washed with water to remove the alkaline solution and then dried.
  • an alkaline solution for example, an aqueous sodium hydroxide solution
  • Such a series of positive electrode active material filling operations such as impregnation of the impregnating liquid into the porous nickel sintered substrate, drying, immersion in an alkali treatment liquid, washing with water, and drying, are repeated experimentally in advance. A predetermined amount of the positive electrode active material was filled into a porous nickel sintered substrate.
  • the hydrogen storage alloy negative electrode was prepared by filling a hydrogen storage alloy slurry in a negative electrode core made of nickel-plated mild steel punching metal as follows. For example, lanthanum (La), neodymium (Nd), magnesium (Mg), nickel (Ni), and aluminum (Al) are mixed at a ratio of the molar ratio of the following chemical formula, and this mixture is dissolved in a high frequency induction furnace. Was quenched to prepare an ingot of a hydrogen storage alloy represented by La 0.4 Nd 0.5 Mg 0.1 Ni 3.5 Al 0.2 . The obtained hydrogen storage alloy ingot was heat-treated, for example, for 10 hours at a temperature lower by 30 ° C. than the melting point of the hydrogen storage alloy.
  • La lanthanum
  • Nd neodymium
  • Mg magnesium
  • Ni nickel
  • Al aluminum
  • the obtained hydrogen storage alloy ingot was coarsely pulverized and then mechanically pulverized in an inert atmosphere, and the hydrogen storage alloy powder remaining between 400 mesh and 200 mesh was selected by sieving.
  • the average particle diameter of the obtained hydrogen storage alloy powder was determined from the measured value of the particle size distribution using a laser diffraction / scattering particle size distribution measuring device, the average particle diameter corresponding to a mass integral of 50% (D50) was 25 ⁇ m. . This was used as a hydrogen storage alloy powder.
  • the obtained hydrogen storage alloy powder With respect to 100 parts by mass of the obtained hydrogen storage alloy powder, 0.5 part by mass of SBR (styrene butadiene latex) as a water-insoluble polymer binder and 0.03 of CMC (carboxymethyl cellulose) as a thickener are used. A mass part and an appropriate amount of pure water were added and kneaded to prepare a hydrogen storage alloy slurry. And after apply
  • SBR styrene butadiene latex
  • CMC carboxymethyl cellulose
  • the alkaline electrolyte used is a mixed aqueous solution prepared by adding potassium hydroxide (KOH), sodium hydroxide (NaOH), and lithium hydroxide (LiOH) to a predetermined molar ratio to which an appropriate amount of sodium tungstate is added. did.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • LiOH lithium hydroxide
  • Tables 1 and 2 the tungsten compound was not added (storage battery module A), and the tungsten compound was converted to tungsten in an amount of 15 mg (storage battery module B), 20 mg (storage battery module C) to 50 mg per 1 g of alkaline electrolyte. What was added so that it might become storage battery module D and E) was used.
  • the amount of the alkaline electrolyte was 2.4 g / Ah (storage battery modules A to D) and 3.3 g / Ah (storage battery module E), respectively.
  • a separator made of a polyolefin non-woven fabric having a basis weight of 55 g / cm 2 was interposed between the nickel positive electrode and the hydrogen storage alloy negative electrode manufactured as described above, and wound to prepare a spiral electrode group. At this time, at least one surface of the separator has an ammonia adsorption ability by performing a sulfonation treatment or using an ammonia adsorption ability fiber.
  • the positive electrode current collector was welded to the end portion of the electrode plate core of the nickel positive electrode plate exposed at the upper end surface of the spiral electrode group.
  • the negative electrode current collector was welded to the end portion of the electrode core body of the hydrogen storage alloy electrode plate exposed at the lower end surface.
  • This spiral electrode body was inserted into an outer can, the negative electrode current collector and the bottom of the can were welded, and the electrolyte was poured into the outer can. Thereafter, the sealing body was welded to the current collecting lead, the sealing portion was crimped and sealed, and five types of cylindrical nickel-metal hydride batteries each having a battery capacity of 6.0 Ah were produced.
  • These nickel metal hydride storage batteries 10 include a wound electrode body 14 wound in a state where a nickel positive electrode 11 and a hydrogen storage alloy negative electrode 12 manufactured as described above are insulated from each other via a separator 13. Have.
  • the nickel positive electrode 11 is mainly composed of nickel hydroxide in a porous nickel sintered body 16 formed on both surfaces of a positive electrode core 15 made of a punching metal made of a nickel-plated steel plate, and is composed of zinc hydroxide and cobalt hydroxide.
  • the positive electrode active material 17 to which any one of the selected compounds is added is filled.
  • a negative electrode mixture layer 19 having hydrogen storage alloy powder as a negative electrode active material is formed on both surfaces of a negative electrode core 18 made of a nickel-plated mild steel punching metal.
  • a negative electrode current collector 20 is resistance-welded to the negative electrode core 18 at the lower part of the wound electrode body 14, and a positive electrode current collector 21 is resistance-welded to the positive electrode core 15 at the upper part of the wound electrode body 14. Yes.
  • the wound electrode body 14 is inserted into a bottomed cylindrical metal outer can 22 in which iron is nickel-plated, and the negative electrode current collector 20 and the bottom of the outer can 22 are spot-welded. ing.
  • a sealing body 23 in which iron is plated with nickel is caulked and fixed with a gasket 24 being electrically insulated from the outer can 22.
  • the positive electrode current collector 21 is welded and electrically connected to the sealing body 23.
  • An opening 25 is provided in the center of the positive electrode current collector 21, and a valve body 26 is disposed in the opening 25 so as to block the opening 25.
  • a positive electrode cap 27 is provided on the upper surface of the sealing body 23 so as to cover the periphery of the opening 25 and be separated from the valve body 26 by a certain distance.
  • the positive electrode cap 27 is appropriately provided with a gas vent hole (not shown).
  • a spring 28 is provided between the inner surface of the positive electrode cap 27 and the valve body 26, and the valve body 26 is pressed by the spring 28 so as to close the opening 25 of the sealing body 23.
  • the valve body 26 has a function as a safety valve for releasing the internal pressure when the internal pressure of the outer can 22 becomes high.
  • the battery was charged until the electrolyte density showed a constant value three times in succession, and the open circuit voltage after being allowed to stand at room temperature for 24 hours was measured and obtained as an initial voltage.
  • Each of the storage battery modules A to E is charged to 110% of the battery capacity with a constant current of 1 It, and then discharged until reaching a predetermined SOC determined experimentally at a constant current of 1 It.
  • the open circuit voltage after standing for a period of time was measured and determined as the initial voltage.
  • the predetermined SOC determined experimentally in advance is a relationship between the open circuit voltage after the storage battery module is left for 24 hours at room temperature and the SOC, and the open circuit after the storage battery module is left for 24 hours at room temperature. The SOC is shown when the voltage is approximately equal to the initial voltage of the lead acid battery.
  • FIG. 1 a general charge / discharge behavior when switching from constant current discharge to constant voltage charge is shown in FIG.
  • the charging current and the discharging current flow to both storage batteries both during charging and discharging.
  • the discharge current of the nickel-metal hydride storage battery is larger than that of the lead-acid battery during discharge, and the charge current of the lead-acid battery during charging is excessively larger than that of the nickel-metal hydride battery, but it decreases quickly and decreases It is smaller than that of a storage battery.
  • the nickel metal hydride storage battery which is a sub-battery, preferentially charges and discharges during charge / discharge, so the lead storage battery, which is the main battery, discharges. It can be seen that the load is reduced and the state close to full charge is maintained, and the life of the storage battery system can be extended.
  • each nickel metal hydride storage battery is set up vertically so as to face in the vertical direction, and is 60 ° C. at 14V in a constant temperature bath at 60 ° C.
  • the endurance test was repeated by repeating charging for seconds, discharging for 59 seconds at 45 A, and discharging for 1 second at 300 A for 3600 times, and then leaving it for 2 days.
  • At least one selected from a tungsten compound, a molybdenum compound, and a niobium compound is contained in the electrolytic solution in an amount of 20 mg or more and 50 mg or less in terms of tungsten, molybdenum, or niobium per gram of the electrolytic solution. It turns out that is preferable.
  • nickel metal hydride storage battery using a hydrogen storage alloy represented by La 0.4 Nd 0.5 Mg 0.1 Ni 3.5 Al 0.2 was used as the negative electrode active material.
  • nickel-metal hydride storage batteries using hydrogen storage alloys of other compositions can also be used.
  • at least one element general formula as an anode active material is La x Re y Mg 1-x -y Ni n-a M a (Re is selected from rare earth elements excluding La: Nd, Sm, Y or the like
  • a nickel-metal hydride storage battery using a hydrogen storage alloy represented by (M is at least one element selected from Al and Zn) can be used.
  • nV the nominal voltage of the lead storage battery to be used
  • a storage battery module in which 5n nickel hydride storage batteries are connected in series to the lead storage battery may be connected in parallel.
  • the adjacent nickel metal hydride storage batteries may be in a state in which the positive electrode terminal and the negative electrode terminal are inverted in the vertical direction and connected in series. That is, if the nominal voltage of the lead acid battery is 12V, the nickel metal hydride battery is (1) Invert each other and connect in series. (2) Two pieces connected in series are flipped upside down and connected in series. (3) 5 pieces connected in series are turned upside down and connected in series. Etc. may be adopted.
  • the conventional in-vehicle power supply system unit 51 includes a configuration in which an alternator 52, a starter 53, and a lead storage battery 54 are connected in parallel to each other via a switch 55 as appropriate.
  • the starter 53 operates as a motor for driving an engine (not shown) when the switch 55 at the time of initial start or start from the idle stop state is turned on. Electric power is supplied by discharging the lead storage battery 54.
  • the alternator 52 operates as a generator for operating the engine or functioning as an engine brake, and the regenerative energy at this time is charged in the lead storage battery 54.
  • a storage battery system 50 is configured by connecting in parallel a storage battery module 56A in which a plurality of nickel-metal hydride storage batteries 56 are connected in series as a sub-battery to the lead storage battery 54 in the in-vehicle power supply system 51 described above.
  • a new in-vehicle power supply system 50A is configured by the alternator 52, the starter 53, and the storage battery system 50 formed by the lead storage battery 54 and the storage battery module 56A.
  • the storage battery module 56A is appropriately connected with a control circuit 57, a temperature measuring means 58 such as a thermistor for measuring the temperature of the nickel metal hydride storage battery 56, a shunt resistor 59 for measuring the current flowing through the storage battery module 56A, and the like. Sometimes it is done.
  • FIG. 4 shows an example in which one nickel hydride storage battery 56 in series is used as a storage battery module 56A as a sub-battery. However, when a larger capacity sub-battery is required, the storage battery module A plurality of 56A may be connected in parallel.
  • the discharge from the storage battery module 56A as a sub-battery is performed at the time of initial start-up, start-up from an idle stop state, steady running, or the like.
  • the current is greater than that of the lead acid battery 54.
  • the charging current of the lead storage battery 54 becomes excessively larger than that from the storage battery module 56A, but immediately decreases and becomes smaller than that of the storage battery module 56A.
  • the storage battery module 56A that is a sub-battery preferentially charges and discharges during charging and discharging. Therefore, the lead storage battery 54 as the main battery has a reduced discharge load, and the life of the storage battery system 50 can be extended.
  • SYMBOLS 10 Nickel-metal hydride storage battery 11 ... Nickel positive electrode 12 ... Hydrogen storage alloy negative electrode 13 ... Separator 14 ... Winding electrode body 15 ... Positive electrode core body 16 ... Porous nickel sintered body 17 ... Positive electrode active material 18 ... Negative electrode core body 19 ... Negative electrode Mixture layer 20 ... Negative electrode current collector 21 ... Positive electrode current collector 22 ... Exterior can 23 ... Sealing body 24 ... Gasket 25 ... Opening 26 ... Valve body 27 ... Positive electrode cap 28 ... Spring 50 ... Storage battery system 50A ... In-vehicle power supply system DESCRIPTION OF SYMBOLS 51 ... Conventional vehicle-mounted power supply system part 52 ... Alternator 53 ... Starter 54 ... Lead storage battery 55 ... Switch 56 ... Nickel metal hydride storage battery 56A ... Storage battery module 57 ... Control circuit 58 ... Temperature measurement means 59 ... Shunt resistance

Abstract

 複数個のニッケル水素蓄電池を直列接続した蓄電池モジュール及びこの蓄電池モジュールと鉛蓄電池と並列接続した蓄電池システムを提供する。 本発明の蓄電池モジュールは、隣接するそれぞれのニッケル水素蓄電池は、正極端子と負極端子とが互いに上下反転して直列に接続されており、複数個のニッケル水素蓄電池のそれぞれは、正極と負極とがセパレータを介して互いに絶縁された状態で巻回され、軸方向の両端にそれぞれ正極集電体及び負極集電体が設けられた電極群と、アルカリ電解液とを有し、アルカリ電解液の量は、単位正極容量当たり、2.4g/Ah以上、3.3g/Ah以下であり、アルカリ電解液中には、タングステン化合物、モリブデン化合物、ニオブ化合物から選択された少なくとも1種が前記アルカリ電解液1g当たり、20mg以上、50mg以下で含有されている。

Description

蓄電池モジュール及び蓄電池システム
 本発明は、複数個のニッケル水素蓄電池を直列接続した蓄電池モジュール及びこの蓄電池モジュールと鉛蓄電池と並列接続した蓄電池システムに関する。
 鉛蓄電池は、短時間の大電流放電や放電深度(DOD:Depth of discharge)の浅い放電を行っても比較的安定した性能を有しており、ニッケル水素蓄電池やリチウムイオン二次電池に比べて安価であるが、満充電状態を維持しないと寿命が短くなるという性質を有している。現在、アイドルストップ用やエネルギー回生用の蓄電池には鉛蓄電池が多く用いられている。このような用途では、鉛蓄電池が放電している間に車両のオルタネータを停止して、エンジン負荷を低減することで燃費性能を向上しており、また、車両のブレーキエネルギーを回生エネルギーとして回収することも行われている。
 しかしながら、鉛蓄電池をアイドルストップ機能や減速時のエネルギーを電気エネルギーとして回収する減速エネルギー回生システムを有する車両に使用すると、鉛蓄電池に対して頻繁な放電が行われるため、鉛蓄電池が早期に劣化する。鉛蓄電池をニッケル水素蓄電池やリチウムイオン二次電池に換えると、このような問題点を解決し得るが、非常にコストアップとなる。
 そのため、鉛蓄電池に対してニッケル水素蓄電池やリチウムイオン二次電池からなるサブバッテリを並列接続した蓄電池システムが検討されている(下記特許文献1参照)。
特開2007-046508号公報
 車載用の鉛蓄電池は、公称電圧6V(3直列)、12V(6直列)及び24V(12直列)の製品が広く用いられている。それに対し、ニッケル水素蓄電池については鉛蓄電池と同様の公称電圧の製品は少ない。個々のニッケル水素蓄電池は、公称電圧が1.2Vであるため、5直列で6V、10直列で12V及び20直列で24Vとなり、容易に鉛蓄電池と同じ公称電圧とし得る。これに対し、リチウムイオン二次電池は使用されている正極活物質や負極活物質の種類によって公称電圧が種々異なっているので、個々のリチウムイオン二次電池を直列接続するのみで車載用として普通に使用されている鉛蓄電池の公称電圧に合わせることは容易ではない。そのため、通常、鉛蓄電池と並列接続するサブバッテリとしては、複数個のニッケル水素蓄電池を直列接続ないし直並列接続したものが選択されている。
 ニッケル水素蓄電池及びそれを複数個直列接続した蓄電池モジュールは、電池内の空間部が上側を向くように縦置きもしくは横置きとなるようにして使用される。これは、電池内の空間部が下側を向くと、電解液が空間部に溜まるため、電極群が保持する電解液量が減少して耐久性が低下してしまうことがあるあるからである。しかしながら、用途によっては必ずしも電池内の空間部が上側を向くように縦置きあるいは横置きに載置できない場合がある。また、特にニッケル水素蓄電池を複数個直列接続した蓄電池モジュールでは、外周囲が外装体ないしケースによって覆われているため、外部から電池内の空間部が上側を向いているか否かを明確に確認できないことも多い。そのため、少なくとも蓄電池モジュールでは、載置方向によらず耐久性が低下し難いものが要求されている。
 本発明の一態様によれば、載置方向によらず、耐久性が良好な蓄電池モジュール及びこの蓄電池モジュールと鉛蓄電池とを並列接続した蓄電池システムを提供することができる。
 本発明の一態様によれば、複数個のニッケル水素蓄電池が互いに直列接続された蓄電池モジュールであって、
 隣接するそれぞれの前記ニッケル水素蓄電池は、正極端子と負極端子とが互いに上下反転して直列に接続されており、
 前記複数個のニッケル水素蓄電池のそれぞれは、
 正極と負極とがセパレータを介して互いに絶縁された状態で巻回され、軸方向の両端にそれぞれ正極集電体及び負極集電体が設けられた電極群と、
 前記電極群及びアルカリ電解液が収納され、一端が開口された外装体と、
 前記外装体の開口を封止するように、前記外装体とは電気的に絶縁された状態で取り付けられた封口体と、を備え、
 前記正極集電体及び前記負極集電体は、一方が前記封口体に電気的に接続され、他方が前記外装体に電気的に接続されており、
 前記アルカリ電解液の量は、単位正極容量当たり、2.4g/Ah以上、3.3g/Ah以下であり、
 前記アルカリ電解液中には、タングステン化合物、モリブデン化合物、ニオブ化合物から選択された少なくとも1種がそれぞれの金属換算で前記アルカリ電解液1g当たり、20mg以上、50mg以下で含有されている、蓄電池モジュールが提供される。
 また、本発明の別態様によれば、上記ニッケル水素蓄電池モジュールと、鉛蓄電池とが並列に接続されている、蓄電池システムが提供される。
 本発明の一態様の蓄電池モジュールによれば、載置方向の如何にかかわらず、耐久性が良好な蓄電池モジュールが得られる。加えて、本発明の別態様の蓄電池システムによれば、車載用の蓄電池システムとして使用しても鉛蓄電池の劣化が抑制された蓄電池システムが得られる。
各種実験例で使用したニッケル水素蓄電池の縦断面図である。 各種実験例で用いた10直列の蓄電池モジュールの接続状態を示す図である。 鉛蓄電池とニッケル水素蓄電池とが並列に接続された蓄電池システムの充放電挙動を示す図である。 車載用の電源システムの概略回路図である。
 以下、本発明を実施するための形態について詳細に説明する。ただし、以下に示す実施形態は、本発明の技術思想を理解するために例示するものであって、本発明をこの実施形態に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。
<ニッケル水素蓄電池>
 ニッケル正極は、基板となるニッケル焼結基板の多孔内に水酸化ニッケルを主成分とし、水酸化亜鉛、水酸化コバルトから選択したいずれかの化合物が添加された正極活物質が充填されたものを用いた。この場合、ニッケル焼結基板は以下のようにして作製したものを用いた。
 ニッケル(Ni)粉末に、増粘剤となるメチルセルロース(MC)と、たとえば孔径が60μm高分子中空微小球体と、水とを混合、混練してニッケルスラリーを作製した。次いで、ニッケルめっき鋼板からなるパンチングメタルの両面にニッケルスラリーを塗着した後、還元性雰囲気中1000℃で加熱し、増粘剤及び高分子中空微小球体を消失させるとともに、ニッケル粉末同士を焼結することにより、多孔質ニッケル焼結基板を得た。なお、得られた多孔性ニッケル基板を水銀圧入式ポロシメータ(ファイソンズ インスツルメンツ製 Pascal 140)で測定したところ、多孔度が85%であった。
 得られた多孔質ニッケル焼結基板を硝酸ニッケル(Ni(NO)と硝酸亜鉛(Zn(NO)ないし硝酸コバルト(Co(NO)との混合水溶液からなる含浸液に浸漬した後に、80℃(8mol/L)のアルカリ溶液(例えば水酸化ナトリウム水溶液)中に浸漬してアルカリ処理を行った。これにより、硝酸ニッケルと、硝酸亜鉛ないし硝酸コバルトとを水酸化ニッケル(Ni(OH))、水酸化亜鉛(Zn(OH))ないし水酸化コバルト(Co(OH))に転換させた。この後、充分に水洗してアルカリ溶液を除去した後、乾燥させた。
 このような、多孔質ニッケル焼結基板への含浸液の含浸、乾燥、アルカリ処理液への浸漬、水洗、および乾燥という一連の正極活物質の充填操作を7回繰り返すことにより、予め実験的に定めた量の正極活物質を多孔質ニッケル焼結基板に充填した。
 水素吸蔵合金負極は、以下のようにして、ニッケルメッキした軟鋼材製のパンチングメタルからなる負極芯体に水素吸蔵合金スラリーを充填することにより作製したものを用いた。たとえば、ランタン(La)、ネオジム(Nd)、マグネシウム(Mg)、ニッケル(Ni)、アルミニウム(Al)を下記化学式のモル比となる割合で混合し、この混合物を高周波誘導炉で溶解させ、これを急冷して、La0.4Nd0.5Mg0.1Ni3.5Al0.2で表される水素吸蔵合金のインゴットを作製した。得られた水素吸蔵合金のインゴットを、水素吸蔵合金の融点よりも30℃だけ低い温度で、たとえば10時間の熱処理を行った。
 この後、得られた水素吸蔵合金のインゴットを粗粉砕した後、不活性雰囲気中で機械的に粉砕し、篩分けにより400メッシュ~200メッシュの間に残る水素吸蔵合金粉末を選別した。なお、得られた水素吸蔵合金粉末の平均粒径は、レーザ回折・散乱式粒度分布測定装置により粒度分布の測定値より求めると、質量積分50%(D50)にあたる平均粒径は25μmであった。これを水素吸蔵合金粉末とした。
 得られた水素吸蔵合金粉末100質量部に対し、非水溶性高分子結着剤としてのSBR(スチレンブタジエンラテックス)を0.5質量部と、増粘剤としてCMC(カルボキシメチルセルロース)を0.03質量部と、適量の純水を加えて混練して、水素吸蔵合金スラリーを調製した。そして、得られた水素吸蔵合金スラリーをパンチングメタル(ニッケルメッキ鋼板製)からなる負極芯体の両面に塗着した後、100℃で乾燥させ、所定の充填密度になるように圧延した後、所定の寸法に裁断して、水素吸蔵合金負極を作製した。
 アルカリ電解液は、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化リチウム(LiOH)を所定のモル比となるよう調整した混合水溶液に適宜量のタングステン酸ナトリウムを添加したものを使用した。この場合、表1及び2に示したように、タングステン化合物無添加(蓄電池モジュールA)、タングステン化合物をタングステン換算でアルカリ電解液1gあたり15mg(蓄電池モジュールB)、20mg(蓄電池モジュールC)ないし50mg(蓄電池モジュールD及びE)となるように添加したものを用いた。また、アルカリ電解液量は、それぞれ2.4g/Ah(蓄電池モジュールA~D)及び3.3g/Ah(蓄電池モジュールE)となるようにした。
 上記のようにして作製されたニッケル正極と水素吸蔵合金負極との間に、目付が55g/cmのポリオレフィン製不織布からなるセパレータを介在させ、巻回して渦巻状電極群を作製した。このとき、前記セパレータの少なくとも一方の面は、スルホン化処理を行うか又はアンモニア吸着能繊維とすることにより、アンモニア吸着能を有している。
 この渦巻状電極群の上端面に露出した、ニッケル正極板の極板芯体端部に正極集電体を溶接した。一方、下端面に露出した水素吸蔵合金極板の極板芯体端部に、負極集電体を溶接した。この渦巻状電極体を外装缶に挿入し、負極集電体と缶底とを溶接し、上記電解液を前記外装缶に注液した。この後、集電リードに封口体を溶接し、封口部をカシメて封口し、それぞれ電池容量が6.0Ahの5種類の円筒状ニッケル水素蓄電池を作製した。
 上述のようにして作製された5種類の円筒状ニッケル水素蓄電池に共通する具体的構成を図1を用いて説明する。これらのニッケル水素蓄電池10は、上述のようにして作製されたニッケル正極11と、水素吸蔵合金負極12とがセパレータ13とを介して互いに絶縁された状態で巻き回された巻回電極体14を有している。
 ニッケル正極11は、ニッケルめっき鋼板からなるパンチングメタルからなる正極芯体15の両面に形成された多孔質ニッケル焼結体16内に、水酸化ニッケルを主成分とし、水酸化亜鉛、水酸化コバルトから選択したいずれかの化合物が添加された正極活物質17が充填された構成を有している。水素吸蔵合金負極12は、ニッケルメッキした軟鋼材製のパンチングメタルからなる負極芯体18の両面に負極活物質としての水素吸蔵合金粉末を有する負極合剤層19が形成されている。
 巻回電極体14の下部には負極芯体18に負極集電体20が抵抗溶接されており、巻回電極体14の上部には正極芯体15に正極集電体21が抵抗溶接されている。巻回電極体14は、鉄にニッケルメッキを施した有底円筒形の金属製の外装缶22内に挿入されており、負極集電体20と外装缶22の底部との間はスポット溶接されている。
 外装缶22の開放端側には、鉄にニッケルメッキを施した封口体23が、ガスケット24を介して外装缶22とは電気的に絶縁された状態で、カシメ固定されている。正極集電体21は、封口体23に溶接されて電気的に接続されている。正極集電体21の中央部には開口25が設けられており、この開口25には弁体26が開口25を塞ぐように配置されている。
 また、封口体23の上面には、開口25の周囲を覆い、かつ、弁体26とは一定距離だけ隔てた状態となるように、正極キャップ27が設けられている。正極キャップ27には、適宜ガス抜き孔(図示省略)が設けられている。正極キャップ27の内面と弁体26との間にはバネ28が設けられており、弁体26はバネ28によって封口体23の開口25を塞ぐように押圧されている。この弁体26は外装缶22の内部の圧力が高くなった際に、内部の圧力を逃がす安全弁としての機能を有している。
 上述のようにして作製された5種類の円筒状ニッケル水素蓄電池を、それぞれ25℃に維持された恒温槽中で、1It(=6A)の充電電流でSOC(State Of Charge:充電状態)120%まで充電し、1時間休止した。次いで、60℃に維持された恒温槽中で24時間放置した後、30℃に維持された恒温槽中で、1Itの放電電流で電池電圧が0.9Vになるまで放電させた。この充放電サイクルを1サイクルとして2サイクル繰り返して、電池を活性化した。次いで、活性化された5種類の円筒状ニッケル水素蓄電池を図2に示したように、それぞれ10個直列に接続し、下記表1に示す5種類の蓄電池モジュールA~Eを作製した。この際、10個のニッケル水素蓄電池は、図2に示したように、2個ずつ直列にしたものを相互に上向き及び下向きとなるように配置し、隣り合うニッケル水素蓄電池が互いに上下反転して配置されている状態とした。
Figure JPOXMLDOC01-appb-T000001
 
<蓄電池システム>
 上記の鉛蓄電池と上記表1に示した5種類の各蓄電池モジュールA~Eを用い、それぞれ以下の処理を行ってから並列接続した。
 鉛蓄電池は、電池工業会規格(SBA S 0101)で定める充電条件、すなわち、0.2It(=9.6A)の充電電流で、15分ごとに測定した充電中の端子電圧、または温度換算した電解液密度が3回連続して一定値を示すまで充電し、室温において24時間放置後の開回路電圧を測定し、初期電圧として求めた。
 蓄電池モジュールA~Eは、それぞれ1Itの定電流で電池容量の110%まで充電した後、1Itでの定電流で予め実験的に定めた所定のSOCとなるまで放電し、その状態で室温において24時間放置後の開回路電圧を測定し、初期電圧として求めた。予め実験的に定めた所定のSOCとは、予め蓄電池モジュールを室温で24時間放置した後の開回路電圧とSOCとの関係を求めておき、蓄電池モジュールを室温において24時間放置した後の開回路電圧が鉛蓄電池の初期電圧とほぼ等しくなるときのSOCを示す。
<鉛蓄電池>
 各実験例及び比較例で使用する鉛蓄電池としては、電池工業会規格(SBA S 0101)で定める試験条件で、以下の性能を満たす鉛蓄電池を用いた。この鉛蓄電池の定格電圧は12Vである。
 5時間率容量        :48Ah
 定格コールドクランキング電流:320A
 充電受入性         :6.0A
 前記方法により所定開始電圧に調整した鉛蓄電池と蓄電池モジュールA~Eのそれぞれを、それぞれの開回路電圧の差が0.1V以内であることを確認してから、並列に接続し、実験例1~5の蓄電池システムを作製した。
 このような鉛蓄電池とニッケル水素蓄電池とが並列に接続された蓄電池システムにおいて、定電流放電から定電圧充電に切り替えた際の一般的な充放電挙動を図3に示した。図3の記載から以下のことが分かる。すなわち、充電時及び放電時とも、充電電流及び放電電流は両方の蓄電池に流れる。しかし、放電時にはニッケル水素蓄電池の放電電流が鉛蓄電池のものよりも大きく、充電時の鉛蓄電池の充電電流は、過度的にニッケル水素蓄電池のものよりも大きくなるが、すぐに低下してニッケル水素蓄電池のものよりも小さくなる。
 このことから、鉛蓄電池とニッケル水素蓄電池とが並列に接続された蓄電池システムでは、充放電に際してはサブバッテリであるニッケル水素蓄電池が優先的に充放電を行うため、メインバッテリである鉛蓄電池は放電負荷が低減されて満充電に近い状態が維持され、蓄電池システムの長寿命化が可能となることが分かる。
<耐久試験>
 鉛蓄電池単独(参考例)及び実験例1~5のそれぞれの蓄電池システムについて、それぞれのニッケル水素蓄電池が上下方向に向くように垂直に立てた状態とし、60℃の恒温槽内で、14Vで60秒の充電と、45Aで59秒の放電と、300Aで1秒の放電とを3600回繰り返した後に、2日間放置する耐久試験を繰り返し行った。
 上記のようにして300Aで1秒放電した後の蓄電池システムの電圧が7.2Vを下回ったときの充放電の繰り返し回数を耐久性の指標として測定し、結果を、実験例2の繰り返し回数に対する比率Xとして求めた。結果をまとめて表2に示した。
Figure JPOXMLDOC01-appb-T000002
 
 上記結果によれば、蓄電池モジュールAと蓄電池モジュールBを鉛蓄電池に並列接続した実験例1及び2の場合、鉛蓄電池単独の場合よりも耐久性が向上するが、その効果は十分でなかった。耐久試験後の蓄電池モジュールA及びBを分解し、各電池の内部の抵抗値を確認したところ、正極端子が下側になるよう配置された電池の劣化が顕著であることが確認された。これは、電池内の空間部が下側を向くと、電解液が空間部に溜まるため、電極群が保持する電解液量が減少して、耐久性が低下してしまうからである。
 また、蓄電池モジュールCと蓄電池モジュールDを鉛蓄電池に並列接続した実験例3及び4の場合、十分な耐久性を示すことが確認された。これは電解液中に充分量のタングステン化合物を添加することで、電極群の液保持性が向上したためと考えられる。特に実験例2~4の結果を対比すれば、電解液にタングステン化合物を添加すると、その添加量の増大に比例して耐久性の改善効果が向上していることが確認された。これは電解液中に充分量のタングステン化合物を添加することで、電極群の液保持性が向上したためと考えられる。ただし、タングステン化合物を50mgよりも多く添加すると、液抵抗の増大により電池の出力特性が低下することから、添加量は、電解液1g当たり20mg以上、50mg以下が好ましい。
 実験例4及び5の結果を対比すると、電池内に注液される電解液量が多いほど、耐久性が改善されることがわかる。ただし、電解液量が3.3g/Ahより多いと、充電時の電池内圧上昇が大きくなり、場合によっては漏液するといった課題が発生するため、電解液量は2.4g/Ah以上、3.3g/Ah以下が好ましい。
 なお、蓄電池モジュールB~Eでは、電解液中にタングステン源としてタングステン酸ナトリウムを添加した例を示したが、タングステン酸カリウム、タングステン酸リチウム等のタングステンの水溶性酸素酸塩や、タングステンの酸化物も同様に使用し得る。タングステン以外に、ニオブ化合物ないしモリブデン化合物を添加した場合においても同様の効果が奏される。この場合、ニオブの水溶性酸素酸塩や酸化物、モリブデンの水溶性酸素酸塩や酸化物として添加すればよい。これらのことから、電解液中に、タングステン化合物、モリブデン化合物、ニオブ化合物から選択された少なくとも1種が、電解液1g当たり、タングステン、モリブデンないしニオブ換算で20mg以上、50mg以下で含有されていることが好ましいことが分かる。
 また、上記実験例では負極活物質としてLa0.4Nd0.5Mg0.1Ni3.5Al0.2で表される水素吸蔵合金を用いたニッケル水素蓄電池を用いた例を示したが、他の組成の水素吸蔵合金を用いたニッケル水素蓄電池も使用し得る。例えば、負極活物質として一般式がLaReMg1-x-yNin-aa(ReはLaを除く希土類元素から選択される少なくとも1種の元素:Nd、Sm、Y等、MはAl、Znから選択される少なくとも1種の元素)で表される水素吸蔵合金を用いたニッケル水素蓄電池を用いることができる。
 上記実験例では鉛蓄電池として公称電圧12Vのものを用いたため、蓄電池モジュールA~Eとしては、ニッケル水素蓄電池を10直列したものを用いた例を示した。ただし、鉛蓄電池は車載用として公称電圧6V(3直列)、12V(6直列)及び24V(12直列)の製品が広く用いられており、個々のニッケル水素蓄電池は公称電圧が1.2Vであるため、ニッケル水素蓄電池が5直列で6V、10直列で12V及び20直列で24Vとなり、容易に鉛蓄電池と同じ公称電圧とし得る。すなわち、用いる鉛蓄電池の公称電圧が6×nV(ただし、nは正の整数)であるとき、この鉛蓄電池に対して5n個のニッケル水素蓄電池を直列接続した蓄電池モジュールを並列に接続すればよい。
 この場合においても、隣接するそれぞれのニッケル水素蓄電池は、正極端子と負極端子とが互いに上下反転して直列に接続されている状態とすればよい。すなわち、鉛蓄電池の公称電圧が12Vのものであれば、ニッケル水素蓄電池を、
(1)1個ずつ互いに上下反転して直列接続する、
(2)2個直列接続したもの同士を互いに上下反転して直列接続する、
(3)5個直列接続したもの同士を互いに上下反転して直列接続する、
等の構成を採用し得る。
 なお、図4に示したように、従来の車載用電源システム部51は、オルタネーター52と、スターター53と、鉛蓄電池54とが、適宜スイッチ55を介して、互いに並列に接続された構成を備えている。スターター53は、最初の始動時ないしアイドルストップ状態からの始動時のスイッチ55がON状態とされた際に、エンジン(図示省略)を駆動させるためのモーターとして作動するものであり、この時の駆動電力は鉛蓄電池54の放電によって供給される。オルタネーター52は、エンジンの駆動時ないしエンジンブレーキとして機能させるための発電機として作動するものであり、この時の回生エネルギーは鉛蓄電池54に充電される。
 本発明の一態様に係る蓄電池システム50は、上述した車載用電源システム部51における鉛蓄電池54に対して、サブバッテリとしてニッケル水素蓄電池56を複数個直列接続した蓄電池モジュール56Aを並列に接続したものに対応する。すなわち、オルタネーター52と、スターター53と、鉛蓄電池54及び蓄電池モジュール56Aによって形成される蓄電池システム50とによって、新たな車載用電源システム50Aが構成される。この場合、蓄電池モジュール56Aには、適宜制御回路57、ニッケル水素蓄電池56の温度を測定するためのサーミスタなどの温度測定手段58、蓄電池モジュール56Aに流れる電流を測定するためのシャント抵抗59等が接続される場合もある。
 なお、図4には、サブバッテリとしての蓄電池モジュール56Aとしてニッケル水素蓄電池56を10直列したものを1個用いた例を示したが、より大容量のサブバッテリが必要な場合には、蓄電池モジュール56Aを複数個並列に接続すればよい。
 このような蓄電池システム50を用いた車載用電源システム50Aによれば、最初の始動時ないしアイドルストップ状態からの始動時、定常走行時などの場合には、サブバッテリとしての蓄電池モジュール56Aからの放電電流が鉛蓄電池54のものよりも大きくなる。また、回生エネルギーによる充電時には、鉛蓄電池54の充電電流は、過度的に蓄電池モジュール56Aからのものよりも大きくなるが、すぐに低下して蓄電池モジュール56Aのものよりも小さくなる。これにより、鉛蓄電池54と複数個のニッケル水素蓄電池56からなる蓄電池モジュール56Aとが並列に接続された蓄電池システム50では、充放電に際してはサブバッテリである蓄電池モジュール56Aが優先的に充放電を行うため、メインバッテリである鉛蓄電池54は放電負荷が低減され、蓄電池システム50の長寿命化が可能となる。
 10…ニッケル水素蓄電池
 11…ニッケル正極
 12…水素吸蔵合金負極
 13…セパレータ
 14…巻回電極体
 15…正極芯体
 16…多孔質ニッケル焼結体
 17…正極活物質
 18…負極芯体
 19…負極合剤層
 20…負極集電体
 21…正極集電体
 22…外装缶
 23…封口体
 24…ガスケット
 25…開口
 26…弁体
 27…正極キャップ
 28…バネ
 50…蓄電池システム
 50A…車載用電源システム
 51…従来の車載用電源システム部
 52…オルタネーター
 53…スターター
 54…鉛蓄電池
 55…スイッチ
 56…ニッケル水素蓄電池
 56A…蓄電池モジュール
 57…制御回路
 58…温度測定手段
 59…シャント抵抗

Claims (5)

  1.  複数個のニッケル水素蓄電池が互いに直列接続された蓄電池モジュールであって、
     隣接するそれぞれの前記ニッケル水素蓄電池は、正極端子と負極端子とが互いに上下反転して直列に接続されており、
     前記複数個のニッケル水素蓄電池のそれぞれは、
     正極と負極とがセパレータを介して互いに絶縁された状態で巻回され、軸方向の両端にそれぞれ正極集電体及び負極集電体が設けられた電極群と、
     前記電極群及びアルカリ電解液が収納され、一端が開口された外装体と、
     前記外装体の開口を封止するように、前記外装体とは電気的に絶縁された状態で取り付けられた封口体と、を備え、
     前記正極集電体又は前記負極集電体は前記封口体に電気的に接続され、
     前記アルカリ電解液の量は、単位正極容量当たり、2.4g/Ah以上、3.3g/Ah以下であり、
     前記アルカリ電解液中には、タングステン化合物、モリブデン化合物、ニオブ化合物から選択された少なくとも1種が前記アルカリ電解液1g当たり、20mg以上、50mg以下で含有されている、蓄電池モジュール。
  2.  前記複数個のニッケル水素蓄電池は、1個ずつ前記正極端子と前記負極端子とが互いに上下反転して直列に接続されている、請求項1に記載の蓄電池モジュール。
  3.  前記複数個のニッケル水素蓄電池は、複数個が直列に接続されたもの同士が互いに上下反転して直列に接続されている、請求項1に記載の蓄電池モジュール。
  4.  請求項1~3のいずれかに記載のニッケル水素蓄電池モジュールと、鉛蓄電池とが並列に接続されている、蓄電池システム。
  5.  前記蓄電池システムは、車両のエンジンルームに設置されている、請求項4に記載の蓄電池システム。
PCT/JP2013/006084 2012-10-30 2013-10-11 蓄電池モジュール及び蓄電池システム WO2014068867A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014544232A JP6200897B2 (ja) 2012-10-30 2013-10-11 蓄電池モジュール及び蓄電池システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-239410 2012-10-30
JP2012239410 2012-10-30

Publications (1)

Publication Number Publication Date
WO2014068867A1 true WO2014068867A1 (ja) 2014-05-08

Family

ID=50626820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006084 WO2014068867A1 (ja) 2012-10-30 2013-10-11 蓄電池モジュール及び蓄電池システム

Country Status (2)

Country Link
JP (1) JP6200897B2 (ja)
WO (1) WO2014068867A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198066A (ja) * 1984-03-21 1985-10-07 Matsushita Electric Ind Co Ltd アルカリ蓄電池
JPS61156639A (ja) * 1984-12-27 1986-07-16 Matsushita Electric Ind Co Ltd 密閉形アルカリ蓄電池
JPH0888020A (ja) * 1994-09-14 1996-04-02 Hitachi Maxell Ltd 水素化物二次電池
JPH08190931A (ja) * 1995-01-10 1996-07-23 Hitachi Maxell Ltd 水素化物二次電池
JPH09283174A (ja) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd アルカリ蓄電池
JPH10172558A (ja) * 1996-12-09 1998-06-26 Hitachi Maxell Ltd 水素化物二次電池
JP2000021439A (ja) * 1998-06-30 2000-01-21 Toshiba Corp ニッケル水素二次電池
JP2001217000A (ja) * 1999-02-26 2001-08-10 Toshiba Battery Co Ltd ニッケル・水素二次電池
JP2004164981A (ja) * 2002-11-13 2004-06-10 Shin Kobe Electric Mach Co Ltd 組電池
JP2004235088A (ja) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd ニッケル水素蓄電池
JP2004281289A (ja) * 2003-03-18 2004-10-07 Sanyo Electric Co Ltd アルカリ蓄電池
JP2005108610A (ja) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd アルカリ蓄電池および組電池
JP2012238565A (ja) * 2011-04-28 2012-12-06 Sanyo Electric Co Ltd アルカリ蓄電池
JP2013114888A (ja) * 2011-11-29 2013-06-10 Sanyo Electric Co Ltd アルカリ蓄電及びこのアルカリ蓄電池を用いたアルカリ蓄電池システム
JP2013178883A (ja) * 2012-02-28 2013-09-09 Sanyo Electric Co Ltd アルカリ蓄電池及びアルカリ蓄電池システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639620B2 (ja) * 2004-03-29 2011-02-23 トヨタ自動車株式会社 アルカリ蓄電池

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198066A (ja) * 1984-03-21 1985-10-07 Matsushita Electric Ind Co Ltd アルカリ蓄電池
JPS61156639A (ja) * 1984-12-27 1986-07-16 Matsushita Electric Ind Co Ltd 密閉形アルカリ蓄電池
JPH0888020A (ja) * 1994-09-14 1996-04-02 Hitachi Maxell Ltd 水素化物二次電池
JPH08190931A (ja) * 1995-01-10 1996-07-23 Hitachi Maxell Ltd 水素化物二次電池
JPH09283174A (ja) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd アルカリ蓄電池
JPH10172558A (ja) * 1996-12-09 1998-06-26 Hitachi Maxell Ltd 水素化物二次電池
JP2000021439A (ja) * 1998-06-30 2000-01-21 Toshiba Corp ニッケル水素二次電池
JP2001217000A (ja) * 1999-02-26 2001-08-10 Toshiba Battery Co Ltd ニッケル・水素二次電池
JP2004164981A (ja) * 2002-11-13 2004-06-10 Shin Kobe Electric Mach Co Ltd 組電池
JP2004235088A (ja) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd ニッケル水素蓄電池
JP2004281289A (ja) * 2003-03-18 2004-10-07 Sanyo Electric Co Ltd アルカリ蓄電池
JP2005108610A (ja) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd アルカリ蓄電池および組電池
JP2012238565A (ja) * 2011-04-28 2012-12-06 Sanyo Electric Co Ltd アルカリ蓄電池
JP2013114888A (ja) * 2011-11-29 2013-06-10 Sanyo Electric Co Ltd アルカリ蓄電及びこのアルカリ蓄電池を用いたアルカリ蓄電池システム
JP2013178883A (ja) * 2012-02-28 2013-09-09 Sanyo Electric Co Ltd アルカリ蓄電池及びアルカリ蓄電池システム

Also Published As

Publication number Publication date
JPWO2014068867A1 (ja) 2016-09-08
JP6200897B2 (ja) 2017-09-20

Similar Documents

Publication Publication Date Title
JP5196938B2 (ja) アルカリ蓄電池システム
US20090087745A1 (en) Alkaline storage battery system
JP5743780B2 (ja) 円筒型ニッケル−水素蓄電池
JP2013114888A (ja) アルカリ蓄電及びこのアルカリ蓄電池を用いたアルカリ蓄電池システム
JP6225116B2 (ja) 蓄電池システム
JP5849768B2 (ja) アルカリ蓄電池及びアルカリ蓄電池システム
JP5717125B2 (ja) アルカリ蓄電池
JP5853799B2 (ja) アルカリ蓄電池
WO2014068868A1 (ja) ニッケル水素蓄電池及び蓄電池システム
JP6105389B2 (ja) アルカリ蓄電池
JP6200897B2 (ja) 蓄電池モジュール及び蓄電池システム
JP2007294219A (ja) アルカリ蓄電池およびその製造方法ならびに組電池装置
JP5213312B2 (ja) アルカリ蓄電池
WO2014050075A1 (ja) 蓄電池システム。
WO2014068866A1 (ja) 蓄電池モジュールを搭載した車両
JP2013134904A (ja) アルカリ蓄電池およびこれを用いたアルカリ蓄電池システム
WO2014068954A1 (ja) 蓄電池システム
JP2015028845A (ja) アルカリ蓄電池及びアルカリ蓄電池システム
JP3895984B2 (ja) ニッケル・水素蓄電池
JP5752487B2 (ja) アルカリ蓄電池およびアルカリ蓄電池システム
JP5334498B2 (ja) アルカリ蓄電池
JP2015043285A (ja) アルカリ蓄電池
JP2014089896A (ja) ニッケル水素蓄電池及び電池システム
JP2013134903A (ja) アルカリ蓄電池用水素吸蔵合金及びこれを用いたアルカリ蓄電池
JP2014110150A (ja) アルカリ蓄電池用焼結式ニッケル正極及びこれを用いたアルカリ蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850789

Country of ref document: EP

Kind code of ref document: A1