WO2014068752A1 - 電力変換装置およびその故障診断方法 - Google Patents

電力変換装置およびその故障診断方法 Download PDF

Info

Publication number
WO2014068752A1
WO2014068752A1 PCT/JP2012/078349 JP2012078349W WO2014068752A1 WO 2014068752 A1 WO2014068752 A1 WO 2014068752A1 JP 2012078349 W JP2012078349 W JP 2012078349W WO 2014068752 A1 WO2014068752 A1 WO 2014068752A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
electrical machine
rotating electrical
armature winding
phase
Prior art date
Application number
PCT/JP2012/078349
Other languages
English (en)
French (fr)
Inventor
賢一 藤江
勝也 辻本
浅井 孝公
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/430,590 priority Critical patent/US9564841B2/en
Priority to CN201280076803.4A priority patent/CN104756393B/zh
Priority to EP12887726.3A priority patent/EP2916448B1/en
Priority to PCT/JP2012/078349 priority patent/WO2014068752A1/ja
Priority to JP2014544165A priority patent/JP5823057B2/ja
Publication of WO2014068752A1 publication Critical patent/WO2014068752A1/ja
Priority to US15/378,110 priority patent/US9793835B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies

Definitions

  • the present invention relates to a power conversion device and a failure diagnosis method thereof, and more particularly, to a power conversion device that supplies power to a multiphase rotating electrical machine or rectifies an induced voltage from the multiphase rotating electrical machine and a failure diagnosis method thereof.
  • Patent Document 1 proposes a method for detecting a short-circuit fault of a diode of a full-wave rectifier circuit with high accuracy. Specifically, a voltage source or a current source is connected to an arbitrary AC terminal, and abnormality is determined from the voltage value or current value of the AC terminal.
  • Patent Document 1 since it is determined that the current does not flow from the failure detection terminal (P terminal) to the armature winding, the path from the failure detection terminal (P terminal) to the armature winding is disconnected. In this case, there is a problem that not only the disconnection cannot be detected, but also the short-circuit failure of the full-wave rectifier circuit cannot be detected, and the power and ground faults of the armature winding cannot be detected.
  • the present invention has been made to solve such a problem, and is capable of detecting a power fault, a ground fault, and a disconnection fault of a multiphase rotating electric machine without flowing a large current.
  • An object of the present invention is to obtain a conversion device and a fault diagnosis method thereof.
  • a plurality of phase bridge circuits in which power semiconductor switching elements are connected in series to form upper and lower arms are connected in parallel, and both ends of the phase bridge circuit are connected to a chargeable / dischargeable DC power source.
  • a power conversion device for performing AC-DC power conversion or DC-AC power conversion wherein a connection point between the power semiconductor switching elements of the upper and lower arms is connected to an AC terminal of an armature winding of a multiphase rotating electrical machine,
  • a discharge type constant current circuit for passing a constant current from the output end of the power supply circuit to the AC terminal of the armature winding of the multiphase rotating electrical machine; and the discharge type constant current circuit Connected in series, a backflow prevention diode for preventing a backflow current from the AC terminal of the armature winding of the multiphase rotating electrical machine
  • a plurality of phase bridge circuits in which power semiconductor switching elements are connected in series to form upper and lower arms are connected in parallel, and both ends of the phase bridge circuit are connected to a chargeable / dischargeable DC power source.
  • a power conversion device for performing AC-DC power conversion or DC-AC power conversion wherein a connection point between the power semiconductor switching elements of the upper and lower arms is connected to an AC terminal of an armature winding of a multiphase rotating electrical machine,
  • a discharge type constant current circuit for passing a constant current from the output end of the power supply circuit to the AC terminal of the armature winding of the multiphase rotating electrical machine; and the discharge type constant current circuit Connected in series, a backflow prevention diode for preventing a backflow current from the AC terminal of the armature winding of the multiphase rotating electrical machine
  • the power converter is a feature, it is possible to detect a power fault, a ground fault, and a disconnection fault of a multiphase rotating electric machine without flowing a large current.
  • a three-phase rotating electric machine is shown as an example of the multi-phase rotating electric machine 4. Therefore, hereinafter, the multiphase rotating electrical machine 4 will be described as a three-phase rotating electrical machine.
  • the present invention is not limited to this case, and the number of phases of the multiphase rotating electrical machine 4 may be 2 or 6, or a star-connected rotating electrical machine may be used as the multiphase rotating electrical machine 4.
  • the power converter 1 includes six power semiconductor switching elements 2, a drive circuit 5, an internal power supply circuit 6, a discharge type constant current circuit 7, a backflow prevention diode 8, a pull-down resistor 9, and a phase voltage detection unit 10. And a failure determination unit 11.
  • the drive circuit 5 turns on or off each of the six power semiconductor switching elements 2.
  • the internal power supply circuit 6 outputs a predetermined voltage from the output terminal 6a.
  • the discharge-type constant current circuit 7 is connected to the output terminal 6 a of the internal power supply circuit 6, and supplies a constant current from the output terminal 6 a of the internal power supply circuit 6 to any one AC terminal of the armature winding of the multiphase rotating electrical machine 4. Shed.
  • the backflow prevention diode 8 is connected between the discharge type constant current circuit 7 and the AC terminal of the armature winding of the multiphase rotating electrical machine 4, and the internal power circuit from the AC terminal of the armature winding of the multiphase rotating electrical machine 4.
  • the pull-down resistor 9 connects the other two AC terminals of the armature winding of the multiphase rotating electrical machine 4 to which the discharge type constant current circuit 7 is not connected to the cathode potential of the DC power source 3.
  • the phase voltage detection unit 10 detects the phase voltage of the armature winding of the multiphase rotating electrical machine 4. Based on the phase voltage value of each phase of the multi-phase rotating electrical machine 4 detected by the phase voltage detecting unit 10, the failure determination unit 11 performs a power fault or line fault in the armature winding of the multi-phase rotating electrical machine 4. -to-power fault), earth fault, ground fault or line-to-ground fault, and open fault.
  • the power fault is that the insulation between the armature winding of the multiphase rotating electrical machine 4 and the DC power supply 3 is extremely lowered, and the gap is connected by an arc or a conductor.
  • a wiring contacts the anode terminal (power supply line) of the DC power supply 3 is mentioned as an example.
  • all the phase voltages of the multiphase rotating electrical machine 4 become substantially equal to the anode potential of the DC power supply 3.
  • substantially here means that the phase voltage of the multiphase rotating electrical machine 4 is equal to the anode potential of the DC power supply 3 even if the detection error of the phase voltage detector 10 is subtracted.
  • the ground fault is that the insulation between the armature winding of the multiphase rotating electrical machine 4 and the GND terminal is extremely lowered, and the gap is connected by an arc or a conductor.
  • a wiring contacts an earth wire is mentioned as an example.
  • all the phase voltages of the multiphase rotating electrical machine 4 become substantially equal to the cathode potential of the DC power supply 3.
  • substantially here means that the phase voltage of the multiphase rotating electrical machine 4 is equal to the cathode potential of the DC power supply 3 even if the detection error of the phase voltage detector 10 is subtracted.
  • the disconnection failure means that a part of the wiring of the armature winding of the multiphase rotating electrical machine 4 is disconnected.
  • phase voltages of the multiphase rotating electrical machine are not substantially at the same potential.
  • substantially here means that all the phase voltages of the multi-phase rotating electrical machine 4 are at the same potential even if the detection error of the phase voltage detector 10 is subtracted.
  • the power semiconductor switching element 2 is composed of, for example, a MOSFET or an IGBT.
  • the DC power supply 3 is composed of, for example, a lead storage battery (battery), a lithium ion battery, or an electric double layer capacitor that is generally used as a power supply for automobiles.
  • the drive circuit 5 is composed of, for example, a push-pull type pre-driver using a drive power supply by a charge pump circuit or a bootstrap circuit.
  • the internal power supply circuit 6 is composed of, for example, a DCDC converter, a series regulator, or a constant voltage diode.
  • the discharge type constant current circuit 7 is composed of, for example, a constant current circuit using transistors such as a constant current diode or a current mirror circuit.
  • the phase voltage detection unit 10 includes, for example, a transistor or an operational amplifier circuit using an operational amplifier.
  • a method for setting the constant current value of the discharge type constant current circuit 7 will be described.
  • the phase voltage of the multiphase rotating electrical machine 4 at that time is taken as the cathode potential of the DC power supply 3. Since it must be distinguished and determined, a potential difference is required between the phase voltage of the multiphase rotating electrical machine 4 and the cathode potential of the DC power supply 3. For example, when the assumed minimum value of the leakage resistance is 100 ⁇ and the potential difference that can be distinguished from a ground fault is 1 V, the constant current value of the discharge type constant current circuit 7 is 10 mA according to Ohm's law.
  • the resistance value of the pull-down resistor 9 is such that the phase voltage of the multiphase rotating electrical machine 4 is DC due to a power supply fault in the armature winding of the multiphase rotating electrical machine 4 or a short circuit fault in the power semiconductor switching element 2 constituting the upper arm. It is set in consideration of the rise to the anode voltage of the power source 3.
  • the rated power of the pull-down resistor 9 is P
  • the safety factor such as temperature derating is ⁇ (for example, 0.7 or 0.8)
  • the DC power supply in which the power converter 1 operates normally When the maximum value of the voltage fluctuation range of 3 is Batt (MAX), the resistance value Rpd of the pull-down resistor 9 needs to satisfy the following formula 1.
  • the resistance value Rpd of the pull-down resistor 9 indicates the leakage current per phase from the drive circuit 5, the number of phases n, the output voltage of the internal power supply circuit 6 Vcc, and the forward voltage drop of the backflow prevention diode 8.
  • Vf it is necessary to satisfy the following formula 2.
  • the failure determination unit 11 includes, for example, a logic circuit such as a microcomputer or ASIC or a comparator such as a comparator.
  • the failure determination unit 11 is a control unit (not shown) of the power conversion device 1 in a state where all the power semiconductor switching elements 2 are in the off state and no induced voltage is generated in the armature winding of the multiphase rotating electrical machine 4. Or the failure determination is started when a failure determination start signal is received from the host controller (not shown) of the power conversion device 1.
  • the internal power supply circuit 6 is used to pass a minute current through the armature winding of the multiphase rotating electrical machine 4 to detect each phase voltage, and failure determination is performed based on the detected phase voltage.
  • the failure determination operation will be described below using the flowchart shown in FIG.
  • step S ⁇ b> 100 all phase voltages of the armature windings of the multiphase rotating electrical machine 4 are acquired from the phase voltage detection unit 10.
  • step S101 it is determined whether or not all the phase voltages are substantially equal to the anode potential of the DC power supply 3, and if they are equal, the process proceeds to step S102.
  • step S102 it is determined that there is a power fault, and the failure determination process ends. Note that “substantially” in step S ⁇ b> 101 means that the phase voltage is equal to the anode potential of the DC power supply 3 even if the detection error of the phase voltage detection unit 10 is subtracted.
  • step S103 it is determined whether or not all the phase voltages are substantially equal to the cathode potential of the DC power supply 3, and if they are equal, the process proceeds to step S104.
  • step S104 it is determined that there is a ground fault, and the failure determination process ends.
  • step S105 it is determined that all the phase voltages are not substantially the cathode potential of the DC power supply 3 in step S103.
  • step S105 if all the phase voltages are not substantially the same potential, the process proceeds to step S106.
  • step S106 it is determined that there is a disconnection failure, and failure determination processing is performed. On the other hand, if all the phase voltages are substantially the same in step S105, the process proceeds to step S107.
  • step S107 the multiphase rotating electrical machine 4 is subjected to a power fault, ground fault, fault, and disconnection fault. It is determined that none exists, and the failure determination process is terminated.
  • the value of the predetermined voltage output from the internal power supply circuit 6 is the voltage fluctuation range of the DC power supply 3 in which the power converter 1 operates normally. It is a condition to set a value smaller than the minimum value.
  • FIG. 3 shows a modification of FIG. 1, and a constant voltage unit 30 is connected in series with the backflow prevention diode 8.
  • the constant voltage unit 30 is provided between the discharge type constant current circuit 7 and the backflow prevention diode 8.
  • Other configurations are the same as those in FIG. 1, and thus the description thereof is omitted here.
  • the constant voltage unit 30 expands (or amplifies) the potential difference between the output voltage of the internal power supply circuit 6 and the phase voltage of the armature winding of the multiphase rotating electric machine 4.
  • the constant voltage unit 30 is composed of, for example, a constant voltage diode having a cathode connected to the output terminal 6a of the internal power supply circuit 6.
  • the constant voltage unit 30 is composed of at least one diode, and the anode side of these diodes is connected to the output terminal 6a of the internal power supply circuit 6 by utilizing the forward voltage drop of the diode. May be.
  • the internal power supply circuit 6 is used to cause a small current to flow through the armature winding of the multi-phase rotating electric machine 4, and to detect each phase voltage by the phase voltage detection unit 10, and to make a failure determination based on the detected phase voltage. Therefore, the power supply fault, ground fault, and disconnection failure of the multiphase rotating electrical machine 4 can be detected with high accuracy.
  • the resistance value of the pull-down resistor 9 is appropriately selected, it is possible to prevent a problem that a minute current for detecting a failure does not flow in the multiphase rotating electrical machine 4 due to a leakage current from the drive circuit 5 and Even if the armature winding of the rotating electrical machine 4 has a power fault or the power semiconductor switching element 2 constituting the upper arm of the phase bridge circuit is short-circuited, the pull-down resistor 9 will not burn out due to over-rating, Secondary failure can be prevented.
  • the output voltage of the internal power supply circuit 6 is set to a value smaller than the minimum value of the voltage fluctuation range of the DC power supply 3 in which the power converter 1 operates normally, the failure determination process can be realized without erroneous determination.
  • the constant voltage unit 30 is added so as to lower the phase voltage value when there is no failure, the anode potential of the DC power supply 3 becomes the output voltage of the internal power supply circuit 6. Even if it is lower, it is possible to correctly detect a power fault.
  • FIG. FIG. 4 shows the configuration of the power conversion device according to Embodiment 2 of the present invention.
  • a suction type constant current circuit is provided between any one AC terminal of the armature winding of the multiphase rotating electrical machine 4 and the cathode potential of the DC power supply 3.
  • 20 and the other two AC terminals of the armature winding of the multiphase rotating electrical machine 4 are connected to the output terminal 6a of the internal power supply circuit 6 via the pull-up resistor 21 and the backflow prevention diode 8.
  • the pull-down resistor 9 in FIG. 1 is not provided.
  • Other configurations and operations are the same as those in FIG.
  • failure determination unit 11 in the present embodiment is the same as the processing of the flowchart of FIG. 2 described in the first embodiment, and therefore the description thereof is omitted here.
  • the suction type constant current circuit 20 is composed of, for example, a constant current circuit using a transistor such as a constant current diode or a current mirror circuit, like the discharge type constant current circuit 7 shown in FIG.
  • a method for setting the constant current value of the suction type constant current circuit 20 as in the case of the discharge type constant current circuit 7 described above, from the armature winding of the multiphase rotating electrical machine using salt water or muddy water to the anode potential of the DC power supply. Therefore, a potential difference that can be distinguished from the phase voltage when the leakage occurs is distinguished from the anode potential of the DC power supply 3.
  • the constant current value is 10 mA from Ohm's law.
  • the constant current value icd is obtained by adding the leakage current to the constant current value calculated from the potential difference VL required at the time of leakage to the anode potential of the DC power supply 3 and the assumed minimum value RL of the leakage resistance.
  • the pull-up resistor 21 has a role of lowering the phase voltage, like the constant voltage unit 30 shown in FIG. If the resistance value of the pull-up resistor 21 is set too large, the voltage across the pull-up resistor 21 becomes too large due to the constant current of the suction type constant current circuit 20, and the phase voltage drops to near the cathode potential of the DC power supply 3. Therefore, in order to prevent this from happening, it is assumed that the output voltage of the internal power supply circuit 6 is Vcc, the forward voltage drop of the backflow prevention diode 8 is Vf, and the constant current value of the suction type constant current circuit 20 is icd.
  • the resistance value Rpu needs to satisfy the following formula 4. Rpu ⁇ (Vcc ⁇ Vf) / icd (Formula 4)
  • the rated power of the pull-up resistor 21 is absorbed by only one pull-up resistor 21 when a disconnection occurs at the AC terminal of the armature winding of the multiphase rotating electrical machine 4 to which the pull-up resistor 21 is connected.
  • the rated power that can withstand the constant current maximum value of the type constant current circuit 20 is required. Therefore, assuming that the rated power of the pull-up resistor 21 is P, the safety factor such as temperature derating is ⁇ (for example, 0.7 or 0.8), and the constant current value of the suction type constant current circuit 20 is icd, the pull-up resistor 21
  • the resistance value Rpu needs to satisfy the following formula 5.
  • Rpu ⁇ (P ⁇ ⁇ ) / icd 2 (Formula 5)
  • the resistance value of the pull-up resistor 21 is set to, for example, about 3 to 4 times the assumed minimum value of the leak resistance generated in salt water or muddy water, the resistance value increases depending on the salt water or muddy water. Even if the armature winding of the phase rotating electrical machine 4 leaks to the anode potential or the cathode potential of the DC power supply 3, the failure determination unit 11 can prevent erroneous determination of a power fault and a ground fault.
  • all of the power semiconductor switching elements 2 are in the off state, and an induced voltage is generated in the armature winding of the multiphase rotating electrical machine.
  • a small current may be passed through the armature winding of the multiphase rotating electrical machine 4 using the internal power supply circuit 6 and a failure determination may be made based on the voltage of each phase.
  • a fault fault, a ground fault, and a disconnection fault can be accurately detected.
  • the resistance value of the pull-up resistor 21 is appropriately selected, the leakage from the armature winding of the multiphase rotating electrical machine 4 to the anode potential or the cathode potential of the DC power supply 3 due to salt water or muddy water is also prevented. It is possible to avoid sky and ground fault misjudgment.
  • the resistance value of the pull-up resistor 21 is appropriately selected, even when the anode potential of the DC power supply 3 is lower than the output voltage of the internal power supply circuit 6, a power fault can be detected correctly.
  • FIG. FIG. 5 shows the configuration of the power conversion device according to Embodiment 3 of the present invention. Compared with the first embodiment shown in FIG. 1, a difference is that a suction type constant current circuit 20 is connected in series with an arbitrary one of the pull-down resistors 9. Other configurations and operations are the same as those in the first embodiment, and thus description thereof is omitted here.
  • failure determination unit 11 in the present embodiment is the same as the processing of the flowchart of FIG. 2 described in the first embodiment, and therefore the description thereof is omitted here.
  • the constant current value of the discharge type constant current circuit 7 may be set in the same manner as in the first embodiment, and from the armature winding of the multiphase rotating electrical machine 4 by salt water or muddy water to the cathode potential of the DC power supply 3. It is possible to avoid a ground fault misjudgment even with respect to a leak.
  • the constant current value of the suction type constant current circuit 20 may be set in the same manner as in the above-described second embodiment, and the DC power source 3 is connected to the armature winding of the multiphase rotating electrical machine 4 by salt water or muddy water. It is possible to avoid erroneous determination of a power fault even for a leak to the anode potential.
  • the resistance value of the other pull-down resistor 9 to which the suction type constant current circuit 20 is not connected in series may be selected so as to satisfy the above formulas 1 and 2.
  • the pull-down resistor 9 connected in series to the suction type constant current circuit 20 has a role of adjusting the phase voltage, like the constant voltage unit 30 shown in FIG. That is, when all the power semiconductor switching elements 2 are in the off state and no induced voltage is generated in the armature winding of the multiphase rotating electric machine 4, the phase voltage is Vu, and the constant current of the discharge type constant current circuit 7 is set.
  • the value is icu
  • the resistance value of the pull-down resistor 9 not connected in series to the suction-type constant current circuit 20 is Rpdn
  • the resistance value of the pull-down resistor 9 connected in series to the suction-type constant current circuit 20 is Rpd1 6 can be used.
  • Rpd1 (Rpdn ⁇ icu ⁇ Vu) / (Rpdn ⁇ Vu) ... (Formula 6)
  • the suction type constant current circuit 20 is not limited so that the current flowing to the suction type constant current circuit 20 is not limited when leakage occurs from the armature winding of the multiphase rotating electrical machine 4 to the anode potential of the DC power supply 3 due to salt water or muddy water. It is necessary to select the resistance value of the pull-down resistor 9 connected in series. That is, the minimum value of the voltage fluctuation range of the DC power supply 3 in which the power converter 1 operates normally is Batt (MIN), the constant current value of the suction type constant current circuit 7 is icd, and the minimum value of the assumed leakage resistance is RL. As for the resistance value of the pull-down resistor 9, Rpd1 needs to satisfy the following equation (7). Rpd1 ⁇ Batt (MIN) / icd ⁇ RL (Formula 7)
  • all of the power semiconductor switching elements 2 are in the OFF state, and an induced voltage is generated in the armature winding of the multiphase rotating electric machine 4.
  • the internal power supply circuit 6 is used to pass a minute current through the armature winding of the multiphase rotating electrical machine 4 so that the failure is determined based on the voltage of each phase. A power fault, ground fault and disconnection fault can be detected with high accuracy.
  • the suction type constant current circuit 20 since the constant current is made to flow by using the suction type constant current circuit 20, the leakage from the armature winding of the multiphase rotating electrical machine 4 to the anode potential of the DC power supply 3 due to salt water or muddy water is also a power fault. Misjudgment can be avoided.
  • the discharge type constant current circuit 7 is used to supply a constant current, a ground fault is also detected against leakage from the armature winding of the multiphase rotating electrical machine 4 to the cathode potential of the DC power supply 3 due to salt water or muddy water. Misjudgment can be avoided.
  • the AC terminal that is not connected to either the discharge type constant current circuit 7 or the suction type constant current circuit 20 is the pull-down resistor 9.
  • the method of connecting to the cathode potential of the DC power supply 3 via the above has been described.
  • the present invention is not limited to this, and among the AC terminals of the armature winding of the multiphase rotating electrical machine 4, an AC terminal to which neither the discharge type constant current circuit 7 nor the suction type constant current circuit 20 is connected is described above.
  • the pull-up resistor 21 shown in FIG. 4 is installed for the purpose of detecting a disconnection failure. That is, when a disconnection failure occurs in the AC terminal of the armature winding of the multiphase rotating electrical machine 4 to which the pull-up resistor 21 is connected, the disconnection failure occurs because the phase voltage of the AC terminal becomes the output voltage of the internal power supply circuit 6. Therefore, the magnitude of the current value flowing through the pull-up resistor 21 is not related.
  • the resistance value of the pull-up resistor 21 is small, the phase voltage setting of the pull-down resistor 9 and the constant current value setting of the discharge type constant current circuit 7 are affected.
  • a resistance value of several k ⁇ to several tens of k ⁇ is preferably used.
  • Rpd1 Vu / icd (Equation 8)
  • FIG. FIG. 6 shows the configuration of the power conversion device according to Embodiment 4 of the present invention.
  • a second internal power supply circuit 40 that outputs a voltage smaller than the output voltage of the internal power supply circuit 6 is added, and the pull-down resistor 9 is The difference is that the AC terminal of the armature winding of the multiphase rotating electrical machine 4 is connected to the output terminal 40a of the second internal power supply circuit 40.
  • Other configurations and operations are the same as those in FIG.
  • the second internal power supply circuit 40 is provided for detecting that a power fault has occurred in the armature winding of the multiphase rotating electrical machine 4 and that a composite fault has occurred, such as when a disconnection fault has occurred at the same time. It has been.
  • the second internal power supply circuit 40 includes, for example, a DCDC converter, a series regulator, or a constant voltage diode.
  • the output voltage of the second internal power supply circuit 40 is set to a value lower than the output voltage of the internal power supply circuit 6.
  • the output voltage of the second internal power supply circuit 40 is set to a potential difference required when leakage occurs from the armature winding of the multiphase rotating electrical machine 4 to the cathode potential of the DC power supply 3 due to salt water or muddy water, for example.
  • the output voltage of the second internal power supply circuit 40 is in a state where all the power semiconductor switching elements 2 are in an off state and no induced voltage is generated in the armature winding of the multiphase rotating electrical machine 4, and
  • the phase voltage value is lower than that at the time of no failure and the current does not flow from the output voltage of the second internal power supply circuit 40 to the AC terminal of the armature winding of the multiphase rotating electric machine 4.
  • the constant current setting method of the discharge type constant current circuit 7 described above can be used as it is, and an effect equivalent to that of the first embodiment can be obtained.
  • the pull-down resistor 9 is calculated by subtracting the output voltage of the second internal power supply circuit 40 from the output voltage Vcc of the internal power supply circuit 6 of the above-described formulas 1 and 2 or the anode potential of the DC power supply 3.
  • the resistance value can be calculated, and the same effect as in the first embodiment can be obtained.
  • FIG. 7 shows a modification of the power conversion device according to Embodiment 4 of the present invention.
  • the second internal power supply circuit 40, the diode 41, and the resistor 42 are added, and the suction type constant current circuit 20 has a multiphase rotation.
  • the difference is that the AC terminal of the armature winding of the electric machine 4 and the output terminal 40a of the second internal power supply circuit 40 are connected.
  • Other configurations and operations are the same as those in FIG.
  • the second internal power supply circuit 40 outputs a voltage smaller than the output voltage of the internal power supply circuit 6.
  • the diode 41 and the resistor 42 are connected in parallel to the suction type constant current circuit 20.
  • the diode 41 prevents current from flowing from the AC terminal of the armature winding of the multiphase rotating electrical machine 4 to the output terminal 40 a of the second internal power supply circuit 40.
  • the resistor 42 serves to limit the current flowing from the output terminal 40a of the second internal power supply circuit 40 to the cathode potential of the DC power supply 3 when the AC terminal of the armature winding of the multiphase rotating electrical machine 4 has a ground fault. There is.
  • the output voltage of the second internal power supply circuit 40 may be set to a value lower than the output voltage of the internal power supply circuit 6.
  • the second internal power supply circuit 40 is set to a value equal to or less than the potential difference required when leakage occurs from the armature winding of the multiphase rotating electrical machine 4 to the cathode potential of the DC power supply 3 due to salt water or muddy water. It is conceivable to set the output voltage. That is, the second internal power supply circuit 40 is in a state where all of the power semiconductor switching elements 2 are in an off state, no induced voltage is generated in the armature winding of the multiphase rotating electric machine 4, and no failure occurs. Output voltage becomes lower than the phase voltage value.
  • the current does not flow from the output voltage of the second internal power supply circuit 40 to the AC terminal of the armature winding of the multiphase rotating electric machine 4, and the constant current setting of the suction type constant current circuit 20 described in the second embodiment is performed. Since the method can be used as it is, the same effect as in the second embodiment can be obtained.
  • the constant setting of the pull-up resistor 21 can be calculated by subtracting the output voltage of the second internal power supply circuit 40 from the output voltage Vcc of the internal power supply circuit 6 of the above-described formula 4. And the same effects as those of the second embodiment can be obtained.
  • the failure determination unit 11 includes, for example, a logic circuit such as a microcomputer or ASIC or a comparator such as a comparator. Also in the present embodiment, failure determination unit 11 performs a power conversion device in a state where all power semiconductor switching elements 2 are in an off state and no induced voltage is generated in the armature winding of multiphase rotating electrical machine 4.
  • failure determination start signal is received from one control unit (not shown) or the host controller (not shown) of the power conversion device 1, failure determination is started.
  • the internal power supply circuit 6 and the second internal power supply circuit 40 are used to pass a minute current through the armature winding of the multiphase rotating electrical machine 4 to detect each phase voltage, and to detect the detected phase voltage. And make a failure judgment.
  • step S100 in FIG. 8 is the same as step S100 in FIG. 2, and the phase voltage of the armature winding of the multiphase rotating electrical machine 4 is acquired from the phase voltage detection unit 10.
  • step S ⁇ b> 201 it is determined whether each phase voltage is substantially equal to the output voltage of the internal power supply circuit 6 or substantially equal to the output voltage of the second internal power supply circuit 40. As a result of the determination, when at least one phase voltage is substantially equal to either the output voltage of the internal power supply circuit 6 or the output voltage of the second internal power supply circuit 40, the process proceeds to step S202.
  • step S202 a disconnection failure flag is set for the phase, and the process proceeds to step S203.
  • step S203 it is determined whether or not each phase voltage is substantially equal to the anode potential of the DC power supply 3. As a result of the determination, if at least one phase voltage is substantially equal to the anode potential of the DC power supply 3, the process proceeds to step S204. In step S204, a power fault flag is set for the phase, and the process proceeds to step S205. On the other hand, if all the phase voltages are substantially different from the anode potential of the DC power supply 3 in step S203, the process proceeds to step S205.
  • step S205 it is determined whether or not each phase voltage is substantially equal to the cathode potential of the DC power supply 3. As a result of the determination, if at least one phase voltage is substantially equal to the cathode voltage of the DC power supply 3, the process proceeds to step S206. In step S206, a ground fault flag is set for that phase, and the failure determination process is terminated. On the other hand, if all the phase voltages are substantially different from the cathode potential of the DC power supply 3 in step S205, the process proceeds to step S107. In step S107, as in step S107 of FIG. 2, it is determined that there is no failure, and the failure determination process ends.
  • steps S202, S204, and / or S206 it is possible to confirm which fault has occurred in which phase, and the power fault of the multiphase rotating electrical machine 4 A failure, a ground fault, and a disconnection failure can be detected with high accuracy, and a composite failure in which two or more failures occur simultaneously can be detected.
  • the internal power supply circuit 6 and the second internal power supply circuit 40 are used to cause a current to flow through the armature winding of the multiphase rotating electrical machine 4 and determine the failure based on the voltage of each phase.
  • a power fault, ground fault and disconnection fault can be detected with high accuracy.
  • a second internal power supply circuit 40 is newly provided, and among the AC terminals of the armature windings of the multiphase rotating electrical machine 4, the AC terminal connected to the cathode potential of the DC power supply 3 is used as the second internal power supply circuit. 40, and the output voltage of the second internal power supply circuit 40 is set appropriately, so that combined faults that occur simultaneously, such as disconnection faults and power faults of the armature windings of the multiphase rotating electrical machine 4, are also possible. It can be detected.
  • FIGS. 6 and 7 a configuration in which the second internal power supply circuit 40 is newly provided in the configuration shown in FIGS. 1 and 4 is shown.
  • the present invention is not limited to this, and the second internal power supply circuit 40 is newly provided for the configuration shown in FIG. 3 or 5 and the AC terminals of the armature windings of the multiphase rotating electrical machine 4
  • the AC terminal connected to the cathode potential of the DC power supply 3 is connected to the second internal power supply circuit 40, and the output voltage of the second internal power supply circuit 40 may be set appropriately, and the multiphase rotation It is also possible to detect complex faults that occur at the same time, such as disconnection faults and power faults of the armature windings of the electric machine 4.
  • Embodiment 5 the failure determination unit 11 is used to cause a power supply fault in the armature winding of the multiphase rotating electrical machine 4 including a short-circuit fault in the power semiconductor switching element 2 of the power conversion device 1.
  • a method for determining a fault and disconnection fault has been described.
  • the power of the power converter 1 is further increased according to the flowcharts of FIG. 9A and FIG.
  • a method for determining the inability to drive the semiconductor switching element 2 will be described.
  • the inability to drive the power semiconductor switching element 2 includes a failure in which the power semiconductor switching element 2 cannot be turned on and a failure in which the power semiconductor switching element 2 cannot be turned off.
  • the fifth embodiment can be applied to all the failure determination units 11 of the first to fourth embodiments, and the same effect can be obtained when applied to any of the embodiments. Since operations other than those shown in FIGS. 9A and 9B described below are the same as those in Embodiments 1 to 4, description thereof is omitted here.
  • the configuration of the power conversion device according to the fifth embodiment is the same as that described in the first to fourth embodiments. Therefore, the description is omitted here.
  • step S300 the failure determination unit 11 turns on the power semiconductor switching element 2 constituting the lower arm of an arbitrary phase via the drive circuit 5.
  • step S301 the process waits for a predetermined time until the phase voltage is stabilized, and then proceeds to step S302. Details of the predetermined time setting method will be described later.
  • step S302 the phase voltage of the phase in which the power semiconductor switching element 2 is turned on is acquired via the phase voltage detector 10, and the process proceeds to step S303.
  • step S303 it is determined whether or not the acquired phase voltage is substantially higher than the cathode potential of the DC power supply 3.
  • step S304 it is determined that the power semiconductor switching element 2 cannot be turned on, and it is determined that the power semiconductor switching element 2 cannot be driven, and the failure determination process for the power semiconductor switching element 2 constituting the phase is completed. To do.
  • the process proceeds to step S305.
  • step S305 the power semiconductor switching element 2 is turned off via the drive circuit 5, and the process proceeds to step S306.
  • step S306 similarly to step S301, a predetermined time is waited until the phase voltage is stabilized, and the process proceeds to step S307.
  • step S307 if the phase voltage is substantially equal to the cathode potential of the DC power supply 3, the process proceeds to step S304.
  • step S304 it is determined that the power semiconductor switching element 2 cannot be turned off, and the power semiconductor switching element 2 is determined not to be driven, and a failure determination process for the power semiconductor switching element 2 constituting the phase is performed. finish.
  • the phase voltage is not substantially equal to the cathode potential of the DC power supply 3 in step S307 (that is, higher than the cathode potential)
  • the process proceeds to step S308 in FIG. 9B.
  • step S308 the power semiconductor switching element 2 constituting the upper arm to be paired with the power semiconductor switching element 2 in which the failure determination is performed in the processing from step S300 to step S307 is turned on, and the process proceeds to step S309.
  • step S309 similarly to step S301, a predetermined time is waited until the phase voltage is stabilized, and the process proceeds to step S310.
  • step S310 the phase voltage at which the power semiconductor switching element 2 is turned on is acquired via the phase voltage detector 10, and the process proceeds to step S311.
  • step S311 it is determined whether or not the acquired phase voltage is substantially lower than the anode potential of the DC power supply 3, and if lower, the process proceeds to step S312.
  • step S312 it is determined that the power semiconductor switching element 2 cannot be turned on, and it is determined that the power semiconductor switching element 2 cannot be driven, and the failure determination process for the power semiconductor switching element 2 constituting the phase is completed. To do.
  • step S311 if the phase voltage is substantially equal to or higher than the anode potential of the DC power supply 3 (that is, substantially equal to the anode potential), the process proceeds to step S313.
  • step S313 the power semiconductor switching element 2 is turned off via the drive circuit 5, and the process proceeds to step S314.
  • step S314 similarly to step S301, a predetermined time is waited until the phase voltage is stabilized, and the process proceeds to step S315.
  • step S315 it is determined whether or not the phase voltage is substantially equal to the anode potential of the DC power supply 3. As a result of the determination, if it is substantially equal, the process proceeds to step S312. In step S312, it is determined that the power semiconductor switching element 2 cannot be turned off and it is determined that the power semiconductor switching element 2 cannot be driven, and the failure determination process for the power semiconductor switching element 2 constituting the phase is completed. To do. On the other hand, if the phase voltage is not equal to the anode potential of the DC power supply 3 in step S315 (that is, lower than the anode potential), the process proceeds to step S316. In step S316, it is determined that there is no failure in the power semiconductor switching element 2 constituting the phase, and the process is terminated. As described above, the failure determination process described with reference to FIGS. 9A and 9B is performed for all phases of the armature winding of the multiphase rotating electrical machine 4.
  • the predetermined time until the phase voltage is stabilized in steps S301, S306, S309, and S314 in FIGS. 9A and 9B (hereinafter referred to as the predetermined time Tm) is, for example, the wiring inductance from the DC power supply 3 to the power conversion device 1 Lm, the resistance value of the pull-down resistor 9 is Rpd, the time constant of the LR circuit determined by the inductance Lm and the resistance value Rpd is ⁇ , and the ratio of the phase voltage determined to be stable in the phase voltage to the anode potential of the DC power supply 3 is ⁇ Is defined by the following Equation 9.
  • the inductance Lp of the armature winding of the multiphase rotating electrical machine 4 is used, for example, the multiphase rotating electrical machine.
  • the armature winding of 4 is a star connection, it can be defined as the following Expression 10. Tm ⁇ ⁇ (Lm + 2 ⁇ Lp) / Rpd ⁇ ln (1- ⁇ ) (Equation 10)
  • the failure determination process is performed first from the lower arm among the upper and lower arms constituting the phase bridge circuit.
  • a bootstrap circuit is used as the drive circuit 5
  • the multiphase rotating electrical machine 4 has a power fault, After confirming that there are no faults and disconnections, each power semiconductor switching element 2 of the power converter 1 is turned on and off to check whether the phase voltage is a predetermined voltage. Inability to drive the power semiconductor switching element 2 can be determined.
  • the power semiconductor switching element 2 of the power conversion device 1 is individually turned on / off and then waits for a predetermined time until the phase voltage is stabilized, it is possible to prevent erroneous determination of a drive failure during the phase voltage transition period. it can.
  • the failure determination process is performed from the lower arm of the upper and lower arms constituting the phase bridge circuit, when the bootstrap circuit is used as the drive circuit 5, the bootstrap capacitor can be charged, An event in which the upper arm cannot be turned on due to insufficient charging of the capacitor can be avoided.
  • FIG. FIG. 10 shows the configuration of the power conversion device according to Embodiment 6 of the present invention.
  • the first switch unit 50 is a switch for connecting or blocking a current path from the internal power supply circuit 6 to the AC terminal of the armature winding of the multiphase rotating electrical machine 4.
  • the second switch unit 51 is a switch that connects or blocks a current path from the AC terminal of the armature winding of the multiphase rotating electrical machine 4 to the cathode potential of the DC power supply 3.
  • semiconductor switches such as transistors and MOSFETs are conceivable. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted here.
  • the first switch unit 50 and the second switch unit 51 are turned on before the failure determination unit 11 performs the failure determination, and turned off when the failure determination ends.
  • the same effect as in the first embodiment can be obtained, and further, the first switch unit 50 and the second switch unit 51 are provided to perform the failure determination process.
  • the first switch unit 50 and the second switch unit 51 are turned on only when the power conversion device 1 is turned on. There is an effect that it does not flow through the child windings and does not affect other abnormality detection circuits of the power conversion device 1.
  • failure determination unit 11 performs direct current in the state where all power semiconductor switching elements 2 are in the off state and no induced voltage is generated in the armature winding of multiphase rotating electrical machine 4. If the anode potential of the power supply 3 is equal to or lower than the AC terminal voltage of the armature winding of the multiphase rotating electric machine 4, no failure determination is made.
  • a circuit similar to the phase voltage detection unit 10 is added to detect the anode voltage of the DC power supply 3.
  • a method of acquiring from a control unit (not shown) of the power conversion device 1 or a host controller (not shown) of the power conversion device 1 is conceivable.
  • the failure determination process may be omitted, and the failure determination unit 11 generates a power fault.
  • the anode potential of the DC power supply 3 does not appear in the phase voltage, so that it is possible to prevent missing a power fault.
  • the present invention relates to a power conversion device 1 that supplies power to a multiphase rotating electrical machine 4 or rectifies an induced voltage from the multiphase rotating electrical machine 4, and in particular, detects a failure of the multiphase rotating electrical machine and the power conversion device. It is about.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Inverter Devices (AREA)

Abstract

 相電圧検出部(10)が検出する多相回転電機(4)の相電圧をもとに、多相回転電機(4)の電機子巻線の天絡、地絡、断線故障を判定する故障判定部(11)を備え、故障判定部(11)は、パワー半導体スイッチング素子(2)がすべてオフ状態で、かつ、多相回転電機(4)の電機子巻線に誘起電圧が発生していない状態において、内部電源回路(6)により、多相回転電機(4)の電機子巻線に微小電流を流したときに、すべての相電圧が実質的に直流電源(3)の陽極電位に等しいときは、天絡故障と判定し、すべての相電圧が実質的に直流電源(3)の陰極電位に等しいときは、地絡故障と判定し、すべての相電圧が実質的に同電位でなければ、断線故障と判定する。

Description

電力変換装置およびその故障診断方法
 本発明は電力変換装置およびその故障診断方法に関し、特に、多相回転電機に電力を供給する、あるいは、多相回転電機からの誘起電圧を整流する電力変換装置およびその故障診断方法に関する。
 特許文献1では、全波整流回路のダイオードの短絡故障を高精度に検出する方法が提案されている。具体的には、任意の交流端子に、電圧源または電流源を接続し、交流端子の電圧値または電流値から異常を判定する。
特許4385068号公報
 特許文献1では、故障検出端子(P端子)から電機子巻線に電流が流れないことをもって正常と判定しているため、故障検出端子(P端子)から電機子巻線に至る経路が断線した場合、断線が検出できないのみならず、全波整流回路の短絡故障が検出できず、また、電機子巻線の天絡および地絡も検出できないという課題がある。
 本発明は、かかる課題を解決するためになされたものであり、大電流を流すことなく、多相回転電機の天絡故障、地絡故障、および、断線故障を検出することが可能な、電力変換装置およびその故障診断方法を得ることを目的としている。
 本発明は、パワー半導体スイッチング素子を直列接続して上下アームを構成した相ブリッジ回路を複数個並列接続すると共に、前記相ブリッジ回路の両端が充放電可能な直流電源に接続され、前記相ブリッジ回路の上下アームの前記パワー半導体スイッチング素子どうしの接続点が多相回転電機の電機子巻線の交流端子に接続され、交流-直流電力変換あるいは直流-交流電力変換を行う電力変換装置であって、内部電源回路と、前記パワー半導体スイッチング素子をオンまたはオフする駆動回路と、前記内部電源回路の出力端と前記多相回転電機の電機子巻線の交流端子の1つとを接続して、前記内部電源回路の出力端から前記多相回転電機の電機子巻線の当該交流端子へ定電流を流す吐き出し型定電流回路と、前記吐き出し型定電流回路に直列接続され、前記多相回転電機の電機子巻線の交流端子から前記内部電源回路への逆流電流を防止する逆流防止ダイオードと、前記吐き出し型定電流回路が接続されていない前記多相回転電機の電機子巻線の他の交流端子を前記直流電源の陰極電位に接続するプルダウン抵抗と、前記多相回転電機の電機子巻線の相電圧を検出する相電圧検出部と、前記相電圧検出部が検出する各相の相電圧をもとに前記多相回転電機の電機子巻線の天絡故障、地絡故障、および、断線故障を判定する故障判定部とを備え、前記故障判定部は、前記パワー半導体スイッチング素子がすべてオフ状態で、かつ、前記多相回転電機の電機子巻線に誘起電圧が発生していない状態において、すべての相電圧が実質的に前記直流電源の陽極電位に等しいときは天絡故障と判定し、すべての相電圧が実質的に前記直流電源の陰極電位に等しいときは地絡故障と判定し、すべての相電圧が実質的に同電位でなければ断線故障と判定することを特徴とする電力変換装置である。
 本発明は、パワー半導体スイッチング素子を直列接続して上下アームを構成した相ブリッジ回路を複数個並列接続すると共に、前記相ブリッジ回路の両端が充放電可能な直流電源に接続され、前記相ブリッジ回路の上下アームの前記パワー半導体スイッチング素子どうしの接続点が多相回転電機の電機子巻線の交流端子に接続され、交流-直流電力変換あるいは直流-交流電力変換を行う電力変換装置であって、内部電源回路と、前記パワー半導体スイッチング素子をオンまたはオフする駆動回路と、前記内部電源回路の出力端と前記多相回転電機の電機子巻線の交流端子の1つとを接続して、前記内部電源回路の出力端から前記多相回転電機の電機子巻線の当該交流端子へ定電流を流す吐き出し型定電流回路と、前記吐き出し型定電流回路に直列接続され、前記多相回転電機の電機子巻線の交流端子から前記内部電源回路への逆流電流を防止する逆流防止ダイオードと、前記吐き出し型定電流回路が接続されていない前記多相回転電機の電機子巻線の他の交流端子を前記直流電源の陰極電位に接続するプルダウン抵抗と、前記多相回転電機の電機子巻線の相電圧を検出する相電圧検出部と、前記相電圧検出部が検出する各相の相電圧をもとに前記多相回転電機の電機子巻線の天絡故障、地絡故障、および、断線故障を判定する故障判定部とを備え、前記故障判定部は、前記パワー半導体スイッチング素子がすべてオフ状態で、かつ、前記多相回転電機の電機子巻線に誘起電圧が発生していない状態において、すべての相電圧が実質的に前記直流電源の陽極電位に等しいときは天絡故障と判定し、すべての相電圧が実質的に前記直流電源の陰極電位に等しいときは地絡故障と判定し、すべての相電圧が実質的に同電位でなければ断線故障と判定することを特徴とする電力変換装置であるので、大電流を流すことなく、多相回転電機の天絡故障、地絡故障、および、断線故障を検出することができる。
本発明の実施の形態1に係る電力変換装置の構成を示すブロック図である。 本発明の実施の形態1に係る電力変換装置における故障判定部11の動作を説明するフローチャートである。 本発明の実施の形態1に係る電力変換装置の変形例の構成を示すブロック図である。 本発明の実施の形態2に係る電力変換装置の構成を示すブロック図である。 本発明の実施の形態3に係る電力変換装置の構成を示すブロック図である。 本発明の実施の形態4に係る電力変換装置の構成を示すブロック図である。 本発明の実施の形態4に係る電力変換装置の変形例の構成を示すブロック図である。 本発明の実施の形態4に係る電力変換装置における故障判定部11の動作を説明するフローチャートである。 本発明の実施の形態5に係る電力変換装置における故障判定部11の動作を説明するフローチャートである。 本発明の実施の形態5に係る電力変換装置における故障判定部11の動作を説明するフローチャートである。 本発明の実施の形態6に係る電力変換装置の構成を示すブロック図である。
 以下、本発明の実施の形態を図面とともに詳述する。なお、各図における同一の番号は、同一の構成を示すものとする。
 実施の形態1.
 図1は、本発明の実施の形態1における電力変換装置の構成を示している。図1に示すように、電力変換装置1は、2つのパワー半導体スイッチング素子2を直列接続して上下アームを構成した相ブリッジ回路を、所定の個数(図1では3個)、並列に接続するとともに、それらの相ブリッジ回路の両端(1対の端)が充放電可能な直流電源3に接続され、それらの相ブリッジ回路を構成するパワー半導体スイッチング素子2どうしの接続点が、それぞれ、多相回転電機4の各相の電機子巻線の交流端子に接続され、内部電源回路6と直流電源3との間で、交流-直流電力変換あるいは直流-交流電力変換を行う。
 なお、図1においては、多相回転電機4として、3相の回転電機を例に挙げて示している。従って、以下では、多相回転電機4を3相の回転電機として説明する。しかしながら、本発明は、この場合に限らず、多相回転電機4の相数を2または6などとしてもよく、あるいは、多相回転電機4として、星型結線の回転電機を用いてもよい。
 電力変換装置1は、6つのパワー半導体スイッチング素子2と、駆動回路5と、内部電源回路6と、吐き出し型定電流回路7と、逆流防止ダイオード8と、プルダウン抵抗9と、相電圧検出部10と、故障判定部11とを備える。
 駆動回路5は、6つのパワー半導体スイッチング素子2をそれぞれオンまたはオフする。
 内部電源回路6は、出力端6aから、所定電圧を出力する。
 吐き出し型定電流回路7は、内部電源回路6の出力端6aに接続され、内部電源回路6の出力端6aから多相回転電機4の電機子巻線の任意の1つの交流端子へ定電流を流す。
 逆流防止ダイオード8は、吐き出し型定電流回路7と多相回転電機4の電機子巻線の交流端子との間に接続され、多相回転電機4の電機子巻線の交流端子から内部電源回路6への逆流電流を防止する。
 プルダウン抵抗9は、吐き出し型定電流回路7が接続されていない多相回転電機4の電機子巻線の他の2つの交流端子を、直流電源3の陰極電位にそれぞれ接続する。
 相電圧検出部10は、多相回転電機4の電機子巻線の相電圧を検出する。
 故障判定部11は、相電圧検出部10で検出した多相回転電機4の各相の相電圧の値に基づいて、多相回転電機4の電機子巻線の天絡故障(power fault または line-to-power fault)、地絡故障(earth fault, ground fault または line-to-ground fault)、および、断線故障(open fault)を判定する。
 ここで、天絡故障とは、多相回転電機4の電機子巻線と直流電源3との間の絶縁が極度に低下して、その間がアークまたは導体によってつながることである。例えば、直流電源3の陽極端子(電源ライン)に配線が接触する場合等が例として挙げられる。天絡故障が発生すると、多相回転電機4のすべての相電圧が、実質的に、直流電源3の陽極電位に等しくなる。ここでいう実質的とは、相電圧検出部10の検出誤差を差し引いても、多相回転電機4の相電圧が、直流電源3の陽極電位に等しいことを意味する。
 また、地絡故障とは、多相回転電機4の電機子巻線とGND端子との間の絶縁が極度に低下して、その間がアークまたは導体によってつながることである。例えば、アース線に配線が接触する場合等が例として挙げられる。地絡故障が発生すると、多相回転電機4のすべての相電圧が、実質的に、直流電源3の陰極電位に等しくなる。ここでいう実質的とは、相電圧検出部10の検出誤差を差し引いても、多相回転電機4の相電圧が、直流電源3の陰極電位に等しいことを意味する。
 断線故障とは、多相回転電機4の電機子巻線の配線の一部が断線することである。断線故障が発生すると、多相回転電機のすべての相電圧が、実質的に、同電位ではなくなる。ここでいう実質的とは、相電圧検出部10の検出誤差を差し引いても、多相回転電機4のすべての相電圧が、互いに同電位であることを意味する。
 なお、図1において、パワー半導体スイッチング素子2は、例えば、MOSFET、あるいは、IGBTなどから構成される。
 また、直流電源3は、例えば、一般的に自動車用の電源として用いられている、鉛蓄電池(バッテリ)、リチウムイオン電池、あるいは、電気二重層コンデンサなどから構成される。
 駆動回路5は、例えば、チャージポンプ回路あるいはブートストラップ回路による駆動電源を使ったプッシュプル型のプリドライバなどから構成される。
 内部電源回路6は、例えば、DCDCコンバータや、シリーズレギュレータ、あるいは、定電圧ダイオードなどから構成される。
 吐き出し型定電流回路7は、例えば、定電流ダイオード、あるいは、カレントミラー回路などのトランジスタを使った定電流回路から構成される。
 相電圧検出部10は、例えば、トランジスタ、あるいは、オペアンプを使った作動増幅回路などから構成される。
 吐き出し型定電流回路7の定電流値を設定する方法について説明する。塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陰極電位へのリークが発生した場合に、そのときの多相回転電機4の相電圧を、直流電源3の陰極電位と区別して判別しなければならないため、多相回転電機4の相電圧と直流電源3の陰極電位との間には電位差が必要となる。たとえば、想定されるリーク抵抗の最小値を100Ω、地絡故障と区別して判別できる電位差を1Vとした場合、吐き出し型定電流回路7の定電流値は、オームの法則より10mAとなる。本実施の形態においては、吐き出し型定電流回路7を使って定電流を流すようにしたので、塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陰極電位へのリークが発生しても、地絡故障の誤判定を回避できる。
 プルダウン抵抗9の抵抗値の設定方法について説明する。プルダウン抵抗9の抵抗値は、多相回転電機4の電機子巻線の天絡故障、あるいは、上アームを構成するパワー半導体スイッチング素子2の短絡故障によって、多相回転電機4の相電圧が直流電源3の陽極電圧まで上昇することを考慮して設定する。具体的には、例えば、プルダウン抵抗9の定格電力をP、温度ディレーティングなどの安全係数をα(たとえば、0.7、または、0.8)、電力変換装置1が正常に動作する直流電源3の電圧変動範囲の最大値をBatt(MAX)とした場合、プルダウン抵抗9の抵抗値Rpdは、以下の式1を満たす必要がある。
   Rpd > Batt(MAX)2/(P×α)   ・・・(式1)
 加えて、パワー半導体スイッチング素子2がオフ状態において、駆動回路5から多相回転電機4の電機子巻線の交流端子へ漏れ電流が流れるので、その漏れ電流によってプルダウン抵抗9の両端電位が上昇し、多相回転電機4の故障検出のために流す微小電流が流れなくなる事象を回避する必要がある。したがって、プルダウン抵抗9の抵抗値Rpdは、駆動回路5からの1相あたりの漏れ電流をim、相数をn、内部電源回路6の出力電圧をVcc、逆流防止ダイオード8の順方向電圧降下をVfとした場合、以下の式2を満たす必要がある。
   Rpd < (Vcc-Vf)/(im×n/(n-1))
                           ・・・(式2)
 故障判定部11は、例えば、マイコンやASICのようなロジック回路あるいはコンパレータのような比較器などから構成される。故障判定部11は、パワー半導体スイッチング素子2がすべてオフ状態で、かつ、多相回転電機4の電機子巻線に誘起電圧が発生していない状態において、電力変換装置1の制御部(図示せず)、あるいは、電力変換装置1の上位コントローラ(図示せず)から、故障判定開始信号を受け取ったときに、故障判定を開始する。故障判定時には、内部電源回路6を使って、多相回転電機4の電機子巻線に微小電流を流し、各相電圧を検出して、検出した相電圧をもとに故障判定を行う。故障判定の動作については図2に示すフローチャートを用いて以下に説明する。
 まず、図2に示すように、ステップS100において、相電圧検出部10から、多相回転電機4の電機子巻線のすべての相電圧を取得する。次に、ステップS101において、すべての相電圧が実質的に直流電源3の陽極電位に等しいか否かの判定を行い、等しいときはステップS102へ移行する。ステップS102では、天絡故障と判定し、故障判定処理を終了する。なお、ステップS101における、「実質的」とは、相電圧検出部10の検出誤差を差し引いても、相電圧が直流電源3の陽極電位に等しいことを意味する。一方、ステップS101において、すべての相電圧が実質的に直流電源3の陽極電位でなかった場合は、ステップS103へ進む。ステップS103では、すべての相電圧が実質的に直流電源3の陰極電位に等しいか否かを判定し、等しいときはステップS104へ移行する。ステップS104において、地絡故障と判定し、故障判定処理を終了する。一方、ステップS103において、すべての相電圧が実質的に直流電源3の陰極電位でなかった場合は、ステップS105へ進む。ステップS105において、すべての相電圧が実質的に同電位でなければステップS106へ移行する。ステップS106において、断線故障と判定し故障判定処理をする。一方、ステップS105において、すべての相電圧が実質的に同電位であれば、ステップS107に進み、ステップS107において、多相回転電機4に、天絡故障、地絡、故障、および、断線故障のいずれも無いと判定して、故障判定処理を終了する。
 なお、図2で説明した故障判定方法を誤判定なく実現するためには、内部電源回路6が出力する所定電圧の値は、電力変換装置1が正常に動作する直流電源3の電圧変動範囲の最小値より小さい値に設定することが条件となる。
 また、図3は、図1の変形例を示すもので、逆流防止ダイオード8に直列に定電圧部30が接続されている。定電圧部30は、吐き出し型定電流回路7と逆流防止ダイオード8との間に設けられている。他の構成については、図1と同じであるため、ここでは説明を省略する。
 定電圧部30は、内部電源回路6の出力電圧と多相回転電機4の電機子巻線の相電圧との電位差を拡大(または増幅)させるものである。定電圧部30は、例えば、内部電源回路6の出力端6aにカソード側を接続した定電圧ダイオードから構成される。あるいは、定電圧部30を、少なくとも1つ以上のダイオードから構成して、ダイオードの順方向電圧降下を利用して、それらのダイオードのアノード側を内部電源回路6の出力端6aに接続するようにしてもよい。パワー半導体スイッチング素子2がすべてオフ状態で、かつ、多相回転電機4の電機子巻線に誘起電圧が発生していない状態で、かつ、無故障時のときには、相電圧の値が引き下げられる。そのため、定電圧部30を設けることによって、内部電源回路6の出力電圧と多相回転電機4の電機子巻線の相電圧との電位差を拡大させることにより、直流電源3の陽極電位が内部電源回路6の出力電圧の値より低くても、天絡故障を正しく検出することができる。
 以上のように、実施の形態1によれば、パワー半導体スイッチング素子2がすべてオフ状態で、かつ、多相回転電機4の電機子巻線に誘起電圧が発生していない状態において、内部電源回路6を使って、多相回転電機4の電機子巻線に微小電流を流し、相電圧検出部10により各相電圧を検出して、検出した相電圧をもとに故障判定を行うようにしたので、多相回転電機4の天絡、地絡、および、断線故障が精度よく検出できる。
 また、吐き出し型定電流回路7を使って定電流を流すようにしたので、塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陰極電位へのリークが発生しても、地絡故障を誤判定することを回避できる。
 さらに、プルダウン抵抗9の抵抗値を適切に選定するようにしたので、駆動回路5からの漏れ電流によって多相回転電機4に故障検出のための微小電流が流れなくなる問題を防止できるとともに、多相回転電機4の電機子巻線が天絡するか、または、相ブリッジ回路の上アームを構成するパワー半導体スイッチング素子2が短絡故障しても、プルダウン抵抗9が定格超過で焼損することが無く、2次故障を防止できる。
 加えて、内部電源回路6の出力電圧を、電力変換装置1が正常に動作する直流電源3の電圧変動範囲の最小値より小さい値に設定したため、故障判定処理を誤判定なく、実現できる。
 また、図3に示した変形例のように、定電圧部30を追加して、無故障時の相電圧値を引き下げるようにすれば、直流電源3の陽極電位が内部電源回路6の出力電圧より低くても、天絡故障を正しく検出することができる。
 実施の形態2.
 図4は、本発明の実施の形態2における電力変換装置の構成を示している。図1に示した実施の形態1と比較すると、図4では、多相回転電機4の電機子巻線の任意の1つの交流端子と直流電源3の陰極電位との間に吸い込み型定電流回路20が接続されている点と、多相回転電機4の電機子巻線の他の2つの交流端子が、内部電源回路6の出力端6aに、プルアップ抵抗21と逆流防止ダイオード8を介して接続されている点と、図1のプルダウン抵抗9が設けられていない点が異なる。他の構成および動作は、図1と同じであるため、ここでは説明を省略する。
 なお、本実施の形態における故障判定部11の動作については、上述の実施の形態1で示した図2のフローチャートの処理と同じであるため、ここでは、その説明を省略する。
 吸い込み型定電流回路20は、図1に示した吐き出し型定電流回路7と同じように、例えば、定電流ダイオード、あるいは、カレントミラー回路のようなトランジスタを使った定電流回路から構成される。吸い込み型定電流回路20の定電流値を設定する方法としては、前述の吐き出し型定電流回路7と同じように、塩水や泥水による多相回転電機の電機子巻線から直流電源の陽極電位へのリークが発生した場合の相電圧と直流電源3の陽極電位とが区別して判別できるだけの電位差が必要となる。たとえば、想定されるリーク抵抗の最小値を100Ω、天絡故障と区別して判別できる電位差を1Vとした場合、定電流値はオームの法則より10mAとなる。
 また、パワー半導体スイッチング素子2がオフ状態においては、駆動回路5から多相回転電機4の電機子巻線の交流端子へ漏れ電流が流れるので、吸い込み型定電流回路20の定電流値は、少なくとも前記漏れ電流よりも大きく設定する必要がある。そうでなければ、前記漏れ電流がパワー半導体スイッチング素子2のボディダイオードを通って直流電源3へ流れ出し、相電圧が直流電源3の陽極電位以上になるので、故障判定部11は天絡を誤判定してしまう。したがって、直流電源3の陽極電位へのリーク時に必要な電位差VLおよび想定されるリーク抵抗の最小値RLから算出される定電流値に、前記漏れ電流分を加算して、定電流値icdは、たとえば、以下の式3のようにすることができる。なお、駆動回路5からの1相あたりの漏れ電流をim、相数をnとする。
   icd = VL/RL+im×n  ・・・(式3)
 一方、プルアップ抵抗21は、図3に示した定電圧部30と同様に、相電圧を引き下げる役割がある。プルアップ抵抗21の抵抗値をあまり大きく設定すると、吸い込み型定電流回路20の定電流によってプルアップ抵抗21の両端電圧が大きくなりすぎ、相電圧が直流電源3の陰極電位近くにまで低下する。従って、そうならないようにするため、内部電源回路6の出力電圧をVcc、逆流防止ダイオード8の順方向電圧降下をVf、吸い込み型定電流回路20の定電流値をicdとすると、プルアップ抵抗21の抵抗値Rpuは、以下の式4を満たす必要がある。
   Rpu < (Vcc-Vf)/icd   ・・・(式4)
 また、プルアップ抵抗21の定格電力は、プルアップ抵抗21が接続されている多相回転電機4の電機子巻線の交流端子において断線が発生した場合、1つのプルアップ抵抗21のみで、吸い込み型定電流回路20の定電流最大値にも耐えられる定格電力が必要である。したがって、プルアップ抵抗21の定格電力をP、温度ディレーティングなどの安全係数をα(たとえば0.7または0.8)、吸い込み型定電流回路20の定電流値をicdとして、プルアップ抵抗21の抵抗値Rpuは、以下の式5を満たす必要がある。
   Rpu < (P×α)/icd2   ・・・(式5)
 加えて、プルアップ抵抗21の抵抗値は、塩水や泥水で発生するリーク抵抗の想定される最小値に対して、たとえば、3~4倍程度の大きさに設定すれば、塩水や泥水によって多相回転電機4の電機子巻線が直流電源3の陽極電位あるいは陰極電位にリークしても、故障判定部11は天絡故障および地絡故障を誤判定しないようにすることができる。
 以上のように、実施の形態2によれば、上述の実施の形態1と同様に、パワー半導体スイッチング素子2がすべてオフ状態で、かつ、多相回転電機の電機子巻線に誘起電圧が発生していない状態において、内部電源回路6を使って多相回転電機4の電機子巻線に微小電流を流し、各相電圧をもとに故障判定をすればよく、多相回転電機4の天絡故障、地絡故障、および、断線故障が精度よく検出できる。
 また、吸い込み型定電流回路20を使って定電流を流すようにしたので、塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陽極電位へのリークが発生しても、天絡誤判定を回避できる。
 さらに、プルアップ抵抗21の抵抗値を適切に選定するようにしたので、塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陽極電位あるいは陰極電位へのリークに対しても天絡および地絡誤判定を回避できる。
 加えて、プルアップ抵抗21の抵抗値を適切に選定するようにしたので、直流電源3の陽極電位が内部電源回路6の出力電圧より低くても、天絡故障を正しく検出できる。
 実施の形態3.
 図5は、本発明の実施の形態3における電力変換装置の構成を示している。図1に示した実施の形態1と比較すると、プルダウン抵抗9の任意の1つと直列に吸い込み型定電流回路20が接続されている点が異なる。他の構成および動作については、実施の形態1と同じであるため、ここでは説明を省略する。
 なお、本実施の形態における故障判定部11の動作については、上述の実施の形態1で示した図2のフローチャートの処理と同じであるため、ここでは、その説明を省略する。
 吐き出し型定電流回路7の定電流値については、前述の実施の形態1と同じように設定すればよく、塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陰極電位へのリークに対しても地絡誤判定を回避できる。同様に、吸い込み型定電流回路20の定電流値についても、前述の実施の形態2と同じように設定すればよく、塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陽極電位へのリークに対しても天絡誤判定を回避できる。
 なお、吸い込み型定電流回路20が直列接続されていない他方のプルダウン抵抗9の抵抗値については、前述の式1、式2を満たすように選定すればよい。
 吸い込み型定電流回路20に直列接続されるプルダウン抵抗9は、図3に示した定電圧部30と同様に、相電圧を調整する役割を持つ。すなわち、パワー半導体スイッチング素子2がすべてオフ状態で、かつ、多相回転電機4の電機子巻線に誘起電圧が発生していない状態において、相電圧をVu、吐き出し型定電流回路7の定電流値をicu、吸い込み型定電流回路20に直列接続していないプルダウン抵抗9の抵抗値をRpdnとして、吸い込み型定電流回路20に直列接続されるプルダウン抵抗9の抵抗値をRpd1は、以下の式6を用いて求めることができる。
 Rpd1 = (Rpdn×icu-Vu)/(Rpdn×Vu)
                          ・・・(式6)
 また、塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陽極電位へのリーク発生時に吸い込み型定電流回路20へ流れる電流を制限しないように、吸い込み型定電流回路20に直列接続されるプルダウン抵抗9の抵抗値を選定する必要がある。すなわち、電力変換装置1が正常に動作する直流電源3の電圧変動範囲の最小値をBatt(MIN)、吸い込み型定電流回路7の定電流値をicd、想定されるリーク抵抗の最小値をRLとして、プルダウン抵抗9の抵抗値をRpd1は以下の式7を満たす必要がある。
  Rpd1 < Batt(MIN)/icd - RL ・・・(式7)
 以上のように、実施の形態3によれば、実施の形態1と同様に、パワー半導体スイッチング素子2がすべてオフ状態で、かつ、多相回転電機4の電機子巻線に誘起電圧が発生していない状態において、内部電源回路6を使って多相回転電機4の電機子巻線に微小電流を流し、各相電圧をもとに故障判定をするようにしたので、多相回転電機4の天絡故障、地絡故障、および、断線故障が精度よく検出できる。
 また、吸い込み型定電流回路20を使って定電流を流すようにしたので、塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陽極電位へのリークに対しても天絡誤判定を回避できる。
 さらに、吐き出し型定電流回路7を使って定電流を流すようにしたので、塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陰極電位へのリークに対しても地絡誤判定を回避できる。
 加えて、吸い込み型定電流回路20に直列接続されるプルダウン抵抗9の抵抗値を適切に選定するようにしたので、直流電源3の陽極電位が内部電源回路6の出力電圧より低くても、天絡故障を正しく検出できる。
 なお、上記の説明においては、多相回転電機4の電機子巻線の交流端子のうち、吐き出し型定電流回路7と吸い込み型定電流回路20のどちらにも接続しない交流端子は、プルダウン抵抗9を介して、直流電源3の陰極電位に接続する方法について説明した。しかしながら、本発明はこれに限らず、多相回転電機4の電機子巻線の交流端子のうち、吐き出し型定電流回路7と吸い込み型定電流回路20のどちらも接続しない交流端子を、前述の実施の形態2のように、プルアップ抵抗21と逆流防止ダイオード8を介して内部電源回路6の出力端6aに接続してもよく、その場合にも、同様の効果を得ることができる。なお、図4のプルアップ抵抗21は、断線故障を検出する目的で設置される。すなわち、プルアップ抵抗21を接続する多相回転電機4の電機子巻線の交流端子において断線故障が発生したとき、当該交流端子の相電圧が内部電源回路6の出力電圧になることで断線故障を判定するため、プルアップ抵抗21を流れる電流値の大小は関係しない。しかし、プルアップ抵抗21の抵抗値が小さいと、プルダウン抵抗9の相電圧設定、および、吐き出し型定電流回路7の定電流値設定に影響を及ぼすため、プルダウン抵抗9より十分大きな抵抗値とし、たとえば、数kΩ~数十kΩの抵抗値を用いるのが良い。
 また、吸い込み型定電流回路20に直列接続されるプルダウン抵抗9の抵抗値Rpd1は前述の式5に代わり、以下の式8を用いて求めることができる。
   Rpd1 = Vu/icd ・・・(式8)
 実施の形態4.
 図6は、本発明の実施の形態4における電力変換装置の構成を示している。図1に示す実施の形態1と比較すると、図6においては、内部電源回路6の出力電圧よりも小さい電圧を出力する第2の内部電源回路40が追加されている点と、プルダウン抵抗9が多相回転電機4の電機子巻線の交流端子と第2の内部電源回路40の出力端40aとを接続している点とが異なる。他の構成および動作については、図1と同じである。
 第2の内部電源回路40は、多相回転電機4の電機子巻線に天絡故障が発生し、同時に断線故障が発生したときなどの複合故障が発生していることを検出するために設けられている。第2の内部電源回路40は、例えば、DCDCコンバータ、シリーズレギュレータ、あるいは、定電圧ダイオードなどから構成される。第2の内部電源回路40の出力電圧は、内部電源回路6の出力電圧よりも低い値に設定する。具体的には、第2の内部電源回路40の出力電圧を、例えば、塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陰極電位へのリーク発生時に必要とされる電位差以下の値に設定する方法が考えられる。すなわち、第2の内部電源回路40の出力電圧が、パワー半導体スイッチング素子2がすべてオフ状態で、かつ、多相回転電機4の電機子巻線に誘起電圧が発生していない状態で、かつ、無故障時における相電圧値よりも低くなり、かつ、第2の内部電源回路40の出力電圧から多相回転電機4の電機子巻線の交流端子に電流が流れることなく、実施の形態1で述べた吐き出し型定電流回路7の定電流設定方法をそのまま使うことができ、実施の形態1と同等の効果を得ることができる。また、前述の式1、式2の内部電源回路6の出力電圧Vcc、または、直流電源3の陽極電位から、第2の内部電源回路40の出力電圧を差し引いて計算することで、プルダウン抵抗9の抵抗値を算出することができ、実施の形態1と同等の効果を得ることができる。
 なお、図7は、本発明の実施の形態4における電力変換装置の変形例を示す。図4に示した実施の形態2と比較すると、図7においては、第2の内部電源回路40とダイオード41と抵抗42とが追加された点と、吸い込み型定電流回路20が、多相回転電機4の電機子巻線の交流端子と第2の内部電源回路40の出力端40aとを接続している点とが異なる。他の構成および動作については、図4と同じである。
 なお、図7において、第2の内部電源回路40は、内部電源回路6の出力電圧よりも小さい電圧を出力する。ダイオード41と抵抗42とは、吸い込み型定電流回路20に並列に接続されている。ダイオード41は多相回転電機4の電機子巻線の交流端子から第2の内部電源回路40の出力端40aへ電流が流れるのを防止する。抵抗42は、多相回転電機4の電機子巻線の交流端子が地絡故障した場合に、第2の内部電源回路40の出力端40aから直流電源3の陰極電位へ流れる電流を制限する役割がある。
 図7においても、第2の内部電源回路40の出力電圧は、内部電源回路6の出力電圧よりも低い値に設定すればよい。具体的には、例えば、塩水や泥水による多相回転電機4の電機子巻線から直流電源3の陰極電位へのリーク発生時に必要とされる電位差以下の値に、第2の内部電源回路40の出力電圧を設定する方法が考えられる。すなわち、パワー半導体スイッチング素子2がすべてオフ状態で、かつ、多相回転電機4の電機子巻線に誘起電圧が発生していない状態で、かつ、無故障時において、第2の内部電源回路40の出力電圧が、相電圧値よりも低くなる。また、第2の内部電源回路40の出力電圧から多相回転電機4の電機子巻線の交流端子に電流が流れることなく、実施の形態2で述べた吸い込み型定電流回路20の定電流設定方法をそのまま使うことができるので、実施の形態2と同等の効果を得ることができる。また、プルアップ抵抗21の定数設定は、前述の式4の内部電源回路6の出力電圧Vccから第2の内部電源回路40の出力電圧を差し引いて計算することで、抵抗値を算出することができ、実施の形態2と同等の効果を得ることができる。
 次に、図6および図7の構成における故障判定部11の故障判定処理について、図8に示すフローチャートを用いて説明する。故障判定部11は、例えば、マイコンやASICのようなロジック回路あるいはコンパレータのような比較器などから構成される。本実施の形態においても、故障判定部11は、パワー半導体スイッチング素子2がすべてオフ状態で、かつ、多相回転電機4の電機子巻線に誘起電圧が発生していない状態において、電力変換装置1の制御部(図示せず)、あるいは、電力変換装置1の上位コントローラ(図示せず)から、故障判定開始信号を受け取ったときに、故障判定を開始する。故障判定時には、内部電源回路6及び第2の内部電源回路40を使って、多相回転電機4の電機子巻線に微小電流を流し、各相電圧を検出して、検出した相電圧をもとに故障判定を行う。
 まず、図8のステップS100は、図2のステップS100と同様であり、相電圧検出部10から、多相回転電機4の電機子巻線の相電圧を取得する。次に、ステップS201において、各相電圧が、内部電源回路6の出力電圧に実質的に等しい、あるいは、第2の内部電源回路40の出力電圧に実質的に等しいかを判定する。判定の結果、少なくとも1つの相電圧が、内部電源回路6の出力電圧または第2の内部電源回路40の出力電圧のいずれか一方に実質的に等しい場合は、ステップS202へ移行する。ステップS202において、その相に断線故障フラグを立て、ステップS203へと進む。一方、ステップS201において、すべての相電圧が、内部電源回路6の出力電圧と異なる、あるいは、第2の内部電源回路40の出力電圧と異なる場合は、ステップS203へ進む。ステップS203において、各相電圧が実質的に直流電源3の陽極電位に等しいか否かを判定する。判定の結果、少なくとも1つの相電圧が、実質的に直流電源3の陽極電位に等しい場合は、ステップS204へ進む。ステップS204において、その相に天絡故障フラグを立て、ステップS205へ進む。一方、ステップS203において、すべての相電圧が実質的に直流電源3の陽極電位とは異なる場合は、ステップS205へ進む。ステップS205において、各相電圧が実質的に直流電源3の陰極電位に等しいか否かを判定する。判定の結果、少なくとも1つの相電圧が実質的に直流電源3の陰極電圧に等しい場合は、ステップS206へ進む。ステップS206において、その相に、地絡故障フラグを立て、故障判定処理を終了する。一方、ステップS205において、すべての相電圧が実質的に直流電源3の陰極電位と異なる場合はステップS107へ進む。ステップS107では、図2のステップS107と同様に、故障無と判定し、故障判定処理を終了する。また、ステップS202、S204、及び/または、S206で、立てられたフラグを見ることにより、どの相で、何の故障が発生しているかを確認することができ、多相回転電機4の天絡故障、地絡故障、および、断線故障が精度よく検出できるとともに、これらの故障のうち、2つ以上の故障が同時に発生している複合故障も検出することができる。
 以上のように、実施の形態4によれば、パワー半導体スイッチング素子2がすべてオフ状態で、かつ、多相回転電機4の電機子巻線に誘起電圧が発生していない状態において、内部電源回路6および第2の内部電源回路40を使って多相回転電機4の電機子巻線に微小電流を流し、各相電圧をもとに故障判定をするようにしたので、多相回転電機4の天絡故障、地絡故障、および、断線故障が精度よく検出できる。
 また、第2の内部電源回路40を新たに設け、多相回転電機4の電機子巻線の交流端子のうち、直流電源3の陰極電位に接続していた交流端子を第2の内部電源回路40に接続すると共に、第2の内部電源回路40の出力電圧を適切に設定するようにしたので、多相回転電機4の電機子巻線の断線故障かつ天絡故障など同時に発生する複合故障も検出できる。
 なお、図6および図7に示した構成では、それぞれ、図1および図4に示した構成に第2の内部電源回路40を新たに設ける構成について示した。しかしながら、本発明はこれに限らず、図3または図5に示した構成についても、第2の内部電源回路40を新たに設けると共に、多相回転電機4の電機子巻線の交流端子のうち、直流電源3の陰極電位に接続していた交流端子を、第2の内部電源回路40に接続する構成とし、第2の内部電源回路40の出力電圧を適切に設定すればよく、多相回転電機4の電機子巻線の断線故障かつ天絡故障など同時に発生する複合故障も検出できる。
 実施の形態5.
 上述した実施の形態1~4では、故障判定部11を使って、電力変換装置1のパワー半導体スイッチング素子2の短絡故障を含む、多相回転電機4の電機子巻線の天絡故障、地絡故障、断線故障を判定する方法について説明してきた。本実施の形態では、図2または図8のフローチャートに従って故障判定部11により多相回転電機4に故障が無いことを確認した後、さらに、図9Aおよび図9Bのフローチャートに従って電力変換装置1のパワー半導体スイッチング素子2の駆動不能を判定する方法について説明する。パワー半導体スイッチング素子2の駆動不能としては、パワー半導体スイッチング素子2がオンできない故障と、パワー半導体スイッチング素子2がオフできない故障とが含まれる。
 なお、本実施の形態5は、実施の形態1~4の故障判定部11すべてに適用することができ、いずれの実施の形態に適用した場合においても同じ効果を得ることができるものである。また、以下で説明する図9Aおよび図9Bに示す動作以外の他の動作については、実施の形態1~4と同じであるため、ここでは、説明を省略する。なお、本実施の形態5の電力変換装置の構成については、実施の形態1~4で説明した構成と同じである。従って、ここでは説明を省略する。
 本実施の形態における故障判定部11の動作を、図9Aおよび図9Bに示すフローチャートとともに説明する。図9Aに示すように、ステップS300において、故障判定部11は、駆動回路5を介して、任意の相の下アームを構成するパワー半導体スイッチング素子2をオンさせる。そして、ステップS301において相電圧が安定するまで所定時間待ち、ステップS302へ進む。所定時間の設定方法の詳細については、後述する。ステップS302では、相電圧検出部10を介して、パワー半導体スイッチング素子2をオンしている相の相電圧を取得し、ステップS303に進む。ステップS303では、取得した相電圧が実質的に直流電源3の陰極電位より高いか否かを判定する。判定の結果、それが実質的に高ければ、ステップS304へ移行する。ステップS304において、当該パワー半導体スイッチング素子2がオンできない故障が発生しているとして、当該パワー半導体スイッチング素子2を駆動不能と判定し、当該相を構成するパワー半導体スイッチング素子2の故障判定処理を終了する。一方、ステップS303において、当該相電圧が実質的に直流電源3の陰極電位以下であれば(すなわち、陰極電位に実質的に等しければ)、ステップS305へ進む。ステップS305において、駆動回路5を介して、当該パワー半導体スイッチング素子2をオフし、ステップS306へ進む。ステップS306では、ステップS301と同様に、当該相電圧が安定するまで所定時間を待ち、ステップS307へ進む。ステップS307では、当該相電圧が直流電源3の陰極電位と実質的に等しければ、ステップS304に移行する。ステップS304においては、当該パワー半導体スイッチング素子2がオフできない故障が発生しているとして、当該パワー半導体スイッチング素子2を駆動不能と判定し、当該相を構成するパワー半導体スイッチング素子2の故障判定処理を終了する。一方、ステップS307において、当該相電圧が直流電源3の陰極電位と実質的に等しくなければ(すなわち、陰極電位より高ければ)、図9BのステップS308へ進む。
 ステップS308では、ステップS300からステップS307までの処理で故障判定を実施したパワー半導体スイッチング素子2の対となる上アームを構成するパワー半導体スイッチング素子2をオンし、ステップS309へ進む。ステップS309では、ステップS301と同様に、当該相電圧が安定するまで所定時間を待ち、ステップS310に進む。ステップS310では、相電圧検出部10を介して、パワー半導体スイッチング素子2をオンしている相電圧を取得し、ステップS311に進む。ステップS311では、取得した相電圧が実質的に直流電源3の陽極電位より低いか否かを判定し、低ければステップS312へ移行する。ステップS312において、当該パワー半導体スイッチング素子2がオンできない故障が発生しているとして、当該パワー半導体スイッチング素子2を駆動不能と判定し、当該相を構成するパワー半導体スイッチング素子2の故障判定処理を終了する。一方、ステップS311において、当該相電圧が実質的に直流電源3の陽極電位以上であれば(すなわち、陽極電位に実質的に等しければ)、ステップS313へ進む。ステップS313において、駆動回路5を介して当該パワー半導体スイッチング素子2をオフし、ステップS314へ進む。ステップS314では、ステップS301と同様に、当該相電圧が安定するまで所定時間を待ち、ステップS315へ進む。ステップS315では、当該相電圧が直流電源3の陽極電位と実質的に等しいか否かの判定を行う。判定の結果、それが実質的に等しければ、ステップS312に移行する。ステップS312において、当該パワー半導体スイッチング素子2がオフできない故障が発生しているとして、当該パワー半導体スイッチング素子2を駆動不能と判定し、当該相を構成するパワー半導体スイッチング素子2の故障判定処理を終了する。一方、ステップS315において、当該相電圧が直流電源3の陽極電位と等しくなければ(すなわち、陽極電位より低ければ)、ステップS316へ移行する。ステップS316において、当該相を構成するパワー半導体スイッチング素子2の故障無しと判定し、処理を終了する。以上、図9Aおよび図9Bで説明した故障判定処理を、多相回転電機4の電機子巻線のすべての相について実施する。
 図9Aおよび図9BのステップS301、S306、S309、S314における相電圧が安定するまでの所定時間(以下、所定時間Tmとする。)は、たとえば、直流電源3から電力変換装置1への配線インダクタンスをLm、プルダウン抵抗9の抵抗値をRpdとし、前記インダクタンスLm、抵抗値Rpdとで決まるLR回路の時定数をτ、相電圧安定と判断する相電圧の直流電源3の陽極電位に対する割合をβとしたとき、以下の式9で規定する。
     Tm ≧ -τ×ln(1-β)
          ここで、τ=Lm/Rpd・・・(式9)
 すなわち、β=0.95とした場合、所定時間Tmは時定数τの3倍ほど必要となる。
 また、相電圧が安定するまでの所定時間Tmを、すべての相電圧が安定するまで待つのであれば、多相回転電機4の電機子巻線のインダクタンスLpを用いて、たとえば、多相回転電機4の電機子巻線が星型結線であった場合は、以下の式10と規定することができる。
 Tm ≧ -(Lm+2×Lp)/Rpd×ln(1-β)・・・(式10)
 なお、図9Aおよび図9Bでは、相ブリッジ回路を構成する上下アームのうち、下アームから先に故障判定処理を実施した。特に、駆動回路5としてブートストラップ回路を用いている場合は、下アームから先に故障判定処理を実施し、ブートストラップコンデンサを充電する必要がある。
 以上のように、実施の形態5によれば、実施の形態1~4と同様の効果が得られるとともに、さらに、本実施の形態5においては、多相回転電機4に、天絡故障、地絡故障、および、断線故障が無いことを確認した後、さらに、電力変換装置1の各パワー半導体スイッチング素子2をオン及びオフし、相電圧が所定の電圧になっているか確認するようにしたので、パワー半導体スイッチング素子2の駆動不能を判定することができる。
 また、電力変換装置1のパワー半導体スイッチング素子2を個別にオン、オフした後、相電圧が安定するまで所定時間待つようにしたので、相電圧過渡期において駆動不能故障を誤判定することが防止できる。
 さらに、相ブリッジ回路を構成する上下アームのうち、下アームから故障判定処理を実施するようにしたので、駆動回路5としてブートストラップ回路を用いている場合は、ブートストラップコンデンサを充電でき、ブートストラップコンデンサの充電不足によって上アームがオンできない事象を回避することができる。
 実施の形態6.
 図10は、本発明の実施の形態6における電力変換装置の構成を示している。図1に示した実施の形態1と比較すると、図10においては、第1のスイッチ部50と、2つの第2のスイッチ部51とが、追加されている点が異なる。第1のスイッチ部50は、内部電源回路6から多相回転電機4の電機子巻線の交流端子への電流経路を接続または遮断するスイッチである。第2のスイッチ部51は、多相回転電機4の電機子巻線の交流端子から直流電源3の陰極電位への電流経路を接続または遮断するスイッチである。第1のスイッチ部50および第2のスイッチ部51の具体的な構成としては、例えば、トランジスタやMOSFETなどの半導体スイッチが考えられる。他の構成および動作については、実施の形態1と同じであるため、ここでは、その説明を省略する。
 そして、第1のスイッチ部50および第2のスイッチ部51は、故障判定部11によって故障判定を実施する前にオンされ、故障判定が終了するとオフされる。
 以上のように、実施の形態6によれば、実施の形態1と同様の効果が得られるとともに、さらに、第1のスイッチ部50および第2のスイッチ部51を設けて、故障判定処理を実施するときのみ、第1のスイッチ部50および第2のスイッチ部51をオンするようにしたので、電力変換装置1の駆動動作や発電動作時には故障判定用の微小電流が多相回転電機4の電機子巻線を流れず、電力変換装置1の他の異常検出回路へ影響を与えないという効果を有する。
 また、必要時のみ、多相回転電機4に内部電源回路6から微小電流を流せばよく、内部電源回路6の電流消費を抑えることができる。
 以上、図10の構成では、図1の構成に、第1のスイッチ部50と、第2のスイッチ部51を新たに設けた構成について説明したが、本発明はこれに限らず、図3~図5に示した構成についても、第1のスイッチ部50と第2のスイッチ部51を新たに設けることで、同様の効果を得ることができる。
 なお、上述した実施の形態1~6において、故障判定部11は、パワー半導体スイッチング素子2がすべてオフ状態かつ多相回転電機4の電機子巻線に誘起電圧が発生していない状態において、直流電源3の陽極電位が多相回転電機4の電機子巻線の交流端子電圧以下ならば、故障判定をしない。
 また、上述した実施の形態1~6において、直流電源3の陽極電位を取得する方法としては、たとえば、相電圧検出部10と同様の回路を追加し、直流電源3の陽極電圧の検出する方法や、電力変換装置1の制御部(図示せず)や、電力変換装置1の上位コントローラ(図示せず)から通信で取得する方法が考えられる。
 このように、上述した実施の形態1~6において、直流電源3の陽極電位が所定値以下の場合は、故障判定処理をしないようにすればよく、故障判定部11が天絡故障を発生しているのに、相電圧に直流電源3の陽極電位が現れず、天絡故障を見逃すことを防止できる。
産業上の利用の可能性
 本発明は、多相回転電機4に電力を供給する、あるいは、多相回転電機4からの誘起電圧を整流する電力変換装置1に係り、特に、多相回転電機、および電力変換装置の故障検出に関するものである。
 1 電力変換装置、2 パワー半導体スイッチング素子、3 直流電源、4 多相回転電機、5 駆動回路、6 内部電源回路、7 吐き出し型定電流回路、8 逆流防止ダイオード、9 プルダウン抵抗、10 相電圧検出部、11 故障判定部、20 吸い込み型定電流回路、21 プルアップ抵抗、30 定電圧部、40 第2の内部電源回路、50 第1のスイッチ部、51 第2のスイッチ部。

Claims (17)

  1.  パワー半導体スイッチング素子を直列接続して上下アームを構成した相ブリッジ回路を複数個並列接続すると共に、前記相ブリッジ回路の両端が充放電可能な直流電源に接続され、前記相ブリッジ回路の上下アームの前記パワー半導体スイッチング素子どうしの接続点が多相回転電機の電機子巻線の交流端子に接続され、交流-直流電力変換あるいは直流-交流電力変換を行う電力変換装置であって、
     内部電源回路と、
     前記パワー半導体スイッチング素子をオンまたはオフする駆動回路と、
     前記内部電源回路の出力端と前記多相回転電機の電機子巻線の交流端子の1つとを接続して、前記内部電源回路の出力端から前記多相回転電機の電機子巻線の当該交流端子へ定電流を流す吐き出し型定電流回路と、
     前記吐き出し型定電流回路に直列接続され、前記多相回転電機の電機子巻線の交流端子から前記内部電源回路への逆流電流を防止する逆流防止ダイオードと、
     前記吐き出し型定電流回路が接続されていない前記多相回転電機の電機子巻線の他の交流端子を前記直流電源の陰極電位に接続するプルダウン抵抗と、
     前記多相回転電機の電機子巻線の相電圧を検出する相電圧検出部と、
     前記相電圧検出部が検出する各相の相電圧をもとに前記多相回転電機の電機子巻線の天絡故障、地絡故障、および、断線故障を判定する故障判定部と
     を備え、
     前記故障判定部は、前記パワー半導体スイッチング素子がすべてオフ状態で、かつ、前記多相回転電機の電機子巻線に誘起電圧が発生していない状態において、すべての相電圧が実質的に前記直流電源の陽極電位に等しいときは天絡故障と判定し、すべての相電圧が実質的に前記直流電源の陰極電位に等しいときは地絡故障と判定し、すべての相電圧が実質的に同電位でなければ断線故障と判定する
     ことを特徴とする電力変換装置。
  2.  前記内部電源回路の出力電圧は、前記電力変換装置が正常に動作する前記直流電源の電圧変動範囲の最小値より小さく設定することを特徴とする請求項1に記載の電力変換装置。
  3.  前記逆流防止ダイオードに直列に接続され、前記内部電源回路の出力電圧と前記多相回転電機の電機子巻線の相電圧との電位差を拡大させる定電圧部をさらに備えたことを特徴とする請求項1または2に記載の電力変換装置。
  4.  前記定電圧部は、定電圧ダイオードから構成されることを特徴とする請求項3に記載の電力変換装置。
  5.  前記定電圧部は、少なくとも1つ以上のダイオードから構成され、前記ダイオードのアノードが前記内部電源回路の出力端に直列接続されていることを特徴とする請求項3に記載の電力変換装置。
  6.  パワー半導体スイッチング素子を直列接続して上下アームを構成した相ブリッジ回路を複数個並列接続すると共に、前記相ブリッジ回路の両端が充放電可能な直流電源に接続され、前記相ブリッジ回路の上下アームの前記パワー半導体スイッチング素子どうしの接続点が多相回転電機の電機子巻線の交流端子に接続され、交流-直流電力変換あるいは直流-交流電力変換を行う電力変換装置であって、
     内部電源回路と、
     前記パワー半導体スイッチング素子をオンまたはオフする駆動回路と、
     前記多相回転電機の電機子巻線の交流端子の1つを前記直流電源の陰極電位へ接続して、前記多相回転電機の電機子巻線の当該交流端子から前記直流電源の陰極電位へ定電流を流す吸い込み型定電流回路と、
     前記吸い込み型定電流回路が接続されていない前記多相回転電機の電機子巻線の他の交流端子を前記内部電源回路の出力端に接続するプルアップ抵抗と、
     前記プルアップ抵抗に直列接続され、前記多相回転電機の電機子巻線の交流端子から前記内部電源回路への逆流電流を防止する逆流防止ダイオードと、
     前記多相回転電機の電機子巻線の相電圧を検出する相電圧検出部と、
     前記相電圧検出部が検出する各相の相電圧をもとに前記多相回転電機の電機子巻線の天絡故障、地絡故障、および、断線故障を判定する故障判定部と
     を備え、
     前記故障判定部は、前記パワー半導体スイッチング素子がすべてオフ状態で、かつ、前記多相回転電機の電機子巻線に誘起電圧が発生していない状態において、すべての相電圧が実質的に前記直流電源の陽極電位に等しいときは天絡故障と判定し、すべての相電圧が実質的に前記直流電源の陰極電位に等しいときは地絡故障と判定し、すべての相電圧が実質的に同電位でなければ断線故障と判定する
     ことを特徴とする電力変換装置。
  7.  パワー半導体スイッチング素子を直列接続して上下アームを構成した相ブリッジ回路を複数個並列接続すると共に、前記相ブリッジ回路の両端が充放電可能な直流電源に接続され、前記相ブリッジ回路の上下アームの前記パワー半導体スイッチング素子どうしの接続点が多相回転電機の電機子巻線の交流端子に接続され、交流-直流電力変換あるいは直流-交流電力変換を行う電力変換装置であって、
     内部電源回路と、
     前記パワー半導体スイッチング素子をオンまたはオフする駆動回路と、
     前記内部電源回路の出力端と前記多相回転電機の電機子巻線の交流端子とを接続して、前記内部電源回路の出力端から前記多相回転電機の電機子巻線の交流端子の1つへ定電流を流す吐き出し型定電流回路と、
     前記吐き出し型定電流回路に直列接続され、前記多相回転電機の電機子巻線の交流端子から前記内部電源回路への逆流電流を防止する逆流防止ダイオードと、
     前記吐き出し型定電流回路が接続されていない前記多相回転電機の電機子巻線の他の交流端子を前記直流電源の陰極電位に接続するプルダウン抵抗と、
     前記プルダウン抵抗の1つに直列接続され、前記多相回転電機の電機子巻線の交流端子から前記直流電源の陰極電位へ定電流を流す吸い込み型定電流回路と、
     前記多相回転電機の電機子巻線の相電圧を検出する相電圧検出部と、
     前記相電圧検出部が検出する各相の相電圧をもとに前記多相回転電機の電機子巻線の天絡故障、地絡故障、および、断線故障を判定する故障判定部と
     を備え、
     前記故障判定部は、前記パワー半導体スイッチング素子がすべてオフ状態で、かつ、前記多相回転電機の電機子巻線に誘起電圧が発生していない状態において、すべての相電圧が実質的に前記直流電源の陽極電位に等しいときは天絡故障と判定し、すべての相電圧が実質的に前記直流電源の陰極電位に等しいときは地絡故障と判定し、すべての相電圧が実質的に同電位でなければ断線故障と判定する
     ことを特徴とする電力変換装置。
  8.  前記内部電源回路の出力電圧よりも小さい電圧を出力する第2の内部電源回路をさらに備え、
     前記直流電源の陰極電位に接続されている前記多相回転電機の電機子巻線の交流端子は、前記プルダウン抵抗を介して前記第2の内部電源回路の出力端に接続され、
     前記故障判定部は、前記パワー半導体スイッチング素子がすべてオフ状態で、かつ、前記多相回転電機の電機子巻線に誘起電圧が発生していない状態において、相電圧が前記内部電源回路の出力電圧および前記第2の内部電源回路の出力電圧のいずれか一方に等しいときは、当該相が断線していると判定し、相電圧が実質的に前記直流電源の陽極電位に等しいときは天絡故障と判定し、相電圧が実質的に前記直流電源の陰極電位に等しいときは地絡故障と判定する
     ことを特徴とする請求項1~5および7のいずれか1項に記載の電力変換装置。
  9.  前記内部電源回路の出力電圧よりも小さい電圧を出力する第2の内部電源回路をさらに備え、
     前記直流電源の陰極電位に接続されている前記多相回転電機の電機子巻線の交流端子は、前記吸い込み型定電流回路を介して前記第2の内部電源回路の出力端に接続され、
     前記故障判定部は、前記パワー半導体スイッチング素子がすべてオフ状態で、かつ、前記多相回転電機の電機子巻線に誘起電圧が発生していない状態において、相電圧が前記内部電源回路の出力電圧および前記第2の内部電源回路の出力電圧のいずれか一方に等しいときは当該相が断線していると判定し、相電圧が実質的に前記直流電源の陽極電位に等しいときは天絡故障と判定し、相電圧が実質的に前記直流電源の陰極電位に等しいときは地絡故障と判定する
     ことを特徴とする請求項6または7に記載の電力変換装置。
  10.  前記故障判定部は、前記多相回転電機に天絡故障、地絡故障、および、断線故障がないと判定した後、前記駆動回路を介して前記パワー半導体スイッチング素子を個別にオンオフし、前記パワー半導体スイッチング素子が接続されている前記多相回転電機の交流端子の相電圧をもとに、前記パワー半導体スイッチング素子が上アームを構成する場合は前記パワー半導体スイッチング素子をオンしたときの相電圧が前記直流電源の陽極電位未満であれば当該パワー半導体スイッチング素子が駆動不能であると判定し、前記パワー半導体スイッチング素子が下アームを構成する場合は前記パワー半導体スイッチング素子をオンしたときの相電圧が前記直流電源の陰極電位よりも高ければ当該パワー半導体スイッチング素子が駆動不能であると判定することを特徴とする請求項1ないし9のいずれか1項に記載の電力変換装置。
  11.  前記故障判定部は、前記直流電源から前記電力変換装置への配線インダクタンスと前記プルダウン抵抗の抵抗値とで定まるLR回路の時定数に基づいて、前記パワー半導体スイッチング素子をオンしてから、前記多相回転電機の交流端子の相電圧を測定するまでの待ち時間を規定することを特徴とする請求項10に記載の電力変換装置。
  12.  前記故障判定部は、下アームを構成する前記パワー半導体スイッチング素子を先にオンオフして駆動不能の故障判定を行い、その後に、上アームを構成する前記パワー半導体スイッチング素子をオンオフして駆動不能の故障判定を行うことを特徴とする請求項10または11に記載の電力変換装置。
  13.  前記内部電源回路から前記多相回転電機の電機子巻線の交流端子への電流経路を接続または遮断する第1のスイッチ部と、
     前記多相回転電機の電機子巻線の交流端子から前記直流電源の陰極電位への電流経路を接続または遮断する第2のスイッチ部と
     をさらに備え、
     前記第1のスイッチ部および前記第2のスイッチ部は、前記パワー半導体スイッチング素子がすべてオフ状態で、かつ、前記多相回転電機の電機子巻線に誘起電圧が発生していない状態において、電流経路を接続する
     ことを特徴とする請求項1ないし12のいずれか1項に記載の電力変換装置。
  14.  前記プルダウン抵抗の抵抗値は、前記パワー半導体スイッチング素子がオフ状態において前記駆動回路から前記多相回転電機の電機子巻線の交流端子へ流れる漏れ電流と、前記内部電源回路の出力電圧とに基づいて、設定されることを特徴とする請求項1~5,7,8のいずれか1項に記載の電力変換装置。
  15.  前記吸い込み型定電流回路の定電流値は、前記パワー半導体スイッチング素子がオフ状態において、前記駆動回路から前記多相回転電機の電機子巻線の交流端子へ流れる漏れ電流よりも大きく設定することを特徴とする請求項6,7,9のいずれか1項に記載の電力変換装置。
  16.  前記故障判定部は、前記パワー半導体スイッチング素子がすべてオフ状態で、かつ、前記多相回転電機の電機子巻線に誘起電圧が発生していない状態において、前記直流電源の陽極電位が前記多相回転電機の電機子巻線の交流端子電圧以下ならば、故障判定をしない
     ことを特徴とする請求項1ないし15のいずれか1項に記載の電力変換装置。
  17.  パワー半導体スイッチング素子を直列接続して上下アームを構成した相ブリッジ回路を複数個並列接続すると共に、前記相ブリッジ回路の両端が充放電可能な直流電源に接続され、前記相ブリッジ回路の上下アームの前記パワー半導体スイッチング素子どうしの接続点が多相回転電機の電機子巻線の交流端子に接続され、交流-直流電力変換あるいは直流-交流電力変換を行う電力変換装置の故障診断方法であって、
     前記パワー半導体スイッチング素子がすべてオフ状態で、かつ、前記多相回転電機の電機子巻線に誘起電圧が発生していない状態において、内部電源回路により、多相回転電機の電機子巻線に微小電流を流すステップと、
     前記多相回転電機の電機子巻線の相電圧を検出するステップと、
     検出した前記相電圧に基づいて、すべての相電圧が実質的に前記直流電源の陽極電位に等しいか否かを判定し、等しいときは天絡故障と判定するステップと、
     検出した前記相電圧に基づいて、すべての相電圧が実質的に前記直流電源の陰極電位に等しいか否かを判定し、等しいときは地絡故障と判定するステップと、
     検出した前記相電圧に基づいて、すべての相電圧が実質的に同電位であるか否かを判定し、同電位でなければ断線故障と判定するステップと、
     前記天絡故障、前記地絡故障、および、前記断線故障のいずれでもない場合に、故障無しと判定するステップと
     を備えたことを特徴とする電力変換装置の故障診断方法。
PCT/JP2012/078349 2012-11-01 2012-11-01 電力変換装置およびその故障診断方法 WO2014068752A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/430,590 US9564841B2 (en) 2012-11-01 2012-11-01 Power conversion device and method for diagnosing failure thereof
CN201280076803.4A CN104756393B (zh) 2012-11-01 2012-11-01 功率转换装置及其故障诊断方法
EP12887726.3A EP2916448B1 (en) 2012-11-01 2012-11-01 Power conversion device and method for diagnosing failure thereof
PCT/JP2012/078349 WO2014068752A1 (ja) 2012-11-01 2012-11-01 電力変換装置およびその故障診断方法
JP2014544165A JP5823057B2 (ja) 2012-11-01 2012-11-01 電力変換装置およびその故障診断方法
US15/378,110 US9793835B2 (en) 2012-11-01 2016-12-14 Power conversion device and method for diagnosing failure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078349 WO2014068752A1 (ja) 2012-11-01 2012-11-01 電力変換装置およびその故障診断方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/430,590 A-371-Of-International US9564841B2 (en) 2012-11-01 2012-11-01 Power conversion device and method for diagnosing failure thereof
US15/378,110 Division US9793835B2 (en) 2012-11-01 2016-12-14 Power conversion device and method for diagnosing failure thereof

Publications (1)

Publication Number Publication Date
WO2014068752A1 true WO2014068752A1 (ja) 2014-05-08

Family

ID=50626717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078349 WO2014068752A1 (ja) 2012-11-01 2012-11-01 電力変換装置およびその故障診断方法

Country Status (5)

Country Link
US (2) US9564841B2 (ja)
EP (1) EP2916448B1 (ja)
JP (1) JP5823057B2 (ja)
CN (1) CN104756393B (ja)
WO (1) WO2014068752A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077103A (ja) * 2014-10-08 2016-05-12 株式会社デンソー 断線判定装置
WO2016189578A1 (ja) * 2015-05-22 2016-12-01 三菱電機株式会社 通信装置、及び電力変換装置
WO2022019038A1 (ja) * 2020-07-21 2022-01-27 株式会社デンソー 電力変換器の制御回路
JP2023046477A (ja) * 2021-09-24 2023-04-05 三菱電機株式会社 電力変換装置およびその駆動方法
WO2024135346A1 (ja) * 2022-12-19 2024-06-27 ローム株式会社 モータ駆動装置、モータシステム、および車両

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CO7050216A1 (es) * 2013-03-05 2014-09-10 Univ Nac De Colombia Método y sistema para la detección y diagnóstico de fallas de máquinas eléctricas en operación
JP6819238B2 (ja) * 2016-11-21 2021-01-27 株式会社デンソー 配線異常検出装置
US11050362B2 (en) * 2017-12-04 2021-06-29 Mitsubishi Electric Corporation Power conversion device and abnormality detection method
DE102019200470B4 (de) * 2019-01-16 2020-08-06 Vitesco Technologies GmbH Vorrichtung und Verfahren zur Funktionsprüfung eines Antennensystems zur Fremdmetallerkennung
US11841385B2 (en) * 2021-01-14 2023-12-12 Nissan Motor Co., Ltd. Diagnostic method and diagnostic device of three-phase alternating current motor
CN114487917B (zh) * 2022-01-25 2023-03-24 南京航空航天大学 电励磁双凸极电机变换器功率管及绕组开路故障诊断方法
CN114779017B (zh) * 2022-05-16 2023-04-18 电子科技大学 一种同送同受系统同时换相失败预测方法
CN117665513A (zh) * 2022-08-25 2024-03-08 安徽威灵汽车部件有限公司 信号检测电路、检测方法、电机控制器、压缩机及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278087A (ja) * 2000-03-31 2001-10-10 Toyoda Mach Works Ltd 伝達比可変操舵装置
JP2007060762A (ja) * 2005-08-23 2007-03-08 Mitsubishi Electric Corp 負荷駆動システムの故障検出装置
JP4385068B2 (ja) 2007-11-07 2009-12-16 三菱電機株式会社 交流発電機の故障検出装置
JP2012039740A (ja) * 2010-08-06 2012-02-23 Denso Corp 電力変換装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359236B3 (de) * 2003-12-17 2005-05-25 Siemens Ag Anordnung zur Prüfung einer Leistungsendstufe
CN101667808B (zh) * 2006-04-20 2012-10-17 株式会社电装 多相旋转电机的控制系统
JP5057908B2 (ja) * 2007-09-13 2012-10-24 オムロンオートモーティブエレクトロニクス株式会社 多相交流モータ駆動装置
JP5142917B2 (ja) * 2008-09-26 2013-02-13 オムロンオートモーティブエレクトロニクス株式会社 多相モータ駆動装置
JP5584994B2 (ja) * 2009-04-09 2014-09-10 日産自動車株式会社 インバータの故障診断装置
JP2011067065A (ja) * 2009-09-18 2011-03-31 Omron Automotive Electronics Co Ltd モータ駆動装置
JP2011250533A (ja) * 2010-05-25 2011-12-08 Kyocera Corp 負荷回路の駆動装置、およびその故障検知方法、ならびにシートベルトリトラクタ
JP2012029462A (ja) * 2010-07-23 2012-02-09 Denso Corp 電力変換装置
JP5146555B2 (ja) * 2011-02-28 2013-02-20 株式会社デンソー スイッチング素子の駆動回路
JP2013187978A (ja) * 2012-03-07 2013-09-19 Denso Corp 回転電機制御装置、および、これを用いた電動パワーステアリング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278087A (ja) * 2000-03-31 2001-10-10 Toyoda Mach Works Ltd 伝達比可変操舵装置
JP2007060762A (ja) * 2005-08-23 2007-03-08 Mitsubishi Electric Corp 負荷駆動システムの故障検出装置
JP4385068B2 (ja) 2007-11-07 2009-12-16 三菱電機株式会社 交流発電機の故障検出装置
JP2012039740A (ja) * 2010-08-06 2012-02-23 Denso Corp 電力変換装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077103A (ja) * 2014-10-08 2016-05-12 株式会社デンソー 断線判定装置
WO2016189578A1 (ja) * 2015-05-22 2016-12-01 三菱電機株式会社 通信装置、及び電力変換装置
JPWO2016189578A1 (ja) * 2015-05-22 2017-08-17 三菱電機株式会社 通信装置、及び電力変換装置
US10496576B2 (en) 2015-05-22 2019-12-03 Mitsubishi Electric Corporation Communication apparatus
WO2022019038A1 (ja) * 2020-07-21 2022-01-27 株式会社デンソー 電力変換器の制御回路
JP2022021225A (ja) * 2020-07-21 2022-02-02 株式会社デンソー 電力変換器の制御回路
JP7318605B2 (ja) 2020-07-21 2023-08-01 株式会社デンソー 電力変換器の制御回路
JP2023046477A (ja) * 2021-09-24 2023-04-05 三菱電機株式会社 電力変換装置およびその駆動方法
WO2024135346A1 (ja) * 2022-12-19 2024-06-27 ローム株式会社 モータ駆動装置、モータシステム、および車両

Also Published As

Publication number Publication date
JPWO2014068752A1 (ja) 2016-09-08
EP2916448A4 (en) 2017-04-12
EP2916448B1 (en) 2018-10-31
US9793835B2 (en) 2017-10-17
CN104756393B (zh) 2017-03-08
US20150280623A1 (en) 2015-10-01
US9564841B2 (en) 2017-02-07
CN104756393A (zh) 2015-07-01
US20170093311A1 (en) 2017-03-30
EP2916448A1 (en) 2015-09-09
JP5823057B2 (ja) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5823057B2 (ja) 電力変換装置およびその故障診断方法
US10541539B1 (en) Converter, inverter, AC motor driving apparatus, and air conditioner using the same
US11135932B2 (en) Electric charging control device
JP6048993B2 (ja) 界磁巻線方式回転電機の診断装置および界磁巻線方式回転電機の診断方法
JP4961045B1 (ja) モータ駆動装置
US10144298B2 (en) Power supply device of vehicle
US10191101B2 (en) System and method for detecting ground fault in a dc system
US11239756B2 (en) Troubleshooting method and apparatus for power supply device
US9692314B2 (en) Detection circuit and three-phase AC-to-AC power converting apparatus incorporating the same
JP2013219955A (ja) 電源装置
KR20160081058A (ko) Pra의 상태 감지방법
JP2016039703A (ja) 漏電保護装置及び給電制御装置
US20230188078A1 (en) Drive device and method for operating an electrical machine
US9928955B2 (en) Zero-phase-sequence current transformer, ground fault current detection device, power conditioner, and method for detecting malfunction of zero-phase-sequence current transformer
JP2009033790A (ja) 充電監視装置
JP2012115006A (ja) 充電装置
JP5464452B2 (ja) モータ駆動装置
JP5667915B2 (ja) 直流電源装置
JP7386145B2 (ja) 絶縁抵抗検出部の保護機能付モータ制御装置及びその保護方法
JP2008206229A (ja) 直流地絡検出装置および2重化直流電源回路
JP2007151358A (ja) 直流電圧降圧回路および電力変換装置
US9337673B2 (en) Battery charging apparatus and method of controlling battery charging apparatus
JP2017099049A (ja) 配電システム及び制御装置
JP2015082867A (ja) 高電圧電源回路の制御装置
KR20190065627A (ko) 정류기 다이오드의 고장 검출이 가능한 배터리 충전기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544165

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14430590

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012887726

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE