WO2014065082A1 - リチウム空気電池正極用炭素材料及びリチウム空気電池 - Google Patents

リチウム空気電池正極用炭素材料及びリチウム空気電池 Download PDF

Info

Publication number
WO2014065082A1
WO2014065082A1 PCT/JP2013/076554 JP2013076554W WO2014065082A1 WO 2014065082 A1 WO2014065082 A1 WO 2014065082A1 JP 2013076554 W JP2013076554 W JP 2013076554W WO 2014065082 A1 WO2014065082 A1 WO 2014065082A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
carbon material
lithium
air battery
carbon
Prior art date
Application number
PCT/JP2013/076554
Other languages
English (en)
French (fr)
Inventor
飯坂 浩文
武亮 岸本
Original Assignee
トヨタ自動車株式会社
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 日清紡ホールディングス株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112013005116.8T priority Critical patent/DE112013005116B4/de
Priority to KR1020157010359A priority patent/KR101599693B1/ko
Priority to US14/437,562 priority patent/US9368849B2/en
Priority to CN201380055410.XA priority patent/CN104756310B/zh
Publication of WO2014065082A1 publication Critical patent/WO2014065082A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbon material constituting a positive electrode of a lithium air battery, and a lithium air battery including a positive electrode including the carbon material.
  • An air battery using oxygen as a positive electrode active material has advantages such as high energy density, easy size reduction and weight reduction. Therefore, it is attracting attention as a high-capacity battery that exceeds the lithium secondary battery that is currently widely used.
  • air batteries lithium air batteries are actively researched because of their high capacity.
  • the lithium-air battery can be charged and discharged by an oxygen redox reaction at the positive electrode (air electrode) and a lithium redox reaction at the negative electrode. In the lithium air secondary battery, it is considered that the following charge / discharge reaction proceeds.
  • Negative electrode Li ⁇ Li + + e ⁇ Positive electrode: 2Li + + O 2 + 2e ⁇ ⁇ Li 2 O 2 4Li + + O 2 + 4e ⁇ ⁇ 2Li 2 O [When charging] Negative electrode: Li + + e ⁇ ⁇ Li Positive electrode: Li 2 O 2 ⁇ 2Li + + O 2 + 2e ⁇ 2Li 2 O ⁇ 4Li + + O 2 + 4e ⁇
  • Lithium-air batteries are, for example, a positive electrode containing a carbon material and a binder, a positive electrode current collector that collects the positive electrode, a negative electrode containing a negative electrode active material (metal, alloy, etc.), and a negative electrode current collector. A negative electrode current collector, and an electrolyte interposed between the positive electrode and the negative electrode.
  • the positive electrode may contain a catalyst.
  • Patent Literature 1 describes a lithium-air battery including a positive electrode including carbon and a binder as constituent elements.
  • Patent Document 2 describes a method for producing an oxygen reduction catalyst.
  • an oxygen reduction catalyst comprising a transition metal oxide in which an oxygen defect is introduced into the surface and a part of oxygen atoms on the surface is substituted with at least one of a carbon atom and a nitrogen atom to expand a crystal lattice.
  • a manufacturing method is disclosed.
  • Patent Document 3 discloses a fuel cell catalyst for an air electrode of a fuel cell.
  • the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a lithium-air battery positive electrode carbon material exhibiting a higher capacity than conventional carbon materials, and lithium air including the carbon material. It is to provide a battery.
  • the carbon material for a lithium-air battery positive electrode of the present invention is a carbon material constituting a positive electrode of a lithium-air battery, contains nitrogen in a molar ratio of 1.9 ⁇ 10 ⁇ 2 or more with respect to carbon, and is glassy. It is characterized by this. According to the carbon material for a positive electrode of a lithium air battery of the present invention, the discharge capacity of the lithium air battery can be improved.
  • a particularly high discharge capacity can be obtained when the molar ratio of nitrogen to carbon is 1.90 ⁇ 10 ⁇ 2 to 2.10 ⁇ 10 ⁇ 2 . Further, in the carbon material for a positive electrode of the lithium air battery of the present invention, when the molar ratio of nitrogen to carbon is 1.95 ⁇ 10 ⁇ 2 to 2.25 ⁇ 10 ⁇ 2 , the discharge capacity is improved and the Coulomb efficiency is improved. Can also be improved.
  • the carbon material for a positive electrode of the lithium air battery of the present invention contains pyrrole and the molar ratio of pyrrole to carbon is 1.44 ⁇ 10 ⁇ 2 to 1.52 ⁇ 10 ⁇ 2 , a particularly high discharge capacity can be obtained. Can do. Further, when the carbon material for the positive electrode of the lithium air battery of the present invention contains pyridine and the molar ratio of pyridine to carbon is 0.47 ⁇ 10 ⁇ 2 to 0.50 ⁇ 10 ⁇ 2 , a high discharge capacity can be obtained. However, the coulomb efficiency can be improved.
  • the lithium-air battery of the present invention is a lithium-air battery including a positive electrode, a negative electrode, and an electrolyte interposed between the positive electrode and the negative electrode, wherein the positive electrode contains the carbon material of the present invention.
  • the lithium air battery of the present invention can exhibit excellent discharge characteristics as compared with the conventional battery.
  • the carbon material of the present invention is superior in discharge capacity as compared with the conventional carbon material constituting the lithium air battery, and can contribute to the improvement of discharge characteristics of the lithium air battery.
  • FIG. 3 is a diagram showing a manufacturing process flow of a positive electrode in Examples 1 to 4 and Comparative Example 1.
  • 6 is a graph showing the relationship between the firing temperature and the G / D ratio in Examples 1 to 4 and Comparative Example 1.
  • 6 is a graph showing the relationship between the firing temperature of Examples 1 to 4 and Comparative Example 1 and the 002 plane spacing.
  • 6 is a graph showing the relationship between the firing temperatures of Examples 1 to 4 and Comparative Example 1 and the sizes of a-axis crystallites and c-axis crystallites.
  • FIG. 6 is a graph showing the relationship between the firing temperature and electrical resistance in Examples 1 to 4 and Comparative Example 1. It is a TEM photograph of the carbon material surface of Example 3 (8A) and Comparative Example 1 (8B).
  • FIG. 3 is a schematic cross-sectional view of lithium-air battery cells used in charge / discharge tests of Examples 1 to 4 and Comparative Examples 1 and 2.
  • 6 is a graph showing the Coulomb efficiency and discharge capacity of Examples 1 to 4 and Comparative Example 1. It is a SEM photograph of the positive electrode surface after discharge (11A) of Example 1 and after charge (11B). It is a SEM photograph of the positive electrode surface after discharge (12A) and after charge (12B) of Comparative Example 1.
  • the carbon material for a positive electrode of a lithium air battery of the present invention (hereinafter sometimes simply referred to as a carbon material) is a carbon material constituting a positive electrode of a lithium air battery, and nitrogen is 1.9 ⁇ in a molar ratio with respect to carbon. It is characterized by containing 10 ⁇ 2 or more and being glassy.
  • the inventors of the present invention can improve the discharge capacity by using a glassy carbon material containing a specific amount of nitrogen to form a positive electrode of a lithium-air battery as compared with the case of using a conventional carbon material. I found it. Specifically, when a positive electrode was formed of glassy carbon containing nitrogen of 1.9 ⁇ 10 ⁇ 2 or more in molar ratio to carbon (Examples 1 to 4), nitrogen was contained as shown in FIG. It was confirmed by the present inventors that the discharge capacity is increased by a factor of 2 or more, and further by a factor of 7 or more, compared with the case where no glassy carbon material (Comparative Example 1) is used.
  • FIG. 1 shows a schematic diagram (1A) of the surface of the carbon material of the present invention when charged after discharge and after discharge (after charge), and conventional nitrogen when charged after discharge and after discharge (after charge).
  • the schematic diagram (1B) of the carbon material surface which does not contain is shown. As shown in FIG. 1B, on the surface of a conventional carbon material not containing nitrogen, the precipitate 1 generated by the discharge grows largely without being hindered.
  • the growth of the precipitate 1 is suppressed by nitrogen and the precipitate produced
  • the discharge capacity is improved by generating many small precipitates on the surface of the carbon material of the present invention.
  • the precipitates generated by the discharge are small and many in comparison with the carbon material not containing nitrogen (see FIG. 11 described later). 11A and 12A in FIG. 12).
  • the carbon material of the present invention is used as a material constituting the positive electrode of a lithium air battery.
  • the lithium air battery will be described in detail in the section “Lithium air battery” described later.
  • the carbon material of the present invention is characterized in that it first contains nitrogen and the nitrogen content is 1.9 ⁇ 10 ⁇ 2 or more in terms of a molar ratio to carbon.
  • the molar ratio of nitrogen to carbon (hereinafter sometimes referred to as N / C ratio) in the carbon material can be measured by X-ray photoelectron spectroscopy (XPS method). Specifically, the ratio of the number of nitrogen atoms to the number of carbon atoms can be calculated by measuring the atomic spectrum of nitrogen and carbon by XPS.
  • the N / C ratio is preferably 2.28 ⁇ 10 ⁇ 2 or less from the viewpoint of reducing the machining load. Further, from the viewpoint that a particularly high discharge capacity can be obtained, the N / C ratio is 2.10 ⁇ 10 ⁇ 2 or less, particularly 2.05 ⁇ 10 ⁇ 2 or less, and further 2.00 ⁇ 10 ⁇ 2 or less. It is preferably 1.90 ⁇ 10 ⁇ 2 or more, particularly 1.94 ⁇ 10 ⁇ 2 or more, more preferably 1.95 ⁇ 10 ⁇ 2 or more.
  • the N / C ratio is 2.25 ⁇ 10 ⁇ 2 or less, particularly 2.20 ⁇ 10 ⁇ 2 or less, and further 2.19 ⁇ 10 ⁇ It is preferably 2 or less, more preferably 1.95 ⁇ 10 ⁇ 2 or more, particularly 1.98 ⁇ 10 ⁇ 2 or more, and further preferably 2.00 ⁇ 10 ⁇ 2 or more.
  • the carbon material of the present invention is characterized by being a glassy carbon material.
  • the glassy carbon material is obtained by carbonizing a thermosetting resin by heat treatment at a high temperature, and is formed by crystallizing hexagonal network surfaces, which are the basic structure of graphite, in a non-oriented manner.
  • the glassy carbon material can be confirmed by observation with a transmission electron microscope (TEM). Specifically, in the case of a glassy carbon material, as described above, it can be confirmed that the crystallites are not oriented and a glassy complex network structure is formed (FIG. 8). 8A). In TEM observation, the network structure can be confirmed by setting the magnification to 10,000 to 100,000.
  • TEM transmission electron microscope
  • the carbon material of the present invention has a structure in which a nitrogen atom is doped in the carbon skeleton, and the position of the nitrogen atom is not particularly limited, but for example, cyanide type, graphite type, oxide, pyridine type, pyrrole type, etc. Can be mentioned.
  • the molar ratio of pyrrole to carbon is 1.44 ⁇ 10 ⁇ 2 or more. Particularly, it is preferably 1.46 ⁇ 10 ⁇ 2 or more, more preferably 1.47 ⁇ 10 ⁇ 2 or more.
  • the pyrrole / C ratio is preferably 1.52 ⁇ 10 ⁇ 2 or less, particularly preferably 1.50 ⁇ 10 ⁇ 2 or less, and more preferably 1.48 ⁇ 10 ⁇ 2 or less. preferable. This is because a particularly high discharge capacity can be obtained when the pyrrole / C ratio is within the above range.
  • the molar ratio of pyridine to carbon (hereinafter sometimes referred to as pyridine / C ratio) is 0.47 ⁇ 10 ⁇ 2 or more. Particularly preferred is 0.48 ⁇ 10 ⁇ 2 or more.
  • the pyridine / C ratio is preferably 0.50 ⁇ 10 ⁇ 2 or less, particularly preferably 0.49 ⁇ 10 ⁇ 2 or less, and more preferably 0.48 ⁇ 10 ⁇ 2 or less. preferable. This is because, when the pyridine / C ratio is within the above range, the coulombic efficiency can be improved while increasing the discharge capacity.
  • the pyridine / C ratio is preferably 0.48 ⁇ 10 ⁇ 2 .
  • G / D ratio is preferably 1.5 or less, particularly 1 or less, and more preferably 0.7 or less. This is presumably because the smaller the G / D ratio, the smaller the amount of carbon defects (higher crystallinity), and the easier it is to generate discharge deposits.
  • the Raman spectrum measurement can be performed according to a general method, but specifically, it is preferably performed as follows. That is, it is preferable to irradiate the surface of the sample with laser light, to split the light scattered backward (in the direction opposite to the incident direction) and measure the Raman spectrum with the CCD.
  • the average interval of the 002 plane in the X-ray diffraction analysis is preferably in the range of 3.7 to 4.2 mm, particularly 3.75 to 4.1 mm. .
  • Measurement of the average spacing of the 002 planes in X-ray diffraction analysis can be performed in accordance with a general method, for example, in accordance with “Measurement method of lattice constant and crystallite size of carbon material” of JIS R7651. Can do.
  • the carbon material of the present invention has a crystallite size in the a-axis direction in the X-ray diffraction analysis in the range of 22 to 27 mm, particularly in the range of 22.5 to 26.3 mm, in the c-axis direction.
  • the crystallite size is preferably in the range of 11 to 16 mm, particularly 12.5 to 15 mm.
  • the measurement of the crystallite size in the a-axis direction and the c-axis direction in the X-ray diffraction analysis can be performed in accordance with a general method. For example, “Method of measuring the lattice constant of carbon material and crystallite size in JIS R7651 It can measure according to.
  • the method for producing the carbon material of the present invention is not particularly limited, and examples thereof include the following methods. That is, it can be produced by heating a nitrogen-containing thermosetting resin at 100 to 3000 ° C. for 1 to 100 hours for carbonization.
  • the nitrogen-containing thermosetting resin include, for example, polycalpositimide resin, nitrogen-containing phenol resin, nitrogen-containing epoxy resin, nitrogen-containing furan resin, polyimide resin, polyamide resin, polyamideimide resin, melamine resin, polyacrylonitrile resin, nitrogen-containing Examples thereof include unsaturated polyester resins and copolymers of monomers that can be copolymerized with the repeating units constituting these resins.
  • nitrogen-containing phenol resins nitrogen-containing furan resins, nitrogen-containing furfural-phenol copolymers, and the like are preferable. Only one type of nitrogen-containing thermosetting resin may be used, or a plurality of types may be used in combination.
  • a curing agent can be used together with the nitrogen-containing thermosetting resin. Examples of the curing agent include sulfuric acid, hydrochloric acid, nitric acid and the like. Since the curing agent can cause contamination of impurities and defects, the amount used is preferably as small as possible. For example, it is preferably 10 wt% or less in the raw material.
  • the carbon material of the present invention can also be produced by blending a nitrogen-containing thermoplastic resin with a curing agent to impart thermosetting property and heating and carbonizing the thermoplastic resin.
  • a nitrogen-containing novolak type phenol resin etc. are mentioned as a thermoplastic resin
  • a hexamethylenetetramine etc. are mentioned as a hardening
  • a nitrogen-containing thermosetting resin Prior to carbonization, a nitrogen-containing thermosetting resin can be formed.
  • the molding method of the nitrogen-containing thermosetting resin is not particularly limited, and may be appropriately selected so that a desired shape can be imparted. Examples thereof include roll-to-roll, press molding, centrifugal molding, cast molding, injection molding, extrusion molding, and pressure molding.
  • the formed nitrogen-containing thermosetting resin is preferably heat-treated in an oxygen atmosphere and infusible for fixing the shape as necessary.
  • the oxygen atmosphere in the infusibilization treatment the oxygen concentration is preferably about 10 to 90 vol%, and the heating temperature is preferably about 50 to 500 ° C.
  • the nitrogen-containing glassy carbon material obtained by carbonization of a nitrogen-containing thermosetting resin has, for example, a plate shape, a foil shape, etc.
  • it can be used as it is as a positive electrode.
  • the processing load can be reduced by giving a shape in advance prior to the carbonization treatment.
  • the outer shape is further adjusted to the outer shape of the positive electrode by cutting, polishing, or the like.
  • the heating temperature of the nitrogen-containing thermosetting resin is not particularly limited as long as it can be carbonized, but is preferably 300 to 3000 ° C, particularly preferably 600 to 1500 ° C. If the heating temperature is too low, the orientation of the crystallites is low, and sufficient battery characteristics may not be obtained. On the other hand, if the temperature is too high, the amount of nitrogen removed is large and the desired N / C ratio cannot be obtained. Carbonization is preferably performed in a vacuum (for example, 0.1 MPa or less). The N / C ratio, the pyrrole / C ratio, the G / D ratio, the crystallite size in the a-axis direction and the c-axis method direction, and the 002 plane spacing can be controlled by the heating conditions during carbonization.
  • the heating temperature by increasing the heating temperature, the G / D ratio and the 002 plane spacing can be reduced. Also, by increasing the heating temperature, the crystallite size in the a-axis direction and the c-axis direction increases. It is also conceivable that by increasing the heating temperature (for example, 800 ° C. or higher), the regularity of the orientation of crystallites increases, carbon nanoshells are formed, and battery characteristics are improved. Furthermore, there is a tendency that the electrical resistance decreases by increasing the heating temperature.
  • the heating in the carbonization of the nitrogen-containing thermosetting resin is preferably performed at a temperature increase rate of 5 to 10 ° C./min, for example. This is because regularity can be increased by the orientation of the crystallites by heating relatively slowly as described above.
  • the obtained nitrogen-containing glassy carbon material as a positive electrode it is preferable to perform mirror polishing in order to improve the flatness of the positive electrode surface.
  • the mirror polishing method include mirror finish polishing using water, alumina abrasive grains, and a polishing aid.
  • the dimensional tolerance of the surface by mirror polishing is preferably in the range of about 0.05 to 0.10 mm.
  • impurities, polishing debris, or the like may adhere to the surface of the nitrogen-containing glassy carbon material after carbonization or mirror polishing.
  • a method of removing these there is a method of removing metal impurities by heating at a high temperature (for example, 2000 to 3000 ° C.) in a chlorine gas atmosphere or a hydrogen chloride gas atmosphere. Then, the nitrogen component is desorbed. Therefore, it is preferable to perform the treatment at a temperature lower than the heating temperature for carbonization and shorter than the heating time for carbonization.
  • a high temperature for example, 2000 to 3000 ° C.
  • the carbon material of the present invention can be used as it is as a positive electrode in the case of a plate or foil.
  • a powdery or fibrous carbon material or when a plate or foil-like carbon material is pulverized, combine the other components such as a binder, a conductive aid, and a catalyst as appropriate to form a positive electrode. Can be formed.
  • the carbon material of the present invention is particularly effective as a material constituting the positive electrode of a lithium air battery.
  • the lithium air battery provided with the positive electrode containing the carbon material of this invention is demonstrated.
  • a positive electrode (air electrode) 2 using oxygen as an active material a negative electrode 3 made of Li metal, and an electrolyte 4 that conducts Li ions between the positive electrode 2 and the negative electrode 3
  • the battery case is composed of a positive electrode can 6 and a negative electrode can 7.
  • the positive electrode can 6 and the negative electrode can 7 are fixed by a gasket 8, and the battery case is sealed.
  • the positive electrode 2 is a place for oxygen oxidation-reduction reaction, and is supplied with air (oxygen) taken in from an air hole 9 provided in the positive electrode can 6.
  • the positive electrode 2 includes at least the carbon material of the present invention.
  • the positive electrode 2 is provided with a positive electrode current collector 5 that collects current from the positive electrode 2.
  • the positive electrode current collector 5 is made of a conductive material (for example, a metal mesh) having a porous structure, and air (oxygen) taken in from the air holes 9 passes through the positive electrode current collector 5 to the positive electrode 2. Supply is possible.
  • the negative electrode 3 contains Li metal as a negative electrode active material, and can occlude / release Li ions as conductive ion species.
  • the electrolyte 4 is obtained by using a supporting electrolyte salt (for example, a Li salt such as LiN (SO 2 CF 3 ) 2 ) in a non-aqueous solvent (for example, N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) amide). Contains dissolved electrolyte.
  • a separator having an insulating property and a porous structure is disposed between the positive electrode 2 and the negative electrode 3 (not shown), and the electrolyte is impregnated in the porous portion of the separator.
  • the positive electrode contains at least the carbon material of the present invention.
  • the positive electrode may be composed only of the carbon material of the present invention.
  • the positive electrode can be formed using only the carbon material of the present invention.
  • the carbon material of the present invention in the form of powder or fiber can be molded using a binder. Since the carbon material of the present invention has already been described, the description thereof is omitted here.
  • the content of the carbon material of the present invention in the positive electrode is not particularly limited.
  • the content is 100 wt%. It becomes.
  • the powdery or fibrous carbon material of the present invention when used, its content is preferably 40 to 95 wt%, and particularly preferably 55 to 90 wt%. If the carbon material content is less than 40 wt%, the positive electrode is not sufficiently conductive, the internal resistance is increased, and the output may be reduced. Moreover, when the content rate of a carbon material exceeds 95 wt%, there exists a possibility that the shape stability of a positive electrode may become inadequate.
  • the positive electrode may contain a conductive material other than the carbon material of the present invention, a binder, a catalyst, and the like as necessary.
  • the binder include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), and styrene / butadiene rubber (SBR rubber).
  • the content ratio of the binder in the positive electrode is not particularly limited, but is preferably 5 to 60% by weight when the total weight of the positive electrode is 100 wt%.
  • the conductive material only needs to have conductivity, and examples thereof include carbon black such as ketjen black and acetylene black, and conductive carbon materials such as carbon fibers such as carbon nanotubes.
  • the catalyst examples include a platinum group such as nickel, palladium and platinum; a perovskite oxide containing a transition metal such as cobalt, manganese or iron; an inorganic compound containing a noble metal oxide such as ruthenium, iridium or palladium; Examples thereof include metal coordination organic compounds having a skeleton or a phthalocyanine skeleton; inorganic ceramics such as manganese dioxide (MnO 2 ) and cerium oxide (CeO 2 ); and composite materials obtained by mixing these materials.
  • a platinum group such as nickel, palladium and platinum
  • a perovskite oxide containing a transition metal such as cobalt, manganese or iron
  • an inorganic compound containing a noble metal oxide such as ruthenium, iridium or palladium
  • metal coordination organic compounds having a skeleton or a phthalocyanine skeleton
  • inorganic ceramics such as manganese dioxide (MnO 2 ) and cerium oxide (
  • the thickness of the positive electrode varies depending on the use of the lithium-air battery, but is preferably in the range of 2 ⁇ m to 500 ⁇ m, particularly in the range of 5 ⁇ m to 300 ⁇ m.
  • the positive electrode may include a positive electrode current collector that collects current from the positive electrode, if necessary.
  • the material of the positive electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include stainless steel, nickel, aluminum, iron, titanium, and carbon.
  • Examples of the shape of the positive electrode current collector include a foil shape, a plate shape, and a fiber shape, and a porous shape such as a nonwoven fabric and a mesh (grid). When a porous current collector is used, the positive electrode and the current collector may be laminated as shown in FIG. 2, or the current collector may be disposed inside the positive electrode.
  • the battery case mentioned later may have the function of a positive electrode electrical power collector.
  • the thickness of the positive electrode current collector is, for example, preferably in the range of 10 ⁇ m to 1000 ⁇ m, and more preferably in the range of 20 ⁇ m to 400 ⁇ m.
  • the manufacturing method of the positive electrode provided with the positive electrode current collector is not particularly limited.
  • the plate-like or foil-like carbon material of the present invention and the positive electrode current collector are overlapped, and appropriately pressed and laminated.
  • Examples thereof include a method, or a method in which at least a carbon material of the present invention and, if necessary, a positive electrode material paste mixed with a binder or the like are applied to the surface of the positive electrode current collector and dried.
  • coating and drying the said positive electrode material paste with a positive electrode electrical power collector, pressing suitably, heating etc. suitably is also mentioned.
  • the solvent for the positive electrode material paste is not particularly limited as long as it has volatility, and can be appropriately selected. Specific examples include ethanol, acetone, N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) and the like.
  • the method for applying the positive electrode material paste is not particularly limited, and general methods such as a doctor blade and a spray method can be used.
  • the negative electrode contains a negative electrode active material capable of releasing and taking in lithium ions.
  • the negative electrode active material include lithium metal, an alloy material containing a lithium element, and a lithium compound.
  • carbon materials, such as graphite, and the carbon material of this invention can also be used as a negative electrode active material.
  • lithium metal is preferable because a high capacity and a high potential can be obtained.
  • the alloy containing lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.
  • the lithium compound include oxides such as lithium titanium oxide, nitrides such as lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
  • the negative electrode may contain only the negative electrode active material, or may contain at least one of a conductive material and a binder in addition to the negative electrode active material.
  • a negative electrode layer containing only the negative electrode active material can be obtained.
  • the negative electrode active material is in a powder form, a negative electrode layer containing a negative electrode active material and a binder can be obtained.
  • the conductive material and the binder are the same as those described in the above-mentioned “positive electrode”, and thus the description thereof is omitted here.
  • the negative electrode may be provided with a negative electrode current collector that collects current from the negative electrode.
  • the material of the negative electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include copper, stainless steel, nickel, and carbon.
  • Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape.
  • a battery case to be described later may have the function of a negative electrode current collector.
  • the manufacturing method of the negative electrode is not particularly limited. For example, there is a method in which a foil-like negative electrode active material and a negative electrode current collector are superposed and pressed. Another method includes preparing a negative electrode material mixture containing a negative electrode active material and a binder, and applying and drying the mixture on a negative electrode current collector.
  • the electrolyte is held between the positive electrode and the negative electrode, and has a function of conducting lithium ions between the positive electrode and the negative electrode.
  • the electrolyte is not limited in its form as long as it has lithium ion conductivity.
  • an electrolytic solution, a solid electrolyte, a gel electrolyte, or the like can be used.
  • the electrolytic solution is obtained by dissolving an electrolyte salt in a solvent, and either a non-aqueous electrolytic solution obtained by dissolving an electrolyte salt in a non-aqueous solvent or an aqueous electrolytic solution obtained by dissolving an electrolyte salt in an aqueous solvent may be used.
  • the nonaqueous electrolytic solution contains a lithium salt and a nonaqueous solvent.
  • the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4, and LiAsF 6 ; LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 [abbreviation Li-TFSA], LiN (SO 2 C 2 F 5 ) Organic lithium salts such as 2 and LiC (SO 2 CF 3 ) 3 can be mentioned.
  • non-aqueous solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethyl carbonate, butylene carbonate, ⁇ -butyrolactone, sulfolane, Examples thereof include acetonitrile, 1,2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, and mixtures thereof.
  • an ionic liquid can also be used as a non-aqueous solvent.
  • ionic liquid examples include N, N, N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) amide [abbreviation: TMPA-TFSA], N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl).
  • the ionic liquid tends to have a high viscosity and can be said to be preferable from the viewpoint of preventing leakage of the electrolytic solution.
  • the concentration of the lithium salt in the non-aqueous electrolyte solution can be set in the range of 0.3 mol / L to 3 mol / L, for example.
  • a non-aqueous gel electrolyte can be obtained by adding a polymer to the non-aqueous electrolyte and gelling.
  • the polymer used for gelation of the non-aqueous electrolyte include polyethylene oxide (PEO), polyacrylonitrile (PAN), and polymethyl methacrylate (PMMA).
  • the aqueous electrolyte include an aqueous electrolytic solution in which lithium salt is contained in water.
  • the lithium salt include LiOH, LiCl, LiNO 3 , and CH 3 CO 2 Li.
  • the solid electrolyte for example, a Li—La—Ti—O based solid electrolyte can be used.
  • a separator made of an insulating porous material can be disposed between the positive electrode and the negative electrode.
  • a separator made of an insulating porous body with an electrolyte, insulation between the positive electrode and the negative electrode and lithium ion conductivity can be ensured.
  • a separator is interposed between the positive electrode and the negative electrode belonging to different laminates from the viewpoint of safety. It is preferable to have.
  • the separator include porous films such as polyethylene and polypropylene; and nonwoven fabrics such as a resin nonwoven fabric and a glass fiber nonwoven fabric.
  • Lithium-air batteries usually have a battery case that houses a positive electrode, a negative electrode, an electrolyte, and the like.
  • the shape of the battery case include a coin type, a flat plate type, a cylindrical type, and a laminate type.
  • the battery case may be an open type having holes (air holes) that allow oxygen to be taken in from the outside, or may be a sealed type.
  • the open battery case has a structure in which at least the positive electrode can sufficiently come into contact with the oxygen-containing gas.
  • an oxygen-containing gas introduction pipe and an exhaust pipe can be provided in the sealed battery case. Examples of the oxygen-containing gas supplied to the positive electrode include pure oxygen and air, and pure oxygen is preferable because the oxygen concentration is preferably high.
  • a carbon material was produced as follows.
  • a liquid nitrogen-containing resol type phenol resin (trade name: Phenolite, manufactured by DIC Corporation) (nitrogen-containing thermosetting resin material), sulfuric acid as a curing agent, and 90:10 (wt) %).
  • a mixture of a nitrogen-containing resol type phenolic resin and sulfuric acid was formed into a sheet shape. A plurality of the obtained sheets were stacked and formed by a roll-to-roll method. After molding, in an oxygen atmosphere (oxygen concentration 60 vol%), heat treatment (heated at 300 ° C.
  • Example 1 600 ° C.
  • Example 2 800 ° C.
  • Example 3 1000 ° C.
  • Example 4 1500 ° C.
  • Comparative Example 1 3000 ° C.
  • the mirror polishing was performed using 10% of crushed alumina abrasive grains having an average particle diameter of 2 ⁇ m or less dispersed in a polishing liquid containing water and a polishing aid.
  • the mirror state of the surface was confirmed with an image measuring machine. Moreover, when the tolerance was measured with a micrometer, the outer diameter was 0.2 mm and the thickness was 0.1 mm.
  • N / C ratio The molar ratio (N / C ratio) between nitrogen and carbon contained in the carbon material was measured by X-ray photoelectron spectroscopy (Shimadzu Corporation, ESCA-3300). The results are shown in Table 1.
  • the molar ratio of pyrrole and carbon contained in the carbon material was measured as follows. The results are shown in Table 1.
  • the N / C ratio was measured by X-ray photoelectron spectroscopy (XPS method).
  • XPS method X-ray photoelectron spectroscopy
  • the N1s spectrum was subjected to multiple peak separation into four components of pyridine component, pyrrole component, oxide component, and quaternary component by XPS method, and the pyrrole ratio (pyrrole / N ratio) in nitrogen was calculated.
  • the pyrrole / C ratio was calculated from the measured N / C ratio and pyrrole / N ratio.
  • the molar ratio of pyridine and carbon (pyridine / C ratio) contained in the carbon material was measured as follows. The results are shown in Table 1.
  • the N / C ratio was measured by X-ray photoelectron spectroscopy (XPS method).
  • XPS method X-ray photoelectron spectroscopy
  • the N1s spectrum was subjected to multiple peak separation into 4 components of pyridine component, pyrrole component, oxide component and quaternary component by XPS method, and the pyridine ratio (pyridine / N ratio) in nitrogen was calculated.
  • the pyridine / C ratio was calculated from the measured N / C ratio and pyridine / N ratio.
  • test piece was sandwiched between metal plates having a diameter of 20 mm, and electric resistance was measured by a two-terminal method in a state where a pressure of 0.32 kgf / cm 2 was applied. The results are shown in Table 2 and FIG.
  • Examples 1 to 4 and Comparative Example 1 Lithium-air batteries were produced using the carbon materials of Examples 1 to 4 and Comparative Example 1 that were mirror-polished as described above as they were as positive electrodes. The charge / discharge test was conducted. First, using the carbon materials of Examples 1 to 4 and Comparative Example 1 prepared as described above as positive electrodes, lithium-air battery cells shown in FIG. 9 were produced as follows.
  • a metal lithium foil made by Kyokuto Metal, thickness 200 ⁇ m, ⁇ 15 mm
  • a PP13-TFSA solution of LiTFSA LiTFSA concentration of 0.32 mol / kg
  • a polypropylene non-woven fabric as a separator (not shown)
  • SUS current collector positive electrode current collector
  • nickel wire 15 was provided on the lithium foil serving as the negative electrode 11 as the negative electrode current collector.
  • the electrolyte solution 12 was impregnated in the separator.
  • the obtained cell was accommodated in a glass desiccator (500 mL) with a gas replacement cock.
  • the glass desiccator has a structure in which oxygen can be introduced and oxygen can be supplied to the positive electrode.
  • a charge / discharge test was performed under the following conditions.
  • the discharge capacity and coulomb efficiency (discharge capacity / charge capacity) are shown in Table 3 and FIG. Table 3 also shows the N / C ratio, the pyrrole / C ratio, and the pyridine / C ratio.
  • FIG. 11 the scanning electron microscope (SEM) photograph of the positive electrode surface after discharge (11A) of Example 1 and after charge (charge after discharge) (11B) is shown.
  • FIG. 12 shows SEM photographs of the positive electrode surface after discharge (12A) and after charge (charge after discharge) (12B) in Comparative Example 1.
  • the positive electrode made of the carbon material of Example 1 has a smaller deposit after discharge than the positive electrode made of the carbon material of Comparative Example 1, and the small precipitate disappears by charging. (Decomposition) was confirmed.
  • the positive electrode made of the carbon material of Comparative Example 1 large precipitates were generated by discharge and remained on the electrode surface even after charging. From this result, it can be said that the positive electrode made of the carbon material of Example 1 is less deteriorated than the positive electrode made of the carbon material of Comparative Example 1.
  • FIG. 13 shows SEM photographs of the positive electrode surface before and after the charge / discharge test of Example 3 (13A) and after the charge / discharge test (13B). From FIG. 13, in the positive electrode made of the carbon material of Example 3, although the formation of small precipitates on the electrode surface was confirmed by charging / discharging, the smoothness of the surface was maintained, so that the deterioration was small. .
  • FIG. 14 the SEM photograph of the positive electrode surface before the charging / discharging test of Comparative Example 2 (14A) and after the charging / discharging test (14B) is shown. From FIG. 14, it was confirmed that large unevenness was formed on the electrode surface which was smooth before charging and discharging by charging and discharging. This is considered to be caused by the generation of precipitates, decomposition of the carbon material, and the like, and it can be said that the deterioration is large. In particular, as compared with Example 3 shown in FIG. 13, it can be seen that the unevenness is large and the deterioration is large.
  • the carbon material of Comparative Example 1 is not glassy, whereas the carbon materials of Examples 1 to 4 are all glassy carbon materials.
  • the lithium-air battery using the carbon materials of Examples 1 to 4 having an N / C ratio of 1.9 ⁇ 10 ⁇ 2 or more as a positive electrode is more than the carbon material of Comparative Example 1 that does not contain nitrogen. It can be seen that the discharge capacity is also excellent. From these results, the discharge characteristics of the lithium air battery can be improved by using a carbon material having an N / C ratio of 1.9 ⁇ 10 ⁇ 2 or more and a glassy material as the material constituting the positive electrode of the lithium air battery. It can be seen that improvement is possible.
  • FIG. 15 shows the relationship between the N / C ratio and the discharge capacity
  • FIG. 16 shows the relationship between the pyrrole / C ratio and the discharge capacity
  • FIG. 17 shows the relationship between the G / D ratio and the discharge capacity.
  • 15 and Table 3 when the N / C ratio is 1.90 ⁇ 10 ⁇ 2 to 2.10 ⁇ 10 ⁇ 2 , particularly 1.94 ⁇ 10 ⁇ 2 to 2.00 ⁇ 10 ⁇ 2 , It can be seen that an excellent discharge capacity can be obtained.
  • FIG. 16 and Table 3 when the pyrrole / C ratio is 1.44 ⁇ 10 ⁇ 2 to 1.52 ⁇ 10 ⁇ 2 , particularly 1.47 ⁇ 10 ⁇ 2 to 1.48 ⁇ 10 ⁇ 2. It can be seen that an excellent discharge capacity can be obtained.
  • FIG. 17 and Tables 2 and 3 show that the discharge characteristics are high when the G / D ratio is 1.5 or less, particularly 0.7 or less.
  • FIG. 18 shows the relationship between N / C ratio and Coulomb efficiency
  • FIG. 19 shows the relationship between pyridine / C ratio and Coulomb efficiency. From FIG. 18, when the N / C ratio is 1.95 ⁇ 10 ⁇ 2 to 2.25 ⁇ 10 ⁇ 2 , particularly 2.00 ⁇ 10 ⁇ 2 to 2.19 ⁇ 10 ⁇ 2 , the discharge capacity is excellent. It can be seen that the coulomb efficiency is also excellent. Further, FIG. 19 shows that excellent Coulomb efficiency can be obtained when the pyridine / C ratio is 0.47 ⁇ 10 ⁇ 2 to 0.50 ⁇ 10 ⁇ 2 , particularly 0.48 ⁇ 10 ⁇ 2. .
  • Examples 1 to 4 the following can be said from the results of the discharge capacity and the results of FIGS. That is, the higher the firing temperature, the lower the G / D ratio, the surface spacing, and the electrical resistance. On the other hand, the higher the firing temperature, the larger the size of the a-axis crystallite and the size of the c-axis crystallite.
  • the discharge capacity was high when the G / D ratio was 1.5 or less, particularly 0.7 or less, and the surface separation was 3.7 to 4.2 mm, particularly 3.75 to 4.1 kg.
  • the discharge capacity is high when the crystallite size in the a-axis direction is 22 to 27 mm, particularly 22.5 to 26.3 mm, and the crystallite size in the c-axis direction is 11 to 16 mm, particularly 12.5 to 15 mm. became.

Abstract

従来の炭素材料と比較して、高い容量を示すリチウム空気電池正極用炭素材料を提供する。リチウム空気電池の正極を構成する炭素材料であって、窒素を炭素に対するモル比で1.9×10-2以上含有し、且つ、ガラス状であることを特徴とする、リチウム空気電池正極用炭素材料、及び該炭素材料を含む正極を備えるリチウム空気電池。

Description

リチウム空気電池正極用炭素材料及びリチウム空気電池
 本発明は、リチウム空気電池の正極を構成する炭素材料、及び該炭素材料を含む正極を備えるリチウム空気電池に関する。
 正極活物質として酸素を利用する空気電池は、エネルギー密度が高い、小型化及び軽量化が容易である等の利点を有する。そのため、現在、広く使用されているリチウム二次電池を超える高容量電池として注目を集めている。空気電池の中でも、リチウム空気電池は、高容量であることから研究が盛んに進められている。
 リチウム空気電池は、正極(空気極)において酸素の酸化還元反応が行われ、負極においてリチウムの酸化還元反応が行われることで、充放電が可能である。リチウム空気二次電池では、以下のような充放電反応が進むと考えられている。
 [放電時]
 負極 : Li → Li + e
 正極 : 2Li + O + 2e → Li
      4Li + O + 4e → 2Li
 [充電時]
 負極 : Li + e → Li
 正極 : Li → 2Li + O + 2e
      2LiO → 4Li + O + 4e
 リチウム空気電池は、例えば、炭素材料及び結着材を含有する正極と、正極の集電を行う正極集電体と、負極活物質(金属や合金等)を含む負極と、負極の集電を行う負極集電体と、正極及び負極の間に介在する電解質とを有する。正極には、触媒が含有されることもある。
 例えば、特許文献1には、カーボン及びバインダーを構成要素とする正極を具備したリチウム空気電池が記載されている。
 また、金属空気電池用に限定されないが、特許文献2には、酸素還元触媒の製造方法が記載されている。具体的には、表面に酸素欠陥が導入されかつ表面の酸素原子の一部が炭素原子及び窒素原子の少なくとも一方で置換されることにより結晶格子が膨張した遷移金属酸化物を含む酸素還元触媒の製造方法が開示されている。また、金属空気電池用ではないが、特許文献3には、燃料電池の空気極用燃料電池触媒が開示されている。
特開2010-182606号公報 特開2011-198636号公報 特開2010-9807号公報
 しかしながら、特許文献1に記載されたカーボンを用いた正極では、得られる容量が低いという問題がある。
 本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、従来の炭素材料と比較して、高い容量を示すリチウム空気電池正極用炭素材料及び該炭素材料を備えたリチウム空気電池を提供することである。
本発明のリチウム空気電池正極用炭素材料は、リチウム空気電池の正極を構成する炭素材料であって、窒素を炭素に対するモル比で1.9×10-2以上含有し、且つ、ガラス状であることを特徴とするものである。
 本発明のリチウム空気電池正極用炭素材料によれば、リチウム空気電池の放電容量を向上させることが可能である。
 本発明のリチウム空気電池正極用炭素材料において、炭素に対する窒素のモル比が、1.90×10-2~2.10×10-2である場合、特に高い放電容量を得ることができる。
 また、本発明のリチウム空気電池正極用炭素材料において、炭素に対する窒素のモル比が、1.95×10-2~2.25×10-2である場合、放電容量を向上させると共に、クーロン効率も向上させることができる。
 本発明のリチウム空気電池正極用炭素材料がピロールを含有し、炭素に対するピロールのモル比が、1.44×10-2~1.52×10-2である場合、特に高い放電容量を得ることができる。
 また、本発明のリチウム空気電池正極用炭素材料がピリジンを含有し、炭素に対するピリジンのモル比が、0.47×10-2~0.50×10-2である場合、高い放電容量を得つつ、クーロン効率も向上させることができる。
 本発明のリチウム空気電池は、正極、負極、及び、前記正極と前記負極との間に介在する電解質を備えるリチウム空気電池であって、前記正極が、上記本発明の炭素材料を含有することを特徴とする。本発明のリチウム空気電池は、従来と比較して、優れた放電特性を発現し得るものである。
 本発明の炭素材料は、リチウム空気電池を構成する、従来の炭素材料と比較して、放電容量に優れており、リチウム空気電池の放電特性向上に貢献することができる。
本発明の炭素材料における放電容量及びクーロン効率の向上メカニズムを説明する模式図である。 リチウム空気電池の一形態例を示す断面模式図である。 実施例1~4及び比較例1における正極の製造プロセスフローを示す図である。 実施例1~4及び比較例1の焼成温度とG/D比との関係を示すグラフである。 実施例1~4及び比較例1の焼成温度と002面間隔との関係を示すグラフである。 実施例1~4及び比較例1の焼成温度とa軸結晶子及びc軸結晶子のサイズとの関係を示すグラフである。 実施例1~4及び比較例1の焼成温度と電気抵抗との関係を示すグラフである。 実施例3(8A)及び比較例1(8B)の炭素材料表面のTEM写真である。 実施例1~4及び比較例1~2の充放電試験に用いたリチウム空気電池セルの断面模式図である。 実施例1~4及び比較例1のクーロン効率と放電容量とを示すグラフである。 実施例1の放電後(11A)及び充電後(11B)の正極表面のSEM写真である。 比較例1の放電後(12A)及び充電後(12B)の正極表面のSEM写真である。 実施例3の充放電試験前(13A)及び充放電試験後(13B)の正極表面のSEM写真である。 比較例2の充放電試験前(14A)及び充放電試験後(14B)の正極表面のSEM写真である。 実施例1~4のN/C比と放電容量との関係を示すグラフである。 実施例1~4のピロール/C比と放電容量との関係を示すグラフである。 実施例1~4のG/D比と放電容量との関係を示すグラフである。 実施例1~4のN/C比とクーロン効率との関係を示すグラフである。 実施例1~4のピリジン/C比とクーロン効率との関係を示すグラフである。
[リチウム空気電池正極用炭素材料]
 本発明のリチウム空気電池正極用炭素材料(以下、単に、炭素材料ということがある。)は、リチウム空気電池の正極を構成する炭素材料であって、窒素を炭素に対するモル比で1.9×10-2以上含有し、且つ、ガラス状であることを特徴とするものである。
 本発明者らは、特定量の窒素を含有するガラス状炭素材料を用いて、リチウム空気電池の正極を構成することによって、従来の炭素材料を用いる場合と比較して、放電容量を向上できることを見出した。具体的には、炭素に対するモル比で1.9×10-2以上の窒素を含有するガラス状炭素により正極を形成したところ(実施例1~4)、図10に示すように、窒素を含まないガラス状炭素材料(比較例1)を用いた場合と比べて、放電容量が2倍以上、さらには7倍以上に増加することが、本発明者らによって確認された。
 本発明の炭素材料を用いて正極を形成することによって、リチウム空気電池の放電容量が高くなるメカニズムは明らかではないが、以下のように推測される。
 図1に、放電後及び放電後に充電した際(充電後)における、本発明の炭素材料表面の模式図(1A)、並びに、放電後及び放電後に充電した際(充電後)における、従来の窒素を含有しない炭素材料表面の模式図(1B)を示す。
 図1の1Bに示すように、従来の窒素を含有しない炭素材料の表面では、放電により生成する析出物1は、成長が妨げられずに、大きく成長する。これに対して、図1の1Aに示すように、本発明の含窒素ガラス状炭素材料の表面では、窒素により、析出物1の成長が抑制され、従来の炭素材料の表面に生成する析出物と比較して、小さな且つ数多くの析出物1が生成する。このように、本発明の炭素材料の表面では、小さな析出物が数多く生成することによって、放電容量が向上すると考えられる。尚、窒素を含有しない炭素材料と比較して、本発明の炭素材料では、放電により生成する析出物が小さく且つ数が多いことは、本発明者らによって確認されている(後述の図11の11A及び図12の12Aを参照)。
 さらに、放電後に充電した際には、図1の1Bに示すように、従来の炭素材料の表面では、放電時に生成した大きな析出物が、分解されずに残存してしまう。これに対して、図1の1Aに示すように、本発明の含窒素ガラス状炭素材料の表面では、放電時に生成する析出物が小さく、しかも、充電の際に窒素により析出物の分解が促進されるため、析出物は残存しにくい。従って、本発明の炭素材料を用いることによって、クーロン効率も向上できる場合があると考えられる。尚、窒素を含有しない炭素材料と比較して、本発明の炭素材料では、充放電後に残存する析出物が小さく且つ少ないことは、本発明者らによって確認されている(後述の図11の11B及び図12の12B、並びに、図13及び図14を参照)。
 以下、本発明の炭素材料について詳しく説明する。
 本発明の炭素材料は、リチウム空気電池の正極を構成する材料として用いられる。リチウム空気電池については、後述の「リチウム空気電池」の項で詳しく説明する。
 本発明の炭素材料は、まず、窒素を含有し、その窒素含有量が、炭素に対するモル比で1.9×10-2以上である点に特徴がある。
 炭素材料における、炭素に対する窒素のモル比(以下、N/C比ということがある)は、X線光電子分光法(XPS法)により測定することができる。具体的には、XPSにより、窒素及び炭素の原子スペクトルを測定することで、炭素原子数に対する窒素原子数の割合を算出することができる。
 N/C比は、機械加工負荷を低減するという観点から2.28×10-2以下であることが好ましい。
 また、特に高い放電容量が得られるという観点からは、N/C比は、2.10×10-2以下、特に2.05×10-2以下、さらに2.00×10-2以下であることが好ましく、1.90×10-2以上、特に1.94×10-2以上、さらに1.95×10-2以上であることが好ましい。
 また、高い放電容量と共にクーロン効率も向上可能であるという観点からは、N/C比は、2.25×10-2以下、特に2.20×10-2以下、さらに2.19×10-2以下であることが好ましく、1.95×10-2以上、特に1.98×10-2以上、さらに2.00×10-2以上であることが好ましい。
 また、本発明の炭素材料は、ガラス状炭素材料であるという特徴を有している。ガラス状炭素材料は、熱硬化性樹脂を高温で加熱処理することにより炭素化して得られるものであり、グラファイトの基本構造である六角網面の結晶子が無配向に組織されたものである。ガラス状炭素材料であることは、透過型電子顕微鏡(TEM)による観察によって確認することができる。具体的には、ガラス状炭素材料であれば、上記したように、結晶子が配向せずに、ガラス状の複雑な網目状構造を形成していることを確認することができる(図8の8A参照)。TEM観察においては、倍率を10,000~100,000にすることによって、上記網目状構造を確認することが可能である。
 本発明の炭素材料は、炭素骨格中に窒素原子がドープした構造を有しており、窒素原子の位置は特に限定されないが、例えば、シアニド型、グラファイト型、オキサイド、ピリジン型、ピロール型等が挙げられる。
 本発明の炭素材料において、窒素がピロールとして含有されている場合、炭素に対するピロールのモル比(以下、ピロール/C比ということがある。)は、1.44×10-2以上であることが好ましく、特に1.46×10-2以上であることが好ましく、さらに1.47×10-2以上であることが好ましい。また、ピロール/C比は、1.52×10-2以下であることが好ましく、特に1.50×10-2以下であることが好ましく、さらに1.48×10-2以下であることが好ましい。ピロール/C比が、上記範囲内であることによって、特に高い放電容量を得ることができるからである。
 本発明の炭素材料において、窒素がピリジンとして含有されている場合、炭素に対するピリジンのモル比(以下、ピリジン/C比ということがある。)は、0.47×10-2以上であることが好ましく、特に0.48×10-2以上であることが好ましい。また、ピリジン/C比は、0.50×10-2以下であることが好ましく、特に0.49×10-2以下であることが好ましく、さらに0.48×10-2以下であることが好ましい。ピリジン/C比が、上記範囲内であることによって、高放電容量化と共にクーロン効率の向上を図ることができるからである。ピリジン/C比は、中でも、0.48×10-2であることが好ましい。
 本発明の炭素材料は、放電容量の観点から、ラマンスペクトル測定において、グラファイトに由来するGバンドと、欠陥由来のDバンドの面積比(=Dバンドのピーク面積/Gバンドのピーク面積。以下、G/D比ということがある)が、1.5以下、特に1以下、さらに、0.7以下であることが好ましい。これはG/D比が小さいほど、炭素の欠陥量が少ない(結晶性が高い)ため、放電析出物が生成しやすいためと考えられる。
 上記ラマンスペクトル測定は、一般的な方法に準じて行うことができるが、具体的には、以下のようにして行うことが好ましい。すなわち、レーザー光を、試料表面に照射し、後方(入射方向と逆方向)に散乱する光を分光してCCDでラマンスペクトルを測定することが好ましい。
 また、本発明の炭素材料は、放電容量の観点から、X線回折分析における002面の平均間隔は、3.7~4.2Å、特に3.75~4.1Åの範囲であることが好ましい。
 X線回折分析における002面の平均間隔の測定は、一般的な方法に準じることができ、例えば、JIS R7651の「炭素材料の格子定数及び結晶子の大きさ測定方法」に準じて測定することができる。
 また、同様の観点から、本発明の炭素材料は、X線回折分析におけるa軸方向の結晶子のサイズが、22~27Åの範囲、特に22.5~26.3Åの範囲、c軸方向の結晶子のサイズが11~16Å、特に12.5~15Åの範囲であることが好ましい。
 X線回折分析におけるa軸方向及びc軸方向の結晶子のサイズの測定は、一般的な方法に準じることができ、例えば、JIS R7651の「炭素材料の格子定数及び結晶子の大きさ測定方法」に準じて測定することができる。
 本発明の炭素材料の製造方法は特に限定されず、例えば、以下の方法が挙げられる。
 すなわち、窒素含有熱硬化性樹脂を、100~3000℃で1~100時間、加熱し、炭素化させることにより作製することができる。
 窒素含有熱硬化性樹脂としては、例えば、ポリカルポジイミド樹脂、窒素含有フェノール樹脂、窒素含有エポキシ樹脂、窒素含有フラン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、メラミン樹脂、ポリアクリロニトリル樹脂、窒素含有不飽和ポリエステル樹脂、及びこれら樹脂を構成する繰り返し単位と共重合可能なモノマーとの共重合体等が挙げられる。中でも、窒素含有フェノール樹脂、窒素含有フラン樹脂、窒素を含有するフルフラール-フェノール共重合体等が好ましい。窒素含有熱硬化性樹脂は1種のみを用いてもよいし、複数種を組み合わせて用いてもよい。
 窒素含有熱硬化性樹脂と共に硬化剤を用いることができる。硬化剤としては、硫酸、塩酸、硝酸等を挙げることができる。硬化剤は、不純物の混入や欠陥の原因となりうるため、使用量はできるだけ少ないことが好ましく、例えば、原料中、10wt%以下とすることが好ましい。
 また、窒素含有熱可塑性樹脂に硬化剤を配合して熱硬化性を付与し、該熱可塑性樹脂を加熱、炭化させることによっても、本発明の炭素材料を製造することができる。例えば、熱可塑性樹脂として、窒素含有ノボラック型フェノール樹脂等が挙げられ、硬化剤としてヘキサメチレンテトラミン等が挙げられる。
 炭素化の前に、窒素含有熱硬化性樹脂を成形することができる。窒素含有熱硬化性樹脂の成形方法は、特に限定されず、所望の形状が付与できるように適宜選択すればよい。例えば、ロールトゥロール、プレス成形、遠心成形、注型成形、射出成形、押出成形、加圧モールド成形等が挙げられる。
 成形した窒素含有熱硬化性樹脂は、必要に応じて、形状の固定化のため、酸素雰囲気下において熱処理し、不融化させることが好ましい。不融化処理における酸素雰囲気としては、酸素濃度が10~90vol%程度であることが好ましく、加熱温度が50~500℃程度であることが好ましい。
 窒素含有熱硬化性樹脂の炭素化により得られる含窒素ガラス状炭素材料は、例えば、板状、箔状等の形状を有する場合には、そのまま、正極として用いることも可能である。その場合、炭素化により得られる含窒素ガラス状炭素材料は、難加工材料であることから、炭素化処理に先立ち、予め形状を付与しておくことによって、加工負荷を低減することができる。すなわち、上記不融化処理後、さらに、切断、研磨等により、外形を正極の外形に合わせて整えておくことが好ましい。
 窒素含有熱硬化性樹脂の加熱温度は、炭素化することができれば特に限定されないが、好ましくは300~3000℃、特に好ましくは600~1500℃である。加熱温度が低くすぎると、結晶子の配向性が低く、充分な電池特性が得られないおそれがある。また、温度が高すぎると、窒素の除去量が多く、所望のN/C比が得られなくなる。
 炭素化は、真空中(例えば、0.1MPa以下)で行うことが好ましい。
 炭素化の際の加熱条件により、N/C比、ピロール/C比、G/D比、a軸方向及びc軸法方向の結晶子サイズ、002面間隔を制御することが可能である。例えば、加熱温度を高くすることによって、G/D比、002面間隔を小さくすることができる。また、加熱温度を高くすることによって、a軸方向及びc軸方向の結晶子サイズは大きくなる。
 また、加熱温度を高く(例えば、800℃以上)することによって、結晶子の配向性の規則性が高くなり、炭素のナノシェルが形成され、電池特性が向上することも考えられる。さらには、加熱温度を高くすることによって、電気抵抗が低下するという傾向もある。
 窒素含有熱硬化性樹脂の炭素化における加熱は、例えば、5~10℃/minの昇温速度で行うことが好ましい。このように比較的ゆっくりと加熱することによって、結晶子の配向により規則性を増加させることができるからである。
 得られた含窒素ガラス状炭素材料を、そのまま正極として用いる場合には、正極表面の平坦性を向上させるために、鏡面研磨を行うことが好ましい。鏡面研磨の方法としては、例えば、水、アルミナ砥粒、及び研磨助剤を用いた鏡面仕上げ研磨等が挙げられる。鏡面研磨による表面の寸法公差は0.05~0.10mm程度の範囲内とすることが好ましい。
 また、炭素化後、或いは、鏡面研磨後の含窒素ガラス状炭素材料の表面には、不純物や、研磨くず等が付着している場合がある。これらを除去する方法として、塩素ガス雰囲気下や塩化水素ガス雰囲気下で、高温(例えば、2000~3000℃)で加熱することによって、金属不純物を除去する方法があるが、上記のような高温処理では窒素成分が脱離してしまう。そのため、炭素化のための加熱温度よりも低い温度で、且つ、炭素化の加熱時間よりも短い加熱温度で処理することが好ましい。
 本発明の炭素材料は、上記したように、板状や箔状等の場合は、そのまま正極として用いることができる。粉体状や繊維状の炭素材料の場合、又は、板状や箔状等の炭素材料を粉砕した場合には、結着剤、導電助剤、触媒等のその他成分を適宜組み合わせて、正極を形成することができる。
[リチウム空気電池]
 上記したように、本発明の炭素材料は、リチウム空気電池の正極を構成する材料として特に有効である。以下、本発明の炭素材料を含む正極を備えたリチウム空気電池について説明する。
 図2に示す金属空気電池10では、酸素を活物質とする正極(空気極)2、Li金属からなる負極3、並びに、正極2及び負極3の間でLiイオンの伝導を担う電解質4が、正極缶6及び負極缶7で構成される電池ケース内に収容されている。正極缶6及び負極缶7は、ガスケット8により固定されており、電池ケースが封止されている。
 正極2は、酸素の酸化還元反応の場であり、正極缶6に設けられた空気孔9から取り込まれた空気(酸素)が供給される。正極2は、本発明の炭素材料を少なくとも含む。
 正極2には、正極2の集電を行う正極集電体5が設けられている。正極集電体5は、多孔質構造を有する導電性材料(例えば、金属メッシュ)から構成されており、空気孔9から取り込まれた空気(酸素)が、正極集電体5を経て正極2に供給可能となっている。
 負極3は、負極活物質であるLi金属を含み、伝導イオン種であるLiイオンを吸蔵・放出可能である。
 電解質4は、支持電解質塩(例えば、LiN(SOCF等のLi塩)を非水溶媒(例えば、N-メチル-N-プロピルピペリジニウムビス(トリフルオロメタンスルホニル)アミド等)に溶解した電解液を含んでいる。正極2と負極3との間には、絶縁性及び多孔質構造を有するセパレータが配置されており(図示せず)、該セパレータの多孔質内に上記電解液が含浸されている。
 以下、リチウム空気電池の各構成について説明する。
 (正極)
 正極は、少なくとも、上記本発明の炭素材料を含有する。正極は、本発明の炭素材料のみにより構成されていてもよい。本発明の炭素材料を、板状等の正極として使用しうる形状に成形することで、本発明の炭素材料のみで正極を成形することができる。或いは、粉体状や繊維状の本発明の炭素材料を、結着剤を用いて、成形することもできる。
 本発明の炭素材料については、既述したため、ここでの説明は省略する。
 正極における本発明の炭素材料の含有量は、特に限定されず、例えば、正極全体の重量を100wt%とすると、本発明の炭素材料のみで正極を形成する場合には、その含有量は100wt%となる。
 一方、粉体状や繊維状の本発明の炭素材料を用いる場合には、その含有量は、40~95wt%であることが好ましく、特に、55~90wt%であることが好ましい。炭素材料の含有割合が40wt%未満であると、正極の導電性が充分でなく、内部抵抗が高くなり、出力が低下するおそれがある。また、炭素材料の含有割合が95wt%を超えると、正極の形状安定性が不十分になるおそれがある。
 正極は、必要に応じて、本発明の炭素材料以外の導電性材料、結着剤、触媒等を含有していてもよい。
 結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBRゴム)等を挙げることができる。正極における結着剤の含有割合は、特に限定されるものではないが、正極全体の重量を100wt%とした場合に、5~60重量%であることが好ましい。
 導電性材料としては、導電性を有していればよく、例えば、ケッチェンブラック、アセチレンブラック等のカーボンブラック、カーボンナノチューブ等の炭素繊維等の導電性炭素材料を挙げることができる。
 また、触媒としては、例えば、ニッケル、パラジウム及び白金等の白金族;コバルト、マンガン又は鉄等の遷移金属を含むペロブスカイト型酸化物;ルテニウム、イリジウム又はパラジウム等の貴金属酸化物を含む無機化合物;ポルフィリン骨格又はフタロシアニン骨格を有する金属配位有機化合物;二酸化マンガン(MnO)及び酸化セリウム(CeO)等の無機セラミックス;これらの材料を混合した複合材料等が挙げられる。
 正極の厚さは、リチウム空気電池の用途等により異なるものであるが、例えば2μm~500μmの範囲内、特に5μm~300μmの範囲内であることが好ましい。
 正極は、必要に応じて、該正極の集電を行う正極集電体を備えていてもよい。正極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えばステンレス、ニッケル、アルミニウム、鉄、チタン、カーボン等を挙げることができる。
 正極集電体の形状としては、例えば箔状、板状及び繊維状の他、不織布及びメッシュ(グリッド)等の多孔質状などを挙げることができる。多孔質状の集電体を使用する場合、図2のように、正極と集電体とを積層してもよいし、或いは、正極の内部に集電体を配置してもよい。また、後述する電池ケースが正極集電体の機能を兼ね備えていてもよい。
 正極集電体の厚さは、例えば、10μm~1000μmの範囲内、中でも20μm~400μmの範囲内であることが好ましい。
 正極集電体を備える正極の製造方法は、特に限定されず、例えば、板状や箔状の本発明の炭素材料と正極集電体とを重ね合わせ、適宜、加圧等を行い、積層する方法、或いは、少なくとも本発明の炭素材料、及び必要に応じて結着剤等を混合した正極材ペーストを、正極集電体の表面に塗布、乾燥させる方法等が挙げられる。或いは、上記正極材ペーストを塗布、乾燥して得られた正極を、正極集電体と重ね合わせ、適宜、加圧や加熱等を行い、積層する方法も挙げられる。
 正極材ペーストの溶媒としては、揮発性を有していれば特に限定されず、適宜選択することができる。具体的には、エタノール、アセトン、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)等が挙げられる。
 正極材ペーストを塗布する方法は特に限定されず、ドクターブレード、スプレー法等の一般的な方法を用いることができる。 
 (負極)
 負極は、リチウムイオンを放出・取り込み可能な負極活物質を含有する。負極活物質としては、例えば、リチウム金属、リチウム元素を含有する合金材料、リチウム化合物等が挙げられる。また、グラファイト等の炭素材料や本発明の炭素材料も負極活物質として用いることができる。中でも、高容量且つ高電位が得られることから、リチウム金属が好ましい。
 リチウム元素を含有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。また、リチウム化合物としては、例えばリチウムチタン酸化物等の酸化物、リチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等の窒化物等を挙げることができる。
 負極は、負極活物質のみを含有するものであってもよく、負極活物質の他に導電性材料および結着剤の少なくとも一方を含有するものであってもよい。例えば、負極活物質が箔状や板状である場合は、負極活物質のみを含有する負極層とすることができる。一方、負極活物質が粉体状である場合は、負極活物質および結着剤を含有する負極層とすることができる。なお、導電性材料および結着剤については、上述した「正極」の項に記載した内容と同様であるので、ここでの説明は省略する。
 負極には、該負極の集電を行う負極集電体が設けられていてもよい。負極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えば銅、ステンレス、ニッケル、カーボン等を挙げることができる。負極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。本発明においては、後述する電池ケースが負極集電体の機能を兼ね備えていてもよい。
 負極の製造方法は特に限定されない。例えば、箔状の負極活物質と負極集電体とを重ね合わせて加圧する方法が挙げられる。また、別の方法として、負極活物質と結着材とを含有する負極材混合物を調製し、該混合物を負極集電体上に塗布、乾燥する方法を挙げることができる。
 (電解質)
 電解質は、正極と負極との間に保持され、正極と負極との間でリチウムイオンを伝導する働きを有する。
 電解質は、リチウムイオン伝導性を有していればその形態に限定はなく、例えば、電解液、固体電解質、ゲル電解質等を用いることができる。
 電解液は、電解質塩を溶媒に溶解したものであり、非水系溶媒に電解質塩を溶解した非水系電解液及び水系溶媒に電解質塩を溶解した水系電解液のいずれを用いてもよい。
 非水系電解液は、リチウム塩及び非水溶媒を含有するものである。
 リチウム塩としては、例えばLiPF、LiBF、LiClO及びLiAsF等の無機リチウム塩;LiCFSO、LiN(SOCF[略称 Li-TFSA]、LiN(SO及びLiC(SOCF等の有機リチウム塩等を挙げることができる。
 非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、エチルカーボネート、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、アセトニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン及びこれらの混合物等を挙げることができる。
 また、イオン性液体を非水溶媒として用いることもできる。イオン性液体としては、例えば、N,N,N-トリメチル-N-プロピルアンモニウムビス(トリフルオロメタンスルホニル)アミド[略称:TMPA-TFSA]、N-メチル-N-プロピルピペリジニウムビス(トリフルオロメタンスルホニル)アミド[略称:PP13-TFSA]、N-メチル-N-プロピルピロリジニウムビス(トリフルオロメタンスルホニル)アミド[略称:P13-TFSA]、N-メチル-N-ブチルピロリジニウムビス(トリフルオロメタンスルホニル)アミド[略称:P14-TFSA]、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)アミド[略称:DEME-TFSA]等の脂肪族4級アンモニウム塩、1-エチル-3-メチルイミダゾリウムフルオロハイドロジェネート(トリフルオロメタンスルホニル)アミド[略称:emim(HF)2,3F-TFSA]等が挙げられる。イオン性液体は、高粘度の傾向があり、電解液の漏液防止の観点から好ましいといえる。
 非水系電解液におけるリチウム塩の濃度は、例えば0.3mol/L~3mol/Lの範囲内とすることができる。
 非水電解液にポリマーを添加してゲル化することで、非水系ゲル電解質を得ることができる。非水電解液のゲル化に用いるポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリアクリルニトリル(PAN)またはポリメチルメタクリレート(PMMA)等が挙げられる。
 水系電解質としては、水にリチウム塩を含有させた水系電解液が挙げられる。リチウム塩としては、例えばLiOH、LiCl、LiNO、CHCOLi等を挙げることができる。
 固体電解質としては、例えば、Li-La-Ti-O系固体電解質等を用いることができる。
 (セパレータ)
 正極と負極との間の絶縁性を確保するために、正極と負極との間には、絶縁性多孔質体からなるセパレータを配置することができる。典型的には、絶縁性多孔質体からなるセパレータに電解質を含浸させることで、正極と負極との間の絶縁性及びリチウムイオン伝導性を確保することができる。
 また、正極-電解質-負極の順番で配置されている積層体を、繰り返し何層も重ねる構造を取る場合には、安全性の観点から、異なる積層体に属する正極および負極の間に、セパレータを有することが好ましい。
 セパレータとしては、例えばポリエチレン、ポリプロピレン等の多孔膜;および樹脂不織布、ガラス繊維不織布等の不織布等を挙げることができる。
 (電池ケース)
 リチウム空気電池は、通常、正極、負極、電解質等を収納する電池ケースを有する。電池ケースの形状としては、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。電池ケースは、正極に酸素を供給可能であれば、外部からの酸素取り込みを可能とする孔(空気孔)を有する開放型であってもよく、或いは密閉型であってもよい。
 開放型の電池ケースは、少なくとも正極が十分に酸素含有気体と接触可能な構造を有する。一方、密閉型の電池ケースには、酸素含有気体の導入管および排気管を設けることができる。正極に供給される酸素含有気体としては、例えば、純酸素や空気が挙げられ、酸素濃度が高いことが好ましいことから、純酸素が好ましい。
[炭素材料の作製]
 (実施例1~4、比較例1)
 図3に示すフローに基づき、以下のようにして炭素材料を作製した。
 炭素材料の出発原料として、液状の窒素含有レゾール型フェノール樹脂(商品名:フェノライト、DIC社製)(窒素含有熱硬化性樹脂原料)を用い、硬化剤である硫酸と、90:10(wt%)の比率で混合した。
 次に、窒素含有レゾール型フェノール樹脂と硫酸との混合物を、シート状に成形した。得られたシートを複数枚重ね、ロールトゥロール法により成形した。成形後、酸素雰囲気下(酸素濃度60vol%)において、熱処理(300℃で3時間加熱)して不融化させた。続いて、切断し、外径12mm、厚み1mmの樹脂原料成形体を得た。
 その後、樹脂原料成形体を、真空中(0.1MPa)、昇温速度10℃/minで、室温から、表1に示す温度(実施例1:600℃、実施例2:800℃、実施例3:1000℃、実施例4:1500℃、比較例1:3000℃)まで昇温し、炭素化した。
 得られた炭素材料には、それぞれ、表面の鏡面研磨を行った。鏡面研磨は、水及び研磨助剤を含む研磨液中に、平均粒径が2μm以下の破砕アルミナ砥粒を10%分散させたものを用いて実施した。画像測定機により表面の鏡面状態を確認した。また、マイクロメータにより公差を計測したところ、外径で0.2mm、厚みで0.1mmであった。
[炭素材料の評価1]
 実施例1~4、比較例1の炭素材料について、以下のようにして、N/C比、ピロール/C比、ピリジン/C比、G/D比、面間隔、a軸結晶子サイズ、c軸結晶子サイズ、及び抵抗を測定した。
 (N/C比)
 炭素材料に含まれる窒素と炭素のモル比(N/C比)を、X線光電子分光法(島津製作所、ESCA-3300)により測定した。結果を表1に示す。
 (ピロール/C比)
 炭素材料に含まれるピロールと炭素のモル比(ピロール/C比)を、次のようにして測定した。結果を表1に示す。
 まず、X線光電子分光法(XPS法)により、N/C比を測定した。一方、XPS法により、N1sスペクトルを、ピリジン成分、ピロール成分、酸化物成分、及び4級成分の4成分に、多重ピーク分離し、窒素中のピロール割合(ピロール/N比)を算出した。次に、測定したN/C比とピロール/N比とから、ピロール/C比を算出した。
 (ピリジン/C比)
 炭素材料に含まれるピリジンと炭素のモル比(ピリジン/C比)を、次のようにして測定した。結果を表1に示す。
 まず、X線光電子分光法(XPS法)により、N/C比を測定した。一方、XPS法により、N1sスペクトルを、ピリジン成分、ピロール成分、酸化物成分、及び4級成分の4成分に、多重ピーク分離し、窒素中のピリジン割合(ピリジン/N比)を算出した。次に、測定したN/C比とピリジン/N比とから、ピリジン/C比を算出した。
Figure JPOXMLDOC01-appb-T000001
 (G/D比)
 炭素材料にアルゴンレーザーを200秒照射した後、5μmごとに区切られた100点について、ラマンスペクトル測定を行い、グラファイトに由来するGバンドと、欠陥由来のDバンドの面積比(=Dバンドのピーク面積/Gバンドのピーク面積)を算出した。結果を表2及び図4に示す。
 (002面間隔)
 X線回折により、JIS R7651に準じて、002面の平均面間隔を測定した。結果を表2及び図5に示す。
 (a軸結晶子サイズ、c軸結晶子サイズ)
 X線回折により、JIS R7651に準じて、a軸方向の結晶子の大きさ、及びc軸方向の結晶子の大きさを測定した。結果を表2及び図6に示す。
 (抵抗)
 直径20mmの金属板で試験片を挟み、0.32kgf/cmの圧力を印加した状態で、2端子法により、電気抵抗を測定した。結果を表2及び図7に示す。
Figure JPOXMLDOC01-appb-T000002
[炭素材料の評価2]
 実施例1~4、比較例1の炭素材料について、TEM観察を行った。実施例3及び比較例1のTEM写真を図8(8A:実施例3、8B:比較例1)に示す。実施例1~4のいずれの炭素材料も、図8の8Aに示すようなガラス状の複雑な網目状構造を有することが確認された。一方、比較例1の炭素材料は、図8の8Bに示すような、等方的な構造を有し、密な組織が存在することが確認された。
[炭素材料の評価3]
 (実施例1~4、比較例1) 上記にて鏡面研磨を行った、実施例1~4及び比較例1の炭素材料をそのまま、正極として用いてリチウム空気電池を作製し、以下のようにして充放電試験を行った。
 まず、上記にて作製した実施例1~4、比較例1の炭素材料を正極として用いて、以下のようにして、図9に示すリチウム空気電池セルを作製した。すなわち、負極11として金属リチウム箔(極東金属製、厚み200μm、φ15mm)と、電解液12としてLiTFSAのPP13-TFSA溶液(LiTFSA濃度0.32mol/kg)と、セパレータ(図示せず)としてポリプロピレン不織布(旭化成製、JH1004N)とを用いた。図9に示すように、正極13である炭素材料にはSUS集電体(正極集電体)14を設け、負極11であるリチウム箔にはニッケル線15を負極集電体として設けた。電解液12は、上記セパレータに含浸させた。
 得られたセルをガス置換コック付きガラスデシケータ(500mL)内に収容した。該ガラスデシケータ内には、酸素が導入可能であり、酸素を正極へ供給することができる構造とした。
 次に、下記条件下、充放電試験を行った。放電容量、及び、クーロン効率(放電容量/充電容量)を表3、図10に示す。尚、表3には、N/C比、ピロール/C比及びピリジン/C比もあわせて示す。
 <充放電試験条件>
  ・充放電装置:マルチチャンネルポテンショスタット/ガルバノスタット(VMP3、Bio-Logic社製)
  ・電流密度:6.37×10-5mA/cm(設定電流値は、電極面積φ10mmにより50nA)
  ・充放電終止電圧:2V-3.85V(1サイクル)
  ・雰囲気温度(ガラスデシケータ内温度):60℃(試験開始前に、セルを60℃恒温槽において3時間静置)
  ・充放電時セル内圧力:酸素(O)1気圧
 図11に、実施例1の放電後(11A)及び充電後(放電後に充電)(11B)の正極表面の走査型電子顕微鏡(SEM)写真を示す。また、図12に、比較例1の放電後(12A)及び充電後(放電後に充電)(12B)の正極表面のSEM写真を示す。
 図11及び図12より、実施例1の炭素材料からなる正極では、比較例1の炭素材料からなる正極と比較して、放電後の析出物が小さく、また、この小さな析出物が充電によって消滅(分解)したことが確認された。一方、比較例1の炭素材料からなる正極では、放電によって大きな析出物が生成し、充電後も電極表面に残っていた。この結果から、実施例1の炭素材料からなる正極は、比較例1の炭素材料からなる正極と比べて劣化が少ないといえる。
 また、図13に、実施例3の充放電試験前(13A)及び充放電試験後(13B)の正極表面のSEM写真を示す。
 図13より、実施例3の炭素材料からなる正極では、充放電により、電極表面に小さな析出物の生成が確認されたものの、表面の平滑性は維持されていることから、劣化が小さいといえる。
 (比較例2)
 まず、以下のようにして、正極を作製した。すなわち、カーボンブラック(ケッチェンブラックECP600JD)を、エタノール(溶媒)中、ポリテトラフルオロエチレン(結着剤)と混合し、正極材ペーストを調製した。正極材ペースト中、カーボンブラック:ポリテトラフルオロエチレン=90wt%:10wt%とした。続いて、正極材ペーストを、基材上に塗布した後、ロールプレスで圧延した。次に、真空中、60℃で乾燥(前乾燥)させた後、切断し、さらに、真空中、120℃で乾燥(最終乾燥)させた。得られた正極を基材から剥離した。
 次に、上記にて得られた正極を用いて、実施例1~4と同様にして、リチウム空気電池セルを作製し、充放電試験を行った。
 図14に、比較例2の充放電試験前(14A)及び充放電試験後(14B)の正極表面のSEM写真を示す。
 図14より、充放電前には平滑だった電極表面が、充放電により、大きな凹凸の形成が確認された。これは、析出物の生成や、炭素材料の分解等が原因と考えられ、劣化が大きいといえる。特に、図13に示した実施例3と比較すると、凹凸が大きく、劣化が大きいことがわかる。
Figure JPOXMLDOC01-appb-T000003
 上記「炭素材料の評価2」において述べたように、比較例1の炭素材料はガラス状を呈していないのに対して、実施例1~4の炭素材料はいずれもガラス状炭素材料であることがTEM観察により確認された。また、表3より、N/C比が1.9×10-2以上である実施例1~4の炭素材料を正極として用いたリチウム空気電池は、窒素を含まない比較例1の炭素材料よりも放電容量に優れていることがわかる。これらの結果から、N/C比が1.9×10-2以上で、且つ、ガラス状である炭素材料をリチウム空気電池の正極を構成する材料として用いることによって、リチウム空気電池の放電特性の向上が可能であることがわかる。
 また、図15にN/C比と放電容量との関係、図16にピロール/C比と放電容量との関係、及び、図17にG/D比と放電容量との関係を示す。
 図15及び表3より、N/C比が、1.90×10-2~2.10×10-2、中でも1.94×10-2~2.00×10-2である場合、特に優れた放電容量が得られることがわかる。また、図16及び表3より、ピロール/C比が、1.44×10-2~1.52×10-2、中でも1.47×10-2~1.48×10-2である場合、優れた放電容量が得られることがわかる。さらに、図17及び表2、3より、G/D比が1.5以下、特に0.7以下で放電特性が高いことがわかる。
 また、図18にN/C比とクーロン効率との関係、及び図19にピリジン/C比とクーロン効率との関係を示す。
 図18より、N/C比が、1.95×10-2~2.25×10-2、中でも2.00×10-2~2.19×10-2である場合、放電容量に優れていると共にクーロン効率にも優れていることがわかる。また、図19より、ピリジン/C比が、0.47×10-2~0.50×10-2、中でも0.48×10-2である場合、優れたクーロン効率が得られることがわかる。
 また、実施例1~4において、上記放電容量の結果と、図4~図7の結果とから、次のことがいえる。
 すなわち、焼成温度が高いほど、G/D比、面間隔、及び電気抵抗は、低くなる傾向があった。一方、焼成温度が高いほど、a軸結晶子のサイズ及びc軸結晶子のサイズは、大きくなる傾向があった。また、放電容量は、G/D比が1.5以下、特に0.7以下において、面間隔が3.7~4.2Å、特に3.75~4.1Åにおいて高かった。また、a軸方向の結晶子のサイズが22~27Å、特に22.5~26.3Åにおいて、c軸方向の結晶子のサイズが11~16Å、特に12.5~15Åにおいて、放電容量が高くなった。
 1…析出物
 2…正極
 3…負極
 4…電解質
 5…正極集電体
 6…正極缶
 7…負極缶
 8…ガスケット
 9…空気孔
 10…空気金属電池
 11…負極
 12…電解液
 13…正極
 14…正極集電体
 15…負極集電体

Claims (6)

  1.  リチウム空気電池の正極を構成する炭素材料であって、
     窒素を炭素に対するモル比で1.9×10-2以上含有し、且つ、ガラス状であることを特徴とする、リチウム空気電池正極用炭素材料。
  2.  炭素に対する窒素のモル比が、1.90×10-2~2.10×10-2である、請求項1に記載のリチウム空気電池正極用炭素材料。
  3.  炭素に対する窒素のモル比が、1.95×10-2~2.25×10-2である、請求項1に記載のリチウム空気電池正極用炭素材料。
  4.  ピロールを含有し、炭素に対するピロールのモル比が、1.44×10-2~1.52×10-2である、請求項1又は2に記載のリチウム空気電池正極用炭素材料。
  5.  ピリジンを含有し、炭素に対するピリジンのモル比が、0.47×10-2~0.50×10-2である、請求項1又は3に記載のリチウム空気電池正極用炭素材料。
  6.  正極、負極、及び、前記正極と前記負極との間に介在する電解質を備えるリチウム空気電池であって、前記正極が、請求項1乃至5のいずれか1項に記載の炭素材料を含有することを特徴とする、リチウム空気電池。
PCT/JP2013/076554 2012-10-23 2013-09-30 リチウム空気電池正極用炭素材料及びリチウム空気電池 WO2014065082A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013005116.8T DE112013005116B4 (de) 2012-10-23 2013-09-30 Kohlenstoffhaltiges Material für Kathoden einer Lithium-Luft-Batterie und Lithium-Luft-Batterie
KR1020157010359A KR101599693B1 (ko) 2012-10-23 2013-09-30 리튬 공기 전지 정극용 탄소 재료 및 리튬 공기 전지
US14/437,562 US9368849B2 (en) 2012-10-23 2013-09-30 Carbonaceous material for lithium-air battery cathodes and lithium battery
CN201380055410.XA CN104756310B (zh) 2012-10-23 2013-09-30 锂空气电池正极用碳材料和锂空气电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012233974A JP5718874B2 (ja) 2012-10-23 2012-10-23 リチウム空気電池正極用炭素材料及びリチウム空気電池
JP2012-233974 2012-10-23

Publications (1)

Publication Number Publication Date
WO2014065082A1 true WO2014065082A1 (ja) 2014-05-01

Family

ID=50544462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076554 WO2014065082A1 (ja) 2012-10-23 2013-09-30 リチウム空気電池正極用炭素材料及びリチウム空気電池

Country Status (6)

Country Link
US (1) US9368849B2 (ja)
JP (1) JP5718874B2 (ja)
KR (1) KR101599693B1 (ja)
CN (1) CN104756310B (ja)
DE (1) DE112013005116B4 (ja)
WO (1) WO2014065082A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118623A1 (ja) * 2020-12-02 2022-06-09 日清紡ケミカル株式会社 露光装置用部材、露光装置用部材の製造方法、及び、複合型露光装置用部材

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101764470B1 (ko) * 2014-10-02 2017-08-02 주식회사 엘지화학 이종의 바인더를 포함하는 양극 활물질 슬러리 및 이로부터 제조된 양극
KR101620468B1 (ko) 2014-12-04 2016-05-13 한국에너지기술연구원 금속-공기 전지용 양극, 그의 제조방법 및 그를 포함하는 금속-공기 전지
KR102234003B1 (ko) * 2018-04-16 2021-03-31 한양대학교 에리카산학협력단 고체 전해질 및 그 제조 방법
KR102540525B1 (ko) 2018-06-18 2023-06-05 현대자동차주식회사 금속 공기 전지용 양극 및 이를 포함하는 금속 공기 전지
DE102020100907A1 (de) 2020-01-16 2021-07-22 Netzsch Trockenmahltechnik Gmbh Vorrichtung und verfahren zum verrunden von graphitflocken eines graphitmaterials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182606A (ja) * 2009-02-09 2010-08-19 Nippon Telegr & Teleph Corp <Ntt> リチウム空気電池
JP2012182050A (ja) * 2011-03-02 2012-09-20 National Institute Of Advanced Industrial & Technology 金属フリーのグラフェンを空気極に用いたリチウム−空気電池
JP2013159519A (ja) * 2012-02-03 2013-08-19 Hitachi Ltd 3次元表面構造を有する炭素材料
JP2013165051A (ja) * 2012-02-11 2013-08-22 Tottori Univ 電池正極材料とそれによる空気二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169512A (ja) * 1995-12-22 1997-06-30 Unitika Ltd 炭素材料及びそれを用いた二次電池
US6881680B2 (en) * 2002-06-14 2005-04-19 Toyo Tanso Co., Ltd. Low nitrogen concentration carbonaceous material and manufacturing method thereof
JP2008243490A (ja) * 2007-03-26 2008-10-09 Shunichi Uchiyama 電極材料及びその製造方法並びに電気化学センサ及び燃料電池用電極
JP2010009807A (ja) 2008-06-25 2010-01-14 Nec Corp 空気極用燃料電池触媒、その製造方法、電極および燃料電池
US8221937B2 (en) * 2008-12-19 2012-07-17 University Of Dayton Metal-free vertically-aligned nitrogen-doped carbon nanotube catalyst for fuel cell cathodes
JP5056942B2 (ja) * 2009-03-06 2012-10-24 トヨタ自動車株式会社 空気極および非水空気電池
DE102009019747A1 (de) * 2009-05-02 2010-11-04 Bayer Technology Services Gmbh Verfahren zur Herstellung von Kohlenstoffmaterialien mit Stickstoffmodifikation ausgehend von Kohlenstoffnanoröhrchen
JP5392356B2 (ja) * 2009-12-18 2014-01-22 トヨタ自動車株式会社 空気電池用空気極、及び、当該空気極を備えた空気電池
JP2011198636A (ja) 2010-03-19 2011-10-06 Nec Corp 酸素還元触媒の製造方法
JP5608595B2 (ja) 2010-03-30 2014-10-15 富士フイルム株式会社 含窒素カーボンアロイ、その製造方法及びそれを用いた炭素触媒
JP2011230099A (ja) * 2010-04-30 2011-11-17 Teijin Ltd 炭素触媒及び炭素触媒の製造方法
JP2013109896A (ja) 2011-11-18 2013-06-06 Toyota Motor Corp 電極材料及び電極材料の製造方法
CN102593556B (zh) * 2012-03-07 2015-04-15 中国科学院宁波材料技术与工程研究所 一种锂空气或氧气电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182606A (ja) * 2009-02-09 2010-08-19 Nippon Telegr & Teleph Corp <Ntt> リチウム空気電池
JP2012182050A (ja) * 2011-03-02 2012-09-20 National Institute Of Advanced Industrial & Technology 金属フリーのグラフェンを空気極に用いたリチウム−空気電池
JP2013159519A (ja) * 2012-02-03 2013-08-19 Hitachi Ltd 3次元表面構造を有する炭素材料
JP2013165051A (ja) * 2012-02-11 2013-08-22 Tottori Univ 電池正極材料とそれによる空気二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118623A1 (ja) * 2020-12-02 2022-06-09 日清紡ケミカル株式会社 露光装置用部材、露光装置用部材の製造方法、及び、複合型露光装置用部材

Also Published As

Publication number Publication date
JP5718874B2 (ja) 2015-05-13
JP2014086256A (ja) 2014-05-12
DE112013005116T5 (de) 2015-07-09
KR20150051239A (ko) 2015-05-11
US20150288040A1 (en) 2015-10-08
US9368849B2 (en) 2016-06-14
CN104756310B (zh) 2016-10-05
CN104756310A (zh) 2015-07-01
KR101599693B1 (ko) 2016-03-04
DE112013005116B4 (de) 2021-02-11

Similar Documents

Publication Publication Date Title
KR101383360B1 (ko) 리튬 이온 커패시터용 양극 활물질 및 그의 제조 방법
US9564659B2 (en) Positive electrode for sulfur-based batteries
JP5718874B2 (ja) リチウム空気電池正極用炭素材料及びリチウム空気電池
KR20120128125A (ko) 리튬 이온 전지용 고용량 아노드 물질
US10326142B2 (en) Positive electrode including discrete aluminum oxide nanomaterials and method for forming aluminum oxide nanomaterials
JP2013054958A (ja) 非水電解質二次電池用負極材、リチウムイオン二次電池及び電気化学キャパシタ
JPWO2012005139A1 (ja) セラミックセパレータ及び蓄電デバイス
JP5071171B2 (ja) リチウム二次電池
KR20170084307A (ko) 전기 디바이스
WO2014038692A1 (ja) 空気電池の空気極用炭素材料、及び当該炭素材料を含む空気電池
JP2012156087A (ja) 非水電解質二次電池
Lv et al. A free-standing Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2/MWCNT framework for high-energy lithium-ion batteries
JP2013026148A (ja) 非水電解液リチウム空気二次電池の正極およびその製造方法
JP2015115233A (ja) マグネシウムイオン二次電池用負極、マグネシウムイオン二次電池
JP2013191484A (ja) 負極活物質層、その製造方法及び非水電解質二次電池
CN111164801A (zh) 电极、蓄电元件和电极的制造方法
EP4269361A1 (en) Binder that is composite of single-walled carbon nanotubes and ptfe, and composition for electrode production and secondary battery using same
JP7243406B2 (ja) 電解液及びリチウムイオン二次電池
JP6244604B2 (ja) 非水電解質二次電池及びその製造方法
KR102057128B1 (ko) 팽창흑연에 리튬을 함침시킨 리튬이온커패시터용 팽창흑연음극재
JP5708198B2 (ja) 二次電池用炭素材及びその製造方法
JP5758731B2 (ja) 非水電解質二次電池
JP2009108444A (ja) メソフェーズピッチ系低温焼成炭素繊維の製造方法
JP2020194739A (ja) リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
US20230268483A1 (en) Organic sublimable material-assisted electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157010359

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14437562

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013005116

Country of ref document: DE

Ref document number: 1120130051168

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848145

Country of ref document: EP

Kind code of ref document: A1