WO2014061509A1 - 車両用フロントガラス - Google Patents

車両用フロントガラス Download PDF

Info

Publication number
WO2014061509A1
WO2014061509A1 PCT/JP2013/077373 JP2013077373W WO2014061509A1 WO 2014061509 A1 WO2014061509 A1 WO 2014061509A1 JP 2013077373 W JP2013077373 W JP 2013077373W WO 2014061509 A1 WO2014061509 A1 WO 2014061509A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
film
region
fogging
absorbing
Prior art date
Application number
PCT/JP2013/077373
Other languages
English (en)
French (fr)
Inventor
英樹 石岡
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP13847326.9A priority Critical patent/EP2907706A4/en
Priority to RU2015118151A priority patent/RU2615646C2/ru
Priority to CN201380053881.7A priority patent/CN104736399B/zh
Priority to JP2014542067A priority patent/JP6194892B2/ja
Publication of WO2014061509A1 publication Critical patent/WO2014061509A1/ja
Priority to US14/682,524 priority patent/US9481228B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/002Windows; Windscreens; Accessories therefor with means for clear vision, e.g. anti-frost or defog panes, rain shields
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3405Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of organic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/48Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific function
    • C03C2217/485Pigments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/75Hydrophilic and oleophilic coatings

Definitions

  • the present invention relates to a vehicle windshield, and more particularly, to a vehicle windshield having an anti-fogging property and partially provided with a region where fogging can be recognized.
  • the vehicle In vehicle windshields, fogging caused by condensation and adhesion of moisture to the glass surface due to temperature changes and humidity increases occurs in a wide field of view (hereinafter referred to as “field of view”) that secures the driver's field of view. This will adversely affect driving. Therefore, the vehicle is provided with anti-fogging means for suppressing the occurrence of fogging, specifically, anti-fogging means such as means for blowing air on the surface of the windshield, and means for directly adjusting the glass temperature such as glass with heating wire. And by operating this, it copes with cloudiness. In addition, adjustment of air conditioning and the like is also a countermeasure for anti-fogging generally performed.
  • a glass with an anti-fogging film that absorbs and removes fine water droplets that cause fogging by providing an anti-fogging film containing a water-absorbing resin, for example, a water-absorbing crosslinked resin layer obtained from polyepoxides on the glass surface.
  • a water-absorbing resin for example, a water-absorbing crosslinked resin layer obtained from polyepoxides on the glass surface.
  • the present invention can reduce the chance of fogging by having anti-fogging properties, and in a situation where fogging occurs, it is easy and reliable without affecting the driver's visibility at the initial stage.
  • An object of the present invention is to provide a vehicular windshield capable of recognizing the occurrence of cloudiness.
  • the present invention relates to a window glass, a belt-like black ceramic layer formed on the peripheral edge of the window glass, and an end of the window glass on the inner side of the vehicle that is inside the edge of the window glass and the black ceramics.
  • a water-absorbing anti-fogging film provided so as to exist in a layer formation region, wherein the water-absorbing anti-fogging film secures a driver's field of view in the vehicle windshield.
  • the maximum film thickness is in the range of 30 to 70% of the minimum film thickness in the visual field region outside the visual field region and inside the region where the black ceramic layer is formed, and the driver can recognize when fogging occurs.
  • a vehicle windshield having a thin film region of a size is provided.
  • the present invention it is possible to reduce the chance of fogging by having anti-fogging properties, and in a situation where fogging occurs, the driver can easily be seen without affecting the visibility at the initial stage.
  • FIG. 2 is a sectional view taken along line XX of the vehicle windshield shown in FIG. It is a figure which shows the film thickness measurement position of a water absorption anti-fogging film
  • the vehicle windshield according to the present invention includes a window glass, a belt-shaped black ceramic layer formed on a peripheral edge of the window glass, and an end portion of the window glass on the inner side of the window glass that is inside the edge of the window glass. And a water-absorbing anti-fogging film provided so as to exist in the formation region of the black ceramic layer, wherein the water-absorbing anti-fogging film is a driver in the vehicle windshield.
  • the maximum film thickness is in the range of 30 to 70% of the minimum film thickness in the visual field area outside the visual field area that secures the field of view and inside the area where the black ceramic layer is formed, This is a vehicle windshield having a thin film region with a size that can be recognized by a driver.
  • the peripheral portion of the window glass means a region having a certain width from the edge of the window glass toward the center of the main surface.
  • the direction which goes to a center part from a center part in the main surface of a window glass is called an outer peripheral direction, and the direction which goes to a center part from an edge part is called an inner peripheral direction.
  • the vehicle windshield has a water-absorbing anti-fogging film in a predetermined region on the inner side surface of the vehicle, thereby reducing the chance of fogging on the windshield.
  • the water-absorptive anti-fogging film has a thin film region having a thin film thickness at a predetermined ratio compared to the film thickness in the visual field region outside the visual field region.
  • FIG. 1 shows a front view of an example of an embodiment of a vehicle windshield according to the present invention as viewed from the vehicle inner side.
  • FIG. 2 is a sectional view taken along the line XX of the vehicle windshield shown in FIG.
  • the top of the front view of FIG. 1 corresponds to the top of the vehicle windshield.
  • the cross-sectional view of FIG. 2 is a cross-sectional view in which the left side is on the vehicle windshield.
  • “upper” and “lower” used in the following description indicate upper and lower when the vehicle windshield is mounted on the vehicle, respectively.
  • a vehicle windshield 1 (hereinafter also referred to as “front glass”) includes a window glass 2, a belt-shaped black ceramic layer 3 formed on the peripheral edge of the window glass 2, and an end of the window glass 2 on the inner side of the vehicle.
  • the water-absorbing anti-fogging film 4 is provided so that the portion exists inside the end portion of the window glass 2 and exists in the formation region of the black ceramic layer 3.
  • a window glass usually used for a vehicle windshield can be used without any particular limitation.
  • a window glass made of plastic, glass, or a combination thereof (laminated material or the like) is preferably used.
  • soda lime glass also referred to as soda lime silicate glass
  • borosilicate glass borosilicate glass
  • non-alkali glass quartz glass and the like
  • soda lime glass is particularly preferred.
  • Glass that absorbs ultraviolet rays or infrared rays may be used.
  • the forming method is not particularly limited, but for example, a glass plate formed by a float method or the like is preferable.
  • the plastic include acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as polyphenylene carbonate, and aromatic polyester resins such as polyethylene terephthalate (PET). Among these, aromatic polycarbonate resins are used. preferable.
  • the window glass 2 is appropriately selected according to the vehicle to which the windshield 1 is applied, but a single glass made of the above glass material or a laminated glass having an interlayer film sandwiched between two glass plates is preferable.
  • the shape and thickness of the window glass 2 can be appropriately selected according to the vehicle to which the windshield 1 is applied.
  • the shape of the window glass 2 may be a flat plate, or the entire surface or a part thereof may have a curvature.
  • the thickness of the window glass 2 is preferably 1 to 10 mm.
  • the black ceramic layer 3 is formed in a strip shape, in other words, in a frame shape, on all four sides of the inner peripheral surface of the window glass 2.
  • the black ceramic layer 3 is normally provided in this manner, thereby playing a role of hiding the vehicle body attachment portion of the windshield.
  • the black ceramic layer is provided on at least one main surface of the window glass.
  • the black ceramic layer is preferably provided on the inner surface of the window glass 2 like the windshield 1, but may be provided on the outer surface of the vehicle as necessary.
  • a black ceramic layer may be formed in the vehicle inner surface of the glass plate of a vehicle outer side.
  • the peripheral portion where the black ceramic layer is formed does not necessarily have to be all four sides of the peripheral portion, and an embodiment in which the black ceramic layer is formed on a part of the peripheral portion is also included in the present invention.
  • the width of the black ceramic layer indicated by w in FIGS. 1 and 2 is a width that needs to be concealed, and does not necessarily have to be the same width on the upper, lower, left, and right sides. Furthermore, it is not necessary to have the same width from end to end on one side.
  • the width of the black ceramic layer may be set wider than the other three sides in order to conceal the storage portion such as the wiper on the lower side, and the width of the black ceramic layer may be concealed on the upper side to conceal the attachment parts of various sensors. It is also possible to set a wide neighborhood and a narrow width in other portions.
  • the width of the black ceramic layer is preferably in the range of 5 to 300 mm, more preferably 10 to 200 mm.
  • a black ceramic layer formed on the window glass 2 by a conventionally known method can be applied without particular limitation. Specifically, a black ceramic paste obtained by adding a heat-resistant black pigment powder together with a low-melting glass powder to a resin and a solvent and kneading is applied to a desired region on the window glass 2 by printing or the like, and heated and baked. The formed black ceramic layer can be mentioned.
  • the “black color” of the black ceramic layer may be adjusted so as not to transmit visible light to such an extent that at least a portion required to be concealed can be concealed.
  • the black pigment to be used includes a combination of pigments that become black by a combination of a plurality of colored pigments.
  • the black ceramic layer may be configured as an integrated film in which the entire layer is continuous, or may be configured by a dot pattern or the like that is an aggregate of fine dots.
  • the shape of the dot is not limited to a circle, and may be an ellipse, a rectangle, a polygon, a star, or the like.
  • the dot part can be made transparent and the other part can be made into a dot pattern which is a black ceramic layer.
  • the dots may be formed by changing the size or interval in the formation region of the black ceramic layer. For example, when a black ceramic layer is formed with a dot pattern on the peripheral edge of an antifogging glass article, the antifogging property can be reduced by reducing the dot size or increasing the interval between dots in the inner peripheral direction. The area ratio of a transparent part can be enlarged, so that it becomes the inner peripheral direction of a glass article.
  • the thickness of the black ceramic layer is not particularly limited as long as the visibility and the adhesion of the water absorption antifogging film formed thereon are not problematic.
  • the black ceramic layer is preferably formed with a thickness of about 8 to 20 ⁇ m, more preferably 10 to 15 ⁇ m.
  • the water-absorbing anti-fogging film 4 is provided on substantially the entire surface so as to partially overlap the black ceramic layer 3 formed on the peripheral edge of the inner surface of the window glass 2. It has been. Specifically, the water-absorptive anti-fogging film 4 has an end portion that is inside the end portion of the window glass 2 by w1 (however, w> w1) and in the formation region of the black ceramic layer 3. It is provided to exist. In FIG. 1, the broken line shown in the formation region of the black ceramic layer 3 indicates the position of the end of the water absorption antifogging film 4.
  • the edge part of the water absorption antifogging film 4 is located inward by w1 from the outer peripheral edge of the black ceramic layer 3, and It exists outside the inner peripheral edge by w ⁇ w1. That is, the overlapping width of the water absorption antifogging film 4 and the black ceramic layer 3 is w ⁇ w1.
  • w1 is preferably 1/3 to 2/3 of w.
  • the black ceramic layer is not necessarily formed on the inner surface of the window glass, such as laminated glass, when the windshield is viewed from the inside of the vehicle or the outside of the vehicle, one of the regions where the black ceramic layer is formed.
  • the water absorption anti-fogging film is formed so that the formation region overlaps the part.
  • the water absorption anti-fogging film has a maximum film thickness that is the minimum film thickness in the visual field area outside the visual field area that secures the driver's field of vision and inside the area where the black ceramic layer is formed. It is in the range of 30 to 70%, and has a thin film region of a size that can be recognized by the driver when fogging occurs.
  • the visual field region 4v is set to the test region B defined in JIS R3212 (1998).
  • the test region B is a region having a larger area among two regions surrounded by a dotted line shown inside the black ceramic layer 3 in FIG.
  • a region having a smaller area inside the test region B is the test region A.
  • Test area A and test area B are test areas respectively defined as “Test areas for safety glass used on the front surface” defined in JIS R3212 (1998, “Safety glass test method for automobiles”).
  • the test area A in the windshield 1 shown in FIG. 1 is the test area A in the case of the right handle, and in the case of the left handle, the position symmetrical to the center line of the test area A shown in FIG. It becomes area A.
  • the test region A is defined as a region where it is preferable that the driver's field of view is secured at a minimum for ensuring safety.
  • the test area B which is an area including the test area A, is defined as a more preferable area where the driver's field of view is secured in the entire range of the area.
  • the visual field region is preferably a region including the test region A defined in JIS R3212 (1998) from the viewpoint that the safety can be sufficiently secured.
  • a region including the test region B is more preferable.
  • the water-absorbing anti-fogging film 4 has an inner circumference on the upper side of the black ceramic layer 3 forming area as one side and a region having a width L along the side as a thin film area 4s.
  • the width L of the thin film region 4s is preferably 20 mm or more, and more preferably 30 mm or more.
  • the upper limit of the width L is the distance between the inner periphery of the formation region of the black ceramic layer 3 and the outer periphery of the visual field region 4v closest to the inner periphery.
  • the water absorption anti-fogging film 4 has the thin film region 4s only on the upper side, but the present invention is not limited to this. It may be provided in the shape of a frame inside the formation region of the black ceramic layer 3, or may be provided in combination with one side other than the upper side of the upper, lower, left, and right sides, or any two or three sides. Further, it is not always necessary to include the inner periphery of the formation region of the black ceramic layer 3 as the outer periphery, and the black ceramic layer 3 may exist in an island shape between the formation region of the black ceramic layer 3 and the visual field region 4v.
  • the thin film region of the water-absorbing anti-fogging film has a maximum film thickness in the range of 30 to 70% of the minimum film thickness in the visual field region, and a size that can be recognized by the driver when fogging occurs.
  • a size of about 20 mm ⁇ 50 mm functions. Therefore, for example, like the water absorption / antifogging film 4 of the windshield 1 shown in FIGS. 1 and 2, the width indicated by L in the drawing is 20 mm along the inner periphery of the formation region of the black ceramic layer 3 only on the upper side.
  • the thin film region in the water-absorbing antifogging film is provided with a width of 20 mm or more along the inner circumference of the black ceramic layer forming region only on the upper side. It is preferable. In addition, it is preferable that the thin film region is provided on the upper side of the four sides because the driver can easily recognize it.
  • the difference in film thickness between the thin film region and the visual field region in the water absorption anti-fogging film is sufficient if the maximum film thickness in the thin film region is in the range of 30 to 70% of the minimum film thickness in the visual field region, and in the range of 50 to 70%. Is preferred.
  • the water-absorptive antifogging film is basically a continuous film composed of the same material in the surface direction as shown below, and has a correlation that the water-absorptive antifogging property increases as the film thickness increases.
  • the maximum film thickness in the thin film region is in the range of 30 to 70% of the minimum film thickness in the visual field region in the water absorption antifogging film, the interior of the vehicle has a certain degree of water absorption and antifogging properties in the thin film region.
  • the maximum film thickness in the thin film region is in the range of 30 to 70% of the minimum film thickness in the visual field region in the water absorption antifogging film, the interior of the vehicle has a certain degree of water absorption and antifogging properties in the thin film region.
  • the visual field area of the water-absorbing anti-fogging film has a sufficient film thickness and water-absorbing and anti-fogging properties are ensured, while taking measures to improve the state in which the driver is prone to fogging, for example, windshield Visibility in the visual field region is sufficiently ensured while the anti-fogging means such as the means for blowing air on the surface and the means for directly adjusting the glass temperature such as the glass with heating wire is operated or the air conditioning is adjusted.
  • a specific film thickness it selects suitably by the kind of material of a water absorption anti-fog film, ie, water absorption anti-fog performance.
  • the water absorption antifogging film may be laminated in the thickness direction as described later, but is formed as a single continuous film in the surface direction.
  • Making a part of such a water-absorptive anti-fogging film as a thin film region for example, making it thin in an island shape to the minimum required size and making it thick enough to prevent fogging around it, Even if it is technically possible, it may be a problem in terms of production efficiency.
  • a step is generated at the boundary between the two regions in the relationship between the film thickness of the thin film region and its peripheral region, there may be a problem in terms of visibility.
  • a step is always generated at the boundary in order to make the maximum film thickness of the thin film region 30 to 70% of the minimum film thickness in the visual field region.
  • the film has a certain distance between the thin film region and the visual field region, and the film is directed from the thin film region toward the visual field region.
  • a water-absorbing antifogging film formed so that the thickness gradually increases is preferable.
  • the film thickness of the water absorption anti-fogging film 4 of the windshield 1 shown in FIG. 2 is thin on the upper side, that is, the left side of the windshield 1, and gradually increases toward the lower side (right side in FIG. 2).
  • the end portions of the water absorption anti-fogging film 4 are present in the formation region of the black ceramic layer 3 on the upper side and the lower side, respectively.
  • the thin film region 4s is a region having a width L from the inner periphery of the formation region of the black ceramic layer 3 on the upper side, and the maximum film thickness is on the innermost side of the thin film region 4s. It is a film thickness indicated by 4 s max in FIG.
  • the visual field region 4v is a region indicated as a test region B in the front view of FIG. 1, and is a central region indicated by a width Lb in the cross-sectional view of FIG.
  • the minimum film thickness of the visual field region 4v is a film thickness indicated by 4v min in FIG. 2 measured on the uppermost side in the visual field region 4v.
  • the region indicated by the width of La is a region indicated as the test region A in the front view of FIG.
  • the relationship between the maximum film thickness 4s max of the thin film region 4s and the minimum film thickness 4v min of the visual field region 4v in the water absorption anti-fogging film 4 is in the range of 30 to 70% as (4s max / 4v min ) ⁇ 100. is there.
  • the water-absorptive anti-fogging film is not particularly limited as long as it has water absorption at a predetermined film thickness and is highly transparent.
  • water antifogging is preferably, more preferably 400 ⁇ 500mg / cm 3 of saturated water absorption amount measured by the following method is 300 ⁇ 600mg / cm 3.
  • the minimum film thickness in the viewing area is preferably 8 to 17 ⁇ m, and more preferably 10 to 15 ⁇ m.
  • the film thickness of the visual field region may be the minimum film thickness within the above range, and the entire visual field region may have the same uniform film thickness as the minimum film thickness. It may be configured such that the film thickness gradually increases from the upper side to the lower side as in the visual field region 4v.
  • the maximum film thickness of the visual field region is preferably 15 to 28 ⁇ m, and more preferably 17 to 23 ⁇ m. Further, the average film thickness of the visual field region is preferably 10 to 25 ⁇ m, more preferably 15 to 20 ⁇ m.
  • the maximum film thickness in the thin film region of the water absorption antifogging film is preferably 5 to 12 ⁇ m, and more preferably 7 to 10 ⁇ m.
  • the film thickness of the thin film region may be as long as the maximum film thickness is in the above range, and the entire thin film region may have the same uniform film thickness as the maximum film thickness.
  • the thin film region 4s may be configured such that the film thickness gradually increases from the upper side to the lower side.
  • the minimum film thickness of the thin film region is preferably 1 to 5 ⁇ m, more preferably 1.5 to 4.0 m.
  • the average film thickness of the thin film region is preferably 3 to 10 ⁇ m, more preferably 5 to 8 ⁇ m.
  • the minimum film thickness is at least the maximum film thickness of the thin film region.
  • the water-absorbing anti-fogging film has sufficient anti-fogging properties to reduce the chance of fogging on the windshield. Sufficient durability can be secured. Furthermore, from the relationship between the film thickness of the water-absorbing anti-fogging film and the thin film area, in the situation where fogging occurs, the fogging occurs only in the thin film area on the windshield, so that it is easy and reliable for the driver. It is possible to recognize the occurrence of cloudiness.
  • a constant temperature and humidity chamber set to a temperature of 25 ° C. and a relative humidity of 90% after leaving for 24 hours in a room at a temperature of 25 ° C. and a relative humidity of 50 ⁇ 10% using a substrate with a water absorption anti-fogging film as a test piece. Leave for at least 15 minutes.
  • the moisture content (I) of the test piece is measured using a trace moisture meter. Further, the moisture content (II) is measured by the same procedure for only the substrate not having the water-absorbing anti-fogging film. The value obtained by subtracting the water content (I) from the water content (I) by the volume of the water-absorptive anti-fogging film is defined as the saturated water absorption amount.
  • the water content is measured with a trace moisture meter FM-300 (manufactured by Kett Science Laboratory) as follows.
  • the sample to be measured is heated at 120 ° C, the vaporized material released from the sample is passed through activated carbon to remove vapors other than moisture, and then the moisture is adsorbed to the molecular sieve in the micro moisture meter, and the change in the mass of the molecular sieve is determined as moisture. Measure as quantity.
  • the end point of the measurement is the time when the amount of change in mass per minute becomes 0.02 mg or less.
  • the evaluation can be performed, for example, with a sample (a water-absorbing layer has an area of 12 cm 2 ) prepared using a 3 cm ⁇ 4 cm ⁇ 2 mm thick soda lime glass substrate, but is not limited thereto.
  • the water absorption of the water-absorptive anti-fogging film can be evaluated using the saturated water absorption per unit volume and the film thickness as an index. Furthermore, as an index indicating the water absorption of the water-absorbing and anti-fogging film, “anti-fogging time (seconds)” defined below which indicates the water absorption of the water-absorbing and anti-fogging film itself may be used.
  • the antifogging time is the same as described above, for example, a soda-lime glass substrate having a predetermined shape and size, for example, 3 cm ⁇ 4 cm ⁇ 2 mm thickness, provided with a water-absorbing antifogging film as a specimen, and a temperature of 25 ° C. and a relative humidity of 50 ⁇ 10. % Of the water-absorptive anti-fogging film was placed on a hot water bath at 35 ° C. for 24 hours, and the anti-fogging time (seconds) was measured until a cloudy area having a diameter of approximately 2 cm or more was visually observed. Indicated by
  • Examples of the water-absorbing and anti-fogging film having water absorption include a water-absorbing and anti-fogging film containing a water-absorbing material such as a water-absorbing resin and porous inorganic fine particles.
  • the water-absorbing resin has water absorption by the combined action of the hydrophilic group present in the molecule and the cross-linked structure of the molecule, and the porous inorganic fine particles have water absorption by having a large number of pores.
  • the water-absorbing and anti-fogging film may be formed only from the water-absorbing resin because the resin itself has film-forming properties.
  • porous inorganic fine particles it is preferable to form a water-absorptive antifogging film in a form in which a binder component is added and porous inorganic fine particles are dispersed therein.
  • porous inorganic fine particles used in the water-absorptive antifogging film include porous fine particles of various metal oxides, metal carbides, and metal nitrides. Porous fine particles such as silicon oxide, titanium oxide, and zirconium oxide are used. Preferably, porous fine particles of silicon oxide, such as mesoporous silica, are more preferable.
  • the porous inorganic fine particles preferably have an average primary particle diameter of about 5 to 100 nm and an average pore diameter of about 1 to 50 nm.
  • Examples of the binder component contained in the water-absorptive antifogging film together with the porous inorganic fine particles include cured products obtained by hydrolytic condensation of inorganic oxides such as metal alkoxides, and organic resins such as silicone resins, acrylic resins, and polyester resins. , Polyurethane resins, hydrophilic organic resins containing polyoxyalkylene groups, and epoxy resins.
  • Examples of the content ratio of the porous inorganic fine particles and the binder component include a ratio of 20 to 400 parts by mass of the binder component with respect to 100 parts by mass of the porous inorganic fine particles.
  • the water-absorbing antifogging film is preferably a water-absorbing antifogging film formed using a water-absorbing resin.
  • the water-absorbing anti-fogging film is preferably composed only of a water-absorbing resin from the viewpoint of water absorption, but depending on the type of resin used, it is a material having excellent mechanical strength while ensuring water absorption from the viewpoint of wear resistance.
  • a water-absorbing anti-fogging film may be formed in combination.
  • the proportion of the water-absorbing resin to the total amount of the water-absorbing antifogging film is preferably 70 to 100% by mass, more preferably 80 to 100% by mass.
  • the water-absorptive anti-fogging film may be composed of a single layer, for example, a laminated structure composed of at least two layers formed using different types of water-absorbing resins, or the same water-absorbing resin but its content May be a laminated structure composed of at least two layers different from each other.
  • a laminated structure comprising two layers having a water-absorbing layer having water absorption on the innermost side of the vehicle, and having a base layer having a lower water absorption than the water-absorbing layer between the water-absorbing layer and the window glass.
  • the water absorption layer provided on the base layer has water absorption, so that the water absorption of the water absorption antifogging film is sufficiently ensured.
  • the underlayer is preferably about 10 to 50 mg / cm 3 and the water absorbing layer is preferably about 300 to 600 mg / cm 3 .
  • the difference in the saturated water absorption amount between the underlayer and the water absorption layer is preferably in the range of 250 to 590 mg / cm 3. .
  • the ratio of the film thickness of the base layer to the water absorption layer depends on the water absorption of each layer, but the film thickness ratio of the water absorption layer and the base layer indicated by [film thickness of water absorption layer / film thickness of the base layer] is 3. It is preferably from 0.0 to 6.0, more preferably from 3.5 to 5.0.
  • the ratio of the water-absorbing layer to the under-layer thickness indicated by [film thickness of the water-absorbing layer / film thickness of the under-layer] is that the water-absorbing layer is generated during water absorption. It is preferable to keep the stress to be substantially constant from the viewpoint that the underlayer can be relaxed at a constant rate. That is, the deviation of [water absorption layer thickness / underlayer thickness] is preferably within ⁇ 1.0, and more preferably within ⁇ 0.8.
  • the layer is a water-absorbing layer having water absorption
  • the water-absorbing layer is composed of a base layer and a water-absorbing layer.
  • the same as the water absorption layer is preferable.
  • the water-absorbing layer constituting the water-absorptive anti-fogging film alone or together with the underlayer preferably contains a water-absorbing resin, and further contains a functional additive component having various functions as required.
  • Functional additives include inorganic fillers to increase the mechanical strength of the water-absorbing layer, coupling agents to increase adhesion to the window glass, black ceramic layer, or undercoat layer in contact with the water-absorbing layer, and film-forming properties. Examples include leveling agents, antifoaming agents, viscosity modifiers, light stabilizers, antioxidants, ultraviolet absorbers, infrared absorbers and the like used for improvement.
  • the base layer preferably contains a water-absorbing resin having a lower water absorption than the water-absorbing layer, and further contains a functional additive component having various functions in the same manner as the water-absorbing layer as necessary.
  • a functional additive component having various functions in the same manner as the water-absorbing layer as necessary.
  • Water absorbent resin As the water-absorbing resin, a water-absorbing resin that can maintain the saturated water absorption amount shown above in each of the water-absorbing layer and the underlayer when the water-absorbing layer or the underlayer is formed alone or in combination with other materials is preferable. .
  • a resin having a hydrophilic group or a hydrophilic chain (such as a polyoxyethylene group) is used without particular limitation.
  • the water-absorbing resin may be a linear polymer or a non-linear polymer, but a resin that is a non-linear polymer having a three-dimensional network structure is preferable from the viewpoint of durability and the like.
  • the water-absorbing resin composed of a linear polymer include hydroxypropyl cellulose, polyvinyl alcohol, polyvinyl acetal, polyvinyl pyrrolidone, polyvinyl acetate, and the like.
  • the resin that is a non-linear polymer having a three-dimensional network structure include a cured product of a curable resin and a crosslinked resin in which a crosslinkable resin is crosslinked. Usually, a cured product of a curable resin and a crosslinked resin are not distinguished.
  • a cured product of a curable resin and a crosslinked resin are used interchangeably.
  • a cured product of a curable resin (hereinafter also referred to as a cured resin) is used in the sense of including a crosslinked resin, and the curable resin is used in a sense of including a crosslinkable resin.
  • the curable component refers to a combination of a compound having a reactive group (monomer, oligomer, polymer, etc.) and a curing agent.
  • One reactive compound of the curable resin may be referred to as a main agent.
  • the curing agent refers to the other reactive compound that reacts with the main agent, and also means what is called a reaction initiator such as a radical generator that reacts an addition polymerizable unsaturated group and a reaction catalyst such as a Lewis acid.
  • the saturated water absorption amount of the cured resin is proportional to the amount of the hydrophilic group in the cured resin
  • the saturated water absorption amount of the resin can be controlled by adjusting the amount of the hydrophilic group.
  • the hydrophilic group include a hydroxyl group, a carboxyl group, a sulfonyl group, an amide group, an amino group, a quaternary ammonium base, and an oxyalkylene group.
  • the amount of the hydrophilic group in the curable resin can be controlled by adjusting the amount (for example, hydroxyl value) of the hydrophilic group contained in the main agent and / or the curing agent.
  • the saturated water absorption can be controlled by adjusting the number of functional groups and the degree of crosslinking of the main agent and / or the curing agent.
  • the saturated water absorption also depends on the degree of crosslinking in the cured resin. If the number of crosslinking points contained in the cured resin per unit amount is large, the cured resin has a dense three-dimensional network structure, and a space for water retention is reduced, so water absorption is considered to be low. On the other hand, if the number of cross-linking points contained per unit amount is small, it is considered that the space for water retention becomes large and the water absorption becomes high.
  • the glass transition point of the curable resin is closely related to the number of crosslinking points in the curable resin. In general, a resin having a high glass transition point is considered to have a large number of crosslinking points per unit amount.
  • the glass transition point of the cured resin is preferably 10 to 110 ° C., more preferably 20 to 70 ° C., although it depends on the type of the cured resin.
  • the glass transition point of the water-absorbing cured resin used for the underlayer is preferably 30 to 80 ° C., more preferably 40 to 60 ° C.
  • the glass transition point is a value measured according to JIS K7121. Specifically, a water-absorbing cured resin layer as a specimen is provided on a substrate, for example, a soda lime glass substrate, and this is left in an environment of 20 ° C. and a relative humidity of 50% for 1 hour, and then a differential scanning calorimeter. It is the value measured using. However, the heating rate at the time of measurement shall be 10 degrees C / min.
  • the main component of the curable resin is not particularly limited as long as it becomes a curable resin by reacting with a combination of a compound having two or more reactive groups and a curing agent. This reaction is initiated or promoted by light such as heat or ultraviolet rays.
  • the reactive group include a group having a polymerizable unsaturated group such as a vinyl group, an acryloyloxy group, a methacryloyloxy group, and a styryl group, and an epoxy group, an amino group, a hydroxyl group, a carboxyl group, an acid anhydride group, Examples include reactive groups such as isocyanate groups, methylol groups, ureido groups, mercapto groups, and sulfide groups. Among these, an epoxy group, a carboxyl group, and a hydroxyl group are preferable, and an epoxy group is more preferable. Moreover, only 1 type may be used for a main ingredient and it may use 2 or more types together.
  • the number of reactive groups contained in one molecule is preferably 2 or more, and more preferably 2 to 10. In some cases, it may contain a component having only one reactive group, in which case the average number of reactive groups per molecule in the curable component is 1.5 or more. It is preferable to do this.
  • curable resin examples include a curable acrylic resin composed of a combination of a main agent composed of a low molecular compound (monomer) or oligomer having two or more acryloyloxy groups and a curing agent that is a radical generator, An epoxy resin comprising a combination of a main component such as a low molecular compound or oligomer having at least one epoxy group and a curing agent that is a compound having at least two reactive groups reactive with an epoxy group such as an amino group, two or more An epoxy resin comprising a combination of a main component such as a low molecular compound or oligomer having an epoxy group and a curing agent which is a curing catalyst (Lewis acid or base), a polyol such as a low molecular compound or oligomer having two or more hydroxyl groups Or a combination of two or more isocyanate groups and a polyisocyanate (curing agent) And the like becomes curable urethane resin.
  • a curable acrylic resin composed
  • a photo-curing acrylic resin can be obtained by using a photopolymerization initiator as a curing agent for a curable acrylic resin, and a photo-curing agent (for example, a compound that generates a Lewis acid or the like by light irradiation) as a curing agent for an epoxy resin.
  • a photo-curing agent for example, a compound that generates a Lewis acid or the like by light irradiation
  • a cured product of an epoxy resin is preferably used as the water absorbent resin.
  • the epoxy resin refers to a curable resin containing the following curable components.
  • A A combination of a low molecular compound or oligomer having two or more epoxy groups and a curing agent.
  • B A combination of a polymer having two or more epoxy groups and a curing agent.
  • the number of epoxy groups per molecule in the low molecular weight compound or oligomer which is the main component of the epoxy resin (A) is preferably 2 to 10.
  • the curing agent a low molecular compound having two or more reactive groups such as an amino group, a curing catalyst, or the like can be used, and both can be used in combination.
  • the curing agent may be an oligomer or a polymer.
  • a polyamide oligomer, a polyamide polymer, an oligomer or polymer having an amino group or a carboxyl group in the side chain, and the like can be used as the curing agent.
  • a photo-curing agent can be used as a curing agent to make a photo-curing epoxy resin.
  • the polymer that is the main component of the epoxy resin (B) is preferably a copolymer of an acrylic monomer such as acrylate or methacrylate, or a copolymer of an acrylic monomer and another monomer.
  • an acrylic monomer having an epoxy group as a part of the acrylic monomer, a polymer having an epoxy group can be obtained. Even when a monomer having an epoxy group other than an acrylic monomer is used, a polymer having the same epoxy group can be obtained.
  • the number of epoxy groups per molecule in the polymer having an epoxy group is preferably 1 to 20.
  • the curing agent is preferably a low molecular compound or oligomer having two or more reactive groups such as amino groups.
  • the epoxy resin of the type (A) which is usually called an epoxy resin, depends on the type of low molecular compound or oligomer (hereinafter referred to as polyepoxide) having two or more epoxy groups, which is the main agent. They are classified into epoxy resins, glycidyl ester epoxy resins, glycidyl amine epoxy resins, cycloaliphatic epoxy resins, and the like.
  • the main component of the glycidyl ether epoxy resin is a polyepoxide having a structure in which a glycidyloxy group is substituted for a phenolic hydroxyl group of a polyphenol having two or more phenolic hydroxyl groups or an alcoholic hydroxyl group of a polyol having two or more alcoholic hydroxyl groups. Or an oligomer of the polyepoxide).
  • the main component of the glycidyl ester epoxy resin is a polyepoxide having a structure in which the carboxyl group of a polycarboxylic acid having two or more carboxyl groups is substituted with a glycidyloxycarbonyl group
  • the main component of the glycidyl amine epoxy resin is a nitrogen atom. It consists of a polyepoxide having a structure in which a hydrogen atom bonded to a nitrogen atom of an amine having two or more bonded hydrogen atoms is substituted with a glycidyl group.
  • the main component of the cycloaliphatic epoxy resin is a polyepoxide having an alicyclic hydrocarbon group (such as a 2,3-epoxycyclohexyl group) in which an oxygen atom is bonded between adjacent carbon atoms of the ring.
  • the water-absorbing resin used in the water-absorbing layer is preferably a cured product of an epoxy resin mainly composed of a polyepoxide having no aromatic nucleus from the viewpoint of obtaining high water absorption.
  • an epoxy resin mainly composed of a polyepoxide having no aromatic nucleus from the viewpoint of obtaining high water absorption.
  • glycidyl derived from polyols It is preferable that it is the hardened
  • a cured product of an epoxy resin mainly containing a glycidyl ether-based polyepoxide derived from polyphenols has relatively low water absorption.
  • the cured product of the latter epoxy resin has an aromatic nucleus such as a benzene ring, and this aromatic nucleus is hard and imparts a property of low water absorption to the resin. Therefore, a cured product of an epoxy resin mainly containing a glycidyl ether-based polyepoxide derived from polyphenols is preferably used for the underlayer.
  • it is an epoxy resin which has glycidyl ether type polyepoxide derived from polyphenol as a main ingredient, if a predetermined water absorption is obtained, it can also be used for a water absorption layer.
  • glycidyl ether-based polyepoxides derived from polyphenols include bisphenol-type diglycidyl ethers such as bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bis (4-glycidyloxyphenyl), and phenol novolac type diglycidyl ether. And aromatic polycarboxylic acid polyglycidyl esters such as cresol novolac-type diglycidyl ethers and phthalic acid diglycidyl esters. Of these aromatic polyepoxides, bisphenol A diglycidyl ether and bisphenol F diglycidyl ether are preferably used.
  • Glycidyl ester polyepoxides, glycidylamine polyepoxides, and cycloaliphatic polyepoxides are also suitable as main components of epoxy resins that are raw materials for water-absorbing resins, as long as they have no aromatic nucleus.
  • An aromatic polyol is also known as a raw material polyol for polyepoxide, but the glycidyl ether-based polyepoxide derived from the above-mentioned polyol refers to a glycidyl ether-based polyepoxide derived from a polyol having no aromatic nucleus.
  • the curing agent in the water-absorbing layer, as the epoxy resin that is a raw material of the water-absorbing resin, the curing agent is also preferably a compound having no aromatic nucleus.
  • the compound which has an aromatic nucleus may be sufficient from the usage-amount being small.
  • the curing agent is a reactive compound having a reactive group that reacts with the main agent, the cured product obtained from the combination with the curing agent, even if the polyepoxide does not have an aromatic nucleus, has a relatively large amount of fragrance. It becomes a cured resin having a nucleus, and there is a possibility that water absorption is insufficient.
  • the curing agent has an aromatic nucleus even if it is a compound having an aromatic nucleus. It may be a compound that does not.
  • a combination epoxy resin composed of a main compound composed of a polyepoxide having no aromatic nucleus and a reactive compound having no aromatic nucleus is particularly preferred.
  • a polyepoxide having no aromatic nucleus a glycidyl ether polyepoxide is preferable.
  • glycidyl ester polyepoxides, glycidyl amine polyepoxides, cycloaliphatic polyepoxides, etc. obtained from polyols without aromatic nuclei and amines without aromatic nuclei also provide water-absorbing resins for use in the water-absorbing layer. Therefore, it is preferable as the main component of the epoxy resin.
  • the most preferred polyepoxide having no aromatic nucleus is a glycidyl ether-based polyepoxide.
  • the raw material polyol of the glycidyl ether polyepoxide derived from polyols includes polyols having no aromatic nucleus such as aliphatic polyols and alicyclic polyols, and the number of hydroxyl groups per molecule is preferably 2 to 8. ⁇ 4 are more preferred.
  • polyols having no aromatic nucleus are referred to as aliphatic polyols.
  • aliphatic polyols include alkane polyols, etheric oxygen atom-containing polyols, sugar alcohols, polyoxyalkylene polyols, and polyester polyols.
  • the polyoxyalkylene polyol can be obtained by ring-opening addition polymerization of a monoepoxide such as propylene oxide or ethylene oxide to a relatively low molecular weight polyol such as an alkane polyol, an etheric oxygen atom-containing polyol or a sugar alcohol.
  • the polyester polyol includes a compound having a structure in which an aliphatic diol and an aliphatic dicarboxylic acid are condensed, a compound having a structure in which a cyclic ester is ring-opening polymerized, and the like.
  • glycidyl ether-based polyepoxide derived from polyols examples include glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl ether, sorbitol polyglycidyl ether, and the like.
  • glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, and sorbitol polyglycidyl ether are particularly preferable.
  • polyepoxides other than glycidyl ether-based polyepoxides include hexahydrophthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, bis (3,3 4-epoxycyclohexylmethyl) adipate and the like.
  • the molecular weight of the polyepoxide is preferably 200 to 3000, more preferably 300 to 2000, and particularly preferably 300 to 1800 from the viewpoint of durability and appearance.
  • the epoxy equivalent of the polyepoxide (gram number of resin containing 1 gram equivalent of epoxy group [g / eq]) is preferably 120 to 200 g / eq, and more preferably 130 to 190 g / eq.
  • the molecular weight means a mass average molecular weight (Mw) unless otherwise specified.
  • the mass average molecular weight (Mw) in this specification means the mass average molecular weight which uses polystyrene as a standard measured by gel permeation chromatography (GPC).
  • Examples of the curing agent in the epoxy resin include compounds having two or more reactive groups reactive with epoxy groups such as polyamines, polycarboxylic acid anhydrides, polyamides, polythiols, tertiary amines, imidazoles,
  • Examples of the curing catalyst include Lewis acids, onium salts, dicyandiamides, organic acid dihydrazides, and phosphines.
  • the compound having two or more reactive groups polyamines and polycarboxylic anhydrides having no aromatic nucleus are preferable, and as the curing catalyst, tertiary amines, imidazoles, phosphines, and allylsulfonium salts are preferable.
  • the photocurable catalyst which comprises photocurable epoxy resin as a curing catalyst is also preferable.
  • a compound having two or more reactive groups and a curing catalyst can be used in combination, and a combination of polyamines and a curing catalyst is particularly preferable.
  • a compound having two or more reactive groups is referred to as a polyaddition type curing agent, and a curing catalyst is referred to as a catalyst type curing agent.
  • polyamines, polycarboxylic acid anhydrides, polyamides, and the like can be used.
  • a reactive compound having no aromatic nucleus is used in the same manner as polyepoxide.
  • polyamines having no aromatic nucleus and polycarboxylic acid anhydrides having no aromatic nucleus are preferable, and polyamines having no aromatic nucleus are particularly preferable.
  • Polyamines having 2 to 4 amino groups are preferred as polyamines, and dicarboxylic acid anhydrides, tricarboxylic acid anhydrides, and tetracarboxylic acid anhydrides are preferred as polycarboxylic acid anhydrides.
  • polyamines having no aromatic nucleus aliphatic polyamine compounds and alicyclic polyamine compounds are preferred. Specific examples of these polyamines include ethylenediamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, polyoxyalkylenepolyamine, isophoronediamine, mensendiamine, 3,9-bis (3-aminopropyl)- 2,4,8,10-tetraoxaspiro (5,5) undecane and the like.
  • the polyoxyalkylene polyamine is a polyamine having a structure in which the hydroxyl group of the polyoxyalkylene polyol is substituted with an amino group, for example, a structure in which the hydroxyl group of a polyoxypropylene polyol having 2 to 4 hydroxyl groups is substituted with an amino group
  • There are compounds having 2 to 4 amino groups having The molecular weight per amino group is preferably 1000 or less, and particularly preferably 500 or less.
  • polycarboxylic acid anhydride having no aromatic nucleus examples include succinic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, and the like.
  • Examples of the catalyst type curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, tris (dimethylaminomethyl) phenol, boron trifluoride-amine complex, dicyandiamide, and the like.
  • Examples of the catalyst-type curing agent that gives a photocurable epoxy resin include onium salts that decompose by light such as ultraviolet light such as diphenyliodonium hexafluorophosphate and triphenylsulfonium hexafluorophosphate to generate a Lewis acid catalyst. It is done.
  • the combination ratio of the polyepoxide and the curing agent is preferably such that when the curing agent is a polyaddition curing agent, the equivalent ratio of the reactive group of the polyaddition curing agent to the epoxy group is about 0.8 to 1.2. However, when using together with a catalyst type hardening
  • the amount of the catalytic curing agent used is preferably 2 to 20 parts by mass with respect to 100 parts by mass of the polyepoxide.
  • curing agent shall be 2 mass parts or more, reaction will fully advance and sufficient water absorption and durability can be implement
  • Reactive additives and non-reactive additives other than these can also be blended in the epoxy resin comprising a combination of polyepoxide and a curing agent.
  • the reactive additive include a compound having one reactive group reactive with an epoxy group such as alkyl monoamine, and a coupling agent having an epoxy group or an amino group.
  • the content of the polyepoxide with respect to the total amount of the epoxy resin is preferably 40 to 80% by mass.
  • curing agent is 40 mass% or less.
  • polyepoxide curing agent, and combinations thereof (epoxy resin) as described above.
  • epoxy resin epoxy resin
  • Specific examples of such commercially available products that are preferably used in the water-absorbing layer include, as an aliphatic glycidyl ether-based polyepoxide, any product manufactured by Nagase ChemteX Corporation, which is a glycerol polyglycidyl ether, Denacol.
  • suitable water-absorbing layers include aliphatic polyglycidyl ethers such as Denacol EX-1410 (molecular weight (Mw): 988, average number of epoxy groups: 3.5 / molecule), Denacol EX-1610 (molecular weight) (Mw): 1130, average number of epoxy groups: 4.5 / molecule), Denacol EX-610U (molecular weight (Mw): 1408, average number of epoxy groups: 4.5 / molecule).
  • Examples of sorbitol polyglycidyl ether include Denacol EX-614B (molecular weight (Mw): 949, average number of epoxy groups: 6.1 / molecule).
  • these polyepoxides may be used independently and may use 2 or more types together.
  • jER828 which is a bisphenol A diglycidyl ether (trade name, manufactured by Mitsubishi Chemical Corporation, molecular weight (Mw): 340, average number of epoxy groups: about 2 molecules / molecule) and the like are listed as commercially available products suitably used for the underlayer. It is done.
  • the curing agent include Jeffamine T403 (trade name, manufactured by Huntsman) as a polyoxyalkylene triamine.
  • the triarylsulfonium salt that is a photocuring catalyst include Adekaoptomer SP152 (trade name, manufactured by Adeka).
  • the water-absorbing resin contained in the water-absorbing layer and the base layer has been described above.
  • various components other than the water-absorbing resin will be described as components contained in the water-absorptive antifogging film without distinction between the water-absorbing layer and the base layer. .
  • An inorganic filler is a component which can give high mechanical strength and heat resistance to a water absorption anti-fogging film
  • a cured resin is used as the water-absorbing resin, the curing shrinkage of the resin during the curing reaction can be reduced.
  • a filler made of a metal oxide is preferable.
  • the metal oxide include silica, alumina, titania, and zirconia. Among these, silica is preferable.
  • a filler made of the metal oxide In addition to the filler made of the metal oxide, a filler made of ITO (Indium Tin Oxide) can also be used. Since ITO has infrared absorptivity, heat absorption can be imparted to the water-absorbing antifogging film. Therefore, if a filler made of ITO is used, an antifogging effect due to heat ray absorption can be expected in addition to water absorption.
  • ITO Indium Tin Oxide
  • These inorganic fillers contained in the water-absorbing anti-fogging film are preferably in the form of particles.
  • the average particle size is preferably 0.01 to 0.3 ⁇ m, more preferably 0.01 to 0.1 ⁇ m.
  • the amount of the inorganic filler is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total mass of the main agent and the curing agent when a cured resin is used as the water absorbent resin. Part by mass is more preferable.
  • the amount is preferably 0.5 to 5.3 parts by mass with respect to 100 parts by mass of the water absorbent resin.
  • the blending amount of the inorganic filler with respect to 100 parts by mass of the water-absorbent resin is not less than the above lower limit value, mechanical strength can be imparted to the water-absorbing antifogging film. Moreover, when using cured resin, it is easy to suppress the fall of the cure shrinkage reduction effect. Moreover, if the compounding quantity of an inorganic filler shall be below the said upper limit, the space for water absorption can fully be ensured, and it will be easy to make water absorption and antifogging property high.
  • silica preferably used as the inorganic filler more preferably, silica fine particles are described later as water or colloidal silica dispersed in an organic solvent such as methanol, ethanol, isobutanol, propylene glycol monomethyl ether, butyl acetate or the like. It can mix
  • colloidal silica include silica hydrosol dispersed in water and organosilica sol in which water is substituted with an organic solvent.
  • the solvent preferably used for the composition is used.
  • silica hydrosol or organosilica sol is used.
  • the solvent used in the water-absorptive antifogging film-forming composition is an organic solvent, it is preferable to use an organosilica sol using the same organic solvent as a dispersion medium.
  • an organosilica sol a commercially available product can be used.
  • silica fine particles having an average primary particle diameter of 10 to 20 nm are in isopropanol, and the SiO 2 content is 30 mass with respect to the total amount of the organosilica sol.
  • Organosilica sol IPA-ST (trade name, manufactured by Nissan Chemical Industries, Ltd.), organosilica sol MEK-ST (trade name, Nissan Chemical Industries, Ltd.) in which the organic solvent of organosilica sol IPA-ST is changed from isopropanol to methyl ethyl ketone And organosilica sol NBAC-ST (trade name, manufactured by Nissan Chemical Industries, Ltd.) in which the organic solvent of organosilica sol IPA-ST is changed from isopropanol to butyl acetate.
  • colloidal silica is used as the silica fine particles
  • the amount of the solvent to be blended in the water-absorptive antifogging film forming composition is appropriately adjusted in consideration of the amount of solvent contained in the colloidal silica.
  • the said inorganic filler is mix
  • silica precursor silicate compounds such as tetramethoxysilane, monomethyltriethoxysilane, monomethyltrimethoxysilane, dimethyldimethoxysilane, and dimethyldiethoxysilane can be used in addition to the tetraethoxysilane.
  • titania, zirconia, etc. exemplified as inorganic fillers other than the above silica, alkoxides and acetylacetonates can be used as precursors, and in particular, zirconium chloride can also be used as zirconium. .
  • the coupling agent is added to the composition for forming a water-absorptive anti-fog film, and forms a water-absorptive anti-fog film between the water-absorptive anti-fog film and a window glass or black ceramic layer in contact with the water-absorptive anti-fog film. It is a component that acts to increase the adhesion between the layers constituting the film. In the case where the coupling agent has a reactive group, the reactive group reacts with other components constituting the water-absorptive anti-fogging film to enhance the adhesion, so that the composition for forming a water-absorptive anti-fog film is formed.
  • the coupling agent added to the product is present in a slightly different shape after the water-absorbing antifogging film is formed. Below, the coupling agent added to the composition for water absorption anti-fogging film formation is demonstrated.
  • the coupling agent blended as an optional component using a curable resin as the water-absorbing resin has a functional group reactive with the main agent or the curing agent
  • the coupling agent is adhesive.
  • it can also be used for the purpose of adjusting the physical properties of the water-absorptive antifogging film.
  • the water-absorbing antifogging film-forming composition preferably contains a coupling agent, and as such a coupling agent, an organometallic coupling agent is used. Or it is preferable that it is a polyfunctional organic compound.
  • the organometallic coupling agent examples include silane coupling agents, titanium coupling agents, and aluminum coupling agents, and silane coupling agents are preferred.
  • these coupling agents are used together with a curable resin, it preferably has a reactive group capable of reacting with a reactive group of the main agent or the curing agent.
  • the coupling agent is preferably a compound having one or more (preferably one or two) bonds between a metal atom and a carbon atom.
  • a silane coupling agent is particularly preferable.
  • Silane coupling agents include 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl)- 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3- Examples include methacryloxypropyltrimethoxysilane and 3-acryloxypropyltrimethoxysilane.
  • the mass ratio of the coupling agent to the total mass of the water-absorbing resin (in the case of a cured resin, the main agent and the curing agent) and the coupling agent in order to fully exhibit the effect of the coupling agent formulation Is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more.
  • the upper limit of the amount of coupling agent used is limited by the physical properties and functions of the coupling agent, but for the total mass of the water-absorbing resin (in the case of a curable resin, the main agent and the curing agent) and the coupling agent In general, the content is preferably 20% by mass or less, and more preferably 15% by mass or less.
  • a leveling agent a polydimethylsiloxane-based surface conditioner (as a commercially available product, for example, BYK307 (trade name, manufactured by Big Chemie)), an acrylic copolymer surface conditioner, a fluorine-modified polymer System surface modifiers, etc., as antifoaming agents, silicone-based antifoaming agents, surfactants, polyethers, organic antifoaming agents such as higher alcohols, etc., and as viscosity adjusting agents, acrylic copolymers, polycarboxylic acids Examples thereof include amides and modified urea compounds.
  • light stabilizers examples include hindered amines, nickel bis (octylphenyl) sulfide, nickel complex-3,5-di-tert-butyl-4-hydroxybenzyl phosphate monoethylate, nickel complexes such as nickel dibutyldithiocarbamate, and the like.
  • Commercially available light stabilizers include bis- (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate (ADK STAB LA-72 (trade name, manufactured by ADEKA)) classified as a hindered amine. It can be illustrated.
  • Antioxidants include phenolic antioxidants that suppress the oxidation of resins by capturing and decomposing peroxy radicals, and phosphorus antioxidants that suppress the oxidation of resins by decomposing peroxides. And sulfur-based antioxidants. In the present invention, it is preferable to use a phenolic antioxidant. Examples of commercially available phenolic antioxidants include ADK STAB AO-50 (trade name, manufactured by ADEKA).
  • UV absorber examples include conventionally known ultraviolet absorbers, specifically, benzophenone compounds, triazine compounds, benzotriazole compounds, and the like. More specific ultraviolet absorbers include 2- (2-hydroxy-4- [1-octylcarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine, TINUVIN400 ( Trade name, manufactured by BASF).
  • Each component may be used in combination of two or more of the exemplified compounds.
  • the content of various components in the composition for forming a water-absorptive antifogging film is 0. 0 parts by mass with respect to 100 parts by mass of the water-absorbent resin (in the case of a cured resin, the total of the main agent and the curing agent).
  • the amount can be 001 to 10 parts by mass.
  • the water-absorptive antifogging film containing the water-absorbing resin contains, for example, a water-absorbing resin (in the case of a cured resin, a main agent and a curing agent), and further contains the above-mentioned various functional additive components as necessary.
  • a composition for forming a cloudy film was prepared, and this water-absorptive and antifogging film-forming composition was applied to the main surface of the inside of the window glass so that the end portion was located in the formation region of the black ceramic layer and dried. Or after drying, if necessary, by curing (crosslinking).
  • the water-absorptive anti-fogging film has a laminated structure of two or more layers, for example, when it comprises a base layer with low water absorption and a water absorption layer with high water absorption
  • a predetermined composition is prepared for each layer and used for each layer.
  • a predetermined coating, drying, or coating, drying, and curing (crosslinking) are performed in accordance with the composition.
  • the control of the film thickness in order to make the film thickness of the water-absorptive anti-fogging film within the scope of the present invention is usually by controlling the film thickness of the coating film when applying the composition for forming the water-absorptive anti-fog film.
  • a method of applying the water-absorbing antifogging film forming composition a flow coating method, a spin coating method, a spray coating method, a flexographic printing method, a screen printing method, a gravure printing method, a roll coating method, a meniscus coating method, a die coating method, The wipe method etc. are mentioned, The film thickness control of a coating film is possible by any of these methods.
  • the flow coating method, the spin coating method, and the spray coating method are preferable because the film thickness can be easily controlled.
  • a coating method when forming a water absorption anti-fogging film in which the film thickness gradually increases from the upper side to the lower side as shown in the cross section shown in FIG. 2 a flow coating method, specifically, the upper side is directed upward.
  • a method in which a water-absorbing and antifogging film forming composition is supplied from the upper side to the inner side surface of a window glass with a black ceramic layer that is installed almost vertically is preferably flown.
  • the formation region of the entire water-absorbing anti-fogging film may be controlled by a conventionally known method such as a masking method.
  • the water-absorbing antifogging film forming composition preferably contains a solvent in order to improve the coating workability.
  • the reaction between the main component of the curable resin and the curing agent is performed after coating the water-preventive antifogging film-forming composition in the predetermined range on the main surface on the vehicle interior side of the window glass.
  • these components are reacted in advance in the composition before the application to some extent, and then applied to the above range of the main surface of the window glass inside the vehicle, after drying, Further reaction may be performed.
  • the curing reaction is ensured by setting the reaction temperature at the pre-reaction to 40 ° C. or higher. This is preferable because it proceeds.
  • the solvent used in the composition for forming a water-absorptive antifogging film is not particularly limited as long as it is a solvent having good solubility of components such as a main agent and a curing agent and is inert to these components. Specifically, alcohols, acetate esters, ethers, ketones, water and the like can be mentioned.
  • a protic solvent used as a solvent, depending on the type, the solvent and the epoxy group may react to make it difficult to form a cured resin. Therefore, when a protic solvent is used, it is preferable to select a solvent that does not easily react with the epoxy compound.
  • protic solvents examples include ethanol and isopropanol.
  • solvents may be used alone or in combination of two or more.
  • components such as a main agent and a curing agent may be prepared as a mixture with a solvent.
  • the solvent contained in the mixture may be used as it is as the solvent in the water-absorptive antifogging film forming composition, and the same or other solvents may be added to the composition. Good.
  • the amount of the solvent is 1 to 5 times the total mass of the epoxy group-containing compound, the curing agent, and the following coupling agent. It is preferable that
  • a method similar to the above may be used as a method of applying the water-absorbent resin-forming composition obtained above to the predetermined range of the main surface of the window glass inside the vehicle. It is done. After the application of the water-absorptive antifogging film forming composition, the solvent is removed by drying as necessary, and a curing treatment is performed under conditions suitable for the curable resin to be used to form a cured resin layer.
  • the curing treatment include heat treatment at 50 to 180 ° C. for about 10 to 60 minutes.
  • room temperature curing can also be performed.
  • a treatment such as performing UV irradiation at 50 to 1000 mJ / cm 2 for 5 to 10 seconds with a UV curing device or the like can be mentioned.
  • front glass 1 shown by FIG. 1 and FIG. 2 was demonstrated, the front glass of this invention is not limited to this.
  • the front glass 1 can be changed or modified without departing from the spirit and scope of the present invention.
  • Example 1 A test vehicle windshield 1 ′ (for the right steering wheel) shown in FIG. 3 showing a front view as seen from the inside of the vehicle was manufactured and evaluated as follows.
  • the front windshield 1 ′ for an automobile is positioned so that the end of the windshield 1 ′ for the automobile is located in the region where the black ceramic layer 3 is formed on the right half of the front windshield 2 of the automobile having the black ceramic layer 3 at the periphery.
  • a water-absorptive anti-fogging film 4 comprising a base layer and a water-absorbing layer is formed.
  • regulated to JISR3212 (1998) in the windshield 1 'for motor vehicles were shown by the dotted line in FIG.
  • the test area A is an inner area having a smaller area among the two areas surrounded by a dotted line
  • the test area B is an area having a larger area than the test area A outside the test area A.
  • composition for forming underlayer In a glass container in which a stirrer and a thermometer are set, propylene glycol monomethyl ether (150.00 g, manufactured by Daishin Chemical Co., Ltd.), bisphenol A diglycidyl ether (93.17 g, jER828 (trade name, manufactured by Mitsubishi Chemical Corporation)) , Polyoxyalkylenetriamine (38.20 g, Jeffamine T403 (trade name, manufactured by Huntsman)), aminosilane (18.63 g, KBM903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)), and placed at 25 ° C. for 30 minutes. Stir.
  • propylene glycol monomethyl ether 150.00 g, manufactured by Daishin Chemical Co., Ltd.
  • bisphenol A diglycidyl ether 93.17 g, jER828 (trade name, manufactured by Mitsubishi Chemical Corporation)
  • Polyoxyalkylenetriamine 38.20 g, Jeffamine T403 (trade name, manufactured by Hunts
  • ⁇ Preparation of water-absorbing layer forming composition> In a glass container in which a stirrer and a thermometer are set, ethanol (586.30 g, manufactured by Kanto Chemical), methyl ethyl ketone (196.37 g, manufactured by Kanto Chemical), aliphatic polyglycidyl ether (248.73 g, Denacol EX-1610, (Trade name, manufactured by Nagase ChemteX)) and glycerin polyglycidyl ether (206.65 g, Denacol EX-313, (trade name, manufactured by Nagase ChemteX)) were added and stirred for 10 minutes.
  • ethanol 86.30 g, manufactured by Kanto Chemical
  • methyl ethyl ketone (196.37 g, manufactured by Kanto Chemical
  • aliphatic polyglycidyl ether (248.73 g, Denacol EX-1610, (Trade name, manufactured by Nagase Chemte
  • organosilica sol 29.92 g, NBAC-ST (trade name, manufactured by Nissan Chemical Industries, Ltd.), average primary particle size: 10 to 20 nm, SiO 2 content 30 mass%)
  • 2-methylimidazole 10.29 g, Shikoku Kasei Co., Ltd.
  • polyoxyalkylene triamine 90.70 g, Jeffamine T403 (trade name, manufactured by Huntsman) was added and stirred at 25 ° C. for 1 hour.
  • aminosilane 92.57 g, KBM903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • KBM903 trade name, manufactured by Shin-Etsu Chemical Co., Ltd.
  • methyl ethyl ketone 438.46 g, manufactured by Kanto Chemical Co., Inc.
  • a leveling agent (0.95 g, BYK307 (trade name, manufactured by Big Chemie) was added with stirring to obtain a water-absorbing layer forming composition (A-2).
  • a front window glass (soda lime glass plate laminated with an intermediate film sandwiched between black and white ceramic layers 3 in a frame shape on the periphery of the inner surface of the vehicle, laminated with an intermediate film interposed therebetween, Asahi Glass Co., Ltd.) 2 was used.
  • a tank for holding a composition for forming an undercoat layer or a water absorbing layer, a metering pump capable of continuously discharging these compositions at a rate of 3.0 ml per second with almost no pulsation, and a metering pump A tube made of polytetrafluoroethylene having a tip diameter of 1.5 mm and a length of about 10 m, and a 6-axis robot fixed to the hand so that the tip of the tube faces vertically downward A film forming machine was prepared. In the following film formation, the film forming machine was set so that the 6-axis robot moved at a constant speed of 12 mm / second along the coating trajectory of the window glass 2.
  • the main surface inside the vehicle of the window glass 2 was polished and washed with cerium oxide, the cerium oxide was washed away with pure water, and dried with warm air to obtain a clean window glass 2.
  • the window glass 2 was stood almost vertically in a laboratory with an air temperature of 23 ° C. and a relative humidity of 50% with the lower side facing down.
  • the underlayer-forming composition (A-1) obtained above is flow-coated only on the right side (driver's seat side) half of the main surface inside the car window 2 using the film-forming machine.
  • the substrate was kept in an air circulation oven at a set temperature of 100 ° C. for 30 minutes to form a base layer.
  • the water-absorbing layer forming composition (A-2) obtained above was similarly applied by flow coating on the base layer on the right side (driver's seat side) half of the vehicle inner main surface of the window glass 2 and set. It was kept in an air circulation oven at a temperature of 100 ° C. for 30 minutes to form a water absorption layer.
  • the water-absorbing anti-fogging film 4 composed of two layers of the base layer and the water-absorbing layer is provided only on the right side (driver's seat side) half of the vehicle inner main surface of the window glass 2, and the left side of the vehicle inner main surface (assistant A windshield 1 ′ for an automobile having no water-absorbing antifogging film 4 was obtained on the half surface of the seat side.
  • the formation area of the water absorption anti-fogging film 4 was set using masking. Specifically, the water absorption anti-fogging film is masked from the outer peripheral end of the black ceramic layer 3 to the inner peripheral side to 2/3 of the width of the black ceramic layer 3 so that the end portion is located on the black ceramic layer 3. 4 was formed. Masking was also used at the boundary between the left (without the water-absorbing anti-fogging film 4) and the right (with the water-absorbing anti-fogging film 4) at the center of the window glass 2.
  • a center line straight line A along the car windshield 1 ' is drawn at the center in the left-right direction as shown in FIG.
  • a straight line B along the vertical direction was drawn at a position moved by 250 mm in the direction.
  • a point where the straight line B intersects with the inner peripheral edge of the black ceramic layer 3 on the upper side is set as a starting point, and a point is set at a point 25 mm away from the starting point on the straight line B in the lower side direction.
  • points were measured from the measurement point 1 in the direction of the lower side at intervals of 50 mm, and measurement points 17 were set.
  • the measurement point 17 is a point 15 mm from the inner peripheral edge of the black ceramic layer 3 on the lower side.
  • the cross section by the straight line B in the windshield 1 ′ for automobiles was substantially the same except for the difference between the cross section shown in FIG. 2 and whether the water-absorbing antifogging film 4 is a single layer or two layers.
  • Table 1 shows whether the position of each measurement point is within the test area A, the test area B, or any of these areas defined in JIS R3212 (1998).
  • the upper and lower boundary lines of the visual field area 4v are parallel to the upper side of the window glass 2 passing through the measurement point 4 corresponding to slightly inside the test area B, and the measurement point 12 is measured.
  • a line parallel to the upper side of the window glass passing through is set.
  • the left and right boundary lines of the visual field area 4v were set to be the same as the boundary lines of the test area B.
  • the thin film region 4s was a region having a width of 25 mm from the inner peripheral end of the black ceramic layer 3 to the inner peripheral side. Table 1 shows whether each measurement point is in the thin film region 4s, the visual field region 4v set in the present invention, or any region outside these regions.
  • the film thickness of the water-absorptive antifogging film at positions from measurement point 1 to measurement point 17 was measured by an optical interference film thickness measurement method.
  • the film thickness measurement system includes a high resolution spectrometer (UV-NIR, manufactured by Spectracorp), a halogen light source (LS-100, manufactured by Spectracorp) and a measurement probe with a Y-type fiber (YPR-2000, Spectracorp). Used).
  • the thickness of the underlayer is a value measured immediately after the formation of the underlayer
  • the thickness of the water absorption layer is a value obtained by subtracting the thickness of the underlayer from the total film thickness measured after the formation of the water absorption layer. .
  • the measurement results are shown in Table 1.
  • TT / UT was calculated when the thickness of the underlayer was “UT” and the thickness of the water absorption layer was “TT”. Furthermore, an average value at 17 measurement points of the value of TT / UT was obtained, and a deviation from the average value was obtained for each measurement point. These are shown together in Table 1.
  • the automotive windshield 1 ′ obtained above is cut into a rectangular test piece of 30 mm ⁇ 40 mm so that the measurement point 1 to the measurement point 17 is the center, and the water absorption antifogging film 4 of each test piece is saturated with water absorption.
  • the amount and the antifogging time (second) (for the antifogging time (second), only the odd numbered measuring points from the measuring point 1) were measured by the above method.
  • the saturated water absorption amount was 400 (mg / cm 3 ) in the entire region of the water absorption antifogging film 4 and was constant.
  • the water absorption per unit area (mg / cm 2 ) was calculated by multiplying the saturated water absorption per volume by the film thickness. The results are shown in Table 1.
  • the ratio of the water absorption layer to the underlayer thickness, TT / UT is between 3.7 and 4.7, and the deviation from these average values is within ⁇ 0.7. is there.
  • a vehicle was prepared in which a test vehicle windshield 1 ′ obtained in the same manner as described above was attached to an automobile (passenger car). Two passengers get into the vehicle from the initial state of the interior temperature of 8 ° C and humidity of 50% in an environment where the outside air temperature is 8 ° C and humidity of 50%, and a humidifier with a humidifying capacity of 250g per hour is installed in the rear seat Installed in the center and started running at approximately 50km / h. The humidifier was operated simultaneously with the start of travel. At this time, the air conditioner of the vehicle was set to the inside air circulation setting, and the cooling / heating changeover switch was set to the heating side by three scales from the center. In addition, the air-conditioning blowing position is set to blow simultaneously at two locations, the foot and the hand.
  • the passenger side half of the windshield 1 'without the water-absorbing anti-fogging film 4 began to cloud suddenly within 30 seconds, hindering visibility.
  • the driver seat side half of the windshield 1 ′ having the water-absorbing anti-fogging film 4 is fogged in the range of the thin film region 4s of 25 mm from the inner peripheral edge of the black ceramic layer 3 on the upper side after 1 minute from the start of traveling.
  • the area below that remained transparent.
  • the cloudy area on the driver's side half gradually expanded while traveling, but it took 10 minutes for the cloudy range to reach the boundary of the visual field area 4v and the set measurement point 4. It took 12 minutes for the cloudy range to reach the test area A defined by JIS R3212, which is important as a driving field of view.
  • the air-conditioning blowing position was switched to include the surface of the windshield 1 ′.
  • the haze was eliminated without the haze range extending to the visual field area 4v or the test area A.
  • SYMBOLS 1 Vehicle windshield, 2 ... Window glass, 3 ... Black ceramic layer, 4 ... Water absorption anti-fogging film, 4s: Thin film region, 4v: Viewing region.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Window Of Vehicle (AREA)

Abstract

 防曇性を有することで曇りが発生する機会を減少できるとともに、曇りが発生する状況下においては、その初期の段階で運転者に視認性に影響を及ぼすことなく簡易にかつ正確に曇りの発生状況を認知させることができる車両用フロントガラスを提供する。窓ガラスと、前記窓ガラスの周縁部に形成された帯状の黒色セラミックス層と、窓ガラスの車内側面にその端部が窓ガラスの端部よりも内側でかつ黒色セラミックス層の形成領域内に存在するように設けられた吸水防曇膜と、を備えた車両用フロントガラスであって、吸水防曇膜は、車両用フロントガラスにおける運転者の視界を確保する視野領域の外側かつ黒色セラミックス層が形成された領域の内側に、最大膜厚が視野領域における最小膜厚の30~70%の範囲にあり、曇りが生じた際に運転者が認識できる大きさの薄膜領域を有する車両用フロントガラス。

Description

車両用フロントガラス
 本発明は車両用フロントガラスに関し、特には防曇性を有するとともに曇りの発生を認知できる領域が部分的に設けられた車両用フロントガラスに関する。
 車両用フロントガラスにおいて、温度変化や湿度の上昇によりガラス表面に水分が凝集、付着して生じる曇りが、運転者の視界を確保する視野領域(以下、「視野領域」という)の広範囲に発生すると運転に悪影響を与える。そのため、車両には曇りの発生を抑制する防曇手段、具体的には、フロントガラス表面に送風する手段、電熱線入りガラス等の直接ガラス温度を調整する手段等の防曇手段が設けられており、これを作動させることで曇りに対応している。また、空調を調整する等も一般に行われる防曇のための対応である。
 これらの防曇のための対応は、通常、曇りが発生し始めた段階で開始されるが、防曇対応の開始のタイミングが遅れると視野領域に曇りが広がり、運転に支障をきたすことになる。そこで、車両用フロントガラスに曇りが発生する初期の状態を察知し防曇対応の開始時期を早めることができれば、常に視野領域を良好な状態に維持することが可能となる。このような観点から、例えば、特許文献1に記載の車両ウィンドガラスの曇りを検出する方法および装置が開発されているが、これは光学的な計測を必要とするものであり簡易でかつ正確に曇りを検出するものとは言えなかった。
 一方、ガラス表面に吸水性樹脂、例えば、ポリエポキシド類から得られる吸水性の架橋樹脂層を含む防曇膜を設けることで、曇りの原因となる微小水滴を吸水して除去する防曇膜付きガラスを車両用フロントガラスに用いることが提案されている(特許文献2参照)。
 このような防曇膜付きガラスにおいては、一定のレベルまではフロントガラスの曇りの発生を抑えたり、遅らせたりすることができるが、防曇膜の吸水能力を超えてフロントガラスに水分が凝集、付着すると曇りが生じる。そのため、防曇膜付きガラスを車両用フロントガラスに用いた場合には、曇りが発生し防曇対応を行う機会は減少するものの、一旦曇りが生じれば上記同様に通常の防曇のための対応が実行される。その際、防曇対応の開始のタイミングが遅れると視野領域に曇りが広がり、運転に支障をきたすという上記問題は同様に発生しうる。
特開平10-048124号公報 特開2008-273076号公報
 本発明は、防曇性を有することで曇りが発生する機会を減少できるとともに、曇りが発生する状況下においては、その初期の段階で運転者に視認性に影響を及ぼすことなく簡易にかつ確実に曇りの発生状況を認知させることができる車両用フロントガラスを提供することを目的とする。
 本発明は、窓ガラスと、前記窓ガラスの周縁部に形成された帯状の黒色セラミックス層と、前記窓ガラスの車内側面にその端部が前記窓ガラスの端部よりも内側でかつ前記黒色セラミックス層の形成領域内に存在するように設けられた吸水防曇膜と、を備えた車両用フロントガラスであって、前記吸水防曇膜は、前記車両用フロントガラスにおける運転者の視界を確保する視野領域の外側かつ前記黒色セラミックス層が形成された領域の内側に、最大膜厚が前記視野領域における最小膜厚の30~70%の範囲にあり、曇りが生じた際に運転者が認識できる大きさの薄膜領域を有する車両用フロントガラスを提供する。
 本発明によれば、防曇性を有することで曇りが発生する機会を減少できるとともに、曇りが発生する状況下においては、その初期の段階で運転者に視認性に影響を及ぼすことなく簡易にかつ確実に曇りの発生状況を認知させることができる車両用フロントガラスを提供できる。
本発明の車両用フロントガラスの実施形態の一例の正面図である。 図1に示す車両用フロントガラスのX-X線における断面図である。 実施例の車両用フロントガラスにおいて吸水防曇膜の膜厚測定位置を示す図である。
 以下に、本発明の実施の形態を説明する。なお、本発明は、これらの実施形態に限定されるものではなく、これらの実施形態を、本発明の趣旨および範囲を逸脱することなく、変更または変形することができる。
 本発明の車両用フロントガラスは、窓ガラスと、前記窓ガラスの周縁部に形成された帯状の黒色セラミックス層と、前記窓ガラスの車内側面にその端部が前記窓ガラスの端部よりも内側でかつ前記黒色セラミックス層の形成領域内に存在するように設けられた吸水防曇膜と、を備えた車両用フロントガラスであって、前記吸水防曇膜は、前記車両用フロントガラスにおける運転者の視界を確保する視野領域の外側かつ前記黒色セラミックス層が形成された領域の内側に、最大膜厚が前記視野領域における最小膜厚の30~70%の範囲にあり、曇りが生じた際に運転者が認識できる大きさの薄膜領域を有する車両用フロントガラスである。
 本明細書において、窓ガラスの周縁部とは、窓ガラスの端部から主面の中央部に向かって、ある一定の幅を有する領域を意味する。また、本発明においては、窓ガラスの主面において中央部から端部に向かう方向を外周方向、端部から中央部に向かう方向を内周方向という。
 本発明の車両用フロントガラスを用いた車両においては、該車両用フロントガラスが車内側面の所定の領域に吸水防曇膜を具備することにより、フロントガラスに曇りが発生する機会を減少できる。さらに、該吸水防曇膜が視野領域の外側に視野領域における膜厚に比べて所定の割合で膜厚が薄い薄膜領域を有することにより、フロントガラスに曇りが発生するような状況下において、運転者は、視野領域の視認性を十分に確保しながら、曇りが発生しやすい薄膜領域において曇りの発生を初期の段階で認知し、防曇手段を作動したり空調設定を切り替える等の防曇のための対応がとれる。それにより、視野領域は常に視認性が良好な状態を保つことが可能となる。
 以下、本発明の車両用フロントガラスの実施の形態について図面を参照しながら説明する。図1に本発明の車両用フロントガラスの実施形態の一例における車内側から見た正面図を示す。図2に図1に示す車両用フロントガラスのX-X線における断面図を示す。図1の正面図の上は車両用フロントガラスの上に一致する。図2の断面図は、左側が車両用フロントガラスの上となる断面図である。
 ここで、以下の説明に用いる「上」および「下」の表記は、車両用フロントガラスを車両に搭載した際のそれぞれ上および下を示す。
 車両用フロントガラス1(以下、「フロントガラス」ともいう。)は、窓ガラス2と、窓ガラス2の周縁部に形成された帯状の黒色セラミックス層3と、窓ガラス2の車内側面にその端部が窓ガラス2の端部よりも内側でかつ黒色セラミックス層3の形成領域内に存在するように設けられた吸水防曇膜4を備える。
 窓ガラス2としては、通常、車両用のフロントガラスに用いられる窓ガラスが特に制限なく使用可能である。窓ガラス2として、具体的には、プラスチック、ガラス、またはその組み合わせ(積層材料等)からなる窓ガラスが好ましく使用される。
 ガラスとしては、通常のソーダライムガラス(ソーダライムシリケートガラスともいう)、ホウ珪酸ガラス、無アルカリガラス、石英ガラス等が特に制限なく用いられる。これらのうちでもソーダライムガラスが特に好ましい。紫外線や赤外線を吸収するガラスを用いてもよい。成形法についても特に限定されないが、例えば、フロート法等により成形されたガラス板が好ましい。プラスチックとしては、ポリメチルメタクリレートなどのアクリル系樹脂やポリフェニレンカーボネートなどの芳香族ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)などの芳香族ポリエステル系樹脂等が挙げられ、これらのうちでも芳香族ポリカーボネート系樹脂が好ましい。
 窓ガラス2は、フロントガラス1が適用される車両に応じて適宜選択されるが、上記ガラス材料からなる単板ガラスや、2枚のガラス板の間に中間膜を挟持した合わせガラスが好ましい。
 窓ガラス2の形状や厚さはフロントガラス1が適用される車両に応じて適宜選択できる。窓ガラス2の形状は平板でもよく、全面または一部が曲率を有していてもよい。窓ガラス2の厚さは、一般的には1~10mmであることが好ましい。
 図1および図2に示すフロントガラス1において、黒色セラミックス層3は、窓ガラス2の車内側面の周縁部の4辺全部に帯状に、言い換えれば額縁状に形成されている。黒色セラミックス層3は、通常、このように設けられることで、フロントガラスの車体取り付け部分を隠蔽する役割を果たしている。
 本発明のフロントガラスにおいて、窓ガラスとして単板ガラス等の単一基板を用いた場合には、黒色セラミックス層は、窓ガラスの少なくとも一方の主面上に設けられる。黒色セラミックス層は、フロントガラス1のように窓ガラス2の車内側面に設けられることが好ましいが、必要に応じて車外側面に設けられてもよい。また、窓ガラスとして合わせガラスを用いる場合には、黒色セラミックス層は車外側のガラス板の車内側面に形成されてもよい。
 また、黒色セラミックス層が形成される周縁部については、必ずしも周縁部の4辺全部である必要はなく、周縁部の一部に黒色セラミックス層が形成された態様も本発明に含まれる。また、図1および図2においてwで示される黒色セラミックス層の幅は、隠蔽が必要とされる幅であり、必ずしも上下左右の辺で同じ幅である必要はない。さらに、ある1辺において端から端まで同じ幅である必要もない。黒色セラミックス層の幅は、例えば、下辺においてワイパーなどの収納部を隠蔽するために他の3辺よりも幅を広く設定してもよく、上辺において各種センサ類の取り付け部分を隠蔽するためにその近傍付近を幅広く、他の部分においては幅を狭く設定することも可能である。黒色セラミックス層の幅は、具体的には、5~300mmの範囲にあることが好ましく、より好ましくは10~200mmである。
 黒色セラミックス層3としては、従来公知の方法で窓ガラス2上に形成される黒色セラミックス層が特に制限なく適用できる。具体的には、耐熱性黒色顔料の粉末を低融点ガラス粉末とともに樹脂および溶剤に加えて混練した黒色セラミックスペーストを印刷等によって窓ガラス2上の所望の領域に塗布し、加熱して焼き付けることで形成された黒色セラミックス層が挙げられる。
 なお、黒色セラミックス層の「黒色」は、少なくとも隠蔽が求められる部分が隠蔽できる程度に可視光線を透過させないように調整されればよい。この観点から、用いる黒色顔料には、複数の有色顔料の組み合わせにより黒色となる顔料の組み合わせも含まれる。
 また、同様の観点から、黒色セラミックス層は、層全体が連続した一体膜として構成されてもよく、微細なドットの集合体であるドットパターン等により構成されてもよい。
 ドットの形状は、円形に限定されず、楕円、長方形、多角形、星形等とすることもできる。また、ドットの部分を透明にして、他の部分を黒色セラミックス層であるドットパターンとすることもできる。さらに、ドットは黒色セラミックス層の形成領域内でサイズや間隔を変化させて形成されてもよい。例えば、防曇性ガラス物品の周縁部にドットパターンにより黒色セラミックス層が形成された場合、内周方向になるほどドットサイズを小さくしたり、ドット同士の間隔を大きくしたりすることにより、防曇性ガラス物品の内周方向になるほど透明部分の面積割合を大きくすることができる。
 黒色セラミックス層の厚さは、視認性やその上に形成される吸水防曇膜の密着性に問題のない範囲であれば特に制限されない。黒色セラミックス層は、8~20μm程度の厚さで形成されることが好ましく、10~15μmがより好ましい。
 図1および図2に示されるフロントガラス1において、吸水防曇膜4は、窓ガラス2の車内側面の周縁部に形成された黒色セラミックス層3に、一部が重なるようにして略全面に設けられている。具体的には、吸水防曇膜4はその端部が窓ガラス2の端部よりもw1(ただし、w>w1の関係にある。)だけ内側で、かつ黒色セラミックス層3の形成領域内に存在するように設けられている。なお、図1においては、黒色セラミックス層3の形成領域内に示される破線が吸水防曇膜4の端部の位置を示す。窓ガラス2の端部と黒色セラミックス層3の外周端は一致しているので、吸水防曇膜4の端部は黒色セラミックス層3の外周端よりもw1だけ内側にあり、黒色セラミックス層3の内周端よりw-w1だけ外側に存在する。すなわち、吸水防曇膜4と黒色セラミックス層3の重なり幅はw-w1となる。w1はwの1/3~2/3が好ましい。
 なお、例えば合わせガラスのように、黒色セラミックス層が必ずしも窓ガラスの車内側面に形成されない場合であっても、フロントガラスを車内側または車外側から見た際に、黒色セラミックス層の形成領域の一部に、その形成領域が重なるように吸水防曇膜は形成される。
 本発明のフロントガラスにおいて、吸水防曇膜はフロントガラスにおける運転者の視界を確保する視野領域の外側かつ黒色セラミックス層が形成された領域の内側に、最大膜厚が視野領域における最小膜厚の30~70%の範囲にあり、曇りが生じた際に運転者が認識できる大きさの薄膜領域を有する。
 図1および図2に示すフロントガラス1においては、視野領域4vをJIS R3212(1998年)に規定される試験領域Bに設定している。試験領域Bは、図1において、黒色セラミックス層3の内側に示される点線で囲まれる2つの領域のうち、面積の大きい方の領域である。また、試験領域Bより内側の面積の小さい領域が試験領域Aである。
 試験領域Aおよび試験領域Bは、JIS R3212(1998年、「自動車用安全ガラス試験方法」)に規定される「前面に使用する安全ガラスの試験領域」として、それぞれ規定された試験領域である。なお、図1に示されるフロントガラス1における試験領域Aは右ハンドルの場合の試験領域Aであって、左ハンドルの場合は、図1に示す試験領域Aの中心線から左右対称の位置が試験領域Aとなる。本発明においては、試験領域Aを、安全性の確保のために運転者の視界が最低限確保されることが好ましい領域と規定した。また、試験領域Aを含む領域である試験領域Bは、該領域の全範囲において運転者の視界が確保されることがより好ましい領域と規定した。
 すなわち、本発明のフロントガラスにおいて視野領域は、安全性を十分に確保する領域とすることができる観点から、JIS R3212(1998年)に規定される試験領域Aを含む領域であることが好ましく、試験領域Bを含む領域であることがより好ましい。
 図1および図2に示すフロントガラス1において、吸水防曇膜4は、黒色セラミックス層3の形成領域の上辺側の内周を一辺として、その辺に沿った幅Lの領域を薄膜領域4sとして有している。薄膜領域4sの幅Lは20mm以上が好ましく30mm以上がより好ましい。幅Lの上限は、黒色セラミックス層3の形成領域の内周と該内周に最も近い視野領域4vの外周との距離である。
 フロントガラス1では、吸水防曇膜4は薄膜領域4sを上辺側にのみ有するが、本発明においてはこれに限定されない。黒色セラミックス層3の形成領域の内側に額縁状に設けられてもよく、上下左右の4辺の上辺以外の1辺、またはいずれか2辺または3辺の側に組み合わせて設けられてもよい。また、必ずしも、黒色セラミックス層3の形成領域の内周を外周として含む必要はなく、黒色セラミックス層3の形成領域と視野領域4vとの間に島状に存在していてもよい。
 本発明のフロントガラスにおいて、吸水防曇膜の薄膜領域は、最大膜厚が視野領域における最小膜厚の30~70%の範囲にあってかつ曇りが生じた際に運転者が認識できる大きさであればよく、上記膜厚の条件を満たす限り、20mm×50mm程度の大きさがあれば機能する。したがって、例えば、図1および図2に示すフロントガラス1の吸水防曇膜4のように、上辺側のみに黒色セラミックス層3の形成領域の内周に沿って図中Lで示される幅が20mm以上の薄膜領域を有すれば、該領域で曇りが発生した際に運転者が十分視認できるといえる。また、以下に説明する生産効率を確保する点等を勘案すれば、吸水防曇膜における薄膜領域としては、上辺側のみに黒色セラミックス層の形成領域の内周に沿って幅20mm以上で設けられることが好ましい。また、該薄膜領域は4辺のうちでも上辺側に設けられるのが運転者が認識しやすいという点においても好ましい。
 また、吸水防曇膜における薄膜領域と視野領域の膜厚の差は、薄膜領域の最大膜厚が視野領域における最小膜厚の30~70%の範囲にあればよく、50~70%の範囲が好ましい。吸水防曇膜は、以下に示すとおり基本的には面方向には同じ材料で構成される連続した膜であり、膜厚が大きいほど吸水防曇性も大きくなる相関関係を有する。
 よって、吸水防曇膜において、薄膜領域の最大膜厚が視野領域における最小膜厚の30~70%の範囲にあれば、薄膜領域においても吸水防曇性をある程度有しながら、車内がフロントガラスに曇りを発生しやすい状態になったときに、フロントガラスにおける吸水防曇膜の薄膜領域のみが曇ることによりその状態を運転者に知らせることが可能となる。そして、吸水防曇膜の視野領域は十分な膜厚を有し吸水防曇性が確保されていることで、運転者が曇りを発生しやすい状態を改善する対応をとる間、例えば、フロントガラス表面に送風する手段、電熱線入りガラス等の直接ガラス温度を調整する手段等の防曇手段を作動させたり、空調を調整したりする間、視野領域における視認性は十分に確保される。なお、具体的な膜厚については、吸水防曇膜の材料の種類、すなわち吸水防曇性能により適宜選択される。
 ここで、吸水防曇膜は後述のようにして、厚さ方向には積層される場合があるが、面方向には連続した1枚の膜として形成される。このような吸水防曇膜の一部分を薄膜領域として、例えば、上記最低限必要とされる大きさに島状に薄くしてその周辺を曇りが発生しない程度に厚くするように作製することは、技術的に可能であっても、生産効率の点で問題となる場合がある。また、薄膜領域とその周辺領域との膜厚の関係において両領域の境界に段差が生じるように膜厚の差を持たせると、視認性の点で問題となることもある。特に、薄膜領域と視野領域を隣接するように設けると、薄膜領域の最大膜厚が視野領域における最小膜厚の30~70%とするためには、必ず境界に段差が生じることとなる。
 したがって、本発明のフロントガラスが有する吸水防曇膜としては、例えば、図2に示されるような、薄膜領域と視野領域の間に一定の距離を有し、薄膜領域から視野領域に向かって膜厚が漸増するように形成された吸水防曇膜が好ましい。
 図2に示すフロントガラス1が有する吸水防曇膜4の膜厚は、フロントガラス1の上辺側、すなわち左側において薄く、下辺側(図2中右側)に向かって漸増している。吸水防曇膜4の端部は、上辺側および下辺側でそれぞれ、黒色セラミックス層3の形成領域内に存在している。吸水防曇膜4において、薄膜領域4sは、上辺側の黒色セラミックス層3の形成領域の内周から幅Lの領域であり、その最大膜厚は薄膜領域4sの最も内周側の辺上で測定される図2中4smaxで示される膜厚である。
 また、吸水防曇膜4において視野領域4vは、図1の正面図において試験領域Bとして示される領域であり、図2の断面図においてはLbの幅をもって示される中央領域である。視野領域4vの最小膜厚は、視野領域4vにおいて最も上辺側の辺上で測定される図2中4vminで示される膜厚である。なお、図2の断面図においてはLaの幅をもって示される領域は、図1の正面図において試験領域Aとして示される領域である。ここで、吸水防曇膜4における、薄膜領域4sの最大膜厚4smaxと視野領域4vの最小膜厚4vminの関係が、(4smax/4vmin)×100として30~70%の範囲である。
 吸水防曇膜は、所定の膜厚において吸水性を有するとともに透明性の高い膜であれば特に制限されない。具体的には、吸水防曇膜は、以下の方法で測定される飽和吸水量が300~600mg/cmであることが好ましく、400~500mg/cmがより好ましい。また、視野領域の最小膜厚は好ましくは、8~17μmであり、10~15μmがより好ましい。視野領域の膜厚は、最小膜厚が上記範囲であればよく、視野領域の全体が最小膜厚と同じ均一な膜厚を有していてもよく、図2に示す吸水防曇膜4の視野領域4vのように膜厚が上辺側から下辺側に漸増する構成であってもよい。このように視野領域内で膜厚が均一でない場合、視野領域の最大膜厚は好ましくは、15~28μmであり、17~23μmがより好ましい。さらに、視野領域の平均膜厚としては10~25μmが好ましく、15~20μmがより好ましい。
 さらに、吸水防曇膜の薄膜領域の最大膜厚は好ましくは、5~12μmであり、7~10μmがより好ましい。薄膜領域の膜厚は、最大膜厚が上記範囲であればよく、薄膜領域の全体が最大膜厚と同じ均一な膜厚を有していてもよく、図2に示す吸水防曇膜4の薄膜領域4sのように膜厚が上辺側から下辺側に漸増する構成であってもよい。このように薄膜領域内で膜厚が均一でない場合、薄膜領域の最小膜厚は好ましくは、1~5μmであり、1.5~4.0mがより好ましい。さらに、薄膜領域の平均膜厚としては3~10μmが好ましく、5~8μmがより好ましい。なお、吸水防曇膜に薄膜領域および視野領域以外の領域が存在する場合には、その領域の膜厚は最小膜厚が少なくとも薄膜領域の最大膜厚以上の領域である。
 吸水防曇膜の飽和吸水量と視野領域の最小膜厚が上記範囲にあれば、吸水防曇膜は、十分な防曇性を有することで、フロントガラスに曇りが発生する機会を減少できるとともに耐久性も十分に確保できる。さらに、吸水防曇膜の視野領域と薄膜領域との膜厚の関係から、曇りが発生する状況下においては、フロントガラスにおける薄膜領域のみに曇りが発生することで運転者に簡易にかつ確実に曇りの発生状況を認知させることができる。
(飽和吸水量の測定方法)
 吸水防曇膜付きの基板を試験片として、温度25℃で相対湿度50±10%の室内に24時間放置後、さらに、温度25℃、相対湿度90%になるように設定した恒温恒湿槽に15分間以上放置する。恒温恒湿槽から、取り出した直後に、微量水分計を用いて試験片の水分量(I)を測定する。さらに、上記吸水防曇膜を有しない基板のみについて同様の手順で水分量(II)を測定する。上記水分量(I)から水分量(II)を引いた値を吸水防曇膜の体積で除した値を飽和吸水量とする。
 なお、水分量の測定は、微量水分計FM-300(ケット科学研究所社製)によって次のようにして行う。測定サンプルを120℃で加熱し、サンプルから放出された気化物を活性炭に通し水分以外の気化物を除去した後、水分を微量水分計内のモレキュラーシーブに吸着させ、モレキュラーシーブの質量変化を水分量として測定する。また、測定の終点は、1分間当たりの質量の変化量が0.02mg以下になった時点とする。
 評価は、例えば、3cm×4cm×厚さ2mmのソーダライムガラス基板を用いて作製したサンプル(吸水層の面積は12cm)により実施可能であるが、これに限定されない。
 このように、吸水防曇膜の吸水性は、吸水防曇膜の体積当たりの飽和吸水量と膜厚を指標として評価できる。さらに、吸水防曇膜の吸水性を示す指標として、吸水防曇膜自体の吸水性を示す、以下に定義する「防曇時間(秒)」を用いてもよい。
(防曇時間)
 防曇時間は、上記同様に所定の形状、大きさの、例えば、3cm×4cm×厚さ2mmのソーダライムガラス基板に検体となる吸水防曇膜を設け、温度25℃で相対湿度50±10%の室内に24時間放置後に、該吸水防曇膜の表面を35℃の温水浴上に翳し、目視により概ね直径2cm以上の面積の曇りが認められるまでの時間としての防曇時間(秒)で示される。
 このような吸水性を有する吸水防曇膜としては、例えば、吸水性樹脂や多孔性無機微粒子等の吸水性材料を含む吸水防曇膜が挙げられる。吸水性樹脂は分子内に存在する親水性基と分子の架橋構造との複合的な作用により吸水性を有し、多孔性無機微粒子は、多数の細孔を有することで吸水性を有する。吸水性樹脂を用いる場合、樹脂自体が成膜性を有することから吸水性樹脂のみで吸水防曇膜を形成してもよい。多孔性無機微粒子を用いる場合はバインダ成分を加えてこれに多孔性無機微粒子を分散した形の吸水防曇膜とすることが好ましい。
 吸水防曇膜に用いる多孔性無機微粒子として、具体的には、各種金属酸化物、金属炭化物、金属窒化物の多孔性微粒子が挙げられ、酸化ケイ素、酸化チタン、酸化ジルコニウム等の多孔性微粒子が好ましく、酸化ケイ素の多孔性微粒子、例えば、メソポーラスシリカがより好ましい。多孔性無機微粒子としては、平均一次粒子径が5~100nm程度であり、平均細孔径が1~50nm程度のものが好ましい。
 多孔性無機微粒子とともに吸水防曇膜が含有するバインダ成分としては、無機酸化物、例えば、金属アルコキシドを加水分解縮合して得られる硬化物や、有機樹脂、例えば、シリコーン樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオキシアルキレン基を含む親水性有機樹脂、エポキシ樹脂等が挙げられる。多孔性無機微粒子とバインダ成分の含有割合としては、例えば、多孔性無機微粒子100質量部に対してバインダ成分が20~400質量部の割合が挙げられる。
 本発明のフロントガラスにおいて、吸水防曇膜としては、吸水性樹脂を用いて形成された吸水防曇膜が好ましい。以下、吸水性樹脂を用いて形成される吸水防曇膜について説明する。
 吸水防曇膜は、吸水性の観点からは吸水性樹脂のみで構成されることが好ましいが、用いる樹脂の種類によっては耐摩耗性の観点から、吸水性を確保しながら機械的強度に優れる材料と組合せて吸水防曇膜を形成してもよい。吸水性樹脂の種類にもよるが、吸水防曇膜の全体量に対する吸水性樹脂の占める割合は70~100質量%が好ましく、80~100質量%がより好ましい。
 吸水防曇膜は、単層で構成されてもよいが、例えば、異なる種類の吸水性樹脂を用いて形成された少なくとも2層からなる積層構造や、同じ吸水性樹脂を含有するがその含有量が異なる少なくとも2層からなる積層構造であってもよい。好ましい積層構造としては、最も車内側に吸水性を有する吸水層を有し、該吸水層と窓ガラスの間に該吸水層より吸水性の低い下地層を有する2層からなる積層構造が挙げられる。このような積層構造においては、下地層の吸水性が低いことで、窓ガラスと吸水防曇膜、実際には窓ガラスと下地層との接着界面において膨張・収縮の程度差が小さくなり、窓ガラスから吸水防曇膜が剥離するのを防ぐことが可能となる。また、下地層の上に設けられる吸水層は吸水性を有することで吸水防曇膜の吸水性は十分に確保される。
 下地層と吸水層の吸水性の違いを飽和吸水量で比較すると、下地層が概ね10~50mg/cm程度であり、吸水層が300~600mg/cm程度であることが好ましい。一方、吸水防曇膜内で下地層と吸水層との膨張・収縮の程度差を小さくする観点から、下地層と吸水層の飽和吸水量の差は、250~590mg/cmの範囲が好ましい。
 また、下地層と吸水層の膜厚の比は、各層の吸水性にもよるが、[吸水層の膜厚/下地層の膜厚]で示される吸水層と下地層の膜厚比が3.0~6.0であることが好ましく、3.5~5.0がより好ましい。なお、吸水防曇膜は個々の態様においては、その全領域における[吸水層の膜厚/下地層の膜厚]で示される吸水層と下地層の膜厚比は、吸水時に吸水層が発生する応力を常に一定の割合で下地層が緩和できる観点から概ね一定に保たれることが好ましい。すなわち、[吸水層の膜厚/下地層の膜厚]の偏差が±1.0以内であることが好ましく、±0.8以内であることがより好ましい。
 吸水防曇膜が単層で構成される場合の該層は吸水性を有する吸水層であり、下地層と吸水層からなる場合の吸水層は吸水防曇膜が単層で構成される場合の吸水層と同様とすることが好ましい。吸水防曇膜を単独でまたは下地層とともに構成する吸水層は、吸水性樹脂を含有し、さらに、必要に応じて各種機能を有する機能性添加成分を含有する構成が好ましい。機能性添加成分としては、吸水層の機械的強度を高めるための無機充填材、吸水層が接する窓ガラスや黒色セラミックス層または下地層との密着性を高めるためのカップリング剤、製膜性の向上のために用いられるレベリング剤、消泡剤、粘性調整剤や、光安定剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤等が挙げられる。下地層は、吸水層より吸水性の低い吸水性樹脂を含有し、さらに、必要に応じて上記吸水層と同様に各種機能を有する機能性添加成分を含有する構成が好ましい。以下、吸水層および下地層が含有する各成分について説明する。
(吸水性樹脂)
 吸水性樹脂としては、これを単独でまたは他の材料と組合せて吸水層または下地層を形成した際に、吸水層および下地層のそれぞれに上に示す飽和吸水量を保持できる吸水性樹脂が好ましい。吸水性樹脂としては、親水性基や親水性連鎖(ポリオキシエチレン基など)を有する樹脂が特に制限なく用いられる。吸水性樹脂は線状重合体であっても非線状重合体であってもよいが、耐久性等の面から3次元網目構造を有する非線状の重合体である樹脂が好ましい。
 線状重合体からなる吸水性樹脂として、具体的には、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリビニルアセタール、ポリビニルピロリドン、ポリ酢酸ビニル等が挙げられる。3次元網目構造を有する非線状の重合体である樹脂としては、硬化性樹脂の硬化物や架橋性樹脂が架橋した架橋樹脂などがある。通常、硬化性樹脂の硬化物と架橋樹脂は区別されない。
 本明細書においては、硬化性樹脂の硬化物と架橋樹脂とを同じ意味に使用する。以下、硬化性樹脂の硬化物(以下、硬化樹脂ともいう)は架橋樹脂を含む意味で使用し、硬化性樹脂は架橋性樹脂を含む意味で使用する。硬化性成分とは反応性基を有する化合物(モノマー、オリゴマー、ポリマーなど)と硬化剤との組み合わせをいう。硬化性樹脂の一方の反応性化合物を主剤と呼ぶこともある。硬化剤とは、主剤と反応する他方の反応性化合物をいい、さらに、付加重合性不飽和基を反応させるラジカル発生剤などの反応開始剤やルイス酸などの反応触媒と呼ばれるものも意味する。
 ここで、硬化樹脂の飽和吸水量は、硬化樹脂中の親水性基の量に比例するため、親水性基の量を調節することによりその樹脂の飽和吸水量を制御することができる。親水性基としては、例えば、水酸基、カルボキシル基、スルホニル基、アミド基、アミノ基、第四級アンモニウム塩基、オキシアルキレン基が挙げられる。硬化樹脂中の親水性基の量は、主剤および/または硬化剤に含まれる親水性基の量(例えば、水酸基価)を調節することにより制御できる。また、硬化反応によって親水性基が形成されるような場合には、主剤および/または硬化剤の官能基数や架橋度を調節することにより飽和吸水量が制御可能である。
 また、飽和吸水量は硬化樹脂中の架橋度にも依存する。ある単位量当たりの硬化樹脂に含まれる架橋点の数が多ければ、硬化樹脂が緻密な3次元網目構造となり、保水のための空間が小さくなるため吸水性が低くなると考えられる。一方、単位量当たりに含まれる架橋点が少なければ、保水のための空間が大きくなり、吸水性が高くなると考えられる。硬化樹脂のガラス転移点は、硬化樹脂中の架橋点の数と関連が深く、一般に、ガラス転移点が高い樹脂は、ある単位量当たりに含まれる架橋点の数が多いと考えられる。
 したがって、一般的に吸水性・防曇性能を高くするには、硬化樹脂のガラス転移点を低く制御し、耐久性を高めるには、硬化樹脂のガラス転移点を高く制御することが好ましい。これらを考慮すると、吸水層に用いる吸水性硬化樹脂のガラス転移点は、硬化樹脂の種類にもよるが、10~110℃が好ましく、20~70℃がより好ましい。一方、下地層に用いる吸水性硬化樹脂のガラス転移点は、30~80℃が好ましく、40~60℃がより好ましい。
 なお、ガラス転移点は、JIS K 7121に準拠して測定した値である。具体的には、基板上、例えば、ソーダライムガラス基板上に検体となる吸水性硬化樹脂層を設け、これを20℃、相対湿度50%の環境下に1時間放置した後、示差走査熱量計を用いて測定した値である。ただし、測定時の加熱速度は10℃/分とする。
 硬化性樹脂の主剤は、2個以上の反応性基を有する化合物と硬化剤との組み合わせにより反応して硬化樹脂となるものであれば特に限定されない。この反応は、熱や紫外線等の光により反応が開始または促進される。反応性基としては、例えば、ビニル基、アクリロイルオキシ基、メタクリロイルオキシ基、スチリル基などの重合性不飽和基を有する基、および、エポキシ基、アミノ基、水酸基、カルボキシル基、酸無水物基、イソシアネート基、メチロール基、ウレイド基、メルカプト基、スルフィド基などの反応性基が挙げられる。なかでも、エポキシ基、カルボキシル基および水酸基が好ましく、エポキシ基がより好ましい。また、主剤は1種のみを使用してもよく、2種以上を併用してもよい。
 主剤が反応性基を有する低分子化合物やオリゴマーである場合は、1分子中に含まれる反応性基の数は2個以上であるのが好ましく、2~10個であるのがより好ましい。場合によっては、反応性基を1個だけ有する成分を含んでいてもよいが、その場合には、硬化性成分における1分子当たりの平均の反応性基の数が1.5以上となるようにするのが好ましい。
 このような硬化性樹脂としては、例えば、2個以上のアクリロイルオキシ基を有する低分子化合物(モノマー)やオリゴマーからなる主剤とラジカル発生剤である硬化剤との組み合わせからなる硬化性アクリル樹脂、2個以上のエポキシ基を有する低分子化合物やオリゴマーなどの主剤とアミノ基等のエポキシ基と反応性の反応性基を2個以上有する化合物である硬化剤との組み合わせからなるエポキシ樹脂、2個以上のエポキシ基を有する低分子化合物やオリゴマーなどの主剤と硬化触媒(ルイス酸や塩基など)である硬化剤との組み合わせからなるエポキシ樹脂、2個以上の水酸基を有する低分子化合物やオリゴマーなどのポリオールとイソシアネート基を2個以上有する化合物であるポリイソシアネート(硬化剤)との組み合わせからなる硬化性ウレタン樹脂などがある。硬化性アクリル樹脂の硬化剤として光重合開始剤を使用することにより光硬化性アクリル樹脂とすることができ、エポキシ樹脂の硬化剤として光硬化剤(例えば、光照射によりルイス酸など発生する化合物)を使用することにより、光硬化性エポキシ樹脂とすることができる。
 本発明においては、吸水性樹脂としてエポキシ系樹脂の硬化物が好ましく用いられる。本発明においてエポキシ系樹脂は以下の硬化性成分を含む硬化性樹脂をいう。
(A)2個以上のエポキシ基を有する低分子化合物やオリゴマーと硬化剤の組み合わせ。
(B)2個以上のエポキシ基を有するポリマーと硬化剤の組み合わせ。
 上記(A)のエポキシ系樹脂の主剤である低分子化合物やオリゴマーにおける1分子当たりのエポキシ基の数は2~10個であることが好ましい。硬化剤としては、アミノ基などの反応性基を2個以上有する低分子化合物や硬化触媒などが使用でき、両者を併用することもできる。硬化剤はオリゴマーやポリマーであってもよく、例えば、ポリアミドオリゴマー、ポリアミドポリマー、側鎖にアミノ基やカルボキシル基を有するオリゴマーやポリマー、などを硬化剤として使用することもできる。さらに硬化剤として光硬化剤を使用し、光硬化性のエポキシ系樹脂とすることもできる。
 上記(B)のエポキシ系樹脂の主剤であるポリマーとしては、アクリレートやメタクリレートなどのアクリル系モノマーの共重合体やアクリル系モノマーと他のモノマーとの共重合体が好ましい。アクリル系モノマーの一部としてエポキシ基を有するアクリル系モノマーを使用することにより、エポキシ基を有するポリマーが得られる。アクリル系モノマー以外のエポキシ基を有するモノマーを使用しても同様なエポキシ基を有するポリマーが得られる。エポキシ基を有するポリマーにおける1分子あたりのエポキシ基の数は1~20個であることが好ましい。硬化剤としては、アミノ基などの反応性基を2個以上有する低分子化合物やオリゴマーが好ましい。
 通常エポキシ樹脂と呼ばれている(A)のタイプのエポキシ系樹脂は、主剤である、2個以上のエポキシ基を有する低分子化合物やオリゴマー(以下これらをポリエポキシドという)の種類により、グリシジルエーテル系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、環式脂肪族エポキシ樹脂などに分類される。
 グリシジルエーテル系エポキシ樹脂の主剤は、フェノール性水酸基を2個以上有するポリフェノール類のフェノール性水酸基やアルコール性水酸基を2個以上有するポリオール類のアルコール性水酸基をグリシジルオキシ基に置換した構造を有するポリエポキシド(またはそのポリエポキシドのオリゴマー)からなる。
 同様に、グリシジルエステル系エポキシ樹脂の主剤はカルボキシル基を2個以上有するポリカルボン酸のカルボキシル基をグリシジルオキシカルボニル基に置換した構造を有するポリエポキシドからなり、グリシジルアミン系エポキシ樹脂の主剤は窒素原子に結合した水素原子を2個以上有するアミンの窒素原子に結合した水素原子をグリシジル基に置換した構造を有するポリエポキシドからなる。さらに、環式脂肪族エポキシ樹脂の主剤は、環の隣接した炭素原子間に酸素原子が結合した脂環族炭化水素基(2,3-エポキシシクロヘキシル基など)を有するポリエポキシドからなる。
 吸水層に用いる吸水性樹脂としては、芳香核を有しないポリエポキシドを主剤とするエポキシ系樹脂の硬化物であることが高い吸水性を得られる点から好ましく、具体的には、ポリオール類由来のグリシジルエーテル系ポリエポキシドを主剤とするエポキシ系樹脂の硬化物であることが好ましい。
 これに対し、ポリフェノール類由来のグリシジルエーテル系ポリエポキシドを主剤とするエポキシ系樹脂の硬化物は相対的に吸水性が低い。これは、後者のポキシ系樹脂の硬化物はベンゼン環などの芳香核を有し、この芳香核が硬質で吸水性の低い性質を樹脂に与えていると考えられる。したがって、下地層にはポリフェノール類由来のグリシジルエーテル系ポリエポキシドを主剤とするエポキシ系樹脂の硬化物が好ましく用いられる。なお、ポリフェノール類由来のグリシジルエーテル系ポリエポキシドを主剤とするエポキシ系樹脂であっても所定の吸水性が得られれば、吸水層に使用することも可能である。
 ポリフェノール類由来のグリシジルエーテル系ポリエポキシドとして、具体的には、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビス(4-グリシジルオキシフェニル)等のビスフェノール型ジグリシジルエーテル類、フェノールノボラック型ジグリシジルエーテル類、クレゾールノボラック型ジグリシジルエーテル類、フタル酸ジグリシジルエステル等の芳香族ポリカルボン酸ポリグリシジルエステル類等が挙げられる。これらの芳香族ポリエポキシドのうちでは、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテルが好ましく用いられる。
 グリシジルエステル系のポリエポキシド、グリシジルアミン系のポリエポキシド、環式脂肪族のポリエポキシドも、芳香核を有しない化合物であれば吸水性樹脂の原料であるエポキシ系樹脂の主剤として適している。なお、ポリエポキシドの原料ポリオール類として芳香族ポリオールも知られているが、上記ポリオール類由来のグリシジルエーテル系ポリエポキシドとは、芳香核を有しないポリオール類由来のグリシジルエーテル系ポリエポキシドをいう。
 上記と同じ理由で、吸水層においては、吸水性樹脂の原料であるエポキシ系樹脂としては、硬化剤もまた芳香核を有しない化合物であることが好ましい。ただし、硬化剤が反応触媒である場合は、その使用量が少ないことより芳香核を有する化合物であってもよい。硬化剤が主剤と反応する反応性基を有する反応性化合物である場合は、たとえポリエポキシドが芳香核を有しないものであってもその硬化剤との組み合わせから得られる硬化物は比較的多くの芳香核を有する硬化樹脂となり、吸水性が不十分となるおそれがある。
 一方、下地層の場合は、吸水性樹脂の原料であるエポキシ系樹脂の主剤として上記のような芳香核を有するポリエポキシドを用いれば、硬化剤は芳香核を有する化合物であっても芳香核を有しない化合物であってもよい。
 このように吸水層に用いる吸水性樹脂としては、芳香核を有しないポリエポキシドからなる主剤と芳香核を有しない反応性化合物からなる組み合わせのエポキシ系樹脂が特に好ましい。芳香核を有しないポリエポキシドとしては、グリシジルエーテル系ポリエポキシドが好ましい。同様に、芳香核を有しないポリオール類や芳香核を有しないアミン類などから得られる、グリシジルエステル系ポリエポキシド、グリシジルアミン系ポリエポキシド、環式脂肪族ポリエポキシドなども、吸水層に用いる吸水性樹脂を得るためのエポキシ系樹脂の主剤として好ましい。最も好ましい芳香核を有しないポリエポキシドは、グリシジルエーテル系ポリエポキシドである。
 ポリオール類由来のグリシジルエーテル系ポリエポキシドの原料ポリオールとしては、脂肪族ポリオールや脂環族ポリオールなどの芳香核を有しないポリオールがあり、その1分子当たりの水酸基の数は2~8個が好ましく、2~4個がより好ましい。以下このような芳香核を有しないポリオールを脂肪族ポリオール類という。脂肪族ポリオール類としては、アルカンポリオール、エーテル性酸素原子含有ポリオール、糖アルコール、ポリオキシアルキレンポリオール、ポリエステルポリオールなどがある。ポリオキシアルキレンポリオールとしては、アルカンポリオール、エーテル性酸素原子含有ポリオール、糖アルコールなどの比較的低分子量のポリオールに、プロピレンオキシド、エチレンオキシドなどのモノエポキシドを開環付加重合して得られる。ポリエステルポリオールは、脂肪族ジオールと脂肪族ジカルボン酸が縮合した構造を有する化合物や環状エステルが開環重合した構造を有する化合物などがある。
 ポリオール類由来のグリシジルエーテル系ポリエポキシドとしては、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等が挙げられる。
 これらのうちでも、特にグリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテルが好ましい。
 グリシジルエーテル系ポリエポキシド以外のポリエポキシドとしては、例えば、ヘキサヒドロフタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペートなどが挙げられる。
 ポリエポキシドの分子量としては、耐久性、外観等の観点から200~3000が好ましく、300~2000がより好ましく、300~1800が特に好ましい。また、ポリエポキシドのエポキシ当量(1グラム当量のエポキシ基を含む樹脂のグラム数[g/eq])としては、120~200g/eqであることが好ましく、130~190g/eqがより好ましい。
 なお、本明細書において分子量は、特に断りのある場合を除いて、質量平均分子量(Mw)をいう。また、本明細書における質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレンを標準とする質量平均分子量をいう。
 エポキシ系樹脂における硬化剤としては、ポリアミン類、ポリカルボン酸無水物、ポリアミド類、ポリチオール類などのエポキシ基と反応性の反応性基を2個以上有する化合物と、3級アミン類、イミダゾール類、ルイス酸類、オニウム塩類、ジシアンジアミド類、有機酸ジヒドラジド類、ホスフィン類など硬化触媒が挙げられる。反応性基を2個以上有する化合物としては、芳香核を有しないポリアミン類やポリカルボン酸無水物が好ましく、硬化触媒としては3級アミン類、イミダゾール類、ホスフィン類、アリルスルホニウム塩が好ましい。また、硬化触媒として光硬化性のエポキシ系樹脂を構成する光硬化性触媒も好ましい。さらに、反応性基を2個以上有する化合物と硬化触媒を併用することができ、特にポリアミン類と硬化触媒の組み合わせが好ましい。以下、反応性基を2個以上有する化合物を重付加型硬化剤といい、硬化触媒を触媒型硬化剤という。
 重付加型硬化剤としては、ポリアミン類、ポリカルボン酸無水物、ポリアミド類などが使用でき、吸水性の高い吸水性樹脂を得るためには、ポリエポキシドと同様に芳香核を有しない反応性化合物であることが好ましい。重付加型硬化剤としては、芳香核を有しないポリアミン類と芳香核を有しないポリカルボン酸無水物が好ましく、特に芳香核を有しないポリアミン類が好ましい。ポリアミン類としてはアミノ基を2~4個有するポリアミン類が好ましく、ポリカルボン酸無水物としては、ジカルボン酸無水物、トリカルボン酸無水物およびテトラカルボン酸無水物が好ましい。
 芳香核を有しないポリアミン類としては、脂肪族ポリアミン化合物や脂環式ポリアミン化合物が好ましい。これらのポリアミン類として、具体的には、エチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンジアミン、ポリオキシアルキレンポリアミン、イソホロンジアミン、メンセンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン等が挙げられる。上記ポリオキシアルキレンポリアミンは、ポリオキシアルキレンポリオールの水酸基がアミノ基に置換された構造を有するポリアミンであり、例えば、2~4個の水酸基を有するポリオキシプロピレンポリオールの水酸基をアミノ基に置換した構造を有する2~4個のアミノ基を有する化合物がある。そのアミノ基1個あたりの分子量は1000以下が好ましく、特に500以下が好ましい。
 芳香核を有しないポリカルボン酸無水物としては、例えば、無水コハク酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸等が挙げられる。
 触媒型硬化剤としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、トリス(ジメチルアミノメチル)フェノール、三フッ化ホウ素-アミン錯体、ジシアンジアミド等が挙げられる。また、光硬化性エポキシ樹脂を与える触媒型硬化剤としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロホスフェートなどの紫外線等の光により分解してルイス酸触媒を発生するオニウム塩が挙げられる。
 ポリエポキシドと硬化剤の組み合わせ割合は、硬化剤が重付加型硬化剤の場合、エポキシ基に対する重付加型硬化剤の反応性基の当量比が0.8~1.2程度になる割合が好ましい。ただし、触媒型硬化剤と併用する場合はこの割合よりも少なくてよい。また、質量割合が多くなりすぎると硬化物の物性が不十分となりやすいので、ポリエポキド100質量部に対して重付加型硬化剤40質量部以下であるのが好ましい。触媒型硬化剤の使用量は、ポリエポキド100質量部に対して2~20質量部であるのが好ましい。触媒型硬化剤の使用量を2質量部以上とすれば、反応が十分に進行し、十分な吸水性や耐久性が実現できる。また、触媒型硬化剤使用量が20質量部以下であれば、得られる硬化物中に硬化剤残渣が残存して硬化物の黄変等の外観上の問題が発生するのを防ぎ易い。
 ポリエポキシドと硬化剤の組み合わせからなるエポキシ系樹脂にはそれら以外の反応性添加剤や非反応性添加剤を配合することもできる。反応性添加剤としてはアルキルモノアミンなどのエポキシ基と反応性の反応性基を1個有する化合物、エポキシ基やアミノ基を有するカップリング剤などが挙げられる。ポリエポキシドと硬化剤と任意成分の添加剤の組み合わせからなるエポキシ系樹脂において、エポキシ系樹脂全量に対するポリエポキシドの含有量は40~80質量%であるのが好ましい。また、硬化剤の総量は40質量%以下であることが好ましい。
 上記のようなポリエポキシド、硬化剤、それらの組み合わせ(エポキシ樹脂)は市販品を用いることも可能である。このような市販品として、吸水層に好適に用いられるものについて具体的には、脂肪族のグリシジルエーテル系ポリエポキシドとして、ナガセケムテックス社製のいずれも商品名で、グリセロールポリグリシジルエーテルである、デナコールEX-313(分子量(Mw):383、平均エポキシ基数:2.0個/分子)、デナコールEX-314(分子量(Mw):454、平均エポキシ基数:2.3個/分子)、ポリグリセロールポリグリシジルエーテルである、デナコールEX-512(分子量(Mw):630、平均エポキシ基数:4.1個/分子)、デナコールEX-521(分子量(Mw):1294、平均エポキシ基数:6.3個/分子)等が挙げられる。
 また、吸水層に好適に用いられるものとして、脂肪族ポリグリシジルエーテルである、デナコールEX-1410(分子量(Mw):988、平均エポキシ基数:3.5個/分子)、デナコールEX-1610(分子量(Mw):1130、平均エポキシ基数:4.5個/分子)、デナコールEX-610U(分子量(Mw):1408、平均エポキシ基数:4.5個/分子)等が挙げられる。ソルビトールポリグリシジルエーテルとして、デナコールEX-614B(分子量(Mw):949、平均エポキシ基数:6.1個/分子)等が挙げられる。なお、これらのポリエポキシドは単独で用いてもよく、2種以上を併用してもよい。
 また、下地層に好適に用いられる市販品として、ビスフェノールAジグリシジルエーテルであるjER828(商品名、三菱化学社製、分子量(Mw):340、平均エポキシ基数:約2個/分子)等が挙げられる。
 硬化剤としては、ポリオキシアルキレントリアミンとして、ジェファーミンT403(商名、ハンツマン社製)等が挙げられる。光硬化触媒であるトリアリールスルホニウム塩として、アデカオプトマーSP152(商品名、アデカ社製)等が挙げられる。
 以上、吸水層および下地層が含有する吸水性樹脂についてそれぞれ説明したが、以下、該吸水性樹脂以外の各種成分について、吸水層、下地層の区別なく吸水防曇膜が含有する成分として説明する。
(無機充填材)
 無機充填材は、これを添加することにより吸水防曇膜により高い機械的強度と耐熱性を付与することができる成分である。また、吸水性樹脂として硬化樹脂を用いた場合には、硬化反応時の樹脂の硬化収縮を低減することもできる。このような無機充填材としては、金属酸化物からなる充填材が好ましい。金属酸化物としては、例えば、シリカ、アルミナ、チタニア、ジルコニアが挙げられ、なかでもシリカが好ましい。
 また、上記金属酸化物からなる充填材のほかに、ITO(Indium Tin Oxide)からなる充填材も使用できる。ITOは赤外線吸収性を有するため、吸水防曇膜に熱線吸収性を付与できる。よって、ITOからなる充填材を使用すれば、吸水性に加えて熱線吸収による防曇効果も期待できる。
 吸水防曇膜が含有するこれら無機充填材は粒子状であることが好ましい。また、その平均粒子径は、0.01~0.3μmであることが好ましく、0.01~0.1μmであることがより好ましい。また、無機充填材の配合量については、吸水性樹脂として硬化樹脂を用いる場合は、主剤と硬化剤との合計質量100質量部に対して1~20質量部であることが好ましく、1~10質量部がより好ましい。吸水性樹脂として線状重合体を用いる場合は吸水性樹脂の100質量部に対して、0.5~5.3質量部であることが好ましい。吸水性樹脂の100質量部に対する無機充填材の配合量を上記下限値以上とすれば、吸水防曇膜に機械的強度を付与できる。また、硬化樹脂を用いる場合には、硬化収縮の低減効果の低下を抑え易い。また、無機充填材の配合量を上記上限値以下とすれば、吸水するための空間が十分に確保でき、吸水性や防曇性を高くし易い。
 なお、上記無機充填材として好ましく用いられるシリカ、より好ましくは、シリカ微粒子は、水またはメタノール、エタノール、イソブタノール、プロピレングリコールモノメチルエーテル、酢酸ブチル等の有機溶媒中に分散されたコロイダルシリカとして後述の吸水防曇膜形成用組成物に配合することができる。コロイダルシリカとしては、水に分散されたシリカヒドロゾル、水が有機溶媒に置換されたオルガノシリカゾルがあり、吸水防曇膜形成用組成物に配合する場合には、該組成物に好ましく用いられる溶媒にあわせて、シリカヒドロゾルまたはオルガノシリカゾルが用いられる。例えば、吸水防曇膜形成用組成物に用いられる溶媒が有機溶剤である場合には、これと同様の有機溶媒を分散媒として用いたオルガノシリカゾルを用いることが好ましい。
 このようなオルガノシリカゾルとしては、市販品を用いることが可能であり、市販品として、例えば、平均一次粒子径10~20nmのシリカ微粒子がイソプロパノールに、オルガノシリカゾル全体量に対するSiO含有量として30質量%の割合で分散したオルガノシリカゾルIPA-ST(商品名、日産化学工業社製)、オルガノシリカゾルIPA-STの有機溶媒をイソプロパノールからメチルエチルケトンにかえたオルガノシリカゾルMEK-ST(商品名、日産化学工業社製)、オルガノシリカゾルIPA-STの有機溶媒をイソプロパノールから酢酸ブチルにかえたオルガノシリカゾルNBAC-ST(商品名、日産化学工業社製)等を挙げることができる。なお、シリカ微粒子としてコロイダルシリカを用いる場合には、吸水防曇膜形成用組成物に配合する溶媒の量を、コロイダルシリカに含まれる溶媒量を勘案して、適宜調整する。
 また、上記無機充填材は、吸水防曇膜形成用組成物には、例えば、テトラエトキシシランのようなシリカ前駆体として配合され、吸水防曇膜を形成した際にシリカとして被膜内に存在するものであってもよい。このようなシリカ前駆体としては、上記テトラエトキシシランのほかに、テトラメトキシシラン、モノメチルトリエトキシシラン、モノメチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のケイ酸化合物を用いることができる。
 上記シリカ以外に無機充填材として例示した、アルミナ、チタニア、ジルコニアなどについては、その前駆体として、アルコキシド、アセチルアセトナートを用いることが可能であり、特にジルコニウムについては、塩化ジルコニウムも使用可能である。
(カップリング剤)
 カップリング剤は、吸水防曇膜形成用組成物に添加されて、吸水防曇膜を形成する際に吸水防曇膜とこれと接する窓ガラスや黒色セラミックス層との間の、または吸水防曇膜を構成する各層間の、密着性を高めるために作用する成分である。なお、カップリング剤が反応性基を有する場合は、該反応性基が吸水防曇膜を構成する他の成分等と反応することで密着性を高めているため、吸水防曇膜形成用組成物に配合したカップリング剤は、吸水防曇膜を形成した後は多少形を変えて存在する。以下に、吸水防曇膜形成用組成物に添加されるカップリング剤について説明する。
 なお、上記吸水性樹脂として硬化樹脂を用い、さらに任意成分として配合されるカップリング剤が、主剤または硬化剤と反応性のある官能基を有している場合は、カップリング剤は、密着性を向上させる目的以外に、吸水防曇膜の物性を調整する目的でも使用できる。
 ここで、硬化性樹脂がエポキシ系樹脂を含む場合にも、吸水防曇膜形成用組成物はカップリング剤を含有することが好ましく、このようなカップリング剤としては、有機金属系カップリング剤または多官能の有機化合物であることが好ましい。
 上記有機金属系カップリング剤としては、例えば、シラン系カップリング剤、チタン系カップリング剤、アルミニウム系カップリング剤が挙げられ、シラン系カップリング剤が好ましい。これらカップリング剤を、硬化性樹脂とともに用いる場合には、主剤や硬化剤の反応性基と反応し得る反応性基を有することが好ましい。ここで、カップリング剤は金属原子-炭素原子間の結合を1個以上(好ましくは、1個または2個)有する化合物であることが好ましい。有機金属系カップリング剤としては、特にシラン系カップリング剤が好ましい。
 シラン系カップリング剤としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン等が挙げられる。
 吸水防曇膜形成用組成物におけるカップリング剤の使用量は、必須の成分でないことから下限はない。しかし、カップリング剤配合の効果を十分に発揮させるためには、吸水性樹脂(硬化樹脂の場合は、主剤と硬化剤)と、カップリング剤の合計質量に対して、カップリング剤の質量割合が0.1質量%以上であるのが好ましく、0.5質量%以上がより好ましい。カップリング剤の使用量の上限は、カップリング剤の物性や機能によって制限されるが、吸水性樹脂(硬化性樹脂の場合は、主剤と硬化剤)と、カップリング剤の合計質量に対して、概ね20質量%以下であるのが好ましく、15質量%以下がより好ましい。
(その他機能性添加成分)
 その他機能性添加成分のうち、レベリング剤としては、ポリジメチルシロキサン系表面調整剤(市販品として、例えば、BYK307(商品名、ビックケミー社製))、アクリル系共重合物表面調整剤、フッ素変性ポリマー系表面調整剤等が、消泡剤としては、シリコーン系消泡剤、界面活性剤、ポリエーテル、高級アルコールなどの有機系消泡剤等が、粘性調整剤としては、アクリルコポリマー、ポリカルボン酸アマイド、変性ウレア化合物等が、それぞれ挙げられる。
 光安定剤としては、ヒンダードアミン類、ニッケルビス(オクチルフェニル)サルファイド、ニッケルコンプレクス-3,5-ジ-tert-ブチル-4-ヒドロキシベンジルリン酸モノエチラート、ニッケルジブチルジチオカーバメート等のニッケル錯体等が挙げられる。光安定剤の市販品としては、ヒンダードアミン類に分類されるビス-(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート(アデカスタブLA-72(商品名、ADEKA社製))を例示することができる。
 酸化防止剤としては、ペルオキシラジカルを捕捉、分解することで樹脂の酸化を抑制するタイプのフェノール系酸化防止剤、過酸化物を分解することで樹脂の酸化を抑制するタイプのリン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。本発明においてはフェノール系酸化防止剤を用いることが好ましい。フェノール系酸化防止剤の市販品としては、アデカスタブAO-50(商品名、ADEKA社製)等が挙げられる。
 紫外線吸収剤としては、従来公知の紫外線吸収剤、具体的には、ベンゾフェノン系化合物、トリアジン系化合物、ベンゾトリアゾール系化合物等が挙げられる。より具体的な紫外線吸収剤として、2-(2-ヒドロキシ-4-[1-オクチルカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、TINUVIN400(商品名、BASF社製)が挙げられる。
 各成分はそれぞれに、例示した化合物の2種以上を併用してもよい。吸水防曇膜形成用組成物中の各種成分の含有量は、それぞれの成分について、吸水性樹脂(硬化樹脂の場合は、主剤と硬化剤との合計)の100質量部に対して、0.001~10質量部とすることができる。
 吸水性樹脂を含有する吸水防曇膜は、例えば、吸水性樹脂(硬化樹脂の場合は、主剤と硬化剤)を含有し、さらに、必要に応じて上記各種機能性添加成分を含有する吸水防曇膜形成用組成物を調製し、この吸水防曇膜形成用組成物を窓ガラスの車内側の主面に、端部が黒色セラミックス層の形成領域内に位置するように塗布し、乾燥して、または、必要に応じて乾燥後、硬化(架橋)を行うことで形成できる。吸水防曇膜が2層以上の積層構造の場合、例えば、吸水性の低い下地層と吸水性の高い吸水層からなる場合には、層毎に所定の組成物を調製して層毎に用いる組成物に合わせて所定の塗布、乾燥、または、塗布、乾燥、硬化(架橋)を行う。
 ここで、吸水防曇膜の膜厚を本発明の範囲とするための膜厚の制御は、通常、吸水防曇膜形成用組成物の塗布の際に塗膜の膜厚を制御することで行われる。吸水防曇膜形成用組成物の塗布の方法としては、フローコート法、スピンコート法、スプレーコート法、フレキソ印刷法、スクリーン印刷法、グラビア印刷法、ロールコート法、メニスカスコート法、ダイコート法、ワイプ法等が挙げられ、これらいずれの方法であっても塗膜の膜厚制御は可能である。なお、こられのうちでも、膜厚制御が容易な点から、フローコート法、スピンコート法、スプレーコート法が好ましい。また、図2に示す断面のように膜厚が上辺側から下辺側に漸増する吸水防曇膜を形成する際の塗布方法として、フローコート法、具体的には、上辺側が上になる向きでほぼ垂直に設置した黒色セラミックス層付き窓ガラスの車内側面に吸水防曇膜形成用組成物を上辺側から供給してフローさせる方法が特に好ましい。さらに、吸水防曇膜全体の形成領域の制御は、従来公知の方法、例えば、マスキングによる方法等で行えばよい。
 吸水防曇膜形成用組成物は、固体や高粘度液体の硬化性樹脂を用いる場合には、塗布作業性を向上させるために溶剤を含むことが好ましい。一般的には、前記硬化性樹脂の主剤と硬化剤の反応は、吸水防曇膜形成用組成物として窓ガラスの車内側の主面の上記所定の範囲に塗布した後に行われる。ただし、前記組成物が溶剤を含む場合には、該塗布の前の組成物中でこれら成分を予めある程度反応させ、その後、窓ガラスの車内側の主面の上記範囲に塗布し、乾燥後、さらに反応させてもよい。このように吸水防曇膜形成用組成物として溶剤中で、主剤と硬化剤とを予めある程度反応させる場合には、予め反応させるときの反応温度は、40℃以上とすれば硬化反応が確実に進行するため好ましい。
 上記吸水防曇膜形成用組成物に用いる溶剤としては、主剤や硬化剤等の成分の溶解性が良好な溶剤であり、かつこれらの成分に対して不活性な溶剤であれば特に限定されず、具体的には、アルコール類、酢酸エステル類、エーテル類、ケトン類、水等が挙げられる。
 なお、主剤や硬化剤としてエポキシ基含有化合物を使用する場合は、溶剤としてプロトン性溶剤を用いると、種類によっては溶剤とエポキシ基とが反応して硬化樹脂が形成されにくい場合がある。したがって、プロトン性溶剤を使用する場合は、エポキシ化合物と反応し難い溶剤を選択することが好ましい。使用可能なプロトン性溶剤としてはエタノール、イソプロパノール等が挙げられる。また、それ以外の溶剤としては、メチルエチルケトン、酢酸ブチル、プロピレンカーボネート、ジエチレングリコールジメチルエーテル等が好ましい。
 これら溶剤は1種のみを使用してもよく、2種以上を併用してもよい。また、主剤や硬化剤等の成分は溶剤との混合物として用意される場合がある。この場合には、該混合物中に含まれる溶剤をそのまま、吸水防曇膜形成用組成物における溶剤として用いてもよく、さらに前記組成物にはそれ以外に同種のあるいは他の溶剤を加えてもよい。
 また、吸水防曇膜形成用組成物がエポキシ基含有化合物を含む場合は、溶剤の量は、エポキシ基含有化合物、硬化剤、および以下のカップリング剤の合計質量に対して1~5倍量であることが好ましい。
 吸水防曇膜を形成するために、上記で得られた吸水性樹脂形成用組成物を窓ガラスの車内側の主面の上記所定の範囲に塗布する方法としては、上記と同様の方法が挙げられる。吸水防曇膜形成用組成物を塗布した後は、必要に応じて乾燥により溶媒を除去し、用いる硬化性樹脂に合わせた条件で硬化処理を行い硬化樹脂の層とする。
 硬化処理として具体的には、50~180℃、10~60分間程度の熱処理が挙げられる。室温硬化性の硬化性樹脂の場合は室温硬化もできる。光硬化性樹脂を用いた場合には、UV硬化装置等で50~1000mJ/cmのUV照射を5~10秒間行う等の処理が挙げられる。
 以上、図1および図2に示されるフロンドガラス1について説明したが、本発明のフロンドガラスはこれに限定されない。本発明の趣旨および範囲を逸脱することのない範囲で、フロンドガラス1を変更または変形することができる。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。
[実施例1]
 図3に車内側から見た正面図を示す試験用の自動車用フロントガラス1’(右ハンドル用)を以下のようにして製造し、評価した。自動車用フロントガラス1’は、周縁部に黒色セラミックス層3を有する自動車のフロント用窓ガラス2の車内側から見て右半分の面に端部が黒色セラミックス層3の形成領域内に位置するように、下地層と吸水層からなる吸水防曇膜4を形成したものである。なお、自動車用フロントガラス1’におけるJIS R3212(1998年)に規定される試験領域Aと試験領域Bを、図3に点線で示した。試験領域Aは、点線で囲まれる2つの領域のうち面積の小さい内側の領域であり、試験領域Bは試験領域Aの外側の試験領域Aより面積の大きい領域である。
 まず、吸水防曇膜4を形成するための下地層形成用組成物と吸水層形成用組成物を調製した。
<下地層形成用組成物の調製>
 撹拌機、温度計がセットされたガラス容器に、プロピレングリコールモノメチルエーテル(150.00g、大伸化学社製)、ビスフェノールAジグリシジルエーテル(93.17g、jER828(商品名、三菱化学社製))、ポリオキシアルキレントリアミン(38.20g、ジェファーミンT403(商品名、ハンツマン社製))、アミノシラン(18.63g、KBM903(商品名、信越化学工業社製))を入れ、25℃にて30分間撹拌した。次いで、プロピレングリコールモノメチルエーテル(大伸化学社製)で5倍に希釈して、レベリング剤(0.375g、BYK307(商品名、ビックケミー社製))を添加して、下地層形成用組成物(A-1)を得た。
<吸水層形成用組成物の調製>
 撹拌機、温度計がセットされたガラス容器に、エタノール(586.30g、関東化学製)、メチルエチルケトン(196.37g、関東化学製)、脂肪族ポリグリシジルエーテル(248.73g、デナコールEX-1610、(商品名、ナガセケムテックス社製))、グリセリンポリグリシジルエーテル(206.65g、デナコールEX-313、(商品名、ナガセケムテックス社製))を添加し10分間撹拌した。次いで、オルガノシリカゾル(29.92g、NBAC-ST(商品名、日産化学工業社製)、平均一次粒子径:10~20nm、SiO含有量30質量%)、2-メチルイミダゾール(10.29g、四国化成社製)を添加し、さらに10分間撹拌した。次いで、ポリオキシアルキレントリアミン(90.70g、ジェファーミンT403(商品名、ハンツマン社製))を添加し、25℃にて1時間撹拌した。次いで、アミノシラン(92.57g、KBM903(商品名、信越化学工業社製))を撹拌しながら添加し、さらに25℃にて3時間撹拌した。その後、メチルエチルケトン(438.46g、関東化学製)を撹拌しながら添加した。さらに、レベリング剤(0.95g、BYK307(商品名、ビックケミー社製))を撹拌しながら添加し、吸水層形成用組成物(A-2)を得た。
<自動車用フロンガラス1’の製造>
 窓ガラス2として、車内側面の周縁部分に額縁状に黒セラミックス層3が製膜された自動車(乗用車)のフロント用の窓ガラス(ソーダライムガラス板を、中間膜を挟んで積層した合わせガラス、旭硝子製)2を用いた。
 また、製膜機として、下地層形成用または吸水層形成用の組成物を保持するタンクと、毎秒3.0mlの割合でほぼ脈動なくこれらの組成物を連続吐出可能な定量ポンプと、定量ポンプに接続された先端の口径が1.5mmであって長さ約10mのポリテトラフルオロエチレン製チューブと、該チューブの先端を鉛直下向きになるようにそのハンドに固定した6軸ロボットと、を有する製膜機を準備した。なお、以下の製膜に際して、製膜機は、6軸ロボットが窓ガラス2の塗布軌道に沿って12mm/秒の一定速度で動くように設定された。
 窓ガラス2の車内側の主面を酸化セリウムで研磨洗浄し、純水で酸化セリウムを洗い流し、温風乾燥し、清浄な窓ガラス2を得た。該窓ガラス2を気温23℃、相対湿度50%の実験室に、下辺側が下になる向きでほぼ垂直に立てかけた。その状態のまま窓ガラス2の車内側の主面の右側(運転席側)半面にのみ、上記製膜機を用いて上記で得られた下地層形成用組成物(A-1)をフローコートによって塗布した。塗布後、設定温度100℃の空気循環式オーブン内で30分間保持し下地層を形成した。次いで、窓ガラス2の車内側主面の右側(運転席側)半面の下地層上に、上記で得られた吸水層形成用組成物(A-2)を同様にフローコートによって塗布し、設定温度100℃の空気循環式オーブン内で30分間保持し吸水層を形成した。このようにして、窓ガラス2の車内側主面の右側(運転席側)半面にのみ下地層と吸水層の2層からなる吸水防曇膜4を有し、車内側主面の左側(助手席側)半面には吸水防曇膜4を有しない自動車用フロントガラス1’を得た。
 なお、吸水防曇膜4の形成領域の設定はマスキングを用いて行った。具体的には、端部が黒色セラミックス層3上に位置するように、黒色セラミックス層3の外周端から内周側に黒色セラミックス層3の幅の2/3までマスキングしてから吸水防曇膜4の形成を行った。また、窓ガラス2中央における左(吸水防曇膜4なし)と右(吸水防曇膜4あり)の境界にもマスキングを使用した。
<評価>
 得られた自動車用フロントガラス1’について、吸水防曇膜4の膜厚および飽和吸水量、防曇時間の測定を以下のように行った。なお、通常の、防曇加工を行っていないソーダライムガラスの防曇時間は1~2秒である。
(膜厚)
 自動車用フロントガラス1’について、図3に示すように左右方向の中心に自動車用フロントガラス1’に沿った中心線直線Aを引き、中心線直線Aに平行で、かつ車内側から見て右側方向に250mmだけ移動させた位置に上下方向に沿った直線Bを引いた。直線Bが上辺側の黒色セラミックス層3の内周端と交錯する点を起点とし、起点から直線B上を下辺側方向に25mm離れた箇所に点を打ち、これを測定点1とした。それ以降、測定点1から50mm間隔で下辺側方向に点を打ち、測定点17までを設定した。測定点17は下辺側の黒色セラミックス層3の内周端から15mmの点である。ここで、自動車用フロントガラス1’における直線Bによる断面は、図2に示される断面と吸水防曇膜4が単層か2層であるかの違い以外は、ほぼ同様であった。
 なお、各測定点の位置が、JIS R3212(1998年)に規定される試験領域A、試験領域B、これらの領域の領域外のいずれの領域内にあるかを表1に示した。ここで、自動車用フロントガラス1’については、視野領域4vの上下の境界線を試験領域Bの僅かに内側に相当する測定点4を通る窓ガラス2の上辺と平行する線と、測定点12を通る窓ガラスの上辺と平行する線に設定した。また、視野領域4vの左右の境界線は試験領域Bの境界線と同じに設定した。また、薄膜領域4sは、黒色セラミックス層3の内周端から内周側に幅25mmの領域とした。表1に、各測定点が本発明で設定した薄膜領域4s、視野領域4v、これらの領域の領域外のいずれの領域内にあるかを示した。
 測定点1から測定点17までの位置における、吸水防曇膜の膜厚を光学干渉膜厚測定法により測定した。膜厚測定装置には、高分解分光測定装置(UV-NIR、スペクトラコープ社製)にハロゲン光源(LS-100、スペクトラコープ社製)とY型ファイバー付き測定プローブ(YPR-2000、スペクトラコープ社製)を取り付けたものを使用した。なお、下地層の厚さは、下地層形成直後に測定した値であり、吸水層の厚さは、吸水層形成後に測定した総膜厚から下地層の厚さを引いて得た値である。測定結果を表1に示す。
 また、測定点ごとに下地層の厚さを「UT」、吸水層の厚さを「TT」としたときのTT/UTを算出した。さらに、TT/UTの値の17の測定点における平均値を求め、その平均値からの偏差を測定点ごとに求めた。これらを合わせて表1に示す。
(吸水性、防曇性)
 上記で得られた自動車用フロントガラス1’を測定点1から測定点17が中心となるように30mm×40mmの矩形の試験片に切断し、各試験片の吸水防曇膜4について、飽和吸水量と、防曇時間(秒)(防曇時間(秒)については測定点1から奇数の測定点のみ)を上記の方法で測定した。なお、飽和吸水量は、吸水防曇膜4の全領域で400(mg/cm)であり、一定であった。比較のために、体積当たりの飽和吸水量に、膜厚を乗じて試験片の単位面積当たりの吸水量(mg/cm)を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ここで、測定点1における膜厚9.6μmは、薄膜領域4sにおける最大膜厚であった。よって、この薄膜領域4sにおける最大膜厚と視野領域4vの最小膜厚(測定点4における14.2μm)との関係は、(9.6/14.2)×100=67.6%であり、本発明の範囲内である。また、各測定点において、吸水層と下地層の膜厚の比、TT/UTは、3.7~4.7の間にあり、これらの平均値との偏差は、±0.7以内である。
(実車における曇りの評価)
 上記と同様にして得られた試験用自動車用フロントガラス1’を自動車(乗用車)に取り付けた車両を用意した。外気温度は8℃、湿度50%の環境下で、初期状態における車内温度8℃、湿度50%の状態から、車両に2名の乗員が乗り込み、毎時250gの加湿能力を持つ加湿器を後部座席中央に設置し、おおよそ時速50kmで走行を開始した。加湿器は走行開始と同時に稼働させた。この時、車両の空調機は、内気循環設定とし、冷暖房切り替えスイッチは、中央から3目盛分だけ暖房側に設定した。また、空調の吹き出し位置は、足元と手元の2か所同時吹き出しの設定とした。
 走行開始後、フロントガラス1’の吸水防曇膜4を有しない助手席側半面は30秒以内に全体が急激に曇り始め視界を阻害した。一方、フロントガラス1’の吸水防曇膜4を有する運転席側半面は、走行開始から1分経過後に上辺部の黒色セラミック層3の内周端から25mmの薄膜領域4sの範囲で曇りが発生したが、それ以下の領域は透明な状態を保った。その後、走行中に運転席側半面の曇りの面積が徐々に下方に拡大したが、上記視野領域4vの境界と設定した測定点4の位置まで曇りの範囲が届くまでには10分間を要し、運転視界として重要なJIS R3212で規定されるところの試験領域Aまで曇りの範囲が届くまでには12分間を要した。
 また、上記同様の実験において、フロントガラス1’の薄膜領域4s内で曇りが発生した時点で、空調の吹き出し位置を、フロントガラス1’表面を含むように切り替えたところ、その後、例えば12分後においても視野領域4vや試験領域Aまで曇りの範囲が広がることなく、曇りが解消された。
 1…車両用フロントガラス、2…窓ガラス、3…黒色セラミックス層、4…吸水防曇膜、
4s…薄膜領域、4v…視野領域。

Claims (9)

  1.  窓ガラスと、前記窓ガラスの周縁部に形成された帯状の黒色セラミックス層と、前記窓ガラスの車内側面にその端部が前記窓ガラスの端部よりも内側でかつ前記黒色セラミックス層の形成領域内に存在するように設けられた吸水防曇膜と、を備えた車両用フロントガラスであって、
     前記吸水防曇膜は、前記車両用フロントガラスにおける運転者の視界を確保する視野領域の外側かつ前記黒色セラミックス層が形成された領域の内側に、最大膜厚が前記視野領域における最小膜厚の30~70%の範囲にあり、曇りが生じた際に運転者が認識できる大きさの薄膜領域を有する車両用フロントガラス。
  2.  前記視野領域は、少なくともJIS R3212(1998年)に規定される試験領域Aを含む請求項1記載の車両用フロントガラス。
  3.  前記吸水防曇膜の薄膜領域が、前記黒色セラミックス層の形成領域の内周の少なくとも1辺に沿った幅20mm以上の帯状の領域である請求項1または2記載の車両用フロントガラス。
  4.  前記吸水防曇膜は前記薄膜領域を上辺側のみに有する請求項3記載の車両用フロントガラス。
  5.  前記吸水防曇膜は、飽和吸水量が300~600mg/cmであり、視野領域における最小膜厚が8~17μmである請求項1~4のいずれか1項に記載の車両用フロントガラス。
  6.  前記吸水防曇膜は薄膜領域から視野領域に膜厚が漸増するように形成されてなる請求項1~5のいずれか1項に記載の車両用フロントガラス。
  7.  前記吸水防曇膜は吸水性樹脂を含む請求項1~6のいずれか1項に記載の車両用フロントガラス。
  8.  前記吸水防曇膜は、最も車内側に設けられた吸水層と、前記吸水層と前記窓ガラスの間に設けられた前記吸水層より吸水性の低い下地層とからなる請求項1~7のいずれか1項に記載の車両用フロントガラス。
  9.  前記吸水防曇膜の全領域における[吸水層の膜厚/下地層の膜厚]で示される吸水層と下地層の膜厚比の偏差が±1.0以内である請求項8に記載の車両用フロントガラス。
PCT/JP2013/077373 2012-10-15 2013-10-08 車両用フロントガラス WO2014061509A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13847326.9A EP2907706A4 (en) 2012-10-15 2013-10-08 FRONT GLASS FOR VEHICLE
RU2015118151A RU2615646C2 (ru) 2012-10-15 2013-10-08 Ветровое стекло транспортного средства
CN201380053881.7A CN104736399B (zh) 2012-10-15 2013-10-08 车辆用前风挡玻璃
JP2014542067A JP6194892B2 (ja) 2012-10-15 2013-10-08 車両用フロントガラス
US14/682,524 US9481228B2 (en) 2012-10-15 2015-04-09 Vehicle windshield

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-228065 2012-10-15
JP2012228065 2012-10-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/682,524 Continuation US9481228B2 (en) 2012-10-15 2015-04-09 Vehicle windshield

Publications (1)

Publication Number Publication Date
WO2014061509A1 true WO2014061509A1 (ja) 2014-04-24

Family

ID=50488078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077373 WO2014061509A1 (ja) 2012-10-15 2013-10-08 車両用フロントガラス

Country Status (6)

Country Link
US (1) US9481228B2 (ja)
EP (1) EP2907706A4 (ja)
JP (1) JP6194892B2 (ja)
CN (1) CN104736399B (ja)
RU (1) RU2615646C2 (ja)
WO (1) WO2014061509A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061553A1 (ja) * 2015-10-09 2017-04-13 旭硝子株式会社 車両用フロントウインド及びそれを用いた車両用物品
JP2017071390A (ja) * 2015-10-09 2017-04-13 旭硝子株式会社 車両用フロントウインド及びそれを用いた車両用物品
WO2018079230A1 (ja) * 2016-10-26 2018-05-03 旭硝子株式会社 合わせガラス
WO2018173738A1 (ja) * 2017-03-21 2018-09-27 Agc株式会社 車両用フロントウインドおよび車両用物品
WO2019082695A1 (ja) * 2017-10-23 2019-05-02 Agc株式会社 防曇性ガラス物品
DE112018001866T5 (de) 2017-04-04 2019-12-12 AGC Inc. Vordere Viereckseitenscheibe eines Fahrzeugs

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200948A1 (de) * 2015-01-21 2016-07-21 Automotive Lighting Reutlingen Gmbh Verfahren zum Beschichten eines Kunststoffteils mit einem Lack, Lackieranlage zur Ausführung des Verfahrens und Abdeckscheibe einer Kraftfahrzeugbeleuchtungseinrichtung, die nach dem Verfahren beschichtet worden ist
WO2017183590A1 (ja) * 2016-04-19 2017-10-26 旭硝子株式会社 自動車用窓ガラス
US20200079185A1 (en) * 2016-12-12 2020-03-12 Nippon Sheet Glass Company, Limited Windshield, glass product for windshield, and anti-fogging member
JP6991137B2 (ja) * 2017-01-17 2022-01-12 積水化学工業株式会社 充填接合材、保護シート付き充填接合材、積層体、光学デバイス及び光学デバイス用保護パネル
JP6799505B2 (ja) * 2017-06-09 2020-12-16 帝人株式会社 ピラーレスフロントウインドウ用樹脂基板
JP6562045B2 (ja) * 2017-07-28 2019-08-21 マツダ株式会社 車両の防曇制御装置
IT201700104871A1 (it) * 2017-09-20 2019-03-20 Parts Solution Srl Schermo protettivo per vetri di veicoli
CN109624826A (zh) * 2017-10-06 2019-04-16 镇江润德节能科技有限公司 一种自动防水雾双层玻璃窗
KR102715037B1 (ko) 2018-12-14 2024-10-10 삼성전자주식회사 발열 투명판 및 그 제조방법과 발열 투명판을 포함하는 발열장치와 이를 포함하는 물체
DE102019201501A1 (de) 2019-02-06 2020-08-06 Skf Marine Gmbh Aktive Stabilisierungsvorrichtung sowie Verfahren
DE102019201505A1 (de) 2019-02-06 2020-08-06 Skf Marine Gmbh Aktive Stabilisierungsvorrichtung sowie Verfahren
RU197515U1 (ru) * 2019-10-21 2020-05-12 Михаил Юрьевич Смирнов Лобовое стекло STOPСКОЛ автомобиля
JP2021155001A (ja) * 2020-03-30 2021-10-07 本田技研工業株式会社 車両
CN113320358B (zh) * 2021-06-25 2022-07-01 长春工程学院 一种智能汽车安全驾驶装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048124A (ja) 1996-08-06 1998-02-20 Yazaki Corp 車両ウインドウガラスの曇り検出方法及びその検出装置
JPH1060141A (ja) * 1996-08-27 1998-03-03 Sekisui Chem Co Ltd パターン状に防曇効果を有する物品及びその製造方法
JP2001219818A (ja) * 2000-02-08 2001-08-14 Asahi Glass Co Ltd センサ付き車両用フロントガラス
WO2008069186A1 (ja) * 2006-12-04 2008-06-12 Asahi Glass Company, Limited 車両窓用防曇ガラス、その製造方法、及びその固定構造
JP2008273076A (ja) 2007-04-30 2008-11-13 Pilot Ink Co Ltd 熱変色性筆記具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU812779A1 (ru) * 1979-05-21 1981-03-15 Ленинградский Ордена Трудовогокрасного Знамени Технологическийинститут Им. Ленсовета Способ получени незапотевающихпОКРыТий HA пОВЕРХНОСТи СТЕКлА
JPH0634341Y2 (ja) * 1987-07-20 1994-09-07 日本板硝子株式会社 セラミックカラー層と導電層との積層構造
US5414240A (en) * 1988-12-27 1995-05-09 Ppg Industries, Inc. Electrically heatable transparency
JPH06212400A (ja) * 1993-01-20 1994-08-02 Asahi Glass Co Ltd コーティングガラスの製造方法
JP4899535B2 (ja) * 2005-08-17 2012-03-21 セントラル硝子株式会社 防曇性被膜及び防曇性物品
JP2009035444A (ja) * 2007-08-01 2009-02-19 Nippon Sheet Glass Co Ltd ウインドシールドおよびウインドシールド用中間膜
JP2011023888A (ja) * 2009-07-14 2011-02-03 Asahi Glass Co Ltd 車両用ガラスアンテナ及び車両用窓ガラス
RU2593871C2 (ru) 2010-12-07 2016-08-10 Асахи Гласс Компани, Лимитед Изделие, предотвращающее запотевание, и способ его получения
CN202225837U (zh) * 2011-08-20 2012-05-23 刚杰 一种自动防雾车窗

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048124A (ja) 1996-08-06 1998-02-20 Yazaki Corp 車両ウインドウガラスの曇り検出方法及びその検出装置
JPH1060141A (ja) * 1996-08-27 1998-03-03 Sekisui Chem Co Ltd パターン状に防曇効果を有する物品及びその製造方法
JP2001219818A (ja) * 2000-02-08 2001-08-14 Asahi Glass Co Ltd センサ付き車両用フロントガラス
WO2008069186A1 (ja) * 2006-12-04 2008-06-12 Asahi Glass Company, Limited 車両窓用防曇ガラス、その製造方法、及びその固定構造
JP2008273076A (ja) 2007-04-30 2008-11-13 Pilot Ink Co Ltd 熱変色性筆記具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2907706A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065943B2 (en) 2015-10-09 2021-07-20 AGC Inc. Vehicle windshield and vehicle component using same
US10507709B2 (en) 2015-10-09 2019-12-17 AGC Inc. Vehicle windshield and vehicle component using same
JP2017071390A (ja) * 2015-10-09 2017-04-13 旭硝子株式会社 車両用フロントウインド及びそれを用いた車両用物品
WO2017061553A1 (ja) * 2015-10-09 2017-04-13 旭硝子株式会社 車両用フロントウインド及びそれを用いた車両用物品
WO2018079230A1 (ja) * 2016-10-26 2018-05-03 旭硝子株式会社 合わせガラス
JP7003929B2 (ja) 2016-10-26 2022-01-21 Agc株式会社 合わせガラス
JPWO2018079230A1 (ja) * 2016-10-26 2019-09-12 Agc株式会社 合わせガラス
US11117450B2 (en) 2017-03-21 2021-09-14 AGC Inc. Vehicle windshield and article for vehicle
DE112018001515T5 (de) 2017-03-21 2019-12-05 AGC Inc. Fahrzeug-Windschutzscheibe und Gegenstand für ein Fahrzeug
JPWO2018173738A1 (ja) * 2017-03-21 2020-01-23 Agc株式会社 車両用フロントウインドおよび車両用物品
DE112018001515B4 (de) 2017-03-21 2022-01-05 AGC Inc. Fahrzeug-Windschutzscheibe und Gegenstand für ein Fahrzeug
WO2018173738A1 (ja) * 2017-03-21 2018-09-27 Agc株式会社 車両用フロントウインドおよび車両用物品
US10639970B2 (en) 2017-04-04 2020-05-05 AGC Inc. Vehicle front quarter glass
DE112018001866T5 (de) 2017-04-04 2019-12-12 AGC Inc. Vordere Viereckseitenscheibe eines Fahrzeugs
WO2019082695A1 (ja) * 2017-10-23 2019-05-02 Agc株式会社 防曇性ガラス物品
JPWO2019082695A1 (ja) * 2017-10-23 2020-12-03 Agc株式会社 防曇性ガラス物品
JP7234933B2 (ja) 2017-10-23 2023-03-08 Agc株式会社 防曇性ガラス物品

Also Published As

Publication number Publication date
RU2615646C2 (ru) 2017-04-06
EP2907706A4 (en) 2016-03-23
JP6194892B2 (ja) 2017-09-13
US9481228B2 (en) 2016-11-01
EP2907706A1 (en) 2015-08-19
US20150210144A1 (en) 2015-07-30
CN104736399B (zh) 2016-12-14
CN104736399A (zh) 2015-06-24
RU2015118151A (ru) 2016-12-10
JPWO2014061509A1 (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6194892B2 (ja) 車両用フロントガラス
JP5861645B2 (ja) 防曇性物品およびその製造方法
US8227085B2 (en) Anti-fogging article and anti-fogging agent composition
JP6007664B2 (ja) 窓ガラスおよびその製造方法
JP6123680B2 (ja) 防曇性物品およびその製造方法、吸水層形成用組成物ならびに輸送機器用物品
WO2011004873A1 (ja) 防曇性物品およびその製造方法、防曇膜形成用コーティングキット
JPWO2015008672A1 (ja) 防曇性物品
JP6459980B2 (ja) 防曇性物品およびその製造方法、下地層形成用組成物ならびに輸送機器用物品
JP2014001106A (ja) 防曇性ガラス物品その製造方法および輸送機器用物品
WO2012161330A1 (ja) 防曇性物品およびその製造方法
JP2014054734A (ja) 防曇性物品および下地層形成用組成物ならびに輸送機器用物品
US9765224B2 (en) Anti-fogging film-forming material, coating liquid for forming anti-fogging film, anti-fogging article, and methods for producing these
WO2017183590A1 (ja) 自動車用窓ガラス
JP2013244691A (ja) 防曇性物品
JP4862534B2 (ja) 防曇性物品および防曇剤組成物
WO2013183441A1 (ja) 防曇性物品
JP2016017013A (ja) 防曇性ガラス物品
JP2007177196A (ja) 防曇防汚性物品
WO2015174373A1 (ja) 防曇性物品および輸送機器用物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014542067

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013847326

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015118151

Country of ref document: RU

Kind code of ref document: A