WO2015174373A1 - 防曇性物品および輸送機器用物品 - Google Patents

防曇性物品および輸送機器用物品 Download PDF

Info

Publication number
WO2015174373A1
WO2015174373A1 PCT/JP2015/063495 JP2015063495W WO2015174373A1 WO 2015174373 A1 WO2015174373 A1 WO 2015174373A1 JP 2015063495 W JP2015063495 W JP 2015063495W WO 2015174373 A1 WO2015174373 A1 WO 2015174373A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
layer
absorbing layer
ultraviolet
composition
Prior art date
Application number
PCT/JP2015/063495
Other languages
English (en)
French (fr)
Inventor
郁織 弘山
伊藤 敦史
猪熊 久夫
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015174373A1 publication Critical patent/WO2015174373A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions

Definitions

  • the present invention relates to an anti-fogging article and an article for transport equipment, and in particular, an anti-fogging article having excellent anti-fogging properties and excellent weather resistance of the anti-fogging properties, and also having ultraviolet shielding properties, and the anti-fogging properties.
  • the present invention relates to an article for transportation equipment including the article.
  • Transparent substrates such as glass and plastic have a so-called “cloudy” state when the substrate surface falls below the dew point temperature because fine water droplets adhere to the surface and scatter transmitted light. .
  • Various proposals have been made as a means for preventing fogging.
  • (1) a method of lowering the surface tension of water droplets attached by treating the substrate surface with a surfactant, (2) imparting a hydrophilic group to the substrate surface using a hydrophilic resin or a hydrophilic inorganic compound And (3) a method of maintaining the surface of the substrate above the dew point temperature by installing a heater or the like on the substrate and heating (4) providing a water-absorbing resin layer on the surface of the substrate.
  • a surfactant (2) imparting a hydrophilic group to the substrate surface using a hydrophilic resin or a hydrophilic inorganic compound
  • (3) a method of maintaining the surface of the substrate above the dew point temperature by installing a heater or the like on the substrate and heating (4) providing a water-absorbing resin layer on the surface of the substrate.
  • the above methods (1) and (2) a water film is formed on the formed film surface. Therefore, when the film is kept in a high humidity environment for a long time, the appearance changes due to generation of distortion or water droplets. It was easy to get up and there was a case where the sticky feeling was somewhat uncomfortable.
  • the anti-fogging performance can be maintained semipermanently, but the energy associated with energization is always required, so that the cost becomes very high.
  • the method (4) has no anti-fogging property without requiring running cost in addition to the fact that there is no change in the appearance and the feeling of use is often popular because there is no water on the surface. Therefore, it is regarded as a particularly excellent method as a means for preventing fogging.
  • Patent Document 1 As an antifogging technique using the water-absorbing compound layer of (4), specifically, an antifogging film in which a low hygroscopic crosslinked resin layer and a highly hygroscopic crosslinked resin layer are sequentially laminated on the substrate surface
  • An antifogging article (see Patent Document 1) has been proposed.
  • higher durability, particularly high weather resistance has been required for antifogging films.
  • the antifogging film described in Patent Document 1 is an antifogging film having both antifogging properties and durability, it is said that the durability is sufficient for use in applications requiring higher weather resistance. It was difficult.
  • Patent Document 2 a glass article in which a silica-based ultraviolet absorbing film is formed on a glass substrate to give an ultraviolet shielding effect is known (see Patent Document 2).
  • Patent Document 2 a glass article in which a silica-based ultraviolet absorbing film is formed on a glass substrate to give an ultraviolet shielding effect.
  • Patent Document 2 a glass article in which a silica-based ultraviolet absorbing film is formed on a glass substrate to give an ultraviolet shielding effect.
  • the antifogging film and the silica-based ultraviolet absorbing film are laminated and used.
  • the present invention has been made from the above viewpoint, and provides an antifogging article excellent in antifogging properties and excellent in weather resistance of the antifogging property and an article for transport equipment comprising the antifogging article. With the goal.
  • the present invention provides the following antifogging articles and transportation equipment articles [1] to [10].
  • An antifogging article in which a transparent substrate, and an ultraviolet absorbing layer, a water-absorbing underlayer, and a water-absorbing layer are disposed in that order on at least a part of the surface of the transparent substrate,
  • the water absorption layer is made of a water absorbing material having a saturated water absorption amount of 50 mg / cm 3 or more mainly composed of the first cured resin
  • the water absorption base layer is mainly composed of a second cured resin, and is made of a material having a saturated water absorption amount smaller than that of the water absorption material
  • the ultraviolet absorbing layer comprises an ultraviolet absorber (a) containing at least one selected from a benzophenone compound, a triazine compound, and a benzotriazole compound, and a binder component (b) mainly composed of a silicon oxide matrix material component.
  • the composition for forming an ultraviolet absorbing layer includes, as the ultraviolet absorber (a), a benzophenone compound containing a silyl group having a hydrolyzable group, and a triazine compound having a silyl group having a hydrolyzable group.
  • the ultraviolet absorbing layer forming composition further includes an infrared absorber (d) containing at least one selected from tin-doped indium oxide, antimony-doped tin oxide, and composite tungsten oxide.
  • d infrared absorber
  • the first cured resin is a first cured epoxy resin, a first urethane resin, or a first cross-linked acrylic resin
  • the second cured resin is a second cured epoxy resin, a second cured resin.
  • the thickness of the water-absorbing underlayer is 2 to 8 ⁇ m, the thickness of the water-absorbing layer is 5 to 40 ⁇ m, and the thickness of the water-absorbing layer is not more than 5 times the thickness of the water-absorbing underlayer
  • any one of [1] to [6] further comprising an adhesion layer mainly composed of a silicon oxide matrix not containing the ultraviolet absorber (a) between the ultraviolet absorbing layer and the water-absorbing underlayer.
  • Antifogging article according to crab [8] The antifogging article according to any one of [1] to [7], wherein the transparent substrate is a glass substrate.
  • the anti-fogging article of the present invention and the article for transport equipment comprising the anti-fogging article are excellent in anti-fogging property and weather resistance of the anti-fogging property, and have ultraviolet shielding properties.
  • FIG. 10A One embodiment of the antifogging article of the present invention is shown in FIG.
  • This antifogging article 10A has a configuration in which the following ultraviolet absorbing layer 2, water-absorbing underlayer 3 and water-absorbing layer 4 are laminated on one main surface of the transparent substrate 1 in this order.
  • UV absorber layer 2 UV absorber (a) containing at least one selected from benzophenone compounds, triazine compounds, and benzotriazole compounds, and a binder component (b) mainly composed of silicon oxide matrix raw material components
  • a layer formed by using a composition for forming an ultraviolet absorbing layer comprising: a liquid medium (c); a water-absorbing underlayer 3; a material mainly composed of a second cured resin and having a smaller saturated water absorption than the following water-absorbing materials
  • a layer made of water-absorbing layer 4 a layer made of a water-absorbing material having a saturated water absorption amount of 50 mg / cm 3 or more mainly composed of the first cured resin
  • the anti-fogging property is excellent when the water-absorbing layer is composed of a water-absorbing material of 50 mg / cm 3 or more. Furthermore, the water absorption layer and the water absorption base layer have a saturated water absorption amount smaller than that of the water absorption material constituting the water absorption layer. It is possible to ensure adhesion with a layer located on the substrate side.
  • the water absorption of a water absorption layer and a water absorption base layer can be evaluated by using the water absorption antifogging property described later as an index together with the saturated water absorption amount of the constituent material of each layer.
  • base material the material constituting the water-absorbing base layer
  • an ultraviolet absorbing layer is further provided between the water-absorbing underlayer and the transparent substrate, so that peeling due to ultraviolet irradiation of the water-absorbing layer and the water-absorbing underlayer can be suppressed. That is, even when the antifogging article of the present invention is used in a state where it is exposed to light containing ultraviolet rays for a long time, it is possible to maintain excellent antifogging properties.
  • the antifogging article of the present invention has excellent weather resistance.
  • the weather resistance of the antifogging article exhibits a particularly great effect with respect to ultraviolet irradiation from the substrate side.
  • it has ultraviolet shielding property by having the said ultraviolet absorption layer.
  • the water-absorbing underlayer is also simply referred to as an underlayer.
  • a film having a configuration in which an ultraviolet absorbing layer, a water-absorbing underlayer, and a water-absorbing layer are arranged in this order on a substrate is called an anti-fogging film.
  • the antifogging film in the antifogging article of the present invention is formed on at least a part of the surface of the substrate.
  • the surface on which the antifogging film is formed is appropriately selected according to the application.
  • the antifogging article 10A shown in FIG. 1 is formed on either one of the main surfaces of the transparent substrate, but is not limited thereto.
  • the antifogging film further comprises an adhesion layer mainly composed of a silicon oxide matrix not containing the ultraviolet absorbent (a), between the ultraviolet absorbing layer and the water absorbing base layer. Also good.
  • FIG. 2 shows an embodiment of the antifogging article of the present invention having an adhesion layer.
  • the antifogging article 10B has a configuration in which the ultraviolet absorbing layer 2, the adhesion layer 5, the water absorbing base layer 3 and the water absorbing layer 4 are laminated in this order on one main surface of the transparent substrate 1.
  • the transparent substrate used in the antifogging article of the present invention is not particularly limited as long as it is a transparent substrate made of a material that is generally required to impart antifogging properties.
  • Preferable examples include a transparent substrate made of glass, plastic or the like, and more preferable examples include a transparent substrate made of glass.
  • the glass examples include ordinary soda lime glass, aluminosilicate glass, borosilicate glass, alkali-free glass, and quartz glass. Among these, soda lime glass is particularly preferable.
  • the plastic examples include acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as polyphenylene carbonate, and aromatic polyester resins such as polyethylene terephthalate (PET). Among these, polyethylene terephthalate (PET) ) And polyphenylene carbonate are preferred.
  • PET polyethylene terephthalate
  • a transparent substrate made of soda lime glass is particularly preferable in the present invention. In this specification, the transparent substrate is also simply referred to as a substrate.
  • the shape of the substrate may be a flat plate, or the entire surface or a part thereof may have a curvature.
  • the thickness of the substrate can be appropriately selected depending on the use of the antifogging article, but is generally preferably 1 to 10 mm.
  • the visible light transmittance of the transparent substrate is preferably 70% or more, more preferably 74% or more, as the visible light transmittance measured according to JIS R3212 (1998).
  • the ultraviolet absorbing layer of the antifogging article of the present invention is a layer provided between the substrate and the underlying layer described below.
  • the ultraviolet absorbing layer is usually provided so as to be in contact with the antifogging film forming surface of the substrate.
  • the ultraviolet absorbing layer includes an ultraviolet absorber (a) containing at least one selected from a benzophenone compound, a triazine compound, and a benzotriazole compound, and a binder component (b) mainly composed of a silicon oxide matrix material component. And a liquid medium (c), and a layer formed using a composition for forming an ultraviolet absorbing layer.
  • an ultraviolet absorber (a) containing at least one selected from a benzophenone compound, a triazine compound, and a benzotriazole compound, and a binder component (b) mainly composed of a silicon oxide matrix material component.
  • a liquid medium (c) a layer formed using a composition for forming an ultraviolet absorbing layer.
  • each of the above components may be indicated only by a symbol, for example, the ultraviolet absorber (a) may be indicated as the component (a).
  • the ultraviolet absorbing layer is formed by applying the composition for forming an ultraviolet absorbing layer on the surface on which the ultraviolet absorbing layer is formed and drying, thereby removing the liquid medium (c) and curing the binder component (b).
  • the ultraviolet absorber (a) dispersed in the entire layer, having excellent ultraviolet shielding ability and excellent adhesion to the surface to be formed, particularly glass.
  • the antifogging film has excellent weather resistance, particularly light resistance, by having an ultraviolet absorbing layer.
  • composition for forming an ultraviolet absorbing layer contains the components (a) to (c) as essential components.
  • the composition for forming an ultraviolet absorbing layer may optionally contain an infrared absorber (d) containing one or more selected from tin-doped indium oxide, antimony-doped tin oxide, and composite tungsten oxide.
  • d infrared absorber
  • the ultraviolet absorber (a) contains one or more selected from benzophenone compounds, triazine compounds, and benzotriazole compounds.
  • benzotriazole-based compound specifically, 2- [5-chloro (2H) -benzotriazol-2-yl] -4-methyl-6- (tert-butyl) phenol (as a commercial product, TINUVIN 326 (Trade name, manufactured by Ciba Japan), etc.), octyl-3- [3-tert-4-hydroxy-5- [5-chloro-2H-benzotriazol-2-yl] propionate, 2- (2H-benzo Triazol-2-yl) -4,6-di-tert-pentylphenol, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6) -Tetrahydrophthalimido-methyl) -5-methylphenyl] benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) ) Benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) -2H-
  • triazine compound examples include 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl). ) -1,3,5-triazine, 2- [4-[(2-hydroxy-3- (2′-ethyl) hexyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4- Dimethylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-4-butoxyphenyl) -6- (2,4-bis-butoxyphenyl) -1,3,5-triazine, 2 -(2-Hydroxy-4- [1-octylcarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine, TINUVIN477 (trade name, Ciba Japan Ltd.) Ltd.) and the like
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2 ′, 3 (or any of 4, 5, 6) -trihydroxybenzophenone, 2,2 ′, 4,4′-.
  • examples thereof include tetrahydroxybenzophenone, 2,4-dihydroxy-2 ′, 4′-dimethoxybenzophenone, and 2-hydroxy-4-n-octoxybenzophenone.
  • 2,2 ', 4,4'-tetrahydroxybenzophenone is preferably used.
  • the ultraviolet absorber (a) one of these compounds can be used alone, or two or more can be used in combination.
  • a hydroxyl group-containing benzophenone compound is preferably used among the compounds exemplified above because of its high solubility in a solvent and an absorption wavelength band in a desirable range.
  • ultraviolet absorbing materials other than these are combined with one or more selected from the above-mentioned benzophenone compounds, triazine compounds, and benzotriazole compounds. You may use as an agent (a).
  • the ultraviolet absorber (a) a compound that is soluble in the liquid medium (c) is preferable.
  • the ultraviolet absorber (a) is dispersed as fine particles in a dispersion medium to obtain a dispersion liquid. It is preferable to include the dispersion in the liquid composition.
  • the dispersion in which the fine particles of the ultraviolet absorbent (a) are dispersed is a dispersion obtained by dispersing using a dispersant. Preferably there is.
  • the dispersion medium in the dispersion liquid of ultraviolet absorber (a) fine particles constitutes a part of the liquid medium (c) contained in the composition in the resulting composition, the liquid medium (c) described later It is preferable to use a compound having the same or compatibility as the dispersion medium.
  • the content of the ultraviolet absorber (a) in the composition for forming an ultraviolet absorbing layer is such that the obtained ultraviolet absorbing layer has sufficient ultraviolet absorbing ability and ensures the mechanical strength in the binder component (b ) It is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, and particularly preferably 8 to 30% by mass with respect to 100% by mass.
  • a ultraviolet absorber (a) is comprised as follows as needed. It is also possible. That is, when the binder component (b) described later has a reactive group and a layer is formed by these reactions, a functional group having reactivity with the reactive group is introduced into the ultraviolet absorber (a). May be used.
  • the compound used for this introduction is regarded as a part of the binder component (b) when calculating the content of the ultraviolet absorbent (a) in the composition for forming an ultraviolet absorbing layer.
  • the benzophenone compound, triazine compound, and benzotriazole compound as exemplified above are used.
  • Ultraviolet rays having at least one selected from the above-mentioned compounds containing a silyl group having a hydrolyzable group, each obtained by introducing a silyl group having a hydrolyzable group by an appropriate method, as an ultraviolet absorber (a) It can contain in the composition for absorption layer formation.
  • the ultraviolet absorber which consists of the said compound containing the silyl group which has a hydrolysable group is hereafter called a silylated ultraviolet absorber,
  • a silylated ultraviolet absorber for example, what is described in international publication 2010/131744 can be used.
  • hydrolyzable silicon compounds containing a group reactive with a hydroxyl group used in a reaction for silylating a hydroxyl group-containing benzophenone compound particularly hydrolyzable silicon compounds containing an epoxy group include non-hydrolyzed epoxy groups. Examples thereof include trifunctional or bifunctional hydrolyzable silicon compounds in which a degradable monovalent organic group is bonded to a silicon atom.
  • the above-mentioned epoxy group-containing hydrolyzable silicon compound is particularly preferably 3-glycidoxypropyltrimethyl from the viewpoint of increasing the solubility in the composition for forming an ultraviolet absorbing layer.
  • Methoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane and the like are used.
  • the epoxy group-containing hydrolyzable silicon compound can be used alone or as a mixture of two or more.
  • a method for obtaining a reaction product of a hydroxyl group-containing benzophenone compound and an epoxy group-containing hydrolyzable silicon compound a method related to a normal silylation reaction is not particularly limited and can be applied.
  • the silylated benzophenone compound preferably used in the present invention is obtained by reacting 1 to 2 hydroxyl groups of a benzophenone compound containing 3 or more hydroxyl groups with an epoxy group of an epoxy group-containing hydrolyzable silicon compound. More preferably, 4- (2-hydroxy-3- (3-trimethoxysilyl) propoxy) propoxy) -2,2 ′, 4′- represented by the following formula (B) is preferable. And trihydroxybenzophenone.
  • Me represents a methyl group.
  • the binder (b) component is mainly composed of a silicon oxide matrix raw material component and contains the silylated benzophenone compound as the ultraviolet absorber (a), the silylated benzophenone.
  • the content of the base compound may be adjusted so that the amount of the hydroxyl group-containing benzophenone compound residue in the silylated benzophenone compound becomes the content of the UV absorber in the UV absorbing layer forming composition shown above. . Further, the portion other than the hydroxyl group-containing benzophenone compound residue of the silylated benzophenone compound is treated as a silicon oxide matrix material component in the binder (b) component.
  • the binder component (b) contained in the composition for forming an ultraviolet absorbing layer is a raw material component for forming a layer mainly composed of a silicon oxide matrix raw material component.
  • the binder component (b) is mainly composed of the silicon oxide matrix raw material component means that the ratio of the silicon oxide matrix raw material component to the total amount of the binder component (b) is 50% by mass or more.
  • the component (Y) or the material (Y) mainly or mainly containing a certain component (x) refers to the entire component (Y) or the material ( Y) The component (Y) or material (Y) whose content rate with respect to the whole is 50 mass% or more.
  • a binder component (b) used in the present invention a binder component (b) mainly comprising a silicon oxide matrix raw material component that forms a silicon oxide matrix film by a sol-gel method is preferably used.
  • the “silicon oxide matrix” by the sol-gel method is represented by —Si—O—Si— obtained by hydrolytic (co) condensation of hydrolyzable silicon compounds.
  • This is a polymer compound linearly or three-dimensionally polymerized by a siloxane bond. That is, the raw material component of the silicon oxide matrix is at least one selected from hydrolyzable silicon compounds.
  • hydrolyzable silicon compounds undergo hydrolysis (co) condensation, water, an acid catalyst, etc. are required.
  • the raw material component of the matrix and the binder component (b) are treated as separate components.
  • hydrolyzable silicon compounds means a silane compound group in which at least one hydrolyzable group is bonded to a silicon atom, and one or more kinds of such silane compound groups. Used as a general term for partially hydrolyzed (co) condensates.
  • the number of functionalities such as tetrafunctionality, trifunctionality, and bifunctionality of the hydrolyzable silicon compound refers to the number of hydrolyzable groups bonded to the silicon atom in the compounds of the silane compound group.
  • the partially hydrolyzed (co) condensate may be a compound having a hydrolyzable group and a silanol group (hydroxyl group bonded to a silicon atom), or a compound having only a silanol group.
  • a partial hydrolysis (co) condensate is used generically for a partial hydrolysis condensate and a partial hydrolysis cocondensate, if necessary.
  • hydrolyzable silicon compounds as the binder component (b) contained in the composition for forming an ultraviolet absorbing layer, at least a part thereof is partially hydrolyzed rather than only a compound of the silane compound group (for example, tetraalkoxysilane).
  • a decomposition (co) condensation product is preferable in terms of stability and uniform reactivity of hydrolyzable silicon compounds in the composition for forming an ultraviolet absorbing layer.
  • a partially hydrolyzed (co) condensate is used as a raw material for the composition for forming an ultraviolet absorbing layer, or when the composition for forming an ultraviolet absorbing layer is produced using a compound of the silane compound group as a raw material, It is preferable that at least a part is partially hydrolyzed (co) condensed.
  • a condensation treatment specifically, for example, a treatment for stirring for a predetermined time at room temperature or under heating
  • the raw material component of the silicon oxide matrix preferably contains at least one tetrafunctional hydrolyzable silicon compound (or a partially hydrolyzed (co) condensate thereof).
  • the composition for ultraviolet-ray absorption layer formation contains the flexibility provision component mentioned later as a binder component (b) further.
  • the silicon oxide-based matrix raw material component includes at least one of a tetrafunctional hydrolyzable silicon compound and a trifunctional hydrolyzable silicon compound (or a partially hydrolyzed condensate of each of them and a partially hydrolyzed co-polymer). It is also preferred that it contains a condensate).
  • the hydrolyzable group possessed by the hydrolyzable silicon compound is preferably an organooxy group such as an alkoxy group, an alkenyloxy group, an acyloxy group, an iminoxy group, an aminoxy group, and particularly preferably an alkoxy group.
  • an alkoxy group having 4 or less carbon atoms and an alkoxy-substituted alkoxy group having 4 or less carbon atoms are preferable, and a methoxy group and an ethoxy group are particularly preferable.
  • the tetrafunctional hydrolyzable silicon compound is a compound in which four hydrolyzable groups are bonded to a silicon atom. Four of the hydrolyzable groups may be the same as or different from each other.
  • the hydrolyzable group is preferably an alkoxy group, more preferably an alkoxy group having 4 or less carbon atoms, and still more preferably a methoxy group and an ethoxy group. Specific examples include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, and tetra-tert-butoxysilane. In the present invention, tetraethoxysilane is preferable. Silane, tetramethoxysilane, etc. are used. These may be used alone or in combination of two or more.
  • the trifunctional hydrolyzable silicon compound is a compound in which three hydrolyzable groups and one non-hydrolyzable group are bonded to a silicon atom. Three of the hydrolyzable groups may be the same as or different from each other.
  • the hydrolyzable group is preferably an alkoxy group, more preferably an alkoxy group having 4 or less carbon atoms, and still more preferably a methoxy group and an ethoxy group.
  • the non-hydrolyzable group is preferably a monovalent organic group having a non-hydrolyzable functional group or no functional group, and preferably a non-hydrolyzable monovalent organic group having a functional group. More preferred.
  • the non-hydrolyzable monovalent organic group refers to an organic group in which the organic group and a silicon atom are bonded by a carbon-silicon bond, and a bond terminal atom is a carbon atom.
  • the functional group used in the present specification is a term that comprehensively indicates a reactive group that is distinguished from a simple substituent.
  • the non-hydrolyzable monovalent organic group having no functional group does not have an addition polymerizable unsaturated double bond such as an alkyl group or an aryl group.
  • a halogenated hydrocarbon group having no addition polymerizable unsaturated double bond such as a hydrocarbon group or a halogenated alkyl group is preferred.
  • the number of carbon atoms of the non-hydrolyzable monovalent organic group having no functional group is preferably 20 or less, and more preferably 10 or less.
  • an alkyl group having 4 or less carbon atoms is preferable.
  • a monovalent organic group having one functional group is preferable except for a primary or secondary amino group.
  • a primary or secondary amino group it may have two or more amino groups, in which case a monovalent organic group having one primary amino group and one secondary amino group
  • N- (2-aminoethyl) -3-aminopropyl group and 3-ureidopropyl group are preferable.
  • the total carbon number of the monovalent organic group having these functional groups is preferably 20 or less, and more preferably 10 or less.
  • trifunctional hydrolyzable silicon compound having a non-hydrolyzable monovalent organic group having a functional group include the following compounds.
  • alkyl group having 2 or 3 carbon atoms glycidoxy group, 3,4-epoxycyclohexyl group, amino group, alkylamino group (the alkyl group has 4 or less carbon atoms), phenylamino group, N- (aminoalkyl)
  • One monovalent organic group having an amino group (the alkyl group has 4 or less carbon atoms) and a (meth) acryloxy group and three alkoxy groups having 4 or less carbon atoms are silicon atoms.
  • a bonded trifunctional hydrolyzable silicon compound is bonded trifunctional hydrolyzable silicon compound.
  • the silicon oxide matrix raw material component may contain a bifunctional hydrolyzable silicon compound as necessary.
  • the bifunctional hydrolyzable silicon compound is a compound in which two hydrolyzable groups and two non-hydrolyzable groups are bonded to a silicon atom. Two of the hydrolyzable groups may be the same as or different from each other.
  • the tetrafunctional hydrolyzable silicon compound, the trifunctional hydrolyzable silicon compound, and the bifunctional hydrolyzable silicon compound are themselves used in the composition for forming an ultraviolet absorbing layer. It may be contained, it may be contained as each partial hydrolysis condensate, and it may be contained as these 2 or more types of partial hydrolysis cocondensates.
  • the partial hydrolysis (co) condensation of the hydrolyzable silicon compound is performed, for example, by subjecting a reaction solution in which water is added to a lower alcohol solution of the hydrolyzable silicon compound in the presence of an acid catalyst to 1 to 48 at 10 to 70 ° C. This can be done by stirring for a period of time.
  • the acid catalyst used in the reaction include inorganic acids such as nitric acid, hydrochloric acid, sulfuric acid, and phosphoric acid, formic acid, acetic acid, propionic acid, glycolic acid, oxalic acid, malonic acid, succinic acid, maleic acid, and phthalic acid.
  • examples thereof include carboxylic acids such as acid, citric acid and malic acid, and sulfonic acids such as methanesulfonic acid.
  • the amount of acid to be added can be set without particular limitation as long as it can function as a catalyst. Specifically, the amount of acid added is 0.001 to 3.0 mol as the amount of the reaction solution containing the hydrolyzable silicon compound. An amount of about / L can be mentioned.
  • the partially hydrolyzed (co) condensate is an oligomer (multimer) produced by hydrolyzing and then dehydrating and condensing a hydrolyzable silicon compound.
  • the partially hydrolyzed (co) condensate is a high molecular weight compound that is usually soluble in a solvent.
  • the tetrafunctional hydrolyzable silicon compound, the trifunctional hydrolyzable silicon compound, and the bifunctional hydrolyzable silicon compound may be included in the composition for forming an ultraviolet absorbing layer in any of the above states. In particular, they are distinguished as units constituting the silicon oxide matrix.
  • the binder component (b) for example, with respect to the tetrafunctional hydrolyzable silicon compound, itself and a partial hydrolysis condensate thereof, and a component derived from the hydrolyzable silicon compound in the partial hydrolysis cocondensate Are collectively referred to as a component derived from a tetrafunctional hydrolyzable silicon compound.
  • the hydrolyzable silicon compounds in the silicon oxide-based matrix raw material component are preferably composed of only (1) a tetrafunctional hydrolyzable silicon compound-derived component as described above, or (2) a tetrafunctional hydrolysis. Composed of a functional silicon compound-derived component and a trifunctional hydrolyzable silicon compound-derived component.
  • the composition for forming an ultraviolet absorbing layer can be used as the binder component (b) particularly in order to obtain sufficient crack resistance while ensuring a certain thickness for the obtained ultraviolet absorbing layer. It is preferable to further contain a flexibility imparting component.
  • the content ratio of the component derived from the tetrafunctional hydrolyzable silicon compound and the component derived from the trifunctional hydrolyzable silicon compound is the component derived from the tetrafunctional hydrolyzable silicon compound / trifunctional hydrolysis.
  • the mass ratio is preferably 30/70 to 95/5, more preferably 40/60 to 90/10, and particularly preferably 50/50 to 85/15.
  • the above-mentioned bifunctional hydrolyzable silicon compound-derived component is optionally used in (1) and (2) as necessary.
  • the content is preferably 30% by mass or less based on the total mass of the hydrolyzable silicon compounds.
  • the binder component (b) when the binder component (b) is mainly composed of a silicon oxide matrix raw material component, the hydrolyzable silicon compounds contained therein are hydrolyzed (co) condensed and dried. An ultraviolet absorbing layer is formed. This reaction is usually carried out in the presence of an acid catalyst and water, similarly to the partial hydrolysis (co) condensation of the hydrolyzable silicon compound. Therefore, the composition for forming an ultraviolet absorbing layer contains an acid catalyst and water. The kind and content of the acid catalyst used can be the same as in the case of the partial hydrolysis (co) condensation.
  • the binder component (b) is mainly composed of a silicon oxide matrix raw material component, as described above, as a part of the binder component (b) component, a flexibility imparting component that imparts flexibility to the silicon oxide matrix.
  • a flexibility imparting component that imparts flexibility to the silicon oxide matrix.
  • it can contribute to prevention of cracks in the ultraviolet absorbing layer obtained from the composition for forming an ultraviolet absorbing layer.
  • the composition of the flexibility-imparting component is effective regardless of the structure of the silicon oxide matrix raw material component, but the silicon oxide system composed only of the tetrafunctional hydrolyzable silicon compound is particularly effective.
  • the matrix may not be sufficiently flexible, and if the composition for forming an ultraviolet absorbing layer contains a tetrafunctional hydrolyzable silicon compound and a flexibility-imparting component, both the mechanical strength and crack resistance can be obtained. An excellent ultraviolet absorbing layer can be easily produced.
  • the flexibility-imparting component examples include silicone resins, acrylic resins, polyester resins, polyurethane resins, hydrophilic organic resins containing polyoxyalkylene groups, various organic resins such as epoxy resins, and organic compounds such as glycerin. it can.
  • polyepoxide is a general term for compounds having a plurality of epoxy groups. That is, the average number of epoxy groups of the polyepoxide is 2 or more, but in the present invention, a polyepoxide having an average number of epoxy groups of 2 to 10 is preferred.
  • Such polyepoxides are preferably polyglycidyl compounds such as polyglycidyl ether compounds, polyglycidyl ester compounds, and polyglycidyl amine compounds.
  • the polyepoxide may be either an aliphatic polyepoxide or an aromatic polyepoxide, and is preferably an aliphatic polyepoxide.
  • polyglycidyl ether compounds are preferred, and aliphatic polyglycidyl ether compounds are particularly preferred.
  • a glycidyl ether of a bifunctional or higher alcohol is preferable, and a glycidyl ether of a trifunctional or higher alcohol is particularly preferable from the viewpoint of improving light resistance.
  • These alcohols are preferably aliphatic alcohols, alicyclic alcohols, or sugar alcohols.
  • polyglycidyl ethers of aliphatic polyols having three or more hydroxyl groups such as glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, and sorbitol polyglycidyl ether (one molecule)
  • the average number of glycidyl groups (epoxy groups) per unit is more than 2. These may be used alone or in combination of two or more.
  • the content of the flexibility-imparting component in the composition for forming an ultraviolet absorption layer is an amount that can impart flexibility to the resulting ultraviolet absorption layer and improve crack resistance without impairing the effects of the present invention.
  • an amount of 0.1 to 20% by mass is preferable with respect to 100% by mass of the silicon oxide matrix raw material component, and an amount of 1.0 to 20% by mass is more preferable.
  • the content of the binder component (b) is preferably 3 to 30% by mass and more preferably 5 to 20% by mass with respect to the total solid content in the composition.
  • the total solid content in the present specification means an ultraviolet absorbing layer forming component among components contained in the ultraviolet absorbing layer forming composition, such as heating in the process of forming an ultraviolet absorbing layer such as a liquid medium (c), etc. Indicates all components other than the volatile components that volatilize.
  • the content of the silicon oxide matrix raw material component in the composition for forming an ultraviolet absorbing layer is such that the silicon atoms contained in the silicon oxide matrix raw material component are converted to SiO 2 with respect to the total amount of the composition.
  • the content is preferably 1 to 20% by mass, more preferably 3 to 15% by mass.
  • the composition for forming an ultraviolet absorbing layer comprises the above-described ultraviolet absorber (a) and binder component (b), which are essential components, in a predetermined amount, and an infrared absorber (d) and various additions which are preferably contained as described below.
  • the agent or the like is prepared in an arbitrary amount and dissolved and dispersed in the liquid medium (c). It is necessary that the total solid content in the composition for forming an ultraviolet absorbing layer is stably dissolved and dispersed in the liquid medium (c).
  • the liquid medium (c) includes a solvent that dissolves the essential components of the ultraviolet absorber (a) and the binder component (b), and a dispersion medium that disperses solid fine particles such as an infrared absorber (d) that is optionally contained. It means a compound that is liquid at room temperature with a relatively low boiling point.
  • the liquid medium (c) is composed of an organic compound such as alcohol or an inorganic compound such as water, and may be a mixture of two or more. Further, the dispersion medium and the solvent may be the same liquid medium or different liquid media. When the dispersion medium and the solvent are different, the liquid medium (c) in the composition for forming an ultraviolet absorbing layer is a mixture of the dispersion medium and the solvent. In this case, the dispersion medium and the solvent are a combination having compatibility so that the mixture becomes a uniform mixture.
  • an ultraviolet absorber (a), a binder component (b), and an infrared absorber (d) are provided in the form of a solution or dispersion
  • the solvent or dispersion By using it as it is without removing the medium, it may be part of the liquid medium (c) of the composition for forming an ultraviolet absorbing layer.
  • the content of water in the composition for forming an ultraviolet absorbing layer is calculated as an amount including water brought together with various components in addition to the amount added alone as water.
  • the amount of water contained in the composition for forming an ultraviolet absorbing layer is not particularly limited as long as it is an amount sufficient to hydrolyze (co) condensate the hydrolyzable silicon compound contained. Specifically, the amount is preferably 1 to 20 equivalents, more preferably 4 to 18 equivalents, with respect to the SiO 2 equivalent of the hydrolyzable silicon compound contained.
  • the amount of water is less than 1 equivalent in the above molar ratio, hydrolysis does not easily proceed, and depending on the substrate, the liquid composition may be repelled or the haze may be increased. If it exceeds, the hydrolysis rate will be high and long-term storage may not be sufficient.
  • the liquid medium (c) contains at least 20% by mass of alcohol, preferably 50% by mass or more.
  • the alcohol used in such a liquid medium (c) include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, 2-Ethoxyethanol, 4-methyl-2-pentanol, 2-butoxyethanol, and the like are preferable.
  • the solubility of the silicon oxide matrix raw material component is good, and the coating property to the substrate is good.
  • the alcohol having a boiling point of 80 to 160 ° C. is preferable.
  • ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, 2-ethoxyethanol, 4-methyl-2- Pentanol and 2-butoxyethanol are preferred.
  • the liquid medium (c) used in the composition for forming an ultraviolet absorbing layer may be a solvent or by-product used in the process of producing the binder component (b), for example, partial hydrolysis (co-decomposition) of a hydrolyzable silicon compound.
  • a condensate When a condensate is included, lower alcohol generated as a result of hydrolysis of the raw material hydrolyzable silicon compound (for example, a silane compound group having an alkoxy group) or alcohol used as a solvent in the production process Etc. may be included as they are.
  • a liquid medium (c) other than the above a liquid medium (c) other than alcohol that can be mixed with water / alcohol may be used in combination.
  • the amount of the liquid medium (c) contained in the ultraviolet absorbing layer forming composition is preferably such that the total solid content in the ultraviolet absorbing layer forming composition is 3.5 to 50% by mass, and 9 to 30% by mass. % Is more preferred. Workability
  • the composition for forming an ultraviolet absorbing layer includes an infrared absorber (d) containing at least one selected from tin-doped indium oxide, antimony-doped tin oxide, and composite tungsten oxide as an optional component. It is preferable to contain. However, in this case, the infrared absorbent (d) may develop a yellow color by chelating with the ultraviolet absorbent (a). Therefore, the dispersing agent (e) and the chelating agent (f) capable of forming a complex with the infrared absorbing agent (d) are further added to the composition for forming the ultraviolet absorbing layer, so that the dispersibility of the infrared absorbing agent (d) is increased. While securing, it is preferable to further suppress the chelate bond between the infrared absorbent (d) and the ultraviolet absorbent (a).
  • an infrared absorber (d) containing at least one selected from tin-doped indium oxide, antimony-doped tin oxide, and
  • the infrared absorber (d) contains one or more selected from composite tungsten oxide, antimony-doped tin oxide (ATO), and tin-doped indium oxide (ITO). These infrared absorbers (d) are usually used in the form of fine particles.
  • the composite tungsten oxide a general formula: M x W y O z (wherein M element is Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn) 1 or more elements selected from the following: W is tungsten; O is oxygen; 0.001 ⁇ x / y ⁇ 1.0; 2.2 ⁇ z / y ⁇ 3.0) Can be mentioned.
  • the composite tungsten oxide represented by the above general formula functions effectively as an infrared absorber because a sufficient amount of free electrons are generated.
  • the surface of the composite tungsten oxide fine particles is preferably coated with a metal oxide selected from Si, Ti, Zr, Al and the like from the viewpoint of improving weather resistance.
  • a metal oxide selected from Si, Ti, Zr, Al and the like from the viewpoint of improving weather resistance.
  • the coating method is not particularly limited, it is possible to coat the surface of the composite tungsten oxide fine particles by adding the metal alkoxide to the solution in which the composite tungsten oxide fine particles are dispersed.
  • the composite tungsten oxide fine particles, ATO fine particles, and ITO fine particles may be used alone as an infrared absorber (d), or two or more kinds may be mixed and used.
  • ITO fine particles are preferably used from the viewpoint of transmittance loss and environmental safety.
  • at least one selected from the above-described composite tungsten oxide fine particles, ATO fine particles, and ITO fine particles may be used as an infrared absorbent (d) in combination with other infrared-absorbing fine particles.
  • the average primary particle diameter in the fine particles of the infrared absorber (d) is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less.
  • the average primary particle diameter is 100 nm or less, the tendency of aggregation of the fine particles does not increase in the composition for forming an ultraviolet absorption layer containing the average particle size, and the precipitation of the fine particles can be avoided.
  • the ultraviolet absorbing layer is formed from the composition for forming an ultraviolet absorbing layer, generation of cloudiness due to scattering (increase in haze) can be suppressed, and the above particle diameter can be set in terms of maintaining transparency. preferable.
  • the lower limit of the average primary particle size is not particularly limited, but infrared absorbent (d) fine particles of about 2 nm that can be produced by the current technology can also be used.
  • the average primary particle diameter of the fine particles refers to that measured from an observation image with a transmission electron microscope.
  • the content of the infrared absorbent (d) in the composition for forming an ultraviolet absorbing layer is such that the obtained ultraviolet absorbing layer has sufficient infrared absorbing ability and ensures the mechanical strength of the binder component (b ) It is preferably 1 to 80 parts by mass, more preferably 5 to 60 parts by mass, and particularly preferably 5 to 40 parts by mass with respect to 100 parts by mass.
  • the maximum absorption wavelength of light in the ultraviolet absorbing organic compound contained in the ultraviolet absorber (a) is in the range of 325 to 425 nm, and is generally in the range of 325 to 390 nm.
  • the ultraviolet absorptive organic compound which has an absorptivity with respect to the ultraviolet of a comparatively long wavelength is preferably used from the characteristic, these compounds have the said infrared absorber ( It is considered that the inorganic fine particles constituting d) are chelate-bonded with each other and easily develop a yellow color.
  • the composition for forming an ultraviolet absorbing layer contains the dispersant (e) and the chelating agent (f), thereby suppressing the chelate bond and preventing yellow color development while maintaining the ultraviolet absorbing ability. Is possible.
  • the dispersion medium in the dispersion liquid of the infrared absorbent (d) fine particles constitutes a part of the liquid medium (c) contained in the composition in the obtained composition for forming an ultraviolet absorption layer. Therefore, it is preferable to use a compound similar to or compatible with the liquid medium (c) as a dispersion medium.
  • the dispersant (e) blended in the composition for forming an ultraviolet absorbing layer is preferably a dispersant (e) having a molecular weight of 1,000 to 100,000.
  • the amount is preferably 5 to 15 parts by mass per 100 parts by mass of the infrared absorber (d).
  • the dispersing agent (e) is a dispersion medium (liquid medium) at least in the molecule from the surface that adsorbs the surface of the fine particles constituting the infrared absorbent (d) and the adsorbed portion after adsorbing to the fine particles.
  • (C) which becomes a part of (c) and has a site in which the fine particles are stably dispersed in the composition for forming an ultraviolet absorbing layer due to repulsion of electric charges and steric hindrance of itself.
  • This is a general term for compounds having a function of increasing the dispersion stability of fine particles of the absorbent (d).
  • the dispersant (e) is different from the chelating agent (f) described below in that the chelating agent (f) adsorbs to the fine particles of the infrared absorber (d) but does not have a function of increasing the dispersion stability.
  • the molecular weight of the dispersant (e) is preferably 1,000 to 100,000, more preferably 1,500 to 100,000, and particularly preferably 2,000 to 100,000.
  • the molecular weight of a dispersing agent (e) is a mass mean molecular weight measured by a gel permeation chromatograph (GPC).
  • GPC gel permeation chromatograph
  • the molecular weight refers to a mass average molecular weight (Mw) based on polystyrene by gel permeation chromatography (GPC).
  • the chelating agent (f) capable of forming a complex with the infrared absorber (d) has a molecular weight of 1,000 to 100,000, and the complex formed is substantially free of visible light. Chelating agents (f) that do not exhibit absorption are preferred. The amount is preferably 1 to 13 parts by mass per 100 parts by mass of the infrared absorber (d).
  • substantially exhibits no absorption means, for example, a liquid composition obtained by adding 50 parts by mass of a chelating agent (f) to 100 parts by mass of an infrared absorber (d), and an infrared absorber (d ) Is deposited on the substrate in an amount of 0.7 g / m 2 , and the YI value measured based on JIS K7105 (1981) on the obtained coated substrate, This means that the difference from the measured YI for 2.0 only is 2.0 or less.
  • the chelating agent (f) is a compound that can be coordinated to a plurality of locations on the surface of the fine particles of the infrared absorber (d) with one molecule, and is adsorbed on the fine particles due to the molecular structure. Is a generic term for compounds that have a small steric hindrance and do not have the function of increasing the dispersion stability of the fine particles of the infrared absorber (d).
  • the dispersant (e) extends and disperses in the portion adsorbed on the surface of the fine particles of the infrared absorber (d) and the dispersion medium (which becomes a part of the liquid medium (c)). And an appropriate amount for ensuring the dispersion stability of the fine particles of the infrared absorber (d) in the composition.
  • an appropriate amount of such a dispersant (e) is not necessarily an amount sufficient to sufficiently cover the surface of the fine particles of the infrared absorber (d) and suppress the chelate bond of the ultraviolet absorber (a).
  • the chelating agent (f) is contained in the composition for forming an ultraviolet absorbing layer, the chelating agent (f) and the dispersing agent (e) can be combined to sufficiently cover the surface of the fine particles of the infrared absorbing agent (d).
  • the chelate bond of the ultraviolet absorber (a) to the infrared absorber (d) fine particles can be sufficiently suppressed.
  • the chelating agent (f) used in the present invention is a chelating agent capable of forming a complex with the infrared absorber (d). Further, it is preferable that the complex formed does not substantially absorb light having a visible light wavelength, and the molecular weight is preferably 1,000 to 100,000. The molecular weight is more preferably 1,500 to 100,000, and particularly preferably 2,000 to 100,000.
  • the molecular weight of the chelating agent (f) is in the above range, it is adsorbed and coordinated on the surface of the infrared absorbent (d) fine particles together with the dispersant (e), and the ultraviolet absorbent (d) Even if 1 to 13 parts by mass of a) can be sufficiently suppressed from chelate bonding, specifically 1 to 13 parts by mass with respect to 100 parts by mass of the infrared absorber (d), the chelating agent (f ) Bleeds out from the layer, the adsorption point with respect to molecules decreases, and the hardness of the ultraviolet absorbing layer is hardly lowered.
  • the content of the chelating agent (f) in the composition for forming an ultraviolet absorbing layer is preferably 1 to 13 parts by mass with respect to 100 parts by mass of the infrared absorbing agent (d), and the content of the dispersing agent (e). And may be adjusted as appropriate within the above range.
  • the content of the chelating agent (f) is such that when the chelating agent (f) having the molecular weight is used together with the dispersing agent (e), the fine particles of the infrared absorbing agent (d) in the ultraviolet absorbing layer forming composition are irradiated with ultraviolet rays.
  • the amount is such that bleeding out of the chelating agent (f) does not easily occur from the ultraviolet absorbing layer obtained while sufficiently suppressing the chelating bond of the absorbing agent (a).
  • the chelating agent (f) may be contained in a dispersion liquid containing the fine particles of the infrared absorber (d), the dispersant (e), and a dispersion medium (which becomes a part of the liquid medium (c)).
  • the ultraviolet absorber (a) and the binder component (b) prepared separately from the dispersion are contained in a solution in which the liquid medium (c) is dissolved, so that the infrared absorber (d) and the ultraviolet absorber ( It is preferable from the point which suppresses the chelate bond of a) efficiently.
  • the chelating agent (f) is appropriately selected depending on the type of the liquid medium (c). Since the liquid medium (c) contains water / alcohol as described above, the chelating agent (f) soluble in these polar solvents is preferable.
  • a chelating agent (f) examples include a polymer having one or more selected from maleic acid, acrylic acid and methacrylic acid as a monomer, preferably a polymer having the above molecular weight range. It is done.
  • the polymer may be a homopolymer or a copolymer.
  • polymaleic acid and polyacrylic acid are preferably used. These may be used alone or in combination of two or more.
  • the ultraviolet absorbing layer is formed by applying the ultraviolet absorbing layer forming composition to the surface to be formed, usually the substrate surface, and drying to react and cure the binder component (b) together with other reactive components. Can be obtained.
  • the ultraviolet absorbing layer is configured such that a matrix mainly composed of a silicon oxide matrix includes a non-reactive component.
  • the ultraviolet absorbing layer has an ultraviolet shielding function, and optionally has an infrared absorbing function, is colorless and transparent, has excellent weather resistance, and suppresses the occurrence of bleed out.
  • the thickness of the ultraviolet absorbing layer is preferably 1.0 to 7.0 ⁇ m, more preferably 1.5 to 5.5 ⁇ m.
  • the thickness of the ultraviolet absorption layer is less than 1.0 ⁇ m, the effect of ultraviolet absorption or optionally infrared absorption may be insufficient.
  • cracks may occur when the thickness of the UV absorbing layer exceeds 7.0 ⁇ m.
  • the antifogging article of the present invention has an ultraviolet absorbing layer on the substrate side of the water-absorbing underlayer described below, so that the water-absorbing underlayer and its substrate against light such as sunlight mainly incident from the substrate side.
  • the water-absorbing layer disposed on the opposite side is protected, and the anti-fogging article is excellent in weather resistance.
  • the anti-fogging article is excellent in the ultraviolet shielding effect.
  • the formation method of the ultraviolet absorption layer using the composition for ultraviolet absorption layer formation is demonstrated in the below-mentioned manufacturing method.
  • the underlayer of the antifogging film is a second water-absorbing material having a lower water absorption than the water-absorbing material constituting the water-absorbing layer formed on the underlayer, that is, on the side opposite to the substrate side of the underlayer. It is a layer made of a base material mainly composed of a cured resin.
  • the low water absorption means that the water absorption is low in comparison with the water absorbing material constituting the water absorbing layer.
  • Base material constituting the base layer is preferably saturated water absorption amount is 10 mg / cm 3 or less, more preferably 8 mg / cm 3, particularly preferably 7 mg / cm 3 or less.
  • the saturated water absorption is a physical property value for measuring the water absorption performance of a material, specifically measured by the following method. If the saturated water absorption amount of the base material constituting the base layer is set to the above value, the degree of expansion / contraction is reduced at the adhesion interface between the water absorption layer and the base layer and the layer located on the substrate side, and adhesion is achieved. It becomes easy to secure the sex.
  • the saturated water absorption amount of the base material constituting the base layer is preferably 1 mg / cm 3 or more, preferably 3 mg / cm 3. More preferably, it is cm 3 or more.
  • a value obtained by subtracting the amount of water (II) from the amount of water (I) and dividing the volume by the volume of the material layer is defined as a saturated water absorption amount.
  • the moisture content is measured with a trace moisture meter FM-300 (trade name, manufactured by Kett Science Laboratory) as follows. The measurement sample is heated at 120 ° C., the moisture released from the sample is adsorbed to the molecular sieve in the micro moisture meter, and the mass change of the molecular sieve is measured as the moisture content. The end point of the measurement is the time when the mass change per 25 seconds becomes 0.05 mg or less.
  • the saturated water absorption is an index indicating the water absorption of the base material composing the base layer, but as an index indicating the water absorption of the base layer itself by the base material and the layer thickness constituting the base layer,
  • “water absorption anti-fogging property” defined below is used as necessary.
  • the substrate with the material layer prepared in the same manner as described above was left in an environment of 25 ° C. and 50% RH for 1 hour, and then the surface of the material layer was placed on a 35 ° C. hot water bath. In this case, it is indicated by an anti-fogging time (seconds) until cloudiness is visually recognized.
  • the water absorption antifogging property of the underlayer is preferably 10 seconds or less, more preferably 7 seconds or less, 3 seconds or less is particularly preferable.
  • the water absorption and antifogging property is preferably 1 second or more, and more preferably 2 seconds or more, from the viewpoint of reducing the difference in expansion and contraction between the underlayer and the water absorption layer in the antifogging film. .
  • the thickness of the base layer according to the antifogging article of the present invention is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more. Furthermore, 4 ⁇ m or more is particularly preferable. If the thickness of the underlayer is 2 ⁇ m or more, it is possible to prevent the underlayer from peeling from the base layer side of the underlayer. Further, the thickness of the underlayer is more preferably 3 ⁇ m or more, and particularly preferably 4 ⁇ m or more, because the stress generated at the interface due to the expansion / contraction of the water absorption layer is relaxed.
  • the thickness of the base layer is preferably 8 ⁇ m or less, more preferably 6 ⁇ m or less, from the viewpoint of reducing material costs and improving the yield rate.
  • the peel resistance required for the undercoat layer varies depending on the use, and therefore the design may be appropriately changed in accordance with the required performance.
  • the base material constituting the base layer is a material mainly composed of the second cured resin.
  • the cured resin refers to a cured product obtained by curing a curable raw material component.
  • the raw material component of the curable resin preferably includes at least a curable component and further includes a curing agent.
  • a curing agent although depending on the type of the cured resin, a polyaddition type curing agent, a condensation type curing agent, a catalyst type curing agent or the like is usually used.
  • the second cured resin examples include a second cured epoxy resin, a second urethane resin, and a second crosslinked acrylic resin. These may be used alone or in combination of two or more.
  • the curable component and the curing agent are all referred to as “second ...”.
  • the second cured epoxy resin is obtained, for example, by reaction of a composition containing a second polyepoxide component and a second curing agent.
  • a 2nd urethane resin is obtained by reaction of the composition containing 2nd polyisocyanate and 2nd polyol, for example.
  • the second cross-linked acrylic resin is obtained, for example, by reaction of a composition containing a second cross-linkable (meth) acrylic polymer and a second curing agent for acrylic resin.
  • polyepoxide refers to a compound having two or more epoxy groups in one molecule.
  • Polyepoxide includes low molecular weight compounds, oligomers, and polymers.
  • the polyepoxide component is a curable component composed of at least one polyepoxide.
  • the curing agent for the cured epoxy resin is a compound having two or more reactive groups in one molecule that react with the epoxy group of the polyepoxide, and a polyaddition type curing agent that polyadds to the polyepoxide by reaction, It is used as a term encompassing a condensation type curing agent that polycondenses with a polyepoxide by reaction, and a catalyst type curing agent that catalyzes a polymerization reaction between polyepoxides, such as a Lewis acid.
  • the catalyst-type curing agent includes a thermosetting type and a photo-curing type, and these are collectively referred to as a catalyst-type curing agent.
  • the cured epoxy resin has a structure in which a polyepoxide is cross-linked with a polyaddition type curing agent or the like to form a three-dimensional structure and / or a structure in which the polyepoxides are linearly or three-dimensionally polymerized.
  • the water absorption layer is a layer mainly composed of the first cured epoxy resin
  • the underlayer is a layer mainly composed of the second cured epoxy resin
  • a second polyepoxide component which is a second curable component
  • a second curing agent As the second curing agent, a second polyaddition type curing agent and / or a second catalytic curing agent is preferable.
  • a glycidyl ether-based polyepoxide or glycidyl ester that is usually used as a raw material component of the cured epoxy resin so that the water absorption of the obtained base material is in the above-mentioned preferable range. It is possible to use a polyepoxide appropriately selected from a polyepoxide, a glycidylamine polyepoxide, a cycloaliphatic polyepoxide, and the like.
  • the molecular weight of the polyepoxide used as the second polyepoxide component is not particularly limited, but from the viewpoint of avoiding poor appearance such as insufficient wetting and spreading and unevenness of the coating film when applied onto the substrate as the underlayer-forming composition.
  • a polyepoxide having a molecular weight of about 200 to 2000 is preferred.
  • the number of epoxy groups per molecule of polyepoxide in the second polyepoxide component is not particularly limited as long as it is 2 or more on average, but is preferably 2 to 10, more preferably 2 to 8 2 to 6 are more preferable.
  • the second polyepoxide component may be any of an aliphatic polyepoxide, an alicyclic polyepoxide, and an aromatic polyepoxide.
  • an aromatic polyepoxide by selecting an aromatic polyepoxide, a three-dimensional network structure of a base material to be obtained can be obtained. It is hard and can reduce water absorption by reducing the space.
  • aliphatic / alicyclic an aliphatic or alicyclic (hereinafter referred to as “aliphatic / alicyclic”) polyepoxide, if the number of crosslinking points (branch points of the three-dimensional network structure) is increased, the resulting base material is dense. It becomes a three-dimensional network structure, and it is thought that water absorption becomes low because the space for water retention becomes small.
  • aliphatic / alicyclic polyepoxide used as the second polyepoxide component include aliphatic / alicyclic glycidyl ether-based polyepoxides derived from aliphatic / alicyclic polyols, and aliphatic / alicyclic glycidyl esters.
  • Aliphatic / alicyclic glycidyl ether-based polyepoxides derived from aliphatic / alicyclic polyols are preferred.
  • aliphatic / alicyclic glycidyl ether polyepoxide preferably used in the present invention
  • examples of the aliphatic / alicyclic glycidyl ether polyepoxide preferably used in the present invention include glycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, polyethylene glycol polyglycidyl ether, polyethylene glycol sorbitol.
  • examples include polyglycidyl ether and polysorbitol polyglycidyl ether.
  • An alicyclic polyepoxide is a polyepoxide having an alicyclic hydrocarbon group (such as a 2,3-epoxycyclohexyl group) in which an oxygen atom is bonded between adjacent carbon atoms of the ring.
  • an alicyclic hydrocarbon group such as a 2,3-epoxycyclohexyl group
  • examples thereof include epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethyl) adipate, and the like.
  • the aromatic polyepoxide used as the second polyepoxide component is preferably a polyepoxide having a structure in which a phenolic hydroxyl group is substituted with a glycidyloxy group.
  • bisphenol A diglycidyl ether and bisphenol F diglycidyl ether are preferably used as the second polyepoxide component.
  • the second polyepoxide component in order to increase the number of crosslinking points of the obtained base material and control the water absorption low, for example, the second polyepoxide component is an aliphatic glycidyl ether-based polyepoxide derived from an aliphatic polyol.
  • the epoxy equivalent (gram number of resin containing 1 gram equivalent of epoxy group [g / eq], hereinafter the unit is omitted) is preferably 100 to 200, 150 to 200 It is more preferable that A 2nd polyepoxide component may be comprised from 1 type of these polyepoxides, and may be comprised from 2 or more types.
  • the second cured epoxy resin that mainly constitutes the underlayer is preferably a second cured epoxy resin obtained by reacting the second polyepoxide component with a second polyaddition type curing agent. It is also possible to use a second catalytic curing agent in combination with the second polyaddition curing agent.
  • the second polyaddition type curing agent for example, by selecting a polyaddition type curing agent having an aromatic ring, it is possible to reduce the water absorption of the resulting cured epoxy resin.
  • a second cured epoxy obtained by using a compound having an aromatic ring in at least one of the second polyepoxide component and the second polyaddition type curing agent is used.
  • the water absorption of the base material mainly composed of resin can be within the desired range.
  • polyamines, polycarboxylic acid anhydrides and polythiols having no aromatic ring are preferable, and polyamines having no aromatic ring are particularly preferable.
  • polyamines having no aromatic ring examples include aliphatic polyamine compounds and alicyclic polyamine compounds. Specific examples of these polyamines include ethylenediamine, triethylenediamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, polyoxyalkylenepolyamine, isophoronediamine, mensendiamine, 3,9-bis (3-amino Propyl) -2,4,8,10-tetraoxaspiro (5,5) undecane and the like.
  • examples of the polyaddition type curing agent having an aromatic ring include polyamines having an aromatic ring and aromatic polycarboxylic acid anhydrides.
  • Specific examples of the polyamine having an aromatic ring include phenylenediamine, xylylenediamine, diaminodiphenylmethane, and the like
  • examples of the aromatic polycarboxylic acid anhydride include phthalic anhydride, trimellitic anhydride, pyropropyl anhydride. And merit acid.
  • the second catalytic curing agent used together with the second polyaddition curing agent is a reaction catalyst such as a Lewis acid. Any catalytic curing agent that catalyzes a polymerization reaction between polyepoxides can be used without particular limitation.
  • an effect of accelerating the speed of crosslinking due to the polymerization reaction between the second polyepoxide components and an effect of reducing defects occurring at the crosslinked site can be obtained.
  • An example of a defect in the cross-linked site is the color development of the cured epoxy resin due to the alteration of the cross-linked site due to heat load.
  • the second catalytic curing agent examples include curing catalysts such as tertiary amine compounds, imidazole compounds, Lewis acids, onium salts, dicyandiamide compounds, organic acid dihydrazide compounds, and phosphines. More specifically, 2-methylimidazole, 2-ethyl-4-methylimidazole, tris (dimethylaminomethyl) phenol, boron trifluoride-amine complex, methyl p-toluenesulfonate, diphenyliodonium hexafluorophosphate, tri Examples thereof include phenylsulfonium hexafluorophosphate. As a 2nd catalyst type hardening
  • imidazole compounds such as 2-methylimidazole and 2-ethyl-4-methylimidazole are preferable as the second catalytic curing agent used in the present invention.
  • the mixing ratio of the second polyepoxide component, which is a raw material component of the second cured epoxy resin used in the present invention, and the second curing agent is when the second polyaddition curing agent is used as the second curing agent.
  • the equivalent ratio of the reactive group of the second polyaddition type curing agent to the epoxy group derived from the second polyepoxide component is preferably about 0.8 to 1.5, preferably 1.0 to 1. About 5 is more preferable. If the equivalent ratio of the reactive group of the polyaddition type curing agent to the epoxy group is in the above range, the reaction temperature is raised and the polyaddition reaction is accelerated to crosslink at a sufficient number of crosslinking points at room temperature. A second cured epoxy resin having a low three-dimensional network structure and low water absorption compared to the first cured epoxy resin can be obtained.
  • the equivalent ratio of amine active hydrogen to epoxy group derived from the second polyepoxide component is 0.5 to 1.
  • the ratio is preferably 5 so as to be 5 and more preferably 0.8 to 1.5.
  • the equivalent ratio of amine active hydrogen to epoxy group is in the above range, a dense three-dimensional network structure can be formed by crosslinking at a sufficient number of crosslinking points without increasing the reaction temperature and accelerating the polyaddition reaction.
  • a second cured epoxy resin having a lower water absorption than the first cured epoxy resin is obtained.
  • the amount of the second catalyst-type curing agent used is preferably 1.0 to 20% by mass, more preferably 1 to 10% by mass, and particularly preferably 1 to 5% by mass with respect to 100% by mass of the second polyepoxide component. . If the amount of the second catalyst-type curing agent used relative to 100% by mass of the second polyepoxide component is 1.0% by mass or more, the reaction proceeds sufficiently, and in the resulting base material, moisture resistance, chemical resistance, etc. Sufficient durability can be realized.
  • curing agent with respect to 100 mass% of 2nd polyepoxide components is 20 mass% or less, the residue of a 2nd catalyst type hardening
  • the second cured epoxy resin has been described above, the second urethane resin and the second cross-linked acrylic resin also have a lower water absorption than the water-absorbing material, preferably when used as the base material.
  • the second cured resin is obtained by appropriately selecting and combining the curable component and the curing agent for each resin so that the saturated water absorption is 10 mg / cm 3 or less.
  • the base layer is made of a base material mainly composed of a second curable resin, preferably a second curable epoxy resin, for example, at least a second curable component and a second curable component that are raw material components of the second curable resin. It can form using the composition for base layer formation containing a hardening
  • the reaction using the base layer forming composition for obtaining the base material mainly composed of the second cured resin, preferably the second cured epoxy resin applies the base layer forming composition to the coating surface.
  • the composition contains a solvent
  • the reactive component contained in the underlayer-forming composition is reacted in advance in the composition before being applied to the coating surface, and then applied to the coating surface. You may make it react after apply
  • the curing reaction proceeds reliably if the reaction temperature when the reaction is performed in advance is 30 ° C. or higher. preferable.
  • solvent used in the underlayer forming composition ethanol, acetone, methyl ethyl ketone, or propylene glycol monomethyl ether is preferably used.
  • the amount of the solvent in the composition for forming the underlayer is preferably such that the ratio of the total solid content including the second cured resin raw material and other various blending components to 100% by mass of the solvent is 5 to 50% by mass. More preferred is ⁇ 25% by mass.
  • the second cured epoxy resin when used as the second cured resin, the second polyepoxide component and the second polyaddition type curing agent in the underlayer forming composition are further blended as necessary.
  • the blending amount of the second catalyst type curing agent is preferably 4 to 10% by mass with respect to the total amount of the composition for the second polyepoxide component, and the total amount of the composition for the second polyaddition type curing agent.
  • the content is preferably 0.1 to 4.0% by mass.
  • the total amount is 0.1 to 4.0% by mass with respect to the total amount of the composition. Preferably there is.
  • the coupling agent is a component that is blended for the purpose of improving the adhesion between the underlayer and the layer in contact with the layer, and is one of the components that is preferably blended.
  • an organometallic coupling agent or a polyfunctional organic compound is preferable, and an organometallic coupling agent is particularly preferable.
  • the organometallic coupling agent is a compound having one or more bonds between metal atoms and carbon atoms, and the number of bonds between metal atoms and carbon atoms is preferably one or two.
  • Examples of the organometallic coupling agent include a silane coupling agent (hereinafter referred to as a silane coupling agent), a titanium coupling agent, and an aluminum coupling agent, and a silane coupling agent is preferable.
  • These coupling agents have a reactive group possessed by the raw material component of the second cured resin and a reactive group capable of reacting with the reactive group remaining on the surface of the layer that is in contact with the underlayer, for example, the ultraviolet absorbing layer. Is preferred.
  • it can use also for the objective of adjusting the physical property of a base layer other than the objective of improving the adhesiveness between each layer by having such a reactive group.
  • the compounding amount of the coupling agent in the underlayer-forming composition is not an essential component, so there is no lower limit.
  • the raw material component of the second cured resin in the underlayer forming composition for example, the second polyepoxide component, the second polyaddition type curing agent, and
  • the mass ratio of the coupling agent is preferably 5 to 40% by mass and more preferably 10 to 30% by mass with respect to 100% by mass of the total mass of the second catalytic curing agent.
  • ⁇ Tetraalkoxysilane compound> The tetraalkoxysilane and / or the oligomer thereof (that is, the partially hydrolyzed (co) condensate thereof. These are collectively referred to as a tetraalkoxysilane compound in this specification) optionally contained in the composition for forming the underlayer.
  • the blending reduces the viscosity of the composition for forming the underlayer, and causes the curing reaction between the curable component and the curing agent, which are the raw material components of the second cured resin, preferably the second polyepoxide component and the second curing agent. It is a component that can be uniformly performed and is preferably used.
  • the number of reaction points with the layer in contact with the underlayer increases, and the adhesion is further improved. Thereby, the weather resistance of the base layer obtained can be improved.
  • tetraalkoxysilane examples include tetramethoxysilane, tetraethoxysilane, tetranormalpropoxysilane, and tetranormalbutoxysilane.
  • tetramethoxysilane and tetraethoxysilane are preferable. One of these may be used alone, or two of them may be used in combination.
  • the above tetraalkoxysilane may be blended into the composition for forming the underlayer as an oligomer obtained by partial hydrolysis (co) condensation of about 2 to 3 of the tetraalkoxysilane, or as a mixture of the tetraalkoxysilane and the oligomer. You may mix
  • the total mass of the raw material components of the second cured resin for example, the second cured epoxy resin as the second cured resin
  • the content is preferably 10 to 40% by mass, more preferably 25 to 35% by mass with respect to 100% by mass of the total mass of the second polyepoxide component and the second curing agent.
  • the underlayer-forming composition may further contain a filler as an optional component.
  • a filler By including the filler, the mechanical strength, heat resistance, and bleed-out resistance of the formed underlayer can be increased, and the curing shrinkage of the resin during the curing reaction can be reduced.
  • a filler made of a metal oxide is preferable.
  • the metal oxide include silica, alumina, titania, and zirconia. Among these, silica is preferable. These may be used alone or in combination of two or more.
  • the average primary particle diameter is preferably 300 nm or less, more preferably 100 nm or less, and particularly preferably 50 nm or less.
  • the average primary particle diameter is 300 nm or less, the tendency of aggregation of particles in a composition containing the average particle diameter does not increase, and sedimentation of particles can be avoided.
  • production of the cloudiness (cloudiness value (haze)) by scattering can be suppressed, and it is preferable to set it as the said particle diameter from the point of transparency maintenance.
  • the lower limit of the average primary particle diameter is not particularly limited, but particles of about 2 nm that can be produced by the current technology can also be used.
  • the average primary particle diameter of the particles refers to that measured from an observation image with a transmission electron microscope.
  • the filler content is preferably 0.5 to 25% by mass, more preferably 1 to 20% by mass, based on the total mass of the raw material components of the second cured resin. If the content of the filler with respect to 100% by mass of the raw material component of the second cured resin is 0.5% by mass or more, it is easy to suppress a decrease in the effect of reducing the curing shrinkage in the base material. Moreover, if the content of the filler with respect to 100% by mass of the raw material component of the second cured resin is 25% by mass or less, the space for absorbing water can be appropriately adjusted.
  • the underlayer-forming composition preferably contains an antioxidant as an optional component. If the base material constituting the base layer is oxidized and deteriorated by exposure to heat or light, stress accumulation is likely to occur in the base layer, and the antifogging film is easily peeled off. By adding an antioxidant, such a phenomenon can be suppressed.
  • Antioxidants include phenolic antioxidants that suppress the oxidation of resins by capturing and decomposing peroxy radicals, and phosphorus antioxidants that suppress the oxidation of resins by decomposing peroxides. In the present invention, a phenolic antioxidant is preferably used.
  • the underlayer-forming composition may contain an ultraviolet absorber as an optional component in order to increase the weather resistance of the resulting underlayer, particularly the resistance to ultraviolet rays.
  • an ultraviolet absorber include conventionally known ultraviolet absorbers, specifically, benzophenone compounds, triazine compounds, benzotriazole compounds, and the like.
  • these ultraviolet absorbers can be used alone or in combination of two or more.
  • the solubility in a solvent and the absorption wavelength band are desirable.
  • a UV absorber is preferably used.
  • the content of the ultraviolet absorber in the underlayer-forming composition is such that the underlayer formed using this has a sufficient UV resistance without impairing the effects of the present invention, and is therefore a raw material for the second cured resin. 0.1 to 1.0% by mass is preferable and 0.2 to 0.8% by mass is more preferable with respect to 100% by mass of the components.
  • the underlayer-forming composition may contain an infrared absorber as an optional component so that the obtained underlayer has a heat insulating effect due to infrared shielding.
  • the infrared absorber include an infrared absorber composed of inorganic compound particles and an infrared absorber composed of an organic dye.
  • ITO particles tin-doped indium oxide (ITO) particles, antimony-doped tin oxide (ATO) particles, composite tungsten oxide, lanthanum hexaboride (LaB 6 ), etc. Is preferred.
  • ITO particles are preferably used from the viewpoint of transmittance loss and environmental safety. These may be used alone or in combination of two or more.
  • the content of the infrared absorber in the underlayer-forming composition is the second curing because the underlayer formed using this has a heat insulating effect by sufficient infrared shielding without impairing the effects of the present invention.
  • the amount is preferably 0.1 to 20% by mass, more preferably 0.2 to 15% by mass with respect to 100% by mass of the raw material component of the resin.
  • the underlayer-forming composition may contain a light stabilizer as an optional component in order to give the obtained underlayer light stability.
  • a light stabilizer include hindered amines; nickel complexes such as nickel bis (octylphenyl) sulfide, nickel complex-3,5-di-tert-butyl-4-hydroxybenzyl phosphate monoethylate, nickel dibutyldithiocarbamate, and the like. .
  • these light stabilizers can be used alone or in combination of two or more.
  • the light stabilizer used in the present invention is preferably a hindered amine, and a hindered amine light stabilizer having an amine moiety capped with an alkyl group or an alkoxy group is preferred.
  • the content of the light stabilizer in the composition for forming the underlayer is such that the underlayer formed using the composition has sufficient light stability without impairing the effects of the present invention.
  • the content is preferably 0.1 to 1.0% by mass, more preferably 0.2 to 0.8% by mass with respect to 100% by mass of the raw material components.
  • Additives such as leveling agents, antifoaming agents, viscosity modifiers, etc., contained in the underlayer forming composition as needed, are usually contained in cured resins such as cured epoxy resins, urethane resins, and cross-linked acrylic resins. Each additive can be used without any particular limitation. These may be used alone or in combination of two or more.
  • the content of each additive in the composition for forming a base layer can be 0.001 to 10% by mass with respect to 100% by mass of the raw material component of the second cured resin for each component.
  • the base layer in the antifogging article of the present invention is a layer formed using, for example, the above base layer forming composition.
  • the base layer contains a raw material component of the second curable resin contained in the composition for forming the base layer and another reactive component, the raw material component of the second curable resin and another reactive component react with each other. And it is comprised by the base material obtained by taking in the non-reactive component which this composition contains.
  • the base layer has a water absorption lower than that of the water absorption layer, and also has sufficient adhesion to the layer in contact with the layer and sufficient adhesion to the water absorption layer to prevent peeling. It is a layer with excellent properties.
  • the formation conditions of the base layer using the composition for base layer formation will be described in the manufacturing method described later.
  • the water-absorbing layer constituting the anti-fogging film according to the embodiment of the present invention is a first curing formed on the base layer, that is, on the main surface opposite to the substrate side of the base layer. It is a layer made of a water-absorbing material mainly composed of resin.
  • the water-absorbing material has a saturated water absorption amount of 50 mg / cm 3 or more measured by the method described for the undercoat layer, and has a higher water absorption than the undercoat material constituting the undercoat layer, thereby providing an excellent antifogging film. Has water absorption.
  • the saturated water amount of the water-absorbing material constituting the water-absorbing layer 70 mg / cm 3 or more preferably, 100 mg / cm 3 or more is particularly preferable. From the viewpoint of sufficiently ensuring the antifogging property of the antifogging film, it is preferable to set the saturated water absorption amount of the water absorbing material constituting the water absorbing layer to the above value. On the other hand, from the viewpoint of preventing the durability of the antifogging decreases, the saturated water absorption amount of the water-absorbing material constituting the water-absorbing layer is preferably 900 mg / cm 3 or less, 500 mg / cm 3 or less is more preferable.
  • the water absorption antifogging property of the water absorption layer is 50 seconds. The above is preferable, 70 seconds or more is more preferable, and 100 seconds or more is particularly preferable.
  • the thickness of the water-absorbing layer according to the antifogging article of the present invention is preferably 5 ⁇ m or more. It is more preferable that Thereby, it becomes easy to ensure high water absorption as the whole anti-fogging film.
  • the thickness of the water absorption layer is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and particularly preferably 25 ⁇ m or less.
  • the thickness of the water absorbing layer is preferably 5 times or less the thickness of the underlayer.
  • the thickness of the water absorbing layer is particularly preferably 2 to 5 times the thickness of the underlayer.
  • the water-absorbing material constituting the water-absorbing layer is mainly composed of the first cured resin.
  • the first cured resin is preferably at least one selected from the first cured epoxy resin, the first urethane resin, and the first crosslinked acrylic resin.
  • the water-absorbing material constituting the water-absorbing layer is obtained using a water-absorbing layer forming composition containing the raw material component of the first cured resin as the main component of the solid content. In other words, the water absorbing layer is formed using the water absorbing layer forming composition.
  • the water absorbing material may be composed of only the first cured resin, and may contain components other than the first cured resin as long as the effects of the present invention are not impaired.
  • the water-absorbing layer forming composition contains the raw material component of the first cured resin as a solid component, and optionally contains other solid components.
  • the solid component other than the raw material component of the first cured resin may be a reactive component, for example, a component reactive to the raw material component of the first cured resin, or a non-reactive component.
  • the water absorbing layer forming composition contains a raw material component of the first cured resin.
  • the first cured resin include a first cured epoxy resin, a first urethane resin, a first crosslinked acrylic resin, and the like. These may be used alone or in combination of two or more.
  • the curable component and the curing agent are all referred to as “first ...”.
  • the first cured epoxy resin is obtained, for example, by reaction of a composition containing a first polyepoxide component and a first curing agent.
  • a 1st urethane resin is obtained by reaction of the composition containing 1st polyisocyanate and 1st polyol, for example.
  • the first cross-linked acrylic resin is obtained, for example, by reaction of a composition containing the first cross-linkable (meth) acrylic polymer and the first acrylic resin curing agent.
  • the first cured epoxy resin is preferable.
  • the raw material component of the first cured epoxy resin is preferably a combination of the first polyepoxide component, which is the first curable component, and the first curing agent.
  • the first curing agent it is preferable to use a first polyaddition type curing agent, and it is more preferable to use a combination of the first polyaddition type curing agent and the first catalytic curing agent. That is, the first cured epoxy resin is obtained by reacting the first polyepoxide component and the first polyaddition type curing agent, and the first polyepoxide is cross-linked by the first polyaddition type curing agent to be three-dimensional. A resin having the above structure is preferable. Further, a first cured epoxy resin obtained by reacting the first polyepoxide component with the first polyaddition type curing agent and the first catalyst type curing agent is more preferable.
  • a polyepoxide having no aromatic ring that is, an aliphatic / alicyclic polyepoxide is preferable from the viewpoint of obtaining high water absorption in the obtained cured epoxy resin.
  • the aliphatic polyepoxide is particularly preferable as the first polyepoxide component.
  • Specific examples of the aliphatic polyepoxide include aliphatic glycidyl ether-based polyepoxides, aliphatic glycidyl ester-based polyepoxides, and aliphatic glycidylamine-based polyepoxides. Of these, aliphatic glycidyl ether-based polyepoxides derived from aliphatic polyols are preferred as the first polyepoxide component.
  • the molecular weight of the polyepoxide constituting the first polyepoxide component is preferably 200 to 3000, more preferably 300 to 2000, and particularly preferably 300 to 1800 from the viewpoints of durability and appearance. Further, the number of epoxy groups per molecule in the first polyepoxide component is not particularly limited as long as it is 2 or more on average, but is preferably 2 to 10, more preferably 3 to 8, More preferably, 3-7. Furthermore, the epoxy equivalent of the polyepoxide is preferably 120 to 200, more preferably 130 to 190.
  • the first polyepoxide component one of the above polyepoxides may be used alone, or two or more may be used in combination.
  • the first polyepoxide component is preferably composed of at least two aliphatic polyepoxides having a molecular weight of 800 to 3000.
  • a cured epoxy resin obtained by using an aromatic polyepoxide having a ring structure, particularly an aromatic ring, for example, a glycidyl ether-based polyepoxide derived from polyphenols, may not provide sufficient water absorption in the water-absorbing material constituting the water-absorbing layer. is there. This is thought to be due to the fact that moisture is less likely to be taken into the three-dimensional network structure due to the hard aromatic ring and the like.
  • the three-dimensional network structure of the obtained cured epoxy resin has appropriate flexibility, and the size of the space of the three-dimensional network structure can be adjusted by adjusting the molecular weight. Can be adjusted to an appropriate level, so that it is possible to achieve both moderately adjusted water absorption and durability.
  • first polyaddition type curing agent as the first curing agent to be reacted with the first polyepoxide component.
  • first catalytic curing agent in combination with the first polyaddition curing agent.
  • the first polyaddition type curing agent is a compound having two or more reactive groups that react with the epoxy group of the polyepoxide, and is not particularly limited as long as it is a type of curing agent that polyadds to the polyepoxide by reaction.
  • Examples of the reactive group that reacts with the epoxy group in the first polyaddition type curing agent include an amino group having active hydrogen, a carboxy group, and a thiol group. That is, an amino compound having active hydrogen is preferably used as the first polyaddition type curing agent.
  • polyamines and polycarboxylic acid anhydrides are preferably used as compounds having two or more such reactive groups.
  • these 1 type may be used independently and 2 or more types may be used together.
  • the first polyaddition type curing agent which is one of the raw material components of the first cured epoxy resin is also preferably a compound having no aromatic ring from the viewpoint of obtaining high water absorption.
  • the first polyaddition type curing agent is preferably a polyamine or polycarboxylic anhydride having no aromatic ring, and particularly preferably a polyamine having no aromatic ring. Specific compounds are as shown in the second polyaddition type curing agent.
  • the content ratio of the first polyepoxide component and the first polyaddition type curing agent in the raw material component of the first cured epoxy resin is the reactivity of the first polyaddition type curing agent with respect to the epoxy group derived from the first polyepoxide component.
  • the ratio is preferably such that the equivalent ratio of groups is 0.6 to 1.2, more preferably 0.7 to 1.0. If the equivalent ratio of the reactive group of the first polyaddition type curing agent to the epoxy group derived from the first polyepoxide component is in the above range, the water absorption is achieved without lowering the durability such as wear resistance. Thus, a cured epoxy resin having a suitably crosslinked three-dimensional network structure is obtained.
  • the equivalent ratio of amine active hydrogen to epoxy group derived from the first polyepoxide component is 0.6 to 0.8. It is preferable to use so that it may become a ratio.
  • the equivalent ratio of the amine active hydrogen to the epoxy group is in the above range, a cured epoxy resin having a three-dimensional network structure that is appropriately cross-linked so as to have the above-mentioned water absorption without significant yellowing can be obtained.
  • the first catalyst type curing agent is used together. It is preferable to use it.
  • the first catalyst type curing agent By using the first catalyst type curing agent, the effect of accelerating the crosslinking rate by the polyaddition reaction between the first polyepoxide component and the first polyaddition type curing agent, and the first polyepoxide component and the first weight This is because it is possible to obtain an effect of reducing problems occurring at the cross-linked site formed by the addition type curing agent.
  • An example of a defect in the cross-linked site is the color development of the cured epoxy resin due to the alteration of the cross-linked site due to heat load.
  • the first cured epoxy resin used in the present invention may be a cured epoxy resin obtained by crosslinking reaction of the first polyepoxide component in the presence of the first catalytic curing agent.
  • a catalyst-type curing agent similar to the second catalyst-type curing agent can be used without particular limitation.
  • the preferred embodiment of the first catalytic curing agent can also be the same as the second catalytic curing agent.
  • the amount of the first catalytic curing agent used in the case of using the first catalytic curing agent in addition to the first polyaddition curing agent is 1.0 to 20 with respect to 100% by mass of the first polyepoxide component. % By mass is preferable, 1 to 10% by mass is more preferable, and 1 to 7% by mass is particularly preferable.
  • the amount of the first catalyst-type curing agent used is 100% by mass or more with respect to 100% by mass of the first polyepoxide component, the reaction proceeds sufficiently and sufficient water absorption is obtained in the obtained first cured epoxy resin. And durability.
  • curing agent with respect to 100 mass% of 1st polyepoxide components is 20 mass% or less, the residue of a 1st catalyst type hardening
  • the usage ratio of the first polyaddition type curing agent to the first polyepoxide component is the first catalyst type.
  • the equivalent ratio of the reactive group of the first polyaddition type curing agent to the epoxy group may be reduced by about 10 to 50% from the above 0.6 to 1.2. .
  • the first cured epoxy resin is a resin having a structure in which polyepoxides obtained by reacting the first polyepoxide component and the first catalytic curing agent are linearly or three-dimensionally polymerized. It may be.
  • the first curing agent the first catalytic curing agent is usually used alone.
  • the amount used is preferably 1 to 20% by mass, more preferably 1 to 7% by mass with respect to 100% by mass of the first polyepoxide component.
  • first cured epoxy resin used as the first cured resin has been described above.
  • a conventionally known cured resin used as a water-absorbing layer in an antifogging film as a raw material component also for a first cured resin other than the first cured epoxy resin, for example, the first urethane resin and the first crosslinked acrylic resin And a combination of a curable component and a curing agent.
  • the content of the raw material component of the first cured resin in the water absorbing layer forming composition is preferably 50 to 95 mass%, more preferably 60 to 90 mass% with respect to the total solid content.
  • the water-absorbing layer in the anti-fogging film of the anti-fogging article of the present invention is a layer made of a water-absorbing material obtained by reacting the water-absorbing layer forming composition containing the raw material component of the first cured resin. is there.
  • the water absorbing layer forming composition usually contains a solvent in addition to the raw material component of the first cured resin.
  • the reaction using the water-absorbing layer-forming composition for obtaining the water-absorbing material is performed after the water-absorbing layer-forming composition is applied to the application surface (on the base layer).
  • the water-absorbing layer-forming composition contains a solvent as described above
  • the raw material components of the first cured resin contained in the water-absorbing layer-forming composition in the composition before being applied to the application surface etc.
  • These reactive components may be reacted in advance to some extent, then coated on the coated surface, dried, and further reacted.
  • the reaction temperature when the reaction is performed in advance should be 30 ° C. or higher. It is preferable because the curing reaction proceeds reliably.
  • solvent examples of the solvent used in the water-absorbing layer forming composition include the same solvents as those shown in the base layer forming composition.
  • solvents may be used alone or in combination of two or more.
  • the various components which the composition for water absorption layer formation contains may be prepared as a mixture with the solvent used when manufacturing each component.
  • the solvent contained in the mixture may be used as it is as the solvent in the water-absorbing layer-forming composition, and the water-absorbing-layer-forming composition may contain the same or other solvent. May be added.
  • the amount of the solvent in the water-absorbing layer forming composition is preferably 100 to 500% by mass, more preferably 200 to 350% by mass with respect to 100% by mass of the total mass of the total solid content in the composition. .
  • the contents of the first polyepoxide component and the first curing agent in the water absorbing layer forming composition are as follows. Is preferably 10 to 40% by mass, more preferably 15 to 30% by mass, based on the total amount of the composition.
  • the content of the first curing agent in the water-absorbing layer forming composition is, for example, the content of the first polyaddition type curing agent and the first catalyst type curing agent as the content of the first polyepoxide component, respectively.
  • the total amount of these contents is 3 to 20% by mass with respect to the total amount of the composition. Preferably, 3 to 16% by mass is more preferable.
  • the content ratio of the first polyaddition type curing agent and the first catalyst type curing agent in combination depends on the type of the curing agent used. For example, when an amine compound having active hydrogen is used in combination as the first polyaddition type curing agent and an imidazole compound is used as the first catalyst type curing agent, the composition for forming the water absorbing layer is adjusted to the total amount of the composition. On the other hand, it is preferable to contain an amine compound having active hydrogen in a proportion of 3 to 15% by mass and an imidazole compound in a proportion of 0.1 to 1.0% by mass. By setting it as such a content rate, both the advantages which the said 1st polyaddition type hardening
  • the water-absorbing layer-forming composition may be reactive or non-reactive, such as coupling agents, fillers, antioxidants, ultraviolet absorbers, infrared absorbers, and light stabilizers, as necessary, in addition to the above components and solvents. These functional additives may be contained. Furthermore, a leveling agent, an antifoaming agent, a viscosity adjusting agent, etc. can be added in order to improve the film-forming property of the water absorbing layer forming composition.
  • the reactive additive includes a coupling agent having a functional group having reactivity with the reactive group of the raw material component of the first cured resin.
  • the coupling agent has an adhesive property between the water-absorbing layer and the base layer, or an adhesive property between the water-absorbing layer and the functional layer if necessary. It is a component that is blended for the purpose of improving, and it is one of the components that are preferably blended.
  • a silane coupling agent is preferable.
  • a silane coupling agent having an amino group for example, one or more hydrolyzable per silicon atom
  • the monovalent organic group having a reactive group is a monovalent organic group having an amino group Silane coupling agents. These may be used alone or in combination of two or more.
  • the blending amount of the coupling agent in the water absorbing layer forming composition is not an essential component, so there is no lower limit.
  • the mass ratio of the coupling agent is preferably 5 to 40% by mass, more preferably 10 to 30% by mass.
  • the upper limit of the content of the coupling agent is limited by the physical properties and functions of the coupling agent.
  • hardenable component which is a raw material component of 1st cured resin, and a hardening
  • curing agent it is preferable that the mass ratio of the coupling agent with respect to 100 mass% is 40 mass% or less, and 30 mass% or less is more preferable. If the amount of the coupling agent used is not excessive, it is possible to prevent the water-absorbing material containing the first cured resin from being colored due to oxidation or the like when exposed to a high temperature.
  • the content of the coupling agent relative to the total amount of the water-absorbing layer forming composition is preferably 2 to 10% by mass, for example, and 3 to 7% by mass when a silane coupling agent is used. It is more preferable.
  • compositions for forming a water absorption layer containing the silane coupling agent in the case of using the first cured epoxy resin as the first cured resin 15 to 40% by mass of 1 polyepoxide component, 3 to 15% by mass of amine compound having active hydrogen, 0.1 to 1.0% by mass of imidazole compound, 2 to 10% by mass of silane coupling agent, and solvent Is a composition containing 50 to 75% by mass.
  • the equivalent ratio of amine active hydrogen to the epoxy group is the amine activity in the first curing agent.
  • the equivalent ratio with the epoxy group of the first polyepoxide component is calculated so as to be within the preferred range.
  • the equivalent ratio of amine active hydrogen to the epoxy group is the epoxy contained in the first polyepoxide component.
  • the equivalent ratio of amine active hydrogen in the first curing agent is calculated so as to be in the preferred range.
  • the filler optionally contained in the water-absorbing layer forming composition
  • the filler antioxidant, ultraviolet absorber, infrared absorber, light stabilizer, leveling agent, antifoaming agent, viscosity modifier, etc. It can be the same including each component arbitrarily contained in the composition for forming a stratum, a preferred embodiment, a content and the like.
  • the water absorption layer in the antifogging article of the present invention is a first cured resin, for example, a composition containing a first polyepoxide component and a first curing agent, which is contained in the water absorbent layer forming composition.
  • a three-dimensional network obtained by reacting a composition containing the polyol and the first polyisocyanate, or a composition containing the first crosslinkable (meth) acrylic polymer and the first curing agent for acrylic resin.
  • It is composed of a water-absorbing material including a first cured epoxy resin, a first urethane resin, or a first cross-linked acrylic resin having a structure, and has high water absorption and resistance due to the properties of the first cured resin described above. It is a water-absorbing layer that also has durability such as wear.
  • the reaction conditions will be described in the production method described later.
  • an optional reactive additive such as a silane coupling agent is present in the water-absorbing material (water-absorbing layer) in the form of being bonded to a part of the three-dimensional network structure of the first cured resin
  • Other non-reactive additives that are optionally added are those that are uniformly dispersed and included in the three-dimensional network structure of the first cured resin and exist in the water-absorbing material (water-absorbing layer).
  • the antifogging film in the antifogging article of the present invention is mainly composed of a silicon oxide matrix that does not contain the ultraviolet absorbent (a) between the ultraviolet absorbing layer and the water-absorbing underlayer. It is preferable to have an adhesion layer.
  • the adhesion layer is formed using a composition for forming an adhesion layer including a component (S) composed of a tetrafunctional hydrolyzable silicon compound represented by the following formula (2) and / or a partial hydrolysis condensate thereof. Layer is preferred.
  • Si (X 2 ) 4 (2) (However, in formula (2), each X 2 independently represents a halogen atom, an alkoxy group or an isocyanate group.)
  • X 2 is preferably a chlorine atom, an alkoxy group having 1 to 4 carbon atoms or an isocyanate group, and the four X 2 are preferably the same.
  • compound (2) As such a compound represented by the above general formula (2) (hereinafter also referred to as “compound (2)”), specifically, Si (NCO) 4 , Si (OCH 3 ) 4 , Si (OC 2). H 5 ) 4 or the like is preferably used.
  • a compound (2) may be used individually by 1 type, and may use 2 or more types together.
  • the component (S) contained in the composition for forming an adhesion layer may be a partially hydrolyzed (co) condensate of the compound (2).
  • the partially hydrolyzed (co) condensate of compound (2) means that all or part of the hydrolyzable group of the compound is hydrolyzed in the presence of a catalyst such as an acid catalyst or an alkali catalyst and water in a solvent. Then, it refers to an oligomer (multimer) produced by dehydration condensation.
  • a catalyst such as an acid catalyst or an alkali catalyst and water in a solvent.
  • the acid catalyst hydrochloric acid, nitric acid, acetic acid, sulfuric acid, phosphoric acid, sulfonic acid, methanesulfonic acid, p-toluenesulfonic acid and the like can be used.
  • As the alkali catalyst sodium hydroxide, potassium hydroxide, ammonia or the like can be used.
  • water required for a hydrolysis exist in
  • the degree of condensation (degree of multimerization) of the partially hydrolyzed (co) condensate must be such that the product dissolves in the solvent.
  • the component (S) may be the compound (2) or a partially hydrolyzed (co) condensate of the compound (2), and the compound (2) and its partially hydrolyzed (co) condensate
  • a partially hydrolyzed (co) condensate of compound (2) containing unreacted compound (2) may be used.
  • a commercial item as a compound shown by General formula (2), or its partial hydrolysis (co) condensate It is possible to use such a commercial item for this invention.
  • the composition for forming an adhesion layer is an optional component such as an oxide ultrafine particle, a coloring material such as a dye or a pigment, an antifouling material, and various resins depending on the purpose within a range not impairing the effects of the present invention.
  • These functional additives may be included.
  • the total solid component is substantially composed only of the component derived from the compound (2).
  • that the total solid content is substantially composed of only a certain component means that the content ratio of the component in the total solid content is 90% by mass or more.
  • the composition for forming an adhesion layer is used when a partially hydrolyzed (co) condensate of the compound (2) is used.
  • the product is preferably a solution of the partially hydrolyzed (co) condensate obtained by the production of the partially hydrolyzed (co) condensate of compound (2).
  • the composition for forming an adhesion layer usually contains a solvent in consideration of economic efficiency, workability, ease of controlling the thickness of the obtained adhesion layer, and the like in addition to the solid content as a layer constituent.
  • a solvent will not be restrict
  • the solvent alcohols, ethers, ketones, aromatic hydrocarbons, paraffin hydrocarbons, acetate esters and the like are preferable.
  • a solvent is not limited to 1 type, You may mix and use 2 or more types of solvents from which polarity, an evaporation rate, etc. differ.
  • the composition for forming an adhesion layer may contain a solvent used for producing them. Moreover, the same solvent may be sufficient as such a solvent and the solvent which the composition for contact
  • the composition for forming an adhesion layer may further contain a component such as a catalyst used in partial hydrolysis (co) condensation.
  • the proportion of the solvent in the composition for forming an adhesion layer is preferably 400 to 100,000 parts by mass with respect to 100 parts by mass of the component (2) -derived component.
  • the amount of the solvent in the composition for forming an adhesion layer is more preferably 900 to 3,500 parts by mass, and particularly preferably 1,100 to 2,500 parts by mass with respect to 100 parts by mass of the component (2) -derived component. preferable.
  • the composition for forming an adhesion layer even if it does not contain a partially hydrolyzed (co) condensate, in order to promote the hydrolysis (co) condensation reaction of the (S) component, It is also preferable to add a catalyst such as an acid catalyst similar to that used in the decomposition (co) condensation reaction. Even when a partially hydrolyzed (co) condensate is included, if the catalyst used in the production thereof does not remain in the composition, it is preferable to blend the catalyst. As the catalyst, an acid catalyst is preferable. The amount of the catalyst is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the component derived from the compound (2). In the composition for forming an adhesion layer, the amount of the catalyst is not included in the solid content.
  • the composition for forming an adhesion layer may contain water for the above-described components to undergo a hydrolysis (co) condensation reaction.
  • the water content in the composition for forming an adhesion layer is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (2) -derived component.
  • the hydrolysis (co) condensation reaction of a containing component can be performed using the water
  • the composition for forming an adhesion layer contains, as the component (S), a compound in which the hydrolyzable group of the compound (2) is a chlorine atom or a partially hydrolyzed (co) condensate thereof, Considering storage stability because of high reactivity, it is preferable that the catalyst and water are not substantially contained. “Substantially not contained” means that the content with respect to the total amount of the composition for forming an adhesion layer is 0.001% by mass or less for the catalyst and 0.5% by mass or less for water.
  • the thickness of the adhesion layer is not particularly limited as long as it can provide adhesion or the like to the water-absorbing underlayer formed thereon. In consideration of economy, a thickness of 50 nm or less is preferable, and the lower limit is the thickness of the monomolecular layer.
  • the UV-absorbing layer-forming composition is applied to the UV-absorbing layer-forming surface, usually a predetermined region of the substrate surface, and if necessary, dried, and then the adhesive-layer-forming composition is applied to this surface. And after drying as needed, a ultraviolet-ray absorption layer and a contact
  • the antifogging article 10 ⁇ / b> B has an ultraviolet absorption layer 2, an adhesion layer 5, a water absorption base layer 3, and a water absorption layer 4 in that order on one main surface of the transparent substrate 1.
  • the antifogging article 10A having the ultraviolet absorbing layer 2, the water absorbing base layer 3, and the water absorbing layer 4 in this order on one main surface of the transparent substrate 1 whose cross section is shown in FIG. 10B can be manufactured in the same manner as the antifogging article 10B except that the step of forming the adhesion layer 5 is omitted.
  • UV Absorbing Layer 2 As a specific method for forming UV absorbing layer 2 on transparent substrate 1, (A1) UV absorbing layer forming composition is applied on transparent substrate 1 to form a coating film. And (B1) removing the liquid medium (c) from the obtained coating film, further performing a curing treatment according to the layer forming conditions of the binder component (b) used, and forming the ultraviolet absorbing layer 2 The method containing these is mentioned.
  • a film made of the composition for forming an ultraviolet absorbing layer containing the liquid medium (c) coated on the transparent substrate 1 is referred to as “coating film”, and the liquid medium (c) is formed from the coating film.
  • the state in which the film formation is completely completed by performing the treatment according to the binder component (b) to be used such as curing after being removed is referred to as “ultraviolet absorbing layer”.
  • the film made of the composition is also referred to as “coating film”, and the state in which the film formation is completely completed is referred to as “ ⁇ layer”.
  • a composition for forming an ultraviolet absorbing layer is applied onto the transparent substrate 1 to form a coating film of the composition.
  • the coating film formed here is a coating film containing the said liquid medium (c).
  • the application method of the composition for forming an ultraviolet absorbing layer on the transparent substrate 1 is not particularly limited as long as it is a uniform application method, and is a flow coating method, dip coating method, spin coating method, spray coating method, flexographic printing. Known methods such as a method, a screen printing method, a gravure printing method, a roll coating method, a meniscus coating method, and a die coating method can be used.
  • the thickness of the coating film of the coating solution is determined in consideration of the thickness of the finally obtained ultraviolet absorbing layer.
  • the liquid medium (c) is removed from the coating film of the composition for forming an ultraviolet absorbing layer on the transparent substrate 1, and the silicon oxide matrix raw material components such as the hydrolyzable silicon compound are cured. To form an ultraviolet absorbing layer.
  • the removal of the liquid medium (c) from the coating film in the step (B1) is preferably performed by heating and / or drying under reduced pressure.
  • the liquid medium (c) is vaporized and removed in parallel with this, so the operation of removing the liquid medium (c) is included in the temporary drying.
  • the time for temporary drying that is, the operation time for removing the liquid medium (c) is preferably about 3 seconds to 2 hours, although it depends on the composition for forming an ultraviolet absorbing layer used for layer formation.
  • the liquid medium (c) is sufficiently removed, but it may not be completely removed. That is, a part of the liquid medium (c) can remain in the ultraviolet absorbing layer as long as the performance of the finally obtained ultraviolet absorbing layer is not affected. Further, when heating is performed for removing the liquid medium (c), heating for removing the liquid medium (c), that is, generally temporary drying, and then necessary as follows. The heating for the production of the silicon oxide-based compound performed according to the above may be performed continuously.
  • the silicon oxide matrix raw material component such as the hydrolyzable silicon compound is cured.
  • This reaction can be carried out at room temperature or under heating.
  • the upper limit of the heating temperature is preferably 200 ° C., and particularly preferably 190 ° C., because the cured product contains an organic component. Since the cured product can be generated even at normal temperature, the lower limit of the heating temperature is not particularly limited. However, when the promotion of the reaction by heating is intended, the lower limit of the heating temperature is preferably 60 ° C, more preferably 80 ° C. Therefore, the heating temperature is preferably 60 to 200 ° C, more preferably 80 to 190 ° C.
  • the heating time is preferably several minutes to several hours, although it depends on the composition of the ultraviolet absorbing layer forming composition used for layer formation.
  • Adhesion Layer 5 As a specific method for forming the adhesion layer 5 on the ultraviolet absorption layer 2, (A2) an adhesion layer forming composition is applied on the ultraviolet absorption layer 2 to form a coating film. And (B2) a method including removing the solvent from the obtained coating film and performing a curing treatment to form the adhesion layer 5.
  • step (A2) the method for applying the composition for forming an adhesion layer on the ultraviolet absorbing layer 2 to form a coating film of the composition can be carried out in the same manner as in the step (A1).
  • the coating film obtained in the step (A2) is dried in the air or in a nitrogen atmosphere as necessary, and then cured.
  • Curing conditions are appropriately controlled depending on the type and concentration of the composition used, and preferable conditions include temperature: 20 to 50 ° C. and humidity: 50 to 90% RH.
  • the time for curing depends on the type, concentration, curing conditions and the like of the composition to be used, but is generally preferably 1 to 72 hours.
  • the second cured resin in the base material is the second cured epoxy resin
  • the base layer forming composition contains the raw material component of the second cured epoxy resin as an example.
  • the underlayer-forming composition may be allowed to advance to some extent in advance at the stage of the composition.
  • step (A3) the method of applying the underlayer-forming composition onto the adhesion layer 5 to form a coating film of the composition can be performed in the same manner as in the step (A1).
  • the solvent is removed from the coating film obtained in the step (A3) by drying, if necessary, and a base material is obtained by performing a curing treatment under conditions suitable for the reaction components to be used. It is set as the underlayer which becomes.
  • reaction conditions of the raw material component (reaction component) of the second cured epoxy resin in the underlayer forming composition include heat treatment at 70 to 150 ° C. for about 1 to 60 minutes.
  • a treatment such as performing UV irradiation at 100 to 500 mJ / cm 2 for 1 to 5 seconds with a UV curing device or the like can be given.
  • the reaction of the composition for forming an underlayer is performed under a constant humidification condition.
  • the reaction time can be shortened in the reaction performed under the same temperature conditions as compared with the case where no humidification is performed.
  • the reaction time is the same, the reaction can be sufficiently performed even if the reaction temperature is set low by humidification.
  • the reaction can be performed uniformly throughout the entire layer, and quality variations in the underlayer can be suppressed.
  • humidification conditions include 40 to 80% RH, and 50 to 80% RH is more preferable. If more preferable reaction conditions are shown together with the temperature conditions, reaction conditions of 50 to 80% RH, 70 to 100 ° C., and 5 to 30 minutes can be mentioned. More preferable conditions include reaction conditions of 50 to 80% RH, 80 to 100 ° C., and 10 to 30 minutes.
  • (IV) Formation of water-absorbing layer 4 As a specific method for forming the water-absorbing layer 4 on the water-absorbing underlayer 3, (A4) coating the water-absorbing layer-forming composition on the water-absorbing underlayer 3 to form a coating film And (B4) removing the solvent from the obtained coating film, performing a curing treatment (reacting the water-absorbing layer-forming composition) to obtain a water-absorbing material, thereby forming the water-absorbing layer 4 made of the water-absorbing material. And a process including the step of forming.
  • the first cured resin is the first cured epoxy resin
  • the water-absorbing layer forming composition contains a raw material component of the first cured epoxy resin as an example, for the method of forming the water-absorbing layer explain.
  • the water-absorbing layer-forming composition may be allowed to advance to some extent in advance at the stage of the composition.
  • step (A4) the method of applying the water-absorbing layer-forming composition onto the adhesion layer 5 to form a coating film of the composition can be performed in the same manner as in the step (A1).
  • the solvent is removed from the coating film obtained in the step (A4) by drying as necessary, and a water-absorbing material containing the first cured epoxy resin is subjected to a curing treatment according to the conditions suitable for the reaction components to be used.
  • a water absorption layer consisting of
  • Specific examples of conditions for removing the solvent by drying include 50 to 90 ° C. and 5 to 15 minutes.
  • reaction component in the water-absorbing layer forming composition that is, the raw material component of the first cured epoxy resin, particularly, the presence of the first catalytic curing agent of the polyepoxide component and the first polyaddition curing agent.
  • reaction conditions below include heat treatment at 50 to 120 ° C. for about 10 to 60 minutes.
  • a treatment such as performing UV irradiation of 50 to 1000 mJ / cm 2 for 5 to 10 seconds with a UV curing device or the like can be given.
  • the reaction of the water-absorbing layer forming composition is carried out under a constant humidification condition as in the case of the underlayer forming composition.
  • humidifying conditions include 40 to 80% RH, and conditions of 50 to 80% RH are more preferable. If more preferable reaction conditions are shown together with the temperature conditions, reaction conditions of 50 to 80% RH, 70 to 100 ° C., and 5 to 30 minutes can be mentioned. More preferable conditions include reaction conditions of 50 to 80% RH, 80 to 100 ° C., and 10 to 30 minutes.
  • the antifogging film (the ultraviolet absorbing layer 2, the adhesive layer 5, the water absorbing base layer 3, and the water absorbing layer 4 in this order from the transparent substrate 1 side) is formed on the transparent substrate 1 by the steps (I) to (IV).
  • the antifogging article 10B of the embodiment of the present invention in which is formed is obtained.
  • a manufacturing method is not limited to this, It can change in the range which does not deviate from the meaning and scope of this invention. It is.
  • the antifogging article of the present invention having the antifogging film has excellent antifogging properties and is excellent in weather resistance of the antifogging properties. Furthermore, the antifogging article of the present invention is excellent in ultraviolet shielding properties, and when the ultraviolet absorbing layer contains an infrared absorber (d), it is also excellent in heat ray shielding properties.
  • the water absorption and antifogging property measured by the method described in the above water-absorbing underlayer is preferably 50 seconds or more, more preferably 60 seconds or more. Yes, particularly preferably 70 seconds or more.
  • the design of the anti-fogging film may be appropriately changed in accordance with the required performance. Note that soda-lime glass that has not been subjected to anti-fogging processing usually fogs in about 1 to 3 seconds in the above test.
  • the ultraviolet shielding ability in the antifogging article of the present invention is measured by an ultraviolet transmittance (measured according to ISO-9050 (1990)) using a spectrophotometer (manufactured by Hitachi, Ltd .: U-4100).
  • (Tuv) is preferably 3.0% or less, more preferably 1.0% or less, and particularly preferably 0.5% or less.
  • the transmittance of light having a wavelength of 380 nm measured using a spectrophotometer is preferably 7.0% or less, more preferably 4.0% or less, and 1.0% % Or less is particularly preferable.
  • the visible light transmittance is preferably 50% or more, more preferably 70% or more, and more preferably 74% or more as the visible light transmittance (Tv) measured according to JIS R3212 (1998). It is particularly preferred that
  • the solar transmittance in the antifogging article when the ultraviolet absorbing layer contains the infrared absorbent (d) is 45.0% or less as the solar transmittance (Te) measured according to JIS R3106 (1998). Preferably, it is 44.0% or less, more preferably 43.0% or less.
  • YI calculated according to JIS K7105 (1981) is a yellowish index, and YI in antifogging articles is preferably 12 or less, and more preferably 5 or less.
  • Such an antifogging article of the present invention can be applied to outdoor antifogging articles, for example, window materials for vehicles such as automobiles and window materials for building materials attached to buildings such as houses and buildings. It is. When applied to an architectural window material, it is preferable to form an antifogging film on the interior substrate surface, and when applied to a vehicle window material, it is preferably formed on the vehicle interior substrate surface. .
  • the antifogging article of the present invention is suitably used for use as an article for transport equipment.
  • the article for transportation equipment is preferably a window material (front glass, side glass, rear glass) or the like in a train, an automobile, a ship, an airplane, or the like.
  • the article for transport equipment comprising the antifogging article of the present invention has an excellent antifogging property on the antifogging film surface of the antifogging article, it is possible to eliminate adverse effects due to moisture-induced fogging.
  • the anti-fogging film is excellent in durability, particularly weather resistance, so that the anti-fogging property is maintained even in long-term use under various use conditions including outdoor use as an article for transport equipment. Can do.
  • the antifogging article of the present invention further has excellent ultraviolet shielding properties. Moreover, when an ultraviolet absorption layer contains an infrared absorber (d), it also has a heat ray shielding effect.
  • Examples 1 to 3 are examples, and examples 4 to 5 are comparative examples.
  • ITO ultrafine particles manufactured by Mitsubishi Materials Corporation (average primary particle diameter 20 nm), hereinafter appropriately abbreviated as “ITO”.
  • Nonpole PMA-50W trade name, manufactured by NOF Corporation, Mw; 1,4.0 mass% aqueous solution of 1,200 polymaleic acid
  • Silane coupling agent KBM903 trade name, manufactured by Shin-Etsu Chemical Co., Ltd., 3-aminopropyltrimethoxysilane
  • MEK-ST trade name, manufactured by Nissan Chemical Industries, organosilica sol in which silica particles having a particle diameter of 10 to 20 nm are dispersed in methyl ethyl ketone, SiO 2 content 30% by mass
  • Methanol silica sol manufactured by Nissan Chemical Industries, organosilica sol in which silica particles having a particle diameter of 10 to 20 nm are dispersed in methanol, SiO 2 content 30% by mass
  • ITO dispersion liquid A 11.9 g of ITO ultrafine particles, 3.0 g of DISPERBYK-190, and 24.2 g of Solmix AP-1 were dispersed for 48 hours using a ball mill, and then Solmix AP-1 was added and ITO solid content was added. It diluted so that a density
  • Example 1 As a glass substrate, high heat ray absorbing green glass (Tv; 74.8%, Tuv; 9.5%, Te; 48.0%, transmittance of light with a wavelength of 380 nm: 38.5%, length 10 cm, width 10 cm, 3.5mm thickness, manufactured by Asahi Glass Co., Ltd., commonly known as UVFL), on one main surface thereof, an ultraviolet absorbing layer, a silicon oxide matrix layer as an adhesion layer, a water absorbing underlayer, a water absorbing layer as follows Were formed in that order to produce an antifogging article 1.
  • an adhesion layer made of a silicon oxide matrix was formed on the surface of the ultraviolet absorbing layer of the glass substrate with the ultraviolet absorbing layer.
  • the obtained underlayer composition was applied to the entire surface of the adhesion layer on the transparent substrate by a flow coating method, and the obtained laminate was placed in a hot air circulation type electric oven set at 100 ° C. in advance. Hold for a minute. Thereby, the laminated body by which the ultraviolet absorption layer, the contact
  • the composition for forming a water-absorbing layer obtained above was applied to the entire surface of the water-absorbing underlayer of the laminate obtained above by a flow coating method.
  • the laminate coated with the water-absorbing layer forming composition was held in a hot air circulation type electric oven set at 100 ° C. for 30 minutes to form a water-absorbing layer.
  • an antifogging article 1 (sample according to Example 1) in which an ultraviolet absorbing layer, an adhesion layer, a water absorbing base layer, and a water absorbing layer were formed in this order on a glass substrate was produced.
  • Example 2 As a glass substrate, the same high-heat-absorption green glass as in Example 1 was used, and on one main surface thereof, an ultraviolet absorbing layer containing an infrared absorbent (hereinafter referred to as “infrared / ultraviolet absorbing layer”) as follows. In other words, a silicon oxide matrix layer, a water-absorbing underlayer, and a water-absorbing layer as an adhesion layer were formed in that order to produce an antifogging article 2.
  • infrared / ultraviolet absorbing layer an ultraviolet absorbing layer containing an infrared absorbent
  • the composition for forming an infrared / ultraviolet absorbing layer is applied to the entire surface of one main surface of a glass substrate having a cleaned surface by spin coating, and dried in the atmosphere at 180 ° C. for 30 minutes to obtain infrared / ultraviolet.
  • a glass substrate with an absorption layer was obtained.
  • Example 2 In the same manner as in Example 1, an adhesion layer (silicon oxide matrix layer), a water-absorbing underlayer, and a water-absorbing layer are formed in that order on the entire surface of the infrared / ultraviolet-absorbing layer of the obtained glass substrate with an infrared / ultraviolet absorbing layer.
  • a cloudy article 2 (sample according to Example 2) was produced.
  • Example 3 In Example 2, except that no adhesion layer (silicon oxide matrix layer) was formed, an ultraviolet absorbing layer, a water absorbing base layer and a water absorbing layer were formed in that order on the glass substrate in the same manner as in Example 1. A cloudy article 3 (sample according to Example 3) was produced.
  • Example 4 A water-absorbing underlayer and a water-absorbing layer formed in this order on a glass substrate in the same manner as in Example 1 except that the ultraviolet absorbing layer and the adhesion layer (silicon oxide matrix layer) are not formed in Example 1.
  • a cloudy article 4 (sample according to Example 4) was produced.
  • Example 5 Antifogging in which an adhesion layer (silicon oxide matrix layer), a water-absorbing underlayer and a water-absorbing layer were formed in this order on a glass substrate in the same manner as in Example 1 except that the ultraviolet absorbing layer was not formed in Example 1.
  • Article 5 (sample according to Example 5) was produced.
  • the antifogging articles 1 to 5 obtained in the above examples were evaluated as follows. The results are shown in Table 1 together with the structure of the antifogging film formed on the glass substrate.
  • the ultraviolet absorbing layer was indicated as “UV cut layer”
  • the infrared / ultraviolet absorbing layer was indicated as “UV + IR cut layer”.
  • an interference film thickness meter manufactured by Spectra Corp. was used to measure the film thickness of each of the ultraviolet absorbing layer, the underlayer and the water absorbing layer.
  • the anti-fogging article of the present invention is not only excellent in anti-fogging properties, but also has excellent durability, particularly weather resistance, and also has an ultraviolet shielding property, so it is attached to a building such as an automobile or other transportation equipment or a house or a building. It is useful as antifogging glass for building materials.
  • SYMBOLS 10A, 10B Antifogging article, 1 ... Transparent base

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

防曇性に優れるとともに該防曇性の耐候性に優れる防曇性物品および該防曇性物品を具備する輸送機器用物を提供する。透明基体と、前記透明基体の少なくとも一部の表面に紫外線吸収層と吸水下地層と吸水層とがその順に配設された防曇性物品であって、前記吸水層は、第1 の硬化樹脂を主体とする飽和吸水量が50mg/cm3 以上の吸水材料からなり、前記吸水下地層は、第2 の硬化樹脂を主体とする前記吸水材料より飽和吸水量が小さい下地材料からなり、前記紫外線吸収層は、ベンゾフェノン系化合物、トリアジン系化合物、およびベンゾトリアゾール系化合物から選択される1 種以上を含む紫外線吸収剤(a)と、酸化ケイ素系マトリクス原料成分を主体とするバインダー成分(b)と、液状媒体(c)と、を含む紫外線吸収層形成用組成物を用いて形成された層であることを特徴とする防曇性物品。

Description

防曇性物品および輸送機器用物品
 本発明は防曇性物品および輸送機器用物品に関し、特には、防曇性に優れるとともに該防曇性の耐候性に優れ、加えて紫外線遮蔽性を兼ね備えた防曇性物品および該防曇性物品を具備する輸送機器用物品に関する。
 ガラスやプラスチック等の透明基体は、基体表面が露点温度以下になった場合、表面に微細な水滴が付着して透過光を散乱するため、透明性が損なわれ、いわゆる「曇り」の状態となる。曇りを防ぐ手段として、これまで種々の提案がなされてきた。
 具体的には、(1)基体表面を界面活性剤で処理して付着した水滴の表面張力を下げる方法、(2)基体表面に親水性樹脂や親水性無機化合物を用いて親水性基を付与し、基体表面を親水性にする方法、(3)基体にヒーター等を設置して加温することにより、基体表面を露点温度以上に維持する方法(4)基体表面に吸水性樹脂層を設け、基体表面に形成された微小水滴を吸水して除去、およびまたは基体表面の雰囲気湿度を低減する方法、等が知られている。
 しかしながら、上記(1)や(2)の方法では、形成した膜表面に水膜が形成されるため、高湿度環境に長期間保持されると、歪みの発生や水滴化等により外観に変化が起きやすく、べたべたした使用感もやや不快に感じられる場合があった。また、(3)の方法では、防曇性能は半永久的に持続できるものの、通電に伴うエネルギーを常に必要とするため非常に高コストとなってしまう。一方、上記(4)の方法は、表面に水が存在しないことから、外観に変化はなく使用感も好評である場合が多いのに加えて、ランニングコストを必要とせずに優れた防曇性を発現できることから、曇りを防ぐ手段として特に優れた方法とされている。
 このような(4)の吸水性化合物層を利用する防曇の技術として、具体的には、基体表面に低吸湿性架橋樹脂層と高吸湿性架橋樹脂層とを順次積層した防曇膜を有する防曇性物品(特許文献1参照)が提案されている。しかしながら、近年、防曇膜に対してより高い耐久性、特に高い耐候性が求められるようになった。特許文献1に記載された防曇膜は防曇性と耐久性を両立した防曇膜であるが、より高い耐候性が求められる用途で使用するためには、その耐久性は十分とは言い難かった。
 一方、ガラス基体にシリカ系紫外線吸収被膜を形成させて、紫外線遮蔽効果を持たせたガラス物品が知られている(特許文献2参照)。しかしながら、防曇膜の耐候性を向上させるために上記防曇膜とシリカ系紫外線吸収被膜を積層して用いることは知られていない。
国際公開2013/089165号 国際公開2010/131744号
 本発明は、上記観点からなされたものであって、防曇性に優れるとともに該防曇性の耐候性に優れる防曇性物品および該防曇性物品を具備する輸送機器用物品を提供することを目的とする。
 本発明は、以下の[1]~[10]の防曇性物品および輸送機器用物品を提供する。
 [1]透明基体と、前記透明基体の少なくとも一部の表面に紫外線吸収層と吸水下地層と吸水層とがその順に配設された防曇性物品であって、
 前記吸水層は、第1の硬化樹脂を主体とする飽和吸水量が50mg/cm以上の吸水材料からなり、
 前記吸水下地層は、第2の硬化樹脂を主体とし、前記吸水材料より飽和吸水量が小さい材料からなり、
 前記紫外線吸収層は、ベンゾフェノン系化合物、トリアジン系化合物、およびベンゾトリアゾール系化合物から選択される1種以上を含む紫外線吸収剤(a)と、酸化ケイ素系マトリクス原料成分を主体とするバインダー成分(b)と、液状媒体(c)と、を含む紫外線吸収層形成用組成物を用いて形成された層であることを特徴とする防曇性物品。
 [2]前記紫外線吸収層形成用組成物は、前記紫外線吸収剤(a)として水酸基含有ベンゾフェノン系化合物を含有する、[1]に記載の防曇性物品。
 [3]前記紫外線吸収層形成用組成物は、前記紫外線吸収剤(a)として、加水分解性基を有するシリル基を含有するベンゾフェノン系化合物、加水分解性基を有するシリル基を有するトリアジン系化合物、および加水分解性基を有するシリル基を有するベンゾトリアゾール系化合物から選択される1種以上を含有する、[1]または[2]に記載の防曇性物品。
 [4]前記紫外線吸収層形成用組成物は、錫ドープ酸化インジウム、アンチモンドープ酸化錫、および複合タングステン酸化物から選択される1種以上を含む赤外線吸収剤(d)をさらに含む、[1]~[3]のいずれかに記載の防曇性物品。
 [5]前記第1の硬化樹脂は、第1の硬化エポキシ樹脂、第1のウレタン樹脂または第1の架橋アクリル樹脂であり、前記第2の硬化樹脂は、第2の硬化エポキシ樹脂、第2のウレタン樹脂または第2の架橋アクリル樹脂である[1]~[4]のいずれかに記載の防曇性物品。
 [6]前記吸水下地層の厚みが2~8μmであり、前記吸水層の厚みが5~40μmであって、前記吸水層の厚みは前記吸水下地層の厚みの5倍以下である[1]~[5]のいずれかに記載の防曇性物品。
 [7]さらに、前記紫外線吸収層と前記吸水下地層との間に、前記紫外線吸収剤(a)を含有しない酸化ケイ素系マトリクスを主体とする密着層を有する[1]~[6]のいずれかに記載の防曇性物品。
 [8]前記透明基体がガラス基体である[1]~[7]のいずれかに記載の防曇性物品。
 [9]防曇性物品に対する波長380nmの光の透過率が7.0%以下である、[1]~[8]のいずれかに記載の防曇性物品。
 [10]前記[1]~[9]に記載の防曇性物品を具備する、輸送機器用物品。
 本発明の防曇性物品および該防曇性物品を具備する輸送機器用物品は、防曇性と該防曇性の耐候性に優れるとともに、紫外線遮蔽性を有する。
本発明の防曇性物品の一例の断面図である。 本発明の防曇性物品の別の一例の断面図である。
 以下に本発明の実施の形態を説明する。なお、本発明は、下記説明に限定して解釈されるものではない。
[防曇性物品]
 本発明の防曇性物品の一実施形態を図1に示す。この防曇性物品10Aは、透明基体1の一方の主面上に、以下の紫外線吸収層2、吸水下地層3および吸水層4がこの順に積層された構成を有する。
 紫外線吸収層2;ベンゾフェノン系化合物、トリアジン系化合物、およびベンゾトリアゾール系化合物から選択される1種以上を含む紫外線吸収剤(a)と、酸化ケイ素系マトリクス原料成分を主体とするバインダー成分(b)と、液状媒体(c)と、を含む紫外線吸収層形成用組成物を用いて形成された層
 吸水下地層3;第2の硬化樹脂を主体とし、以下の吸水材料より飽和吸水量が小さい材料からなる層
 吸水層4;第1の硬化樹脂を主体とする飽和吸水量が50mg/cm以上の吸水材料からなる層
 本発明の防曇性物品においては、上記吸水層が50mg/cm以上の吸水材料で構成されることで防曇性に優れる。さらに、吸水層を構成する吸水材料より飽和吸水量が小さい、すなわち吸水性の低い材料で構成される吸水下地層を吸水層の基体側に有することで、吸水層および吸水下地層と、これらの基体側に位置する層との密着性の確保を可能としている。なお、吸水層や吸水下地層の吸水性は、各層の構成材料の飽和吸水量とともに、後述の吸水防曇性を指標として評価できる。以下、吸水下地層を構成する材料を「下地材料」という。
 本発明の防曇性物品においては、さらに吸水下地層と透明基体の間に紫外線吸収層を有することで、吸水層および吸水下地層の紫外線照射に起因する剥離の抑制を可能としている。すなわち、本発明の防曇性物品は長時間紫外線を含む光に晒されるような状態で使用されても、優れた防曇性を維持することが可能となる。言い換えれば、本発明の防曇性物品は優れた耐候性を有する。この場合、防曇性物品の耐候性は、基体側からの紫外線照射に対して特に大きな効果を発揮する。また、本発明の防曇性物品においては、上記紫外線吸収層を有することで、紫外線遮蔽性を有するものである。
 本発明の明細書において、吸水下地層を単に下地層ともいう。また、基体上に、紫外線吸収層、吸水下地層、吸水層の順に配設された構成を有する膜を防曇膜という。
 本発明の防曇性物品における防曇膜は、基体の少なくとも一部の表面に形成される。防曇膜が形成される表面は、用途に応じて適宜選択される。通常、図1に示す防曇性物品10Aのように透明基体の主面のいずれか一方に形成されるが、これに限定されない。
 本発明の防曇性物品において、防曇膜はさらに、紫外線吸収層と吸水下地層の間に、上記紫外線吸収剤(a)を含有しない酸化ケイ素系マトリクスを主体とする密着層を有してもよい。図2に、密着層を有する場合の本発明の防曇性物品の一実施形態を示す。この防曇性物品10Bは、透明基体1の一方の主面上に、上記の紫外線吸収層2、密着層5、吸水下地層3および吸水層4がこの順に積層された構成を有する。
 以下、本発明の防曇性物品を構成する各層について、詳細に説明する。
(1)透明基体
 本発明の防曇性物品に用いられる透明基体としては、一般に防曇性の付与が求められている材質からなる透明基体であれば特に制限されない。好適には、ガラス、プラスチック等からなる透明基体が挙げられ、より好適にはガラスからなる透明基体が挙げられる。
 ガラスとしては、通常のソーダライムガラス、アルミノシリケートガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラス等が挙げられ、これらのうちでもソーダライムガラスが特に好ましい。また、プラスチックとしては、ポリメチルメタクリレート等のアクリル系樹脂やポリフェニレンカーボネート等の芳香族ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)等の芳香族ポリエステル系樹脂等が挙げられ、これらのうちでもポリエチレンテレフタレート(PET)、ポリフェニレンカーボネート等が好ましい。
 上記各種透明基体のうちでも、本発明においては、ソーダライムガラスからなる透明基体が特に好ましい。本明細書において、透明基体を単に基体ともいう。
 基体の形状は平板でもよく、全面または一部が曲率を有していてもよい。基体の厚さは防曇性物品の用途により適宜選択できるが、一般的には1~10mmであることが好ましい。
 なお、透明基体の可視光透過率は、JIS R3212(1998年)にしたがって測定された可視光線透過率として、70%以上であることが好ましく、74%以上であることがより好ましい。
(2)紫外線吸収層
 本発明の防曇性物品が有する紫外線吸収層は、上記基体と以下に説明する下地層の間に設けられる層である。紫外線吸収層は、通常、基体の防曇膜形成面に接するように設けられる。
 紫外線吸収層は、ベンゾフェノン系化合物、トリアジン系化合物、およびベンゾトリアゾール系化合物から選択される1種以上を含む紫外線吸収剤(a)と、酸化ケイ素系マトリクス原料成分を主体とするバインダー成分(b)と、液状媒体(c)と、を含む紫外線吸収層形成用組成物を用いて形成される層である。なお、本明細書において、上記各成分を符号のみで、例えば、紫外線吸収剤(a)を(a)成分と示すこともある。
 紫外線吸収層は、具体的には、紫外線吸収層形成用組成物を紫外線吸収層形成面に塗布し乾燥することで、液状媒体(c)が除去されるとともにバインダー成分(b)が硬化する際に、紫外線吸収剤(a)が層全体に分散された形で形成される、紫外線遮蔽能に優れ、被形成面、特にガラスに対して優れた密着性を有する層である。本発明の防曇性物品においては、紫外線吸収層を有することで、防曇膜は耐候性、特に耐光性に優れる。
(紫外線吸収層形成用組成物)
 紫外線吸収層形成用組成物は、(a)成分~(c)成分を必須成分として含有する。紫外線吸収層形成用組成物は、任意に錫ドープ酸化インジウム、アンチモンドープ酸化錫、および複合タングステン酸化物から選択される1種以上を含む赤外線吸収剤(d)を含んでいてもよい。
 以下、各成分について説明する。
<紫外線吸収剤(a)>
 紫外線吸収剤(a)は、ベンゾフェノン系化合物、トリアジン系化合物、およびベンゾトリアゾール系化合物から選択される1種以上を含有する。
 上記ベンゾトリアゾール系化合物として、具体的には、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノール(市販品としては、TINUVIN 326(商品名、チバ・ジャパン社製)等)、オクチル-3-[3-tert-4-ヒドロキシ-5-[5-クロロ-2H-ベンゾトリアゾール-2-イル]プロピオネート、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル]ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-ブチルフェニル)-2H-ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール等が挙げられる。これらのなかでも好ましくは、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノールが用いられる。
 上記トリアジン系化合物として、具体的には、2-[4-[(2-ヒドロキシ-3-ドデシロキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ビス-ブトキシフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、TINUVIN477(商品名、チバ・ジャパン株式会社製)等が挙げられる。これらのなかでも好ましくは、2-(2-ヒドロキシ-4-[1-オクチルカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジンが用いられる。
 上記ベンゾフェノン系化合物として、具体的には、2,4-ジヒドロキシベンゾフェノン、2,2’,3(または4、5、6のいずれか)-トリヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,4-ジヒドロキシ-2’,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン等が挙げられる。これらのなかでも好ましくは、2,2’,4,4’-テトラヒドロキシベンゾフェノンが用いられる。
 本発明において、紫外線吸収剤(a)として、これらの化合物の1種を単独で用いることも、2種以上を併用することも可能である。また、紫外線吸収層形成用組成物においては、溶媒への溶解度が高いことおよび吸収波長帯が望ましい範囲にあることから上に例示した化合物のなかでも水酸基含有ベンゾフェノン系化合物が好ましく用いられる。さらに、必要に応じて本発明の効果を損なわない範囲で、これら以外の紫外線吸収性材料を上記ベンゾフェノン系化合物、トリアジン系化合物、およびベンゾトリアゾール系化合物から選択される1種以上と組合せて紫外線吸収剤(a)として使用してもよい。
 紫外線吸収剤(a)としては、液状媒体(c)に溶解する化合物が好ましい。紫外線吸収剤(a)として、液状媒体(c)に溶解しないまたは溶解性の低い紫外線吸収性化合物を使用する場合、紫外線吸収剤(a)を分散媒に微粒子として分散させて分散液とし、その分散液を液状組成物に含有させることが好ましい。また、紫外線吸収剤(a)の微粒子の被膜中の分散性を向上させるために、紫外線吸収剤(a)の微粒子が分散した分散液としては、分散剤を使用して分散させた分散液であることが好ましい。
 なお、紫外線吸収剤(a)微粒子の分散液における分散媒は、得られる組成物において該組成物が含有する液状媒体(c)の一部を構成することになるため、後述の液状媒体(c)と同様のまたは相溶性を有する化合物を分散媒として用いることが好ましい。
 紫外線吸収層形成用組成物における紫外線吸収剤(a)の含有量は、得られる紫外線吸収層が十分な紫外線吸収能を有するとともに、該層における機械的強度を確保する点から、バインダー成分(b)100質量%に対して1~50質量%であることが好ましく、5~40質量%であることがより好ましく、8~30質量%であることが特に好ましい。
 なお、紫外線吸収層形成用組成物においては、得られる紫外線吸収層から紫外線吸収剤(a)がブリードアウトするのを防ぐために、必要に応じて、紫外線吸収剤(a)を以下の構成とすることも可能である。すなわち、後述するバインダー成分(b)が反応性基を有し、これらの反応により層形成が行われる場合には、上記反応性基と反応性を有する官能基を紫外線吸収剤(a)に導入して用いてもよい。ここで、この導入に使用する化合物は、紫外線吸収層形成用組成物における紫外線吸収剤(a)の含有量を計算する際に、バインダー成分(b)の一部とみなす。
 バインダー成分(b)を主として構成する酸化ケイ素系マトリクス原料成分として、例えば、加水分解性ケイ素化合物類を用いた場合、上に例示するようなベンゾフェノン系化合物、トリアジン系化合物、およびベンゾトリアゾール系化合物に、それぞれ適切な方法で加水分解性基を有するシリル基を導入して得られる、加水分解性基を有するシリル基を含有する上記各化合物から選ばれる少なくとも1種を紫外線吸収剤(a)として紫外線吸収層形成用組成物に含有させることができる。なお、加水分解性基を有するシリル基を含有する上記化合物からなる紫外線吸収剤を、以下、シリル化紫外線吸収剤といい、例えば国際公開2010/131744号に記載されるものが使用できる。
 シリル化紫外線吸収剤としては、水酸基含有ベンゾフェノン系化合物にシリル基を導入して得られる化合物が好ましい。水酸基含有ベンゾフェノン系化合物をシリル化する反応に用いる、水酸基と反応性を有する基を含有する加水分解性ケイ素化合物、特にはエポキシ基を含有する加水分解性ケイ素化合物としては、エポキシ基を有する非加水分解性の1価有機基がケイ素原子に結合した、3官能性または2官能性の加水分解性ケイ素化合物が挙げられる。好ましくは、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシランおよび2-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシラン等が挙げられる。
 これらのなかでも、本発明においては、紫外線吸収層形成用組成物への溶解性を高くできる等の観点から、上記エポキシ基含有加水分解性ケイ素化合物として特に好ましくは、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン等が用いられる。なお、水酸基含有ベンゾフェノン系化合物をシリル化する反応において、エポキシ基含有加水分解性ケイ素化合物は1種を単独でまたは2種以上の混合物として用いることが可能である。
 水酸基含有ベンゾフェノン系化合物とエポキシ基含有加水分解性ケイ素化合物との反応生成物を得る方法としては、通常のシリル化反応にかかる方法が特に限定されずに適用可能である。
 本発明において好ましく用いられるシリル化ベンゾフェノン系化合物としては、3個以上の水酸基を含有するベンゾフェノン系化合物の1~2個の水酸基と、エポキシ基含有加水分解性ケイ素化合物のエポキシ基が反応して得られる反応生成物等が挙げられ、より好ましくは、下記式(B)に示される4-(2-ヒドロキシ-3-(3-トリメトキシシリル)プロポキシ)プロポキシ)-2,2’,4’-トリヒドロキシベンゾフェノン等が挙げられる。なお、下記式(B)中、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000001
 なお、紫外線吸収層形成用組成物において、バインダー(b)成分が酸化ケイ素系マトリクス原料成分を主体とし、紫外線吸収剤(a)として上記シリル化ベンゾフェノン系化合物を含有する場合には、シリル化ベンゾフェノン系化合物の含有量は該シリル化ベンゾフェノン系化合物における水酸基含有ベンゾフェノン系化合物残基の量が、上に示す紫外線吸収層形成用組成物中の紫外線吸収剤の含有量となるように調整すればよい。また、シリル化ベンゾフェノン系化合物の水酸基含有ベンゾフェノン系化合物残基以外の部分は、バインダー(b)成分における酸化ケイ素系マトリクス原料成分として扱うこととする。
<バインダー成分(b)>
 紫外線吸収層形成用組成物が含有するバインダー成分(b)は、酸化ケイ素系マトリクス原料成分を主体とする層形成のための原料成分である。なお、バインダー成分(b)が、酸化ケイ素系マトリクス原料成分を主体とするとは、バインダー成分(b)の全量に対する酸化ケイ素系マトリクス原料成分の割合が50質量%以上であることをいう。このように、本明細書においては、ある成分(x)を主体とする、または主として含有する、成分(Y)または材料(Y)とは、成分(x)の成分(Y)全体または材料(Y)全体に対する含有割合が50質量%以上である成分(Y)または材料(Y)をいう。
 本発明に用いるバインダー成分(b)として、好ましくは、ゾル-ゲル法によって酸化ケイ素系マトリクス膜を形成する酸化ケイ素系マトリクス原料成分を主体とするバインダー成分(b)が用いられる。
 ここで、本明細書において、ゾル-ゲル法による「酸化ケイ素系マトリクス」とは、加水分解性ケイ素化合物類が加水分解(共)縮合することで得られる、-Si-O-Si-で表されるシロキサン結合により直線的または3次元的に高分子量化した高分子化合物をいう。すなわち、酸化ケイ素系マトリクスの原料成分は、加水分解性ケイ素化合物類から選ばれる少なくとも1種からなる。なお、酸化ケイ素系マトリクスを得るために、加水分解性ケイ素化合物類が加水分解(共)縮合する際には、水、酸触媒等が必要とされるが、本明細書においてこれらは酸化ケイ素系マトリクスの原料成分やバインダー成分(b)とは別成分として扱う。
 また、本明細書において、「加水分解性ケイ素化合物類」とは、少なくとも1個の加水分解性基がケイ素原子に結合したシラン化合物群およびこのようなシラン化合物群の1種または2種以上の部分加水分解(共)縮合物の総称として用いる。また、以下、加水分解性ケイ素化合物の4官能性、3官能性、2官能性等の官能性の数は、上記シラン化合物群の化合物におけるケイ素原子に結合した加水分解性基の数をいう。また、部分加水分解(共)縮合物は、加水分解性基とシラノール基(ケイ素原子に結合した水酸基)を有する化合物であってもよく、シラノール基のみを有する化合物であってもよい。
 本明細書においては、必要に応じて、部分加水分解縮合物と部分加水分解共縮合物を総称して部分加水分解(共)縮合物の用語を用いる。
 紫外線吸収層形成用組成物が含有するバインダー成分(b)としての加水分解性ケイ素化合物類としてはシラン化合物群の化合物(例えば、テトラアルコキシシラン)のみであるよりも、少なくともその一部は部分加水分解(共)縮合物であることが紫外線吸収層形成用組成物における加水分解性ケイ素化合物類の安定性や均一な反応性の面で好ましい。このために、紫外線吸収層形成用組成物の原料として部分加水分解(共)縮合物を使用するか、シラン化合物群の化合物を原料とし紫外線吸収層形成用組成物を製造する際にその化合物の少なくとも一部を部分加水分解(共)縮合させることが好ましい。例えば、テトラアルコキシシランを使用し、テトラアルコキシシランとその反応触媒と紫外線吸収層形成用組成物を構成する他の成分とを混合した後、その混合物中でテトラアルコキシシランの少なくとも一部を加水分解縮合させる処理(具体的には、例えば、常温下または加熱下に所定時間撹拌する処理)を行って、紫外線吸収層形成用組成物とすることが好ましい。
 本発明においては、酸化ケイ素系マトリクスの原料成分は、4官能性加水分解性ケイ素化合物の少なくとも1種(またはその部分加水分解(共)縮合物)を含有することが好ましい。その場合には、紫外線吸収層形成用組成物はバインダー成分(b)としてさらに後述する可撓性付与成分を含有することが好ましい。上記酸化ケイ素系マトリクス原料成分は、また、4官能性加水分解性ケイ素化合物および3官能性加水分解性ケイ素化合物のそれぞれ少なくとも1種(または、それぞれの部分加水分解縮合物やそれらの部分加水分解共縮合物)を含有するものであることも好ましい。
 加水分解性ケイ素化合物が有する加水分解性基として、具体的には、アルコキシ基、アルケニルオキシ基、アシルオキシ基、イミノキシ基、アミノキシ基等のオルガノオキシ基が好ましく、特にアルコキシ基が好ましい。アルコキシ基としては、炭素数4以下のアルコキシ基と炭素数4以下のアルコキシ置換アルコキシ基(2-メトキシエトキシ基など)が好ましく、特にメトキシ基とエトキシ基が好ましい。
 上記4官能性加水分解性ケイ素化合物は、4個の加水分解性基がケイ素原子に結合した化合物である。加水分解性基の4個は互いに同一であっても異なっていてもよい。加水分解性基は、好ましくはアルコキシ基であり、より好ましくは炭素数4以下のアルコキシ基、さらに好ましくはメトキシ基とエトキシ基である。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトラn-ブトキシシラン、テトラsec-ブトキシシラン、テトラtert-ブトキシシラン等が挙げられるが、本発明において好ましくは、テトラエトキシシラン、テトラメトキシシラン等が用いられる。これらは1種が単独で用いられても、2種以上が併用されてもよい。
 上記3官能性加水分解性ケイ素化合物は、3個の加水分解性基と1個の非加水分解性基がケイ素原子に結合した化合物である。加水分解性基の3個は互いに同一であっても異なっていてもよい。加水分解性基は、好ましくはアルコキシ基であり、より好ましくは炭素数4以下のアルコキシ基、さらに好ましくはメトキシ基とエトキシ基である。
 非加水分解性基としては、非加水分解性の官能基を有するまたは官能基を有しない1価有機基であることが好ましく、官能基を有する非加水分解性の1価有機基であることがより好ましい。非加水分解性の1価有機基とは、当該有機基とケイ素原子が炭素-ケイ素結合で結合する、結合末端原子が炭素原子である有機基をいう。
 また、本明細書に用いる官能基とは、単なる置換基とは区別された、反応性を有する基を包括的に示す用語である。
 上記非加水分解性の1価有機基のうちでも、官能基を有しない非加水分解性の1価有機基としては、アルキル基、アリール基などの付加重合性の不飽和二重結合を有しない炭化水素基、ハロゲン化アルキル基などの付加重合性の不飽和二重結合を有しないハロゲン化炭化水素基が好ましい。官能基を有しない非加水分解性の1価有機基の炭素数は、20以下が好ましく、10以下がより好ましい。この1価有機基としては、炭素数4以下のアルキル基が好ましい。
 1価有機基における官能基は2個以上存在していてもよいが、1級または2級のアミノ基の場合を除いて1個の官能基を有する1価有機基が好ましい。1級または2級のアミノ基の場合は、2個以上のアミノ基を有していてもよく、その場合は1個の1級アミノ基と1個の2級アミノ基を有する1価有機基、例えば、N-(2-アミノエチル)-3-アミノプロピル基や3-ウレイドプロピル基などが好ましい。これら官能基を有する1価有機基の全炭素数は20以下が好ましく、10以下がより好ましい。
 官能基を有する非加水分解性の1価有機基を有する3官能性加水分解性ケイ素化合物としては具体的には、以下の化合物が挙げられる。
 炭素数2または3のアルキル基の末端に、グリシドキシ基、3,4-エポキシシクロヘキシル基、アミノ基、アルキルアミノ基(アルキル基の炭素数は4以下)、フェニルアミノ基、N-(アミノアルキル)アミノ基(アルキル基の炭素数は4以下)、および(メタ)アクリロキシ基のいずれかの官能基を有する1価有機基の1個と、炭素数4以下のアルコキシ基の3個がケイ素原子に結合した3官能性加水分解性ケイ素化合物である。
 加水分解性ケイ素化合物類との反応性の点から3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等が特に好ましい。これらは1種が単独で用いられても、2種以上が併用されてもよい。
 酸化ケイ素系マトリクス原料成分は、必要に応じて2官能性加水分解性ケイ素化合物を含有してもよい。2官能性加水分解性ケイ素化合物は、2個の加水分解性基と2個の非加水分解性基がケイ素原子に結合した化合物である。加水分解性基の2個は互いに同一であっても異なっていてもよい。
 また、酸化ケイ素系マトリクス原料成分において、上記4官能性加水分解性ケイ素化合物、3官能性加水分解性ケイ素化合物、2官能性加水分解性ケイ素化合物は、それ自体として紫外線吸収層形成用組成物に含有されていてもよく、それぞれの部分加水分解縮合物として含有されていてもよく、これらの2種以上の部分加水分解共縮合物として含有されていてもよい。
 上記加水分解性ケイ素化合物の部分加水分解(共)縮合は、例えば、酸触媒存在下、加水分解性ケイ素化合物の低級アルコール溶液に水が添加された反応液を、10~70℃で1~48時間撹拌することで行うことができる。なお、反応に用いる酸触媒として具体的には、硝酸、塩酸、硫酸、リン酸等の無機酸類や、ギ酸、酢酸、プロピオン酸、グリコール酸、シュウ酸、マロン酸、コハク酸、マレイン酸、フタル酸、クエン酸、リンゴ酸等のカルボン酸類、メタンスルホン酸等のスルホン酸類が例示できる。
 酸の添加量は、触媒としての機能が果たせる範囲で特に限定なく設定できるが、具体的には、上記加水分解性ケイ素化合物を含有する反応溶液の容量に対する量として0.001~3.0モル/L程度の量が挙げられる。
 ここで、部分加水分解(共)縮合物は、加水分解性ケイ素化合物が加水分解し次いで脱水縮合することによって生成するオリゴマー(多量体)である。部分加水分解(共)縮合物は通常溶媒に溶解する程度の高分子量化体である。
 なお、4官能性加水分解性ケイ素化合物、3官能性加水分解性ケイ素化合物、2官能性加水分解性ケイ素化合物は、上記何れの状態で紫外線吸収層形成用組成物に含有されていても、最終的に酸化ケイ素系マトリクスを構成する単位として、それぞれ区別されるものである。以下、バインダー成分(b)においては、例えば、4官能性加水分解性ケイ素化合物について、それ自体およびその部分加水分解縮合物と、部分加水分解共縮合物におけるその加水分解性ケイ素化合物由来の成分とを併せて、4官能性加水分解性ケイ素化合物の由来成分という。
 上記酸化ケイ素系マトリクス原料成分における加水分解性ケイ素化合物類は、好ましくは上記のとおり、(1)4官能性加水分解性ケイ素化合物由来成分のみで構成されるか、(2)4官能性加水分解性ケイ素化合物由来成分および3官能性加水分解性ケイ素化合物由来成分で構成される。なお、(1)の場合、紫外線吸収層形成用組成物は、特に、得られる紫外線吸収層が一定の厚みを確保しながら十分な耐クラック性を獲得するために、バインダー成分(b)として可撓性付与成分をさらに含有することが好ましい。また、(2)の場合、4官能性加水分解性ケイ素化合物由来成分と3官能性加水分解性ケイ素化合物由来成分の含有割合は、4官能性加水分解性ケイ素化合物由来成分/3官能性加水分解性ケイ素化合物由来成分として質量比で、30/70~95/5が好ましく、40/60~90/10がより好ましく、50/50~85/15が特に好ましい。
 また、上記2官能性加水分解性ケイ素化合物由来成分は、(1)、(2)において必要に応じて任意に使用される。その含有量は、加水分解性ケイ素化合物類全量に対して質量%で30質量%以下の量とすることが好ましい。
 紫外線吸収層形成用組成物においては、バインダー成分(b)が酸化ケイ素系マトリクス原料成分を主体とする場合、これが含有する上記加水分解性ケイ素化合物類を加水分解(共)縮合させ乾燥することで紫外線吸収層を形成する。この反応は、通常上記加水分解性ケイ素化合物の部分加水分解(共)縮合と同様に、酸触媒と水の存在下で行われる。したがって、紫外線吸収層形成用組成物は、酸触媒と水を含有する。用いる酸触媒の種類、含有量とも上記部分加水分解(共)縮合の場合と同様にできる。
 バインダー成分(b)が、酸化ケイ素系マトリクス原料成分を主体とする場合、上記のとおり、バインダー成分(b)成分の一部として、酸化ケイ素系マトリクスに可撓性を付与する可撓性付与成分を任意に紫外線吸収層形成用組成物に含有させることが可能であり、好ましい。可撓性付与成分を含有することで、紫外線吸収層形成用組成物から得られる紫外線吸収層におけるクラック発生の防止に寄与できる。
 なお、上記酸化ケイ素系マトリクス原料成分がいずれの構成であっても、可撓性付与成分の配合は有効であるが、特に、上記4官能性加水分解性ケイ素化合物のみで構成される酸化ケイ素系マトリクスは可撓性が十分でない場合があり、紫外線吸収層形成用組成物が4官能性加水分解性ケイ素化合物と可撓性付与成分とを含有すれば、機械的強度と耐クラック性の双方に優れた紫外線吸収層を容易に作製することができる。
 可撓性付与成分としては、例えば、シリコーン樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオキシアルキレン基を含む親水性有機樹脂、エポキシ樹脂などの各種有機樹脂、グリセリン等の有機化合物を挙げることができる。
 可撓性付与成分としてエポキシ樹脂を使用する場合には、ポリエポキシドと硬化剤の組合せまたはポリエポキシドを単独で使用することが好ましい。ポリエポキシドとは、複数のエポキシ基を有する化合物の総称である。すなわち、ポリエポキシドの平均エポキシ基数は2以上であるが、本発明においては平均エポキシ基数が2~10のポリエポキシドが好ましい。
 このようなポリエポキシドとしては、ポリグリシジルエーテル化合物、ポリグリシジルエステル化合物、およびポリグリシジルアミン化合物等のポリグリシジル化合物が好ましい。また、ポリエポキシドとしては、脂肪族ポリエポキシド、芳香族ポリエポキシドのいずれであってもよく、脂肪族ポリエポキシドが好ましい。
 これらのなかでもポリグリシジルエーテル化合物が好ましく、脂肪族ポリグリシジルエーテル化合物が特に好ましい。ポリグリシジルエーテル化合物としては、2官能以上のアルコールのグリシジルエーテルであることが好ましく、耐光性を向上できる点から3官能以上のアルコールのグリシジルエーテルであることが特に好ましい。なお、これらアルコールは、脂肪族アルコール、脂環式アルコール、または糖アルコールであることが好ましい。
 特に耐光性を向上できる点から、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、およびソルビトールポリグリシジルエーテル等の3個以上の水酸基を有する脂肪族ポリオールのポリグリシジルエーテル(1分子あたり平均のグリシジル基(エポキシ基)数が2を超えるもの)が好ましい。これらは1種が単独で用いられても、2種以上が併用されてもよい。
 紫外線吸収層形成用組成物における上記可撓性付与成分の含有量は、本発明の効果を損なわずに、得られる紫外線吸収層に可撓性を付与し耐クラック性を向上できる量であれば特に制限されないが、上記酸化ケイ素系マトリクス原料成分100質量%に対して、0.1~20質量%となる量が好ましく、1.0~20質量%となる量がより好ましい。
 紫外線吸収層形成用組成物において、バインダー成分(b)の含有量としては、該組成物における全固形分量に対して、3~30質量%が好ましく、5~20質量%がより好ましい。ここで、本明細書において全固形分とは、紫外線吸収層形成用組成物が含有する成分のうち、紫外線吸収層形成成分をいい、液状媒体(c)等の紫外線吸収層形成過程における加熱等により揮発する揮発性成分以外の全成分を示す。
 また、紫外線吸収層形成用組成物における酸化ケイ素系マトリクス原料成分の含有量は、該組成物全量に対して、該酸化ケイ素系マトリクス原料成分に含まれるケイ素原子をSiOに換算したときのSiO含有量として、1~20質量%であることが好ましく、より好ましくは3~15質量%である。この紫外線吸収層形成用組成物全量に対する酸化ケイ素系マトリクス原料成分の含有量が、SiO換算で1質量%未満であると、所望の厚みの紫外線吸収層を得るための紫外線吸収層形成用組成物の塗布量を多くする必要があり、その結果外観が悪化するおそれがあり、20質量%を超えると、紫外線吸収層形成用組成物を塗布した状態での塗膜の厚みが厚くなり得られる紫外線吸収層にクラックが発生するおそれがある。
<液状媒体(c)>
 紫外線吸収層形成用組成物は、必須成分である上記紫外線吸収剤(a)およびバインダー成分(b)が所定量で、さらに後述する任意に好ましく含有される赤外線吸収剤(d)および種々の添加剤等が任意の量で、液状媒体(c)中に溶解、分散した形態で調製される。上記紫外線吸収層形成用組成物中の全固形分が液状媒体(c)に安定に溶解、分散することが必要である。
 液状媒体(c)とは、必須成分の紫外線吸収剤(a)やバインダー成分(b)を溶解する溶媒と、任意に含有する赤外線吸収剤(d)などの固体微粒子を分散させる分散媒とを意味し、比較的低沸点の常温で液状の化合物をいう。液状媒体(c)はアルコールなどの有機化合物や水などの無機化合物からなり、2種以上の混合物であってもよい。また、分散媒と溶媒は同一の液状媒体であってもよく、異なる液状媒体であってもよい。分散媒と溶媒が異なる場合、紫外線吸収層形成用組成物における液状媒体(c)はそれら分散媒と溶媒との混合物である。この場合、該混合物が均一な混合物となるように分散媒と溶媒は相溶性を有する組合せとされる。
 紫外線吸収剤(a)やバインダー成分(b)、さらには、赤外線吸収剤(d)等の必須または任意の各配合成分が溶液や分散液の状態で提供される場合には、それら溶媒や分散媒を除去せずにそのまま使用することで、紫外線吸収層形成用組成物の液状媒体(c)の一部としてもよい。
 紫外線吸収層形成用組成物における水の含有量は、水として単独で添加する量に加えて、このようにして各種成分と共に持ち込まれる水を含む量として算出される。紫外線吸収層形成用組成物が含有する水の量は、例えば、含有する加水分解性ケイ素化合物を加水分解(共)縮合させるために十分な量であれば、特に制限されない。具体的には、含有する加水分解性ケイ素化合物のSiO換算量に対してモル比で1~20当量となる量が好ましく、4~18当量となる量がより好ましい。水の量が上記モル比で1当量未満では加水分解が進行しにくく、塗布時に基材によっては液状組成物がはじかれたり、曇価(ヘイズ)が上昇したりすることがあり、20当量を超えると加水分解速度が速くなり長期貯蔵性が十分でなくなることがある。
 紫外線吸収層形成用組成物が含有する各成分が安定して溶解または分散した状態を得るために、液状媒体(c)は少なくとも20質量%以上、好ましくは50質量%以上のアルコールを含有する。このような液状媒体(c)に用いるアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-メトキシ-2-プロパノール、2-エトキシエタノール、4-メチル-2-ペンタノール、および2-ブトキシエタノール等が好ましく、これらのうちでも、上記酸化ケイ素系マトリクス原料成分の溶解性が良好な点、基材への塗工性が良好な点から、沸点が80~160℃のアルコールが好ましい。具体的には、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-メトキシ-2-プロパノール、2-エトキシエタノール、4-メチル-2-ペンタノール、および2-ブトキシエタノールが好ましい。
 また、紫外線吸収層形成用組成物に用いる液状媒体(c)としては、バインダー成分(b)を製造する過程で用いた溶媒や副生成物、例えば、加水分解性ケイ素化合物の部分加水分解(共)縮合物を含む場合には、その製造過程で、原料加水分解性ケイ素化合物(例えば、アルコキシ基を有するシラン化合物群)を加水分解することに伴って発生する低級アルコール等や溶媒として用いたアルコール等をそのまま含んでもよい。
 さらに、紫外線吸収層形成用組成物においては、上記以外の液状媒体(c)として、水/アルコールと混和することが可能なアルコール以外の他の液状媒体(c)を併用してもよい。
 上記紫外線吸収層形成用組成物に含まれる液状媒体(c)の量は、紫外線吸収層形成用組成物における全固形分濃度が3.5~50質量%となる量が好ましく、9~30質量%となる量がより好ましい。紫外線吸収層形成用組成物における液状媒体(c)の量を上記範囲とすることで、作業性が良好となる。
 紫外線吸収層形成用組成物は、上記必須成分以外に、任意成分として、錫ドープ酸化インジウム、アンチモンドープ酸化錫、および複合タングステン酸化物から選択される1種以上を含む赤外線吸収剤(d)を含有することが好ましい。ただし、この場合、赤外線吸収剤(d)は紫外線吸収剤(a)とキレート結合することで黄色に発色することがある。そこで、紫外線吸収層形成用組成物に、さらに分散剤(e)および、赤外線吸収剤(d)と錯体を形成しうるキレート剤(f)を配合し、赤外線吸収剤(d)の分散性を確保しながら、さらに赤外線吸収剤(d)と紫外線吸収剤(a)とのキレート結合を抑制することが好ましい。
<赤外線吸収剤(d)>
 赤外線吸収剤(d)は、複合タングステン酸化物、アンチモンドープ酸化錫(ATO)、および錫ドープ酸化インジウム(ITO)から選択される1種以上を含有する。なお、これら赤外線吸収剤(d)は、通常、微粒子の形状で用いられる。
 複合タングステン酸化物として、具体的には、一般式:M(ただし、M元素は、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1.0、2.2≦z/y≦3.0)で示される複合タングステン酸化物が挙げられる。上記一般式で示される複合タングステン酸化物においては、十分な量の自由電子が生成されるため赤外線吸収剤として有効に機能する。
 なお、上記複合タングステン酸化物微粒子の表面は、Si、Ti、Zr、Al等から選ばれる金属の酸化物で被覆されていることが、耐候性の向上の観点から好ましい。被覆方法は特に限定されないが、複合タングステン酸化物微粒子を分散した溶液中に、上記金属のアルコキシドを添加することで、複合タングステン酸化物微粒子の表面を被覆することが可能である。
 上記複合タングステン酸化物微粒子、ATO微粒子、およびITO微粒子は、赤外線吸収剤(d)として単独で使用してもよく、2種類以上を混合して使用してもよい。本発明においては、透過率損失および環境安全性の点からITO微粒子が好ましく用いられる。さらに、上記複合タングステン酸化物微粒子、ATO微粒子、およびITO微粒子から選ばれる少なくとも1種とこれら以外の赤外線吸収性の微粒子を組合せて赤外線吸収剤(d)として使用してもよい。
 赤外線吸収剤(d)の微粒子における平均一次粒子径は100nm以下が好ましく、より好ましくは50nm以下、特に好ましくは30nm以下である。
 平均一次粒子径を100nm以下とすれば、これを含む紫外線吸収層形成用組成物中で微粒子同士の凝集傾向が強まらず、微粒子の沈降を回避できる。また、紫外線吸収層形成用組成物により紫外線吸収層を形成した際に、散乱による曇りの発生(曇価(ヘイズ)の上昇)を抑制でき、透明性維持の点で上記粒子径とすることが好ましい。なお、平均一次粒子径の下限については特に限定されないが、現在の技術において製造可能な2nm程度の赤外線吸収剤(d)微粒子も使用可能である。ここで、微粒子の平均一次粒子径は、透過型電子顕微鏡による観察像から測定されるものをいう。
 紫外線吸収層形成用組成物における赤外線吸収剤(d)の含有量は、得られる紫外線吸収層が十分な赤外線吸収能を有するとともに、該層の機械的強度を確保する点から、バインダー成分(b)100質量部に対して1~80質量部であることが好ましく、5~60質量部であることがより好ましく、5~40質量部であることが特に好ましい。
 なお、上記紫外線吸収剤(a)が含有する紫外線吸収性有機化合物における光の極大吸収波長は、325~425nmの範囲にあり、概ね325~390nmの範囲にあるものが多い。このように、比較的長波長の紫外線に対しても吸収能を有する紫外線吸収性有機化合物は、その特性から好ましく用いられるが、これらの化合物は、フェノール性水酸基を有することで上記赤外線吸収剤(d)を構成する無機微粒子とキレート結合し黄色に発色しやすいと考えられる。本発明において紫外線吸収層形成用組成物は、分散剤(e)およびキレート剤(f)を含有することで、上記キレート結合を抑制し、紫外線吸収能を維持しつつ黄色の発色を防止することが可能である。
 ここで、上記のとおり赤外線吸収剤(d)微粒子の分散液における分散媒は、得られる紫外線吸収層形成用組成物において該組成物が含有する液状媒体(c)の一部を構成することになるため、上記液状媒体(c)と同様のまたは相溶性を有する化合物を分散媒として用いることが好ましい。
<分散剤(e)>
 紫外線吸収層形成用組成物に配合する分散剤(e)は、分子量1,000~100,000の分散剤(e)が好ましい。配合量は、上記赤外線吸収剤(d)100質量部に対して5~15質量部の割合となる量が好ましい。
 本明細書において分散剤(e)は、少なくとも分子中に、赤外線吸収剤(d)を構成する微粒子の表面と吸着する部位と、該微粒子に吸着した後は吸着した部位から分散媒(液状媒体(c)の一部となる)中に伸びてそれ自体が有する電荷の反発や立体的な障害により該微粒子を紫外線吸収層形成用組成物中に安定して分散させる部位を有することで、赤外線吸収剤(d)の微粒子の分散安定性を増大させる機能を有する化合物を総称するものである。分散剤(e)と後述のキレート剤(f)とはキレート剤(f)が赤外線吸収剤(d)の微粒子に吸着するものの分散安定性を増大させる機能を有しない点で相違する。
 分散剤(e)の分子量は、1,000~100,000が好ましく、1,500~100,000がより好ましく、2,000~100,000が特に好ましい。なお、分散剤(e)の分子量は、ゲル浸透クロマトグラフ(GPC)により測定される質量平均分子量である。本明細書において、特に断りのない限り、分子量は、ゲル浸透クロマトグラフ(GPC)によるポリスチレンを標準とする質量平均分子量(Mw)をいう。
<キレート剤(f)>
 赤外線吸収剤(d)と錯体を形成しうるキレート剤(f)としては、分子量が1,000~100,000であって、上記形成される錯体が可視光波長の光に対して実質的に吸収を示さないキレート剤(f)が好ましい。配合量は、上記赤外線吸収剤(d)100質量部に対して1~13質量部の割合となる量が好ましい。
 ここで、「実質的に吸収を示さない」とは、例えば、赤外線吸収剤(d)100質量部に対してキレート剤(f)を50質量部加えた液状組成物を、赤外線吸収剤(d)が基板上に0.7g/mの量で堆積するように基板上に成膜し、得られる被膜付き基板に対してJIS K7105(1981年)に基づいて測定したYIの値と、基板のみに対して測定したYIとの差が2.0以下となることを意味する。
 なお、本明細書においてキレート剤(f)とは、1分子で赤外線吸収剤(d)の微粒子の表面の複数箇所に配位結合できる化合物であって、分子構造に起因した微粒子への吸着後の立体障害が小さく、赤外線吸収剤(d)の微粒子の分散安定性を増大させる機能を有しない化合物を総称するものである。
 紫外線吸収層形成用組成物において、分散剤(e)は、赤外線吸収剤(d)の微粒子の表面に吸着する部分と分散媒(液状媒体(c)の一部となる)中に伸びて分散安定性を確保する部分とを有するものであって、該組成物における赤外線吸収剤(d)の微粒子の分散安定性が確保される適量が含有される。通常、このような分散剤(e)の適量は、必ずしも赤外線吸収剤(d)の微粒子の表面を十分に覆い、紫外線吸収剤(a)のキレート結合を抑制できる十分な量ではない。紫外線吸収層形成用組成物にキレート剤(f)を含有させれば、キレート剤(f)と分散剤(e)とが相まって赤外線吸収剤(d)の微粒子の表面を十分に覆うことができ、紫外線吸収剤(a)の赤外線吸収剤(d)微粒子へのキレート結合を十分に抑制できる。
 本発明に用いるキレート剤(f)は、上記赤外線吸収剤(d)と錯体を形成しうるキレート剤である。また、該形成される錯体が可視光波長の光に対して実質的に吸収を示さないものが好ましく、その分子量は1,000~100,000が好ましい。分子量は、1,500~100,000がより好ましく、2,000~100,000が特に好ましい。キレート剤(f)の分子量が上記範囲にあれば、分散剤(e)とともに赤外線吸収剤(d)微粒子の表面に吸着、配位して、赤外線吸収剤(d)の微粒子に紫外線吸収剤(a)がキレート結合するのを十分に抑制できる量、具体的には、赤外線吸収剤(d)100質量部に対して1~13質量部を用いても、紫外線吸収層形成後にキレート剤(f)が該層からブリードアウトすることや、分子に対して吸着点が少なくなること、さらには、紫外線吸収層の硬度が低下することも殆どない。
 紫外線吸収層形成用組成物におけるキレート剤(f)の含有量は、上記赤外線吸収剤(d)100質量部に対して1~13質量部の割合が好ましく、上記分散剤(e)の含有量に合わせて、上記範囲内で適宜調整すればよい。キレート剤(f)の上記含有量は、上記分子量のキレート剤(f)を上記分散剤(e)とともに使用した場合に、紫外線吸収層形成用組成物において赤外線吸収剤(d)の微粒子に紫外線吸収剤(a)がキレート結合するのを十分に抑制しながら、得られる紫外線吸収層からキレート剤(f)のブリードアウトが発生しにくい量である。
 キレート剤(f)は、上記赤外線吸収剤(d)の微粒子と分散剤(e)と分散媒(液状媒体(c)の一部となる)を含む分散液に含有されてもよいが、通常、該分散液とは別に準備される紫外線吸収剤(a)やバインダー成分(b)が液状媒体(c)に溶解した溶液に含有されることが、赤外線吸収剤(d)と紫外線吸収剤(a)のキレート結合を効率よく抑制する点から好ましい。
 キレート剤(f)は、液状媒体(c)の種類により適宜選択される。上記のとおり液状媒体(c)は水/アルコールを含有することから、これらの極性溶媒に可溶なキレート剤(f)が好ましい。
 このようなキレート剤(f)として、具体的には、マレイン酸、アクリル酸およびメタクリル酸から選択される1種以上を単量体として得られる、好ましくは上記分子量の範囲の重合体等が挙げられる。重合体は、ホモポリマーであってもよくコポリマーであってもよい。本発明においては好ましくは、ポリマレイン酸、ポリアクリル酸が用いられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
(紫外線吸収層)
 本発明の防曇性物品における紫外線吸収層は、上記紫外線吸収層形成用組成物を被形成面、通常は基体表面に塗布し乾燥、バインダー成分(b)を他の反応性成分とともに反応硬化させることで得られる。紫外線吸収層は、酸化ケイ素マトリックスを主体とするマトリックスが非反応成分を包含する形で構成される。紫外線吸収層は紫外線遮蔽機能を有し、任意に赤外線吸収機能を有しながら、無色透明性が確保され、さらに耐候性にも優れ、ブリードアウトの発生が抑制された層である。
 紫外線吸収層の厚みは、1.0~7.0μmであることが好ましく、より好ましくは1.5~5.5μmである。紫外線吸収層の厚みが1.0μm未満であると、紫外線吸収や任意に有する赤外線吸収の効果が不十分となることがある。また、紫外線吸収層の厚みが7.0μmを越えるとクラックが発生することがある
 本発明の防曇性物品は、以下に説明する吸水下地層の基体側に紫外線吸収層を有することで、主として基体側から入射する紫外線を含む日光等の光に対して吸水下地層およびその基体と反対側に配設される吸水層が保護され耐候性に優れる防曇性物品となる。また、紫外線遮蔽効果にも優れた防曇性物品となる。なお、紫外線吸収層形成用組成物を用いた紫外線吸収層の形成条件については後述の製造方法において説明する。
(3)吸水下地層
 上記防曇膜が有する下地層は、該下地層の上、すなわち下地層の基体側とは反対側に形成される吸水層を構成する吸水材料より低吸水性の第2の硬化樹脂を主体とする下地材料からなる層である。ここで、吸水性が低いとは吸水層を構成する吸水材料との比較において吸水性が低いことを意味する。
 下地層を構成する下地材料は、飽和吸水量が10mg/cm以下であることが好ましく、8mg/cm以下がより好ましく、7mg/cm以下が特に好ましい。なお、飽和吸水量は、具体的には以下の方法で測定される材料の吸水性能を測る物性値である。下地層を構成する下地材料の飽和吸水量を上記の値に設定すれば、吸水層および下地層と、これらの基体側に位置する層との接着界面において膨張・収縮の程度差を小さくし密着性を確保しやすくなる。一方、防曇膜内での下地層と吸水層との膨張・収縮の程度差を小さくする観点から、下地層を構成する下地材料の飽和吸水量は、1mg/cm以上が好ましく、3mg/cm以上がより好ましい。
(飽和吸水量の測定方法)
 所定の大きさ、例えば、3cm×4cm×厚さ2mmのソーダライムガラス基体に検体となる材料の層(以下「材料層」)を設け、これを10℃、95~99%RHの環境の恒温恒湿槽に2時間放置し、取り出し後、微量水分計を用いて材料層付き基体全体の水分量(I)を測定する。さらに、上記基体のみについて同様の手順で水分量(II)を測定する。上記水分量(I)から水分量(II)を引いた値を材料層の体積で除した値を飽和吸水量とする。なお、水分量の測定は、微量水分計FM-300(商品名、ケット科学研究所社製)によって次のようにして行う。測定サンプルを120℃で加熱し、サンプルから放出された水分を微量水分計内のモレキュラーシーブスに吸着させ、モレキュラーシーブスの質量変化を水分量として測定する。また、測定の終点は、25秒間当たりの質量変化が0.05mg以下となった時点とする。
 なお、飽和吸水量は下地層を構成する下地材料の吸水性を示す指標であるが、下地層を構成する下地材料と層の厚さによる下地層自体の吸水性を示す指標として、本明細書においては、必要に応じて、以下に定義する「吸水防曇性」を用いるものである。
 吸水防曇性は、上記と同様に準備された材料層付き基体を、25℃、50%RHの環境下に1時間放置した後、該材料層の表面を35℃の温水浴上に翳した際の、目視において曇りが認められるまでの防曇時間(秒)で示される。
 本発明の防曇性物品に設けられる下地層の吸水性について、上記吸水防曇性を指標として示せば、該下地層の吸水防曇性は10秒以下が好ましく、7秒以下がより好ましく、3秒以下が特に好ましい。なお、上記飽和吸水量と同様、防曇膜内で下地層と吸水層との膨張・収縮の程度差を小さくする観点から、吸水防曇性は1秒以上が好ましく、2秒以上がより好ましい。
 上記下地層を構成する下地材料の飽和吸水量と下地層の吸水防曇性との関係から、本発明の防曇性物品に係る下地層の厚みは、2μm以上が好ましく、より好ましくは3μm以上であり、さらに4μm以上が特に好ましい。下地層の厚みが2μm以上であれば、下地層の基体側の層から下地層が剥離するのを防ぐことが可能となる。また、吸水層の膨張・収縮に起因して界面に発生する応力を緩和するという理由から、下地層の厚みは、より好ましくは3μm以上であり、さらに4μm以上であることが特に好ましい。また、下地層の厚みは、材料コスト低減と良品率向上の観点から、8μm以下が好ましく、6μm以下がより好ましい。
 ここで、防曇性物品において下地層に求められる耐剥離性は用途により異なるため、求められる性能に即して適宜設計を変更すればよい。
 下地層を構成する下地材料は、第2の硬化樹脂を主体とする材料である。ここで、本明細書において硬化樹脂は、硬化性の原料成分が硬化して得られる硬化物をいう。硬化樹脂の原料成分は、少なくとも硬化性成分を含み、さらに硬化剤を含むことが好ましい。硬化剤としては、硬化樹脂の種類によるが、通常、重付加型硬化剤、縮合型硬化剤、触媒型硬化剤等が用いられる。
 第2の硬化樹脂としては、第2の硬化エポキシ樹脂、第2のウレタン樹脂および第2の架橋アクリル樹脂等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。なお、以下の説明において、第2の硬化樹脂において、硬化性成分および硬化剤を言う場合は全て「第2の…」という。
 第2の硬化エポキシ樹脂は、例えば、第2のポリエポキシド成分と第2の硬化剤を含む組成物の反応により得られる。第2のウレタン樹脂は、例えば、第2のポリイソシアネートと第2のポリオールを含む組成物の反応により得られる。第2の架橋アクリル樹脂は、例えば、第2の架橋性(メタ)アクリルポリマーと第2のアクリル樹脂用硬化剤とを含む組成物の反応により得られる。
 本明細書において、ポリエポキシドとは、1分子中に2個以上のエポキシ基を有する化合物をいう。ポリエポキシドは低分子化合物、オリゴマー、ポリマーを含む。ポリエポキシド成分は少なくとも1種のポリエポキシドから構成される硬化性成分である。
 また、硬化エポキシ樹脂の硬化剤は、ポリエポキシドの有するエポキシ基と反応する反応性基を1分子中に2個以上有する化合物であって、反応によりポリエポキシドに重付加するタイプの重付加型硬化剤、反応によりポリエポキシドと重縮合するタイプの縮合型硬化剤、および、ルイス酸等の反応触媒であって、ポリエポキシド同士の重合反応を触媒する触媒型硬化剤を包含する用語として用いる。なお、触媒型硬化剤には熱硬化型と光硬化型があるがこれを合わせて触媒型硬化剤という。
 硬化エポキシ樹脂は、ポリエポキシドが重付加型硬化剤等により架橋し3次元化した構造、および/またはポリエポキシド同士が線状または3次元的に重合した構造を有する。
 本発明の防曇性物品においては、吸水層が第1の硬化エポキシ樹脂を主体とする層であり、下地層が第2の硬化エポキシ樹脂を主体とする層であることが好ましい。
(第2の硬化エポキシ樹脂)
 第2の硬化エポキシ樹脂の原料成分としては、第2の硬化性成分である第2のポリエポキシド成分と第2の硬化剤の組合せが好ましい。第2の硬化剤としては、第2の重付加型硬化剤および/または第2の触媒型硬化剤が好ましい。
<第2のポリエポキシド成分>
 第2の硬化エポキシ樹脂に用いる第2のポリエポキシド成分としては、得られる下地材料の吸水性が上記好ましい範囲となるように、通常、硬化エポキシ樹脂の原料成分として用いられるグリシジルエーテル系ポリエポキシド、グリシジルエステル系ポリエポキシド、グリシジルアミン系ポリエポキシド、環式脂肪族ポリエポキシド等から適宜選択したポリエポキシドを用いることが可能である。
 第2のポリエポキシド成分として用いるポリエポキシドについて、その分子量は特に制限されないが、下地層形成用組成物として基体上に塗布する際の濡れ広がりの不足、塗膜の凹凸化などの外観不良回避の観点から、概ね200~2000程度の分子量のポリエポキシドが好ましい。また、第2のポリエポキシド成分におけるポリエポキシドの1分子当たりのエポキシ基の数は、平均して2個以上であれば特に制限されないが、2~10個であることが好ましく、2~8個がより好ましく、2~6個がさらに好ましい。
 第2のポリエポキシド成分としては、脂肪族ポリエポキシド、脂環族ポリエポキシド、芳香族ポリエポキシドのいずれであってもよいが、例えば、芳香族ポリエポキシドを選択することにより、得られる下地材料の3次元網目構造を硬く、また空間を小さくすることで吸水性を低くすることが可能である。脂肪族または脂環族(以下、「脂肪族/脂環族」と示す)ポリエポキシドであっても架橋点(3次元網目構造の分岐点)の数を多くすれば、得られる下地材料が緻密な3次元網目構造となり、保水のための空間が小さくなるため吸水性が低くなると考えられる。
 第2のポリエポキシド成分として用いる脂肪族/脂環族ポリエポキシドとして、具体的には、脂肪族/脂環族ポリオール類由来の脂肪族/脂環族グリシジルエーテル系ポリエポキシド、脂肪族/脂環族グリシジルエステル系ポリエポキシド、脂肪族/脂環族グリシジルアミン系ポリエポキシド等が挙げられる。脂肪族/脂環族ポリオール類由来の脂肪族/脂環族グリシジルエーテル系ポリエポキシドが好ましい。
 上記本発明に好ましく用いられる脂肪族/脂環族グリシジルエーテル系ポリエポキシドとして、具体的には、グリセロールポリグリリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリエチレングリコールポリグリシジルエーテル、ポリエチレングリコールソルビトールポリグリシジルエーテル、ポリソルビトールポリグリシジルエーテルが挙げられる。
 脂環族ポリエポキシドは、環の隣接した炭素原子間に酸素原子が結合した脂環族炭化水素基(2,3-エポキシシクロヘキシル基等)を有するポリエポキシドであり、具体的には、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート等が挙げられる。
 上記第2のポリエポキシド成分として用いる芳香族ポリエポキシドとして、好ましくは、フェノール性水酸基がグリシジルオキシ基に置換した構造のポリエポキシドが挙げられる。具体的には、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビス(4-グリシジルオキシフェニル)等のビスフェノール型ジグリシジルエーテル類、フェノールノボラック型ジグリシジルエーテル類、クレゾールノボラック型ジグリシジルエーテル類、フタル酸ジグリシジルエステル等の芳香族ポリカルボン酸ポリグリシジルエステル類等が挙げられる。これらの芳香族ポリエポキシドのうちでは、第2のポリエポキシド成分として、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテルが好ましく用いられる。
 第2のポリエポキシド成分において、得られる下地材料の架橋点の数を多くして吸水性を低く制御するためには、例えば、第2のポリエポキシド成分が脂肪族ポリオール類由来の脂肪族グリシジルエーテル系ポリエポキシドである場合には、そのエポキシ当量(1グラム当量のエポキシ基を含む樹脂のグラム数[g/eq]、以下、単位は省略する。)は、100~200であることが好ましく、150~200であることがより好ましい。
 第2のポリエポキシド成分はこれらのポリエポキシドの1種から構成されてもよく、2種以上から構成されてもよい。
<第2の硬化剤>
 下地層を主として構成する第2の硬化エポキシ樹脂は、上記第2のポリエポキシド成分と、第2の重付加型硬化剤とを反応させて得られる第2の硬化エポキシ樹脂が好ましい。また、この第2の重付加型硬化剤に第2の触媒型硬化剤を併用することも可能である。
 第2の重付加型硬化剤としては、例えば、芳香環を有する重付加型硬化剤を選択することにより、得られる硬化エポキシ樹脂の吸水性を低くすることが可能である。下地層に求められる吸水性の程度によるが、上記第2のポリエポキシド成分と第2の重付加型硬化剤のうち少なくともどちらか一方に芳香環を有する化合物を用いれば、得られる第2の硬化エポキシ樹脂を主体とする下地材料の吸水性を上記所望の範囲とすることができる。
 また、第2のポリエポキシド成分として芳香環を有しないポリエポキシドを用い、さらに第2の重付加型硬化剤として芳香環を有しない重付加型硬化剤を用いた場合であっても、架橋点が多くなるように組合せる等により、得られる第2の硬化エポキシ樹脂を主体とする下地材料の吸水性を上記所望の範囲とすることができる。さらに、このようにして得られる芳香環を有しない第2の硬化エポキシ樹脂においては、芳香環を有する第2の硬化エポキシ樹脂に比べて耐候性の点で優れている。
 上記芳香環を有しない第2の重付加型硬化剤としては、芳香環を有しないポリアミン類やポリカルボン酸無水物、ポリチオール類が好ましく、特に芳香環を有しないポリアミン類が好ましい。
 芳香環を有しないポリアミン類としては、脂肪族ポリアミン化合物や脂環式ポリアミン化合物が挙げられる。これらのポリアミン類として、具体的には、エチレンジアミン、トリエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンジアミン、ポリオキシアルキレンポリアミン、イソホロンジアミン、メンセンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン等が挙げられる。
 また、芳香環を有する重付加型硬化剤としては、芳香環を有するポリアミン、芳香族ポリカルボン酸無水物等が挙げられる。具体的な芳香環を有するポリアミンとしては、例えば、フェニレンジアミン、キシリレンジアミン、ジアミノジフェニルメタン等が挙げられ、芳香族ポリカルボン酸無水物としては、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸等が挙げられる。
 第2の硬化エポキシ樹脂の原料成分である第2の硬化剤として、好ましくは、上記第2の重付加型硬化剤とともに用いられる第2の触媒型硬化剤としては、ルイス酸等の反応触媒であって、ポリエポキシド同士の重合反応を触媒する触媒型硬化剤であれば特に制限なく使用できる。
 第2の触媒型硬化剤を用いることにより、第2のポリエポキシド成分同士の重合反応による架橋の速度を加速する効果や、架橋部位に発生する不具合を低減する効果が得られる。架橋部位の不具合の一例としては、熱負荷による架橋部位の変質による、硬化エポキシ樹脂の発色が挙げられる。
 第2の触媒型硬化剤として、具体的には、3級アミン化合物、イミダゾール化合物、ルイス酸類、オニウム塩類、ジシアンジアミド化合物、有機酸ジヒドラジド化合物、ホスフィン類等の硬化触媒が挙げられる。より具体的には、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、トリス(ジメチルアミノメチル)フェノール、三フッ化ホウ素-アミン錯体、p-トルエンスルホン酸メチル、ジフェニルヨードニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロホスフェート等が挙げられる。第2の触媒型硬化剤としては、これらの1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明に用いる、第2の触媒型硬化剤としては、これらのうちでも、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール化合物が好ましい。
 本発明に用いる第2の硬化エポキシ樹脂の原料成分である上記第2のポリエポキシド成分と上記第2の硬化剤の配合割合は、第2の硬化剤として第2の重付加型硬化剤を用いる場合、第2のポリエポキシド成分由来のエポキシ基に対する第2の重付加型硬化剤の反応性基の当量比が0.8~1.5程度になる割合であることが好ましく、1.0~1.5程度がより好ましい。エポキシ基に対する重付加型硬化剤の反応性基の当量比が上記範囲であれば、反応温度を上げて重付加反応を加速することなしに室温にて十分に多くの架橋点で架橋して緻密な3次元網目構造を有する、第1の硬化エポキシ樹脂と比較して吸水性の低い第2の硬化エポキシ樹脂が得られる。
 また、本発明において上記第2の重付加型硬化剤として活性水素を有するアミノ化合物を用いる場合には、第2のポリエポキシド成分由来のエポキシ基に対するアミン活性水素の当量比が0.5~1.5になる割合となるように用いることが好ましく、0.8~1.5になる割合となるように用いることがより好ましい。上記同様、エポキシ基に対するアミン活性水素の当量比が上記範囲であれば、反応温度を上げて重付加反応を加速することなしに十分に多くの架橋点で架橋して緻密な3次元網目構造を有する、第1の硬化エポキシ樹脂と比較して吸水性の低い第2の硬化エポキシ樹脂が得られる。
 第2の触媒型硬化剤の使用量は、第2のポリエポキシド成分100質量%に対して1.0~20質量%が好ましく、1~10質量%がより好ましく、1~5質量%が特に好ましい。第2のポリエポキシド成分100質量%に対する第2の触媒型硬化剤の使用量を1.0質量%以上とすれば、反応が十分に進行し、得られる下地材料において、耐湿性や耐薬品性等の十分な耐久性が実現できる。また、第2のポリエポキシド成分100質量%に対する第2の触媒型硬化剤の使用量が20質量%以下であれば、得られる第2の硬化エポキシ樹脂中に第2の触媒型硬化剤の残渣が存在して硬化エポキシ樹脂が黄変する等の外観上の問題の発生を抑制しやすい。
 以上、第2の硬化エポキシ樹脂について説明したが、第2のウレタン樹脂および第2の架橋アクリル樹脂においても、それを主体とする下地材料とした際に、吸水材料より低吸水性の、好ましくは、飽和吸水量が10mg/cm以下となるように、樹脂毎に硬化性成分と硬化剤を適宜選択して組合せることで、第2の硬化樹脂が得られる。
 下地層は、第2の硬化樹脂、好ましくは第2の硬化エポキシ樹脂を主体とする下地材料からなり、例えば、少なくとも第2の硬化樹脂の原料成分である第2の硬化性成分と第2の硬化剤、好ましくは第2のポリエポキシド成分と第2の硬化剤とを含有する下地層形成用組成物を用いて形成することができる。
 通常、上記第2の硬化樹脂、好ましくは第2の硬化エポキシ樹脂を主体とする下地材料を得るための下地層形成用組成物を用いた反応は、下地層形成用組成物を塗布面に塗布後行われるが、上記組成物が溶媒を含む場合には、塗布面に塗布する前の組成物中で下地層形成用組成物が含有する上記反応性成分を予めある程度反応させ、その後塗布面に塗布し、乾燥後、さらに反応させてもよい。このように下地層形成用組成物として溶媒中で、上記反応性成分を予めある程度反応させる場合には、予め反応させるときの反応温度は、30℃以上とすれば硬化反応が確実に進行するため好ましい。
 下地層形成用組成物に用いる溶媒としては、エタノール、アセトン、メチルエチルケトン、プロピレングリコールモノメチルエーテルを使用することが好ましい。
 また、下地層形成用組成物における溶媒の量は、溶媒100質量%に対する第2の硬化樹脂原料やその他各種配合成分を含む全固形分の割合が5~50質量%となる量が好ましく、5~25質量%がより好ましい。
 ここで、第2の硬化樹脂として第2の硬化エポキシ樹脂を用いた場合、下地層形成用組成物における第2のポリエポキシド成分および第2の重付加型硬化剤、さらに必要に応じて配合される第2の触媒型硬化剤の配合量は、第2のポリエポキシド成分については組成物全量に対して4~10質量%であることが好ましく、第2の重付加型硬化剤については組成物全量に対して0.1~4.0質量%であることが好ましい。なお、第2の硬化剤として、第2の重付加型硬化剤と第2の触媒型硬化剤を用いる場合にはその合計量が組成物全量に対して0.1~4.0質量%であることが好ましい。
(その他の成分)
<カップリング剤>
 下地層形成用組成物においてカップリング剤は、下地層と該層に接する層との密着性を向上させる目的で配合される成分であり、配合することが好ましい成分のひとつである。
 用いるカップリング剤としては、有機金属系カップリング剤または多官能の有機化合物が好ましく、有機金属系カップリング剤が特に好ましい。有機金属系カップリング剤は、金属原子-炭素原子間の結合を1個以上有する化合物であり、金属原子-炭素原子間の結合は、1個または2個が好ましい。有機金属系カップリング剤としては、例えば、シラン系カップリング剤(以下、シランカップリング剤という)、チタン系カップリング剤、アルミニウム系カップリング剤が挙げられ、シランカップリング剤が好ましい。これらカップリング剤は、第2の硬化樹脂の原料成分が有する反応性基および、下地層が接する層、例えば、紫外線吸収層の表面に残存する反応性基と反応し得る反応性基を有することが好ましい。なお、このような反応性基を有することで各層間の密着性を向上させる目的以外に、下地層の物性を調整する目的でも使用できる。
 下地層形成用組成物におけるカップリング剤の配合量は、必須の成分でないことから下限はない。しかし、カップリング剤配合の効果を十分に発揮させるためには、下地層形成用組成物における第2の硬化樹脂の原料成分、例えば、第2のポリエポキシド成分、第2の重付加型硬化剤および第2の触媒型硬化剤の合計質量100質量%に対して、カップリング剤の質量割合が5~40質量%であることが好ましく、10~30質量%がより好ましい。
<テトラアルコキシシラン化合物>
 下地層形成用組成物が任意に含有するテトラアルコキシシランおよび/またはそのオリゴマー(すなわち、その部分加水分解(共)縮合物。本明細書において、これらを合わせてテトラアルコキシシラン化合物という。)は、その配合により下地層形成用組成物の粘度を低下させ、第2の硬化樹脂の原料成分である硬化性成分と硬化剤、好ましくは第2のポリエポキシド成分と第2の硬化剤との硬化反応を均一に行わせることができる成分であり、好ましく用いられる。また、下地層が接する層との反応点が増えて、密着性が一層向上する。これにより、得られる下地層の耐候性を高めることができる。
 テトラアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラノルマルプロポキシシラン、テトラノルマルブトキシシシラン等が挙げられる。これらのうちでも、テトラメトキシシラン、テトラエトキシシランが好ましい。これらは、1種が単独で用いられてもよく、2種が併用されてもよい。さらに上記テトラアルコキシシランは、その2~3個程度が部分加水分解(共)縮合して得られるオリゴマーとして下地層形成用組成物に配合してもよく、テトラアルコキシシランとそのオリゴマーの混合物として下地層形成用組成物に配合してもよい。
 下地層形成用組成物に配合されるテトラアルコキシシランおよび/またはそのオリゴマーの量については、第2の硬化樹脂の原料成分の合計質量、例えば、第2の硬化樹脂として第2の硬化エポキシ樹脂を用いた場合、第2のポリエポキシド成分および第2の硬化剤の合計質量100質量%に対して、10~40質量%が好ましく、25~35質量%がより好ましい。
<フィラー>
 下地層形成用組成物は、さらに任意成分としてフィラーを含有してもよい。フィラーを含むことによって、形成される下地層の機械的強度、耐熱性、ブリードアウト耐性を高めることができ、また硬化反応時の樹脂の硬化収縮を低減できる。このようなフィラーとしては、金属酸化物からなるフィラーが好ましい。金属酸化物としては、例えば、シリカ、アルミナ、チタニア、ジルコニアが挙げられ、なかでもシリカが好ましい。これらは、1種が単独で用いられてもよく、2種以上が併用されてもよい。
 下地層形成用組成物が含有するこれらフィラーは粒子状であることが好ましい。その平均一次粒子径は300nm以下が好ましく、100nm以下がより好ましく、50nm以下が特に好ましい。平均一次粒子径を300nm以下とすれば、これを含む組成物中で粒子同士の凝集傾向が強まらず、粒子の沈降を回避できる。また、これを含む組成物により下地層を形成した際に、散乱による曇り(曇価(ヘイズ))の発生を抑制でき、透明性維持の点で上記粒子径とすることが好ましい。なお、平均一次粒子径の下限については特に限定されないが、現在の技術において製造可能な2nm程度の粒子も使用可能である。ここで、粒子の平均一次粒子径は、透過型電子顕微鏡による観察像から測定されるものをいう。
 また、フィラーの含有量は、第2の硬化樹脂の原料成分の合計質量に対して0.5~25質量%であることが好ましく、1~20質量%がより好ましい。第2の硬化樹脂の原料成分の100質量%に対するフィラーの含有量を0.5質量%以上とすれば、下地材料における硬化収縮の低減効果の低下を抑え易い。また、第2の硬化樹脂の原料成分の100質量%に対するフィラーの含有量を25質量%以下とすれば、吸水するための空間を適度に調整できる。
<酸化防止剤>
 下地層形成用組成物は、得られる下地層の耐候性を高めるために、任意成分として、酸化防止剤を含むことが好ましい。熱や光に晒されて下地層を構成する下地材料が酸化し変質がおこれば下地層に応力蓄積が発生しやすくなり、それにより容易に防曇膜の剥離がおこる。酸化防止剤を添加することにより、このような現象を抑制することが可能となる。
 酸化防止剤としては、ペルオキシラジカルを捕捉、分解することで樹脂の酸化を抑制するタイプのフェノール系酸化防止剤、過酸化物を分解することで樹脂の酸化を抑制するタイプのリン系酸化防止剤、イオウ系酸化防止剤等が挙げられるが、本発明においてはフェノール系酸化防止剤を用いることが好ましい。
<紫外線吸収剤>
 下地層形成用組成物は、得られる下地層の耐候性、特に紫外線に対する耐性を高めるために、任意成分として、紫外線吸収剤を含有してもよい。紫外線吸収剤としては、従来公知の紫外線吸収剤、具体的には、ベンゾフェノン系化合物、トリアジン系化合物、ベンゾトリアゾール系化合物等が挙げられる。
 本発明において、これら紫外線吸収剤は1種を単独で用いることも、2種以上を併用することも可能である。また、これら紫外線吸収剤のうちでも本発明に用いる下地層形成用組成物においては、溶媒への溶解度および吸収波長帯が望ましいことから上記例示したような水酸基含有ベンゾフェノン系紫外線吸収剤、水酸基含有トリアジン系紫外線吸収剤が好ましく用いられる。
 下地層形成用組成物における紫外線吸収剤の含有量は、これを用いて形成される下地層が本発明の効果を損なわずにかつ十分な紫外線耐性を有する点から、第2の硬化樹脂の原料成分の100質量%に対して、0.1~1.0質量%が好ましく、0.2~0.8質量%がより好ましい。
<赤外線吸収剤>
 下地層形成用組成物は、得られる下地層に赤外線遮蔽による断熱効果を持たせるために、任意成分として、赤外線吸収剤を含有してもよい。赤外線吸収剤としては、無機化合物粒子からなる赤外線吸収剤や有機色素からなる赤外吸収剤等が挙げられる。
 赤外線吸収剤として用いられる無機化合物粒子のうちでも、本発明においては、錫ドープ酸化インジウム(ITO)粒子、アンチモンドープ酸化錫(ATO)粒子、複合タングステン酸化物、六ホウ化ランタン(LaB)等が好ましい。本発明においては、透過率損失および環境安全性の点からITO粒子が好ましく用いられる。これらは、1種が単独で用いられてもよく、2種以上が併用されてもよい。
 下地層形成用組成物における赤外線吸収剤の含有量は、これを用いて形成される下地層が本発明の効果を損なわずにかつ十分な赤外線遮蔽による断熱効果を有する点から、第2の硬化樹脂の原料成分の100質量%に対して、0.1~20質量%が好ましく、0.2~15質量%がより好ましい。
<光安定剤>
 下地層形成用組成物は、得られる下地層に光安定性を持たせるために、任意成分として、光安定剤を含有してもよい。光安定剤としては、ヒンダードアミン類;ニッケルビス(オクチルフェニル)サルファイド、ニッケルコンプレクス-3,5-ジ-tert-ブチル-4-ヒドロキシベンジルリン酸モノエチラート、ニッケルジブチルジチオカーバメート等のニッケル錯体等が挙げられる。本発明において、これら光安定剤は1種を単独で用いることも、2種以上を併用することも可能である。
 これらのうちでも、本発明に用いる光安定剤としては、ヒンダードアミン類が好ましく、アミン部位がアルキル基あるいはアルコキシ基でキャップされたヒンダードアミン系光安定剤が好ましい。
 下地層形成用組成物における光安定剤の含有量は、これを用いて形成される下地層が本発明の効果を損なわずにかつ十分な光安定性を有する点から、第2の硬化樹脂の原料成分の100質量%に対して、0.1~1.0質量%が好ましく、0.2~0.8質量%がより好ましい。
 下地層形成用組成物が、必要に応じて含有する、レベリング剤、消泡剤、粘性調整剤等の添加剤は、通常、硬化エポキシ樹脂、ウレタン樹脂、架橋アクリル樹脂等の硬化樹脂が含有する各添加剤がそれぞれ特に制限なく使用可能である。これらは、1種が単独で用いられてもよく、2種以上が併用されてもよい。
 下地層形成用組成物中の各添加剤の含有量は、それぞれの成分について、第2の硬化樹脂の原料成分の100質量%に対して、0.001~10質量%とすることができる。
(下地層)
 本発明の防曇性物品における下地層は、例えば、上記下地層形成用組成物を用いて形成される層である。下地層は、下地層形成用組成物が含有する第2の硬化樹脂の原料成分、さらに別の反応性成分が含まれる場合には、第2の硬化樹脂の原料成分および別の反応成分が反応して、該組成物が含有する非反応成分を取りこむようにして得られる下地材料により構成される。このような下地材料で構成されることにより下地層は、吸水層よりも低い吸水性を有するとともに該層が接する層との密着性および吸水層との密着性が十分確保されることで耐剥離性に優れる層である。なお、下地層形成用組成物を用いた下地層の形成条件については、後述の製造方法において説明する。
(4)吸水層
 本発明の実施形態に係る防曇膜を構成する吸水層は、上記下地層の上、すなわち下地層の基体側とは反対側の主面上に形成される第1の硬化樹脂を主体とする吸水材料からなる層である。該吸水材料は、上記下地層で説明した方法で測定される飽和吸水量が50mg/cm以上と上記下地層を構成する下地材料より高い吸水性を有し、それにより防曇膜が優れた吸水性を有する。
 吸水層を構成する吸水材料の飽和吸水量は、70mg/cm以上が好ましく、100mg/cm以上が特に好ましい。防曇膜における防曇性を十分に確保する観点から、吸水層を構成する吸水材料の飽和吸水量を上記の値に設定することが好ましい。一方、防曇膜の耐久性が低くなるのを防ぐ観点から、吸水層を構成する吸水材料の飽和吸水量は、900mg/cm以下が好ましく、500mg/cm以下がより好ましい。
 本発明の防曇性物品に設けられる防曇膜を構成する吸水層の吸水性について、上記下地層で説明した吸水防曇性を指標として示せば、該吸水層の吸水防曇性は50秒以上が好ましく、70秒以上がより好ましく、100秒以上が特に好ましい。
 上記吸水層を構成する吸水材料の飽和吸水量と吸水層の吸水防曇性との関係から、本発明の防曇性物品に係る吸水層の厚みは、5μm以上であることが好ましく、10μm以上であることがより好ましい。これにより、防曇膜全体として高い吸水性が確保し易くなる。一方、防曇膜の耐久性が低くなるのを防ぐ観点から、吸水層の厚みは、40μm以下が好ましく、30μm以下がより好ましく、25μm以下が特に好ましい。また、同様の観点から、吸水層の厚みは下地層の厚みの5倍以下であることが好ましい。吸水層の厚みは下地層の厚みの2~5倍であることが特に好ましい。
 ここで、防曇性物品の求められる防曇性能は用途により異なるため、求められる性能に即して適宜設計を変更すればよい。
 吸水層を構成する吸水材料は、第1の硬化樹脂を主体とする。第1の硬化樹脂としては、第1の硬化エポキシ樹脂、第1のウレタン樹脂および第1の架橋アクリル樹脂から選ばれる少なくとも1種が好ましい。吸水層を構成する吸水材料は、第1の硬化樹脂の原料成分を固形分の主成分として含有する吸水層形成用組成物を用いて得られる。言い換えれば、吸水層は、該吸水層形成用組成物を用いて形成される。
 吸水材料は第1の硬化樹脂のみで構成されてもよく、本発明の効果を損なわない範囲で第1の硬化樹脂以外の成分を含んでいてもよい。吸水層形成用組成物は、固形成分として第1の硬化樹脂の原料成分を含有し、任意にそれ以外の固形成分を含有する。第1の硬化樹脂の原料成分以外の固形成分は、反応性成分、例えば、第1の硬化樹脂の原料成分に反応性の成分であってもよく、非反応性の成分であってもよい。
(第1の硬化樹脂の原料成分)
 吸水層形成用組成物は第1の硬化樹脂の原料成分を含有する。
 第1の硬化樹脂としては、第1の硬化エポキシ樹脂、第1のウレタン樹脂および第1の架橋アクリル樹脂等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。なお、以下の説明において、第1の硬化樹脂において、硬化性成分および硬化剤を言う場合は全て「第1の…」という。
 第1の硬化エポキシ樹脂は、例えば、第1のポリエポキシド成分と第1の硬化剤を含む組成物の反応により得られる。第1のウレタン樹脂は、例えば、第1のポリイソシアネートと第1のポリオールを含む組成物の反応により得られる。第1の架橋アクリル樹脂は、例えば、第1の架橋性(メタ)アクリルポリマーと第1のアクリル樹脂用硬化剤とを含む組成物の反応により得られる。第1の硬化樹脂としては、第1の硬化エポキシ樹脂が好ましい。
(第1の硬化エポキシ樹脂)
 第1の硬化エポキシ樹脂の原料成分としては、第1の硬化性成分である第1のポリエポキシド成分と第1の硬化剤の組合せが好ましい。第1の硬化剤としては、第1の重付加型硬化剤を用いることが好ましく、さらに第1の重付加型硬化剤と第1の触媒型硬化剤を組合せて用いることがより好ましい。すなわち、第1の硬化エポキシ樹脂は、第1のポリエポキシド成分と第1の重付加型硬化剤を反応させて得られる、第1のポリエポキシドが第1の重付加型硬化剤により架橋し3次元化した構造を有する樹脂であることが好ましい。さらに、第1のポリエポキシド成分と第1の重付加型硬化剤および第1の触媒型硬化剤を反応させて得られる第1の硬化エポキシ樹脂がより好ましい。
<第1のポリエポキシド成分>
 第1のポリエポキシド成分を構成するポリエポキシドとしては、芳香環を有しないポリエポキシド、すなわち脂肪族/脂環族ポリエポキシドが、得られる硬化エポキシ樹脂において高い吸水性が得られる点から好ましい。
 第1のポリエポキシド成分としては特に脂肪族ポリエポキシドが好ましい。脂肪族ポリエポキシドとして、具体的には、脂肪族グリシジルエーテル系ポリエポキシド、脂肪族グリシジルエステル系ポリエポキシド、脂肪族グリシジルアミン系ポリエポキシド等が挙げられる。これらのうちでも、脂肪族ポリオール類由来の脂肪族グリシジルエーテル系ポリエポキシドが第1のポリエポキシド成分として好ましい。
 第1のポリエポキシド成分を構成するポリエポキシドの分子量としては、耐久性、外観等の観点から200~3000が好ましく、300~2000がより好ましく、300~1800が特に好ましい。また、第1のポリエポキシド成分における1分子当たりのエポキシ基の数は、平均して2個以上であれば特に制限されないが、2~10個であることが好ましく、3~8個がより好ましく、3~7個がさらに好ましい。さらに、ポリエポキシドのエポキシ当量としては、120~200であることが好ましく、130~190がより好ましい。
 第1のポリエポキシド成分としては、上記ポリエポキシドの1種を単独で使用してもよく、2種以上を併用してもよい。本発明においては、第1のポリエポキシド成分を分子量が800~3000の脂肪族ポリエポキシドの少なくとも2種のみからなる構成とすることが好ましい。
 環構造、特に芳香環を有する芳香族ポリエポキシド、例えば、ポリフェノール類由来のグリシジルエーテル系ポリエポキシドを用いて得られる硬化エポキシ樹脂では、吸水層を構成する吸水材料において十分な吸水性が得られないことがある。これは、芳香環等が硬質であることに起因して、3次元網目構造中に水分が取り込まれにくくなっているための現象と考えられる。一方、脂肪族/脂環族ポリエポキシドを用いると、得られる硬化エポキシ樹脂が有する3次元網目構造は、適度な柔軟性をもち、また、分子量を調整することで3次元網目構造の空間の大きさを適度なものに調整できるため、適度に調整された吸水性と耐久性の両立が可能になると考えられる。
 上記第1のポリエポキシド成分と反応させる第1の硬化剤としては、第1の重付加型硬化剤を用いることが好ましい。また、この第1の重付加型硬化剤に第1の触媒型硬化剤を併用することがより好ましい。
<第1の硬化剤>
 第1の重付加型硬化剤は、ポリエポキシドが有するエポキシ基と反応する反応性基を2個以上有する化合物であって、反応によりポリエポキシドに重付加するタイプの硬化剤であれば特に制限されない。
 第1の重付加型硬化剤における、エポキシ基と反応する反応性基としては、活性水素を有するアミノ基、カルボキシ基、チオール基等が挙げられる。すなわち、第1の重付加型硬化剤としては、好ましくは活性水素を有するアミノ化合物が用いられる。本発明においては、このような反応基を2個以上有する化合物として、ポリアミン類やポリカルボン酸無水物が好ましく用いられる。第1の重付加型硬化剤としては、これらの1種を単独で用いてもよく、2種以上を併用してもよい。
 第1の硬化エポキシ樹脂の原料成分のひとつである第1の重付加型硬化剤もまた高い吸水性が得られる観点から、芳香環を有しない化合物であることが好ましい。
 したがって、第1の重付加型硬化剤は、芳香環を有しないポリアミン類やポリカルボン酸無水物が好ましく、特に芳香環を有しないポリアミン類が好ましい。具体的な化合物は、上記第2の重付加型硬化剤に示したとおりである。
 第1の硬化エポキシ樹脂の原料成分における第1のポリエポキシド成分と第1の重付加型硬化剤の含有割合は、第1のポリエポキシド成分由来のエポキシ基に対する第1の重付加型硬化剤の反応性基の当量比が0.6~1.2になる割合であることが好ましく、0.7~1.0がより好ましい。第1のポリエポキシド成分由来のエポキシ基に対する第1の重付加型硬化剤の反応性基の当量比が上記範囲であれば、耐摩耗性などの耐久性が低下することなしに上記吸水性を有するように適度に架橋した3次元網目構造を有する硬化エポキシ樹脂が得られる。
 本発明において第1の重付加型硬化剤として活性水素を有するアミノ化合物を用いる場合には、第1のポリエポキシド成分由来のエポキシ基に対するアミン活性水素の当量比が0.6~0.8になる割合となるように用いることが好ましい。上記同様、エポキシ基に対するアミン活性水素の当量比が上記範囲であれば、著しく黄変することなしに上記吸水性を有するように適度に架橋した3次元網目構造を有する硬化エポキシ樹脂が得られる。
 本発明に用いる第1の硬化エポキシ樹脂を得る際に、第1のポリエポキシド成分と第1の重付加型硬化剤を組み合わせて用いる場合には、これらに加えて第1の触媒型硬化剤をともに用いることが好ましい。第1の触媒型硬化剤を用いることにより、第1のポリエポキシド成分と第1の重付加型硬化剤の重付加反応による架橋の速度を加速する効果や、第1のポリエポキシド成分と第1の重付加型硬化剤により形成される架橋部位に発生する不具合を低減する効果が得られるためである。架橋部位の不具合の一例としては、熱負荷による架橋部位の変質による、硬化エポキシ樹脂の発色が挙げられる。
 また、本発明に用いる第1の硬化エポキシ樹脂は、第1のポリエポキシド成分を第1の触媒型硬化剤の存在下、架橋反応させて得られる硬化エポキシ樹脂であってもよい。第1の触媒型硬化剤としては、上記第2の触媒型硬化剤と同様の触媒型硬化剤が特に制限なく使用可能である。第1の触媒型硬化剤の好ましい態様についても上記第2の触媒型硬化剤と同様にできる。
 第1の重付加型硬化剤に加えて第1の触媒型硬化剤を用いる場合の第1の触媒型硬化剤の使用量は、第1のポリエポキシド成分100質量%に対して1.0~20質量%が好ましく、1~10質量%がより好ましく、1~7質量%が特に好ましい。第1のポリエポキシド成分100質量%に対する第1の触媒型硬化剤の使用量を1.0質量%以上とすれば、反応が十分に進行し、得られる第1の硬化エポキシ樹脂において十分な吸水性や耐久性が実現できる。また、第1のポリエポキシド成分100質量%に対する第1の触媒型硬化剤の使用量が20質量%以下であれば、得られる第1の硬化エポキシ樹脂中に第1の触媒型硬化剤の残渣が存在して硬化エポキシ樹脂が黄変する等の外観上の問題の発生を抑制しやすい。
 なお、第1の重付加型硬化剤に加えて第1の触媒型硬化剤を用いる場合には、第1の重付加型硬化剤の第1のポリエポキシド成分に対する使用割合は、第1の触媒型硬化剤を上記の割合で用いた場合に、エポキシ基に対する第1の重付加型硬化剤の反応性基の当量比を上記0.6~1.2よりも10~50%程度少なくしてよい。
 また、必要に応じて、第1の硬化エポキシ樹脂は、第1のポリエポキシド成分と第1の触媒型硬化剤を反応させて得られるポリエポキシド同士が線状または3次元的に重合した構造を有する樹脂であってもよい。その場合、第1の硬化剤としては、通常、第1の触媒型硬化剤が単独で用いられる。このように第1の触媒型硬化剤を単独で用いる場合、その使用量は、第1のポリエポキシド成分100質量%に対して1~20質量%が好ましく、1~7質量%がより好ましい。
 以上、第1の硬化樹脂として第1の硬化エポキシ樹脂を用いる場合について説明した。第1の硬化エポキシ樹脂以外の第1の硬化樹脂、例えば、第1のウレタン樹脂および第1の架橋アクリル樹脂についても、その原料成分として、防曇膜における吸水層として用いられる従来公知の硬化樹脂における硬化性成分と硬化剤の組合せを挙げることができる。
 吸水層形成用組成物における第1の硬化樹脂の原料成分の含有量は、固形分全量に対して50~95質量%が好ましく、60~90質量%がより好ましい。含有量の範囲を上記範囲とすることで、吸水性能と耐摩耗性の両立が可能である。
(吸水層形成用組成物)
 本発明の防曇性物品の防曇膜における吸水層は、上記第1の硬化樹脂の原料成分を含有する吸水層形成用組成物を用い、これを反応させて得られる吸水材料からなる層である。吸水層形成用組成物は上記第1の硬化樹脂の原料成分の他に、通常、溶媒を含有する。
 通常、吸水材料を得るための吸水層形成用組成物を用いた反応は、吸水層形成用組成物を塗布面(下地層上)に塗布後行われる。ここで、上記のように吸水層形成用組成物が溶媒を含む場合には、塗布面に塗布する前の組成物中で吸水層形成用組成物が含有する第1の硬化樹脂の原料成分等の反応性成分を予めある程度反応させ、その後塗布面に塗布し、乾燥後、さらに反応させてもよい。
 このように吸水層形成用組成物として溶媒中で、第1の硬化樹脂の原料成分等の反応性成分を予めある程度反応させる場合には、予め反応させるときの反応温度は、30℃以上とすれば硬化反応が確実に進行するため好ましい。
(溶媒)
 上記吸水層形成用組成物に用いる溶媒としては、上記下地層形成用組成物で示したのと同様の溶媒が挙げられる。
 これら溶媒は1種のみを使用してもよく、2種以上を併用してもよい。また、吸水層形成用組成物が含有する各種成分は、それぞれの成分を製造する際に用いた溶媒との混合物として用意される場合がある。このような場合には、該混合物中に含まれる溶媒をそのまま、吸水層形成用組成物における溶媒として用いてもよく、さらに吸水層形成用組成物にはそれ以外に同種のあるいは他の溶媒を加えてもよい。
 また、吸水層形成用組成物における溶媒の量は、該組成物中の全固形分の合計質量100質量%に対して100~500質量%であることが好ましく、200~350質量%がより好ましい。
 ここで、上記第1の硬化樹脂が第1の硬化エポキシ樹脂の場合には、吸水層形成用組成物における第1のポリエポキシド成分および第1の硬化剤の含有量は、第1のポリエポキシド成分については組成物全量に対して10~40質量%が好ましく、15~30質量%がより好ましい。吸水層形成用組成物における第1の硬化剤の含有量は、例えば、第1の重付加型硬化剤および第1の触媒型硬化剤の含有量について、それぞれ第1のポリエポキシド成分に対する含有量として上に説明したとおりである。なお、第1の重付加型硬化剤と第1の触媒型硬化剤を組み合わせて用いる場合の、これらの含有量の合計量については、組成物全量に対して3~20質量%であることが好ましく、3~16質量%がより好ましい。
 第1の硬化エポキシ樹脂において、第1の重付加型硬化剤と第1の触媒型硬化剤を組み合わせて用いる場合のこれらの含有割合は、用いる硬化剤の種類による。例えば、上記第1の重付加型硬化剤として、活性水素を有するアミン化合物を、第1の触媒型硬化剤としてイミダゾール化合物を組合せて用いる場合には、吸水層形成用組成物は組成物全量に対して、活性水素を有するアミン化合物を3~15質量%の割合で、イミダゾール化合物を0.1~1.0質量%の割合で含有することが好ましい。このような含有割合とすることで、上記第1の重付加型硬化剤と第1の触媒型硬化剤のもつ利点がともに効果的に発揮されうる。
(その他成分)
 吸水層形成用組成物は、上記各成分と溶媒以外に、必要に応じて、カップリング剤、フィラー、酸化防止剤、紫外線吸収剤、赤外線吸収剤、光安定剤等の反応性または非反応性の機能性添加剤を含有してもよい。さらに、吸水層形成用組成物の成膜性を向上させるためにレベリング剤、消泡剤、粘性調整剤等を添加することができる。
<カップリング剤>
 吸水層形成用組成物が任意に含有する添加剤のうち反応性添加剤としては、第1の硬化樹脂の原料成分が有する反応性の基に反応性を有する官能基を有するカップリング剤等が挙げられる。吸水層形成用組成物においてカップリング剤は、吸水層と下地層との密着性、あるいは、吸水層とその上に必要に応じて機能層が積層される場合にはその機能層との密着性を向上させる目的で配合される成分であり、配合することが好ましい成分のひとつである。
 用いるカップリング剤としては、シランカップリング剤が好ましい。吸水層形成用組成物が含有するシランカップリング剤としては、第1の硬化エポキシ樹脂を用いた場合には、アミノ基を有するシランカップリング剤、例えば、ケイ素原子に1個以上の加水分解性基と1個以上の1価有機基(うち1個は反応性基を有する)が結合したシランカップリング剤において、反応性基を有する1価有機基がアミノ基を有する1価有機基であるシランカップリング剤が好ましい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 吸水層形成用組成物におけるカップリング剤の配合量は、必須の成分でないことから下限はない。しかし、カップリング剤配合の効果を十分に発揮させるためには、吸水層形成用組成物における第1の硬化樹脂の原料成分である硬化性成分と硬化剤の合計質量100質量%に対して、カップリング剤の質量割合が5~40質量%であることが好ましく、10~30質量%がより好ましい。カップリング剤の含有量の上限は、カップリング剤の物性や機能によって制限される。
 上記吸水層形成用組成物を用いて得られる吸水材料からなる吸水層の密着性を向上する目的で使用する場合は、第1の硬化樹脂の原料成分である硬化性成分と硬化剤の合計質量100質量%に対するカップリング剤の質量割合が、40質量%以下であることが好ましく、30質量%以下がより好ましい。カップリング剤の使用量が過剰にならないようにすれば、高温に曝されたときに酸化等により第1の硬化樹脂を含む吸水材料が着色するのを防ぐことができる。
 なお、吸水層形成用組成物全量に対するカップリング剤の含有量としては、例えば、シランカップリング剤を用いた場合には、2~10質量%であることが好ましく、3~7質量%であることがより好ましい。
 ここで、第1の硬化樹脂として第1の硬化エポキシ樹脂を用いる場合のシランカップリング剤を含有する上記吸水層形成用組成物における、特に好ましい組成について言えば、組成物全量に対して、第1のポリエポキシド成分を15~40質量%、活性水素を有するアミン化合物を3~15質量%、イミダゾール化合物を0.1~1.0質量%、シランカップリング剤を2~10質量%、および溶媒を50~75質量%含む組成が挙げられる。
 この場合、吸水層形成用組成物がカップリング剤として、アミノ基を有するカップリング剤を含有する場合には、上記エポキシ基に対するアミン活性水素の当量比は、上記第1の硬化剤におけるアミン活性水素とカップリング剤が有するアミン活性水素を合わせて、上記第1のポリエポキシド成分の有するエポキシ基との当量比を算出し、上記好ましい範囲となるようにする。
 同様に、吸水層形成用組成物がカップリング剤として、エポキシ基を有するカップリング剤を含有する場合には、上記エポキシ基に対するアミン活性水素の当量比は、上記第1のポリエポキシド成分の有するエポキシ基とカップリング剤が有するエポキシ基を合わせて、上記第1の硬化剤におけるアミン活性水素との当量比を算出し、上記好ましい範囲となるようにする。
 吸水層形成用組成物が任意に含有するその他成分のうち、フィラー、酸化防止剤、紫外線吸収剤、赤外線吸収剤、光安定剤、レベリング剤、消泡剤、粘性調整剤等については、上記下地層形成用組成物が任意に含有する各成分と好ましい態様、含有量等を含めて同様とできる。
(吸水層)
 本発明の防曇性物品における吸水層は、上記吸水層形成用組成物が含有する、第1の硬化樹脂、例えば、第1のポリエポキシド成分と第1の硬化剤を含む組成物が、第1のポリオールと第1のポリイソシアネートを含む組成物が、または、第1の架橋性(メタ)アクリルポリマーと第1のアクリル樹脂用硬化剤を含む組成物が、反応して得られる、3次元網目構造を有する第1の硬化エポキシ樹脂、第1のウレタン樹脂、または第1の架橋アクリル樹脂を含む吸水材料で構成され、上記説明した第1の硬化樹脂の性質により、高吸水性を有するとともに耐摩耗性等の耐久性を併せ持つ吸水層である。なお、上記反応の条件については、後述の製造方法において説明する。
 また、任意に添加されるシランカップリング剤等の反応性添加剤は、この第1の硬化樹脂の3次元網目構造の一部に結合する形で吸水材料(吸水層)に存在し、さらに、それ以外に任意に添加される非反応性の添加剤は、上記第1の硬化樹脂の3次元網目構造中に均一に分散・包含されて吸水材料(吸水層)に存在するものである。
(5)密着層
 本発明の防曇性物品における防曇膜は、上記紫外線吸収層と上記吸水下地層との間に、上記紫外線吸収剤(a)を含有しない酸化ケイ素系マトリクスを主体とする密着層を有することが好ましい。
 密着層としては、下記式(2)で表される4官能性加水分解性ケイ素化合物および/またはその部分加水分解縮合物からなる(S)成分を含む密着層形成用組成物を用いて形成された層が好ましい。
 Si(X …(2)
(ただし、式(2)中、Xはそれぞれ独立して、ハロゲン原子、アルコキシ基またはイソシアネート基を示す。)
 上記式(2)中、Xは、塩素原子、炭素原子数1~4のアルコキシ基またはイソシアネート基であることが好ましく、さらに4個のXが同一であることが好ましい。
 このような上記一般式(2)で示される化合物(以下、「化合物(2)」ともいう。)として、具体的には、Si(NCO)、Si(OCH、Si(OC等が好ましく用いられる。本発明において、化合物(2)は1種を単独で用いてもよく、2種以上を併用してもよい。
 密着層形成用組成物に含まれる(S)成分は、化合物(2)の部分加水分解(共)縮合物であってもよい。化合物(2)の部分加水分解(共)縮合物とは、溶媒中で酸触媒やアルカリ触媒などの触媒と水の存在下に該化合物が有する加水分解性基の全部または一部が加水分解し、次いで脱水縮合することによって生成するオリゴマー(多量体)をいう。酸触媒としては、塩酸、硝酸、酢酸、硫酸、燐酸、スルホン酸、メタンスルホン酸、p-トルエンスルホン酸等を使用できる。アルカリ触媒としては、水酸化ナトリウム、水酸化カリウム、アンモニア等を使用できる。なお、これら触媒の水溶液を使用することにより、加水分解に必要な水を反応系に存在させることも可能である。
 部分加水分解(共)縮合物の縮合度(多量化度)は、生成物が溶媒に溶解する程度である必要がある。(S)成分としては、化合物(2)であっても、化合物(2)の部分加水分解(共)縮合物であってもよく、化合物(2)とその部分加水分解(共)縮合物との混合物、例えば、未反応の化合物(2)が含まれる化合物(2)の部分加水分解(共)縮合物であってもよい。なお、一般式(2)で示される化合物やその部分加水分解(共)縮合物としては市販品があり、本発明にはこのような市販品を用いることが可能である。
 密着層形成用組成物は、本発明の効果を損なわない範囲で、目的に応じて、酸化物の超微粒子、染料または顔料等の着色用材料、防汚性材料、各種樹脂等の任意成分としての機能性添加剤を含んでもよい。ただし、密着層形成用組成物への機能性添加剤の添加はその量によっては、得られる密着層の上に形成される吸水下地層の性能を低下させるおそれがある。よって、密着層形成用組成物は、全固形成分が実質的に化合物(2)由来成分のみからなることが好ましい。なお、本明細書において、全固形分が実質的に、ある成分のみからなるとは、全固形分中の該成分の含有割合が90質量%以上であることをいう。
 密着層形成用組成物の全固形分が実質的に化合物(2)由来成分のみからなる場合に、化合物(2)の部分加水分解(共)縮合物を用いる際には、密着層形成用組成物は、化合物(2)の部分加水分解(共)縮合物の製造で得られた部分加水分解(共)縮合物の溶液そのものであることが好ましい。
 密着層形成用組成物は、通常、層構成成分となる固形分の他に、経済性、作業性、得られる密着層の厚み制御のしやすさ等を考慮して、溶媒を含む。溶媒は、密着層形成用組成物が含有する固形分を溶解するものであれば特に制限されない。溶媒としては、アルコール類、エーテル類、ケトン類、芳香族炭化水素類、パラフィン系炭化水素類、酢酸エステル類等が好ましい。溶媒は1種に限定されず、極性、蒸発速度等の異なる2種以上の溶媒を混合して使用してもよい。
 密着層形成用組成物は、部分加水分解(共)縮合物を含有する場合、これらを製造するために使用した溶媒を含んでもよい。また、このような溶媒と密着層形成用組成物が含有する溶媒は同じものであってもよい。密着層形成用組成物は、さらに、部分加水分解(共)縮合で用いた触媒などの成分を含んでいてもよい。
 密着層形成用組成物における溶媒の割合は、化合物(2)由来成分の100質量部に対して、400~100,000質量部が好ましい。溶媒の含有量が上記範囲であれば、密着層に処理ムラが発生するおそれもなく、経済性、作業性、処理層の厚さ制御のしやすさ等においても問題がない。密着層形成用組成物における溶媒の量は、さらに、化合物(2)由来成分の100質量部に対して、900~3,500質量部がより好ましく、1,100~2,500質量部が特に好ましい。
 さらに、密着層形成用組成物においては、部分加水分解(共)縮合物を含まないものであっても、(S)成分の加水分解(共)縮合反応を促進させるために、上記で部分加水分解(共)縮合の反応において使用したのと同様の酸触媒等の触媒を配合しておくことも好ましい。部分加水分解(共)縮合物を含む場合であっても、それらの製造に使用した触媒が組成物中に残存していない場合は、触媒を配合することが好ましい。触媒としては、酸触媒が好ましい。触媒の量としては、化合物(2)由来成分の100質量部に対して、0.01~5質量部が好ましい。なお、密着層形成用組成物において、触媒の量は固形分量に含めない。
 密着層形成用組成物は、上記含有成分が加水分解(共)縮合反応するための水を含んでいてもよい。密着層形成用組成物における水の含有量は、化合物(2)由来成分の100質量部に対して、1~50質量部が好ましい。なお、密着層形成用組成物は水を含有しなくとも、以下の密着層を形成する過程において雰囲気中の水分を利用して含有成分の加水分解(共)縮合反応を行わせることができる。
 ここで、密着層形成用組成物が、(S)成分として、化合物(2)の加水分解性基が塩素原子である化合物やこれらの部分加水分解(共)縮合物を含有する場合、これらは反応性が高いことから貯蔵安定性を考慮すると上記触媒および水を実質的に含有しないことが好ましい。実質的に含有しないとは、密着層形成用組成物の全量に対する含有量が触媒については0.001質量%以下であること、水については0.5質量%以下であることをいう。
 密着層の厚さは、その上に形成される吸水下地層に密着性等を付与できる厚みであれば特に限定されない。経済性を考慮すると、50nm以下の厚みが好ましく、その下限は単分子層の厚さである。
 なお、密着層形成用組成物の硬化は、上記に説明した紫外線吸収層形成用組成物の硬化と同時に行ってもよい。具体的には、紫外線吸収層形成用組成物を、紫外線吸収層形成面、通常は基体表面の所定領域に塗布し、必要に応じて乾燥した後、この表面に密着層形成用組成物を塗布し、必要に応じて乾燥した後、上記同様にして硬化処理を施すことで、紫外線吸収層と密着層とを同時に硬化させることができる。
<防曇性物品の製造方法>
 図2に断面を示す防曇性物品10Bを例にして、本発明の防曇性物品の製造方法を以下に説明する。防曇性物品10Bは、透明基体1の一方の主面上に、紫外線吸収層2、密着層5、吸水下地層3、吸水層4をその順に有する。なお、例えば、図1に断面を示す透明基体1の一方の主面上に、紫外線吸収層2、吸水下地層3、吸水層4をその順に有する防曇性物品10Aについては、防曇性物品10Bの製造方法において、密着層5を形成する工程を省略する以外は、防曇性物品10Bと同様にして製造できる。
(I)紫外線吸収層2の形成
 透明基体1上に紫外線吸収層2を形成させる具体的な方法としては、(A1)透明基体1上に紫外線吸収層形成用組成物を塗布し塗膜を形成する工程と、(B1)得られた塗膜から液状媒体(c)を除去し、さらに用いたバインダー成分(b)の層形成条件に応じた硬化処理を行い、紫外線吸収層2を形成する工程とを含む方法が挙げられる。
 なお、本明細書においては、透明基体1上に塗布された液状媒体(c)を含む紫外線吸収層形成用組成物からなる膜を「塗膜」といい、該塗膜から液状媒体(c)が除去され硬化等の用いるバインダー成分(b)に応じた処理を行うことにより製膜が完全に終了した状態を「紫外線吸収層」という。以下、各層においても同様に組成物からなる膜を「塗膜」、製膜が完全に終了した状態を「~層」という。
 まず(A1)工程において、紫外線吸収層形成用組成物を透明基体1上に塗布して該組成物の塗膜を形成する。なお、ここで形成される塗膜は上記液状媒体(c)を含む塗膜である。透明基体1上への紫外線吸収層形成用組成物の塗布方法は、均一に塗布される方法であれば特に限定されず、フローコート法、ディップコート法、スピンコート法、スプレーコート法、フレキソ印刷法、スクリーン印刷法、グラビア印刷法、ロールコート法、メニスカスコート法、ダイコート法など、公知の方法を用いることができる。塗布液の塗膜の厚さは、最終的に得られる紫外線吸収層の厚みを考慮して決められる。
 次いで行われる(B1)工程において、透明基体1上の紫外線吸収層形成用組成物の塗膜から液状媒体(c)を除去するとともに上記加水分解性ケイ素化合物等の酸化ケイ素系マトリクス原料成分を硬化させて紫外線吸収層を形成する。
 この場合、(B1)工程における塗膜からの液状媒体(c)の除去は、加熱および/または減圧乾燥によって行うことが好ましい。透明基体1上に塗膜を形成した後、室温~120℃程度の温度下で仮乾燥を行うことが塗膜のレベリング性向上の観点から好ましい。通常この仮乾燥の操作中に、これと並行して液状媒体(c)が気化して除去されるため、液状媒体(c)の除去の操作は仮乾燥に含まれることになる。仮乾燥の時間、すなわち液状媒体(c)の除去のための操作の時間は、層形成に用いる紫外線吸収層形成用組成物にもよるが3秒~2時間程度であることが好ましい。
 なお、この際、液状媒体(c)が十分除去されることが好ましいが、完全に除去されなくてもよい。つまり、最終的に得られる紫外線吸収層の性能に影響を与えない範囲で紫外線吸収層に液状媒体(c)の一部が残存することも可能である。また、上記液状媒体(c)の除去のために加熱を行う場合には、上記液状媒体(c)の除去のための加熱、すなわち一般的には仮乾燥と、その後、以下のようにして必要に応じて行われる酸化ケイ素系化合物の作製のための加熱と、を連続して実施してもよい。
 上記のようにして塗膜から液状媒体(c)を除去した後、上記加水分解性ケイ素化合物等の酸化ケイ素系マトリクス原料成分を硬化させる。この反応は、常温下ないし加熱下に行うことができる。加熱下に硬化物(酸化ケイ素系マトリクス)を生成させる場合、硬化物が有機成分を含むことより、その加熱温度の上限は200℃が好ましく、特に190℃が好ましい。常温においても硬化物を生成させることができることより、その加熱温度の下限は特に限定されるものではない。ただし、加熱による反応の促進を意図する場合は、加熱温度の下限は60℃が好ましく、80℃がより好ましい。したがって、この加熱温度は60~200℃が好ましく、80~190℃がより好ましい。加熱時間は、層形成に用いる紫外線吸収層形成用組成物の組成にもよるが、数分~数時間であることが好ましい。
(II)密着層5の形成
 上記紫外線吸収層2上に密着層5を形成させる具体的な方法としては、(A2)紫外線吸収層2上に密着層形成用組成物を塗布し塗膜を形成する工程と、(B2)得られた塗膜から溶媒を除去し、硬化処理を行って密着層5を形成する工程とを含む方法が挙げられる。
 (A2)工程において、密着層形成用組成物を紫外線吸収層2上に塗布して、該組成物の塗膜を形成する方法は、上記(A1)工程と同様に行うことができる。
 (B2)工程では、(A2)工程で得られた塗膜を大気中または窒素雰囲気中において、必要に応じて乾燥した後、硬化させる。硬化の条件は、用いる組成物の種類、濃度等により適宜制御されるが、好ましい条件として、温度:20~50℃、湿度:50~90%RHの条件が挙げられる。硬化のための時間は、用いる組成物の種類、濃度、硬化条件等によるが、概ね1~72時間が好ましい。
(III)吸水下地層3の形成
 上記密着層5上に吸水下地層3を形成させる具体的な方法としては、(A3)密着層5上に下地層形成用組成物を塗布し塗膜を形成する工程と、(B3)得られた塗膜から溶媒を除去し、硬化処理を行って(下地層形成用組成物を反応させて)下地材料を得ることで該下地材料からなる下地層3を形成する工程とを含む方法が挙げられる。
 以下、下地材料において第2の硬化樹脂が第2の硬化エポキシ樹脂であり、下地層形成用組成物が第2の硬化エポキシ樹脂の原料成分を含有する場合を例として、下地層の形成方法について説明する。なお、下地層形成用組成物は上に説明したとおり、組成物の段階で予めある程度反応を進行させておいてもよい。
 (A3)工程において、下地層形成用組成物を密着層5上に塗布して、該組成物の塗膜を形成する方法は、上記(A1)工程と同様に行うことができる。
 (B3)工程では、(A3)工程で得られた塗膜から必要に応じて乾燥により溶媒を除去し、用いる反応成分に合わせた条件で硬化処理を行って下地材料を得、該下地材料からなる下地層とする。なお、溶媒の除去は、乾燥によらず硬化処理を行う際に同時に行ってもよい。乾燥により溶媒を除去する条件として、具体的には、50~90℃、5~15分間が挙げられる。
 また、下地層形成用組成物における第2の硬化エポキシ樹脂の原料成分(反応成分)の反応条件として、具体的には、70~150℃、1~60分間程度の熱処理が挙げられる。また、UV硬化性の光硬化性樹脂を用いた場合には、UV硬化装置等で100~500mJ/cmのUV照射を1~5秒間行う等の処理が挙げられる。
 ここで、本発明の製造方法においては、上記下地層形成用組成物の反応を、一定の加湿条件下で行うことが好ましい。上記反応を加湿条件下で行うことにより、同じ温度条件下で行う反応では、加湿しない場合に比べて反応時間を短縮させることができる。また同じ反応時間であれば、加湿することにより反応温度を低く設定しても反応を十分に実行することが可能となる。いずれの場合も、加湿条件下で上記反応を行うことは経済的に有利である。さらに、加湿条件下で上記反応を行うことで反応を層全体で均一に行うことが可能となり、下地層内における品質のばらつきが抑えられる。
 加湿条件として、具体的には40~80%RHが挙げられ、50~80%RHの条件がより好ましい。温度条件と合わせてより好ましい反応条件を示せば、50~80%RH、70~100℃、5~30分間程度の反応条件が挙げられる。さらに好ましい条件として、50~80%RH、80~100℃、10~30分間程度の反応条件が挙げられる。
(IV)吸水層4の形成
 上記吸水下地層3上に吸水層4を形成させる具体的な方法としては、(A4)吸水下地層3上に吸水層形成用組成物を塗布し塗膜を形成する工程と、(B4)得られた塗膜から溶媒を除去し、硬化処理を行って(吸水層形成用組成物を反応させて)吸水材料を得ることで該吸水材料からなる吸水層4を形成する工程とを含む方法が挙げられる。
 以下、吸水材料において第1の硬化樹脂が第1の硬化エポキシ樹脂であり、吸水層形成用組成物が第1の硬化エポキシ樹脂の原料成分を含有する場合を例として、吸水層の形成方法について説明する。なお、吸水層形成用組成物は上に説明したとおり、組成物の段階で予めある程度反応を進行させておいてもよい。
 (A4)工程において、吸水層形成用組成物を密着層5上に塗布して、該組成物の塗膜を形成する方法は、上記(A1)工程と同様に行うことができる。
 (B4)工程では、(A4)工程で得られた塗膜から必要に応じて乾燥により溶媒を除去し、用いる反応成分に合わせた条件で硬化処理を行い第1の硬化エポキシ樹脂を含む吸水材料からなる吸水層とする。なお、溶媒の除去は、乾燥によらず硬化処理を行う際に同時に行ってもよい。乾燥により溶媒を除去する条件として、具体的には、50~90℃、5~15分間が挙げられる。
 また、吸水層形成用組成物における反応成分、すなわち、上記第1の硬化エポキシ樹脂の原料成分、特には、ポリエポキシド成分と第1の重付加型硬化剤との、第1の触媒型硬化剤存在下での反応条件として、具体的には、50~120℃、10~60分間程度の熱処理が挙げられる。また、UV硬化性の光硬化性樹脂を用いた場合には、UV硬化装置等で50~1000mJ/cmのUV照射を5~10秒間行う等の処理が挙げられる。
 ここで、上記製造方法においては、上記吸水層形成用組成物の反応を、上記下地層形成用組成物の場合と同様に一定の加湿条件下で行うことが、上記理由により好ましい。加湿条件として、具体的には40~80%RHが挙げられ、50~80%RHの条件がより好ましい。温度条件と合わせてより好ましい反応条件を示せば、50~80%RH、70~100℃、5~30分間程度の反応条件が挙げられる。さらに好ましい条件として、50~80%RH、80~100℃、10~30分間程度の反応条件が挙げられる。
 このようにして上記(I)~(IV)工程により、透明基体1上に上記防曇膜(透明基体1側から順に、紫外線吸収層2、密着層5、吸水下地層3、吸水層4)が形成された本発明の実施形態の防曇性物品10Bが得られる。以上、防曇性物品10Bを例に本発明の防曇性物品の製造方法を説明したが、製造方法はこれに限定されず、本発明の趣旨および範囲を逸脱することのない範囲で変更可能である。
(防曇性物品)
 上記防曇膜を有する本発明の防曇性物品は、優れた防曇性を有し、該防曇性の耐候性に優れる。さらに本発明の防曇性物品は紫外線遮蔽性に優れ、紫外線吸収層が赤外線吸収剤(d)を含有する場合には熱線遮蔽性にも優れる。
 本発明の防曇性物品における防曇膜の吸水性については、上記吸水下地層で説明した方法で測定される吸水防曇性が50秒以上であることが好ましく、さらに好ましくは60秒以上であり、特に好ましくは70秒以上である。ここで、防曇性物品の求められる防曇性能は用途により異なるため、求められる性能に即して防曇膜の設計を適宜変更すればよい。
 なお、防曇加工を行っていないソーダライムガラスは、通常、上記試験で概ね1~3秒で曇りを生じる。
 本発明の防曇性物品における紫外線遮蔽能は、具体的には、分光光度計(日立製作所製:U-4100)を用いて、ISO-9050(1990年)にしたがって測定される紫外線透過率(Tuv)として、3.0%以下であることが好ましく、1.0%以下であることがより好ましく、0.5%以下であることが特に好ましい。
 また、分光光度計(日立製作所製:U-3500)を用いて測定した波長380nmの光の透過率が7.0%以下であることが好ましく、4.0%以下がより好ましく、1.0%以下が特に好ましい。
 さらに、可視光透過率は、JIS R3212(1998年)にしたがって測定される可視光線透過率(Tv)として、50%以上であることが好ましく、70%以上であることがより好ましく、74%以上であることが特に好ましい。
 また、紫外線吸収層が赤外線吸収剤(d)を含有する場合の防曇性物品における日射透過率はJIS R3106(1998年)にしたがって測定される日射透過率(Te)として、45.0%以下であることが好ましく、44.0%以下であることがより好ましく、43.0%以下であることが特に好ましい。
 JIS K7105(1981年)にしたがって算出されるYIは、黄色味の指標であり、防曇性物品におけるYIは、12以下が好ましく、5以下がより好ましい。
 このような本発明の防曇性物品は、屋外用防曇性物品、例えば、自動車等の車輌用の窓材や家屋、ビル等の建物に取り付けられる建材用の窓材などへの適用が可能である。なお、建築用窓材に適用する場合には、室内側の基体表面に防曇膜を形成することが好ましく、車輌用窓材に適用する場合には車内側の基体表面に形成することが好ましい。
<輸送機器用物品>
 本発明の防曇性物品は、輸送機器用物品としての用途に好適に用いられる。輸送機器用物品とは、電車、自動車、船舶、航空機等における、窓材(フロントガラス、サイドガラス、リアガラス)等が好ましく挙げられる。
 本発明の防曇性物品を具備する輸送機器用物品は、防曇性物品が有する防曇膜表面が優れた防曇性を有するため、水分が誘発する曇り等による悪影響を排除できる。また、上記防曇膜は、耐久性、特に耐候性に優れるため、例えば、輸送機器用物品としての屋外での使用を含む各種使用条件下での長期使用においてもこの防曇性を維持することができる。本発明の防曇性物品は、さらに、優れた紫外線遮蔽性を有する。また、紫外線吸収層が赤外線吸収剤(d)を含有する場合には、熱線遮蔽効果も有するものである。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。なお、例1~例3が実施例であり、例4~例5が比較例である。
 各例において各層形成用組成物の調製に使用した化合物、市販品(商品名)等を以下に示す。
(紫外線吸収剤(a))
 ・シリル化紫外線吸収剤(a1):以下の調製例で合成された上記式(B)に示される4-(2-ヒドロキシ-3-(3-トリメトキシシリル)プロポキシ)プロポキシ)-2,2’,4’-トリヒドロキシベンゾフェノン
(バインダー成分(b):可撓性付与成分)
 ・SR-SEP:商品名、阪本薬品工業社製、ソルビトール系ポリグリシジルエーテル
(液状媒体(c))
 ・ソルミックスAP-1:商品名、日本アルコール販売社製、エタノール:2-プロパノール:メタノール=85.5:13.4:1.1(質量比)の混合溶媒
(赤外線吸収剤(d))
 ・ITO超微粒子:三菱マテリアル社製(平均一次粒子径20nm)、以下、適宜「ITO」と省略する。
(分散剤(e))
 ・DISPERBYK-190:商品名、ビックケミー・ジャパン社製、酸価;10mgKOH/g、Mw;2,200の分散剤の40質量%水溶液
(キレート剤(f))
 ・ノンポールPMA-50W:商品名、日油社製、Mw;1,200のポリマレイン酸の44.0質量%の水溶液
(密着層用4官能性加水分解性ケイ素化合物)
 ・Si(NCO)(SI-400、商品名、マツモトファインケミカル社製)
 ・酢酸ブチル(和光純薬工業社製)
(硬化エポキシ樹脂の原料成分)
(1)ポリエポキシド
(1-1)脂肪族ポリグリシジルエーテル(以下、いずれもナガセケムテックス社製)
 ・デナコールEX-614B(商品名、Mw;949、エポキシ当量;171、ソルビトールポリグリシジルエーテル)
・デナコールEX-1610(商品名、Mw;1130、エポキシ当量;165、脂肪族ポリグリシジルエーテル)
(1-2)ビスフェノールAジグリシジルエーテル
 ・アデカレジンEP-4100(商品名、ADEKA社製、Mw;340、エポキシ当量;190)
(2)重付加型硬化剤
 ・ジェファーミンT403:商品名、ハンツマン社製、Mw;390、アミン活性水素当量;78、ポリオキシアルキレントリアミン
(3)触媒型硬化剤
 ・2-メチルイミダゾール(四国化成社製)
(シラン系カップリング剤)
 ・KBM903:商品名、信越化学工業社製、3-アミノプロピルトリメトキシシラン
(フェノール系酸化防止剤)
 ・A-611:アデカスタブA-611(商品名、ADEKA社製)
(レベリング剤)
 ・BYK-3550:商品名、ビックケミー・ジャパン社製、ポリシロキサン変性アクリルポリマー
 ・BYK-307:商品名、ビックケミー・ジャパン社製、ポリエーテル変性ポリジメチルシロキサン
(光安定剤)
 ・LA72(商品名、ADEKA社製)
(紫外線吸収剤)
 ・TINUVIN400(商品名、BASF社製)
(フィラー)
 ・MEK-ST:商品名、日産化学工業社製、粒子径10~20nmのシリカ粒子がメチルエチルケトンに分散したオルガノシリカゾル、SiO含有量30質量%
 ・メタノールシリカゾル:日産化学工業社製、粒子径10~20nmのシリカ粒子がメタノールに分散したオルガノシリカゾル、SiO含有量30質量%
<シリル化紫外線吸収剤(a1)溶液の調製例>
 2,2’,4,4’-テトラヒドロキシベンゾフェノン(BASF社製)49.2g、3-グリシドキシプロピルトリメトキシシラン(信越化学社製)123.2g、塩化ベンジルトリエチルアンモニウム(純正化学社製)0.8g、酢酸ブチル(純正化学社製)100gを仕込み撹拌しながら60℃に昇温し、溶解させ、120℃まで加熱し4時間反応させることにより、固形分濃度63質量%のシリル化紫外線吸収剤(a1)溶液を得た。
<ITO分散液Aの調製例>
 ITO超微粒子の11.9g、DISPERBYK-190の3.0g、ソルミックスAP-1の24.2gをボールミルを用いて48時間分散処理し、その後さらにソルミックスAP-1を添加してITO固形分濃度が20質量%となるように希釈し、ITO分散液Aを得た。
[例1]
 ガラス基板として、高熱線吸収グリーンガラス(Tv;74.8%、Tuv;9.5%、Te;48.0%、波長380nmの光の透過率:38.5%、縦10cm、横10cm、厚さ3.5mm、旭硝子社製、通称UVFL)を用い、その一方の主面上に、以下のようにして、紫外線吸収層、密着層としての酸化ケイ素系マトリクス層、吸水下地層、吸水層をその順に形成して防曇性物品1を作製した。
(紫外線吸収層の形成)
 ソルミックスAP-1の21.2g、テトラメトキシシラン(東京化成工業社製)の15.0g、3-グリシドキシプロピルトリメトキシシラン(信越化学社製)の5.1g、上記調製例で得られたシリル化紫外線吸収剤(a1)溶液の14.6g、SR-SEP溶液(固形分30質量%)の1.2g、メタノールシリカゾルの2.1g、酢酸の14.2g、イオン交換水の26.6gを仕込み、一時間撹拌した。その後、ソルミックスAP-1の4.94gを添加し撹拌して、紫外線吸収層形成用組成物を得た。その後、表面を清浄したガラス基板の一方の主面上の全面にスピンコート法によって上記紫外線吸収層形成用組成物を塗布し、大気中、180℃で30分間乾燥させて、紫外線吸収層付きガラス基板を得た。
(密着層(酸化ケイ素系マトリクス層)の形成)
 撹拌機および温度計がセットされたガラス容器に、0.3gのSI-400溶液(固形分99質量%)と9.7gの酢酸ブチルを入れ、23℃±3℃で5分間撹拌し密着層形成用組成物を得た。得られた密着層形成用組成物を、ウェスに滴下し湿らせた状態で、上記の紫外線吸収層の表面全体にワイピングした。さらに、23℃±3℃、50%RH下に5分間放置させ、その後23℃±3℃にした水をウェスに滴下し湿らせた状態で同様に全体をワイピングした。これにより、紫外線吸収層付きガラス基板の紫外線吸収層の表面に、酸化ケイ素系マトリクスによる密着層を形成した。
(吸水下地層の形成)
 撹拌機および温度計がセットされたガラス容器に、26.21gのプロピレングリコールモノメチルエーテル(大伸化学社製)、24.11gのビスフェノールAジグリシジルエーテル(アデカレジンEP-4100)、6.95gのポリオキシアルキレントリアミン(ジェファーミンT403)、3.41gのアミノシラン(KBM903)、を入れ、40℃で70分間撹拌し混合溶液を得た。この混合溶液に、288.62gのプロピレングリコールモノメチルエーテル(大伸化学社製)、を入れ、0.17gのレベリング剤(BYK-3550)、0.17gの酸化防止剤(A-611)、0.17gの光安定剤(LA72)、0.17gの紫外線吸収剤(TINUVIN400)を添加して、25℃で10分間撹拌して、下地層用組成物を得た。
 得られた下地層用組成物を、フローコート法により、透明基体上の密着層の表面の全面に塗布し、得られた積層体を、予め100℃に設定した熱風循環型電気オーブン内に30分間保持した。これにより、ガラス基板上に紫外線吸収層、密着層、および吸水下地層がその順に形成された積層体を得た。
(吸水層の形成)
 撹拌機および温度計がセットされたガラス容器に、14.60gのエタノール(ネオエタノール(商品名)、大伸化学社製)、64.90gのメチルエチケトン(MEK(商品名)、大伸化学社製)、71.55gの脂肪族ポリグリシジルエーテル(デナコールEX-1610)、59.45gのソルビトールポリグリシジルエーテル(デナコールEX-614B)、6.25g、の2-メチルイミダゾール、24.48gのアミノシラン(KBM903)、および23.77gのポリオキシアルキレントリアミン(ジェファーミンT403)を、撹拌しながら添加した。さらに、35℃で100分撹拌し、混合溶液を得た。
 上記で得られた混合溶液に、164.91gのメチルエチルケトン(関東化学社製)、68.70gのオルガノシリカゾル(MEK-ST)、および0.25gのレベリング剤(BYK-307)、1.04gの酸化防止剤(A-611)、0.10gの光安定剤(LA72)を撹拌しながら添加し、25℃で10分間撹拌した。これにより、吸水性層形成用組成物を得た。
 上記で得られた吸水性層形成用組成物を、フローコート法で、上記で得られた積層体の吸水下地層の表面の全面に塗布した。吸水性層形成用組成物が塗布された積層体を、100℃に設定した熱風循環型電気オーブン内で30分間保持して、吸水性層用を形成した。
 これにより、ガラス基板上に紫外線吸収層、密着層、吸水下地層および吸水層がその順に形成された防曇性物品1(例1に係るサンプル)が作製された。
[例2]
 ガラス基板として、例1と同様の高熱線吸収グリーンガラスを用い、その一方の主面上に、以下のようにして、赤外線吸収剤を含有した紫外線吸収層(以下、「赤外線・紫外線吸収層」ともいう)、密着層としての酸化ケイ素系マトリクス層、吸水下地層、吸水層をその順に形成して防曇性物品2を作製した。
(赤外線・紫外線吸収層の形成)
 ITO分散液Aの7.0g、ソルミックスAP-1の45.8g、テトラメトキシシラン(東京化成工業社製)の10.9g、シリル化紫外線吸収剤(a1)溶液の11.7g、SR-SEP溶液(固形分30質量%)の0.8g、純水の13.5g、酢酸の10.3g、ノンポールPMA-50Wの0.20gを仕込み、一時間撹拌して、赤外線・紫外線吸収層形成用組成物を得た。その後、表面を清浄したガラス基板の一方の主面上の全面にスピンコート法によって上記赤外線・紫外線吸収層形成用組成物を塗布し、大気中、180℃で30分間乾燥させて、赤外線・紫外線吸収層付きガラス基板を得た。
 得られた赤外線・紫外線吸収層付きガラス基板の赤外線・紫外線吸収層の表面全体に例1と同様にして密着層(酸化ケイ素系マトリクス層)、吸水下地層、吸水層をその順に形成し、防曇性物品2(例2に係るサンプル)を作製した。
[例3]
 例2において、密着層(酸化ケイ素系マトリクス層)の製膜を行わない以外は、例1と同様にして、ガラス基板上に紫外線吸収層、吸水下地層および吸水層がその順に形成された防曇性物品3(例3に係るサンプル)を作製した。
[例4]
 例1において紫外線吸収層、および密着層(酸化ケイ素系マトリクス層)の製膜を行わない以外は、例1と同様にして、ガラス基板上に吸水下地層および吸水層がその順に形成された防曇性物品4(例4に係るサンプル)を作製した。
[例5]
 例1において紫外線吸収層の製膜を行わない以外は、例1と同様にして、ガラス基板上に密着層(酸化ケイ素系マトリクス層)、吸水下地層および吸水層がその順に形成された防曇性物品5(例5に係るサンプル)を作製した。
 上記各例で得られた防曇性物品1~5の評価を以下のように行った。結果をガラス基板上に形成された防曇膜の構成とともに表1に示す。表1において紫外線吸収層を「UVカット層」、赤外線・紫外線吸収層を「UV+IRカット層」と示した。
[膜厚の測定]
 防曇性物品について干渉膜厚計(スペクトラコープ社製)を使用し、紫外線吸収層、下地層および吸水層の各層膜厚を測定した。
[防曇性の評価]
 防曇膜における吸水下地層の飽和吸水量と、該吸水下地層の上に吸水層が形成された防曇膜の飽和吸水量の測定を上記の方法(ただし、基体の大きさは各例による)で行った。その結果、吸水下地層の飽和吸水量は3mg/cmであり、防曇膜の飽和吸水量から求められる吸水層の飽和吸水量は225mg/cmであった。
 さらに、防曇膜について吸水防曇性を上記の方法で測定した。防曇膜に求められる防曇性能は用途により異なる。本実施例では、吸水防曇性が80秒以上の場合を表1中で「○」と表記し、80秒未満の場合を表中で「×」と表記した。
[密着試験]
 JIS K5600「塗料一般試験法 4-6」に準拠した密着試験を行った。防曇膜に剥離が生じなかったものを表1中で「○」と表記し、剥離が生じたものを表中で「×」と表記した。
[促進耐候性試験(耐光性評価)]
 放射照度162W/m、ブラックパネル温度89℃、槽内湿度50%、雨なし(JASO M346内装材規格)の条件を設定したスーパーキセノンウェザーメーター(スガ試験機社製)を用い、防曇膜形成側と反対側の面が照射面となるように、上記各例で得られたサンプルをセットして600時間保持した。300時間保持した後、および600時間保持した後に上記の密着試験を行い評価した。
[分光特性]
 分光光度計(日立製作所製:U-4100)を用いて、波長380nmにおける光の透過率を測定した。
Figure JPOXMLDOC01-appb-T000002
 本発明の防曇性物品は、優れた防曇性に加えて、耐久性、特に耐候性に優れ、さらに紫外線遮蔽性を有することから自動車等の輸送機器用や家屋、ビル等の建物に取り付けられる建材用の防曇ガラスとして有用である。
10A,10B…防曇性物品、1…透明基体、2…紫外線吸収層、3…吸水下地層、4…吸水層、5…密着層。

Claims (10)

  1.  透明基体と、前記透明基体の少なくとも一部の表面に紫外線吸収層と吸水下地層と吸水層とがその順に配設された防曇性物品であって、
     前記吸水層は、第1の硬化樹脂を主体とする飽和吸水量が50mg/cm以上の吸水材料からなり、
     前記吸水下地層は、第2の硬化樹脂を主体とし、前記吸水材料より飽和吸水量が小さい材料からなり、
     前記紫外線吸収層は、ベンゾフェノン系化合物、トリアジン系化合物、およびベンゾトリアゾール系化合物から選択される1種以上を含む紫外線吸収剤(a)と、酸化ケイ素系マトリクス原料成分を主体とするバインダー成分(b)と、液状媒体(c)と、を含む紫外線吸収層形成用組成物を用いて形成された層であることを特徴とする防曇性物品。
  2.  前記紫外線吸収層形成用組成物は、前記紫外線吸収剤(a)として水酸基含有ベンゾフェノン系化合物を含有する、請求項1記載の防曇性物品。
  3.  前記紫外線吸収層形成用組成物は、前記紫外線吸収剤(a)として、加水分解性基を有するシリル基を含有するベンゾフェノン系化合物、加水分解性基を有するシリル基を有するトリアジン系化合物、および加水分解性基を有するシリル基を有するベンゾトリアゾール系化合物から選択される1種以上を含有する、請求項1または2に記載の防曇性物品。
  4.  前記紫外線吸収層形成用組成物は、錫ドープ酸化インジウム、アンチモンドープ酸化錫、および複合タングステン酸化物から選択される1種以上を含む赤外線吸収剤(d)をさらに含む、請求項1~3のいずれか1項に記載の防曇性物品。
  5.  前記第1の硬化樹脂は、第1の硬化エポキシ樹脂、第1のウレタン樹脂または第1の架橋アクリル樹脂であり、前記第2の硬化樹脂は、第2の硬化エポキシ樹脂、第2のウレタン樹脂または第2の架橋アクリル樹脂である請求項1~4のいずれか1項に記載の防曇性物品。
  6.  前記吸水下地層の厚みが2~8μmであり、前記吸水層の厚みが5~40μmであって、前記吸水層の厚みは前記吸水下地層の厚みの5倍以下である請求項1~5のいずれか1項に記載の防曇性物品。
  7.  さらに、前記紫外線吸収層と前記吸水下地層との間に、前記紫外線吸収剤(a)を含有しない酸化ケイ素系マトリクスを主体とする密着層を有する請求項1~6のいずれか1項に記載の防曇性物品。
  8.  前記透明基体がガラス基体である請求項1~7のいずれか1項に記載の防曇性物品。
  9.  防曇性物品に対する波長380nmの光の透過率が7.0%以下である、請求項1~8のいずれか1項に記載の防曇性物品。
  10.  請求項1~9のいずれか1項に記載の防曇性物品を具備する、輸送機器用物品。
PCT/JP2015/063495 2014-05-16 2015-05-11 防曇性物品および輸送機器用物品 WO2015174373A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014102616 2014-05-16
JP2014-102616 2014-05-16

Publications (1)

Publication Number Publication Date
WO2015174373A1 true WO2015174373A1 (ja) 2015-11-19

Family

ID=54479912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063495 WO2015174373A1 (ja) 2014-05-16 2015-05-11 防曇性物品および輸送機器用物品

Country Status (1)

Country Link
WO (1) WO2015174373A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258602A (ja) * 1999-03-05 2000-09-22 Nikon Corp 親水性薄膜層を有する成形体及びその製造方法
WO2010131744A1 (ja) * 2009-05-15 2010-11-18 旭硝子株式会社 紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品
WO2013089165A1 (ja) * 2011-12-15 2013-06-20 旭硝子株式会社 防曇性物品およびその製造方法、吸水層形成用組成物ならびに輸送機器用物品
JP2013189345A (ja) * 2012-03-14 2013-09-26 Nippon Sheet Glass Co Ltd 紫外線遮蔽能を有するガラス物品
JP2014001106A (ja) * 2012-06-19 2014-01-09 Asahi Glass Co Ltd 防曇性ガラス物品その製造方法および輸送機器用物品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258602A (ja) * 1999-03-05 2000-09-22 Nikon Corp 親水性薄膜層を有する成形体及びその製造方法
WO2010131744A1 (ja) * 2009-05-15 2010-11-18 旭硝子株式会社 紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品
WO2013089165A1 (ja) * 2011-12-15 2013-06-20 旭硝子株式会社 防曇性物品およびその製造方法、吸水層形成用組成物ならびに輸送機器用物品
JP2013189345A (ja) * 2012-03-14 2013-09-26 Nippon Sheet Glass Co Ltd 紫外線遮蔽能を有するガラス物品
JP2014001106A (ja) * 2012-06-19 2014-01-09 Asahi Glass Co Ltd 防曇性ガラス物品その製造方法および輸送機器用物品

Similar Documents

Publication Publication Date Title
US10450223B2 (en) Coating solution for forming ultraviolet-absorbing film, and ultraviolet-absorbing glass article
WO2015166858A1 (ja) 液状組成物および抗菌性物品
US10301214B2 (en) Liquid composition, glass article and method of forming coating film
JP6123680B2 (ja) 防曇性物品およびその製造方法、吸水層形成用組成物ならびに輸送機器用物品
JPWO2015166858A6 (ja) 液状組成物および抗菌性物品
WO2011142463A1 (ja) 紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品
JP6102931B2 (ja) 液状組成物およびガラス物品
WO2011004873A1 (ja) 防曇性物品およびその製造方法、防曇膜形成用コーティングキット
JP6007664B2 (ja) 窓ガラスおよびその製造方法
JP6459980B2 (ja) 防曇性物品およびその製造方法、下地層形成用組成物ならびに輸送機器用物品
JPWO2015008672A1 (ja) 防曇性物品
WO2012141150A1 (ja) 機能性物品、輸送機器用物品、建築用物品およびコーティング用組成物
JP2014001106A (ja) 防曇性ガラス物品その製造方法および輸送機器用物品
JP2014054734A (ja) 防曇性物品および下地層形成用組成物ならびに輸送機器用物品
JP6617699B2 (ja) ガラス物品
WO2015166863A1 (ja) 液状組成物およびガラス物品
WO2015174373A1 (ja) 防曇性物品および輸送機器用物品
US20170217833A1 (en) Transparent substrate with coating film
WO2017154703A1 (ja) 被膜つき透明基体
JP2008255192A (ja) 防曇性被膜形成塗布液、防曇性被膜及び防曇性被膜の形成方法
JP2003140123A (ja) 液晶表示装置用基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP