WO2014061355A1 - ガス発生材及びマイクロポンプ - Google Patents

ガス発生材及びマイクロポンプ Download PDF

Info

Publication number
WO2014061355A1
WO2014061355A1 PCT/JP2013/073276 JP2013073276W WO2014061355A1 WO 2014061355 A1 WO2014061355 A1 WO 2014061355A1 JP 2013073276 W JP2013073276 W JP 2013073276W WO 2014061355 A1 WO2014061355 A1 WO 2014061355A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas generating
generating material
gas
group
compound
Prior art date
Application number
PCT/JP2013/073276
Other languages
English (en)
French (fr)
Inventor
野村 茂
良教 赤木
修一郎 松本
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012228175A external-priority patent/JP5639137B2/ja
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201380030332.8A priority Critical patent/CN104350030B/zh
Priority to US14/428,627 priority patent/US10731062B2/en
Priority to EP13846906.9A priority patent/EP2907798B1/en
Publication of WO2014061355A1 publication Critical patent/WO2014061355A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L5/00Gas handling apparatus
    • B01L5/02Gas collection apparatus, e.g. by bubbling under water
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/04Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by auto-decomposition of single substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/27Compounds containing a nitrogen atom bound to two other nitrogen atoms, e.g. diazoamino-compounds
    • C08K5/28Azides

Definitions

  • the present invention relates to a gas generating material and a micro pump provided with the gas generating material.
  • analyzers using microfluidic devices have been used as analyzers that are small and have excellent portability.
  • the analysis apparatus using this microfluidic device it is possible to perform liquid feeding, dilution, concentration, analysis, and the like of the sample in the microchannel.
  • Patent Document 1 discloses a micropump using a photoresponsive gas generating material (adhesive composition) containing a photoacid generator and an acid stimulating gas generator.
  • Patent Document 1 also discloses a photoresponsive gas generating material in which a photoacid generator and an acid stimulating gas generator are mixed with a binder resin (acrylic adhesive) such as methyl methacrylate / acrylamide copolymer. ing.
  • a binder resin acrylic adhesive
  • carbonates and bicarbonates are mentioned as the acid stimulating gas generating agent.
  • Patent Documents 2 and 3 do not disclose the use of the micropump, but disclose a composition containing a gas generating agent.
  • Patent Document 2 describes that the surface of a glass plate to which a layer containing a gas generating agent is attached is surface-treated with a silane coupling agent.
  • the silane coupling agent is not mix
  • Patent Document 3 discloses a multilayer sheet including a layer containing a gas generating agent and a layer containing an amino silane coupling agent.
  • each layer of the multilayer sheet is formed using different compositions, and the gas generating agent and the amino silane coupling agent are used separately in different layers.
  • Patent Document 4 does not disclose the use of the micropump, but includes a first component (polymer) having a plurality of alkyne groups and a second component (polymer) having a plurality of azide groups.
  • An adhesive composition is disclosed. Crosslinking of the first component and the second component proceeds by a click reaction.
  • the adhesiveness of the gas generating material to a member to be bonded may be lowered. Further, it is desired that the gas generating material has a high gas generation amount.
  • An object of the present invention is to provide a gas generating material having high adhesion to a member to be bonded and having a large amount of gas generation per unit time even if it contains a silane coupling agent. Moreover, this invention provides a micropump provided with the said gas generating material.
  • a gas generating material comprising a binder resin, a gas generating agent that is an azo compound or an azide compound, and a silane coupling agent having an amino group.
  • the azide compound has a sulfonyl azide group or an azidomethyl group.
  • the gas generating material further includes a photosensitizer.
  • the photosensitizer includes at least one selected from the group consisting of a thioxanthone compound, a phenothiazine compound, an anthracene compound, and an acridone compound.
  • content of the silane coupling agent which has the said amino group is 0.0001 mass part or more and 1 mass part or less with respect to 100 mass parts of said gas generating agents. is there.
  • the gas generating agent is an azide compound
  • the azide compound includes an azide compound having a plurality of azide groups and a polymer having a carbon-carbon double bond.
  • the obtained gas generating material contains an acrylic pressure-sensitive adhesive as the binder resin.
  • the polymer having a carbon-carbon double bond includes at least one of a vinyl group and a (meth) acryloyl group as a group containing a carbon-carbon double bond. Have one.
  • the polymer having a carbon-carbon double bond has both a vinyl group and a (meth) acryloyl group as a group containing the carbon-carbon double bond.
  • the polymer having a carbon-carbon double bond has a plurality of carbon-carbon double bonds.
  • the gas generating material is a gas generating material used for a micropump.
  • the gas generating material includes the above-described gas generating material and a base material on which a microchannel is formed, and the gas generating material supplies gas generated in the gas generating material to the microchannel.
  • a micropump is provided that is arranged as described.
  • the gas generating material according to the present invention includes a binder resin, a gas generating agent that is an azo compound or an azide compound, and a silane coupling agent having an amino group, it is possible to increase the adhesion to a member to be bonded. . Furthermore, the gas generating material according to the present invention can increase the amount of gas generated per unit time even if it contains a silane coupling agent.
  • FIG. 1 is a schematic cross-sectional view of a micropump according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a micropump according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining a method of measuring adhesive strength in Examples and the like.
  • FIG. 4 is a schematic diagram for explaining a method of measuring the anchor force in Examples and the like.
  • the gas generating material according to the present invention includes a binder resin, a gas generating agent that is an azo compound or an azide compound, and a silane coupling agent having an amino group.
  • the gas generating material according to the present invention has the above-described composition, it is possible to increase the adhesion to the bonding target member. Furthermore, the gas generating material according to the present invention can increase the amount of gas generated per unit time even if it contains a silane coupling agent.
  • the initial adhesive force and initial anchor force of the adhesive composition to the member to be bonded may be low.
  • a gas generating material adheresive composition
  • the gas generating material is bonded to the bonding target member when gas is generated from the gas generating agent.
  • Force and anchor force may be low.
  • the gas generated from the gas generating agent is likely to be excessively released from the gas generating agent. Decrease in anchoring force tends to be a big problem.
  • the adhesion force and the anchoring force of the gas generating material to the bonding target member are reduced, the gas generating material is easily separated from the bonding target member.
  • the adhesive force and anchor force of the adhesive composition to the member to be bonded are: It does n’t drop that much. That is, when a gas generating agent is not used, a decrease in adhesive force and anchoring force during use is not a problem, but when a gas generating agent is used, an adhesive force is generated along with gas generation during use. In addition, a decrease in anchor force may be a big problem.
  • the initial adhesive force and the initial anchoring force are low, or the gas generating agent It was found that the gas generated from the gas easily moves or stays in an unintended region, and the gas is not sufficiently supplied to the microchannel. Furthermore, the present inventors have found that in order to sufficiently supply gas to the microchannel, it is necessary to increase the initial adhesion force and the initial anchor force of the gas generating material to the member to be bonded.
  • the present inventors when a gas generating material containing a conventional gas generating agent is bonded to a member to be bonded, when gas is generated in the gas generating material even if the initial adhesive force and the initial anchor force are high. Furthermore, the present inventors have found that the adhesive force and the anchor force are greatly reduced, and the gas generating material is easily peeled off from the member to be bonded. This is considered to be because the gas generated from the gas generating agent moves or stays in an unintended region such as the bonding interface between the gas generating material and the bonding target member.
  • the present inventors can suppress a decrease in the adhesive force and the anchoring force, and the gas generating material can be peeled off from the adhesion target member.
  • the gas generating agent is an azide compound
  • the azide compound is obtained by blending an azide compound having a plurality of azide groups and a polymer having a carbon-carbon double bond
  • the gas It has been found that the generating material preferably contains an acrylic pressure-sensitive adhesive as the binder resin.
  • the gas generant according to the present invention may be described as a gas generant (hereinafter referred to as gas generant A) obtained by blending an azide compound having a plurality of azide groups and a polymer having a carbon-carbon double bond. ) And an acrylic pressure-sensitive adhesive.
  • gas generant A obtained by blending an azide compound having a plurality of azide groups and a polymer having a carbon-carbon double bond.
  • an acrylic pressure-sensitive adhesive By adopting such a configuration, it is possible to increase the initial adhesive force and the initial anchor force when the gas generating material is bonded to the bonding target member. Further, by adopting such a configuration, the gas generated from the gas generating agent is released at an appropriate rate. As a result, even if gas is generated in the gas generating material after the gas generating material is bonded to the bonding target member, it is possible to make it difficult to reduce the adhesive force and the anchor force. For this reason, it is possible to make it difficult for the gas generating material to be peeled off
  • the blending amount of the conventional gas generating agent in the gas generating material is increased (for example, 50% by mass), and if the gas generating agent is liquid at room temperature and its fluidity is too high, the adhesion of the gas generating material and the anchor It is easy to run out of power.
  • an external stimulus such as light is applied to such a gas generating material, the adhesive force and the anchoring force are likely to be lowered by the gas generated from the gas generating agent, and the holding force is particularly likely to be lowered.
  • a micropump in which a gas generating material is attached to a base material, when an external stimulus such as light is applied to the gas generating material, the generated gas moves from a microchannel formed on the base material to a predetermined area. It functions as a pump.
  • a check valve is provided in order to prevent backflow in the microchannel, and the microchannel is formed with a very small channel diameter so that a small amount of gas can flow with high accuracy. . Therefore, the resistance between the microchannel and the liquid channel through which the gas is pushed out is large. In the micropump, it is necessary to be able to extrude the liquid with the gas without peeling off the gas generating material from the base material even when receiving such resistance.
  • the present inventors have found that peeling of the gas generating material from the base material can be suppressed by using the specific gas generating agent A described above.
  • the gas generating material containing the specific gas generating agent A it is possible to extrude the liquid satisfactorily by the gas without peeling off the gas generating material from the base material even when resistance is received in the micropump.
  • the reaction between the azide group and the carbon-carbon double bond proceeds even at room temperature.
  • the crosslinking reaction proceeds by reacting a part of the azide group of the azide compound having a plurality of azide groups with a carbon-carbon double bond in a polymer having a carbon-carbon double bond. Therefore, in the gas generating material containing the gas generating agent A, the adhesive force and the anchor force can be increased. As a result, the gas can be prevented from leaking to an unintended region, and the gas can be moved to a predetermined location through the microchannel formed in the base material.
  • the azide compound having a plurality of the azide groups reacts with the polymer having the carbon-carbon double bond.
  • a part of the azide group in the azide compound reacts with the carbon-carbon double bond in the polymer.
  • the gas generating agent A as a whole has an azide group in order to generate gas.
  • a step of obtaining the gas generating agent A by blending an azide compound having a plurality of the azide groups and a polymer having a carbon-carbon double bond; A step of blending the obtained gas generating agent A and the acrylic pressure-sensitive adhesive may be performed.
  • at least one of the azide compound having a plurality of azide groups and the polymer having a carbon-carbon double bond is blended with the acrylic pressure-sensitive adhesive. Also good.
  • an azide compound having a plurality of azide groups and a polymer having a carbon-carbon double bond are blended, and the gas generating agent A is added to the acrylic pressure-sensitive adhesive.
  • the obtaining step may be performed.
  • the gel fraction of the gas generating agent is preferably 30% by mass or more, and preferably 100% by mass or less.
  • the degree of swelling of the gas generating agent is preferably 110% or more, and preferably 500% or less.
  • the said gel fraction and the said swelling degree are each measured by the method as described in evaluation columns, such as the Example mentioned later.
  • the gas generating material preferably contains a tertiary amine.
  • the gas generating material preferably contains a photosensitizer.
  • the gas generating material preferably includes a tackifier.
  • the gas generating material when the tertiary amine and the photosensitizer are included, the above-described nitrogen gas is generated smoothly, and the amount of gas generated can be increased.
  • FIG. 1 is a schematic cross-sectional view of a micropump according to a first embodiment of the present invention.
  • a micropump 1 shown in FIG. 1 includes a plate-like substrate 10.
  • the material constituting the substrate 10 include resin, glass, and ceramics.
  • the resin constituting the substrate 10 include organic siloxane compounds, polymethacrylate resins, and polyolefin resins.
  • the polyolefin resin include cyclic polyolefin resins.
  • Specific examples of the organosiloxane compound include polydimethylsiloxane (PDMS) and polymethylhydrogensiloxane.
  • the base 10 is formed with a microchannel 10b that is open to the main surface 10a.
  • Micro channel refers to a channel formed in a shape and dimension in which a so-called micro effect is manifested in the liquid flowing through the micro channel.
  • microchannel means that the liquid flowing through a microchannel is strongly affected by surface tension and capillary action, and has a different shape from that of a liquid flowing through a normal channel. It refers to the flow path that is formed.
  • a film-like gas generating material 11a is affixed on the main surface 10a.
  • the gas generating material 11a is a gas generating material for a micro pump.
  • the opening of the microchannel 10b is covered with a gas generating material 11a. For this reason, the gas generated from the gas generating material 11a when an external stimulus such as light or heat is applied to the gas generating material 11a is guided to the microchannel 10b.
  • the thickness of the gas generating material 11a is not particularly limited.
  • the thickness of the gas generating material 11a is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 5 mm or less, more preferably 500 ⁇ m or less.
  • the gas generating material 11 a is covered with a gas barrier layer 12.
  • the gas barrier layer 12 suppresses the gas generated in the gas generating material 11a from flowing out to the side opposite to the main surface 10a, and is efficiently supplied to the microchannel 10b. For this reason, it is preferable that the gas barrier layer 12 is a layer with low permeability of the gas generated in the gas generating material 11a.
  • Examples of the material constituting the gas barrier layer 12 include polyacrylic resin, polyolefin resin, polycarbonate resin, vinyl chloride resin, ABS resin, polyethylene terephthalate (PET) resin, nylon resin, urethane resin, polyimide resin, and glass.
  • the thickness of the gas barrier layer 12 can be appropriately changed depending on the material of the gas barrier layer 12, and is not particularly limited.
  • the thickness of the gas barrier layer 12 is preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more, preferably 1 mm or less, more preferably 100 ⁇ m or less.
  • the gas barrier layer 12 is preferably a layer in which attenuation of light in the ultraviolet region does not easily occur.
  • the gas generating material 11a is preferably a film.
  • the film includes a tape and a sheet.
  • the gas generating material 11a includes a binder resin, a gas generating agent that is an azo compound or an azide compound, and a silane coupling agent having an amino group.
  • the gas generating material 11a includes a binder resin, a gas generating agent that is an azo compound or an azide compound, and a silane coupling agent having an amino group, the gas generating material 11a and the base material 10 that is an adhesion target member
  • the gas generated from the gas generating agent hardly moves or stays in the region R of the bonding interface, and the decrease in the adhesive force and the anchor force can be suppressed.
  • the gas generating material 11a is excellent in transparency, the light reaching the gas generating material 11a efficiently passes through the inside of the gas generating material 11a.
  • the gas generating agent contained in the gas generating material 11a is an azide compound, and the azide compound is obtained by blending an azide compound having a plurality of azide groups and a polymer having a carbon-carbon double bond, and the gas generating material
  • the gas generated from the gas generating agent A is further generated in the region R of the bonding interface between the gas generating material 11a and the base material 10 that is the bonding target member. It becomes difficult to move or stay, and a decrease in adhesive force and anchor force can be further suppressed.
  • the gas generating material 11a containing the gas generating agent A is excellent in transparency, the light reaching the gas generating material 11a efficiently passes through the inside of the gas generating material 11a.
  • the gas generating material includes the binder resin.
  • the gas generating material preferably contains an acrylic pressure-sensitive adhesive as the binder resin.
  • the gas generating material can be more favorably bonded to a member to be bonded such as a base material.
  • the gas generating material contains a binder resin, the gas generating material can be easily formed into a tablet shape, a fine particle shape, a film shape, or the like.
  • the gas generating material is in the form of a tablet, a fine particle, a film, or the like, the gas generating material can be easily bonded to a member to be bonded. Further, the gas generating agent can be firmly held in the gas generating material.
  • the said binder resin only 1 type may be used and 2 or more types may be used together.
  • the bainter resin is not particularly limited.
  • the binder resin an appropriate binder resin capable of holding the gas generating agent and the amino group-containing silane coupling agent in the gas generating material is used.
  • the binder resin polymer materials such as poly (meth) acrylate, polyester, polyethylene, polypropylene, polystyrene, polyether, polyurethane, polycarbonate, polyamide, and polyimide can be used. A copolymer of monomers constituting these polymer materials may be used, or these polymer materials may be used in combination.
  • the said binder resin is the said poly (meth) acrylate. That is, the binder resin is preferably a (meth) acrylic polymer.
  • the (meth) acrylic polymer includes a (meth) acrylic copolymer.
  • the acrylic pressure-sensitive adhesive can be used as a binder resin in the gas generating material.
  • the acrylic pressure-sensitive adhesive preferably has a (meth) acryloyl group.
  • the (meth) acryloyl group represents an acryloyl group or a methacryloyl group.
  • As for the said acrylic adhesive only 1 type may be used and 2 or more types may be used together.
  • the acrylic pressure-sensitive adhesive is not particularly limited.
  • an appropriate acrylic pressure-sensitive adhesive capable of holding the gas generating agent in the gas generating material is used.
  • a polymer material such as poly (meth) acrylate can be used. You may use the copolymer of the monomer which comprises this polymeric material. That is, the acrylic pressure-sensitive adhesive is preferably a (meth) acrylic polymer.
  • the SP values of the binder resin and the acrylic pressure-sensitive adhesive are each preferably 7 or more, and preferably 10.5 or less.
  • the SP value of the binder resin and the acrylic pressure-sensitive adhesive is not less than the above lower limit and not more than the above upper limit, the compatibility between the binder resin and the gas generating agent and the compatibility between the acrylic pressure sensitive adhesive and the gas generating agent are more. Even better.
  • the SP value (solubility parameter) can be calculated using the Fedors method (R. F. Fedors, Polym. Eng. Sci., 14, 147 (1974)).
  • the (meth) acrylate monomer constituting the poly (meth) acrylate may be a chain compound or a cyclic compound.
  • the chain compound include methyl (meth) acrylate, ethyl acrylate, butyl (meth) acrylate, 2-methylhexyl (meth) acrylate, and lauryl (meth) acrylate.
  • the cyclic compound include cyclohexyl (meth) acrylate and isobornyl (meth) acrylate. Among these, methyl (meth) acrylate is preferable.
  • the poly (meth) acrylate may be, for example, a copolymer of a (meth) acrylate monomer and a vinyl monomer copolymerizable with the (meth) acrylate monomer.
  • the vinyl monomer is not particularly limited, and is a carboxyl of (meth) acrylic acid, itaconic acid, crotonic acid, (anhydrous) maleic acid, (anhydrous) fumaric acid, carboxyalkyl (meth) acrylates (carboxyethyl acrylate, etc.)
  • Group-containing vinyl monomer hydroxyl group-containing vinyl such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, caprolactone-modified (meth) acrylate, polyethylene glycol (meth) acrylate, etc.
  • Monomers (meth) acrylonitrile, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinyllaurylactam, (meth) acryloylmorpholine, (meth) acrylamide, dimethyl (meth) acrylami , N- methylol (meth) acrylamide, N- butoxymethyl (meth) acrylamide, N- isopropyl (meth) acrylamide, a nitrogen-containing vinyl monomers such as dimethylaminomethyl (meth) acrylate.
  • the said vinyl monomer only 1 type may be used and 2 or more types may be used together.
  • the combination of the (meth) acrylate monomer and the vinyl monomer is not particularly limited.
  • (Meth) butyl acrylate and (meth) acrylic acid, (meth) acrylate butyl and (meth) acrylamide, and (meth) Examples include a combination of acrylic acid and N-isopropyl (meth) acrylamide.
  • the copolymerization ratio (mass ratio) of the (meth) acrylate monomer and the vinyl monomer is preferably in the range of 98: 2 to 51:49.
  • the poly (meth) acrylate is composed of polymethyl (meth) acrylate, (meth) butyl acrylate / (meth) acrylic acid copolymer, and (meth) butyl acrylate / ( It preferably contains at least one selected from the group consisting of (meth) acrylamide copolymers.
  • the poly (meth) acrylate preferably has an amino group or a carbonyl group.
  • the binder resin preferably has an ultraviolet light absorption band.
  • the ultraviolet light absorption band of the binder resin preferably has a shorter wavelength than the ultraviolet light absorption bands of the gas generating agent and the photosensitizer.
  • the weight average molecular weights of the binder resin and the acrylic pressure-sensitive adhesive are each preferably 50,000 or more, more preferably 600,000 or more, preferably 2 million or less, more preferably 1.6 million or less.
  • the weight average molecular weight of the binder resin and the acrylic pressure-sensitive adhesive is not less than the lower limit, a decrease in the cohesive force of the binder resin itself is suppressed, and the gas generating agent and the amino group-containing silane coupling agent are treated with the gas. It can be firmly held in the generating material, and the tackifier can also be firmly held in the gas generating material.
  • the gas generating material can be easily processed into various forms.
  • the acrylic pressure-sensitive adhesive has adhesiveness.
  • Each of the binder resin and the acrylic pressure-sensitive adhesive preferably has adhesiveness.
  • the gas generating material can be provided with adhesiveness. For this reason, the gas generating material can be easily arranged in the micro pump. For example, a film-like gas generating material having adhesiveness can be easily attached to the substrate surface of the micropump or the wall surface inside the substrate.
  • the content of the binder resin and the acrylic pressure-sensitive adhesive is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and still more preferably 30 parts by mass or more, with respect to 100 parts by mass of the gas generating agent. Is 300 parts by mass or less, more preferably 200 parts by mass or less, and still more preferably 150 parts by mass or less.
  • the gas generating material includes the gas generating agent.
  • the gas generating agent is an azo compound or an azide compound.
  • the gas generating agent generates gas when an external stimulus such as heat or light is applied.
  • the azo compound or the azide compound is not particularly limited, and may be a known azo compound or azide compound.
  • the gas generating agent is preferably the azo compound, and is preferably the azide compound. As for the said gas generating agent, only 1 type may be used and 2 or more types may be used together.
  • the azo compound used as the gas generating agent include, for example, 2,2′-azobis (N-cyclohexyl-2-methylpropionamide), 2,2′-azobis [N- (2-methylpropyl). ) -2-Methylpropionamide], 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis [N- (2-methylethyl) -2-methylpropionamide], 2,2′-azobis (N-hexyl-2-methylpropionamide), 2,2′-azobis (N-propyl-2-methylpropionamide), 2,2′-azobis (N-ethyl-2-methyl) Propionamide), 2,2′-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2, '-Azobis ⁇ 2-methyl-N- [2- (1-hydroxybutyl)] propionamide ⁇ , 2,2'-azobis [2-methyl-N- (2-hydroxy)]
  • the above azo compound is extremely easy to handle because it does not generate gas upon impact.
  • the azo compound does not cause a chain reaction to generate a gas explosively. If the said azo compound is used, generation
  • Examples of the azide compound used as the gas generating agent include an azide compound having a sulfonyl azide group or an azidomethyl group.
  • the azide compound preferably has a sulfonyl azide group or an azidomethyl group.
  • the azide compound preferably has a sulfonyl azide group, and preferably has an azidomethyl group.
  • Preferred examples of the compound having a sulfonyl azide group include a compound represented by the following formula (1).
  • R 1 to R 5 are each a hydrogen atom, a halogen atom, an amino group, an amide group, a hydrocarbon group, a group in which a substituent is bonded to a hydrocarbon group, or an alkoxy group.
  • R 1 to R 5 in the above formula (1) may be the same or different.
  • the hydrocarbon group may be linear, branched, or cyclic.
  • the hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the alkoxy group may have a substituent, may be linear, or may be branched.
  • At least one group of R 1 to R 5 is preferably a hydrocarbon group or a group having a substituent bonded to a hydrocarbon group, and more preferably a hydrocarbon group.
  • the hydrocarbon group has 1 or more, preferably 3 or more, more preferably 6 or more, preferably 30 or less. More preferably, it is 20 or less, More preferably, it is 18 or less.
  • the substituent in the group in which the substituent is bonded to the hydrocarbon group include a halogen atom.
  • the alkoxy group has 1 or more carbon atoms, preferably 3 or more, more preferably 6 or more, preferably 20 or less, more preferably 16 or less, still more preferably 12 or less. It is. Moreover, when the said alkoxy group has a substituent, a halogen atom etc. are mentioned as this substituent.
  • R 3 is preferably an amide group, a hydrocarbon group, a group in which a substituent is bonded to a hydrocarbon group, or an alkoxy group.
  • R 1 , R 2 , R 4 and R 5 are each preferably a hydrogen atom.
  • Examples of the azide compound having an azidomethyl group include glycidyl azide polymer.
  • the glycidyl azide polymer is preferably an aliphatic polyether having an azidomethyl group in the side chain and a hydroxyl group at the terminal.
  • Preferred examples of the aliphatic polyether having an azidomethyl group in the side chain and a hydroxyl group at the terminal include an azide compound represented by the following formula (2-1).
  • aliphatic polyether having an azidomethyl group in the side chain and a hydroxyl group at the terminal include an azide compound represented by the following formula (2-2).
  • m is an integer of 1 to 20, and l + n is an integer of 7 to 50.
  • m is preferably 3 or more, and preferably 15 or less.
  • l + n is preferably 10 or more, and preferably 30 or less.
  • aliphatic polyether having an azidomethyl group in the side chain and a hydroxyl group at the terminal include an azide compound represented by the following formula (2-3).
  • n1, n2 and n3 are each an integer from 1 to 20.
  • the azide compound is preferably the gas generating agent A or an azide compound represented by the formula (1), (2-1), (2-2) or (2-3). .
  • the azide compound is preferably an azide compound represented by the above formula (1), (2-1), (2-2) or (2-3).
  • the azide compound is preferably an azide compound represented by the above formula (1), and is an azide compound represented by the above formula (2-1), (2-2) or (2-3). Is also preferable.
  • the above-described azide compound is decomposed by receiving an external stimulus such as light, heat, ultrasonic waves or impact in a specific wavelength range, and generates nitrogen gas.
  • the gas generating agent A In order to obtain the gas generating agent A, only one kind of azide compound having a plurality of the azide groups may be used, or two or more kinds may be used in combination. In order to obtain the gas generating agent A, only one type of the polymer having a carbon-carbon double bond may be used, or two or more types may be used in combination.
  • the polymer having a carbon-carbon double bond is preferably a polymer having a plurality of carbon-carbon double bonds, and carbon in the side chain.
  • -A polymer having a carbon double bond is preferred, and a polymer having a plurality of carbon-carbon double bonds in the side chain is more preferred.
  • the carbon-carbon double bond located in the side chain reacts efficiently with the azide group.
  • the polymer having a carbon-carbon double bond may have a carbon-carbon double bond at both the side chain and the terminal.
  • the polymer having the carbon-carbon double bond includes a vinyl group and (meth) acryloyl as a group containing the carbon-carbon double bond. It is preferable to have at least one of the groups.
  • the polymer having a carbon-carbon double bond preferably has a plurality of groups containing a carbon-carbon double bond because the reaction efficiency in obtaining the gas generating material is further increased. Since the reaction efficiency at the time of obtaining the gas generating material is further increased, the polymer having the carbon-carbon double bond includes a vinyl group and (meth) acryloyl as a group containing the carbon-carbon double bond. It is preferred to have both groups. *
  • the polymer having a carbon-carbon double bond preferably has a (meth) acryloyl group, and has a plurality of (meth) acryloyl groups. It is preferable that it has a (meth) acryloyl group at the terminal, and preferably has a plurality of (meth) acryloyl groups at the terminal.
  • the polymer having a carbon-carbon double bond preferably has a vinyl group, and preferably has a plurality of vinyl groups, since the reaction efficiency in obtaining the gas generating material is further increased.
  • the polymer may have a vinyl group at the terminal or a side chain.
  • the weight average molecular weight of the polymer having a carbon-carbon double bond is preferably 500 or more, preferably 50000 or less, more preferably 30000 or less.
  • the said weight average molecular weight shows the weight average molecular weight in polystyrene conversion measured by gel permeation chromatography (GPC).
  • the polymer having a carbon-carbon double bond is preferably a polymer having a plurality of structural units represented by the following formula (11).
  • the polymer having a carbon-carbon double bond preferably has a structural unit represented by the following formula (11) as a monomer unit.
  • R1 and R2 each represent a hydrogen atom or a methyl group
  • M is a divalent having at least one bond selected from the group consisting of an ether bond, an ester bond, an amide bond, and a urethane bond. Represents an aliphatic organic group.
  • R1 and R2 may be the same or different.
  • the aliphatic organic groups represented by R1 and R2 in the above formula (11) each have at least one bond selected from the group consisting of an ether bond, an ester bond, an amide bond and a urethane bond on the aliphatic hydrocarbon group. It may be an aliphatic organic group to which the containing group is bonded.
  • the carbon number of the divalent aliphatic organic group represented by R1 and R2 in the formula (11) is preferably 5 or more, preferably 20 or less, more preferably 10 or less.
  • M is preferably a divalent aliphatic organic group having at least one bond selected from the group consisting of an ether bond, an ester bond, and a urethane bond.
  • the polymer having a plurality of structural units represented by the above formula (11) can be easily obtained by, for example, a method of reacting a polymer having a plurality of hydroxyl groups with a group having a hydroxyl group and a compound having an unsaturated double bond. Can be synthesized. Examples of the group that reacts with the hydroxyl group include an isocyanate group.
  • the number of structural units represented by the above formula (11) is preferably 5 or more, and preferably 500 or less.
  • the number of structural units represented by the above formula (1) may be 300 or less.
  • the structural units represented by the formula (11) may be bonded at random or may be bonded in blocks.
  • M is preferably a structural unit represented by the following formula (12) or a structural unit represented by the following formula (13).
  • the left side portion is bonded to the upper portion in the above formula (11)
  • the right side portion is bonded to the lower portion in the above formula (11)
  • X1 and X2 are respectively Represents a divalent aliphatic organic group having 1 to 8 carbon atoms.
  • the left portion is bonded to the upper portion in the above formula (11)
  • the right portion is bonded to the lower portion in the above formula (11)
  • n is 1 to 4. Indicates an integer.
  • X1 and X2 may be the same or different.
  • carbon number of the said bivalent aliphatic organic group which X1 and X2 represent is respectively preferably 2 or more, Preferably it is 4 or less.
  • each of the divalent aliphatic organic groups represented by X1 and X2 may be a divalent aliphatic hydrocarbon group, and the aliphatic hydrocarbon group includes an ether bond. May be a divalent aliphatic organic group to which is bonded.
  • each of the divalent aliphatic organic groups represented by X1 and X2 is preferably a divalent aliphatic hydrocarbon group.
  • n is preferably an integer of 2 or more.
  • the azide compound examples include a glycidyl azide polymer, an azide compound having a sulfonyl azide group or an azidomethyl group.
  • the azide compound preferably has a sulfonyl azide group or an azidomethyl group.
  • the azide compound preferably has a sulfonyl azide group, and preferably has an azidomethyl group.
  • the compound having a plurality of azido groups is represented by the following formula (14), the following formula (15), the following formula (16), or the following formula (17). It is preferable that it is a compound.
  • n represents an integer of 10 to 50
  • m + 1 represents an integer of 1 to 10.
  • r + s + t + u represents an integer of 10 to 50.
  • n an integer of 1 to 20.
  • n1, n2, n3 and n4 each represent an integer of 1 to 10.
  • n, m and l may be the same or different.
  • r, s, t, and u may be the same or different.
  • r + s + t + u is preferably an integer of 15 or more, preferably an integer of 30 or less.
  • n is preferably an integer of 2 or more, preferably an integer of 8 or less.
  • n1, n2, n3, and n4 may be the same or different.
  • n1, n2, n3 and n4 are each preferably an integer of 3 or more, more preferably an integer of 4 or more, and preferably an integer of 8 or less.
  • the gas generant A it is preferable to mix 1 part by mass or more of the azide compound having a plurality of the azide groups with respect to 1 part by mass of the polymer having a carbon-carbon double bond. It is preferable to mix 10 parts by weight or more.
  • the content of the gas generating agent is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, preferably 90% by mass or less, more preferably 75% by mass. % Or less, more preferably 60% by mass or less.
  • the gas generating material includes a silane coupling agent having an amino group.
  • the use of the silane coupling agent having an amino group not only increases the initial adhesive force of the gas generating material to the bonding target member, but also the gas generated from the gas generating material due to the use of the silane coupling agent. It is also possible to suppress a decrease in the amount of generation. That is, when the silane coupling agent having an amino group is used, the initial adhesive force of the gas generating material to the bonding target member is more effective than when the silane coupling agent having no amino group is used. Further, the reduction in the amount of gas generated from the gas generating material can be effectively suppressed.
  • the tertiary amine preferably does not contain a silicon atom, and is preferably not a silane coupling agent.
  • the silane coupling agent having an amino group is preferably not the tertiary amine.
  • silane coupling agent having an amino group examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N -2- (aminoethyl) -3-aminopropyltriethoxysilane, N, N′-bis [(3-trimethoxysilyl) propyl] ethylenediamine, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane and the like can be mentioned.
  • Silane coupling agents having amino groups other than these may be used.
  • the said silane coupling agent which has an amino group only 1 type may be used and 2 or more types may be used together.
  • the use of the silane coupling agent further increases the initial adhesive force and initial anchor force of the gas generating material to the bonding target member.
  • the combined use of the tackifier and the silane coupling agent greatly contributes to the improvement of the initial adhesion force and the initial anchor force of the gas generating material to the adhesion target member.
  • the combined use of the tackifier and the silane coupling agent greatly contributes to the suppression of the decrease in the adhesive force and anchor force accompanying the generation of gas in the gas generating material.
  • silane coupling agent having no amino group examples include epoxy groups such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane.
  • the content of the silane coupling agent having an amino group with respect to 100 parts by mass of the gas generating agent is preferably 0.0001 parts by mass or more, more preferably 0.0003 parts by mass or more. Preferably it is 1 mass part or less, More preferably, it is 0.3 mass part or less.
  • the content of the silane coupling agent having an amino group is not less than the above lower limit, the initial adhesive force and the initial anchor force of the gas generating material to the member to be bonded are further increased.
  • the content of the amino group-containing silane coupling agent is not more than the above upper limit, a decrease in the amount of gas generated due to an excess of the amino group-containing silane coupling agent is further suppressed.
  • the gas generating material preferably contains a tertiary amine.
  • the tertiary amine is not particularly limited. Examples of the tertiary amine include cyclic amines, trialkylamines, and aromatic amines. Each of the cyclic amine and the aromatic amine has a tertiary amine structure. As for the said tertiary amine, only 1 type may be used and 2 or more types may be used together.
  • the gas generating material preferably contains at least one selected from the group consisting of cyclic amines, trialkylamines, and aromatic amines.
  • the tertiary amine is preferably a cyclic amine, preferably a trialkylamine, and preferably an aromatic amine.
  • the cyclic amine has a cyclic skeleton excluding an aromatic skeleton and does not have an aromatic skeleton.
  • the trialkylamine does not have a cyclic skeleton and an aromatic skeleton.
  • the aromatic amine has an aromatic skeleton and does not have a cyclic skeleton excluding the aromatic skeleton.
  • the carbon number of the cyclic amine is preferably 6 or more, preferably 20 or less.
  • Specific examples of the cyclic amine include 1,4-diazabicyclo [2.2.2] octane (DABCO), diazabicycloundecene (DBU), diazabicyclononene (DBN), and the like.
  • the three alkyl groups of the above trialkylamine may be the same or different.
  • the carbon number of the three alkyl groups of the trialkylamine is 1 or more, preferably 2 or more, preferably 20 or less, more preferably 6 or less.
  • Specific examples of the trialkylamine include trimethylamine, N, N-diethylmethylamine, N, N-dimethylethylamine, triethylamine, N, N-dimethylpropylamine, tripropylamine and tributylamine.
  • aromatic amine examples include N, N-dimethylaminotoluidine, N, N-diethylaminotoluidine, N, N-dimethylaminobenzene, N, N-diethylaminobenzene, and N, N, N′N′—. And tetramethyl-p-phenylenediamine.
  • the content of the tertiary amine is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the gas generating agent. More preferably, it is 1 part by mass or more, preferably 50 parts by mass or less, more preferably 40 parts by mass or less, still more preferably 30 parts by mass or less.
  • the content of the tertiary amine is not less than the above lower limit and not more than the above upper limit, the amount of gas generated per unit time in the gas generating material is effectively increased, and the storage stability is effectively increased.
  • the gas generating material preferably contains a photosensitizer.
  • the photosensitizer has an effect of amplifying light stimulation to the gas generating agent. Therefore, when the gas generating material contains a photosensitizer, gas can be generated and released with a small amount of light irradiation. Further, gas can be generated and emitted by light in a wider wavelength region.
  • the said photosensitizer only 1 type may be used and 2 or more types may be used together.
  • the photosensitizer is not particularly limited.
  • a known photosensitizer can be used as the photosensitizer.
  • Examples of the photosensitizer include thioxanthone compounds, phenothiazine compounds, anthracene compounds, and acridone compounds.
  • thioxanthone compound examples include thioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, and 2,4-diethylthioxanthone. Is mentioned.
  • phenothiazine compound examples include phenothiazine, 2-chlorophenothiazine, 2-methylthiophenothiazine, 2-methoxyphenothiazine, and 2- (trifluoromethyl) phenothiazine.
  • anthracene compound examples include anthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-dibutoxyanthracene, 9-carboxyanthracene, 2-anthracenecarboxylic acid, and 1-anthracenecarboxylic acid.
  • acridone compound examples include 10-methyl-9 (10H) acridone, 9 (10H) -acridone, and 10-butyl-2-chloro-9 (10H) -acridone.
  • the photosensitizer preferably contains at least one selected from the group consisting of a thioxanthone compound, a phenothiazine compound, an anthracene compound, and an acridone compound.
  • the photosensitizer is preferably a thioxanthone compound, is preferably a phenothiazine compound, is preferably an anthracene compound, and is preferably an acridone compound.
  • the photosensitizer examples include polycyclic aromatic compounds having an alkoxy group.
  • the polycyclic aromatic compound may have two or more alkoxy groups.
  • the polycyclic aromatic compound which has an alkoxy group containing a glycidyl group or a hydroxyl group is preferable.
  • This polycyclic aromatic compound is preferably a substituted alkoxy polycyclic aromatic compound having an alkoxy group in which a part of the alkoxy group is substituted with a glycidyl group or a hydroxyl group.
  • Such a photosensitizer has high sublimation resistance and can be used at high temperatures.
  • the solubility in the gas generating material is increased, and bleeding out is suppressed.
  • Preferred examples of the polycyclic aromatic compound used as the photosensitizer include polycyclic aromatic compounds having an anthracene skeleton.
  • the polycyclic aromatic compound having an anthracene skeleton is an anthracene compound having an alkoxy group, such as an anthracene derivative.
  • the carbon number of the alkoxy group of the polycyclic aromatic compound having an alkoxy group is 1 or more, preferably 18 or less, more preferably 8 or less.
  • polycyclic aromatic compound having an alkoxy group examples include 9,10-dimethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, 2-t-butyl-9,10-dimethoxyanthracene, 2,3 -Dimethyl-9,10-dimethoxyanthracene, 9-methoxy-10-methylanthracene, 9,10-diethoxyanthracene, 2-ethyl-9,10-diethoxyanthracene, 2-t-butyl-9,10-di Ethoxyanthracene, 2,3-dimethyl-9,10-diethoxyanthracene, 9-ethoxy-10-methylanthracene, 9,10-dipropoxyanthracene, 2-ethyl-9,10-dipropoxyanthracene, 2-t- Butyl-9,10-dipropoxyanthracene, 2,3-dimethyl-9,10 Dipropoxyanthracen
  • polycyclic aromatic compound having a glycidyl group or an alkoxy group containing a hydroxyl group examples include 9,10-di (glycidyloxy) anthracene, 2-ethyl-9,10-di (glycidyloxy) anthracene, 2- t-butyl-9,10-di (glycidyloxy) anthracene, 2,3-dimethyl-9,10-di (glycidyloxy) anthracene, 9- (glycidyloxy) -10-methylanthracene, 9,10-di ( 2-vinyloxyethoxy) anthracene, 2-ethyl-9,10-di (2-vinyloxyethoxy) anthracene, 2-t-butyl-9,10-di (2-vinyloxyethoxy) anthracene, 2,3- Dimethyl-9,10-di (2-vinyloxyethoxy) anthracene, 9
  • the photosensitizer may be a material generally known as a photopolymerization initiator.
  • Examples of such photosensitizers include compounds that are activated by irradiation with light having a wavelength of 250 to 800 nm.
  • Specific examples of such photosensitizers include acetophenone compounds such as methoxyacetophenone; benzoin ether compounds such as benzoin propyl ether and benzoin isobutyl ether; ketal compounds such as benzyldimethyl ketal and acetophenone diethyl ketal; phosphine oxide compounds;
  • Examples include titanocene compounds such as bis ( ⁇ 5-cyclopentadienyl) titanocene; benzophenone; Michler ketone; chlorothioxanthone; dodecylthioxanthone; dimethylthioxanthone; diethylthioxanthone;
  • the said photosensitizer only 1 type may be
  • the content of the photosensitizer with respect to 100 parts by mass of the gas generating agent is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more. Preferably it is 50 mass parts or less, More preferably, it is 30 mass parts or less. Further, the content of the photosensitizer is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, preferably 30 parts by mass or less, more preferably 15 parts by mass with respect to 100 parts by mass of the binder resin. It is below mass parts.
  • the content of the photosensitizer is not less than the above lower limit, a sufficient photosensitizing effect can be obtained.
  • the residue derived from the photosensitizer is reduced and gas is easily generated.
  • the tertiary amine is preferably blended in an equimolar amount with respect to the photosensitizer. Moreover, since it is thought that the said tertiary amine is not consumed at the time of gas generation
  • the molar equivalent of the tertiary amine is preferably not more than the molar equivalent of the gas generating agent.
  • the equivalent here means that one nitrogen atom in the amine is one equivalent, and one molecule of the photosensitizer is one equivalent.
  • the gas generating material preferably includes the tackifier.
  • the tackifier By using the tackifier, the initial adhesion force and initial anchor force of the gas generating material to the adhesion target member are further increased.
  • the Hazen color number of the tackifier is preferably 200 or less.
  • the SP value of the tackifier is preferably 8.5 or more.
  • the Hazen color number of the tackifier is more preferably 100 or less, and still more preferably 50 or less.
  • the Hazen color number is measured according to JIS K0071-1.
  • the Hazen color number can be measured, for example, using a color pigment meter CT-5 manufactured by Konica Minolta.
  • the SP value of the tackifier is more preferably 8.8 or more.
  • the upper limit of the tackifier is not particularly limited.
  • the SP value in the above-mentioned tackifier is obtained from the Hoy constant in the following formula (S).
  • tackifier examples include rosin resin, terpene resin, styrene resin, and petroleum resin.
  • the tackifier is A rosin resin is preferable, and a rosin ester resin is more preferable.
  • the tackifier may not have a (meth) acryloyl group.
  • the rosin resin is a resin based on rosin or a rosin derivative.
  • the rosin resin include rosin, acid-modified rosin, rosin-containing diol, rosin ester, hydrogenated rosin ester and maleic acid-modified rosin ester.
  • the acid-modified rosin include acrylic acid-modified rosin.
  • the terpene resin is a resin based on a terpene compound or a terpene compound derivative.
  • examples of the terpene resin include modified terpene resins and terpene phenol resins.
  • the styrene resin is a resin based on a styrene compound or a derivative of a styrene compound.
  • examples of the styrene resin include modified styrene resin and phenolic alpha methyl styrene.
  • the tackifier preferably has a hydroxyl value of 20 or more, the tackifier is a rosin ester resin, and The hydroxyl value of the rosin ester resin is more preferably 20 or more.
  • the content of the tackifier is preferably 1 part by mass or more, more preferably 3 parts by mass or more, with respect to 100 parts by mass of the gas generating agent.
  • the amount is preferably 10 parts by mass or more, preferably 50 parts by mass or less, more preferably 35 parts by mass or less, still more preferably 25 parts by mass or less, particularly preferably 20 parts by mass or less, and most preferably 15 parts by mass or less.
  • the content of the rosin resin or rosin ester resin is preferably not less than the above lower limit and not more than the above upper limit.
  • the initial adhesive force and the initial anchor force of the gas generating material to the bonding target member are further increased. Furthermore, when the content of the tackifier is not more than the above upper limit, the transparency of the gas generating material is further increased, and further a decrease in the amount of gas generated by the excessive tackifier is further suppressed.
  • the gas generating material may contain a crosslinking agent, an inorganic filler, and the like. More preferably, the gas generating material contains the crosslinking agent. However, the gas generating material may not contain the crosslinking agent. By using the crosslinking agent, the adhesion of the gas generating material is further increased.
  • FIG. 2 is a schematic cross-sectional view of a micropump according to a second embodiment of the present invention.
  • the microchannel 10b is connected to a pump chamber 10c formed in the base material 10.
  • the gas generating material 11b is formed in a block shape and is arranged in the pump chamber 10c.
  • micropump 2 similarly to the micropump 1, a high output and a long drive time can be realized.
  • Binder resin / acrylic adhesive (Synthesis Example 1) 97 parts by mass of n-butyl acrylate (manufactured by Nippon Shokubai Co., Ltd.), 3 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.), 0.05 part by mass of Irgacure 907 (manufactured by Nagase Sangyo Co., Ltd.), and 200 parts by mass of ethyl acetate Mixed to obtain a mixture. Next, this mixture was irradiated with ultraviolet rays for 4 hours to produce a binder resin A (acrylic pressure-sensitive adhesive A) which was an acrylic copolymer. The weight average molecular weight of the binder resin A was about 700,000. The SP value of the obtained binder resin A is in the range of 7 or more and 10.5 or less.
  • Example 1 100 parts by weight of binder resin A and 567 parts by weight of ethyl acetate as a solvent were blended. 100 parts by weight of binder resin A (provided that 567 parts by weight of ethyl acetate as a solvent is blended with binder resin A), 110 parts by weight of GAP4006 (glycidyl azide polymer, manufactured by NOF Corporation) as a gas generating agent, and amino N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (KBM-602 manufactured by Shin-Etsu Chemical Co., Ltd.) which is a silane coupling agent having a group, and triamine which is a tertiary amine 2 parts by mass of propylamine (tri-n-propylamine), 3.5 parts by mass of 2-isopropylthioxanthone (IPX made by DKSH Japan) as a photosensitizer, and N, N, N ′, Mix with
  • a micropump having a configuration substantially similar to the micropump 1 of the first embodiment was manufactured.
  • the cross-sectional shape of the microchannel 10b was a 0.5 mm square shape.
  • the length of the microchannel 10b was 800 mm.
  • the tip of the microchannel 10b was open to the atmosphere.
  • the gas generating material was a film having a diameter of 0.6 cm and a thickness of 50 ⁇ m.
  • Examples 2 to 14 and Comparative Examples 1 to 6 A gas generating material was obtained and a micropump was produced in the same manner as in Example 1 except that the type and amount of the compounding component (unit: part by mass) were changed as shown in Tables 1 and 2 below.
  • a silane coupling agent having an amino group was used in Examples 2 to 14.
  • silane coupling agents are as follows.
  • the adhesive strength was evaluated by peeling 180 degrees in the direction indicated by arrow Y1 using a tensile tester (“AG-IS” manufactured by Shimadzu Corporation).
  • the measurement conditions are a peel rate of 300 mm / min, a peel width of 25 mm, and a measurement temperature of 23 ° C.
  • peeling strength was evaluated by peeling 90 degrees in a direction indicated by an arrow Y2 using a tensile tester (“AG-IS” manufactured by Shimadzu Corporation).
  • the measurement conditions are a peel rate of 300 mm / min, a peel width of 16 mm, and a measurement temperature of 23 ° C.
  • E-AX (N, N, N ′, N′-tetraglycidyl-1,3-benzenedi (methanamine), “E-AX” manufactured by Soken Chemical Co., Ltd., 5% toluene)
  • AX4-HC-M08 (PVEEA, 2- (2-vinyloxyethoxy) ethyl acrylate polymer (solid content 100% by mass), a compound having a plurality of structural units represented by the following formula (21); manufactured by Nippon Shokubai Co., Ltd. “AX4-HC-M08”; weight average molecular weight of about 20000)
  • Multifunctional acrylic monomer A-TMMT penentaerythritol tetraacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • GAP4006 (glycidyl azide polymer, manufactured by NOF Corporation)
  • GAP5006 (glycidyl acrylic polymer, manufactured by NOF Corporation)
  • Tripropylamine tri-n-propylamine
  • Example 15 After blending 220 parts by mass of ethyl acetate, which is a solvent, with 88 parts by mass of acrylic adhesive B, 110 parts by mass of GAP4006, 0.002 parts by mass of KEM603, which is a silane coupling agent, and triamine which is a tertiary amine.
  • Propylamine (tri-n-propylamine) 3.5 parts by mass, photosensitizer 2-isopropylthioxanthone 2.5 parts by mass, cross-linking agent E-AX 1 part by mass, and AX4-HC-M08 1 part by mass and 12 parts by mass of KE-359 as a tackifier were mixed and processed into a film. This film was heated at 110 ° C. for 5 minutes to remove ethyl acetate as a solvent. This was protected with a release PET film and stored at room temperature for one day (24 hours) to obtain a film-like gas generating material (film).
  • a micropump having a configuration substantially similar to the micropump 1 of the first embodiment was manufactured.
  • the cross-sectional shape of the microchannel 10b was a 0.5 mm square shape.
  • the length of the microchannel 10b was 800 mm.
  • the tip of the microchannel 10b was open to the atmosphere.
  • the gas generating material was a film having a diameter of 0.6 cm and a thickness of 50 ⁇ m.
  • Example 16 to 29 A gas generating material was obtained and a micropump was produced in the same manner as in Example 1 except that the type and amount of the compounding component (unit: part by mass) were changed as shown in Table 3 below. In Table 3 below, the description of the amount of solvent removed by volatilization when obtaining a film-like gas generating material was omitted.
  • a silicon pipe having an inner diameter of 100 ⁇ m and a length of 100 mm was inserted between the measuring pipette and the microchannel, and a gas generation test was performed.
  • the light irradiation part and the light-shielding part were separated by using a 6 mm diameter mask for the gas generating tape.
  • the tape after gas generation was observed and the diameter of the bubbles contained in the tape was measured to determine the protruding distance.
  • the minimum value of the protruding distance was 6 mm, and when the protruding distance exceeded 7 mm, it was judged to be unacceptable because it would contact an adjacent gas pump.
  • Test piece was prepared by attaching a 25 mm wide adhesive tape to a polycarbonate plate in the same manner as the measurement of adhesive strength. A test piece was held in a room adjusted at 23 ° C. and 60% RH with a 20 g weight attached to the end of the test piece.
  • Example 27 to 29 the evaluation results of (6) protrusion and (7) holding force showed a slightly bad tendency, but (3) gas generation amount, (4) adhesive force, and (5) anchor force.
  • (3) the gas generation amount of Examples 27 to 29 is used as the gas generation material in one embodiment of the present invention. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Micromachines (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 接着対象部材に対する接着性が高く、更にシランカップリング剤を含んでいても、単位時間あたりのガス発生量が多いガス発生材を提供する。 本発明に係るガス発生材は、バインダー樹脂と、アゾ化合物又はアジド化合物であるガス発生剤と、アミノ基を有するシランカップリング剤とを含む。

Description

ガス発生材及びマイクロポンプ
 本発明は、ガス発生材及び該ガス発生材を備えるマイクロポンプに関する。
 近年、小型であり、かつ携帯性に優れる分析装置として、マイクロ流体デバイスを用いた分析装置が用いられてきている。このマイクロ流体デバイスを用いた分析装置では、マイクロ流路内でサンプルの送液、希釈、濃縮及び分析等を行うことができる。
 上記マイクロ流体デバイスでは、マイクロ流路内におけるサンプルの送液等のために、マイクロポンプが設けられている。例えば、下記の特許文献1には、光酸発生剤と、酸刺激ガス発生剤とを含む光応答性ガス発生材料(接着剤組成物)を用いたマイクロポンプが開示されている。また、特許文献1では、メタクリル酸メチル・アクリルアミド共重合体等のバインダー樹脂(アクリル系粘着剤)に、光酸発生剤と酸刺激ガス発生剤とを配合した光応答性ガス発生材料も開示されている。特許文献1では、上記酸刺激ガス発生剤としては、炭酸塩及び重炭酸塩が挙げられている。
 また、特許文献2,3には、マイクロポンプの用途は開示されていないが、気体発生剤を含む組成物が開示されている。
 特許文献2には、気体発生剤を含む層が貼り付けられるガラス板の表面を、シランカップリング剤により表面処理することが記載されている。特許文献2では、ガス発生剤を含む層に、シランカップリング剤は配合されていない。
 特許文献3には、気体発生剤を含む層と、アミノ系シランカップリング剤を含む層とを備える多層シートが開示されている。特許文献3では、多層シートの各層は異なる組成物を用いて形成されており、ガス発生剤とアミノ系シランカップリング剤とは異なる層において別々に用いられている。
 また、下記の特許文献4には、マイクロポンプの用途は開示されていないが、アルキン基を複数有する第一の成分(ポリマー)と、アジド基を複数有する第二の成分(ポリマー)とを含む接着剤組成物が開示されている。上記第一の成分と上記第二の成分とは、クリック反応により架橋が進行する。
特開2010-89259号公報 特開2005-197630号公報 特開2006-128621号公報 特開2009-247896号公報
 バインダー樹脂中にガス発生剤を配合して、ガス発生材を得た場合には、該ガス発生材の接着対象部材に対する接着性が低くなることがある。また、上記ガス発生材では、ガスの発生量が高いことが望まれる。
 本発明の目的は、接着対象部材に対する接着性が高く、更にシランカップリング剤を含んでいても、単位時間あたりのガス発生量が多いガス発生材を提供することである。また、本発明は、上記ガス発生材を備えるマイクロポンプを提供する。
 本発明の広い局面によれば、バインダー樹脂と、アゾ化合物又はアジド化合物であるガス発生剤と、アミノ基を有するシランカップリング剤とを含む、ガス発生材が提供される。
 本発明に係るガス発生材のある特定の局面では、前記アジド化合物は、スルフォニルアジド基又はアジドメチル基を有する。
 本発明に係るガス発生材のある特定の局面では、該ガス発生材は、光増感剤をさらに含む。
 本発明に係るガス発生材のある特定の局面では、前記光増感剤が、チオキサントン化合物、フェノチアジン化合物、アントラセン化合物、及びアクリドン化合物からなる群から選択された少なくとも1種を含む。
 本発明に係るガス発生材のある特定の局面では、前記ガス発生剤100質量部に対して、前記アミノ基を有するシランカップリング剤の含有量が0.0001質量部以上、1質量部以下である。
 本発明に係るガス発生材のある特定の局面では、前記ガス発生剤がアジド化合物であり、前記アジド化合物が、アジド基を複数有するアジド化合物及び炭素-炭素二重結合を有するポリマーを配合して得られ、前記ガス発生材は、前記バインダー樹脂として、アクリル系粘着剤を含む。
 本発明に係るガス発生材のある特定の局面では、前記炭素-炭素二重結合を有するポリマーが、炭素-炭素二重結合を含む基として、ビニル基、及び(メタ)アクリロイル基の内の少なくとも一方を有する。
 本発明に係るガス発生材のある特定の局面では、前記炭素-炭素二重結合を有するポリマーが、炭素-炭素二重結合を含む基として、ビニル基、及び(メタ)アクリロイル基の双方を有する。
 本発明に係るガス発生材のある特定の局面では、前記炭素-炭素二重結合を有するポリマーが炭素-炭素二重結合を複数有する。
 本発明に係るガス発生材のある特定の局面では、該ガス発生材は、マイクロポンプに用いられるガス発生材である。
 本発明の広い局面によれば、上述したガス発生材と、マイクロ流路が形成された基材とを備え、前記ガス発生材は、前記ガス発生材において発生したガスが前記マイクロ流路に供給されるように配されている、マイクロポンプが提供される。
 本発明に係るガス発生材は、バインダー樹脂と、アゾ化合物又はアジド化合物であるガス発生剤と、アミノ基を有するシランカップリング剤とを含むので、接着対象部材に対する接着性を高くすることができる。さらに、本発明に係るガス発生材では、シランカップリング剤を含んでいても、単位時間あたりのガス発生量を多くすることができる。
図1は、本発明の第1の実施形態に係るマイクロポンプの略図的断面図である。 図2は、本発明の第2の実施形態に係るマイクロポンプの略図的断面図である。 図3は、実施例等における接着力の測定方法を説明するための模式図である。 図4は、実施例等におけるアンカー力の測定方法を説明するための模式図である。
 以下、本発明を詳細に説明する。
 本発明に係るガス発生材は、バインダー樹脂と、アゾ化合物又はアジド化合物であるガス発生剤と、アミノ基を有するシランカップリング剤とを含む。
 本発明に係るガス発生材は、上述した組成を有するので、接着対象部材に対する接着性を高くすることができる。さらに、本発明に係るガス発生材では、シランカップリング剤を含んでいても、単位時間あたりのガス発生量を多くすることができる。
 また、従来の接着剤組成物を、基材などの接着対象部材に接着した場合には、該接着剤組成物の接着対象部材に対する初期接着力及び初期アンカー力が低いことがある。
 一方で、従来のガス発生剤を含むガス発生材(接着剤組成物)を接着対象部材に接着した場合には、ガス発生剤からガスを発生させると、該ガス発生材の接着対象部材に対する接着力及びアンカー力が低くなることがある。特に、従来のガス発生剤を含むガス発生材では、ガス発生剤から発生したガスが、ガス発生剤中から過度に放出されやすいことに起因して、ガス発生材の接着対象部材に対する接着力及びアンカー力の低下が大きな問題となりやすい。ガス発生材の接着対象部材に対する接着力及びアンカー力が低下すると、ガス発生材が接着対象部材から剥離しやすくなる。
 これに対して、ガス発生剤を含まない接着剤組成物を、基板などの接着対象部材に接着した場合には、使用中、該接着剤組成物の接着対象部材に対する接着力及びアンカー力は、さほど低下しない。すなわち、ガス発生剤を用いない場合には、使用中に接着力及びアンカー力の低下は問題とならなくても、ガス発生剤を用いた場合には、使用中にガスの発生とともに、接着力及びアンカー力の低下が大きな問題となることがある。
 本発明者らは、マイクロポンプにおいて、ガス発生剤を含む従来のガス発生材(接着剤組成物)を接着対象部材に接着したときに、初期接着力及び初期アンカー力が低かったり、ガス発生剤から発生したガスが意図しない領域に移動又は滞留しやすく、マイクロ流路にガスが十分に供給されなかったりすることを見出した。さらに、本発明者らは、マイクロ流路にガスを十分に供給するためには、ガス発生材の接着対象部材に対する初期接着力及び初期アンカー力を高める必要があることを見出した。
 さらに、本発明者らは、従来のガス発生剤を含むガス発生材を接着対象部材に接着したときに、初期接着力及び初期アンカー力がたとえ高くても、ガス発生材においてガスが発生したときに、接着力及びアンカー力が大きく低下して、ガス発生材の接着対象部材からの剥離が生じやすくなることを見出した。この原因は、ガス発生剤から発生したガスが、ガス発生材と接着対象部材との接着界面などの意図しない領域に移動又は滞留するためであると考えられる。
 このような新たな知見に基づき、本発明者らは、ガス発生材においてガスが発生したときに、接着力及びアンカー力の低下を抑えることができ、ガス発生材の接着対象部材からの剥離を生じ難くすることができる構成として、上記ガス発生剤がアジド化合物であり、上記アジド化合物が、アジド基を複数有するアジド化合物及び炭素-炭素二重結合を有するポリマーを配合して得られ、上記ガス発生材は、上記バインダー樹脂として、アクリル系粘着剤を含むことが好ましいことを見出した。
 すなわち、本発明に係るガス発生材は、アジド基を複数有するアジド化合物及び炭素-炭素二重結合を有するポリマーを配合して得られるガス発生剤(以下、ガス発生剤Aと記載することがある)と、アクリル系粘着剤とを含むことが好ましい。このような構成の採用により、ガス発生材を接着対象部材に接着したときに、初期接着力及び初期アンカー力を高めることができる。さらに、このような構成の採用によって、ガス発生剤から発生したガスが適度な速度で放出される。この結果、ガス発生材を接着対象部材に接着した後に、ガス発生材においてガスが発生しても、接着力及びアンカー力を低下し難くすることができる。このため、使用前及び使用中に、ガス発生材の接着対象部材からの剥離を生じ難くすることができる。
 以下、マイクロポンプを例にとり、ガス発生材の接着対象部材からの剥離を生じ難くすることができる理由を具体的に説明する。
 ガス発生材中での従来のガス発生剤の配合量を多くすると(例えば50質量%)、またガス発生剤が常温で液状であって流動性が高すぎると、ガス発生材の接着力及びアンカー力が不足しやすい。このようなガス発生材に光などの外部刺激を与えると、ガス発生剤から発生したガスによって、接着力及びアンカー力が低くなりやすく、保持力が特に低くなりやすい。
 また、ガス発生材が基材に貼り付けられたマイクロポンプでは、ガス発生材に光などの外部刺激を与えると、発生したガスが、基材に形成されたマイクロ流路から所定の領域に移動することで、ポンプとして機能する。しかし、マイクロポンプでは、マイクロ流路における逆流を防ぐために、逆止弁が設けられており、更に少量のガスが精度よく流れるように、マイクロ流路は、非常に小さい流路径で形成されている。従って、マイクロ流路とガスが押し出す液体の流路との抵抗は大きい。マイクロポンプでは、このような抵抗を受けても、ガス発生材が基材から剥離せずに、ガスによって液体を押し出すことが可能である必要がある。
 ここで、アクリル系粘着剤における架橋密度などを調整することで、ガス発生材の基材からの剥離を抑制することが考えられる。しかし、アクリル系粘着剤の架橋密度を調整しただけでは、ガス発生材の基材からの剥離を十分に抑制することは困難である。
 これに対して、本発明者らは、上述した特定のガス発生剤Aを用いることで、ガス発生材の基材からの剥離が抑えられることを見出した。特定の上記ガス発生剤Aを含むガス発生材の使用により、マイクロポンプにおいて抵抗を受けても、ガス発生材が基材から剥離せずに、ガスによって液体を良好に押し出すことが可能になる。
 アジド基を複数有するアジド化合物及び炭素-炭素二重結合を有するポリマーを配合すると、アジド基と炭素-炭素二重結合との反応が、室温でも進行する。アジド基を複数有するアジド化合物のアジド基の一部に、炭素-炭素二重結合を有するポリマーにおける炭素-炭素二重結合を反応させることで、架橋反応が進行する。従って、上記ガス発生剤Aを含む上記ガス発生材において、接着力及びアンカー力を高めることができる。この結果、ガスの意図しない領域への漏れを防ぐことができ、基材に形成されたマイクロ流路を通じて、ガスを所定の箇所に移動させることができる。
 上記ガス発生剤Aでは、上記アジド基を複数有するアジド化合物と、上記炭素-炭素二重結合を有するポリマーとが反応していることが好ましい。上記ガス発生剤Aでは、上記アジド化合物におけるアジド基の一部が、上記ポリマーにおける上記炭素-炭素二重結合と反応していることが好ましい。上記ガス発生剤Aは全体で、ガスを発生させるために、アジド基を有する。
 上記ガス発生剤Aを含むガス発生材を得るために、上記アジド基を複数有するアジド化合物と、上記炭素-炭素二重結合を有するポリマーとを配合して上記ガス発生剤Aを得る工程と、得られた上記ガス発生剤Aと上記アクリル系粘着剤とを配合する工程とが行われてもよい。上記ガス発生剤Aを含むガス発生材を得るために、上記アジド基を複数有するアジド化合物及び上記炭素-炭素二重結合を有するポリマーの内の少なくとも一方を、上記アクリル系粘着剤と配合してもよい。例えば、上記アクリル系粘着剤中に、上記アジド基を複数有するアジド化合物と、上記炭素-炭素二重結合を有するポリマーとを配合して、上記アクリル系粘着剤中で、上記ガス発生剤Aを得る工程が行われてもよい。
 上記アジド基を複数有するアジド化合物と、上記炭素-炭素二重結合を有するポリマーとを効率的に反応させ、かつガス発生材の接着対象物からの剥離をより一層抑える観点からは、上記アジド基を複数有するアジド化合物と、上記炭素-炭素二重結合を有するポリマーとを配合して上記ガス発生剤Aを得た後、得られた上記ガス発生剤Aと上記アクリル系粘着剤とを配合することが好ましい。
 上記ガス発生剤のゲル分率は、好ましくは30質量%以上、好ましくは100質量%以下である。上記ガス発生剤の膨潤度は、好ましくは110%以上、好ましくは500%以下である。なお、上記ゲル分率及び上記膨潤度はそれぞれ、後述する実施例などの評価欄に記載の方法で測定される。
 上記ガス発生材は、第三級アミンを含むことが好ましい。上記ガス発生材は、光増感剤を含むことが好ましい。上記ガス発生材は、タッキファイヤーを含むことが好ましい。
 上記ガス発生材では、上記第三級アミンと上記光増感剤とを含むことにより、上述の窒素ガスの発生がスムーズに行われ、ガス発生量を増加させることが可能となる。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態において参照する図面は、模式的に記載されており、図面に描画された物体の寸法の比率等は、現実の物体の寸法の比率等とは異なる場合がある。具体的な物体の寸法の比率等は、以下の説明を参酌して判断されるべきである。
 図1は、本発明の第1の実施形態に係るマイクロポンプの略図的断面図である。図1に示すマイクロポンプ1は、板状の基材10を備える。基材10を構成する材料としては、樹脂、ガラス及びセラミックス等が挙げられる。基材10を構成する樹脂としては、有機シロキサン化合物、ポリメタクリレート樹脂及びポリオレフィン樹脂等が挙げられる。上記ポリオレフィン樹脂としては、環状ポリオレフィン樹脂等が挙げられる。上記有機シロキサン化合物の具体例としては、ポリジメチルシロキサン(PDMS)及びポリメチル水素シロキサン等が挙げられる。
 基材10には、主面10aに開口しているマイクロ流路10bが形成されている。
 「マイクロ流路」とは、マイクロ流路を流れる液体に所謂マイクロ効果が発現する形状寸法に形成されている流路をいう。具体的には、「マイクロ流路」とは、マイクロ流路を流れる液体が、表面張力と毛細管現象との影響を強く受け、通常の寸法の流路を流れる液体とは異なる挙動を示す形状寸法に形成されている流路をいう。
 主面10aの上には、フィルム状のガス発生材11aが貼り付けられている。ガス発生材11aは、マイクロポンプ用ガス発生材である。マイクロ流路10bの開口は、ガス発生材11aにより覆われている。このため、ガス発生材11aに光又は熱等の外部刺激が加わることによりガス発生材11aから発生したガスは、マイクロ流路10bに導かれる。
 ガス発生材11aの厚みは特に限定されない。ガス発生材11aの厚みは好ましくは5μm以上、より好ましくは10μm以上、好ましくは5mm以下、より好ましくは500μm以下である。
 ガス発生材11aは、ガスバリア層12により覆われている。ガスバリア層12により、ガス発生材11aにおいて発生したガスが、主面10aとは反対側に流出することが抑えられ、マイクロ流路10bに効率的に供給される。このため、ガスバリア層12は、ガス発生材11aにおいて発生したガスの透過性が低い層であることが好ましい。
 ガスバリア層12を構成する材料としては、ポリアクリル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、ABS樹脂、ポリエチレンテレフタレート(PET)樹脂、ナイロン樹脂、ウレタン樹脂、ポリイミド樹脂及びガラス等が挙げられる。
 ガスバリア層12の厚みは、ガスバリア層12の材質等によって適宜変更でき、特に限定されない。ガスバリア層12の厚みは、好ましくは10μm以上、より好ましくは25μm以上、好ましくは1mm以下、より好ましくは100μm以下である。光を透過させる場合に、ガスバリア層12は、紫外線領域の光の減衰が起きにくい層であることが好ましい。
 ガス発生材11aは、フィルムであることが好ましい。なお、フィルムにはテープ及びシートが含まれる。
 ガス発生材11aは、バインダー樹脂と、アゾ化合物又はアジド化合物であるガス発生剤と、アミノ基を有するシランカップリング剤とを含む。
 マイクロポンプ1において、光の照射により、ガス発生材11aからガスを発生させるためには、例えば、光照射装置21からガス発生材11aに向かって矢印Xで示す方向に光を照射する。ガス発生材11aは、バインダー樹脂と、アゾ化合物又はアジド化合物であるガス発生剤と、アミノ基を有するシランカップリング剤とを含むので、ガス発生材11aと接着対象部材である基材10との接着界面の領域Rに、ガス発生剤から発生したガスが移動又は滞留し難くなり、接着力及びアンカー力の低下を抑制することができる。また、ガス発生材11aは透明性に優れているので、ガス発生材11aに至った光がガス発生材11aの内部を効率的に通過する。
 また、ガス発生材11aに含まれるガス発生剤がアジド化合物であり、該アジド化合物が、アジド基を複数有するアジド化合物及び炭素-炭素二重結合を有するポリマーを配合して得られ、ガス発生材11aが記バインダー樹脂として、アクリル系粘着剤を含む場合には、ガス発生材11aと接着対象部材である基材10との接着界面の領域Rに、ガス発生剤Aから発生したガスがより一層移動又は滞留し難くなり、接着力及びアンカー力の低下をより一層抑制することができる。また、ガス発生剤Aを含むガス発生材11aは透明性に優れているので、ガス発生材11aに至った光がガス発生材11aの内部を効率的に通過する。
 以下、上記ガス発生材に用いられる各成分の詳細を説明する。
 (バインダー樹脂)
 上記ガス発生材は上記バインダー樹脂を含む。上記ガス発生材は上記バインダー樹脂としてアクリル系粘着剤を含むことが好ましい。上記ガス発生材が上記アクリル系粘着剤を含むことによって、上記ガス発生材を基材などの接着対象部材により一層良好に接着させることができる。上記ガス発生材がバインダー樹脂を含むことによって、上記ガス発生材を錠剤状、微粒子状及びフィルム状等の形態とすることが容易になる。上記ガス発生材が錠剤状、微粒子状及びフィルム状等の形態であると、上記ガス発生材を接着対象部材に容易に接着させることができる。また、上記ガス発生剤を上記ガス発生材中に強固に保持することができる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記バインター樹脂は特に限定されない。上記バインダー樹脂として、上記ガス発生剤及び上記アミノ基を有するシランカップリング剤を上記ガス発生材中に保持することが可能である適宜のバインダー樹脂が用いられる。上記バインター樹脂として、ポリ(メタ)アクリレート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエーテル、ポリウレタン、ポリカーボネート、ポリアミド及びポリイミド等の高分子材料を用いることができる。これらの高分子材料を構成するモノマーの共重合体を用いてもよく、これらの高分子材料を併用してもよい。なかでも、ガスの発生効率がより一層高くなるため、上記バインダー樹脂は、上記ポリ(メタ)アクリレートであることが好ましい。すなわち、上記バインダー樹脂は、(メタ)アクリル重合体であることが好ましい。なお、上記(メタ)アクリル重合体には、(メタ)アクリル共重合体が含まれる。
 上記アクリル系粘着剤は、上記ガス発生材において、バインダー樹脂として用いることができる。上記アクリル系粘着剤は、(メタ)アクリロイル基を有することが好ましい。上記(メタ)アクリロイル基は、アクリロイル基又はメタクリロイル基を示す。上記アクリル系粘着剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記アクリル系粘着剤は特に限定されない。上記アクリル系粘着剤として、上記ガス発生剤を上記ガス発生材中に保持することが可能である適宜のアクリル系粘着剤が用いられる。上記アクリル系粘着剤として、ポリ(メタ)アクリレート等の高分子材料を用いることができる。この高分子材料を構成するモノマーの共重合体を用いてもよい。すなわち、上記アクリル系粘着剤は、(メタ)アクリル重合体であることが好ましい。
 上記バインダー樹脂及び上記アクリル系粘着剤のSP値はそれぞれ、好ましくは7以上、好ましくは10.5以下である。上記バインダー樹脂及び上記アクリル系粘着剤のSP値が上記下限以上及び上記上限以下であると、バインダー樹脂とガス発生剤との相溶性、及びアクリル系粘着剤とガス発生剤との相溶性がより一層良好になる。
 上記SP値(溶解度パラメータ)は、Fedors法(R.F.Fedors,Polym.Eng.Sci.,14,147(1974))を用いて算出可能である。
 上記ポリ(メタ)アクリレートを構成する(メタ)アクリレートモノマーは、鎖状化合物及び環状化合物のいずれであってもよい。上記鎖状化合物としては、(メタ)アクリル酸メチル、アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-メチルヘキシル、及び(メタ)アクリル酸ラウリル等が挙げられる。上記環状化合物としては、(メタ)アクリル酸シクロヘキシル、及び(メタ)アクリル酸イソボロニル等が挙げられる。これらのなかでも、(メタ)アクリル酸メチルが好ましい。
 上記ポリ(メタ)アクリレートは、例えば、(メタ)アクリレートモノマーと、(メタ)アクリレートモノマーと共重合可能なビニルモノマーとの共重合体であってもよい。上記ビニルモノマーとしては、特に限定されず、(メタ)アクリル酸、イタコン酸、クロトン酸、(無水)マレイン酸、(無水)フマル酸、カルボキシアルキル(メタ)アクリレート類(カルボキシエチルアクリレートなど)のカルボキシル基含有ビニルモノマー;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートなどの水酸基含有ビニルモノマー;(メタ)アクリロニトリル、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルラウリロラクタム、(メタ)アクリロイルモルホリン、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、ジメチルアミノメチル(メタ)アクリレートなどの窒素含有ビニルモノマー等が挙げられる。上記ビニルモノマーは1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記(メタ)アクリレートモノマーと上記ビニルモノマーとの組合せとしては、特に限定されず、(メタ)アクリル酸ブチルと(メタ)アクリル酸、(メタ)アクリル酸ブチルと(メタ)アクリルアミド、及び(メタ)アクリル酸とN-イソプロピル(メタ)アクリルアミドとの組合せ等が挙げられる。(メタ)アクリレートモノマーとビニルモノマーとの共重合比(質量比)は、98:2~51:49の範囲内であることが好ましい。
 ガスの発生効率をより一層高めるために、上記ポリ(メタ)アクリレートは、ポリメチル(メタ)アクリレート、(メタ)アクリル酸ブチル・(メタ)アクリル酸共重合体、及び(メタ)アクリル酸ブチル・(メタ)アクリルアミド共重合体からなる群から選択された少なくとも1種を含むことが好ましい。また、ガスの発生効率を更に一層高めるために、上記ポリ(メタ)アクリレートは、アミノ基又はカルボニル基を有することが好ましい。
 上記バインダー樹脂は、紫外光吸収帯を有することが好ましい。上記バインダー樹脂の紫外光吸収帯は、ガス発生剤及び光増感剤の紫外光吸収帯よりも短波長であることが好ましい。
 上記バインダー樹脂及び上記アクリル系粘着剤の重量平均分子量はそれぞれ、好ましくは5万以上、より好ましくは60万以上、好ましくは200万以下、より好ましく160万以下である。上記バインダー樹脂及び上記アクリル系粘着剤の重量平均分子量が上記下限以上であると、バインダー樹脂自体の凝集力の低下が抑えられ、上記ガス発生剤及び上記アミノ基を有するシランカップリング剤を上記ガス発生材中に、強固に保持することができ、また上記タッキファイヤーも上記ガス発生材中に、強固に保持することができる。上記バインダー樹脂及び上記アクリル系粘着剤の重量平均分子量が上記上限以下であると、上記ガス発生材を各種の形態に加工することが容易になる。
 上記アクリル系粘着剤は粘着性を有する。上記バインダー樹脂及び上記アクリル系粘着剤はそれぞれ、粘接着性を有することが好ましい。上記バインダー樹脂及び上記アクリル系粘着剤が粘接着性を有することによって、上記ガス発生材に粘接着性を付与することができる。このため、上記マイクロポンプに上記ガス発生材を容易に配置することができる。例えば、粘接着性を有するフィルム状のガス発生材は、上記マイクロポンプの基板面又は基板内部の壁面に容易に貼り付けることができる。
 上記ガス発生剤100質量部に対して、上記バインダー樹脂及び上記アクリル系粘着剤の含有量はそれぞれ、好ましくは10質量部以上、より好ましくは20質量部以上、更に好ましくは30質量部以上、好ましくは300質量部以下、より好ましくは200質量部以下、更に好ましくは150質量部以下である。
 (ガス発生剤)
 上記ガス発生材は上記ガス発生剤を含む。上記ガス発生剤は、アゾ化合物又はアジド化合物である。上記ガス発生剤は、熱又は光等の外部刺激が加わった際にガスを発生させる。上記アゾ化合物又は上記アジド化合物は、特に限定されず、公知のアゾ化合物又はアジド化合物であってもよい。上記ガス発生剤は、上記アゾ化合物であることが好ましく、上記アジド化合物であることも好ましい。上記ガス発生剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ガス発生剤として用いられる上記アゾ化合物の具体例としては、例えば、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス[N-(2-メチルプロピル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス[N-(2-メチルエチル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-プロピル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-エチル-2-メチルプロピオンアミド)、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス[2-(5-メチル-2-イミダゾイリン-2-イル)プロパン]ジハイドロクロライド、2,2’-アゾビス[2-(2-イミダゾイリン-2-イル)プロパン]ジハイドロクロライド、2,2’-アゾビス[2-(2-イミダゾイリン-2-イル)プロパン]ジサルフェイトジハイドロレート、2,2’-アゾビス[2-(3,4,5,6-テトラハイドロピリミジン-2-イル)プロパン]ジハイドロクロライド、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾイリン-2-イル]プロパン}ジハイドロクロライド、2,2’-アゾビス[2-(2-イミダゾイリン-2-イル)プロパン]、2,2’-アゾビス(2-メチルプロピオンアミダイン)ハイドロクロライド、2,2’-アゾビス(2-アミノプロパン)ジハイドロクロライド、2,2’-アゾビス[N-(2-カルボキシアシル)-2-メチル-プロピオンアミダイン]、2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミダイン]プロパン}、2,2’-アゾビス(2-メチルプロピオンアミドオキシム)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、ジメチル-2,2’-アゾビスイソブチレート、4,4’-アゾビス(4-シアンカルボニックアシッド)、4,4’-アゾビス(4-シアノペンタノイックアシッド)、及び2,2’-アゾビス(2,4,4-トリメチルペンタン)等が挙げられる。これらのアゾ化合物は、特定の波長域の光又は熱等の外部刺激を受けることにより窒素ガスを発生させる。
 上記アゾ化合物は、衝撃によっては気体を発生しないことから、取り扱いが極めて容易である。上記アゾ化合物は、連鎖反応を起こして爆発的に気体を発生させることもない。上記アゾ化合物を用いれば、光の照射を中断することで気体の発生を中断させることもできる。このため、上記アゾ化合物を上記ガス発生剤として用いることによりガス発生量の制御が容易である。
 上記ガス発生剤として用いられる上記アジド化合物としては、例えば、スルフォニルアジド基又はアジドメチル基を有するアジド化合物が挙げられる。上記アジド化合物は、スルフォニルアジド基又はアジドメチル基を有することが好ましい。上記アジド化合物は、スルフォニルアジド基を有することが好ましく、アジドメチル基を有することも好ましい。
 上記スルフォニルアジド基を有する化合物の好ましい例としては、例えば、下記式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)において、R~Rはそれぞれ、水素原子、ハロゲン原子、アミノ基、アミド基、炭化水素基、炭化水素基に置換基が結合した基又はアルコキシ基である。上記式(1)中のR~Rは同一であってもよく、異なっていてもよい。上記炭化水素基は、直鎖状であってもよく、分岐状であってもよく、環状であってもよい。上記炭化水素基は、飽和の炭化水素基であってもよく、不飽和の炭化水素基であってもよい。上記アルコキシ基は、置換基を有していてもよく、直鎖状であってもよく、分岐状であってもよい。
 上記式(1)において、R~Rの内の少なくとも1つの基は、炭化水素基又は炭化水素基に置換基が結合した基であることが好ましく、炭化水素基であることがより好ましい。R~Rが炭化水素基又は炭化水素基に置換基が結合した基である場合に、該炭化水素基の炭素数は1以上、好ましく3以上、より好ましくは6以上、好ましくは30以下、より好ましくは20以下、更に好ましくは18以下である。また、上記炭化水素基に置換基が結合した基における置換基としては、ハロゲン原子等が挙げられる。
 上記式(1)のR~Rにおいて、上記アルコキシ基の炭素数は1以上、好ましくは3以上、より好ましくは6以上、好ましくは20以下、より好ましくは16以下、更に好ましくは12以下である。また、上記アルコキシ基が置換基を有する場合に、該置換基としては、ハロゲン原子等が挙げられる。
 上記式(1)において、Rは、アミド基、炭化水素基、炭化水素基に置換基が結合した基又はアルコキシ基であることが好ましい。また、上記式(1)において、R,R,R及びRはそれぞれ、水素原子であることが好ましい。
 アジドメチル基を有するアジド化合物としては、例えば、グリシジルアジドポリマーが挙げられる。上記グリシジルアジドポリマーとしては、側鎖にアジドメチル基を有し、かつ末端に水酸基を有する脂肪族ポリエーテルが好ましい。
 側鎖にアジドメチル基を有し、かつ末端に水酸基を有する脂肪族ポリエーテルの好ましい例としては、例えば、下記式(2-1)で表されるアジド化合物が挙げられる。
 H(B)(A)ORO(A)(B)H   (2-1)
 上記式(2-1)中、m+n=2~20、m≧1、n≧1、q+r=10~35、q≧5、r≧5であり、Aは、-OCHCHCHCH-、-OCHCH-、又はOCHCH(CH)-であり、Bは、-CHCH(CH)O-であり、Rは、-CHCH-、-CHCHCHCH-、-CHCH(CH)-、-[(CHCHO)CHCH]-、又は[(CHCHCHCHO)CHCHCHCH]-である。上記Rにおけるxは10~25、yは5~20である。
 側鎖にアジドメチル基を有し、かつ末端に水酸基を有する脂肪族ポリエーテルの好ましい他の例としては、例えば、下記式(2-2)で表されるアジド化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 上記式(2-2)において、mは、1~20の整数、l+nは、7~50の整数である。mは、好ましくは3以上、好ましくは15以下である。l+nは、好ましくは10以上、好ましくは30以下である。
 側鎖にアジドメチル基を有し、かつ末端に水酸基を有する脂肪族ポリエーテルの好ましい他の例としては、例えば、下記式(2-3)で表されるアジド化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記式(2-3)において、m1、m2及びm3はぞれぞれ1~20の整数であり、n1、n2及びn3はそれぞれ1~20の整数である。
 上記アジド化合物は、上記ガス発生剤Aであるか、又は、上記式(1)、(2-1)、(2-2)又は(2-3)で表されるアジド化合物であることが好ましい。上記アジド化合物は、上記式(1)、(2-1)、(2-2)又は(2-3)で表されるアジド化合物であることが好ましい。上記アジド化合物は、上記式(1)で表されるアジド化合物であることが好ましく、上記式(2-1)、(2-2)又は(2-3)で表されるアジド化合物であることも好ましい。
 上述したアジド化合物は、特定の波長域の光、熱、超音波又は衝撃等の外部刺激を受けることにより分解して、窒素ガスを発生させる。
 上記ガス発生剤Aを得るために、上記アジド基を複数有するアジド化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。上記ガス発生剤Aを得るために、上記炭素-炭素二重結合を有するポリマーは1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ガス発生材を得る際の反応効率がより一層高くなることから、上記炭素-炭素二重結合を有するポリマーは、炭素-炭素二重結合を複数有するポリマーであることが好ましく、側鎖に炭素-炭素二重結合を有するポリマーであることが好ましく、側鎖に炭素-炭素二重結合を複数有するポリマーであることがより好ましい。側鎖に位置する炭素-炭素二重結合は、アジド基と効率的に反応する。上記炭素-炭素二重結合を有するポリマーは、側鎖と末端との双方に、炭素-炭素二重結合を有していてもよい。
上記ガス発生材を得る際の反応効率がより一層高くなることから、上記炭素-炭素二重結合を有するポリマーは、上記炭素-炭素二重結合を含む基として、ビニル基、及び(メタ)アクリロイル基の内の少なくとも一方を有することが好ましい。上記ガス発生材を得る際の反応効率がより一層高くなることから、上記炭素-炭素二重結合を有するポリマーは、炭素-炭素二重結合を含む基を、複数種有することが好ましい。上記ガス発生材を得る際の反応効率がより一層高くなることから、上記炭素-炭素二重結合を有するポリマーは、上記炭素-炭素二重結合を含む基として、ビニル基、及び(メタ)アクリロイル基の双方を有することが好ましい。 

 上記ガス発生材を得る際の反応効率がより一層高くなることから、上記炭素-炭素二重結合を有するポリマーは、(メタ)アクリロイル基を有することが好ましく、(メタ)アクリロイル基を複数有することが好ましく、末端に(メタ)アクリロイル基を有することが好ましく、末端に(メタ)アクリロイル基を複数有することが好ましい。
上記ガス発生材を得る際の反応効率がより一層高くなることから、上記炭素-炭素二重結合を有するポリマーは、ビニル基を有することが好ましく、ビニル基を複数有することが好ましい。上記ポリマーは、ビニル基を末端に有していてもよく、側鎖に有していてもよい。
 上記炭素-炭素二重結合を有するポリマーの重量平均分子量は、好ましくは500以上、好ましくは50000以下、より好ましくは30000以下である。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレン換算での重量平均分子量を示す。
 上記炭素-炭素二重結合を有するポリマーは、下記式(11)で表される構造単位を複数有するポリマーであることが好ましい。上記炭素-炭素二重結合を有するポリマーは、下記式(11)で表される構造単位をモノマー単位として有することが好ましい。
Figure JPOXMLDOC01-appb-C000004
 上記式(11)中、R1及びR2はそれぞれ、水素原子又はメチル基を表し、Mは、エーテル結合、エステル結合、アミド結合及びウレタン結合からなる群から選ばれる少なくとも1種の結合を有する2価の脂肪族有機基を表す。
 上記式(11)中、R1とR2とは同一であってもよく、異なっていてもよい。上記式(11)中のR1及びR2が表す上記脂肪族有機基はそれぞれ、脂肪族炭化水素基に、エーテル結合、エステル結合、アミド結合及びウレタン結合からなる群から選ばれる少なくとも1種の結合を含む基が結合した脂肪族有機基であってもよい。
 上記式(11)中のR1及びR2が表す上記2価の脂肪族有機基の炭素数は、好ましくは5以上、好ましくは20以下、より好ましくは10以下である。上記式(11)中、Mは、エーテル結合、エステル結合、及びウレタン結合からなる群から選ばれる少なくとも1種の結合を有する2価の脂肪族有機基であることが好ましい。
 上記式(11)で表される構造単位を複数有するポリマーは、例えば、水酸基を複数有するポリマーと、水酸基と反応する基及び不飽和二重結合を有する化合物とを反応させる方法などにより、容易に合成することができる。上記水酸基と反応する基としては、イソシアネート基等が挙げられる。
 上記式(11)で表される構造単位を複数有するポリマーにおいて、上記式(11)で表される構造単位の数は、好ましくは5以上、好ましくは500以下である。上記式(1)で表される構造単位の数は、300以下であってもよい。上記式(11)で表される構造単位を複数有するポリマーにおいて、上記式(11)で表される構造単位は、ランダムに結合されていてもよいし、ブロックで結合されていてもよい。
 上記式(11)中、Mが、下記式(12)で表される構造単位、又は下記式(13)で表される構造単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記式(12)中、左側部分が上記式(11)中で上側部分と結合しており、右側部分が上記式(11)中で下側部分と結合しており、X1及びX2はそれぞれ、炭素数1~8の2価の脂肪族有機基を表す。
Figure JPOXMLDOC01-appb-C000006
 上記式(13)中、左側部分が上記式(11)中で上側部分と結合しており、右側部分が上記式(11)中で下側部分と結合しており、nは1~4の整数を示す。
 上記式(12)中、X1とX2とは同一であってもよく、異なっていてもよい。上記式(12)中、X1及びX2が表す上記2価の脂肪族有機基の炭素数はそれぞれ、好ましくは2以上、好ましくは4以下である。上記式(12)中、X1及びX2が表す上記2価の脂肪族有機基はそれぞれ、2価の脂肪族炭化水素基であってあってもよく、脂肪族炭化水素基にエーテル結合を含む基が結合した2価の脂肪族有機基であってもよい。上記式(12)中、X1及びX2が表す上記2価の脂肪族有機基はそれぞれ、2価の脂肪族炭化水素基であることが好ましい。
 上記式(13)中、nは2以上の整数であることが好ましい。
 上記アジド化合物としては、例えば、グリシジルアジドポリマー、スルフォニルアジド基又はアジドメチル基を有するアジド化合物が挙げられる。上記アジド化合物は、スルフォニルアジド基又はアジドメチル基を有することが好ましい。上記アジド化合物は、スルフォニルアジド基を有することが好ましく、アジドメチル基を有することも好ましい。
 上記アジド基を複数有する化合物は、下記式(14)で表される化合物、下記式(15)で表される化合物、下記式(16)で表される化合物、又は下記式(17)で表される化合物であるであることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記式(14)中、nは、10~50の整数を表し、m+lは、1~10の整数を表す。
 上記式(15)中、r+s+t+uは、10~50の整数を表す。
Figure JPOXMLDOC01-appb-C000009
 上記式(16)中、nは1~20の整数を表す。
Figure JPOXMLDOC01-appb-C000010
 上記式(17)中、n1、n2、n3及びn4はそれぞれ、1~10の整数を表す。
 上記式(14)中のnとmとlとは同一であってもよく、異なっていてもよい。
 上記式(15)中、rとsとtとuとは同一であってもよく、異なっていてもよい。上記式(15)中、r+s+t+uは、好ましくは15以上の整数、好ましくは30以下の整数である。
 上記式(16)中、nは好ましくは2以上の整数、好ましくは8以下の整数である。
 上記式(17)中、n1とn2とn3とn4とは同一であってもよく、異なっていてもよい。上記式(17)中、n1、n2、n3及びn4はそれぞれ、好ましくは3以上の整数、より好ましくは4以上の整数、好ましくは8以下の整数である。
 上記ガス発生剤Aにおいて、上記炭素-炭素二重結合を有するポリマー1質量部に対して、上記アジド基を複数有するアジド化合物を、1質量部以上配合することが好ましく、5質量部以上配合することが好ましく、10量部以上配合することが好ましい。
 上記ガス発生材において、上記ガス発生剤の含有量は、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、好ましくは90質量%以下、より好ましくは75質量%以下、更に好ましくは60質量%以下である。
 (アミノ基を有するシランカップリング剤)
 上記ガス発生材は、アミノ基を有するシランカップリング剤を含む。上記アミノ基を有するシランカップリング剤の使用により、上記ガス発生材の接着対象部材に対する初期接着力が高くなるだけでなく、シランカップリング剤を用いたことに伴う上記ガス発生材から発生するガスの発生量の低下を抑えることもできる。すなわち、上記アミノ基を有するシランカップリング剤を用いた場合には、アミノ基を有さないシランカップリング剤を用いた場合と比べて、上記ガス発生材の接着対象部材に対する初期接着力が効果的に高くなり、更に上記ガス発生材から発生するガスの発生量の低下が効果的に抑えられる。すなわち、上記アミノ基を有するシランカップリング剤を用いることで、単位時間あたりのガス発生量にほとんど影響しなくなる。このことは、本発明者らにより初めて見出された。上記第三級アミンは、珪素原子を含まないことが好ましく、シランカップリング剤ではないことが好ましい。上記アミノ基を有するシランカップリング剤は、上記第三級アミンではないことが好ましい。
 上記アミノ基を有するシランカップリング剤の具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N,N’-ビス[(3-トリメトキシシリル)プロピル]エチレンジアミン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン及びN-フェニル-3-アミノプロピルトリメトキシシラン等が挙げられる。これら以外のアミノ基を有するシランカップリング剤を用いてもよい。上記アミノ基を有するシランカップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 また、上記シランカップリング剤の使用により、ガス発生材の接着対象部材に対する初期接着力及び初期アンカー力がより一層高くなる。特に、上記タッキファイヤーと上記シランカップリング剤との併用は、ガス発生材の接着対象部材に対する初期接着力及び初期アンカー力の向上に大きく寄与する。さらに、上記タッキファイヤーと上記シランカップリング剤との併用は、ガス発生材におけるガスの発生に伴う接着力及びアンカー力の低下の抑制に大きく寄与する。
 上記アミノ基を有さないシランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を有するシランカップリング剤、3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するシランカップリング剤、及び3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン等の(メタ)アクリロイル基を有するシランカップリング剤等が挙げられる。
 上記ガス発生材において、上記ガス発生剤100質量部に対して、上記アミノ基を有するシランカップリング剤の含有量は、好ましくは0.0001質量部以上、より好ましくは0.0003質量部以上、好ましくは1質量部以下、より好ましくは0.3質量部以下である。上記アミノ基を有するシランカップリング剤の含有量が上記下限以上であると、ガス発生材の接着対象部材に対する初期接着力及び初期アンカー力がより一層高くなる。上記アミノ基を有するシランカップリング剤の含有量が上記上限以下であると、余剰の上記アミノ基を有するシランカップリング剤によるガス発生量の低下がより一層抑えられる。
 (第三級アミン)
 上記ガス発生材は、第三級アミンを含むことが好ましい。上記第三級アミンは特に限定されない。上記第三級アミンとしては、環状アミン、トリアルキルアミン及び芳香族アミン等が挙げられる。上記環状アミン及び上記芳香族アミンはそれぞれ、第三級アミンの構造を有する。上記第三級アミンは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ガス発生材は、環状アミン、トリアルキルアミン、及び芳香族アミンからなる群から選択された少なくとも1種を含むことが好ましい。上記第三級アミンは、環状アミンであることが好ましく、トリアルキルアミンであることが好ましく、芳香族アミンであることも好ましい。上記環状アミンは、芳香族骨格を除く環状骨格を有し、芳香族骨格を有さない。上記トリアルキルアミンは、環状骨格及び芳香族骨格を有さない。上記芳香族アミンは、芳香族骨格を有し、芳香族骨格を除く環状骨格を有さない。
 上記環状アミンの炭素数は、好ましくは6以上、好ましくは20以下である。上記環状アミンの具体例としては、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、ジアザビシクロウンデセン(DBU)、及びジアザビシクロノネン(DBN)等が挙げられる。
 上記トリアルキルアミンの3つのアルキル基は同一であってもよく、異なっていてもよい。上記トリアルキルアミンの3つのアルキル基の炭素数はそれぞれ1以上、好ましくは2以上、好ましくは20以下、より好ましくは6以下である。上記トリアルキルアミンの具体例としては、トリメチルアミン、N,N-ジエチルメチルアミン、N,N-ジメチルエチルアミン、トリエチルアミン、N,N-ジメチルプロピルアミン、トリプロピルアミン及びトリブチルアミン等が挙げられる。
 上記芳香族アミンの具体例としては、N,N-ジメチルアミノトルイジン、N,N-ジエチルアミノトルイジン、N,N-ジメチルアミノベンゼン、N,N-ジエチルアミノベンゼン、及びN,N、N’N’-テトラメチル-p-フェニレンジアミン等が挙げられる。
 上記第三級アミンを用いる場合には、上記ガス発生剤100質量部に対して、上記第三級アミンの含有量は、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上、好ましくは50質量部以下、より好ましくは40質量部以下、更に好ましくは30質量部以下である。上記第三級アミンの含有量が上記下限以上及び上記上限以下であると、上記ガス発生材における単位時間あたりのガス発生量が効果的に多くなり、保存安定性が効果的に高くなる。
 (光増感剤)
 上記ガス発生材は、光増感剤を含むことが好ましい。上記光増感剤は、ガス発生剤への光による刺激を増幅する効果を有する。よって、上記ガス発生材が光増感剤を含むことにより、少ない光照射量によって、ガスを発生させ、放出させることができる。また、より広い波長領域の光によって、ガスを発生させ、放出させることができる。上記光増感剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記光増感剤は特に限定されない。上記光増感剤として、公知の光増感剤を使用することができる。上記光増感剤としては、チオキサントン化合物、フェノチアジン化合物、アントラセン化合物及びアクリドン化合物等が挙げられる。
 上記チオキサントン化合物の具体例としては、チオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、及び2,4-ジエチルチオキサントン等が挙げられる。
 上記フェノチアジン化合物の具体例としては、フェノチアジン、2-クロロフェノチアジン、2-メチルチオフェノチアジン、2-メトキシフェノチアジン、及び2-(トリフルオロメチル)フェノチアジン等が挙げられる。
 上記アントラセン化合物の具体例としては、アントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジブトキシアントラセン、9-カルボキシアントラセン、2-アントラセンカルボン酸、1-アントラセンカルボン酸、1,8-アントラセンジカルボン酸ジメチル、(1R,2R)-2-(アントラセン-2,3-ジカルボキシイミド)シクロヘキサンカルボン酸、1-アミノアントラセン、2-アントラセンボロン酸、9-クロロメチルアントラセン、9,10-ジメトキシアントラセン-2-スルホン酸ナトリウム、ベンゾアントレン、ベンゾ[a]アントラセン-7,12-ジオン、ジベンゾ[a,c]アントラセン、1,2,3,4-ジベンゾアントラセン、9-ブロモアントラセン、9,10-ビス(クロロメチル)アントラセン、7-ブロモベンゾ[a]アントラセン、1,8-ビス(ヒドロキシメチル)アントラセン、9,10-ビス(3,5-ジヒドロキシフェニル)アントラセン、1-ブロモアントラセン、2-ブロモアントラセン、9,10-ビス(ジエチルホスホノメチル)アントラセン、2-ブロモ-9,10-ジフェニルアントラセン、2-t-ブチルアントラセン、9-クロロメチルアントラセン、9-シアノアントラセン、1-クロロ-9,10-ビス(フェニルエチニル)アントラセン、2-クロロアントラセン、ジベンゾ[a,h]アントラセン、9,10-ジブロモアントラセン、9,10-ジメチルアントラセン、9,10-ジヒドロアントラセン、7,12-ジメチルベンゾ[a]アントラセン、9,10-ジシアノアントラセン、9,10-ジフェニルアントラセン、2,3-ジメチルアントラセン、2,6-ジブロモアントラセン、1,5-ジブロモアントラセン、(11R,12R)-9,10-ジヒドロ-9,10-エタノアントラセン-11,12-ジアミン、9,10-ジヒドロ-9,10-ビス(2-カルボキシエチル)-N-(4-ニトロフェニル)-10,9-(エポキシイミノ)アントラセン-12-カルボキサミド、9,10-ジ(1-ナフチル)アントラセン、9,10-ジ(2-ナフチル)アントラセン、1,8-ジヨードアントラセン、9-(ヒドロキシメチル)アントラセン、2-(ヒドロキシメチル)アントラセン、9-(2-ヒドロキシエチル)アントラセン、9-メチルアントラセン、7-メチルベンゾ[a]アントラセン、2,3-ベンゾアントラセン、ジベンゾ[de,kl]アントラセン、9-フェニルアントラセン、9,10-ビス(フェニルエチニル)アントラセン、1-アニリノアントラセン、2-アニリノアントラセン、1,4,9,10-テトラヒドロキシアントラセン、1,8,9-トリヒドロキシアントラセン、(R)-(-)-α-(トリフルオロメチル)-9-アントラセンメタノール、(S)-(+)-α-(トリフルオロメチル)-9-アントラセンメタノール、及び9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン等が挙げられる。
 上記アクリドン化合物の具体例としては、10-メチル-9(10H)アクリドン、9(10H)-アクリドン、及び10-ブチル-2-クロロ-9(10H)-アクリドン等が挙げられる。
 単位時間あたりのガス発生量を多くするために、上記光増感剤は、チオキサントン化合物、フェノチアジン化合物、アントラセン化合物、及びアクリドン化合物からなる群から選択された少なくとも1種を含むことが好ましい。上記光増感剤は、チオキサントン化合物であることが好ましく、フェノチアジン化合物であることが好ましく、アントラセン化合物であることが好ましく、アクリドン化合物であることも好ましい。
 上記光増感剤としては、アルコキシ基を有する多環芳香族化合物も挙げられる。上記多環芳香族化合物は、アルコキシ基を2つ以上有していてもよい。なかでも、グリシジル基又は水酸基を含むアルコキシ基を有する多環芳香族化合物が好ましい。この多環芳香族化合物は、アルコキシ基の一部がグリシジル基又は水酸基で置換されているアルコキシ基を有する置換アルコキシ多環芳香族化合物であることが好ましい。このような光増感剤は、高い耐昇華性を有し、高温下で使用することができる。また、アルコキシ基の一部がグリシジル基又は水酸基で置換されることにより、上記ガス発生材中における溶解性が高まり、ブリードアウトが抑えられる。
 上記光増感剤として用いられる上記多環芳香族化合物の好ましい例としては、アントラセン骨格を有する多環芳香族化合物等が挙げられる。上記アントラセン骨格を有する多環芳香族化合物は、アルコキシ基を有するアントラセン化合物であり、アントラセン誘導体等である。また、アルコキシ基を有する多環芳香族化合物のアルコキシ基の炭素数は1以上、好ましくは18以下、より好ましくは8以下である。
 上記アルコキシ基を有する多環芳香族化合物の具体例としては、9,10-ジメトキシアントラセン、2-エチル-9,10-ジメトキシアントラセン、2-t-ブチル-9,10-ジメトキシアントラセン、2,3-ジメチル-9,10-ジメトキシアントラセン、9-メトキシ-10-メチルアントラセン、9,10-ジエトキシアントラセン、2-エチル-9,10-ジエトキシアントラセン、2-t-ブチル-9,10-ジエトキシアントラセン、2,3-ジメチル-9,10-ジエトキシアントラセン、9-エトキシ-10-メチルアントラセン、9,10-ジプロポキシアントラセン、2-エチル-9,10-ジプロポキシアントラセン、2-t-ブチル-9,10-ジプロポキシアントラセン、2,3-ジメチル-9,10-ジプロポキシアントラセン、9-イソプロポキシ-10-メチルアントラセン、9,10-ジブトキシアントラセン、9,10-ジベンジルオキシアントラセン、2-エチル-9,10-ジベンジルオキシアントラセン、2-t-ブチル-9,10-ジベンジルオキシアントラセン、2,3-ジメチル-9,10-ジベンジルオキシアントラセン、9-ベンジルオキシ-10-メチルアントラセン、9,10-ジ-α-メチルベンジルオキシアントラセン、2-エチル-9,10-ジ-α-メチルベンジルオキシアントラセン、2-t-ブチル-9,10-ジ-α-メチルベンジルオキシアントラセン、2,3-ジメチル-9,10-ジ-α-メチルベンジルオキシアントラセン、9-(α-メチルベンジルオキシ)-10-メチルアントラセン、9,10-ジ(2-ヒドロキシエトキシ)アントラセン、及び2-エチル-9,10-ジ(2-カルボキシエトキシ)アントラセン等が挙げられる。
 上記グリシジル基又は水酸基を含むアルコキシ基を有する多環芳香族化合物の具体例としては、9,10-ジ(グリシジルオキシ)アントラセン、2-エチル-9,10-ジ(グリシジルオキシ)アントラセン、2-t-ブチル-9,10-ジ(グリシジルオキシ)アントラセン、2,3-ジメチル-9,10-ジ(グリシジルオキシ)アントラセン、9-(グリシジルオキシ)-10-メチルアントラセン、9,10-ジ(2-ビニルオキシエトキシ)アントラセン、2-エチル-9,10-ジ(2-ビニルオキシエトキシ)アントラセン、2-t-ブチル-9,10-ジ(2-ビニルオキシエトキシ)アントラセン、2,3-ジメチル-9,10-ジ(2-ビニルオキシエトキシ)アントラセン、9-(2-ビニルオキシエトキシ)-10-メチルアントラセン、9,10-ジ(3-メチル-3-オキセタニルメトキシ)アントラセン、2-エチル-9,10-ジ(3-メチル-3-オキセタニルメトキシ)アントラセン、2-t-ブチル-9,10-ジ(3-メチル-3-オキセタニルメトキシ)アントラセン、2,3-ジメチル-9,10-ジ(3-メチル-3-オキセタニルメトキシ)アントラセン、9-(3-メチル-3-オキセタニルメトキシ)-10-メチルアントラセン、9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、2-エチル-9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、2-t-ブチル-9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、2,3-ジメチル-9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、9-(p-エポキシフェニルメトキシ)-10-メチルアントラセン、9,10-ジ(p-ビニルフェニルメトキシ)アントラセン、2-エチル-9,10-ジ(p-ビニルフェニルメトキシ)アントラセン、2-t-ブチル-9,1-ジ(p-ビニルフェニルメトキシ)アントラセン、2,3-ジメチル-9,10-ジ(p-ビニルフェニルメトキシ)アントラセン、9-(p-ビニルフェニルメトキシ)-10-メチルアントラセン、9,10-ジ(2-ヒドロキシエトキシ)アントラセン、9,10-ジ(2-ヒドロキシプロポキシ)アントラセン、9,10-ジ(2-ヒドロキシブトキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-ブトキシプロポキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-(2-エチルヘキシルオキシ)プロポキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-アリロキシプロポキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-フェノキシプロポキシ)アントラセン、及び9,10-ジ(2,3-ジヒドロキシプロポキシ)アントラセン等が挙げられる。
 上記光増感剤は、光重合開始剤として一般に知られている材料であってもよい。このような光増感剤としては、例えば、250~800nmの波長の光を照射することにより活性化される化合物が挙げられる。このような光増感剤の具体例としては、メトキシアセトフェノン等のアセトフェノン化合物;ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル化合物;ベンジルジメチルケタール、アセトフェノンジエチルケタール等のケタール化合物;フォスフィンオキシド化合物;ビス(η5-シクロペンタジエニル)チタノセン等のチタノセン化合物;ベンゾフェノン;ミヒラーケトン;クロロチオキサントン;ドデシルチオキサントン;ジメチルチオキサントン;ジエチルチオキサントン;α-ヒドロキシシクロヘキシルフェニルケトン;2-ヒドロキシメチルフェニルプロパン等が挙げられる。上記光増感剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記光増感剤を用いる場合に、上記ガス発生剤100質量部に対して、上記光増感剤の含有量は、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、好ましくは50質量部以下、より好ましくは30質量部以下である。また、上記光増感剤の含有量は、上記バインダー樹脂100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上、好ましくは30質量部以下、より好ましくは15質量部以下である。上記光増感剤の含有量が上記下限以上であると、充分な光増感効果が得られる。上記光増感剤の含有量が上記上限以下であると、光増感剤に由来する残存物が少なくなり、充分にガスが発生されやすくなる。
 上記第三級アミンと上記光増感剤とを併用する場合には、上記光増感剤に対して上記第三級アミンが当モルとなるように配合することが好ましい。また、ガス発生に際して、上記第三級アミンは消費されないと考えられるため、上記第三級アミンは、上記ガス発生剤のモル当量よりも少ない量で配合することができる。上記ガス発生剤において、上記第三級アミンのモル当量は、上記ガス発生剤のモル当量以下であることが好ましい。
 なお、ここでいう当量とは、アミン中の窒素原子1個を1当量とし、光増感剤1分子を1当量とする。
 (タッキファイヤー)
 上記ガス発生材は、上記タッキファイヤーを含むことが好ましい。上記タッキファイヤーの使用により、ガス発生材の接着対象部材に対する初期接着力及び初期アンカー力がより一層高くなる。また、ガス発生材の透明性をより一層高める観点からは、上記タッキファイヤーのハーゼン色数は200以下であることが好ましい。上記タッキファイヤーと他の成分との相溶性をより一層高めて、ガス発生材の透明性をより一層高める観点からは、上記タッキファイヤーのSP値は8.5以上であることが好ましい。
 透明性により一層優れたガス発生材を得る観点からは、上記タッキファイヤーの上記ハーゼン色数は低いほどよい。上記タッキファイヤーの上記ハーゼン色数はより好ましくは100以下、更に好ましくは50以下である。
 上記ハーゼン色数は、JIS K0071-1に準拠して測定される。上記ハーゼン色数は、例えば、コニカミノルタ社製の色彩色素計CT-5等を用いて測定可能である。
 透明性により一層優れたガス発生材を得る観点からは、上記タッキファイヤーの上記SP値は高いほどよい。上記タッキファイヤーの上記SP値はより好ましくは8.8以上である。上記タッキファイヤーの上限は特に限定されない。
 上記タッキファイヤーにおけるSP値は、下記式(S)におけるHoyの定数より求められる。
 δ=D・ΣG/M   ・・・(S)
 δ:溶解度パラメーター
 D:密度
 G:各官能基の分子引力定数
 M:分子量
 上記タッキファイヤーとしては、ロジン樹脂、テルペン樹脂、スチレン樹脂及び石油樹脂等が挙げられる。
 ガス発生材の接着対象部材に対する初期接着力及び初期アンカー力をより一層高くし、ガス発生材におけるガスの発生に伴う接着力及びアンカー力の低下をより一層抑制する観点からは、上記タッキファイヤーは、ロジン樹脂であることが好ましく、ロジンエステル樹脂であることがより好ましい。上記タッキファイヤーは、(メタ)アクリロイル基を有していなくてもよい。
 上記ロジン樹脂は、ロジン又はロジン誘導体をベースとする樹脂である。上記ロジン樹脂の好ましい例としては、ロジン、酸変性ロジン、ロジン含有ジオール、ロジンエステル、水添ロジンエステル及びマレイン酸変性ロジンエステル等が挙げられる。上記酸変性ロジンとして、例えば、アクリル酸変性ロジンが挙げられる。
 上記テルペン樹脂は、テルペン化合物又はテルペン化合物の誘導体をベースとする樹脂である。上記テルペン樹脂としては、変性テルペン樹脂及びテルペンフェノール樹脂等が挙げられる。
 上記スチレン樹脂は、スチレン化合物又はスチレン化合物の誘導体をベースとする樹脂である。上記スチレン樹脂としては、変性スチレン樹脂及びフェノール性アルファメチルスチレン等が挙げられる。
 ガス発生材の接着対象部材に対する初期接着力及び初期アンカー力を効果的に高める観点からは、上記タッキファイヤーの水酸基価が20以上であることが好ましく、上記タッキファイヤーがロジンエステル樹脂であり、かつ上記ロジンエステル樹脂の水酸基価が20以上であることがより好ましい。
 上記タッキファイヤーを用いる場合には、上記ガス発生材において、上記ガス発生剤100質量部に対して、上記タッキファイヤーの含有量は、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは10質量部以上、好ましくは50質量部以下、より好ましくは35質量部以下、更に好ましくは25質量部以下、特に好ましくは20質量部以下、最も好ましくは15質量部以下である。特に、ロジン樹脂又はロジンエステル樹脂の含有量が上記下限以上及び上記上限以下であることが好ましい。上記タッキファイヤーの含有量が上記下限以上であると、ガス発生材の接着対象部材に対する初期接着力及び初期アンカー力がより一層高くなる。さらに、上記タッキファイヤーの含有量が上記上限以下であると、ガス発生材の透明性がより一層高くなり、更に余剰の上記タッキファイヤーによるガス発生量の低下がより一層抑えられる。
 (他の成分)
 上記ガス発生材は、架橋剤及び無機充填材等を含んでもいてもよい。上記ガス発生材は、上記架橋剤を含むことがより好ましい。但し、上記ガス発生材は、上記架橋剤を含んでいなくてもよい。上記架橋剤の使用により、上記ガス発生材の接着力がより一層高くなる。
 (他の実施形態)
 図2は、本発明の第2の実施形態に係るマイクロポンプの略図的断面図である。
 図2に示すマイクロポンプ2は、ガス発生材11bの形状及び基材10の形状において、上記の実施形態に係るマイクロポンプ1と異なる。
 第2の実施形態では、マイクロ流路10bは、基材10内に形成されたポンプ室10cに接続されている。ガス発生材11bは、ブロック状に形成されており、ポンプ室10c内に配されている。
 第2の実施形態に係るマイクロポンプ2においても、マイクロポンプ1と同様に、高出力かつ長駆動時間を実現することができる。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されず、要旨を変更しない範囲において適宜変更して実施することが可能である。
 実施例1~14及び比較例1~6のガス発生材の配合成分として、以下の材料を用意した。
 (バインダー樹脂/アクリル系粘着剤)
 (合成例1)
 n-ブチルアクリレート(日本触媒社製)97質量部と、アクリル酸(日本触媒社製)3質量部と、イルガキュア907(長瀬産業社製)0.05質量部と、酢酸エチル200質量部とを混合して、混合物を得た。次に、この混合物に、紫外線を4時間照射して、アクリル共重合体であるバインダー樹脂A(アクリル系粘着剤A)を作製した。バインダー樹脂Aの重量平均分子量は、約70万であった。得られたバインダー樹脂AのSP値は7以上、10.5以下の範囲内である。
 (実施例1)
 バインダー樹脂A100質量部と溶剤である酢酸エチル567重量部とを配合した。バインダー樹脂A100質量部(但し、溶剤である酢酸エチル567質量部をバインダー樹脂Aと共に配合してある)と、ガス発生剤であるGAP4006(グリシジルアジドポリマー、日油社製)110質量部と、アミノ基を有するシランカップリング剤であるN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(信越化学工業社製のKBM-602)0.001質量部と、第三級アミンであるトリプロピルアミン(トリn-プロピルアミン)2質量部と、光増感剤である2-イソプロピルチオキサントン(DKSHジャパン社製のIPX)3.5質量部と、架橋剤であるN,N,N’,N’-テトラグリシジル-1,3-ベンゼンジ(メタンアミン)(綜研化学社製のE-AX トルエン5%液)0.5質量部とを混合し、フィルム状に加工した。このフィルムを110℃で5分間加熱して、溶剤である酢酸エチルを除去した。これを離型PETフィルムで保護し、常温で一日(24時間)保管して、フィルム状のガス発生材を得た。
 得られたフィルム状のガス発生材を用いて、上記第1の実施形態のマイクロポンプ1と実質的に同様の構成を有するマイクロポンプを作製した。
 なお、マイクロ流路10bの断面形状は、0.5mm角の矩形状とした。マイクロ流路10bの長さは、800mmとした。マイクロ流路10bの先端は大気に開放した状態とした。ガス発生材は、直径0.6cmサイズで、厚み50μmのフィルム状とした。
 (実施例2~14及び比較例1~6)
 配合成分の種類及び配合量(単位は質量部)を下記の表1,2に示すように変更したこと以外は実施例1と同様にして、ガス発生材を得て、マイクロポンプを作製した。なお、実施例2~14では、アミノ基を有するシランカップリング剤を用いた。比較例1,2,4,6では、アミノ基を有さないシランカップリング剤を用いた。比較例3,6では、シランカップリング剤を用いなかった。
 また、用いたシランカップリング剤の種類は、以下の通りである。
 N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(信越化学工業社製のKBM-602)
 N,N-ビス[(3-トリメトキシシリル)プロピル]エチレンジアミン(Gelest製)
 3-アミノプロピルトリメトキシシラン(信越化学工業社製のKBM-903)
 3-アミノプロピルトリエトキシシラン(信越化学工業社製のKBE-903)
 (3-トリメトキシシリルプロピル)ジエチレントリアミン(Gelest製のSIT8398.0、95%、HNCHCHNHCHCHNHCHCHCHSi(OCH
 n-ブチルアミノプロピルトリメトキシシラン(Gelest製のSIB1932.2、CNHCHCHCHSi(OCH
 ビス(トリエトキシシリルプロピル)アミン(Gelest製のSIB1824.5、95%、[(CO)SiCHCHCHNH)
 ビス(トリメトキシシリルプロピル)アミン(Gelest製のSIB1833、95%、[(CHO)SiCHCHCHNH)
 ビス[(3-トリメトキシシリル)プロピル]エチレンジアミン(Gelest製のSIB1834.0、62%、溶剤:メタノール、(CHO)SiCHCHCHNHCHCHNHCHCHCHSi(OCH
 N-(2-アミノエチル)-3-アミノプロピルメチルトリメトキシシラン(Gelest製のSIA0591.0、HNCHCHNHCHCHCHSi(OCH
 3-グリシドキシプロピルトリエトキシシラン(信越化学工業社製のKBE-403)
 3-メタクリロキシプロピルメチルジエトキシシラン(信越化学工業社製のKBE-502)
 (実施例1~14及び比較例1~6の評価)
 (1)ガス発生量
 ガス発生量の測定では、得られたマイクロポンプにおいて、380nmの紫外線LED(ナイトレイドセミコンダクター社製「NS375L-5RFS」)で120秒間照射したときのガスの発生量を測定した。ガス発生量の測定方法は、マイクロ流路10bとメスピペットとをシリコンチューブでつなぎ、この中を水で充填し、その後、ガス発生材に紫外線を照射し、発生したガスによるメスピペットの体積変化を読み取る方法とした。
 (2)接着力
 図3に示すように、ポリカーボネート板51に対して、フィルム状のガス発生材52を貼り付けた。その状態で、接着力を評価した。
 具体的には、引張試験機(島津製作所製「AG-IS」)を用いて、矢印Y1で示す方向に、180度ピール剥離を行うことにより、接着力を評価した。測定条件は、剥離速度300mm/分、剥離幅25mm及び測定温度23℃の条件である。
 (3)アンカー力
 図4に示すように、セロファンテープ61(基材61Aと粘着剤層61Bとを有する)の粘着剤層61B面(糊面)と、得られたフィルム状のガス発生材62とを互いに貼り合わせた。その状態で、アンカー力を評価した。
 具体的には、引張試験機(島津製作所製「AG-IS」)を用いて、矢印Y2で示す方向に、90度剥離を行うことにより、剥離強度(アンカー力)を評価した。測定条件は、剥離速度300mm/分、剥離幅16mm及び測定温度23℃の条件である。
 結果を下記の表1,2に示す。なお、実施例1~4のガス発生材では、第三級アミンを用いていることから、24時間経過後及び10日経過後でも、ガスの発生量の低下は少なく、また24時間経過後のガス発生量(μL)を基準(100%)として、10日経過後の相対的なガス発生量(ガス発生量の増減)(%)は90%以上、105%以下の範囲内であり、保存安定性に優れていた。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 実施例15~29のガス発生材の配合成分として、以下の材料を用意した。
 (バインダー樹脂/アクリル系粘着剤)
 (合成例2)アクリル系粘着剤Bの合成
 n-ブチルアクリレート(日本触媒社製)96質量部と、アクリル酸(日本触媒社製)4質量部と、イルガキュア907(長瀬産業社製)0.05質量部と、酢酸エチル200質量部とを混合して、混合物を得た。次に、この混合物に、紫外線を4時間照射して、アクリル共重合体であるバインダー樹脂B(アクリル系粘着剤B)を作製した。得られたバインダー樹脂Bの重量平均分子量は、約61万であった。得られたバインダー樹脂BのSP値は7以上、10.5以下の範囲内である。
 (合成例3)アクリル系粘着剤Cの合成
 n-ブチルアクリレート(日本触媒社製)97質量部と、アクリル酸(日本触媒社製)3質量部と、イルガキュア907(長瀬産業社製)0.05質量部と、酢酸エチル200質量部とを混合して、混合物を得た。次に、この混合物に、紫外線を4時間照射して、アクリル共重合体であるバインダー樹脂C(アクリル系粘着剤C)を作製した。得られたバインダー樹脂Cの重量平均分子量は、約100万であった。得られたバインダー樹脂CのSP値は7以上、10.5以下の範囲内である。
 (タッキファイヤー)
 KE-359(ロジンエステル樹脂、荒川化学社製「パインエステルKE359」、ハーゼン色数40、水酸基価44、SP値8.86)
 (架橋剤)
 E-AX(N,N,N’,N’-テトラグリシジル-1,3-ベンゼンジ(メタンアミン)、綜研化学社製「E-AX」、トルエン5%液)
 AX4-HC-M08(PVEEA、アクリル酸2-(2-ビニルキシエトキシ)エチル重合体(固形分100質量%)、下記式(21)で表される構造単位を複数有する化合物;日本触媒社製「AX4-HC-M08」;重量平均分子量約20000)
Figure JPOXMLDOC01-appb-C000013
 多官能アクリルモノマーA-TMMT(ペンタエリスリトールテトラアクリレート、新中村化学工業社製)
 (アジド基を複数有するアジド化合物)
 GAP4006(グリシジルアジドポリマー、日油社製)
 GAP5006(グリシジルアクリルポリマー、日油社製)
 (第三級アミン)
 トリプロピルアミン(トリn-プロピルアミン)
 (光増感剤)
 2-イソプロピルチオキサントン(DKSHジャパン社製「IPX」)
 (シランカップリング剤)
 KEM603(信越化学工業社製、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン)
 (実施例15)
 溶剤である酢酸エチル220質量部をアクリル系粘着剤B88質量部に配合した後、GAP4006を110質量部と、シランカップリング剤であるKEM603を0.002質量部と、第三級アミンであるトリプロピルアミン(トリn-プロピルアミン)3.5質量部と、光増感剤である2-イソプロピルチオキサントン2.5質量部と、架橋剤であるE-AX1質量部と、AX4-HC-M08を1質量部と、タッキファイヤーであるKE-359を12質量部とを混合し、フィルム状に加工した。このフィルムを110℃で5分間加熱して、溶剤である酢酸エチルを除去した。これを離型PETフィルムで保護し、常温で一日(24時間)保管して、フィルム状のガス発生材(フィルム)を得た。
 得られたフィルム状のガス発生材を用いて、上記第1の実施形態のマイクロポンプ1と実質的に同様の構成を有するマイクロポンプを作製した。
 なお、マイクロ流路10bの断面形状は、0.5mm角の矩形状とした。マイクロ流路10bの長さは、800mmとした。マイクロ流路10bの先端は大気に開放した状態とした。ガス発生材は、直径0.6cmサイズで、厚み50μmのフィルム状とした。
 (実施例16~29)
 配合成分の種類及び配合量(単位は質量部)を下記の表3に示すように変更したこと以外は実施例1と同様にして、ガス発生材を得て、マイクロポンプを作製した。なお、下記の表3では、フィルム状のガス発生材を得る際に揮発により除去される溶剤の使用量の記載は省略した。
 (実施例15~29の評価)
 (1)ガス発生剤のゲル分率の測定
 フィルム(浸漬前のフィルム)1gを酢酸エチルに23℃で24時間浸漬して、浸漬液を得た。得られた浸漬液を#200のメッシュ金網で濾過し、金網上に残存したゲルを集めて、ゲルを75℃で3時間乾燥させて、乾燥後のフィルムを得た。乾燥後のフィルムの質量を測定し、下記式(X)によってゲル分率(質量%)を算出した。
 ゲル分率(質量%)=乾燥後のフィルムの質量/浸漬前のフィルムの質量×100 ・・・(X)
 (2)ガス発生剤の膨潤度の測定
 フィルム1g(重量:W0)を酢酸エチルに23℃で24時間浸漬した。次に、酢酸エチルの中から、フィルムを200メッシュの金属金網にて濾過した後に、フィルムの重量W1を測定した。この浸漬後の重量W1と浸漬前のフィルムの重量W0とから下記式(Y)にて、ガス発生剤の膨潤度を求めた。なお、重量測定前に、メッシュに付着した溶剤は、濾紙で拭き取った。
 膨潤度(%)=(W1-Wm)/W0×100(%) …(Y)
 Wm:メッシュの重量
 (3)ガス発生量の測定
 実施例1~14及び比較例1~6と同様に評価した。
 (4)接着力
 実施例1~14及び比較例1~6と同様に評価した。
 (5)アンカー力
 実施例1~14及び比較例1~6と同様に評価した。
 (6)はみ出し
 ガス発生測定装置を用い、メスピペットとマイクロ流路の間に、内径100μm長さ100mmのシリコンパイプを挿入し、ガス発生試験を行った。この時、ガス発生テープに直径6mmのマスクを用いて、光照射部と遮光部とを分けた。ガス発生後のテープを観察し、テープ内に含まれる気泡の直径を測定して、はみ出し距離とした。はみ出し距離の最小値は6mmであり、はみ出し距離が7mmを超えると、隣接するガスポンプと接することになるので不合格と判断した。
 (7)保持力
 接着力の測定と同様に25mm幅粘着テープをポリカーボネート板に貼り付け試験片を作製した。試験片の端部に20gの錘をつけて、23℃及び60%RH下に調整された部屋に、試験片を保持した。
 24時間後のテープの移動(剥離)距離を測定して、剥がれた距離とした。剥がれた距離が3mm以下は合格と判断し、3mmを超えると不合格と判断した。
 結果を下記の表3に示す。なお、実施例27~29では、(6)はみ出し及び(7)保持力の評価結果にやや悪い傾向が見られたが、(3)ガス発生量、(4)接着力及び(5)アンカー力の評価結果に優れているため、特に(3)ガス発生量の評価結果に優れているため、実施例27~29のガス発生材は、本発明の一実施形態におけるガス発生材として用いることができる。また、実施例27~29では、(6)はみ出し及び(7)保持力の評価結果にやや悪い傾向が見られたが、マイクロポンプの設計変更によって、有利に使用可能にすることが可能である。
Figure JPOXMLDOC01-appb-T000014
1,2…マイクロポンプ
10…基材
10a…主面
10b…マイクロ流路
10c…ポンプ室
11a、11b…ガス発生材
12…ガスバリア層
21…光照射装置

Claims (11)

  1.  バインダー樹脂と、
     アゾ化合物又はアジド化合物であるガス発生剤と、
     アミノ基を有するシランカップリング剤とを含む、ガス発生材。
  2.  前記アジド化合物は、スルフォニルアジド基又はアジドメチル基を有する、請求項1に記載のガス発生材。
  3.  光増感剤をさらに含む、請求項1に記載のガス発生材。
  4.  前記光増感剤が、チオキサントン化合物、フェノチアジン化合物、アントラセン化合物、及びアクリドン化合物からなる群から選択された少なくとも1種を含む、請求項3に記載のガス発生材。
  5.  前記ガス発生剤100質量部に対して、前記アミノ基を有するシランカップリング剤の含有量が0.0001質量部以上、1質量部以下である、請求項1に記載のガス発生材。
  6.  前記ガス発生剤がアジド化合物であり、
     前記アジド化合物が、アジド基を複数有するアジド化合物及び炭素-炭素二重結合を有するポリマーを配合して得られ、
     前記バインダー樹脂として、アクリル系粘着剤を含む、請求項1に記載のガス発生材。
  7.  前記炭素-炭素二重結合を有するポリマーが、炭素-炭素二重結合を含む基として、ビニル基、及び(メタ)アクリロイル基の内の少なくとも一方を有する、請求項6に記載のガス発生材。
  8.  前記炭素-炭素二重結合を有するポリマーが、炭素-炭素二重結合を含む基として、ビニル基、及び(メタ)アクリロイル基の双方を有する、請求項7に記載のガス発生材。
  9.  前記炭素-炭素二重結合を有するポリマーが炭素-炭素二重結合を複数有する、請求項6に記載のガス発生材。
  10.  マイクロポンプに用いられるガス発生材である、請求項1~9に記載のガス発生材。
  11.  請求項1~9のいずれか1項に記載のガス発生材と、
     マイクロ流路が形成された基材とを備え、
     前記ガス発生材は、前記ガス発生材において発生したガスが前記マイクロ流路に供給されるように配されている、マイクロポンプ。
PCT/JP2013/073276 2012-10-15 2013-08-30 ガス発生材及びマイクロポンプ WO2014061355A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380030332.8A CN104350030B (zh) 2012-10-15 2013-08-30 气体发生材料及微型泵
US14/428,627 US10731062B2 (en) 2012-10-15 2013-08-30 Gas-generating material and micropump
EP13846906.9A EP2907798B1 (en) 2012-10-15 2013-08-30 Gas-generating material and micropump

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-228175 2012-10-15
JP2012228175A JP5639137B2 (ja) 2012-10-15 2012-10-15 ガス発生材及びマイクロポンプ
JP2013-055045 2013-03-18
JP2013055045 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014061355A1 true WO2014061355A1 (ja) 2014-04-24

Family

ID=50487932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073276 WO2014061355A1 (ja) 2012-10-15 2013-08-30 ガス発生材及びマイクロポンプ

Country Status (4)

Country Link
US (1) US10731062B2 (ja)
EP (1) EP2907798B1 (ja)
CN (1) CN104350030B (ja)
WO (1) WO2014061355A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108231A (ja) * 2017-12-15 2019-07-04 積水化学工業株式会社 ガス発生材、ガス発生材の製造方法及びマイクロポンプ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103084A (zh) * 2014-03-19 2016-11-09 富士胶片株式会社 功能性层叠膜、功能性层叠膜的制造方法、及包含功能性层叠膜的有机电致发光装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187790A (ja) * 2000-10-10 2002-07-05 Nippon Kayaku Co Ltd ガス発生剤組成物およびそれを使用したガス発生器
JP2005197630A (ja) 2003-12-09 2005-07-21 Sekisui Chem Co Ltd Icチップの製造方法
JP2005231907A (ja) * 2000-03-10 2005-09-02 Nippon Kayaku Co Ltd エアバック用ガス発生剤
JP2006128621A (ja) 2004-09-29 2006-05-18 Sekisui Chem Co Ltd ウエハ貼着用粘着シート及びダイ接着用接着剤層付きicチップの製造方法
JP2009247896A (ja) 2008-04-01 2009-10-29 Tyco Healthcare Group Lp クリック化学を使用して形成された生体接着剤組成物
JP2010089259A (ja) 2008-03-11 2010-04-22 Sekisui Chem Co Ltd 光応答性ガス発生材料、マイクロポンプ及びマイクロ流体デバイス
WO2013183175A1 (ja) * 2012-06-08 2013-12-12 積水化学工業株式会社 ガス発生材及びマイクロポンプ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220019A1 (de) 1991-06-21 1992-12-24 Dynamit Nobel Ag Treibmittel fuer gasgeneratoren
WO1998037040A1 (en) 1997-02-10 1998-08-27 Automotive Systems Laboratory, Inc. Gas generator propellant compositions
JP3972628B2 (ja) * 2001-10-23 2007-09-05 日本油脂株式会社 ガス発生剤組成物及びガス発生器
CN1969167A (zh) * 2004-04-16 2007-05-23 日本化药株式会社 点火器及具有该点火器的气体产生器
ATE530250T1 (de) * 2006-03-09 2011-11-15 Sekisui Chemical Co Ltd Mikrofluidische vorrichtung und verfahren zur verdünnung von flüssigkeit in spuren
KR101560424B1 (ko) 2008-03-11 2015-10-14 세키스이가가쿠 고교가부시키가이샤 마이크로유체 디바이스
JP4856733B2 (ja) 2008-04-28 2012-01-18 積水化学工業株式会社 マイクロポンプ装置
GB0815936D0 (en) * 2008-08-29 2009-01-14 Bae Systems Plc Cast Explosive Composition
JP2012072007A (ja) 2010-09-28 2012-04-12 Sekisui Chem Co Ltd ガス発生剤及びマイクロポンプ
JP5704970B2 (ja) 2011-03-03 2015-04-22 積水化学工業株式会社 ガス発生材及びマイクロポンプ
JP5162731B1 (ja) 2012-06-08 2013-03-13 積水化学工業株式会社 ガス発生材及びマイクロポンプ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231907A (ja) * 2000-03-10 2005-09-02 Nippon Kayaku Co Ltd エアバック用ガス発生剤
JP2002187790A (ja) * 2000-10-10 2002-07-05 Nippon Kayaku Co Ltd ガス発生剤組成物およびそれを使用したガス発生器
JP2005197630A (ja) 2003-12-09 2005-07-21 Sekisui Chem Co Ltd Icチップの製造方法
JP2006128621A (ja) 2004-09-29 2006-05-18 Sekisui Chem Co Ltd ウエハ貼着用粘着シート及びダイ接着用接着剤層付きicチップの製造方法
JP2010089259A (ja) 2008-03-11 2010-04-22 Sekisui Chem Co Ltd 光応答性ガス発生材料、マイクロポンプ及びマイクロ流体デバイス
JP2009247896A (ja) 2008-04-01 2009-10-29 Tyco Healthcare Group Lp クリック化学を使用して形成された生体接着剤組成物
WO2013183175A1 (ja) * 2012-06-08 2013-12-12 積水化学工業株式会社 ガス発生材及びマイクロポンプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108231A (ja) * 2017-12-15 2019-07-04 積水化学工業株式会社 ガス発生材、ガス発生材の製造方法及びマイクロポンプ
JP7144140B2 (ja) 2017-12-15 2022-09-29 積水化学工業株式会社 ガス発生材、ガス発生材の製造方法及びマイクロポンプ

Also Published As

Publication number Publication date
EP2907798A1 (en) 2015-08-19
EP2907798B1 (en) 2019-02-06
CN104350030A (zh) 2015-02-11
EP2907798A4 (en) 2016-07-27
US10731062B2 (en) 2020-08-04
CN104350030B (zh) 2017-09-15
US20150232714A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP4528352B2 (ja) マイクロ流体デバイス
KR101578575B1 (ko) 접착제 조성물, 접착 테이프, 반도체 웨이퍼의 처리 방법 및 tsv 웨이퍼의 제조 방법
JP6695989B2 (ja) パターン形成方法および半導体素子の製造方法
WO2013183175A1 (ja) ガス発生材及びマイクロポンプ
JPWO2016104787A1 (ja) 光硬化性組成物
JP6695988B2 (ja) インプリント用プライマ層形成用組成物、インプリント用プライマ層および積層体
JP5162731B1 (ja) ガス発生材及びマイクロポンプ
WO2014061355A1 (ja) ガス発生材及びマイクロポンプ
JP5580923B1 (ja) ガス発生材、ガス発生材の製造方法及びマイクロポンプ
JP5639137B2 (ja) ガス発生材及びマイクロポンプ
JPWO2013105582A1 (ja) 粘着剤組成物、粘着テープ、及び、ウエハの処理方法
JP7144140B2 (ja) ガス発生材、ガス発生材の製造方法及びマイクロポンプ
JP6110652B2 (ja) マイクロポンプ用ガス発生材及びマイクロポンプ
JP2018062590A (ja) 光硬化性組成物
JP5941544B2 (ja) テトラゾール化合物又はその塩、接着剤組成物及び接着テープ
TW201245377A (en) Resin paste composition for bonding semiconductor element, and semiconductor device
JP2015054798A (ja) マイクロポンプにおけるガスの発生方法
JP6568373B2 (ja) 接着剤組成物、及び、接着テープ
JP6002460B2 (ja) ガス発生材及びマイクロポンプ
JP5957306B2 (ja) ガス発生材及びマイクロポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846906

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013846906

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14428627

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE