WO2014054175A1 - ポンプ及びポンプの製造方法並びに冷凍サイクル装置 - Google Patents

ポンプ及びポンプの製造方法並びに冷凍サイクル装置 Download PDF

Info

Publication number
WO2014054175A1
WO2014054175A1 PCT/JP2012/076004 JP2012076004W WO2014054175A1 WO 2014054175 A1 WO2014054175 A1 WO 2014054175A1 JP 2012076004 W JP2012076004 W JP 2012076004W WO 2014054175 A1 WO2014054175 A1 WO 2014054175A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
pump
rotor
resin
magnetic pole
Prior art date
Application number
PCT/JP2012/076004
Other languages
English (en)
French (fr)
Inventor
優人 浦辺
洋樹 麻生
川久保 守
山本 峰雄
石井 博幸
隼一郎 尾屋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1505534.6A priority Critical patent/GB2522353B/en
Priority to US14/418,127 priority patent/US9903372B2/en
Priority to PCT/JP2012/076004 priority patent/WO2014054175A1/ja
Priority to CN201280075829.7A priority patent/CN104619990B/zh
Priority to JP2014539561A priority patent/JP5925329B2/ja
Publication of WO2014054175A1 publication Critical patent/WO2014054175A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2205Conventional flow pattern
    • F04D29/2222Construction and assembly
    • F04D29/2227Construction and assembly for special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/628Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a pump, a pump manufacturing method, and a refrigeration cycle apparatus.
  • the pump to which the DC brushless motor for a magnet motor pump described in Patent Document 1 is applied has a large distance between the stator and the rotor magnet because the outer peripheral surface of the rotor magnet is covered with the thermoplastic resin. As a result, the performance of the pump may be reduced.
  • the present invention has been made in view of the above, and a pump capable of suppressing cracking of a magnet due to a thermal shock associated with a cold / hot water cycle without covering the outer peripheral surface of the magnet with a resin and a method for manufacturing the same
  • An object of the present invention is to provide a refrigeration cycle apparatus equipped with this pump.
  • a pump according to the present invention is rotatably housed in an annular mold stator having a substrate on which a magnetic pole position detection element is mounted, and a bowl-shaped partition wall component.
  • a rotor having an annular rotor portion provided with an impeller mounting portion on which one end in the axial direction is opposed to the magnetic pole position detecting element and an impeller is mounted on the other end in the axial direction, and
  • the rotor portion is formed of an annular magnet, a sleeve bearing disposed inside the magnet, and a thermoplastic resin used for integral molding of the magnet and the sleeve bearing, and constitutes the impeller mounting portion.
  • a resin portion, and the magnet includes a plurality of through holes extending in the axial direction between an end surface on the magnetic pole position detection element side and an end surface on the impeller mounting portion side, and each of the through holes is , Characterized in that it is embedded by the thermoplastic resin which constitutes a part of the serial resin portion.
  • a plurality of through holes extending in the axial direction are provided in the magnet constituting the rotor portion, and each through hole is embedded with the thermoplastic resin at the time of integral molding, so the magnet is made of the thermoplastic resin.
  • FIG. 1 is a configuration diagram of a heat pump hot water supply apparatus according to Embodiment 1.
  • FIG. FIG. 2 is an exploded perspective view of the pump 10 according to the first embodiment.
  • FIG. 3 is a perspective view of the mold stator 50.
  • FIG. 4 is a cross-sectional view of the mold stator 50.
  • FIG. 5 is an exploded perspective view of the stator assembly 49.
  • FIG. 6 is an exploded perspective view of the pump unit 40.
  • FIG. 7 is a cross-sectional view of the pump 10.
  • FIG. 8 is a perspective view of the casing 41 as seen from the shaft support portion 46 side.
  • FIG. 9 is a cross-sectional view of the rotor portion 60a (specifically, a cross-sectional view taken along line AA in FIG. 11).
  • FIG. 10 is a view of the rotor part 60a as seen from the impeller attachment part side.
  • FIG. 11 is a view of the rotor part 60a as viewed from the side opposite to the impeller attachment part side.
  • FIG. 12 is an enlarged cross-sectional view of the sleeve bearing 66.
  • 13 is a cross-sectional view of the resin magnet 68 (specifically, a cross-sectional view taken along the line BB in FIG. 14).
  • FIG. 14 is a view of the resin magnet 68 as viewed from the protrusion 68a side (impeller mounting portion side).
  • FIG. 15 is a view of the resin magnet 68 viewed from the side opposite to the protrusion 68a side.
  • FIG. 16 is a perspective view of the resin magnet 68 as viewed from the protrusion 68a side.
  • FIG. 17 is a perspective view of the resin magnet 68 viewed from the side opposite to the protrusion 68a.
  • FIG. 18 is a perspective view of the rotor portion 60a as viewed from the impeller attachment portion side.
  • FIG. 19 is a perspective view of the rotor portion 60a viewed from the side opposite to the impeller mounting portion side.
  • FIG. 20 is a diagram illustrating a manufacturing process of the pump 10.
  • FIG. 21 is a conceptual diagram showing a circuit of a refrigeration cycle apparatus using the refrigerant-water heat exchanger 2.
  • FIG. 22 is a cross-sectional view of rotor portion 60a in the second embodiment.
  • FIG. 23 is a cross-sectional view of resin magnet 68 in the second embodiment.
  • Embodiment 1 FIG. Below, the outline
  • FIG. 1 is a configuration diagram of a heat pump type hot water supply apparatus according to the present embodiment.
  • the heat pump hot water supply apparatus 300 includes a heat pump unit 100, a tank unit 200, and an operation unit 11 on which a user performs a driving operation and the like.
  • a heat pump unit 100 includes a compressor 1 that compresses a refrigerant (for example, a rotary compressor, a scroll compressor, etc.), a refrigerant-water heat exchanger 2 that exchanges heat between the refrigerant and water, and a high-pressure unit.
  • a decompression device 3 that decompresses and expands the refrigerant
  • an evaporator 4 that evaporates the low-pressure two-phase refrigerant
  • a refrigerant pipe that connects the compressor 1, the refrigerant-water heat exchanger 2, the decompression device 3, and the evaporator 4 in an annular shape.
  • a refrigerant circuit is constituted by the compressor 1, the refrigerant-water heat exchanger 2, the decompression device 3, the evaporator 4, and the refrigerant pipe 15 that connects these in an annular shape.
  • the heat pump unit 100 includes, as temperature detection units, a boiling temperature detection unit 8 of the refrigerant-water heat exchanger 2, a feed water temperature detection unit 9 of the refrigerant-water heat exchanger 2, and an outside air temperature detection unit 17. I have.
  • the heat pump unit 100 includes a heat pump unit control unit 13.
  • the heat pump unit control unit 13 receives signals from the pressure detection device 5, the boiling temperature detection unit 8, the feed water temperature detection unit 9, and the outside air temperature detection unit 17, and controls the rotation speed of the compressor 1 and the decompression device 3. The opening degree control and the rotational speed control of the fan motor 6 are performed.
  • the tank unit 200 includes a hot water tank 14 that stores hot water heated by exchanging heat with a high-temperature and high-pressure refrigerant in the refrigerant-water heat exchanger 2, and a bath water reheating heat exchanger that replenishes the bath water.
  • a bath water circulation device 32 connected to the bath water reheating heat exchanger 31, a pump 10 which is a hot water circulation device disposed between the refrigerant-water heat exchanger 2 and the hot water tank 14, and a refrigerant—
  • a hot water circulation pipe 16 connecting the water heat exchanger 2 and the hot water tank 14, a mixing valve 33 connected to the refrigerant-water heat exchanger 2, the hot water tank 14 and the bath water reheating heat exchanger 31;
  • a bath water recirculation pipe 37 for connecting the hot water tank 14 and the mixing valve 33.
  • the refrigerant-water heat exchanger 2, the hot water tank 14, the pump 10, and the hot water circulation pipe 16 constitute a water circuit.
  • the tank unit 200 includes a tank water temperature detection unit 34, a post-reheating water temperature detection unit 35 that detects the water temperature after passing through the bath water reheating heat exchanger 31, and a mixing valve 33 as temperature detection units. And a post-mixing water temperature detection unit for detecting the water temperature after passing through.
  • the tank unit 200 includes a tank unit controller 12.
  • the tank unit controller 12 receives signals from the in-tank water temperature detector 34, the reheated water temperature detector 35, and the mixed water temperature detector 36, and controls the rotational speed of the pump 10 and the opening / closing control of the mixing valve 33. I do. Furthermore, the tank unit 200 transmits and receives signals to and from the heat pump unit control unit 13 and the operation unit 11.
  • the operation unit 11 is a remote control or an operation panel provided with a switch or the like for a user to set a temperature of hot water or give a hot water instruction.
  • FIG. 1 the normal boiling operation operation in the heat pump type hot water supply apparatus 300 configured as described above will be described.
  • the heat pump unit 100 performs the boiling operation.
  • the heat pump unit controller 13 controls the rotational speed of the compressor 1, the opening degree of the decompressor 3, and the fan based on the detected values of the pressure detector 5, the boiling temperature detector 8, and the feed water temperature detector 9. The number of revolutions of the motor 6 is controlled.
  • the detection value of the boiling temperature detection part 8 is transmitted / received between the heat pump unit control part 13 and the tank unit control part 12, and the tank unit control part 12 is the temperature detected by the boiling temperature detection part 8.
  • the number of rotations of the pump 10 is controlled so as to reach the target boiling temperature.
  • the temperature of the high-temperature and high-pressure refrigerant discharged from the compressor 1 decreases while radiating heat to the water supply circuit side by the refrigerant-water heat exchanger 2.
  • the high-pressure and low-temperature refrigerant that has radiated heat and passed through the refrigerant-water heat exchanger 2 is decompressed by the decompression device 3.
  • the refrigerant that has passed through the decompression device 3 flows into the evaporator 4 where it absorbs heat from outside air.
  • the low-pressure refrigerant exiting the evaporator 4 is sucked into the compressor 1 and circulates to form a refrigeration cycle.
  • the water in the lower part of the hot water tank 14 is led to the refrigerant-water heat exchanger 2 by driving the pump 10 which is a hot water circulation device.
  • water is heated by heat radiation from the refrigerant-water heat exchanger 2, and the heated hot water is returned to the upper part of the hot water tank 14 through the hot water circulation pipe 16 to be stored.
  • the pump 10 is used as a hot water circulation apparatus for circulating hot water in the hot water circulation pipe 16 between the hot water tank 14 and the refrigerant-water heat exchanger 2.
  • FIG. 2 is an exploded perspective view of the pump 10 according to the present embodiment.
  • the pump 10 includes a pump unit 40 that absorbs and discharges water by rotation of a rotor (described later), a mold stator 50 that drives the rotor, a pump unit 40, and a mold stator. And a tapping screw 160 that is a fastening screw that fastens the screw 50.
  • the number of tapping screws 160 is five, for example, but is not limited thereto.
  • the pump 10 includes five tapping screws 160 of pilot hole parts 81 (see FIG. 5 described later for details) embedded in the mold stator 50 through screw holes 44a formed in the boss portions 44 of the pump portion 40. It is assembled by fastening to the pilot hole 84.
  • the casing 41, the suction port 42, the discharge port 43, the bowl-shaped partition wall component 90, the lead wire 52, the mold resin 53, the stator core 54, and the pump unit installation surface 63 are described below.
  • FIGS. 3 is a perspective view of the mold stator 50
  • FIG. 4 is a cross-sectional view of the mold stator 50
  • FIG. 5 is an exploded perspective view of the stator assembly 49.
  • the mold stator 50 is obtained by molding the stator assembly 49 with the mold resin 53 (FIGS. 3 and 4).
  • a flat pump part installation surface 63 is provided along the outer peripheral edge of one end face of the mold stator 50 in the axial direction, specifically, the end face on the pump part 40 side (see also FIG. 2).
  • legs 85 (see FIG. 5) of pilot hole parts 81 are embedded in the axial direction at five locations.
  • the foot 85 is, for example, a substantially cylindrical resin molded part.
  • one end surface (end surface on the pump unit 40 side) of the foot portion 85 becomes a mold pressing portion 82 (see FIG. 4) of the molding die. Therefore, the pilot hole part 81 is exposed in a form embedded inside the pump part installation surface 63 by a predetermined distance. What is exposed is a mold retainer 82 and a pilot hole 84 for the tapping screw 160.
  • the lead wire 52 drawn out from the stator assembly 49 is drawn out from the vicinity of the axial end surface of the mold stator 50 opposite to the pump part 40 side.
  • the axial positioning of the mold stator 50 during molding with a mold resin 53 is performed on the axial end surfaces of the plurality of protrusions 95a formed on the substrate pressing component 95 (see FIG. 5). Is made by forming the upper mold holder. Therefore, the axial end surfaces (mold pressing surfaces) of the plurality of protrusions 95a are exposed from the axial end surface on the substrate 58 side of the mold stator 50 (not shown).
  • a mold resin 53 for example, a thermosetting resin
  • the axial end surface of the insulating part 56 on the anti-connection side becomes a lower mold pressing part. Therefore, the end surface of the insulating portion 56 on the anti-connection side is exposed from the axial end surface of the mold stator 50 opposite to the substrate 58 side (not shown).
  • the positioning of the mold stator 50 in the radial direction at the time of molding is performed by fitting the inner peripheral surface of the stator core 54 to the mold. Therefore, the tip end portion (inner peripheral portion) of the teeth of the stator core 54 is exposed on the inner peripheral portion of the mold stator 50 shown in FIG.
  • the stator assembly 49 includes a stator 47 and a pilot hole part 81.
  • the stator 47 includes a lead wire 52, a stator core 54 provided with a groove 54a, an insulating portion 56, a coil 57, an IC 58a, a Hall element 58b, a substrate 58, and a terminal 59.
  • the lead wire lead-out component 61 and the substrate pressing component 95 are provided.
  • the pilot hole component 81 includes a foot portion 85, protrusions 83 and 85 a provided on the foot portion 85, and a connecting portion 87.
  • the stator assembly 49 is manufactured by the following procedure.
  • An electromagnetic steel sheet having a thickness of, for example, about 0.1 to 0.7 mm is punched into a strip shape, and an annular stator core 54 is manufactured by laminating the electromagnetic steel sheet by caulking, welding, bonding, or the like.
  • the stator core 54 includes a plurality of teeth.
  • the tips of the teeth of the stator core 54 are exposed on the inner periphery of the mold stator 50 shown in FIG. Since the stator core 54 shown here has, for example, twelve teeth connected by the thin-walled connecting portion, the tips of the teeth of the stator core 54 are exposed at 12 locations in FIG. However, the teeth visible in FIG. 3 are five of the twelve teeth.
  • An insulating portion 56 is applied to the teeth of the stator core 54.
  • the insulating portion 56 is molded integrally with the stator core 54 or separately from the stator core 54 using a thermoplastic resin such as PBT (polybutylene terephthalate).
  • Concentrated winding coil 57 (see FIG. 4) is wound around the teeth provided with insulating portion 56. Twelve concentrated winding coils 57 are connected to form a three-phase single Y-connection winding.
  • a terminal 59 (see FIG. 4) to which a coil 57 (see FIG. 4) of each phase (U phase, V phase, W phase) is connected on the connection side of the insulating portion 56.
  • the substrate 58 is attached to the insulating portion 56 on the connection side (side on which the terminal 59 is assembled). The substrate 58 is sandwiched between the substrate pressing component 95 and the insulating portion 56. Electronic components are mounted on the substrate 58. Specifically, an IC 58a (driving element) for driving an electric motor (for example, a brushless DC motor) and a hall element 58b for detecting the position of the rotor 60 (see FIG. 4, magnetic pole position) Detection element) and the like are mounted.
  • an electric motor for example, a brushless DC motor
  • a hall element 58b for detecting the position of the rotor 60 (see FIG. 4, magnetic pole position) Detection element
  • the IC 58a is mounted on the substrate pressing component 95 side of the substrate 58, it can be seen in FIG. 5, but the Hall element 58b is mounted on the side opposite to the IC 58a, and is not visible in FIG. Further, a lead wire lead-out component 61 that feeds the lead wire 52 into a notch portion near the outer peripheral edge portion is attached to the substrate 58. (6) The substrate 58 to which the lead wire lead-out component 61 is attached is fixed to the insulating portion 56 by the substrate holding component 95, and the pilot hole component 81 is assembled to the stator 47 to which the terminal 59 and the substrate 58 are soldered. This completes the stator assembly 49 (see FIG. 5).
  • the pilot hole part 81 is formed by molding a thermoplastic resin such as PBT (polybutylene terephthalate).
  • the pilot hole part 81 is configured by a plurality of substantially cylindrical foot portions 85 (for example, five pieces) connected in a ring shape with thin connection portions 87.
  • the foot portion 85 is provided with a pilot hole 84 into which the tapping screw 160 is screwed (see FIG. 2).
  • the foot portion 85 has a tapered shape that becomes thicker from the exposed end surface (end surface of the mold pressing portion 82 and the protrusion 83) toward the central portion in the axial direction.
  • the pilot hole part 81 includes a plurality of protrusions 85a on the outer periphery of the foot 85 for preventing rotation.
  • four protrusions 85 a are provided on the outer periphery of the foot 85.
  • the protrusion 85a is formed to extend in the height direction (axial direction) of the foot 85 with a predetermined circumferential width. Further, the protrusion 85 a protrudes from the outer peripheral surface of the foot 85 by a predetermined dimension necessary for preventing the rotation of the pilot hole part 81.
  • the pilot hole part 81 can be set in a mold once by connecting the substantially cylindrical foot part 85 with the thin connection part 87, and the processing cost can be reduced.
  • a plurality of claws (not shown) for assembling the pilot hole part 81 to the stator 47 are provided in the connecting part 87 of the pilot hole part 81, and formed on the outer peripheral part of the stator core 54 of the stator 47.
  • pilot hole part 81 is locked to the stator 47, when the stator assembly 49 is molded by the mold resin 53, the mold pressing portion 82 and the projection 83 of the pilot hole part 81 are formed by the mold. By pinching, the pilot hole part 81 is positioned in the axial direction.
  • the outer diameter of the mold pressing portion 82 can be made smaller than the outer diameter of the end face on the opening side of the prepared hole part 81 (see FIG. 4).
  • the end surface of the pilot hole component 81 is covered with the mold resin 53 except for the mold pressing portion 82. Therefore, since both end surfaces of the pilot hole component 81 are covered with the mold resin 53, it is possible to suppress the exposure of the pilot hole component 81 and improve the quality of the pump 10.
  • the mold stator 50 is obtained by integrally molding the prepared hole part 81 assembled to the stator 47 with the mold resin 53. At this time, the pilot hole 84 is formed so as to be exposed. By tightening and assembling the pump unit 40 and the mold stator 50 to the pilot hole 84 with the tapping screw 160 through the screw holes 44a formed in the pump unit 40, the pump unit 40 and the mold stator 50 are firmly connected. Can be assembled (see FIG. 2).
  • FIGS. 6 is an exploded perspective view of the pump unit 40
  • FIG. 7 is a cross-sectional view of the pump 10
  • FIG. 8 is a perspective view of the casing 41 viewed from the shaft support unit 46 side.
  • the pump unit 40 includes the following elements. (1) A casing 41 having a fluid suction port 42 and a discharge port 43 and housing the impeller 60b of the rotor 60 therein:
  • the casing 41 is made of a thermoplastic resin such as PPS (polyphenylene sulfide). Molded.
  • the casing 41 is provided with five boss portions 44 having screw holes 44a used when the pump portion 40 and the mold stator 50 are assembled.
  • Thrust bearing 71 The material of the thrust bearing 71 is ceramic such as alumina. Since the rotor 60 is pressed against the casing 41 via the thrust bearing 71 by the pressure difference acting on the front and back of the impeller 60b of the rotor 60 during operation of the pump 10, the thrust bearing 71 is made of ceramic. To ensure wear resistance and slidability.
  • Rotor 60 The rotor 60 includes a rotor portion 60a and an impeller 60b.
  • the rotor portion 60a is provided, for example, inside a ring-shaped (cylindrical or annular) resin magnet 68 (an example of a magnet) obtained by molding a pellet obtained by kneading magnetic powder such as ferrite and resin.
  • a cylindrical sleeve bearing 66 (for example, made of carbon) is integrated with a resin portion 67 such as PPE (polyphenylene ether) (see FIG. 9 described later).
  • the impeller 60b is a resin molded product such as PPE (polyphenylene ether).
  • the rotor part 60a and the impeller 60b are joined together by, for example, ultrasonic welding.
  • Shaft 70 The material of the shaft 70 (rotating shaft) is, for example, ceramic such as alumina, SUS, or the like. Since the shaft 70 slides with a sleeve bearing 66 provided in the rotor 60, a material such as ceramic or SUS is selected to ensure wear resistance and slidability.
  • One end of the shaft 70 is inserted into the shaft support portion 94 of the bowl-shaped partition wall component 90, and the other end of the shaft 70 is inserted into the shaft support portion 46 of the casing 41.
  • One end of the shaft 70 inserted into the shaft support portion 94 is inserted so as not to rotate with respect to the shaft support portion 94. Therefore, one end of the shaft 70 is substantially D-shaped with a predetermined length (axial direction) cut out of a part of the circle, and the hole of the shaft support portion 94 is also shaped to match the shape of one end of the shaft 70. Yes.
  • the other end of the shaft 70 inserted into the shaft support portion 46 is also substantially D-shaped by cutting out a part of a circle having a predetermined length (axial direction), and the shaft 70 is symmetrical in the length direction. is there.
  • the other end of the shaft 70 is rotatably inserted into the shaft support portion 46.
  • the reason why the shaft 70 is symmetrical in the length direction is to enable assembly without being aware of the vertical direction when the shaft 70 is inserted into the shaft support portion 94 (see FIG. 6).
  • the material of the O-ring 80 is, for example, EPDM (ethylene-propylene-diene rubber). The O-ring 80 performs sealing between the casing 41 of the pump unit 40 and the bowl-shaped partition wall component 90.
  • Cage-like partition wall component 90 is formed using, for example, a thermoplastic resin such as PPE (polyphenylene ether).
  • the bowl-shaped partition wall component 90 includes a bowl-shaped partition wall portion 90 a that is a fitting portion with the mold stator 50 and a flange portion 90 b.
  • the bowl-shaped partition wall 90a is composed of a circular bottom and a cylindrical partition.
  • a shaft support portion 94 into which one end of the shaft 70 is inserted is erected at a substantially central portion of the inner surface of the bottom portion of the bowl-shaped partition wall portion 90a.
  • a plurality of ribs 92 are formed radially on the outer surface of the bottom of the bowl-shaped partition wall 90a in the radial direction.
  • a plurality of reinforcing ribs (not shown) that reinforce the flange 90b are radially formed in the flange 90b.
  • the flange portion 90b includes an annular rib (not shown) that fits in the pump portion installation surface 63 of the pump portion 40.
  • holes 90d through which the tapping screw 160 passes are formed in the flange portion 90b at five locations.
  • an annular O-ring storage groove 90c for storing the O-ring 80 is formed on the casing 41 side surface of the flange portion 90b.
  • the O-ring 80 is installed in the bowl-shaped partition wall part 90, the shaft 70, the rotor 60, and the thrust bearing 71 are installed in the bowl-shaped partition wall part 90, and then the casing 41 is assembled to the bowl-shaped partition wall part 90.
  • the pump unit 40 is assembled, and the pump unit 40 is assembled to the mold stator 50 and fixed by the tapping screw 160 or the like.
  • the rib 92 provided on the bottom of the bowl-shaped partition wall component 90 and the groove (not shown) of the mold stator 50 are fitted to each other, thereby positioning the pump unit 40 and the mold stator 50 in the circumferential direction.
  • the rotor 60 is accommodated inside the bowl-shaped partition wall 90a.
  • the rotor 60 is fitted on a shaft 70 inserted into the shaft support portion 94 of the bowl-shaped partition wall component 90. Therefore, in order to ensure the coaxiality of the mold stator 50 and the rotor 60, the gap between the inner periphery of the mold stator 50 and the outer periphery of the bowl-shaped partition wall portion 90a should be as small as possible.
  • the gap is selected to be about 0.02 to 0.06 mm.
  • FIG. 9 is a cross-sectional view of the rotor portion 60a (specifically, a cross-sectional view taken along the line AA in FIG. 11),
  • FIG. 10 is a view of the rotor portion 60a viewed from the impeller mounting portion side, and
  • FIG. FIG. 12 is an enlarged cross-sectional view of the sleeve bearing 66 when the portion 60a is viewed from the side opposite to the impeller mounting portion side.
  • the rotor section 60 a includes at least the following elements.
  • the resin portion 67 is a portion made of a thermoplastic resin such as PPE (polyphenylene ether).
  • An impeller attachment portion 67 a for attaching the impeller 60 b is formed in the resin portion 67.
  • the resin magnet 68 and the sleeve bearing 66 are integrally formed by the resin portion 67.
  • the resin magnet 68 is substantially ring-shaped (cylindrical or annular), and is formed of pellets obtained by kneading a magnetic powder such as ferrite and a resin, for example.
  • the sleeve bearing 66 (for example, made of carbon) is provided inside the resin magnet 68.
  • the sleeve bearing 66 has a cylindrical shape. Since the sleeve bearing 66 rotates by being fitted to the shaft 70 assembled in the bowl-shaped partition wall component 90 of the pump 10, for example, PPS (polyphenylene sulfide) added with sintered carbon or carbon fiber suitable for the material of the bearing is used. It is made of thermoplastic resin or ceramic.
  • the sleeve bearing 66 includes a taper taper (not shown) whose outer diameter decreases from the substantially axial center toward both ends, and is, for example, a hemispherical projection 66a (FIG. 12) that prevents rotation on the outer peripheral surface at the approximate axial center. A plurality of reference).
  • the portion of the resin portion 67 formed in contact with the end surface of the resin magnet 68 on the impeller mounting portion side corresponds to the location of a magnet pressing portion (not shown) provided on the upper mold of the resin molding die.
  • a recess 67b is formed.
  • the recess 67b is formed at a substantially central portion in the radial direction.
  • the recess 67b is formed at a position substantially opposite to the protrusion 68a of the resin magnet 68 in the axial direction.
  • a plurality of impeller positioning holes 67c for attaching the impeller 60b are formed in the impeller attaching portion 67a.
  • three impeller positioning holes 67c are formed at substantially equal intervals in the circumferential direction.
  • the impeller positioning hole 67c passes through the impeller attachment portion 67a.
  • Each impeller positioning hole 67c is formed on an intermediate radial extension line of two of the three protrusions 68a (see FIG. 10) of the resin magnet 68, respectively.
  • the impeller mounting portion 67a has gates 67e (resin injection ports) used when the rotor portion 60a is molded with the thermoplastic resin (resin portion 67) at substantially equal intervals in the circumferential direction. For example, three are formed. Each gate 67e is formed on the radial extension of the projection 68a of the resin magnet 68 and inside the impeller positioning hole 67c.
  • Positioning protrusions (not shown) provided on the lower mold of the resin molding die are formed on a portion of the resin portion 67 formed in contact with the inner peripheral surface of the resin magnet 68 on the side opposite to the impeller mounting portion side.
  • a notch 67d is formed to be fitted to the top (see FIGS. 9 and 11).
  • the notches 67d are formed at four locations at approximately 90 ° intervals.
  • a plurality of (eight in the illustrated example) convex portions 68e which are part of the resin magnet 68 are exposed from the resin portion 67 (see FIG. 11).
  • the resin magnet 68 is provided with a plurality of through holes 69 extending in the axial direction, and the insides of the through holes 69 are each embedded with a thermoplastic resin. That is, the thermoplastic resin in the through hole 69 constitutes a part of the resin portion 67.
  • FIG. 13 is a cross-sectional view of the resin magnet 68 (specifically, a cross-sectional view taken along the line BB in FIG. 14), and FIG. 14 is a view of the resin magnet 68 viewed from the projection 68a side (impeller mounting portion side).
  • FIG. 16 is a perspective view of the resin magnet 68 viewed from the side opposite to the projection 68a.
  • FIG. 16 is a perspective view of the resin magnet 68 viewed from the side of the projection 68a. is there.
  • FIG. 18 is a perspective view of the rotor portion 60a viewed from the impeller mounting portion side
  • FIG. 19 is a perspective view of the rotor portion 60a viewed from the side opposite to the impeller mounting portion side.
  • the configuration of the resin magnet 68 will be described with reference to FIGS.
  • the resin magnet 68 shown here has, for example, eight magnetic poles.
  • the resin magnet 68 is provided with a plurality of tapered notches 68b at substantially equal intervals in the circumferential direction on the inner peripheral side of the end surface opposite to the impeller mounting portion side in a state where it is molded in the rotor 60. That is, the notch 68b is formed on the inner peripheral surface of the end surface, and extends from the end surface in a predetermined length axis direction.
  • the notch 68b has a tapered shape in which the diameter on the end face side is larger than the axial center side.
  • the notches 67d (see FIG. 11) of the resin portion 67 are formed at the same positions as the four notches 68b arranged at approximately 90 ° intervals.
  • the resin magnet 68 has a predetermined depth from the end surface (end surface on the impeller mounting portion side) opposite to the side where the notch 68b is formed, for example, substantially square and on the impeller mounting portion side.
  • a plurality of protrusions 68a extending a predetermined length in the axial direction are provided at substantially equal intervals in the circumferential direction. In the example of FIG. 14, the number of protrusions 68a is three.
  • the protrusion 68a has a substantially square shape when viewed from the side, and includes a protrusion 68a-1 protruding toward the end face.
  • the convex portion 68a-1 provided at the end of the protrusion 68a is held by the thermoplastic resin (resin portion 67) forming the rotor portion 60a, so that the resin portion 67
  • the rotational torque of the resin magnet 68 can be reliably transmitted even when a minute gap is formed between the resin magnet 68 and the resin magnet 68, and the quality of the rotor portion 60a can be improved.
  • the shape of the protrusion 68a is not limited to a substantially square shape, and may be a triangle, trapezoid, semicircle, arc, polygon, or the like.
  • the resin magnet 68 is formed in the rotor 60, and a plurality of plastic magnets (material of the resin magnet 68) are supplied to the end face on the magnetic pole position detection element (Hall element 58b (see FIG. 4)) side.
  • a gate 68c is provided (see FIG. 15).
  • the end face on the magnetic pole position detection element side is the end face of the resin magnet 68 that faces the magnetic pole position detection element.
  • the position of the gate 68c is, for example, the center of the pole (see FIG. 15).
  • the hollow portion of the resin magnet 68 has a straight shape from the end surface on the side where the protrusion 68a is formed to the approximate axial center position (axial structure center position), and the protrusion 68a is formed. From the end surface on the opposite side to the end surface on the other side to the approximate axial center position is a tapered shape.
  • the hollow portion of the resin magnet 68 has a tapered shape and prevents a part or all of the molded product from sticking to the mold and being unable to be taken out (taken into the mold). The productivity of the magnet 68 can be improved.
  • the mold for molding the resin magnet 68 is divided into a fixed mold and a movable mold at the end face of the protrusion 68a on the taper shape side, and a part of the hollow portion formed by the movable mold is a straight shape. As a result, it is possible to prevent the resin magnet 68 from being taken into the stationary side mold and to improve the productivity of the resin magnet 68. Remove from the movable mold by pushing it out with ejector pins.
  • the resin magnet 68 has, for example, a through hole 69 extending in the axial direction from the end surface on the magnetic pole position detection element (hall element 58b) side to the end surface on the impeller mounting portion side.
  • a plurality are formed on the same circumference.
  • the through hole 69 has a circular cross-sectional shape, for example.
  • the cross-sectional shape of the through hole 69 is not limited to a circle, and may be a triangle, trapezoid, semicircle, H shape, crescent shape, polygon, or the like (not shown).
  • the through hole 69 is formed between the magnetic poles formed in the rotor 60.
  • the through hole 69 between the magnetic poles, it is possible to suppress a decrease in magnetic force as much as possible and suppress a decrease in performance of the pump 10.
  • the resin magnet 68 has a plurality of radial projections 68e having a substantially elongated hole shape on the end surface on the magnetic pole position detection element (hall element 58b) side (in the example of FIG. 15, for example). 8).
  • the convex portion 68e formed on the magnetic pole position detection element (Hall element 58b) side is formed, for example, at substantially the center of the magnetic pole formed on the rotor 60. That is, the convex portion 68e is disposed corresponding to the position of the gate 68c to which the material of the resin magnet 68 is supplied. A plurality of (e.g., eight in the illustrated example) convex portions 68e are formed on the same circumference. Thus, by providing the convex part 68e at the pole center, the magnetic force is improved and the performance of the pump 10 can be improved.
  • the through hole 69 and the convex portion 68e are embedded with the thermoplastic resin (resin portion 67) when the rotor portion 60a is integrally formed with the thermoplastic resin (resin portion 67), and the resin magnet 68 is held by the resin portion 67. .
  • the resin magnet 68 has a rotor position detecting magnetic pole portion 68f protruding in an annular shape having a predetermined width in the radial direction and a predetermined height in the axial direction on the outer peripheral portion of the end surface on the magnetic pole position detecting element (hall element 58b) side. (See FIGS. 13, 15, 17, and 19). In this way, a part of the resin magnet 68 is projected to the magnetic pole position detection element (Hall element 58b) side as the rotor position detection magnetic pole portion 68f, and the rotor position detection magnetic pole portion 68f of the resin magnet 68 and the substrate 58 are projected.
  • the magnetic pole position detection accuracy can be improved by reducing the axial distance from the Hall element 58b mounted on the.
  • the Hall element 58b which is a magnetic sensor, is used as the magnetic pole position detection element.
  • the Hall element 58b is packaged together with an IC that converts the output signal into a digital signal, and is configured as a Hall IC.
  • a Hall IC mounted on the substrate 58 is used to detect the leakage flux of the resin magnet 68 from the axial end surface of the resin magnet 68 (the surface facing the magnetic pole position detection element). Compared to the case where the main magnetic flux of the resin magnet 68 is detected from the side surface of the resin magnet 68, the processing cost of the substrate 58 can be reduced, and the cost of the pump 10 can be reduced.
  • the position of the gate 68c to which the material of the resin magnet 68 is supplied can be arranged at the pole center.
  • the gate 68c can be provided in the convex part 68e.
  • the resin magnet 68 according to this modified example can improve the orientation accuracy of the resin magnet 68 and improve the quality of the pump 10 by setting the position of the gate 68c as the center of the magnetic pole.
  • the resin magnet 68 is taken as an example of the magnet.
  • the mold for integrally molding the resin magnet 68 and the sleeve bearing 66 is composed of an upper mold and a lower mold (not shown).
  • the sleeve bearing 66 is set in the lower mold. Since the sleeve bearing 66 has a symmetrical cross-sectional shape, it can be set in the mold without matching the circumferential direction.
  • the sleeve bearing 66 includes a plurality of protrusions 66a (see FIG. 12) on the outer peripheral portion, but the position of the protrusion 66a is not particularly limited. Therefore, the work process is simplified, the productivity is improved, and the manufacturing cost can be reduced.
  • the sleeve bearing 66 When the sleeve bearing 66 is set in the lower mold, the sleeve bearing 66 is set in a subsequent process by holding the inner diameter of the sleeve bearing 66 in a sleeve bearing insertion portion (not shown) provided in the lower mold. The accuracy of the coaxiality with the resin magnet 68 is ensured.
  • the resin magnet 68 is provided on the inner peripheral edge of one end surface of the resin magnet 68 (the end surface opposite to the impeller mounting portion 67a in the state of the rotor 60) after the sleeve bearing 66 is set in the lower mold.
  • a tapered notch 68b is set by being fitted to a positioning projection (not shown) provided on the lower mold.
  • the accuracy of the coaxiality with 68 is ensured.
  • the eight cutouts 68b are provided in order to improve workability when the resin magnet 68 is set in the lower mold.
  • a magnet holding portion (not shown) of the upper mold is formed in a substantially square shape formed on the inner peripheral edge of the other end surface of the resin magnet 68 (the end surface on the impeller mounting portion side in the state of the rotor 60).
  • the projection 68a is pressed from the axial direction. Thereby, the positional relationship between the sleeve bearing 66 and the resin magnet 68 is ensured.
  • FIG. 14 there are a total of three substantially square (arc-shaped) protrusions 68 a provided on the inner peripheral surface of the resin magnet 68, and the mold installation surface of the protrusion 68 a (the part pressed by the mold). Appears after integral molding.
  • the three protrusions 68a ensure the positioning accuracy of the resin magnet 68 and at the same time secure the flow path of the thermoplastic resin used for integral molding, thereby relaxing the molding conditions during integral molding and producing This is to improve the performance.
  • the inner diameter pressing portion (positioning protrusion) of the lower mold ensures coaxiality.
  • thermoplastic resin such as PPE (polyphenylene ether) is injection molded to form the rotor portion 60a.
  • PPE polyphenylene ether
  • notches 68b FIG. 15
  • it is embedded in a resin portion 67 of a thermoplastic resin and serves as a transmission portion for rotational torque.
  • the resin magnet 68 is firmly held by embedding the through hole 69 and the convex portion 68e in the resin portion 67 of thermoplastic resin.
  • the resin magnet 68 and the sleeve bearing 66 are integrally formed of a thermoplastic resin (resin portion 67), when the resin magnet 68 is magnetized, the inner peripheral surface of one end surface in the axial direction of the resin magnet 68 By using the notches 67d (four locations in FIG. 11) formed for the positioning at the time of magnetization, it is possible to perform magnetization with high accuracy.
  • FIG. 20 is a diagram illustrating a manufacturing process of the pump 10.
  • Step 1 An annular steel core 54 is manufactured in which electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm are punched into a strip shape and laminated by caulking, welding, adhesion, or the like.
  • the sleeve bearing 66 is manufactured.
  • a resin magnet 68 having a through hole 69 extending in the axial direction from the end surface on the magnetic pole position detection element (hall element 58b) side toward the end surface on the impeller mounting portion side is formed.
  • Step 2 Winding the stator core 54.
  • An insulating portion 56 using a thermoplastic resin such as PBT (polybutylene terephthalate) is applied to the teeth of the annular stator core 54 connected by the thin-walled connecting portion.
  • a concentrated winding coil 57 is wound around the teeth provided with the insulating portion 56.
  • twelve concentrated winding coils 57 are connected to form a three-phase single Y-connection winding. Since it is a three-phase single Y connection, a terminal 59 (power is supplied) of the stator 47 to which a coil 57 of each phase (U phase, V phase, W phase) is connected on the connection side of the insulating portion 56. Power terminal and neutral point terminal) are assembled.
  • the substrate 58 is manufactured.
  • the substrate 58 is sandwiched between the insulating portion 56 by the substrate pressing component 95.
  • an IC for driving an electric motor for example, a brushless DC motor
  • a Hall element 58b for detecting the position of the rotor 60, and the like are mounted on the substrate 58.
  • a lead wire lead-out component 61 that leads the lead wire 52 to a notch portion near the outer peripheral edge portion is attached to the substrate 58.
  • the rotor part 60a is manufactured.
  • the rotor portion 60a includes a ring-shaped (cylindrical or annular) resin magnet 68 formed from pellets obtained by kneading magnetic powder such as ferrite and resin, and a cylindrical sleeve bearing 66 (for example, provided inside the resin magnet 68). And carbon) are integrally formed with a resin such as PPE (polyphenylene ether), for example, and the through hole 69 is embedded with the resin. At the same time, the impeller 60b is formed. The impeller 60b is molded using a thermoplastic resin such as PPE (polyphenylene ether). (3) Step 3: Assemble the substrate 58 to the stator 47.
  • the substrate 58 to which the lead wire lead-out component 61 is attached is fixed to the insulating portion 56 by the substrate holding component 95.
  • the impeller 60b is assembled to the rotor portion 60a by ultrasonic welding or the like.
  • the bowl-shaped partition wall component 90 is formed.
  • the shaft 70 and the thrust bearing 71 are manufactured.
  • the shaft 70 is made of, for example, SUS.
  • the thrust bearing 71 is made of, for example, ceramic.
  • Step 4 The substrate 58 is soldered.
  • the terminals 59 (power supply terminals to which power is supplied and neutral point terminals) and the substrate 58 are soldered.
  • the pilot hole part 81 is formed.
  • the casing 41 is formed.
  • the casing 41 is molded using a thermoplastic resin such as PPS (polyphenylene sulfide).
  • the rotor 60 and the like are assembled to the bowl-shaped partition wall component 90.
  • Step 5 After the stator assembly 49 is manufactured by assembling the pilot hole part 81 to the stator 47, the stator assembly 49 is molded to manufacture the mold stator 50.
  • the pump 41 is assembled by fixing the casing 41 to the bowl-shaped partition wall component 90.
  • a tapping screw 160 is also manufactured.
  • Step 6 The pump 10 is assembled.
  • the pump unit 40 is assembled to the mold stator 50 and fixed with a tapping screw 160 (see FIG. 2).
  • FIG. 21 is a conceptual diagram showing a circuit of a refrigeration cycle apparatus using the refrigerant-water heat exchanger 2.
  • the heat pump hot water supply apparatus 300 described at the beginning is an example of a refrigeration cycle apparatus using the refrigerant-water heat exchanger 2.
  • the refrigeration cycle apparatus using the refrigerant-water heat exchanger 2 is, for example, an air conditioning apparatus, a floor heating apparatus, a hot water supply apparatus, or the like.
  • the pump 10 of the present embodiment constitutes a water circuit of an apparatus using the refrigerant-water heat exchanger 2 and circulates water (hot water) cooled or heated by the refrigerant-water heat exchanger 2 in the water circuit. .
  • the refrigeration cycle apparatus shown in FIG. 21 includes a compressor 1 (eg, a scroll compressor, a rotary compressor, etc.) that compresses refrigerant, a refrigerant-water heat exchanger 2 that exchanges heat between the refrigerant and water, and an evaporator 4.
  • a compressor 1 eg, a scroll compressor, a rotary compressor, etc.
  • refrigerant-water heat exchanger 2 that exchanges heat between the refrigerant and water
  • evaporator 4 e.g., a compressor 1 (eg, a scroll compressor, a rotary compressor, etc.) that compresses refrigerant
  • a refrigerant-water heat exchanger 2 that exchanges heat between the refrigerant and water
  • an evaporator 4 e.g., a refrigerant circuit having a (heat exchanger) and the like.
  • this refrigeration cycle apparatus includes a water circuit having a pump 10, a refrigerant-water heat exchanger 2, a load
  • the resin magnet 68 formed integrally with the sleeve bearing 66 on the rotor portion 60a has a through hole 69 extending in the axial direction from the end surface on the magnetic pole position detection element side toward the impeller mounting portion side on substantially the same circumference.
  • a plurality of through holes 69 are embedded in the thermoplastic resin during integral molding with the thermoplastic resin, and the resin magnet 68 is firmly held by the thermoplastic resin, so that the heat associated with the cold / hot water cycle is obtained. Magnet cracking due to impact can be suppressed.
  • the resin magnet 68 Since the resin magnet 68 is firmly held by the thermoplastic resin without covering the outer peripheral surface of the resin magnet 68 with the thermoplastic resin, the resin magnet 68 and the stator 47 can be brought close to each other. The performance of the pump 10 can be improved. (3) Since the resin magnet 68 is firmly held by the thermoplastic resin without covering the outer peripheral surface of the resin magnet 68 with the thermoplastic resin, the amount of the thermoplastic resin used can be reduced and the cost of the pump 10 can be reduced. Can be realized. (4) Since the resin magnet 68 is firmly held by the thermoplastic resin without covering the outer peripheral surface of the resin magnet 68 with the thermoplastic resin, the unevenness that causes an increase in fluid friction loss is formed on the outer periphery of the rotor 60.
  • the resin magnet 68 includes a gate 68c to which the material of the resin magnet 68 is supplied on the end face on the magnetic pole position detection element (hall element 58b) side, and the position of the gate 68c is the center of the magnetic pole. The orientation accuracy can be improved.
  • a plurality of convex portions 68e are formed on the same circumference at substantially equal intervals in the circumferential direction, and these convex portions 68e. Is arranged at the center of the magnetic pole. Thereby, magnetic force improves and the performance improvement of the pump 10 can be aimed at.
  • the hollow portion of the resin magnet 68 has a straight shape from the end surface where the projection 68a is formed to the central position in the approximate axial direction, and the central position in the approximate axial direction from the end surface opposite to the end surface where the projection 68a is formed. Up to this, the productivity of the resin magnet 68 can be improved due to the tapered shape.
  • FIG. FIG. 22 is a cross-sectional view of rotor portion 60a in the present embodiment, and corresponds to FIG. 9 in the first embodiment.
  • FIG. 23 is a cross-sectional view of resin magnet 68 in the present embodiment, and corresponds to FIG. 13 in the first embodiment. 22 and 23, the same components as those in FIGS. 9 and 13 are denoted by the same reference numerals.
  • the through hole 69 in the first embodiment is replaced with a through hole 69a having a shape as shown in the illustrated example, and other configurations are the same as those in the first embodiment.
  • the through hole 69a has an inner diameter of the through hole 69a with a predetermined depth (gradient switching position) from the end face on the magnetic pole position detection element (Hall element 58b) side as a reference.
  • Gradients (D1, D2) that expand toward the position detection element side and the impeller mounting portion side are provided. That is, the cross-sectional shape of the through hole 69a is such that the outer shape on both the inner and outer sides is such that the inner diameter of the through hole 69a increases toward the magnetic pole position detecting element side from the gradient switching position to the end surface on the magnetic pole position detecting element side.
  • the through hole 69a has outer shapes on both the inner and outer sides so that the inner diameter of the through hole 69a increases toward the impeller mounting portion side. Has a gradient D2 with respect to the axial direction.
  • the gradient angle of the through hole 69a is set so that the magnet volume on the magnetic pole position detection element side is larger than the magnet volume on the impeller mounting portion side with reference to the axial center position of the resin magnet 68 (axial structure center position). By determining the length, it is possible to move the axial magnetic flux center of the resin magnet 68 by a predetermined distance toward the magnetic pole position detection element.
  • the inner diameter of the through hole 69a is changed with reference to a position at a predetermined depth from the end face of the resin magnet 68 on the magnetic pole position detection element side, whereby the axis of the resin magnet 68 is changed.
  • a structure may be adopted in which the magnetic flux center position in the direction is moved a predetermined distance toward the magnetic pole position detection element side (not shown).
  • the through hole 69a provided in the resin magnet 68 has an inner diameter of the through hole 69a based on a position (gradient switching position) at a predetermined depth from the end face on the magnetic pole position detection element (hall element 58b) side. Since it has the gradient which expands toward the position detection element side and the impeller mounting portion side, it can be prevented from being taken out by the mold, and the productivity of the resin magnet 68 can be improved.
  • the magnet volume on the magnetic pole position detection element side is larger than the magnet volume on the impeller mounting portion side,
  • the rotor 60 By moving the magnetic flux center in the axial direction of the resin magnet 68 by a predetermined distance toward the magnetic pole position detection element, the rotor 60 generates a propulsive force from the magnetic pole position detection element side to the impeller mounting portion side, thereby causing the rotor 60 to move.
  • the present invention is useful as a pump, a pump manufacturing method, and a refrigeration cycle apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 磁極位置検出素子が実装された基板を有するモールド固定子と、軸方向の一端が前記磁極位置検出素子に対向し前記軸方向の他端に羽根車取付部が設けられた回転子部を有する回転子とを備えたポンプにおいて、前記回転子部は、マグネットと、スリーブ軸受と、前記マグネット及び前記スリーブ軸受の一体成形に用いられる熱可塑性樹脂から形成されると共に前記羽根車取付部を構成する樹脂部とを備え、前記マグネットは、前記軸方向に伸びる複数個の貫通穴を備え、前記各貫通穴は前記樹脂部の一部を構成する前記熱可塑性樹脂により埋設されている。

Description

ポンプ及びポンプの製造方法並びに冷凍サイクル装置
 この発明は、ポンプ及びポンプの製造方法並びに冷凍サイクル装置に関する。
 羽根車と一体に設けられ回転子マグネットを有した回転子と、該回転子の外周側に設けられステータコイルを有したステータとを備えたマグネットモータポンプ用直流ブラシレスモータにおいて、前記回転子マグネットの磁極を検出するためのホール素子を前記ステータ内部に配設したことを特徴とするマグネットモータポンプ用直流ブラシレスモータが提案されている(例えば、特許文献1参照)。
実開平5-23784号公報
 しかしながら、上記特許文献1に記載されたマグネットモータポンプ用直流ブラシレスモータを適用したポンプは、回転子マグネットの外周表面が熱可塑性樹脂で覆われているので、ステータと回転子マグネット間の距離が大きくなり、ポンプの性能が低下するおそれがあった。
 この発明は、上記に鑑みてなされたものであって、マグネットの外周表面を樹脂で被覆することなく、冷熱水サイクルに伴う熱衝撃によるマグネットの割れを抑制することが可能なポンプ及びその製造方法並びにこのポンプを備えた冷凍サイクル装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るポンプは、磁極位置検出素子が実装された基板を有する環状のモールド固定子と、椀状隔壁部品内に回転自在に収納され、軸方向の一端が前記磁極位置検出素子に対向し、前記軸方向の他端に羽根車が取付けられる羽根車取付部が設けられた環状の回転子部を有する回転子と、を備え、前記回転子部は、環状のマグネットと、このマグネットの内側に配置されるスリーブ軸受と、前記マグネット及び前記スリーブ軸受の一体成形に用いられる熱可塑性樹脂から形成されると共に前記羽根車取付部を構成する樹脂部と、を備え、前記マグネットは、前記磁極位置検出素子側の端面と前記羽根車取付部側の端面との間を前記軸方向に伸びる複数個の貫通穴を備え、前記各貫通穴は、前記樹脂部の一部を構成する前記熱可塑性樹脂により埋設されていることを特徴とする。
 本発明によれば、回転子部を構成するマグネットに軸方向に伸びる複数個の貫通穴を設け、各貫通穴を一体成形時に熱可塑性樹脂で埋設するようにしたので、マグネットが熱可塑性樹脂で強固に保持されることで、マグネットの外周表面を樹脂で被覆することなく、冷熱水サイクルに伴う熱衝撃によるマグネットの割れを抑制することができる、という効果を奏する。
図1は、実施の形態1に係るヒートポンプ式給湯装置の構成図である。 図2は、実施の形態1に係るポンプ10の分解斜視図である。 図3は、モールド固定子50の斜視図である。 図4は、モールド固定子50の断面図である。 図5は、固定子組立49の分解斜視図である。 図6は、ポンプ部40の分解斜視図である。 図7は、ポンプ10の断面図である。 図8は、ケーシング41を軸支持部46側から見た斜視図である。 図9は、回転子部60aの断面図(具体的には図11のA-A矢視断面図)である。 図10は、回転子部60aを羽根車取付部側から見た図である。 図11は、回転子部60aを羽根車取付部側と反対側から見た図である。 図12は、スリーブ軸受66の拡大断面図である。 図13は、樹脂マグネット68の断面図(具体的には図14のB-B矢視断面図)である。 図14は、樹脂マグネット68を突起68a側(羽根車取付部側)から見た図である。 図15は、樹脂マグネット68を突起68a側と反対側から見た図である。 図16は、樹脂マグネット68を突起68a側から見た斜視図である。 図17は、樹脂マグネット68を突起68aの反対側から見た斜視図である。 図18は、回転子部60aを羽根車取付部側から見た斜視図である。 図19は、回転子部60aを羽根車取付部側と反対側から見た斜視図である。 図20は、ポンプ10の製造工程を示す図である。 図21は、冷媒-水熱交換器2を用いた冷凍サイクル装置の回路を示す概念図である。 図22は、実施の形態2における回転子部60aの断面図である。 図23は、実施の形態2における樹脂マグネット68の断面図である。
 以下に、本発明の実施の形態に係るポンプ及びポンプの製造方法並びに冷凍サイクル装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 以下では、まず、本実施の形態に係るポンプの適用の一例としてのヒートポンプ式給湯装置の概要について説明し、次に、当該ポンプの詳細について説明する。
 図1は、本実施の形態に係るヒートポンプ式給湯装置の構成図である。図1に示すように、ヒートポンプ式給湯装置300は、ヒートポンプユニット100と、タンクユニット200と、ユーザが運転操作などを行う操作部11とを備える。
 図1において、ヒートポンプユニット100は、冷媒を圧縮する圧縮機1(例えば、ロータリ圧縮機、スクロール圧縮機等)と、冷媒と水とが熱交換を行う冷媒-水熱交換器2と、高圧の冷媒を減圧膨張させる減圧装置3と、低圧の二相冷媒を蒸発させる蒸発器4と、圧縮機1、冷媒-水熱交換器2、減圧装置3、及び蒸発器4を環状に接続する冷媒配管15と、圧縮機1の吐出圧力を検出する圧力検出装置5と、蒸発器4に送風するファン7と、ファン7を駆動するファンモータ6とを備えている。圧縮機1、冷媒-水熱交換器2、減圧装置3、蒸発器4、及びこれらを環状に接続する冷媒配管15によって冷媒回路が構成される。
 また、ヒートポンプユニット100は、温度検出部として、冷媒-水熱交換器2の沸上げ温度検出部8と、冷媒-水熱交換器2の給水温度検出部9と、外気温度検出部17とを備えている。
 また、ヒートポンプユニット100は、ヒートポンプユニット制御部13を備える。ヒートポンプユニット制御部13は、圧力検出装置5、沸上げ温度検出部8、給水温度検出部9、及び外気温度検出部17からの信号を受信し、圧縮機1の回転数制御、減圧装置3の開度制御、及びファンモータ6の回転数制御を行う。
 タンクユニット200は、冷媒-水熱交換器2で高温・高圧の冷媒と熱交換することにより加熱された湯水を貯湯する温水タンク14と、風呂水の追い焚きを行う風呂水追い焚き熱交換器31と、風呂水追い焚き熱交換器31に接続された風呂水循環装置32と、冷媒-水熱交換器2と温水タンク14との間に配置された温水循環装置であるポンプ10と、冷媒-水熱交換器2と温水タンク14との間を接続する温水循環配管16と、冷媒-水熱交換器2と温水タンク14と風呂水追い焚き熱交換器31とに接続された混合弁33と、温水タンク14と混合弁33とを接続する風呂水追い焚き配管37とを備える。冷媒-水熱交換器2、温水タンク14、ポンプ10、及び温水循環配管16は水回路を構成する。
 また、タンクユニット200は、温度検出部として、タンク内水温検出部34と、風呂水追い焚き熱交換器31を通過した後の水温を検出する追い焚き後水温検出部35と、混合弁33を通過した後の水温を検出する混合後水温検出部36とを備えている。
 また、タンクユニット200は、タンクユニット制御部12を備える。タンクユニット制御部12は、タンク内水温検出部34、追い焚き後水温検出部35、及び混合後水温検出部36からの信号を受信し、ポンプ10の回転数制御、及び混合弁33の開閉制御を行う。更に、タンクユニット200は、ヒートポンプユニット制御部13との間、及び操作部11との間で信号の送受信を行う。
 操作部11は、ユーザが湯水の温度設定や出湯指示などを行うためのスイッチなどを備えたリモコンや操作パネルなどである。
 図1において、上記のように構成したヒートポンプ式給湯装置300における通常の沸上げ運転動作について説明する。操作部11又はタンクユニット200からの沸上げ運転指示がヒートポンプユニット制御部13に伝えられると、ヒートポンプユニット100は沸上げ運転を行う。
 ヒートポンプユニット制御部13は、圧力検出装置5、沸上げ温度検出部8、給水温度検出部9の検出値などに基づいて、圧縮機1の回転数制御、減圧装置3の開度制御、及びファンモータ6の回転数制御を行う。
 また、ヒートポンプユニット制御部13とタンクユニット制御部12との間で沸上げ温度検出部8の検出値の送受信が行われ、タンクユニット制御部12は、沸上げ温度検出部8で検出した温度が目標沸上げ温度になるよう、ポンプ10の回転数を制御する。
 以上のように制御されるヒートポンプ式給湯装置300において、圧縮機1から吐出された高温高圧の冷媒は冷媒-水熱交換器2で給水回路側へ放熱しながら温度低下する。放熱して冷媒-水熱交換器2を通過した高圧低温の冷媒は、減圧装置3で減圧される。減圧装置3を通過した冷媒は蒸発器4に流入し、そこで外気空気から吸熱する。蒸発器4を出た低圧冷媒は圧縮機1に吸入されて循環し冷凍サイクルを形成する。
 一方、温水タンク14の下部の水は、温水循環装置であるポンプ10の駆動により冷媒-水熱交換器2へ導かれる。ここで、冷媒-水熱交換器2からの放熱によって水が加熱され、加熱された湯水は温水循環配管16を通って温水タンク14の上部に戻されて蓄熱される。
 以上のように、ヒートポンプ式給湯装置300において、温水タンク14と冷媒-水熱交換器2との間の温水循環配管16に、湯水を循環させる温水循環装置としてポンプ10が用いられる。
 次に、本実施の形態に係るポンプ10について説明する。図2は、本実施の形態に係るポンプ10の分解斜視図である。
 図2に示すように、ポンプ10は、回転子(後述する)の回転により水を吸水して吐出するポンプ部40と、回転子を駆動するモールド固定子50と、ポンプ部40とモールド固定子50とを締結する締結ネジであるタッピングネジ160とを備える。なお、図示例では、タッピングネジ160の本数を例えば5本としているが、これに限定されるものではない。
 ポンプ10は、5本のタッピングネジ160をポンプ部40のボス部44に形成されたネジ穴44aを介してモールド固定子50に埋め込まれた下穴部品81(詳細は後述の図5参照)の下穴84に締結することで組み立てられる。
 なお、図2では、上記で説明した構成の他、ケーシング41、吸入口42、吐出口43、椀状隔壁部品90、リード線52、モールド樹脂53、固定子鉄心54、及びポンプ部設置面63が記載されているが、これらについては以下で説明する。
 先ず、モールド固定子50の構成について図3乃至図5を参照して説明する。図3はモールド固定子50の斜視図、図4はモールド固定子50の断面図、図5は固定子組立49の分解斜視図である。
 モールド固定子50は、固定子組立49をモールド樹脂53によりモールド成形することにより得られる(図3、図4)。
 モールド固定子50の軸方向の一方の端面、詳細にはポンプ部40側の端面(図2も参照)には、外周縁部に沿って平坦なポンプ部設置面63が設けられている。
 ポンプ部設置面63には、五箇所に下穴部品81の足部85(図5参照)が軸方向に埋め込まれている。足部85は例えば略円柱状の樹脂成形部品である。モールド樹脂53によるモールド成形時に、足部85の一方の端面(ポンプ部40側の端面)は、成形金型の金型押え部82(図4参照)になる。そのため、下穴部品81が、ポンプ部設置面63より所定の距離だけ内側に埋め込まれる形で表出している。表出しているのは、金型押え部82及びタッピングネジ160用の下穴84である。
 固定子組立49から引き出されるリード線52は、モールド固定子50のポンプ部40側と反対側の軸方向端面付近から外部に引き出されている。
 モールド固定子50のモールド樹脂53(例えば熱硬化性樹脂)によるモールド成形時の軸方向の位置決めは、基板押え部品95(図5参照)に形成されている複数個の突起95aの軸方向の端面が上型の金型押え部となることでなされる。そのため、モールド固定子50の基板58側の軸方向端面からは、複数個の突起95aの軸方向端面(金型押え面)が表出している(図示せず)。
 また、反結線側(ポンプ部40側)の絶縁部56の軸方向端面が、下型の金型押え部になる。そのため、モールド固定子50の基板58側と反対側の軸方向端面からは、反結線側の絶縁部56の端面が表出している(図示せず)。
 モールド固定子50のモールド成形時の径方向の位置決めは、固定子鉄心54の内周面が金型に嵌合することでなされる。そのため、図3に示すモールド固定子50の内周部に、固定子鉄心54のティースの先端部(内周部)が表出している。
 次に、モールド固定子50の内部の構成、即ち、固定子組立49の構成等について説明する。
 図5に示すように、固定子組立49は、固定子47と、下穴部品81とを備える。また、図4及び図5に示すように、固定子47は、リード線52、溝54aが設けられた固定子鉄心54、絶縁部56、コイル57、IC58a、ホール素子58b、基板58、端子59、リード線口出し部品61、及び基板押え部品95を備える。下穴部品81は、足部85、足部85に設けられた突起83,85a、及び連結部87を備える。
 固定子組立49は、以下に示す手順で製作される。
(1)厚さが例えば0.1~0.7mm程度の電磁鋼板が帯状に打ち抜かれ、この電磁鋼板が、かしめ、溶接、接着等で積層された環状の固定子鉄心54を製作する。固定子鉄心54は、複数個のティースを備える。図3に示すモールド固定子50の内周部に、固定子鉄心54のティースの先端部が表出している。ここで示す固定子鉄心54は、薄肉連結部で連結されている例えば12個のティースを有するので、図3においても、12箇所に固定子鉄心54のティースの先端部が表出している。但し、図3で見えているティースは12個のティースのうちの5個のティースである。
(2)固定子鉄心54のティースには、絶縁部56が施される。絶縁部56は、例えば、PBT(ポリブチレンテレフタレート)等の熱可塑性樹脂を用いて、固定子鉄心54と一体に又は別体で成形される。
(3)絶縁部56が施されたティースに、集中巻のコイル57(図4参照)が巻回される。12個の集中巻のコイル57を接続して、三相のシングルY結線の巻線が形成される。
(4)三相のシングルY結線であるので、絶縁部56の結線側には、各相(U相、V相、W相)のコイル57(図4参照)が接続される端子59(図4参照、電源が供給される電源端子及び中性点端子)が組付けられる。電源端子は3個、中性点端子は1個である。
(5)基板58が結線側(端子59が組付けられる側)の絶縁部56に取り付けられる。基板58は、基板押え部品95と絶縁部56との間に挟持される。基板58には、電子部品が実装され、具体的には、電動機(例えばブラシレスDCモータ)を駆動するIC58a(駆動素子)、回転子60の位置を検出するホール素子58b(図4参照、磁極位置検出素子)等が実装されている。IC58aは基板58の基板押え部品95側に実装されるので、図5では見えているが、ホール素子58bは、IC58aとは反対側に実装されるので、図5では見えていない。また、基板58には、その外周縁部付近の切欠き部にリード線52を口出しするリード線口出し部品61が取り付けられる。
(6)リード線口出し部品61が取り付けられた基板58は、基板押え部品95により絶縁部56に固定され、端子59と基板58とが半田付けされた固定子47に下穴部品81を組付けることで固定子組立49が完成する(図5参照)。
 次に、図5を参照して下穴部品81の構成を説明する。下穴部品81は、例えばPBT(ポリブチレンテレフタレート)等の熱可塑性樹脂を成形して形成される。
 図5に示すように、下穴部品81は、略円柱状の複数(例えば5個)の足部85が薄肉の連結部87で環状に連結されて構成される。足部85には、タッピングネジ160が螺合される下穴84が設けられている(図2参照)。足部85は、その表出端面(金型押え部82、及び、突起83端面)から軸方向の中央部に向かって太くなるテーパ状である。このようにテーパ状にすることで、下穴部品81を固定子47とともにモールド成形した後、下穴部品81の抜け防止の効果がある。
 また、下穴部品81は、回転防止のための複数の突起85aを足部85の外周部に備えている。図示例では、足部85の外周部に4個の突起85aが設けられている。突起85aは、所定の周方向の幅で足部85の高さ方向(軸方向)に延伸するように形成される。また、突起85aは、下穴部品81の回転を防止するために必要な所定の寸法分、足部85の外周面から突出している。下穴部品81は略円柱状の足部85を薄肉の連結部87で連結することで、モールド金型へ一度でセット可能となり、加工コストの低減が可能となる。
 また、下穴部品81の連結部87に、下穴部品81を固定子47に組み付けるための複数の爪(図示せず)を設け、固定子47の固定子鉄心54の外周部に形成された溝54aに、下穴部品81の爪を係り止めすることにより、固定子47と下穴部品81とをモールド金型へ一度でセット可能となり、加工コストの低減が可能となる。
 固定子47に下穴部品81を係り止めした後、固定子組立49をモールド樹脂53によるモールド成形する際に、下穴部品81の金型押え部82と突起83とを、モールド成形金型により狭持することで、下穴部品81の軸方向の位置決めを行う。
 なお、金型押え部82の外径を、下穴部品81の開口側の端面の外径よりも小さくすることができる(図4参照)。これにより、下穴部品81の当該端面は、金型押え部82を除く部分が、モールド樹脂53で覆われる。従って、下穴部品81の両端面がモールド樹脂53で覆われるので、下穴部品81の表出を抑制し、ポンプ10の品質向上を図ることが可能となる。
 モールド固定子50は、固定子47に組み付けられた下穴部品81がモールド樹脂53で一体に成形されて得られる。この際、下穴84は表出するように成形される。ポンプ部40に形成されたネジ穴44aを介して、ポンプ部40とモールド固定子50とをタッピングネジ160で下穴84に締結して組み付けることにより、ポンプ部40とモールド固定子50とを強固に組み付けることが可能となる(図2参照)。
 次に、ポンプ部40の構成を、図6~図8等を参照して説明する。図6はポンプ部40の分解斜視図、図7はポンプ10の断面図、図8はケーシング41を軸支持部46側から見た斜視図である。ポンプ部40は、以下に示す要素で構成される。
(1)流体の吸入口42と吐出口43とを有し、内部に回転子60の羽根車60bを収納するケーシング41:ケーシング41は、例えばPPS(ポリフェニレンサルファイド)などの熱可塑性樹脂を用いて成形される。ケーシング41には、ポンプ部40とモールド固定子50とを組み付ける際に用いられるネジ穴44aを有するボス部44が5箇所に設けられる。
(2)スラスト軸受71:スラスト軸受71の材質は例えばアルミナ等のセラミックである。回転子60は、ポンプ10の運転中、回転子60の羽根車60bの表裏に作用する圧力差によりスラスト軸受71を介してケーシング41に押し付けられるため、スラスト軸受71にはセラミックにより製作されたものを使用し、耐摩耗性、摺動性を確保している。
(3)回転子60:回転子60は、回転子部60aと、羽根車60bとを備える。回転子部60aは、例えば、フェライト等の磁性粉末と樹脂を混練したペレットを成形したリング状(円筒状又は円環状)の樹脂マグネット68(マグネットの一例)と、樹脂マグネット68の内側に設けられる円筒形のスリーブ軸受66(例えば、カーボン製)とが、例えばPPE(ポリフェニレンエーテル)等の樹脂部67で一体化される(後述する図9参照)。羽根車60bは、例えばPPE(ポリフェニレンエーテル)等の樹脂成形品である。回転子部60aと、羽根車60bとが例えば超音波溶着等により接合される。
(4)軸70:軸70(回転軸)の材質は、例えばアルミナ等のセラミック、又はSUSなどである。軸70は、回転子60に備えるスリーブ軸受66と摺動するため、セラミックやSUSなどの材質が選ばれ、耐磨耗性、摺動性を確保している。椀状隔壁部品90の軸支持部94に軸70の一端が挿入され、軸70の他端がケーシング41の軸支持部46に挿入される。軸支持部94に挿入される軸70の一端は、軸支持部94に対して回転しないように挿入される。そのため、軸70の一端は所定の長さ(軸方向)円形の一部を切り欠いた概略D字形状で、軸支持部94の孔もこの軸70の一端の形状に合わせた形状になっている。また、軸支持部46に挿入される軸70の他端も、所定の長さ(軸方向)円形の一部を切り欠いた概略D字形状であり、軸70は長さ方向に対称形である。但し、軸70の他端は、軸支持部46に対して回転可能に挿入される。軸70が長さ方向に対称形なのは、軸70を軸支持部94に挿入する際に、上下の向きを意識することなく組立を可能とするためである(図6参照)。
(5)Oリング80:Oリング80の材質は、例えばEPDM(エチレン‐プロピレン‐ジエンゴム)などである。Oリング80は、ポンプ部40のケーシング41と椀状隔壁部品90とのシールを行う。給湯機などに搭載されるポンプでは、水周りのシールに耐熱性、長寿命が求められるため、EPDMなどの材料を使用し、耐性を確保している。
(6)椀状隔壁部品90:椀状隔壁部品90は、例えばPPE(ポリフェニレンエーテル)などの熱可塑性樹脂を用いて成形される。椀状隔壁部品90は、モールド固定子50との嵌合部である椀状隔壁部90aと、鍔部90bとを備える。椀状隔壁部90aは、円形の底部と円筒形の隔壁とで構成される。椀状隔壁部90aの底部の内面の略中央部に、軸70の一端が挿入される軸支持部94が立設している。椀状隔壁部90aの底部の外面には、径方向に放射状に複数個のリブ92が形成されている。鍔部90bには、鍔部90bを補強する補強リブ(図示せず)が径方向に放射状に複数個形成されている。また、鍔部90bには、ポンプ部40のポンプ部設置面63に納まる環状リブ(図示せず)を備える。また、鍔部90bには、タッピングネジ160が通る孔90dが5箇所に形成されている。更に、鍔部90bのケーシング41側の面に、Oリング80を収納する環状のOリング収納溝90cが形成されている。
 ポンプ10は、椀状隔壁部品90にOリング80を設置し、軸70、回転子60、及びスラスト軸受71を椀状隔壁部品90内に設置した後、ケーシング41を椀状隔壁部品90に組付けてポンプ部40を組立て、更にモールド固定子50にポンプ部40を組付けてタッピングネジ160等により固定して組立てられる。
 また、椀状隔壁部品90の底部に設けられたリブ92とモールド固定子50の溝(図示せず)とが嵌合することで、ポンプ部40とモールド固定子50の周方向の位置決めがなされる。
 椀状隔壁部90aの内側には、回転子60が収納される。回転子60は、椀状隔壁部品90の軸支持部94に挿入される軸70に嵌められている。従って、モールド固定子50と回転子60との同軸を確保するために、モールド固定子50の内周と椀状隔壁部90aの外周との隙間はできるだけ小さい方がよい。例えば、その隙間は、0.02~0.06mm程度に選ばれる。
 ただし、モールド固定子50の内周と椀状隔壁部90aの外周との隙間をあまりに小さくし過ぎると、モールド固定子50の内周に椀状隔壁部90aを挿入する場合に、空気の逃げ道が狭くなり椀状隔壁部品90の挿入が困難になる。
 図9は回転子部60aの断面図(具体的には図11のA-A矢視断面図)、図10は回転子部60aを羽根車取付部側から見た図、図11は回転子部60aを羽根車取付部側と反対側から見た図、図12はスリーブ軸受66の拡大断面図である。
 図9乃至図12を参照しながら回転子部60aについて説明する。図9乃至図12に示すように、回転子部60aは、少なくとも以下の要素を備える。
(1)樹脂マグネット68;
(2)スリーブ軸受66;
(3)樹脂部67;
 樹脂部67は、例えばPPE(ポリフェニレンエーテル)等の熱可塑性樹脂で構成される部分である。羽根車60bを取付ける羽根車取付部67aは、この樹脂部67に形成される。樹脂マグネット68及びスリーブ軸受66は、樹脂部67により一体成形される。
 樹脂マグネット68は、略リング状(円筒状又は環状)で、例えばフェライト等の磁性粉末と樹脂を混練したペレットで成形したものである。
 スリーブ軸受66(例えば、カーボン製)は、樹脂マグネット68の内側に設けられる。スリーブ軸受66は、形状が円筒状である。スリーブ軸受66は、ポンプ10の椀状隔壁部品90に組み付けられた軸70に嵌合して回転するため、軸受の材料に好適な例えば焼結カーボン若しくはカーボン繊維を添加したPPS(ポリフェニレンサルファイド)等の熱可塑性樹脂、又はセラミック等で製作される。スリーブ軸受66は、概略軸方向中心から両端に向かって外径が小さくなる抜きテーパ(図示せず)を備え、概略軸方向中心における外周面に回り止めとなる例えば半球状の突起66a(図12参照)を複数備える。
 樹脂部67のうち羽根車取付部側の樹脂マグネット68の端面に接して形成される部分には、樹脂成形用金型の上型に設けられるマグネット押さえ部(図示せず)の箇所に対応して凹部67bが形成される。凹部67bは、図9の例では、径方向の略中央部に形成される。凹部67bは、軸方向において樹脂マグネット68の突起68aと略対向する位置に形成される。
 また、羽根車取付部67aには、図10に示すように、羽根車60bを取り付けるための複数個の羽根車位置決め穴67cが形成されている。羽根車位置決め穴67cは周方向に略等間隔に例えば3個形成されている。羽根車位置決め穴67cは、羽根車取付部67aを貫通している。各羽根車位置決め穴67cは、それぞれ、樹脂マグネット68の3個の突起68a(図10参照)のうちの2個の中間の径方向延長線上に形成されている。
 更に、羽根車取付部67aには、図10に示すように、回転子部60aの熱可塑性樹脂(樹脂部67)による成形時に用いられるゲート67e(樹脂注入口)が、周方向に略等間隔に、例えば3個形成されている。各ゲート67eは、それぞれ、樹脂マグネット68の突起68aの径方向の延長線上で、かつ、羽根車位置決め穴67cよりも内側に形成されている。
 樹脂部67のうち羽根車取付部側と反対側の樹脂マグネット68の内周面に接して形成される部分には、樹脂成形用金型の下型に設けられる位置決め用突起(図示せず)に嵌め合わされる切欠き67dが形成される(図9、図11参照)。切欠き67dは、図11の例では、略90°間隔で4箇所に形成される。また、樹脂マグネット68の一部である複数個(図示例では8個)の凸部68eが樹脂部67から表出している(図11参照)。
 また、樹脂マグネット68には、軸方向に延伸する複数個の貫通穴69が設けられており、貫通穴69内はそれぞれ熱可塑性樹脂で埋設されている。すなわち、貫通穴69内の熱可塑性樹脂は樹脂部67の一部を構成している。
 図13は樹脂マグネット68の断面図(具体的には図14のB-B矢視断面図)、図14は樹脂マグネット68を突起68a側(羽根車取付部側)から見た図、図15は樹脂マグネット68を突起68a側と反対側から見た図、図16は樹脂マグネット68を突起68a側から見た斜視図、図17は樹脂マグネット68を突起68aの反対側から見た斜視図である。また、図18は回転子部60aを羽根車取付部側から見た斜視図、図19は回転子部60aを羽根車取付部側と反対側から見た斜視図である。
 図13乃至図19を参照しながら樹脂マグネット68の構成を説明する。ここで示す樹脂マグネット68は、磁極数が例えば8極のものである。樹脂マグネット68は、回転子60に成形された状態で、羽根車取付部側と反対側の端面の内周側に、テーパ状の切欠き68bを周方向に略等間隔に複数個備える。すなわち、切欠き68bは当該端面の内周面に形成され、当該端面から所定の長さ軸方向に延伸している。図15の例では、切欠き68bは8個である。切欠き68bは、軸方向中心側よりも端面側の径が大きくなるテーパ形状である。なお、樹脂部67の切欠き67d(図11参照)は、略90°間隔で配置された4個の切欠き68bと同じ位置に形成される。
 樹脂マグネット68は、切欠き68bが形成された側と反対側の端面(羽根車取付部側の端面)から所定の深さの内周側に、例えば略角形状でかつ羽根車取付部側に向かって軸方向に所定の長さ延在する突起68aを周方向に略等間隔に複数個備える。図14の例では、突起68aの個数は3個である。
 図14に示すように、突起68aは、側面から見て略角形状で、端面側に突出する凸部68a-1を備える。回転子部60aを一体成形する際、突起68aの端部に設けられた凸部68a-1が回転子部60aを形成する熱可塑性樹脂(樹脂部67)で保持されることで、樹脂部67と樹脂マグネット68との間に樹脂のヒケによる微小な隙間ができた際にも樹脂マグネット68の回転トルクを確実に伝達することができ、回転子部60aの品質向上が図れる。突起68aの形状は、略角形状に限定されるものではなく、三角、台形、半円、円弧、多角形等の形状でもよい。
 樹脂マグネット68は、回転子60に成形された状態で、磁極位置検出素子(ホール素子58b(図4参照))側の端面に、プラスチックマグネット(樹脂マグネット68の素材)が供給される複数個のゲート68cを備えている(図15参照)。なお、磁極位置検出素子側の端面は、樹脂マグネット68の端面のうち、磁極位置検出素子と対向する端面である。ゲート68cの位置は例えば極中心である(図15参照)。磁極中心にゲート68cを備えることで、樹脂マグネット68の配向精度の向上を可能とすることができる。
 図13に示すように、樹脂マグネット68の中空部は、突起68aが形成される側の端面から概略軸方向中心位置(軸方向の構造中心位置)までストレート形状で、且つ、突起68aが形成される側の端面の反対側端面から概略軸方向中心位置までは抜きテーパ形状である。これにより、金型から成形品を取り出すことが容易となるため、樹脂マグネット68の生産性が向上し、製造コストの低減が可能となっている。即ち、樹脂マグネット68の中空部が抜きテーパ形状となっていることで、成形品の一部あるいは全部が金型へ張り付き取り出せなくなる状態となること(金型への取られ)を防止し、樹脂マグネット68の生産性向上が可能となる。樹脂マグネット68を成形する金型は、突起68aの抜きテーパ形状側の端面において固定側金型と可動側金型に分けられ、可動側金型で形成される中空部の一部がストレート形状となっていることで、より固定側金型への取られを防止し、樹脂マグネット68の生産性向上が可能となる。可動側金型からはエジェクタピンで押し出して取り出す。
 図13~図15に示すように、樹脂マグネット68には、磁極位置検出素子(ホール素子58b)側の端面から羽根車取付部側の端面までの間を軸方向に伸びる貫通穴69が例えば略同一円周上に複数個(図15の例では、8個)形成されている。貫通穴69は、断面形状が例えば円形である。なお、貫通穴69の断面形状は円形に限定されるものではなく、三角、台形、半円、H型、三日月型、多角形等の形状でもよい(図示せず)。
 また、図14及び図15に示すように、貫通穴69は、回転子60に形成される磁極間に形成されている。このように、貫通穴69を磁極間に形成することで、磁力の低下を極力抑制し、ポンプ10の性能低下を抑制することができる。
 図15に示すように、樹脂マグネット68には、磁極位置検出素子(ホール素子58b)側の端面に、断面形状が例えば略長穴形状の凸部68eが放射状に複数個(図15の例では、8個)形成されている。
 図15に示すように、磁極位置検出素子(ホール素子58b)側に形成される凸部68eは、例えば、回転子60に形成される磁極の略中心に形成されている。即ち、凸部68eは、樹脂マグネット68の素材が供給されるゲート68cの位置に対応して配置されている。また、複数個(図示例では、例えば8個)の凸部68eは同一の円周上に形成されている。このように、極中心に凸部68eを設けることで、磁力が向上し、ポンプ10の性能向上を図ることができる。
 貫通穴69と凸部68eは、回転子部60aの熱可塑性樹脂(樹脂部67)による一体成形時に、熱可塑性樹脂(樹脂部67)で埋設され、樹脂マグネット68は樹脂部67で保持される。
 樹脂マグネット68は、磁極位置検出素子(ホール素子58b)側の端面の外周部に、径方向に所定の幅の環状でかつ軸方向に所定の高さで突き出した回転子位置検出用磁極部68fを備える(図13、図15、図17、図19参照)。このように、樹脂マグネット68の一部を回転子位置検出用磁極部68fとして磁極位置検出素子(ホール素子58b)側に突出させ、樹脂マグネット68の回転子位置検出用磁極部68fと、基板58に実装されたホール素子58bとの軸方向距離を縮めることで、磁極位置検出精度の向上を図ることができる。
 磁極位置検出素子として、磁気センサであるホール素子58bが用いられているが、このホール素子58bはその出力信号をデジタル信号に変換するICとともにパッケージ化されてホールICとして構成され、このホールICが基板58に面実装されている。基板58に面実装されたホールICを用い、樹脂マグネット68の軸方向端面(磁極位置検出素子対向面)より樹脂マグネット68の漏れ磁束を検出することで、ホール素子58bを基板58にホール素子ホルダで固定し、樹脂マグネット68の側面より樹脂マグネット68の主磁束を検出する場合に比べて、基板58の加工費などを低減することができ、ポンプ10の低コスト化が可能となる。
 なお、図示はしないが、樹脂マグネット68の別の変形例として、樹脂マグネット68の素材が供給されるゲート68cの位置を極中心に配置することも可能である。この場合凸部68eにゲート68cを設けることができる。この変形例に係る樹脂マグネット68は、ゲート68cの位置を磁極中心とすることで、樹脂マグネット68の配向精度を向上することができ、ポンプ10の品質向上を図ることができる。
 次に、ポンプ用電動機の回転子60の熱可塑性樹脂による一体成形について説明する。なお、マグネットとして樹脂マグネット68を例とする。
 樹脂マグネット68とスリーブ軸受66とを一体に成形する金型は、上型と下型で構成される(図示せず)。先ず、スリーブ軸受66が下型にセットされる。スリーブ軸受66は、横断面形状が対称であるため、周方向の向きを合わせることなく金型にセットすることができる。スリーブ軸受66は、外周部に突起66a(図12参照)を複数備えるが、突起66aの位置は特に限定するものではない。そのため、作業工程が簡素化されて生産性が向上し、製造コストの低減が可能となる。
 スリーブ軸受66は、下型にセットされた時、下型に備えるスリーブ軸受挿入部(図示せず)に、スリーブ軸受66の内径が保持されることにより、スリーブ軸受66と後工程でセットされる樹脂マグネット68との同軸度の精度が確保される。
 樹脂マグネット68は、スリーブ軸受66が下型にセットされた後に、樹脂マグネット68の一方の端面(回転子60の状態で、羽根車取付部67aと反対側の端面)の内周縁に設けられたテーパ状の切欠き68bが下型に設けられる位置決め用突起(図示せず)に嵌め合わされてセットされる。図15の例では、切欠き68bは8個あるが、その中の略90°間隔の4個が下型の位置決め用突起(図示せず)に嵌め合わされることにより、スリーブ軸受66と樹脂マグネット68との同軸度の精度が確保される。切欠き68bを8個設けるのは、樹脂マグネット68を下型にセットする際の作業性を向上させるためである。
 更に、上型が有するマグネット押さえ部(図示せず)を、樹脂マグネット68の他方の端面(回転子60の状態で、羽根車取付部側の端面)の内周縁に形成された略角形状の突起68aに軸方向から押し当てる。これにより、スリーブ軸受66と樹脂マグネット68との位置関係が確保される。
 図14の例では、樹脂マグネット68の内周面に設けられた略角形状(円弧形状)の突起68aは、全部で3個あり、突起68aの金型設置面(金型で押えられる部分)は一体成形後に表出する。突起68aが3個となっているのは、樹脂マグネット68の位置決め精度を確保すると同時に、一体成形に用いる熱可塑性樹脂の流入経路を確保することで、一体成形時の成形条件を緩和し、生産性を向上するためである。
 下型の樹脂マグネット68の挿入部(図示せず)と樹脂マグネット68の外径との間に隙間がある場合でも、下型が有する内径押さえ部(位置決め用突起)で同軸度を確保し、上型と下型で挟み込むことにより、スリーブ軸受66と樹脂マグネット68との位置関係及び同軸度の確保が可能となり、ポンプ10の品質向上を図ることが可能となる。
 また逆に、下型の樹脂マグネット68の挿入部(図示せず)と樹脂マグネット68の外径との間に隙間を作ることにより、樹脂マグネット68を金型にセットする作業性が向上し、製造コストが低減される。
 樹脂マグネット68とスリーブ軸受66とが金型にセットされた後、PPE(ポリフェニレンエーテル)等の熱可塑性樹脂が射出成形されて、回転子部60aが形成される。このとき、樹脂マグネット68の金型で押さえられない切欠き68b(図15)、即ち4箇所の切欠き68bと、樹脂マグネット68の磁極位置検出素子側の端面に設けられた凸部68eとが、熱可塑性樹脂の樹脂部67に埋設され回転トルクの伝達部分となる。更に、貫通穴69と凸部68eが、熱可塑性樹脂の樹脂部67に埋設されることにより、樹脂マグネット68が強固に保持される。
 樹脂マグネット68とスリーブ軸受66とが熱可塑性樹脂(樹脂部67)にて一体に成形された後、樹脂マグネット68に着磁を施す際、樹脂マグネット68の軸方向の一方の端面の内周面に形成される切欠き67d(図11では4箇所)を着磁時の位置決めに利用することで、精度の良い着磁が可能となる。
 次に、図20により、ポンプ10の製造工程を説明する。図20はポンプ10の製造工程を示す図である。
(1)ステップ1:厚さが0.1~0.7mm程度の電磁鋼板が帯状に打ち抜かれ、かしめ、溶接、接着等で積層された環状の固定子鉄心54を製造する。併せて、スリーブ軸受66を製造する。更に併せて、磁極位置検出素子(ホール素子58b)側の端面から羽根車取付部側の端面に向かって軸方向に伸びる貫通穴69を備える樹脂マグネット68を成形する。
(2)ステップ2:固定子鉄心54に巻線を行う。薄肉連結部で連結された環状の固定子鉄心54のティースに、PBT(ポリブチレンテレフタレート)等の熱可塑性樹脂を用いる絶縁部56が施される。絶縁部56が施されたティースに集中巻のコイル57が巻回される。例えば、12個の集中巻のコイル57を接続して、三相のシングルY結線の巻線を形成する。三相のシングルY結線であるので、絶縁部56の結線側には、各相(U相、V相、W相)のコイル57が接続される固定子47の端子59(電源が供給される電源端子及び中性点端子)が組付けられる。併せて、基板58を製造する。基板58は、基板押え部品95により絶縁部56との間に挟持される。基板58には、電動機(例えばブラシレスDCモータ)を駆動するIC、回転子60の位置を検出するホール素子58b等が実装されている。また、基板58には、その外周縁部付近の切り欠き部にリード線52を口出しするリード線口出し部品61が取り付けられる。併せて、回転子部60aを製造する。回転子部60aは、フェライト等の磁性粉末と樹脂を混練したペレットを成形したリング状(円筒状又は環状)の樹脂マグネット68と、樹脂マグネット68の内側に設けられる円筒形のスリーブ軸受66(例えば、カーボン製)とが、例えばPPE(ポリフェニレンエーテル)等の樹脂で一体成形され、貫通穴69が樹脂で埋設される。更に、併せて、羽根車60bを成形する。羽根車60bは、PPE(ポリフェニレンエーテル)などの熱可塑性樹脂を用いて成形される。
(3)ステップ3:基板58を固定子47に組付ける。リード線口出し部品61が取り付けられた基板58が基板押え部品95により絶縁部56に固定される。併せて、回転子部60aに羽根車60bを超音波溶着等により組付ける。併せて、椀状隔壁部品90を成形する。併せて、軸70とスラスト軸受71を製造する。軸70は、例えばSUSで製造される。スラスト軸受71は例えばセラミックで製造される。
(4)ステップ4:基板58を半田付けする。端子59(電源が供給される電源端子及び中性点端子)と基板58とを半田付けする。併せて、下穴部品81を成形する。併せて、ケーシング41を成形する。ケーシング41は、PPS(ポリフェニレンサルファイド)などの熱可塑性樹脂を用いて成形される。更に、併せて、椀状隔壁部品90に回転子60等を組付ける。
(5)ステップ5:固定子47に下穴部品81を組み付けることで固定子組立49を製造した後、固定子組立49をモールド成形して、モールド固定子50を製造する。併せて、椀状隔壁部品90にケーシング41を固定してポンプ部40を組立てる。更に、併せて、タッピングネジ160を製造する。
(6)ステップ6:ポンプ10の組立を行う。モールド固定子50にポンプ部40を組付けタッピングネジ160で固定する(図2参照)。
 図21は冷媒-水熱交換器2を用いた冷凍サイクル装置の回路を示す概念図である。冒頭で説明したヒートポンプ式給湯装置300は、冷媒-水熱交換器2を用いる冷凍サイクル装置の一例である。
 冷媒-水熱交換器2を用いる冷凍サイクル装置は、例えば、空気調和装置もしくは床暖房装置もしくは給湯装置等である。本実施の形態のポンプ10は、冷媒-水熱交換器2を用いる装置の水回路を構成し、冷媒-水熱交換器2で冷却もしくは加熱された水(湯)を水回路内で循環させる。
 図21に示す冷凍サイクル装置は、冷媒を圧縮する圧縮機1(例えば、スクロール圧縮機、ロータリ圧縮機等)、冷媒と水とが熱交換を行う冷媒-水熱交換器2、及び蒸発器4(熱交換器)等を有する冷媒回路を備える。また、この冷凍サイクル装置は、ポンプ10、冷媒-水熱交換器2、及び負荷20等を有する水回路を備える。
 以上のように、本実施の形態によれば、以下の効果を奏する。
(1)回転子部60aにスリーブ軸受66と一体成形される樹脂マグネット68は、磁極位置検出素子側の端面から羽根車取付部側に向かって軸方向に伸びる貫通穴69を略同一円周上に複数個備え、これらの貫通穴69は、熱可塑性樹脂による一体成形時に、熱可塑性樹脂で埋設されて、樹脂マグネット68が熱可塑性樹脂で強固に保持されることで、冷熱水サイクルに伴う熱衝撃によるマグネット割れを抑制することができる。
(2)樹脂マグネット68の外周表面を熱可塑性樹脂で被覆せずに樹脂マグネット68を熱可塑性樹脂で強固に保持する構造であるため、樹脂マグネット68と固定子47とを近接させることができ、ポンプ10の性能を向上させることができる。
(3)樹脂マグネット68の外周表面を熱可塑性樹脂で被覆せずに樹脂マグネット68を熱可塑性樹脂で強固に保持する構造であるため、熱可塑性樹脂の使用量を削減でき、ポンプ10の低コスト化が可能となる。
(4)樹脂マグネット68の外周表面を熱可塑性樹脂で被覆せずに樹脂マグネット68を熱可塑性樹脂で強固に保持する構造であるため、流体摩擦損失増加の要因となる凹凸が回転子60の外周表面に形成されず、ポンプ10の性能を向上させることができる。
(5)樹脂マグネット68に設けられた貫通穴69は、回転子60に形成される磁極間に位置するので、磁力の低下を極力抑制し、ポンプ10の性能低下を抑制することができる。
(6)樹脂マグネット68は、磁極位置検出素子(ホール素子58b)側の端面に樹脂マグネット68の素材が供給されるゲート68cを備え、ゲート68cの位置は磁極中心であることにより、樹脂マグネット68の配向精度を向上させることができる。
(7)樹脂マグネット68の磁極位置検出素子(ホール素子58b)側の端面には、同一の円周上に周方向に略等間隔で複数個の凸部68eが形成され、これらの凸部68eは磁極中心に配置されている。これにより、磁力が向上しポンプ10の性能向上を図ることができる。
(8)樹脂マグネット68の中空部は、突起68aが形成される端面から概略軸方向の中心位置までストレート形状で、かつ、突起68aが形成される端面の反対側端面から概略軸方向の中心位置までは抜きテーパ形状となっていることにより、樹脂マグネット68の生産性を向上させることができる。
(9)ポンプ10を、冷媒-水熱交換器2を用いる冷凍サイクル装置(例えば空気調和装置もしくは床暖房装置もしくは給湯装置)に適用した場合、ポンプ10の性能及び品質向上、並びに生産性の向上に伴い、冷凍サイクル装置の性能向上及び品質向上、並びにコスト低減が可能となる。
実施の形態2.
 図22は、本実施の形態における回転子部60aの断面図であり、実施の形態1における図9に相当する図である。図23は、本実施の形態における樹脂マグネット68の断面図であり、実施の形態1における図13に相当する図である。図22及び図23では、図9及び図13と同一の構成要素には同一の符号を付している。本実施の形態は、実施の形態1における貫通穴69を、図示例のような形状を有する貫通穴69aに置き換えたものであり、その他の構成は実施の形態1と同じである。
 図22及び図23に示すように、貫通穴69aは、磁極位置検出素子(ホール素子58b)側の端面から所定の深さの位置(勾配切替位置)を基準として、貫通穴69aの内径が磁極位置検出素子側及び羽根車取付部側に向かってそれぞれ拡大する勾配(D1,D2)を備えている。即ち、貫通穴69aの断面形状は、勾配切替位置から磁極位置検出素子側の端面までの間は、貫通穴69aの内径が磁極位置検出素子側に向かって拡大するようにその内外両側の外形が軸方向に対して勾配D1を有するとともに、勾配切替位置から羽根車取付部側の端面までの間は、貫通穴69aの内径が羽根車取付部側に向かって拡大するようにその内外両側の外形が軸方向に対して勾配D2を有している。
 また、樹脂マグネット68の軸方向中心位置(軸方向の構造中心位置)を基準として、磁極位置検出素子側のマグネット体積が羽根車取付部側のマグネット体積より大きくなるよう貫通穴69aの勾配角度及び長さを定めることにより、樹脂マグネット68の軸方向の磁束中心を磁極位置検出素子側に所定の距離移動させることが可能である。樹脂マグネット68の軸方向中心位置及び固定子47の軸方向中心位置が略同一の場合においても、固定子47及び回転子60の軸方向の磁束中心位置を磁極位置検出素子側へずらすことにより、固定子47及び回転子60の軸方向の磁束中心位置が略同一となるよう回転子60に磁極位置検出素子側から羽根車取付部側への推進力が発生する。このような回転子60の推進力により、回転子60をスラスト軸受71を介してケーシング41に押し付けることにより、羽根車60bの作用による流体の圧力脈動などに起因する回転子60の軸方向位置の変動を抑制することが可能となり、ポンプ10の品質向上を図ることができる。
 また、貫通穴69aに勾配を設ける代わりに、樹脂マグネット68の磁極位置検出素子側の端面から所定の深さの位置を基準として、貫通穴69aの内径を変化させることで、樹脂マグネット68の軸方向の磁束中心位置を磁極位置検出素子側に所定の距離移動させる構造としてもよい(図示せず)。
 本実施の形態によれば、実施の形態1で述べた(1)~(9)の効果に加えて、以下の効果を奏する。
 (10)樹脂マグネット68に設けられた貫通穴69aは、磁極位置検出素子(ホール素子58b)側の端面から所定の深さの位置(勾配切替位置)を基準として、貫通穴69aの内径が磁極位置検出素子側及び羽根車取付部側に向かってそれぞれ拡大する勾配を備えるので、金型への取られを防止し、樹脂マグネット68の生産性向上が可能となる。
 (11)樹脂マグネット68の軸方向中心位置を基準として、磁極位置検出素子側のマグネット体積が羽根車取付部側のマグネット体積より大きくなるよう貫通穴69aの勾配角度及び長さを定めることにより、樹脂マグネット68の軸方向の磁束中心を磁極位置検出素子側に所定の距離移動させることで、回転子60に磁極位置検出素子側から羽根車取付部側への推進力を発生させて回転子60をスラスト軸受71を介してケーシング41に押し付けることにより、羽根車60bの作用による流体の圧力脈動などに起因する回転子60の軸方向位置の変動を抑制することが可能となり、ポンプ10の品質向上を図ることができる。
 以上のように、本発明は、ポンプ及びポンプの製造方法並びに冷凍サイクル装置として有用である。
 1 圧縮機、2 冷媒-水熱交換器、3 減圧装置、4 蒸発器、5 圧力検出装置、6 ファンモータ、7 ファン、8 沸上げ温度検出部、9 給水温度検出部、10 ポンプ、11 操作部、12 タンクユニット制御部、13 ヒートポンプユニット制御部、14 温水タンク、15 冷媒配管、16 温水循環配管、17 外気温度検出部、20 負荷、31 風呂水追い焚き熱交換器、32 風呂水循環装置、33 混合弁、34 タンク内水温検出部、35 追い焚き後水温検出部、36 混合後水温検出部、37 風呂水追い焚き配管、40 ポンプ部、41 ケーシング、42 吸入口、43 吐出口、44 ボス部、44a ネジ穴、46 軸支持部、47 固定子、49 固定子組立、50 モールド固定子、52 リード線、53 モールド樹脂、54 固定子鉄心、54a 溝、56 絶縁部、57 コイル、58 基板、58a IC、58b ホール素子、59 端子、60 回転子、60a 回転子部、60b 羽根車、61 リード線口出し部品、63 ポンプ部設置面、66 スリーブ軸受、66a 突起、67 樹脂部、67a 羽根車取付部、67b 凹部、67c 羽根車位置決め穴、67d 切欠き、67e ゲート、68 樹脂マグネット、68a 突起、68a-1 凸部、68b 切欠き、68c ゲート、68e 凸部、68f 回転子位置検出用磁極部、69,69a 貫通穴、70 軸、71 スラスト軸受、80 Oリング、81 下穴部品、82 金型押え部、83 突起、84 下穴、85 足部、85a 突起、87 連結部、90 椀状隔壁部品、90a 椀状隔壁部、90b 鍔部、90c Oリング収納溝、90d 孔、92 リブ、94 軸支持部、95 基板押え部品、95a 突起、100 ヒートポンプユニット、160 タッピングネジ、200 タンクユニット、300 ヒートポンプ式給湯装置。

Claims (10)

  1.  磁極位置検出素子が実装された基板を有する環状のモールド固定子と、
     椀状隔壁部品内に回転自在に収納され、軸方向の一端が前記磁極位置検出素子に対向し、前記軸方向の他端に羽根車が取付けられる羽根車取付部が設けられた環状の回転子部を有する回転子と、
     を備え、
     前記回転子部は、
     環状のマグネットと、
     このマグネットの内側に配置されるスリーブ軸受と、
     前記マグネット及び前記スリーブ軸受の一体成形に用いられる熱可塑性樹脂から形成されると共に前記羽根車取付部を構成する樹脂部と、
     を備え、
     前記マグネットは、磁極位置検出素子側の端面と羽根車取付部側の端面との間を前記軸方向に伸びる複数個の貫通穴を備え、
     前記各貫通穴は、前記樹脂部の一部を構成する前記熱可塑性樹脂により埋設されていることを特徴とするポンプ。
  2.  前記各貫通穴は、前記磁極位置検出素子側の端面から所定の深さの位置を基準として、その内径が前記磁極位置検出素子側及び前記羽根車取付部側に向かってそれぞれ拡大することを特徴とする請求項1に記載のポンプ。
  3.  前記各貫通穴は、前記マグネットの前記軸方向における中心位置を基準として、前記磁極位置検出素子側の前記マグネットの体積が前記羽根車取付部側の前記マグネットの体積よりも大きくなるように、その勾配角度及び長さが定められていることを特徴とする請求項2に記載のポンプ。
  4.  前記複数個の貫通穴は、同一円周上に配置され、
     前記各貫通穴は、前記回転子に形成される磁極間に形成されていることを特徴とする請求項1~3のいずれか1項に記載のポンプ。
  5.  前記マグネットは樹脂マグネットであり、
     前記マグネットの前記磁極位置検出素子側の端面には、前記回転子に形成される各磁極中心に前記樹脂マグネットの素材が供給されるゲートが設けられていることを特徴とする請求項1~4のいずれか1項に記載のポンプ。
  6.  前記マグネットは、前記磁極位置検出素子側の端面に、前記回転子に形成される各磁極中心に配置されかつ同一円周上に配置された凸部を備えることを特徴とする請求項1~5のいずれか1項に記載のポンプ。
  7.  前記マグネットは、前記羽根車取付部側の端面から所定の深さの内周側に、断面角形状でかつ前記羽根車取付部側に向かって前記軸方向に伸びる突起を周方向に複数個備えることを特徴とする請求項1~6のいずれか1項に記載のポンプ。
  8.  前記マグネットは、前記磁極位置検出素子側の端面の内周側に、断面略角形状の切欠きを周方向に略等間隔で複数個を備えることを特徴とする請求項1~7のいずれか1項に記載のポンプ。
  9.  冷媒回路と、水回路と、前記冷媒回路と前記水回路とを接続し冷媒と水の熱交換を行う冷媒-水熱交換器とを備え、
     前記水回路には請求項1~8のいずれか1項に記載のポンプが含まれることを特徴とする冷凍サイクル装置。
  10.  固定子鉄心のティースに絶縁部を施し、前記ティースにコイルを巻回して固定子を製造し、併せて磁極位置検出素子を含む電子部品が実装されると共にリード線を口出しするリード線口出し部品が取り付けられた基板を製造し、併せて羽根車を製造し、更に併せて、磁極位置検出素子側の端面と羽根車取付部側の端面との間を軸方向に伸びる貫通穴を同一円周上に複数個備えた環状のマグネットと、このマグネットの内側に設けられるスリーブ軸受とを熱可塑性樹脂を用いて一体成形し、前記各貫通穴が前記熱可塑性樹脂で埋設された回転子部を製造する工程と、
     前記基板を前記固定子に組付け、併せて前記回転子部に前記羽根車を組付けて回転子を製造し、更に併せて椀状隔壁部品、軸及びスラスト軸受を製造する工程と、
     前記固定子の端子と前記基板とを半田付けし、併せて前記椀状隔壁部品に前記回転子を組付け、併せて吸水口と吐出口とを有するケーシングを成形し、更に併せて下穴部品を製造する工程と、
     前記固定子と前記下穴部品とをモールド樹脂で一体に成形してモールド固定子を製造し、併せて、前記椀状隔壁部品に前記ケーシングを固定して外周部に複数個のネジ穴を有するポンプ部を製造し、更に併せてタッピングネジを製造する工程と、
     前記モールド固定子に前記ポンプ部を組付け、前記ポンプ部の前記ネジ穴及び前記下穴部品の下穴を介して前記タッピングネジにより、前記ポンプ部を前記モールド固定子に固定する工程と、
     を含むことを特徴とするポンプの製造方法。
PCT/JP2012/076004 2012-10-05 2012-10-05 ポンプ及びポンプの製造方法並びに冷凍サイクル装置 WO2014054175A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB1505534.6A GB2522353B (en) 2012-10-05 2012-10-05 Pump, method for manufacturing pump, and refrigeration cycle device
US14/418,127 US9903372B2 (en) 2012-10-05 2012-10-05 Pump, method for manufacturing pump, and refrigeration cycle device
PCT/JP2012/076004 WO2014054175A1 (ja) 2012-10-05 2012-10-05 ポンプ及びポンプの製造方法並びに冷凍サイクル装置
CN201280075829.7A CN104619990B (zh) 2012-10-05 2012-10-05 电动机的转子、电动机、泵及制冷循环装置
JP2014539561A JP5925329B2 (ja) 2012-10-05 2012-10-05 電動機の回転子、電動機、ポンプ及び冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/076004 WO2014054175A1 (ja) 2012-10-05 2012-10-05 ポンプ及びポンプの製造方法並びに冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2014054175A1 true WO2014054175A1 (ja) 2014-04-10

Family

ID=50434533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076004 WO2014054175A1 (ja) 2012-10-05 2012-10-05 ポンプ及びポンプの製造方法並びに冷凍サイクル装置

Country Status (5)

Country Link
US (1) US9903372B2 (ja)
JP (1) JP5925329B2 (ja)
CN (1) CN104619990B (ja)
GB (1) GB2522353B (ja)
WO (1) WO2014054175A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042766A (ja) * 2014-08-18 2016-03-31 アスモ株式会社 液体ポンプ用ロータ構造
CN106416010A (zh) * 2014-07-10 2017-02-15 三菱电机株式会社 电动机的定子、电动机以及空调机
JP2017129025A (ja) * 2016-01-18 2017-07-27 ダイキン工業株式会社 遠心ファン及び遠心ファンを備えた空気調和機
EP3168963A4 (en) * 2014-07-08 2018-03-28 Mitsubishi Electric Corporation Rotor of electric motor, molded electric motor, and air conditioning unit

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637746B (zh) * 2013-10-22 2019-04-19 三菱电机株式会社 模制定子、模制电动机和空调机
KR101703891B1 (ko) * 2014-06-13 2017-02-07 엘지이노텍 주식회사 모터 및 이를 포함하는 듀얼 클러치 트랜스미션
US10284043B2 (en) * 2014-07-11 2019-05-07 Mitsubishi Electric Corporation Stator for electric motor, electric motor, and air conditioner
US10141811B2 (en) * 2014-10-24 2018-11-27 Mitsubishi Electric Corporation Stator for electric motor, electric motor, and air conditioner
CN204615524U (zh) * 2015-04-28 2015-09-02 中山大洋电机制造有限公司 一种外转子电机的塑封定子及其应用的外转子电机
WO2017026073A1 (ja) * 2015-08-13 2017-02-16 三菱電機株式会社 固定子、電動機および空気調和機
JP6649733B2 (ja) * 2015-09-30 2020-02-19 日本電産サンキョー株式会社 ステータ、モータおよびポンプ装置
US10210731B2 (en) 2017-06-28 2019-02-19 Datalogic IP Tech, S.r.l. Systems and methods for a smart electronic article surveillance circuit
JP2019030029A (ja) * 2017-07-25 2019-02-21 日本電産サンキョー株式会社 モータおよびポンプ装置
JP2019030030A (ja) * 2017-07-25 2019-02-21 日本電産サンキョー株式会社 モータおよびポンプ装置
JP2019047635A (ja) * 2017-09-04 2019-03-22 日本電産サンキョー株式会社 ロータおよびモータ
CN110541818B (zh) * 2018-05-28 2020-11-20 杭州三花研究院有限公司 电子油泵
CN108923555B (zh) * 2018-06-27 2020-12-08 广东威灵电机制造有限公司 直驱电机及家用电器
JP2020122397A (ja) * 2019-01-29 2020-08-13 日本電産サンキョー株式会社 ポンプ装置
JP6903697B2 (ja) * 2019-03-01 2021-07-14 本田技研工業株式会社 回転電機のロータ
TWM594850U (zh) * 2019-11-25 2020-05-01 智邦科技股份有限公司 風扇模組
CN112117937B (zh) * 2020-09-08 2021-12-31 绍兴文理学院元培学院 一种永磁同步电机控制系统及电机转速测量方法
CN112361685B (zh) * 2020-12-14 2021-09-17 珠海格力电器股份有限公司 双级压缩机控制方法、双级压缩机制冷系统及制冷设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315245A (ja) * 1993-04-27 1994-11-08 Japan Servo Co Ltd キャンドモータポンプの永久磁石回転子
JPH11252837A (ja) * 1998-02-26 1999-09-17 Shibaura Mechatronics Corp ポンプ用モータ
JP2005323452A (ja) * 2004-05-10 2005-11-17 Matsushita Electric Ind Co Ltd ブラシレスモーターおよびそれを用いたポンプ
JP2006149200A (ja) * 2006-03-06 2006-06-08 Hitachi Ltd Dcブラシレスモータの製造方法
JP2011188701A (ja) * 2010-03-11 2011-09-22 Mitsubishi Electric Corp ポンプ用電動機の回転子及びポンプ及び空気調和装置及び床暖房装置及び給湯装置及びポンプの製造方法
JP2012057560A (ja) * 2010-09-10 2012-03-22 Mitsubishi Electric Corp ポンプ及びヒートポンプ式給湯装置及びポンプの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025285Y1 (ja) * 1970-07-10 1975-07-30
JPS6315245A (ja) * 1986-07-08 1988-01-22 Fuji Photo Film Co Ltd 熱現像感光材料
JPS6244055A (ja) * 1986-08-22 1987-02-26 Seikosha Co Ltd 2色成形によるロ−タの製造方法
JPH0523784U (ja) 1991-05-17 1993-03-26 株式会社荏原製作所 マグネツトモータポンプ用直流ブラシレスモータ
US5682072A (en) * 1994-01-20 1997-10-28 Nsk Ltd. Three-phase brushless motor
JPH08205438A (ja) * 1995-01-25 1996-08-09 Toshiba Ave Corp モータ
JP2000324769A (ja) * 1999-05-13 2000-11-24 Matsushita Electric Ind Co Ltd ステッピングモータ
JP4628527B2 (ja) * 2000-08-07 2011-02-09 パナソニックエコシステムズ株式会社 Dcモータ
US7157827B2 (en) * 2004-09-21 2007-01-02 A. O. Smith Corporation Spoke permanent magnet rotor
JP2008079377A (ja) * 2006-09-19 2008-04-03 Jtekt Corp モータの磁石固定構造
JP4812787B2 (ja) 2008-02-22 2011-11-09 三菱電機株式会社 ポンプ用電動機の回転子及びポンプ用電動機及びポンプ及びポンプ用電動機の回転子の製造方法
JP5457966B2 (ja) * 2010-07-23 2014-04-02 オークマ株式会社 電動機のロータ
JP5264859B2 (ja) * 2010-10-24 2013-08-14 三菱電機株式会社 ポンプ用電動機の回転子及びポンプ及び空気調和装置及び床暖房装置及び給湯装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315245A (ja) * 1993-04-27 1994-11-08 Japan Servo Co Ltd キャンドモータポンプの永久磁石回転子
JPH11252837A (ja) * 1998-02-26 1999-09-17 Shibaura Mechatronics Corp ポンプ用モータ
JP2005323452A (ja) * 2004-05-10 2005-11-17 Matsushita Electric Ind Co Ltd ブラシレスモーターおよびそれを用いたポンプ
JP2006149200A (ja) * 2006-03-06 2006-06-08 Hitachi Ltd Dcブラシレスモータの製造方法
JP2011188701A (ja) * 2010-03-11 2011-09-22 Mitsubishi Electric Corp ポンプ用電動機の回転子及びポンプ及び空気調和装置及び床暖房装置及び給湯装置及びポンプの製造方法
JP2012057560A (ja) * 2010-09-10 2012-03-22 Mitsubishi Electric Corp ポンプ及びヒートポンプ式給湯装置及びポンプの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168963A4 (en) * 2014-07-08 2018-03-28 Mitsubishi Electric Corporation Rotor of electric motor, molded electric motor, and air conditioning unit
CN106416010A (zh) * 2014-07-10 2017-02-15 三菱电机株式会社 电动机的定子、电动机以及空调机
JP2016042766A (ja) * 2014-08-18 2016-03-31 アスモ株式会社 液体ポンプ用ロータ構造
JP2017129025A (ja) * 2016-01-18 2017-07-27 ダイキン工業株式会社 遠心ファン及び遠心ファンを備えた空気調和機
WO2017126445A1 (ja) * 2016-01-18 2017-07-27 ダイキン工業株式会社 遠心ファン及び遠心ファンを備えた空気調和機

Also Published As

Publication number Publication date
GB2522353B (en) 2019-11-06
US9903372B2 (en) 2018-02-27
US20150159656A1 (en) 2015-06-11
JP5925329B2 (ja) 2016-05-25
GB201505534D0 (en) 2015-05-13
JPWO2014054175A1 (ja) 2016-08-25
CN104619990B (zh) 2017-03-29
GB2522353A (en) 2015-07-22
CN104619990A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5925329B2 (ja) 電動機の回転子、電動機、ポンプ及び冷凍サイクル装置
JP5901649B2 (ja) ポンプ及び冷凍サイクル装置並びにポンプの製造方法
JP5264859B2 (ja) ポンプ用電動機の回転子及びポンプ及び空気調和装置及び床暖房装置及び給湯装置
JP6005073B2 (ja) ポンプ及び冷凍サイクル装置並びにポンプの製造方法
JP6016911B2 (ja) 電動機の回転子、電動機、ポンプ及び冷凍サイクル装置
JP6029597B2 (ja) ポンプ及び冷凍サイクル装置並びにポンプの製造方法
JP5143165B2 (ja) ポンプ用電動機の回転子及びポンプ及び空気調和装置及び床暖房装置及び給湯装置及びポンプの製造方法
JP6029598B2 (ja) ポンプ及び冷凍サイクル装置並びにポンプの製造方法
JP4901838B2 (ja) ポンプ及びヒートポンプ式給湯装置
JP5951049B2 (ja) モールド固定子、ポンプ及びポンプの製造方法並びに冷凍サイクル装置
JP5052635B2 (ja) ポンプ用電動機の回転子及びポンプ及び空気調和装置及び床暖房装置及び給湯装置及びポンプの製造方法
JP4845941B2 (ja) ポンプ及びヒートポンプ式給湯装置及びポンプの製造方法
JP5264952B2 (ja) ポンプ及び空気調和装置及び床暖房装置及び給湯装置及びポンプの製造方法
JP2010242624A (ja) ポンプ及びヒートポンプ式給湯装置及びポンプの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539561

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14418127

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1505534

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20121005

WWE Wipo information: entry into national phase

Ref document number: 1505534.6

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886130

Country of ref document: EP

Kind code of ref document: A1