WO2014054150A1 - 永久磁石埋込型電動機 - Google Patents

永久磁石埋込型電動機 Download PDF

Info

Publication number
WO2014054150A1
WO2014054150A1 PCT/JP2012/075792 JP2012075792W WO2014054150A1 WO 2014054150 A1 WO2014054150 A1 WO 2014054150A1 JP 2012075792 W JP2012075792 W JP 2012075792W WO 2014054150 A1 WO2014054150 A1 WO 2014054150A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
permanent magnet
pair
rare earth
Prior art date
Application number
PCT/JP2012/075792
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
直弘 桶谷
昌弘 仁吾
馬場 和彦
浩二 矢部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/075792 priority Critical patent/WO2014054150A1/ja
Priority to GB1505538.7A priority patent/GB2520657B/en
Priority to KR1020157011091A priority patent/KR101699190B1/ko
Priority to PCT/JP2013/076816 priority patent/WO2014054688A1/ja
Priority to US14/431,077 priority patent/US9762098B2/en
Priority to CN201380051974.6A priority patent/CN104704714B/zh
Priority to JP2014539781A priority patent/JP5976122B2/ja
Priority to DE112013004896.5T priority patent/DE112013004896T5/de
Priority to CN201320713764.6U priority patent/CN203589986U/zh
Publication of WO2014054150A1 publication Critical patent/WO2014054150A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a permanent magnet embedded type electric motor.
  • magnet insertion holes corresponding to the number of poles are provided in the axial direction in advance in a rotor core formed by laminating and fixing a plurality of electromagnetic steel plates punched into a predetermined shape. Permanent magnets are inserted into the corresponding magnet insertion holes during assembly.
  • the magnet during operation of the motor is subject to a change in attractive force between the teeth tip and acceleration / deceleration, the magnet tries to move left and right in the circumferential direction in the magnet insertion hole. If the magnet moves greatly in the magnet insertion hole, it will cause vibration and noise, and it will also cause wear, cracking and chipping of the magnet. In many cases, a step or a protrusion is provided.
  • Patent Document 1 discloses a method for fixing a permanent magnet.
  • protrusions are provided near the left and right ends of the magnet insertion hole, a permanent magnet is disposed between the pair of protrusions, and the elastic force of the pair of protrusions acts on the permanent magnet by the pair of protrusions.
  • the permanent magnet was fixed so as to sandwich the permanent magnet.
  • the present invention provides a permanent magnet embedded electric motor that can reduce the movement of a magnet and reduce the risk of noise, magnet wear, cracking, and chipping without relying on steps or protrusions near the left and right ends of the magnet insertion hole.
  • the purpose is to provide.
  • the present invention provides an embedded permanent magnet electric motor including a rotor that is rotatably provided and a stator that is provided to face the rotor, and the rotor includes a rotor iron core.
  • a shaft that supports the rotor core, a plurality of permanent magnets embedded in the rotor core, and a pair of magnet fixing members provided in the rotor core, wherein a plurality of magnets are inserted into the rotor core Holes are provided, corresponding one of the permanent magnets is inserted into the corresponding one of the magnet insertion holes, and a plurality of pairs of tongues are provided on one surface of each of the magnet fixing members.
  • each of the magnet fixing members the corresponding pair of tongues are inserted into the corresponding one of the magnet insertion holes, whereby each of the permanent magnets is in the rotation axis direction.
  • the opposite end faces in the circumferential direction of the rotor are sandwiched by the corresponding pair of tongues, and the distance between the pair of tongues corresponds to the corresponding points at positions away from the root position.
  • a space Dmin that is narrower than the width L of the permanent magnet in the circumferential direction of the rotor before the permanent magnet is sandwiched is included.
  • the movement of the magnet can be reduced without depending on the steps or protrusions near the left and right ends of the magnet insertion hole, and the risk of noise, magnet wear, cracking and chipping can be reduced. it can.
  • FIG. 3 is a cross-sectional view taken along the line ZZ in FIG. 2. It is a cross-sectional view of a rotor.
  • FIG. 5 is a cross-sectional view taken along line YY in FIG. 4. As a comparative example, it is a contour diagram showing a demagnetization region when steps are provided near the left and right ends of a magnet insertion hole of a rotor core.
  • FIG. It is a contour figure which shows the demagnetization area
  • FIG. It is a figure of the same aspect as FIG. It is a figure explaining material picking in the case of forming a tongue-like part from sheet metal processing and bending.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a permanent magnet embedded electric motor according to Embodiment 1.
  • the permanent magnet embedded electric motor according to the present embodiment includes a rotor 1, a stator 2, a frame 3, and a bracket 4.
  • the rotor 1 includes a rotor iron core 5, a shaft 6, a plurality of rare earth magnets (permanent magnets) 7, and a pair of upper and lower magnet fixing members 8.
  • the rotor core 5 is formed, for example, by laminating and fixing a plurality of electromagnetic steel plates punched into a predetermined shape.
  • the shape of the rotor core 5 is, for example, a substantially annular shape when viewed in the direction of the rotation axis.
  • the rotor iron core 5 has a plurality of magnet insertion holes 9 provided in the portion near the outer periphery of the rotor core 5 by the number of poles and arranged in the circumferential direction at substantially equal intervals, for example.
  • Each magnet insertion hole 9 extends in the direction of the rotation axis, and opens on both end surfaces of the rotor core 5 in the direction of the rotation axis.
  • a rare earth magnet 7 is inserted into each magnet insertion hole 9.
  • magnet fixing members 8 are attached to both end surfaces in the rotation axis direction of the rotor core 5.
  • the pair of magnet fixing members 8 at least partially cover the openings of the plurality of magnet insertion holes 9 on both end faces of the rotor core 5 and prevent the rare earth magnet 7 from moving greatly in the magnet insertion holes 9. ing.
  • the means for attaching the magnet fixing member 8 to the end surface of the rotor core 5 is not shown, for example, welding, bonding, fastening using a bolt or rivet with a through hole, press fitting with an inlay portion, and the like are mentioned. be able to.
  • the shaft 6 is fitted in the shaft fitting hole provided in the center of the rotor core 5.
  • the shaft 6 extends along the rotational axis direction of the rotor core 5, and one end side thereof is rotatably supported by the frame 3 via the bearing 10 and the other end side thereof is supported by the bracket 4 via the bearing 11.
  • a wave washer 12 for applying a preload is disposed on the bearing surface of the bearing 10.
  • the shaft 6 has a circular cross section, for example, and in this case, the shaft fitting hole is also formed in a circular shape.
  • the stator 2 includes a stator iron core 13 and a winding 14.
  • the stator core 13 is formed, for example, by laminating and fixing a plurality of electromagnetic steel plates punched into a predetermined shape.
  • the shape of the stator core 13 is, for example, a substantially annular shape when viewed in the direction of the rotation axis.
  • the stator iron core 13 is formed with a plurality of teeth (not shown) positioned at substantially equal intervals in the circumferential direction, for example, at a portion closer to the inner circumference.
  • a winding 14 is wound around these teeth via an insulator (not shown).
  • the stator 2 is fixed to the inside of the frame 3 by a method such as shrink fitting, and is installed so as to face the rotor 1 with a predetermined gap 30 therebetween.
  • the frame 3 supports one end side of the rotor 1 via the bearing 10 and accommodates the stator 2.
  • the frame 3 has, for example, a substantially cylindrical shape, and one end in the axial direction is opened to form a bowl shape, and the other end is provided with a bottom.
  • the bracket 4 supports the other end side of the rotor 1 via the bearing 11.
  • the bracket 4 has, for example, a substantially cylindrical shape when viewed in the direction of the rotation axis. One end in the direction of the rotation axis is opened to form a bowl shape, and the other end has a hole for projecting the output end of the shaft 6. Is provided.
  • the bracket 4 and the frame 3 are connected to each other by fastening means (not shown) such as a screw with the hook-shaped portions formed on each of the bracket 4 and the frame 3 in contact with each other.
  • the other end of the rotor 1 supported by the bearing 11 in the bracket 4 is a load side that bears input and output of torque to and from the motor.
  • FIG. 1 is a plan view of the magnet fixing member alone before being assembled to the rotor
  • FIG. 3 is a sectional view taken along the line ZZ in FIG. 2
  • FIG. 4 is a transverse sectional view of the rotor
  • FIG. It is sectional drawing regarding a Y line.
  • a cross section (part) of the rare earth magnet is illustrated near the tongue-like portion for easy understanding of the dimensional relationship.
  • Each magnet fixing member 8 has a circular plate shape and has an outer diameter that is the same as or slightly smaller than the outer periphery of the rotor 1, for example.
  • a shaft insertion hole 15 is formed at the center of each magnet fixing member 8.
  • a plurality of pairs of tongues 16a and 16b made of a nonmagnetic material extending toward the magnet insertion hole 9 are provided on one surface of each magnet fixing member 8 during assembly.
  • the plurality of pairs of tongue-shaped portions 16a and 16b rise from one surface of the corresponding magnet fixing member 8 substantially perpendicularly (substantially in the direction of the rotation axis) to the one surface.
  • the pair of tongues 16a and 16b correspond to one pole. Therefore, as described above, in the illustrated example, since the number of poles is 6, six pairs (12 in total) are provided.
  • each of the pair of tongues 16a and 16b abuts on both end surfaces of the corresponding rare earth magnet 7 in the circumferential direction of the rotor, and the pair of tongues 16a and 16b causes the corresponding rare earth magnet 7 to move. It is formed so as to obtain a state of being sandwiched in the rotor circumferential direction.
  • the distance between the pair of tongues 16a and 16b in each pair is as follows.
  • the base position 41 with respect to the plate surface has the same or wider distance as the left-right width L of the rare earth magnet 7 (the width that is the distance between both end faces in the rotor circumferential direction), and rises away from the base position 41 in a direction away from the plate surface.
  • the gripping position 43 has an interval Dmin that is slightly narrower than the lateral width L of the rare earth magnet 7. That is, the pair of tongue portions 16a and 16b includes a position where the distance between them is Dmin ⁇ L.
  • FIG. 6 is a contour diagram showing a demagnetization region when a step 117 is provided near the left and right ends of the magnet insertion hole 109 of the rotor core 105 as a comparative example
  • FIG. 7 relates to the first embodiment. It is a contour figure which shows the demagnetization area
  • the magnetization direction of the rare earth magnet is the thickness direction of the magnet (the direction from one long side to the other long side in the cross-sectional view).
  • 6 and 7 show the results of electromagnetic field analysis in which conditions other than the shape of the magnet insertion hole are set to be the same, and the darker the black, the greater the demagnetization factor at that portion.
  • FIG. 7 in which no step is provided near the left and right ends of the magnet insertion hole 9 is provided with a step 117 near the left and right ends of the magnet insertion hole 109. It can be seen that the left and right end portions of the rare earth magnet 7 are more difficult to demagnetize. Magnetic flux due to the current flowing in the winding 14 flows in the circumferential direction near the outer peripheral surface of the rotor core, but selectively flows in a place where the distance between the edges of the magnet insertion holes is short when crossing the air portion 18 between the poles.
  • the relationship between the portions indicated by reference numerals G1 and G2 shown in the figure is G1 ⁇ G2 depending on the presence or absence of the step 117.
  • the step 117 When the step 117 is provided, the end portion of the rare earth magnet 7 is magnetized in the magnetization direction ( The magnetic flux traversing against the magnet thickness direction) increases, and demagnetization is likely to occur.
  • the permanent magnet is a rare earth magnet, but the same effect can be obtained with other types of magnets.
  • a ferrite magnet it is different from a rare earth magnet only in that it tends to cause irreversible demagnetization when exposed to a strong demagnetizing field at a low temperature. If the present invention is applied, the same effect can be obtained in the case of a ferrite magnet. Obtainable.
  • the non-magnetic material of the magnet fixing member that is separate from the rotor core from both sides in the rotation axis direction of the rotor core. Since the permanent magnet is held down by the tongue-shaped part of the magnet, the movement of the magnet can be reduced without relying on steps or protrusions near the left and right ends of the magnet insertion hole, and noise and magnets caused by the large movement of the magnet The risk of wear, cracking and chipping can be reduced. That is, it is possible to reduce the risk of noise and magnet wear, cracking, and chipping while making it difficult to demagnetize the left and right ends of the permanent magnet.
  • FIG. 8 is a diagram of the same mode as that of FIG.
  • the second embodiment is the same as the first embodiment except for the parts described below.
  • a pair of tongue-like portions 216a and 216b provided on each magnet fixing member 8 has a root position 41 and a gripping position 43 having the same interval as the tongue-like portions 16a and 16b.
  • the tip positions 245 of the tongues 216a and 216b have a distance Da wider than the left-right width L of the rare earth magnet 7. That is, the distance Da between the tip positions 245 of the tongue portions 216a and 216b and the left and right width L of the rare earth magnet 7 are set so as to satisfy the relationship of Da> L.
  • the rare earth magnet 7 when the rare earth magnet 7 enters between the pair of tongue portions 216a and 216b, the rare earth magnet 7 is smoothly arranged between the pair of tongue portions 216a and 216b due to the interval set at the tip position 245 described above. Is done. For this reason, the rare earth magnet 7 and the magnet fixing member 8 can be easily assembled.
  • the corners inside the tips of the tongue portions 216a and 216b are used. There are also modes such as a chamfered shape or an R shape.
  • Embodiment 3 FIG. Next, a third embodiment of the present invention will be described.
  • the third embodiment is characterized in that the plurality of tongue-shaped portions or the entire magnet fixing members are formed by resin molding.
  • the structure of the first embodiment is described as applying the characteristics of the third embodiment.
  • the third embodiment is not limited to this, and the configuration of the second embodiment is described. It is also possible to implement by applying resin molding.
  • Permanent magnet embedded motors are made of a non-magnetic material called end plates on both axial ends of the rotor core in order to prevent the rare earth magnets from coming off in the axial direction and to prevent scattering of the fragments when cracks or chips occur. It can be assumed that a metal plate is installed to close the opening of the magnet insertion hole. Therefore, as the magnet fixing member 8 in the first and second embodiments, a method of forming the tongue portions 16a and 16b by processing the end plate of such a metal plate may be considered. The following circumstances arise: FIG. 9 is a diagram for explaining material removal when the tongue-shaped portion is formed by sheet metal processing and bending processing.
  • the tongue 16b for pressing the right end surface of the rare earth magnet 7 of a certain pole is in the vicinity of the pole, the tongue 16a for pressing the left end surface of the rare earth magnet 7 of the next pole and the material Get in touch.
  • the tongue 16b needs to be formed by bending the material 19 on the left side.
  • the left and right end portions of the rare earth magnet 7 can be gripped, but a part of the axial end surface of the rare earth magnet 7 is exposed. Therefore, if the rare earth magnet 7 is cracked or chipped due to some cause or accident, the role of preventing the scattering of the fragments is slightly reduced.
  • the above-mentioned problem is solved without incurring manufacturing costs by forming the tongue portions 16a, 16b or the entire magnet fixing member 8 by resin molding.
  • the pair of magnet fixing members 8 can almost completely cover the openings of the plurality of magnet insertion holes 9 on both end surfaces of the rotor core 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
PCT/JP2012/075792 2012-10-04 2012-10-04 永久磁石埋込型電動機 WO2014054150A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2012/075792 WO2014054150A1 (ja) 2012-10-04 2012-10-04 永久磁石埋込型電動機
GB1505538.7A GB2520657B (en) 2012-10-04 2013-10-02 Electric motor having embedded permanent magnets
KR1020157011091A KR101699190B1 (ko) 2012-10-04 2013-10-02 영구자석 매입형 전동기
PCT/JP2013/076816 WO2014054688A1 (ja) 2012-10-04 2013-10-02 永久磁石埋込型電動機
US14/431,077 US9762098B2 (en) 2012-10-04 2013-10-02 Electric motor having embedded permanent magnets
CN201380051974.6A CN104704714B (zh) 2012-10-04 2013-10-02 永磁体埋入型电动机
JP2014539781A JP5976122B2 (ja) 2012-10-04 2013-10-02 永久磁石埋込型電動機
DE112013004896.5T DE112013004896T5 (de) 2012-10-04 2013-10-02 Elektrischer Motor aufweisend eingebettete Permanentmagneten
CN201320713764.6U CN203589986U (zh) 2012-10-04 2013-10-08 永磁体埋入型电动机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075792 WO2014054150A1 (ja) 2012-10-04 2012-10-04 永久磁石埋込型電動機

Publications (1)

Publication Number Publication Date
WO2014054150A1 true WO2014054150A1 (ja) 2014-04-10

Family

ID=50434509

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/075792 WO2014054150A1 (ja) 2012-10-04 2012-10-04 永久磁石埋込型電動機
PCT/JP2013/076816 WO2014054688A1 (ja) 2012-10-04 2013-10-02 永久磁石埋込型電動機

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076816 WO2014054688A1 (ja) 2012-10-04 2013-10-02 永久磁石埋込型電動機

Country Status (7)

Country Link
US (1) US9762098B2 (de)
JP (1) JP5976122B2 (de)
KR (1) KR101699190B1 (de)
CN (2) CN104704714B (de)
DE (1) DE112013004896T5 (de)
GB (1) GB2520657B (de)
WO (2) WO2014054150A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068655A1 (ja) * 2012-10-30 2014-05-08 三菱電機株式会社 永久磁石埋込型電動機及びそれを備えた冷凍空調装置
GB201403555D0 (en) * 2014-02-28 2014-04-16 Of America Asrepresented By The Sec Dep Of Health And Human Interior permanent magnet motor and rotor structure therefore
JP2016005419A (ja) * 2014-06-19 2016-01-12 日立アプライアンス株式会社 永久磁石電動機
WO2017105147A1 (ko) * 2015-12-18 2017-06-22 한온시스템 주식회사 영구자석 매립형 전동기를 위한 로터 및 그를 이용한 전동기
JP2017184375A (ja) * 2016-03-29 2017-10-05 トヨタ自動車株式会社 回転電機のロータ
EP3288161B1 (de) * 2016-08-23 2023-04-26 maxon international ag Elektronisch kommutierter motor mit zwei verschiedenen rotorkernen
JP6597594B2 (ja) * 2016-12-27 2019-10-30 トヨタ自動車株式会社 回転子製造装置
CN110574258A (zh) * 2017-03-31 2019-12-13 日本电产伺服有限公司 马达
US20190165626A1 (en) * 2017-06-05 2019-05-30 Top Co., Ltd. Rotor and rotary machine
US20190089212A1 (en) * 2017-09-15 2019-03-21 Ford Global Technologies, Llc Rotor with nonmagnetic insert
JP6924107B2 (ja) * 2017-09-19 2021-08-25 株式会社三井ハイテック 回転子鉄心の製造方法
JP6874630B2 (ja) * 2017-10-05 2021-05-19 トヨタ自動車株式会社 回転電機ロータ及びその製造方法
JP6922724B2 (ja) * 2017-12-26 2021-08-18 トヨタ自動車株式会社 ロータ
CN112438012A (zh) * 2018-07-27 2021-03-02 三菱电机株式会社 电动机、压缩机及空气调节机
JPWO2020208988A1 (de) * 2019-04-11 2020-10-15
AU2020444066B2 (en) * 2020-04-20 2024-02-22 Mitsubishi Electric Corporation Rotor, motor, compressor, and air conditioner
JP7306336B2 (ja) * 2020-06-23 2023-07-11 トヨタ自動車株式会社 回転電機
DE102021200809A1 (de) 2021-01-29 2022-08-04 Volkswagen Aktiengesellschaft Eine Rotorlamelle, ein Rotorblechpaket, ein Rotor und ein Verfahren zum Fertigen eines Rotors
WO2023286125A1 (ja) * 2021-07-12 2023-01-19 三菱電機株式会社 回転子、電動機、圧縮機及び冷凍サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235189A (ja) * 2002-02-04 2003-08-22 Toyota Motor Corp 回転電機のロータの磁石保持構造
JP2010226882A (ja) * 2009-03-24 2010-10-07 Daikin Ind Ltd 回転子用端板、永久磁石支持部材及び回転子
JP2011147323A (ja) * 2010-01-18 2011-07-28 Toyota Motor Corp Ipmモータ用ロータとipmモータ
JP2012157090A (ja) * 2011-01-21 2012-08-16 Asmo Co Ltd 磁石埋込型ロータ、及びモータ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203537A (ja) * 1986-02-28 1987-09-08 Hitachi Ltd 電動機用回転子
JP2000166143A (ja) * 1998-11-24 2000-06-16 Kokusan Denki Co Ltd 回転電機用磁石回転子
KR20000039493A (ko) 1998-12-14 2000-07-05 구자홍 영구자석 매립형 브러시리스직류모터의 회전자
JP2002354727A (ja) * 2001-05-21 2002-12-06 Hitachi Ltd 永久磁石を埋設した回転子および回転電機
KR100575162B1 (ko) 2004-11-18 2006-04-28 삼성전자주식회사 브러시리스 직류모터
FI117581B (fi) * 2004-12-23 2006-11-30 Abb Oy Kestomagneettikoneen roottori
DE502005010177D1 (de) * 2005-07-29 2010-10-14 Siemens Ag Permanentmagnetrotor für eine bürstenlose elektrische Maschine
JP2007049805A (ja) * 2005-08-09 2007-02-22 Honda Motor Co Ltd 永久磁石式回転子
JP2007097293A (ja) 2005-09-28 2007-04-12 Toshiba Kyaria Kk 電動機の回転子
DE112007000129T5 (de) * 2006-01-10 2008-11-13 Mitsuba Corp., Kiryu Elektro-Drehmaschine
JP5306706B2 (ja) * 2008-05-23 2013-10-02 アスモ株式会社 磁石付ロータ
JP5402154B2 (ja) * 2009-03-30 2014-01-29 アイシン精機株式会社 電動機
JP5556400B2 (ja) 2010-06-09 2014-07-23 富士電機株式会社 回転子鉄心部材及び永久磁石固定方法
JP2010207089A (ja) 2010-06-21 2010-09-16 Mitsubishi Electric Corp 永久磁石埋込型モータの回転子
JP2010207090A (ja) 2010-06-21 2010-09-16 Mitsubishi Electric Corp 永久磁石埋込型モータの回転子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235189A (ja) * 2002-02-04 2003-08-22 Toyota Motor Corp 回転電機のロータの磁石保持構造
JP2010226882A (ja) * 2009-03-24 2010-10-07 Daikin Ind Ltd 回転子用端板、永久磁石支持部材及び回転子
JP2011147323A (ja) * 2010-01-18 2011-07-28 Toyota Motor Corp Ipmモータ用ロータとipmモータ
JP2012157090A (ja) * 2011-01-21 2012-08-16 Asmo Co Ltd 磁石埋込型ロータ、及びモータ

Also Published As

Publication number Publication date
CN203589986U (zh) 2014-05-07
JPWO2014054688A1 (ja) 2016-08-25
GB2520657B (en) 2020-05-20
CN104704714A (zh) 2015-06-10
CN104704714B (zh) 2018-02-09
GB2520657A (en) 2015-05-27
GB201505538D0 (en) 2015-05-13
JP5976122B2 (ja) 2016-08-23
WO2014054688A1 (ja) 2014-04-10
US9762098B2 (en) 2017-09-12
DE112013004896T5 (de) 2015-06-18
KR20150066550A (ko) 2015-06-16
US20150236558A1 (en) 2015-08-20
KR101699190B1 (ko) 2017-01-23

Similar Documents

Publication Publication Date Title
WO2014054150A1 (ja) 永久磁石埋込型電動機
JP5141749B2 (ja) エンドプレートおよびこれを用いた回転電機のロータ
US6967424B2 (en) Rotor assembly and stator assembly for an electrical machine
JP5387033B2 (ja) 分割型回転子及び電動機
CN109314413B (zh) 永磁铁式同步机及永磁铁式同步机的固定件的制造方法
JP5278551B2 (ja) 回転電機用ロータコアおよびその製造方法
JP2011254677A (ja) モータのロータおよびその製造方法
KR101177416B1 (ko) 영구자석식 회전 전기기계
US9577483B2 (en) Rotor for a permanent-magnet embedded motor having permanent magnets fitted into a plurality of magnet insertion holes formed in a circumferential direction
JP2007151321A (ja) 回転電機のロータ
JP6147430B2 (ja) 永久磁石埋込型電動機
US6927519B2 (en) Rotor assembly for an electrical machine and permanent magnet motor comprising such a rotor assembly
JP2004023864A (ja) 永久磁石回転電機の回転子
JP4286642B2 (ja) 永久磁石式回転子
JP6112970B2 (ja) 永久磁石式回転電機
JPH05219668A (ja) 永久磁石式回転子
JP6328338B2 (ja) 電動機および空気調和機
WO2017009902A1 (ja) 電動機および空気調和機
JP5200333B2 (ja) 電動機の回転子製造方法および回転子
KR100648839B1 (ko) 하이브리드 전기자동차용 영구자석 매입형 동기전동기의회전자 코어 구조
JP2012125111A (ja) アウターロータ型回転機のロータ
JP6336221B1 (ja) ロータ、回転電機及びそのロータの製造方法
JP4093364B2 (ja) 回転電機用封止永久磁石体並びにそれを用いた永久磁石回転電機及び回転子
JP2005080344A (ja) 永久磁石式回転子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP