WO2014048287A1 - 光源系统及相关投影系统 - Google Patents

光源系统及相关投影系统 Download PDF

Info

Publication number
WO2014048287A1
WO2014048287A1 PCT/CN2013/084025 CN2013084025W WO2014048287A1 WO 2014048287 A1 WO2014048287 A1 WO 2014048287A1 CN 2013084025 W CN2013084025 W CN 2013084025W WO 2014048287 A1 WO2014048287 A1 WO 2014048287A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
wavelength
emitted
optical channel
Prior art date
Application number
PCT/CN2013/084025
Other languages
English (en)
French (fr)
Inventor
胡飞
李屹
曹亮亮
杨毅
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/432,018 priority Critical patent/US9746756B2/en
Priority to JP2015533429A priority patent/JP6185069B2/ja
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Priority to KR1020177006535A priority patent/KR101901674B1/ko
Priority to KR1020177006536A priority patent/KR101816072B1/ko
Priority to KR1020157008297A priority patent/KR101830214B1/ko
Priority to KR1020177006525A priority patent/KR101816079B1/ko
Priority to EP13842711.7A priority patent/EP2902844B1/en
Priority to EP18203295.3A priority patent/EP3454117A1/en
Priority to KR1020177006524A priority patent/KR20170029662A/ko
Priority to KR1020177006531A priority patent/KR101816076B1/ko
Priority to KR1020177006538A priority patent/KR20170030657A/ko
Publication of WO2014048287A1 publication Critical patent/WO2014048287A1/zh
Priority to US15/599,306 priority patent/US9897903B2/en
Priority to US15/599,364 priority patent/US10197897B2/en
Priority to US15/599,326 priority patent/US9897901B2/en
Priority to US15/599,374 priority patent/US10095095B2/en
Priority to US15/599,336 priority patent/US10228613B2/en
Priority to US15/599,297 priority patent/US9897900B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/08Controlling the distribution of the light emitted by adjustment of elements by movement of the screens or filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3117Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing two or more colours simultaneously, e.g. by creating scrolling colour bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources

Definitions

  • This invention relates to the field of illumination and display technology, and more particularly to a light source system and associated projection system. Background technique
  • a plurality of primary colors of light alternately enter the DMD (DMD) to be modulated, and the modulated monochromatic light images are rapidly alternately switched on the screen, and further A monochrome image of each time sequence is mixed together using a visual residual effect of the human eye to form a color image.
  • DMD Digital Micromirror Device
  • R red, red
  • G green, green
  • B blue, blue
  • the most common practice for obtaining trichromatic timing light is to sequentially excite different segments of the color wheel with excitation light to sequentially emit different colors of light.
  • the excitation light source is a blue LED (Light Emitting Diode) or a blue laser.
  • the color wheel has three partitions, one partition is provided with a light transmitting area for transmitting blue light, and the other two partitions are respectively provided with green phosphor and red phosphor for respectively absorbing excitation light and generating green laser light and The red is laserd.
  • the red phosphor is a bottleneck that limits the operational life and luminous efficiency of the light source.
  • the red light-emitting phosphor has low light conversion efficiency, and the energy lost is converted into heat, which causes the temperature of the phosphor to rise rapidly, which in turn affects its luminous efficiency and service life, forming a vicious circle.
  • the technical problem to be solved by the present invention is to provide a light source system which has both luminous efficiency and low cost.
  • An embodiment of the present invention provides a light source system, including:
  • a light emitting device configured to sequentially emit the first light and the second light
  • a light splitting system for dividing the first light from the light emitting device into the first range of wavelength light and the second range of wavelength light respectively emitted along the first light channel and the second light channel, and also for using the second light from the light emitting device At least part of the light exits along the first light channel;
  • a first spatial light modulator for modulating light emitted by the spectroscopic system along the first optical channel;
  • a second spatial light modulator for modulating at least a portion of the light exiting the second optical channel by the spectroscopic system.
  • Embodiments of the present invention also provide a projection system including the above light source system.
  • the present invention includes the following beneficial effects:
  • the present invention splits the first light into a first range of wavelength light and a second range of wavelength light, and the two range of wavelength light and at least part of the light of the second light are emitted at a time, such that only two beams are emitted at a certain time period, and Only one beam is emitted during a period of time, so that two spatial light modulators can be used to modulate the three beams; and the invention can use the wavelength conversion material with higher light conversion efficiency to generate the laser beam splitting into the other two. Low light conversion efficiency of the wavelength conversion material color light to improve the efficiency of the light source.
  • Figure 1 is a yellow light spectrum produced by a yellow phosphor.
  • Figure 2 is a schematic illustration of one embodiment of a light source system of the present invention
  • Figure 3A is an embodiment of a timing diagram of light exiting from the wavelength conversion layer 203;
  • 3B and 3C are an embodiment of modulation time diagrams of DMD 211 and DMD 213 for different color lights, respectively;
  • Figure 5 is a schematic view showing still another embodiment of the light source system of the present invention.
  • Figure 6 is a schematic view showing still another embodiment of the light source system of the present invention.
  • Figure 7 is a schematic view showing still another embodiment of the light source system of the present invention.
  • Figure 8 is a front elevational view of one embodiment of the color wheel 703 of Figure 7;
  • Figure 9 is a front elevational view showing still another embodiment of the first beam splitting device 609 of Figure 6;
  • Figure 10 is a schematic view showing still another embodiment of the light source system of the present invention.
  • Figure 11 is a schematic illustration of a light source structure in which a wavelength conversion layer is fixedly coupled to a first beam splitting device
  • Figure 12 is a schematic view showing still another embodiment of the light source system of the present invention.
  • FIG. 13A is a timing chart of the blue light and the yellow light emitted from the wavelength conversion layer 1203; 13B and FIG. 13C are modulation time diagrams of different color lights of DMD 1211 and DMD 1213, respectively;
  • Figure 14 is a schematic view showing a light-emitting source of still another embodiment of the light source system of the present invention
  • Figure 15 is a schematic view showing the structure of the light-emitting source group of the embodiment shown in Figure 14
  • Figure 16 is still another embodiment of the light source system of the present invention. Schematic diagram of an example
  • 17A is a color timing diagram of light emitted from the light source system shown in FIG. 16;
  • 17B and 17C are modulation time diagrams of different color lights of DMD1209 and DMD1211, respectively;
  • Figure 18 is a schematic view showing still another embodiment of the light source system of the present invention.
  • FIG. 19 is an embodiment of a front view of a filter device in the light source system shown in FIG. 18;
  • FIG. 20 is a timing chart of light emission of two light sources of the light source system shown in FIG. 18 and a modulation timing chart of two DMDs;
  • Figure 21 is still another embodiment of a front view of the filter device in the light source system shown in Figure 18;
  • Figure 22 is a schematic view showing still another embodiment of the light source system of the present invention.
  • Figure 23 is a front elevational view of the filter device in the light source system shown in Figure 22;
  • Figure 24 is a schematic diagram of an illumination source of still another embodiment of the light source system of the present invention
  • Figure 25 is a timing diagram of illumination of three light sources of the light source system of Figure 24 and a modulation timing diagram of two DMDs;
  • Figure 26 is a schematic diagram of a light-emitting source of still another embodiment of the light source system of the present invention
  • Figure 27 is a timing chart of illumination of four light sources of the light source system of Figure 26 and a timing chart of modulation of two DMDs;
  • Figure 28 is a schematic view showing a light-emitting source of still another embodiment of the light source system of the present invention
  • Figure 29 is an embodiment of a front view of the wavelength conversion layer in the light source system shown in Figure 28;
  • Figure 30 is a timing chart of the operation of the light source system shown in Figure 28;
  • Figure 31 is a schematic view showing a light-emitting source of still another embodiment of the light source system of the present invention.
  • Figure 32 is a schematic view showing the structure of an embodiment of the light source system of the present invention.
  • Figure 33 is a schematic view showing the structure of still another embodiment of the light source system of the present invention. detailed description
  • the inventive idea of the present invention includes: sequentially emitting the first light and the second light through the light emitting device, and dividing the first light into two different wavelength ranges of light propagating along different paths through the light splitting system, so that two light beams are respectively emitted in a certain period of time.
  • the light is modulated; at the same time, the yellow laser light generated by the excitation of the yellow light phosphor having high light conversion efficiency can be split into red light and green light, thereby avoiding the use of red light phosphor with low light conversion efficiency. Red light is produced to increase the efficiency of the light source system.
  • Fig. 1 is a specific example of a yellow light spectrum produced by a yellow phosphor.
  • the yellow light produced by the phosphor has a wide optical range, covering the spectrum of green light and the spectrum of red light. Therefore, the yellow light can be split into green light and red light.
  • the spectrum of the yellow light mentioned below covers the red component and the green component, and the yellow light can be split into red and green light propagating along different paths through the filter device.
  • FIG. 2 is a schematic diagram of an embodiment of a light source system of the present invention.
  • the light source system 200 of this embodiment includes a light emitting device 1, a light splitting system 2, a first spatial light modulator 211, and a second spatial light modulator 213.
  • the light-emitting device 1 includes an excitation light source 201 for generating excitation light, a wavelength conversion layer 203, and a first driving device 205.
  • the wavelength conversion layer 203 includes a first partition and a second partition.
  • the first partition is provided with a first wavelength converting material for absorbing excitation light and emitting first light.
  • the second partition is provided with a light transmitting area for The excitation light is transmitted, and the excitation light is the second light.
  • the excitation light source 201 is used to generate blue excitation light.
  • the excitation light source 201 is preferably a laser source, and may also be an LED or other solid state light source.
  • the first partition on the wavelength conversion layer 203 is provided with a yellow phosphor for absorbing the excitation light and generating a yellow laser, which is the first light; and the second partition is a transparent region for transmitting blue light, which is Second light.
  • the wavelength conversion layer 203 has a disk shape, and different sections on the wavelength conversion layer are distributed along the circumference of the disk.
  • the first driving device 205 is configured to drive the wavelength conversion layer 203 such that the spot formed on the wavelength conversion layer 203 of the excitation light acts on the wavelength conversion layer 203 in a predetermined path, so that the excitation light is The sequence is illuminated on the first partition and the second partition such that the first light and the second light are sequentially emitted.
  • the first driving device 205 is a motor for driving the wavelength conversion layer 203 to periodically rotate.
  • the spectroscopic system 2 is configured to split the first light from the light emitting device 1 into first range wavelength light and second range wavelength light emitted along the first light channel and the second light channel; and also to use the second light from the light emitting device 1 At least part of the light of the light exits along the first light path.
  • the first spatial light modulator 211 is for modulating the light emitted by the spectroscopic system 2 along the first optical channel.
  • the second spatial light modulator 213 is for modulating at least a portion of the light exiting the second optical path by the spectroscopic system 2. Light modulated by the first spatial light modulator 211 and the second spatial light modulator 213 is combined and enters the projection area.
  • the spectroscopic system 2 splits the yellow light into green light, i.e., the first range of wavelength light, and the red light, i.e., the second range of wavelength light.
  • green light i.e., the first range of wavelength light
  • red light i.e., the second range of wavelength light.
  • the first range wavelength light and the second range wavelength light are not necessarily green light and red light, respectively. It is only a relative concept that the first range wavelength light and the second range wavelength light may also be red light and green light, respectively.
  • the first spatial light modulator 211 is used to modulate the temporal blue and green light
  • the second spatial light modulator 213 is used to modulate the red light. Since the conversion efficiency of the yellow phosphor is high, and the blue light is directly generated by the light-emitting device, the yellow light is excited by the blue light to generate the three primary colors, so that the efficiency of the light source is high.
  • the spectroscopic system 2 includes a combination of TIR (Total Internal Reflection) prisms 207 and 209.
  • the two prisms are triangular cylinders, wherein the sides of the first prism 207 are 207a, 207b and 207c, and the sides of the second prism 209 are 209a, 209b and 209c; wherein the side 207c of the first prism 207 and the side of the second prism 209 209c meets.
  • the laser light 23 emitted from the wavelength conversion layer 203 enters the prism from the side surface 207b of the first prism 207, and is totally reflected on the side surface 207a, transmitted through the side surface 207c, and transmitted from the side surface 209c of the second prism 209 into the second prism 209. Arrived on the side 209a.
  • the side surface 209a is a plated surface on which a filter film is plated, which transmits red light and reflects blue light and green light. The time-generated blue and green light is reflected by the coated surface 209a and then totally reflected on the side 209c and transmitted on the side 209b to enter the first spatial light modulator 211 from the first optical path.
  • the modulated blue and green light is incident on the side surface 209b at another angle and transmitted, and is totally reflected on the side surface 209c, then reflected by the plating surface 209a, transmitted from the side surface 209c, and transmitted from the first prism 207. Go out.
  • the red light enters the second spatial light modulator 213 from the second optical channel after being transmitted through the coated surface 209a.
  • the modulated red light is sequentially transmitted from the second prism 209 and the first prism 207, and combined with the modulated green light into a beam.
  • the spatial light modulator can be DMD or other type of spatial light modulator such as liquid crystal.
  • DMD is taken as an example in the following embodiments.
  • Fig. 3A is an embodiment of a timing chart of light emitted from the wavelength conversion layer 203.
  • the first partition on the wavelength conversion layer 203 occupies 270 degrees
  • the second partition occupies 90 degrees.
  • the incident light path entering the excitation light starts, and during the period T of the rotation of the wavelength conversion layer 203, the operation of the light source system is as follows.
  • the wavelength conversion layer 203 emits blue light
  • the wavelength conversion layer 203 emits yellow light.
  • DMD 211 is used to modulate blue light in the first 0.25T
  • DMD 213 is not used to modulate the beam.
  • DMD 211 is used to modulate green light
  • DMD 213 is used to modulate red light
  • Fig. 3B and Fig. 3C are respectively an embodiment of modulation time charts of DMD 211 and DMD 213 for different color lights.
  • red light and green light are all utilized in each cycle T, making the use of the light source most efficient.
  • this may not be the case because it may cause the color coordinates of the white light mixed by the three primary colors to deviate from the predetermined color coordinates.
  • the color coordinates of the white light can be controlled to be satisfactory by using the length of the modulation time of the two DMDs for different color lights.
  • the modulation time of the DMD 213 can be controlled to be shortened so that the red light for a certain period of time is invalid light.
  • FIG. 4 is still another embodiment of the modulation time map of the red light by the DMD 213.
  • the rear portion of the red light in each period T is discarded.
  • the front part of the red light is discarded or the middle one or several sections are discarded.
  • the ratio of the first partition and the second partition above is only an example, and the actual ratio is not limited. In practical use, the proportion of the first partition and the second partition can be determined according to actual needs.
  • the illuminating device sequentially emits the first light and the second light, and divides the first light into two different wavelength ranges of light propagating along different paths through the spectroscopic system, so that two light beams are respectively emitted in a certain period of time.
  • the controller modulates three different beams of light.
  • the filter curve on the coating surface 209a of the TIR prism 209 in the spectroscopic system 2 may also transmit green light and blue light, and reflect red light.
  • the DMD 211 is used to modulate red light.
  • DMD 213 is used to modulate green and blue light; or the filter curve on coated surface 209a is changed to transmit green light and reflect red and blue light; then DMD 211 is used to modulate red and blue light, and DMD 213 is used to modulate green Light.
  • the filter curve of the coating surface 209a can be designed according to actual needs.
  • two prisms are used to simultaneously achieve the splitting of the green light component and the red light component in the yellow light and the light combining of the light beams modulated by the two spatial light modulators.
  • a spectroscopic filter can also be used to split the yellow light, and a filter is used at the rear end of the optical paths of the two DMDs to combine the modulated beams.
  • Fig. 5 is a schematic view showing still another embodiment of the light source system of the present invention.
  • the light source system 500 includes a light emitting device 1, a light splitting system 2, a first spatial light modulator 511 and a second spatial light modulator 513.
  • the illuminating device 1 includes an excitation light source 501, a wavelength conversion layer 503, and a first driving device 505.
  • the spectroscopic system 2 includes a filter 509 and a mirror 507.
  • the filter 509 is configured to receive the yellow light 53 and the blue light 55 sequentially emitted by the wavelength conversion layer 503, and the green light 53a transmitted through the blue light 55 and the yellow light 53 is emitted from the first optical channel to the DMD 511 and reflected in the yellow light 53
  • the red light 53b is incident on the mirror 507, and the reflection mirror 507 reflects the red light 53b from the second optical channel to the DMD 513.
  • the light source system 500 further includes a filter 515 and a mirror 517 disposed on the outgoing light paths of the DMD 511 and the DMD 513, respectively.
  • the mirror 517 is for reflecting the blue and green light of the time sequence modulated by the DMD 511 to the filter 515.
  • the filter 515 is for reflecting blue and green light from the mirror 517 and transmitting red light from the DMD 513 to combine the beams modulated by the DMD 511 and the DMD 513 into one beam.
  • the two light beams respectively emitted by the DMD 511 and the DMD 513 can be condensed into one beam by setting the light exit angle of the DMD 511 and the DMD 513.
  • the light can be omitted. Need The two beams of light respectively emitted by the DMD 511 and the DMD 513 are condensed into one beam, so that the mirror 517 and the filter 515 can be omitted.
  • FIG. 6 is a schematic diagram of still another embodiment of the light source system of the present invention.
  • the light source system 600 includes a light emitting device 1, a light splitting system 2, a first spatial light modulator 611 and a second spatial light modulator 613.
  • the illuminating device 1 includes an excitation light source 601, a wavelength conversion layer 603, and a first driving device 605.
  • the spectroscopic system 2 includes a first spectroscopic device 609, a second driving device 607, and a first control device (not shown).
  • the light source system 600 further includes a collecting lens 615 disposed on the optical path between the light-emitting device 1 and the light-splitting system 2 for collecting the yellow light 63 and the blue light sequentially emitted by the light-emitting device. 65.
  • the collected light is relayed to the first spectroscopic device 609.
  • the first beam splitting means 609 has a disk shape and is divided into a first section and a second section in the circumferential direction.
  • the second driving device 607 is for driving the first beam splitting device to rotate such that the first segment and the second segment are sequentially in the outgoing light path of the light emitting device 1.
  • the first control device controls the rotation of the first driving device 605 and the second driving device 607 such that the first beam splitting device 609 rotates synchronously with the wavelength conversion layer 603 such that the first segment is located at the first light, that is, the yellow light 63
  • the second section is located on the second light, that is, the outgoing light path of the blue light 65.
  • the first section on the first beam splitting means 609 is for transmitting green light from the yellow light 63 from the second light
  • the second section is for reflecting blue light 65 and exiting from the first optical channel to the DMD 611.
  • the first segment can also reflect red light and transmit green light; or the second segment can also transmit part of the blue light and reflect part of the blue light, wherein the transmitted and reflected two blue lights can be respectively
  • the DMD 611 is modulated with the DMD 613, and it is also possible to modulate only one of the two beams.
  • FIG. 7 is a schematic diagram of still another embodiment of the light source system of the present invention.
  • the light source system 700 includes a light emitting device 1, a beam splitting system 2, a first spatial light modulator 711, and a second spatial light modulator 713.
  • the light emitting device 1 includes an excitation light source 701, a wavelength conversion layer 703B, and a first driving device 705.
  • the spectroscopic system 2 includes a first spectroscopic device 703A and a light guiding device 3.
  • the differences between this embodiment and the embodiment shown in FIG. 6 include:
  • the wavelength conversion layer 703B and the first beam splitting means 703A are fixedly connected and disposed together on the color wheel 703.
  • Fig. 8 is a front elevational view showing an embodiment of the color wheel 703 of Fig. 7.
  • the color wheel 703 is provided with two annular regions 703 A and 703B which are concentrically arranged and nested with each other, wherein the ring 703 A is a light splitting region, that is, a first light splitting device; the ring 703B is a wavelength conversion region, that is, a wavelength conversion layer. .
  • the splitting region 703A includes a first segment S1 for transmitting green light to the first optical channel and reflecting red light for the second optical channel to exit; the splitting region 703A further includes a second segment S2 for transmitting blue light to The first light channel exits.
  • the wavelength conversion region 703B includes a first partition W1 provided with a yellow wavelength conversion material for generating a yellow laser light, the partition and the first segment S1 of the spectroscopic region 703A being disposed at 180 degrees with respect to the center of the ring;
  • the second partition W2 is provided with a light transmitting area for transmitting blue light, and the partition and the second section S2 of the light splitting area 703A are disposed at 180 degrees with respect to the center of the ring.
  • the first driving device 705 is used to drive the color wheel 703 to rotate such that the first partition W1 and the second partition W2 are sequentially located on the outgoing light path of the light-emitting device 1.
  • the light guiding means 3 is for guiding the time-series light emitted from the first section W1 and the second section W2 on the wavelength conversion layer 703B to the first section S1 and the second section S2 on the first beam splitting means 703A, respectively.
  • the specific explanation is as follows.
  • the light guiding device 3 includes a lens 707, mirrors 709 and 715.
  • the excitation light 71 generated by the excitation light source 701 is incident on the first partition W1 on the wavelength conversion region 703B and emits yellow light, and the emitted light 73 is emitted from the wavelength conversion region 703B.
  • the side facing away from the excitation light is emitted, and is collected by the lens 707 and sequentially reflected by the mirrors 709 and 715 and incident on the first section S1 on the spectroscopic area 703A at 45 degrees, the green light component and the red light component in the yellow light. They are transmitted and reflected through the first segment S2, respectively, and exit to the DMD 711 along the first optical channel and to the DMD 713 along the second optical channel, respectively.
  • the excitation light 71 is incident on the second section W2 and emits blue light, which is guided by the light guiding device 3 to be incident on the second section S2 at an angle of 45 degrees, and is transmitted from the second optical channel to the DMD 711 after being transmitted.
  • the line A formed by the excitation light 71 on the spectroscopic region 705A and the spot B formed on the wavelength conversion region 703B pass through the center of the ring.
  • the wavelength conversion layer and the first beam splitting device can be rotated synchronously, the synchronization of the two is better, and the control device is not required to control the synchronization, thereby reducing the cost and the volume of the light source.
  • Figure 9 is a front elevational view of yet another embodiment of the first beam splitting device 609 of Figure 6.
  • the first spectroscopic device 609 in this embodiment includes three sections.
  • the first segment R1 is for transmitting red light to the first optical channel and reflecting green light to the second optical channel for exit.
  • the second section R2 is for transmitting green light to the first light channel and reflecting red light to the second light channel for exit.
  • the third section is for transmitting a portion of the blue light to the first optical channel and reflecting a portion of the blue light to the second optical channel.
  • the first control device is configured to control the first beam splitting device 609 such that the first segment R1 and the second segment R2 are located on the outgoing light path of the first light, and the third segment R3 is located at the second light exit.
  • the first section R1 is located on the outgoing light path of the yellow light in the first partial time t1
  • the second section R2 is located on the outgoing light path of the yellow light in the latter part of the time t2, and is emitted.
  • the third section R3 is located on the outgoing light path of the blue light.
  • the DMD 611 sequentially receives G (green, green), R (red, Red), B-sequence light
  • DMD 613 sequentially receives R, G, B sequence light. Therefore, compared to the above embodiments, the two DMDs in the embodiment can respectively receive the three primary color sequence lights, and each DMD can respectively modulate one image, and at any time, the two DMDs are in the working state, compared with The above embodiment enables the DMD to be more fully utilized.
  • the wavelength conversion layer can also be fixedly connected to the first beam splitting device in this embodiment.
  • the first segment S1 on the spectroscopic region on the color wheel 703 in the light source system shown in FIG. 7 is divided into a first sub-region and a second sub-region, wherein the first sub-region is used to transmit red light to The first optical channel exits to the DMD 611 and reflects the green light to the second optical channel to the DMD 613; the second sub-region transmits the green light to the first optical channel to the DMD 613, and reflects the red light to the second light The channel exits to the DMD 611.
  • FIG. 10 is a schematic diagram of still another embodiment of the light source system of the present invention.
  • the light source System 1000 includes a light emitting device 1, a beam splitting system 2, a first spatial light modulator 1011, and a second spatial light modulator 1013.
  • the light emitting device 1 includes an excitation light source 1001, a wavelength conversion layer 1003B, and a first driving device 1005.
  • the spectroscopic system 2 includes a first spectroscopic device 1003A and a light guiding device 3.
  • the wavelength conversion layer 1003B and the first spectroscopic device 1003A are fixedly connected to each other and disposed on the color wheel 1003.
  • the wavelength conversion region 1003B is set to be reflective, that is, the optical path of the incident light of the wavelength conversion region 1003B and the optical path of the outgoing light are located on the same side.
  • the first segment S1 on the wavelength conversion region 1003B and the first segment W1 on the spectroscopic region 1003A are set at 0 degrees
  • the second segment S2 on the second segment S2 and the spectroscopic region 1003A are set at 0 degrees, that is, the spectroscopic region. It is set adjacent to its corresponding wavelength conversion area.
  • the light guiding device 3 includes a mirror 1007 with a through hole, and collecting lenses 1009 and 1015.
  • the excitation light source 1001 is a laser light source for generating a blue laser light 101.
  • the mirror 1007 is disposed on the outgoing light path of the blue laser light 101. Since the optical expansion amount of the laser is relatively small, and the optical expansion amount of the laser light is large, the blue laser light 101 passes through the through hole and passes through the collecting lens 1009 and enters the wavelength conversion region 1003B, and the wavelength conversion region 1003B is emitted.
  • the collected sequence light is collected by the collecting lens 1009 and is mostly reflected by the reflecting mirror 1007 to the spectroscopic area 1003A.
  • the spot formed on the beam splitting region 1005A and the spot formed on the wavelength converting region 1005B are located on the same radius line on the color wheel 1005.
  • the light path of the light source system in this embodiment is more compact than the light source system shown in FIG.
  • FIG. 11 is a schematic diagram of another light source structure in which a wavelength conversion layer is fixedly connected to a first beam splitting device.
  • the light source system 1100 includes a light emitting device, a light splitting system 2, a first spatial light modulator 1111 and a second spatial light modulator 1113.
  • the light emitting device includes an excitation light source 1101, a wavelength conversion layer 1103B, and a first driving device 1105.
  • the spectroscopic system 2 includes a first spectroscopic device 1103A and a light guiding device 3.
  • the wavelength conversion layer 1103B and the first light splitting device 1103A are fixedly connected to each other and disposed on the color wheel 1003.
  • the wavelength conversion region 1103A and the light separation region 1103B are not two annular regions that are nested with each other.
  • a circular stage 1103C is disposed in a central region of the color wheel 1103, and the wavelength conversion layer area 1103B is disposed.
  • the light splitting area 1103A is disposed on a circular ring area of the color wheel 1103.
  • the blue laser light 111 sequentially passes through the through hole of the mirror 1107 and the collecting lens 1109, and is incident on one of the sections on the wavelength conversion region 1103B.
  • the sequence light 113 emitted from the wavelength conversion region 1103B is collected by the collecting lens 1109 and mostly reflected by the mirror 1107 to a partition on the spectroscopic region 1103A corresponding to the segment where the spot on the wavelength conversion region 1103B is located.
  • the wavelength conversion region 1103B is far apart from the light splitting region 1103A, the angle between the reflected light before and after the reflected mirror 1107 is larger. It is easier to separate the light path.
  • the second partition on the wavelength conversion layer may also be provided with a second wavelength converting material for absorbing the excitation light and emitting the second light.
  • a second wavelength converting material for absorbing the excitation light and emitting the second light.
  • an excitation source is used to generate UV light.
  • a yellow phosphor is disposed on the first partition of the wavelength conversion layer for absorbing UV light and generating yellow light; and
  • a blue phosphor is disposed on the second partition for absorbing UV light and generating blue light, the blue light being the second light .
  • the schematic diagram of the light source system of this embodiment is substantially the same as the schematic diagram of the light source system in the above embodiment, except that in the embodiment, the spectroscopic system also splits the second light into the first optical channel and the second optical channel, respectively.
  • the third range wavelength light and the fourth range wavelength light the first spatial light modulator is configured to modulate the first range wavelength light of the first light and the third range wavelength light of the second light emitted along the first light channel
  • the second spatial light modulator is configured to modulate the second range wavelength light of the first light emitted along the second light channel, or also to use the fourth range wavelength light of the second light emitted along the second light channel Make modulation.
  • the excitation light source 501 is used to generate UV light.
  • a yellow phosphor is disposed on the first partition of the wavelength conversion layer 503 for absorbing UV light and generating yellow light; and a blue phosphor is disposed on the second partition for absorbing UV light and generating blue light, the blue light being second Light.
  • the blue light produced by the blue phosphor has a wider optical range and covers a part of the spectrum of the green light spectrum.
  • the filter 505 in the spectroscopic system is simultaneously arranged to split the second light, i.e., blue light, generated by the second partition into a third range of wavelength light and a fourth range of wavelength light, i.e., the second blue light and the second green light.
  • the second blue light and the second green light produced have a narrow spectrum and a high color purity.
  • the coating in the second prism 209 can be applied.
  • the face 209a is simultaneously disposed to reflect the blue component of the blue laser light and transmit the green component, or to transmit the blue component and reflect the green component.
  • the filter 505 may be disposed to simultaneously reflect the second blue light in the blue light receiving laser and transmit the second green light, or transmit the second blue light and reflect the second green light. .
  • the same spectroscopic device in the spectroscopic system is used for splitting the first light and the second light.
  • the splitting system can also separately split the first light and the second light by two splitting means.
  • Fig. 12 is a schematic view showing still another embodiment of the light source system of the present invention.
  • the light source system 1200 includes a light emitting device 1, a light splitting system 2, a first spatial light modulator 1211 and a second spatial light modulator 1213.
  • the light emitting device 1 includes an excitation light source 1201, a wavelength conversion layer 1203, and a first driving device 1205.
  • the spectroscopic system 2 includes filters 1221, 1209 and 1207, and a mirror 1219.
  • the filter 1221 is located on the optical path of the light-emitting device 1 for emitting the time-series light, and is for reflecting the second blue light 65b of the blue light-receiving laser and transmitting the second green light 65a and the yellow received laser light 63 of the blue light-receiving laser.
  • the filter 1209 is located on the outgoing light path of the transmission beam of the filter 1221 for transmitting the second green light 65a of the blue laser light and the first green light 63a of the yellow laser light 63 and reflecting the yellow laser light 63. Red light 63b. Therefore, the second green light 65a and the first green light 63a transmitted through the filter 1209 are emitted to the DMD 1211 along the first optical path.
  • the red light 63b reflected by the filter 1209 is reflected by the filter 1207 and then emitted to the DMD 1213 along the second optical channel, and the second blue light 65b reflected by the filter 1221 is reflected by the mirror 1219 and the filter 1207, respectively. After transmission, it exits to the DMD 1213 along the second optical channel.
  • FIG. 13A is a timing chart of the blue light and yellow light emitted from the wavelength conversion layer 1203.
  • T the period T of the rotation of the wavelength conversion layer 1203
  • the wavelength conversion layer 1203 emits blue light in the first 0.25T
  • the wavelength conversion layer 1203 emits yellow light in the latter 0.75T.
  • 13C are modulation timing charts of DMD1211 and DMD1213 for different color lights, respectively.
  • the first 0.25T inner DMD1211 is used to modulate the second green light
  • the DMD 1213 is used to modulate the second blue light.
  • DMD 1213 Used to modulate red light.
  • the second green light may not be used for modulation, and as long as the DMD 1211 does not work when it enters the DMD 1211, the portion of the light may not be modulated.
  • the difference in light wavelength is utilized, and the light beam is transmitted and reflected by a filter or a filter film to perform splitting or combining.
  • the light on a certain optical path is transmitted or reflected on a spectroscopic filter, and can be arbitrarily designed. Therefore, in all embodiments of the present invention, the specific optical structures of the light passing through the filter or the filter film in different wavelength ranges on the optical path are examples for convenience of explanation, and are not limited to the use of other light splitting.
  • a plurality of partitions may also be disposed on the wavelength conversion layer 1203, wherein different wavelength conversion materials or light transmission regions are disposed on different partitions. And the beam emerging from at least one of the zones is split into two different wavelength ranges of light such that the two different wavelength ranges of light enter the two spatial light modulators respectively for modulation.
  • the first partition and the second partition may also be provided with a wavelength converting material for generating light of other colors, and the yellow phosphor and the blue phosphor described above are not limited.
  • the wavelength converting material may also be a material having wavelength conversion ability such as a quantum dot or a fluorescent dye, and is not limited to a phosphor.
  • Figure 14 is a schematic illustration of an illumination source of yet another embodiment of a light source system in accordance with the present invention.
  • the light-emitting device 1 generates the time-series light through the color wheel, and in the embodiment, the light-emitting device 1 sequentially reflects the different color light emitted by the LED lamp disk through the rotating mirror to generate Compared with the first embodiment, in the embodiment, the mirror can be used to control the cost.
  • the illuminating device 1 includes an illuminating light source group 1401, a first reflecting device 1405, a second reflecting device 1403, and a second driving device (not shown).
  • the illuminating light source group 1401 includes a first illuminating device (in the present embodiment, a yellow phosphor LED 1401a) and a second illuminating device (in the present embodiment, a blue LED 1401b), wherein the phosphor LED refers to coating the phosphor On the surface of the LED chip, the light emitted by the LED is used to excite the phosphor and emit fluorescence.
  • a common yellow phosphor LED refers to a yellow phosphor applied to the surface of a blue LED chip and excited by blue light emitted by the blue LED to generate yellow light.
  • Yellow LED 1401a and blue LED 1401b are distributed in a ring shape, and yellow LED 1401a and blue The direction in which the light LED 1401b emits light is parallel to the central axis of the center of the ring.
  • the second reflecting device in this embodiment, is a rotating mirror 1403, which includes a reflecting surface 1403a disposed on a side of the light emitted from the light source group 1401 and located between the first light emitting device 1401a and the second light emitting device 1401b. .
  • the first reflecting device 1405 includes two reflecting elements, which are mirrors in the present embodiment, respectively located on the outgoing light paths of the first light emitting device 1401a and the second light emitting device 1401b, for reflecting the light emitted from the different light emitting devices to The second reflecting device 1403.
  • the second driving device 1403 drives the second reflecting device 1403 to move, so that the reflecting surface 1403a is sequentially placed on the outgoing light paths of the two reflective elements of the first reflecting device 1405 to sequentially reflect the light emitted by the first and second light emitting devices. .
  • the illuminating light source group 1401 may also include a plurality of illuminating device arrays, which in this embodiment are LED arrays.
  • the reflecting device group 1405 includes a plurality of mirrors respectively disposed on the outgoing light paths of the plurality of light emitting device arrays in the light source 1401.
  • FIG. 15 is a schematic structural view of the illuminating light source group 1401 in the present embodiment.
  • the LEDs in the illuminating light source group 1401 are disposed on a disk centered on the rotating mirror 1403, and are circumferentially arranged around the rotating mirror 1403, and are radially distributed in an array around the rotating mirror 1403.
  • LEDs emitting the same color of light in the LED array are arranged in the circumferential direction, and the yellow phosphor LED 1401a and the blue LED 14101b are alternately distributed.
  • the light source system 1600 includes a light emitting device 1, a light splitting system 2, a first spatial light modulator 1611 and a second spatial light modulator 1613.
  • the light emitting device 1 includes a first light emitting device, a second light emitting device, and a first control device (not shown), wherein the first light emitting device is configured to generate first light, and the second light emitting device is configured to generate second light;
  • the apparatus is configured to alternately illuminate the first light emitting device and the second light emitting device for at least a portion of the time period to emit the first light and the second light in time series.
  • the first light emitting device is a yellow LED 11a
  • the second light emitting device is a blue LED l ib for generating yellow light and blue light, respectively.
  • the first control device is configured to respectively control the opening and closing of the light-emitting devices of different colors, so that the blue LED l lb and the yellow LED l la are alternately lit to produce The sequence of yellow and blue light.
  • the first control means can control the yellow LEDs la la and the blue LEDs l lb to illuminate simultaneously during a certain period of time. Since both the blue light and the green light obtained after the yellow light splitting are modulated in the DMD 1611, the DMD 1611 is used for the combination of the blue light and the green light during the period in which the yellow LED l la and the blue LED l lb are simultaneously lit. Cyan light modulation has no effect on DMD 1613. During this time period, due to the mixing of the two lights, the DMD 1611 is able to modulate one more color, making the DMD 1611 capable of modulating a larger color gamut.
  • Fig. 17A is a color timing chart of light emitted from the light source system 1600.
  • T when the blue LED is lit in tl time, the light-emitting device 1 emits blue light; in the time t2, when the yellow LED is illuminated, the light-emitting device 1 emits yellow light; The blue LED and the yellow LED, the light-emitting device 1 emits the combined light of the two kinds of light, that is, white light.
  • Fig. 17B and Fig. 17C are modulation time diagrams of DMD1209 and DMD1211 for different color lights, respectively.
  • DMD 1611 is used to modulate blue light, DMD1613 is not working in time tl; DMD1611 is used to modulate green light in t2 time, DMD1613 is used to modulate red light; D31611 is used to modulate cyan, and DMD1613 is used to modulate Red light.
  • the two colors of light cannot be illuminated at the same time. Since there are only two DMDs in the present light source system, one of the DMDs is used to separately modulate blue and green light at different times. If the yellow LED la la and the blue LED l lb are kept lit at the same time, there is no two-color light image of blue light and green light, and only an image of cyan light.
  • the filter 1609 in the spectroscopic system 2 is used to transmit red light and reflect green light, the red light obtained by splitting the blue light and the yellow light is modulated in the DMD 1611, and the green light is in the DMD 1613. Make modulation. In the period in which the yellow LEDs la and the blue LEDs lb are simultaneously illuminated, the DMD 1611 is used to modulate the combined light of the blue and red light, that is, the purple light, and has no effect on the DMD 1613.
  • the present embodiment can simultaneously illuminate light-emitting devices of different colors, so that more color light is used for modulation, and thus the color gamut which can be modulated is larger.
  • Figure 18 is a schematic illustration of yet another embodiment of a light source system of the present invention.
  • the light source system 1800 includes a light emitting device 1, a light splitting system 2, and a first spatial light modulation.
  • the device 1811 is coupled to the second spatial light modulator 1813.
  • the spectroscopic system 2 includes a filter device 1805, a second drive device 1806 for driving the movement of the filter device, and a first control device (not shown).
  • the filter device 1805 includes a first segment, a second segment, and a third segment, wherein the first segment is configured to transmit the first range of wavelength light of the first light to the first optical channel, and reflect the second range Wavelength light exits to the second light channel; the second segment is configured to reflect the first range of wavelength light of the first light to the second light channel, and transmit the second range of wavelength light to the first light channel to exit; And transmitting the second light to the first light channel, and reflecting part of the second light to the second light channel.
  • the first control device is configured to control the second driving device 1806 such that at least part of the first segment and at least a portion of the second segment are sequentially located on the outgoing light path of the first light, and at least a portion of the third segment is located in the second The light exits the light path.
  • Fig. 19 is an embodiment of a front view of the filter device in the light source system shown in Fig. 18.
  • the filter unit 1805 has a disk shape in which the respective sections are circumferentially distributed on the disk.
  • the first section 1805A on the filter device 1805 is for transmitting part of the blue light and reflects part of the blue light
  • the second section 1805B is for transmitting green light and reflects red light
  • the third section 1805C is for reflecting green light and transmitting red light.
  • the second driving device 1806 is a motor for driving the filter device 1805 to rotate periodically so that the respective segments are sequentially located on the outgoing light path of the light-emitting device 1.
  • Fig. 20 is a timing chart of illumination of two light sources of the light source system shown in Fig. 18 and a modulation timing chart of two DMDs.
  • a modulation period T in the first tl time, the first section 1805A of the filter device 1805 is located on the outgoing light path of the time series light, then the blue light source 1801 is lit, and the yellow light source 1802 is not working, then the two DMDs are used. For modulating blue light.
  • the second section 1805B of the filter device 1805 is located on the outgoing light path of the time series light, the yellow light source 1802 is illuminated, the blue light source 1801 is not working, the DMD 1811 is used to modulate the green light, and the DMD 1813 is used for Modulate red light.
  • the third section 1805C of the filter device 1805 is located on the outgoing light path of the time series light, the yellow light source 1802 is illuminated, the blue light source 1801 is not working, the DMD 1811 is used to modulate the red light, and the DMD 1813 is used for Modulate green light. In this way, it is possible to cause the two DMDs to separately modulate the time-series three primary colors of light.
  • FIG. 21 is a front view of the filter device in the light source system shown in FIG. Yet another embodiment.
  • the filter device 1805 further includes a fourth segment for reflecting blue light and transmitting yellow light, and unlike the light source system shown in FIG. 18, the first segment 1805A is for transmitting blue light and The yellow light is reflected; when the first segment 1805A and the fourth segment 1805D are located on the outgoing light path of the time series light, the blue light source 1801 and the yellow light source 1802 are simultaneously illuminated.
  • the DMD 1811 sequentially modulates Blu-ray, green, red, and yellow
  • DMD 1813 modulates yellow, red, green, and blue light in sequence.
  • the modulated color adds yellow light, the brightness of the light source system is increased.
  • a blue light source and a yellow light source are used to illuminate different splitting regions on the filter device to provide at least three time series lights for the two DMDs, wherein the blue light source generates The light is split into two beams of blue light to the two DMDs.
  • two blue light sources can also be used to provide two blue lights for two DMD modulations. The details are as follows.
  • FIG 22 is a schematic illustration of yet another embodiment of a light source system of the present invention.
  • the light source system 2200 includes a light emitting device, a light splitting system, a first spatial light modulator 2211 and a second spatial light modulator 2213.
  • the light emitting device includes a first light emitting device 2201 A, a second light emitting device 2202, a third light emitting device 2201B, and a first control device (not shown).
  • the spectroscopic system includes a filter device 2205, a second drive device 2206, and filters 2203 and 2204.
  • the light emitting device further includes a third light emitting device for generating a fourth light during at least a portion of the time during which the second light is emitted.
  • the third light emitting device is a blue light source 2201B.
  • the filter unit 2205 in the spectroscopic system comprises two sections, a second section and a third section on the filter unit 1805 in the light source system shown in Fig. 18. As shown in Fig. 23, Fig. 23 is a front view of the filter unit 2205 in the light source system shown in Fig. 22.
  • the filter device 2205 includes a first segment 2205A (ie, a second segment on the filter device 1805) for transmitting green light and reflecting red light; and a second segment 2205B (ie, on the filter device 1805) The third section) is for transmitting red light and reflecting green light.
  • the yellow light (ie, the first light) emitted by the yellow light source 2202 is incident on the filter device at an angle 2205, the light beam reflected by the filter device 2205 is transmitted through the filter 2204 and then exits to the DMD 2211 along the first light channel; the light beam transmitted through the filter device 2205 is transmitted through the filter 2203 and then exits along the second light channel to DMD2213.
  • the light beam emitted by the blue light source 2201A ie, the second light
  • the light beam emitted by the blue light source 2201 B ie, the fourth light
  • the first control device turns off the yellow light source 2202 and simultaneously illuminates the blue light sources 2201A and 2201B, and both DMDs 2211 and 2213 are used to modulate the blue light.
  • the first control device illuminates the yellow light source 2202 and turns off the blue light sources 2201A and 2201B. At least a portion of the first segment 2203A and the second segment 2203B are sequentially located on the exiting light path of the yellow light.
  • the DMD 2211 is used to modulate red and green light that are sequentially emitted along the first optical path
  • the DMD 2213 is used to modulate green and red light that are sequentially emitted along the second optical path.
  • the light intensities of the blue light modulated in the two DMDs can be separately controlled to better suit the actual needs.
  • the length of time for the two blue light exits may also be inconsistent, and one of the blue light sources may be illuminated during a portion of the time period in which the other blue light source is illuminated, and the length of the specific lighting may be based on the amount of blue light required by the corresponding DMD. Decide.
  • the first segment 2203A and the second segment 2203B can be correspondingly controlled to be yellow light when they are respectively located on the outgoing light path of the yellow light (ie, the first light).
  • the lighting time It will be readily understood that one of the blue light sources can also be replaced with other color illuminating elements, such as cyan illuminating elements, correspondingly one of the DMDs used to modulate the timing of cyan, red and green light.
  • each segment on the filter device 2205 is simultaneously disposed to transmit the second light and the fourth light (both in the present embodiment), and the light sources 2201A and 2201B are respectively located on both sides of the filter device 2205, so that The light emitted from the light source 2201A is transmitted through the filter device 2205 and directly incident on the DMD 2211. The light emitted from the light source 2201B is transmitted through the filter device 2205 and directly incident on the DMD 2213.
  • FIG. 24 is a schematic diagram of an illuminating light source according to still another embodiment of the light source system of the present invention.
  • the light source system 2200 includes a light emitting device, a light splitting system, a first spatial light modulator 2211 and a second spatial light modulator 2213.
  • the illuminating device is configured to sequentially emit the first light, the second light, and the third light.
  • the illuminating device includes a yellow light source 2402A, a blue light source 2401, and a yellow light source 2402B for respectively generating yellow light 22A, blue light 11 and yellow light 22B, that is, first light, second light, and third light;
  • a first control device 2403 is also included for controlling the three light sources such that the light emitting device sequentially emits the yellow light 22A, the blue light 11 and the yellow light 22B.
  • the spectroscopic system is configured to split the second light from the illuminating device into the first sub-light and the second sub-light that are emitted along the first optical channel and the second optical channel, and is further configured to divide the third light from the illuminating device into the first The fifth range wavelength light and the sixth range wavelength light emitted by the optical channel and the second optical channel.
  • the spectroscopic system includes filters 2404 and 2405.
  • the filter curve of the filter 2405 is set to transmit the green light component of the yellow light, that is, the first range wavelength light of the first light and the fifth range wavelength light of the third light, and reflect the red light component, that is, the first light
  • the second range of wavelength light and the sixth range of wavelength light of the third light also transmitting part of the blue light and reflecting part of the blue light, ie, the first sub-light and the second sub-light.
  • the filter 2404 is for transmitting blue light and reflecting yellow light.
  • the light generated by the blue light source 2401 and the yellow light 2402A is incident from both sides of the filter 2404, respectively, transmitted and reflected by the filter 2404, and then incident from the same optical path to the same side of the filter 2405.
  • Light generated by the yellow light source 2402B is incident from the other side of the filter 2405.
  • the light reflected by the filter 2405 is emitted to the DMD 2411 along the first optical path, and the light transmitted through the filter 2405 is emitted to the DMD 2413 along the second optical path.
  • a first spatial light modulator i.e., DMD 2411
  • a second spatial light modulator i.e., DMD 2413
  • DMD 2411 is used to modulate the first range of wavelengths of light, the first subset of light, and the fifth range of wavelengths of light that are sequentially emitted by the beam splitting system along the first optical channel.
  • a second spatial light modulator i.e., DMD 2413
  • DMD 2413 is used to modulate the second range of wavelengths of light, the second subset of light, and the sixth range of wavelengths of light that are sequentially emitted by the spectroscopic system along the second optical channel.
  • FIG. 25 is a timing chart of light emission of three light sources of the light source system shown in FIG. 24 and a modulation timing chart of two DMDs.
  • T one modulation period
  • the blue light source 2401 is lit, and the two yellow light sources are not working, then both DMDs are used to modulate the blue light.
  • the yellow light source 2402B lights up, the other two light sources do not work, the DMD2411 is used to modulate the green light, and the DMD2413 is used to modulate the red light.
  • the yellow light source 2502A lights up, and the other two light sources do not work, then the DMD2411 is used to adjust Red light, DMD2413 is used to modulate green light. In this way, the two DMDs can be separately modulated by the time-series three primary colors.
  • the time period t4 may also be added in a modulation period T, in which three light sources are simultaneously illuminated, and the two DMDs are used to modulate the combined light of blue light and yellow light, that is, white light. In this way, the brightness of the light source system can be increased.
  • the ratio of tl, t2, t3, and t4 can be adjusted according to the actual ratio of the different colors.
  • the brightness of the red and green lights received by the two DMDs can be respectively adjusted by separately controlling the brightness of the two yellow light sources, and the driving of the filter device is reduced.
  • the use of the second driving device since the lighting of the light source does not need to be synchronized with the rotation of the filtering device, it is easier to control the timing lighting of different light sources, and it is more convenient to adjust the amount of light modulation of the DMD for different colors.
  • one of the yellow light sources in this embodiment can also be replaced with a third color light-emitting element.
  • the filter curve of the filter 2405 for splitting is also set to transmit light of one wavelength range of the third color light and reflect another wavelength range of light of the third color light.
  • the light-emitting device can also generate three-time sequential light by exciting the rotating color wheel by the excitation light, and the three-time sequential light can also be performed by the filter wheel rotating simultaneously with the color wheel in the light-splitting system. Splitting is achieved.
  • Figure 26 is a schematic illustration of an illumination source of still another embodiment of the light source system of the present invention.
  • the light source system 2600 includes a light emitting device, a light splitting system, a first spatial light modulator 2211 and a second spatial light modulator 2213.
  • the illuminating means comprises blue light sources 2601 A and 2601B, yellow light sources 2602A and 2602B, and first control means 2603.
  • the spectroscopic system includes filters 2404 and 2405.
  • the light-emitting device in this embodiment further includes a blue light source 2601B, and the blue light source 2601 A provides blue light to the two DMDs, respectively.
  • the filter 2605 is configured to transmit green and blue light and reflect red light, and the blue light generated by the blue light 2601A is transmitted through the filter 2605 and then exits to the DMD 2613 along the second optical channel.
  • the filter 2606 is located on the outgoing light path of the reflected beam of the filter 2605 for transmitting blue light and reflecting other light.
  • the red and green light reflected by the filter 2605 is reflected by the filter 2606 and then exits to the DMD 2611 along the first optical channel.
  • the blue light source 2501B is transmitted from the filter 2606 and then exits the first optical channel to the DMD 2611. .
  • Fig. 27 is a timing chart of illumination of four light sources of the light source system shown in Fig. 26 and a modulation timing chart of two DMDs.
  • the first control device controls the two blue light sources to illuminate, and the two yellow light sources do not operate, and the two DMDs are used to modulate the blue light.
  • the yellow light source 2602B lights up, the other three light sources do not work, then the DMD2611 is used to modulate the green light, and the DMD2613 is used to modulate the red light.
  • the yellow light source 2602A lights up, the other three light sources do not work, the DMD2611 is used to modulate red light, and the DMD2613 is used to modulate green light. In this way, the two DMDs can be separately modulated to modulate the three primary colors of the timing.
  • one of the blue light sources can also be illuminated only during a part of the time period t1, wherein the length of the specific lighting can be controlled according to the actual amount of blue light required.
  • a time period t4 may also be added, in which four light sources are simultaneously illuminated, and both DMDs are used to modulate the combined light of blue light and yellow light, that is, white light.
  • the brightness of the light source can be increased.
  • the ratio of tl, t2, t3, and t4 can be adjusted according to the actual ratio of the different colors.
  • two blue light sources are used in this embodiment, and the light intensity and the modulation time of the blue light modulated in the two DMDs can be separately controlled to better meet the actual needs.
  • the filter curve of each filter is not limited to the above examples, and those skilled in the art can specifically design according to the present invention.
  • FIG. 28 is a light source of still another embodiment of the light source system of the present invention.
  • the light source system 2800 includes a light emitting device, a light splitting system, a first spatial light modulator 2811 and a second spatial light modulator 2813.
  • the light emitting device includes excitation light sources 2801 and 2802, a wavelength conversion layer 2805, a first driving device 2806, and a first control device (not shown).
  • the spectroscopic system includes a filter 2814 and a mirror 2812.
  • the light-emitting device In the light source system shown in Fig. 24, the light-emitting device generates four kinds of light sources to generate time-series light by timing, and the light-emitting device of the present embodiment uses the color wheel in combination with the timing lighting source to generate time-series light, which is specifically described below.
  • the wavelength conversion layer 2805 includes a first partition 2805A, a second partition 2805B, a third partition 2805C, and a fourth partition 2805C, and is respectively provided with first, second, third, and fourth functional materials for respectively absorbing excitation light and The first, second, third, and fourth lights are generated.
  • both of the excitation light sources are UV light
  • the first and third sections are each provided with a yellow wavelength conversion material
  • the second and fourth sections are each provided with a blue wavelength conversion material.
  • the first partition and the third partition are respectively located on the outgoing light path of the excitation light generated by the two excitation light sources, and in the other time period, the second partition and the fourth partition are respectively located in the excitation light generated by the two excitation light sources. Out of the light path.
  • the first driving means 2806 is for driving the wavelength conversion layer 2805 such that the spot formed by the excitation light on the wavelength conversion layer 2805 acts on the wavelength conversion layer 2806 in a predetermined path.
  • the first control device is configured to control the two excitation light sources such that the first partition 2805A and the third partition 2805C alternately illuminate when at least part of the time when the optical paths of the two excitation lights are located, when the second partition 2805B and the fourth partition The partition 2805D is illuminated at the same time for at least part of the time when it is on the optical path of the two excitation lights.
  • Fig. 29 is an embodiment of a front view of a wavelength conversion layer in the light source system shown in Fig. 28.
  • the wavelength conversion layer 2805 has a disk shape, and the first partition 2805A and the third partition 2805C are set at 180 degrees, and the second partition 2805B and the fourth partition 2805D are set at 180 degrees.
  • the first driving device 280 is a motor for driving the wavelength conversion layer to periodically rotate. The line connecting the two spots of the excitation light on the wavelength conversion layer 2805 passes through the center of the disk, so that the sections set at 180 degrees at the same time are respectively located on the outgoing light paths of the excitation light generated by the two excitation light sources.
  • the wavelength conversion layer 2805 is set to be reflective, that is, the excitation light and the excitation
  • the optical path of the light is located on the same side of the wavelength conversion layer 2805. This can be achieved by placing a mirror on the side of the wavelength conversion layer 2805 facing away from the excitation source or by plating a reflective film, which is a well-known technique and will not be described herein.
  • Two reflection covers 2803 and 2804 are disposed on the exiting optical path of the wavelength conversion layer 2805 for collecting the laser light generated by the excitation light source 2801 and the excitation light source 2802 to excite the wavelength conversion layer, respectively, referred to as a first laser and a second Subject to laser.
  • the two reflectors are each provided with a through hole for transmitting the excitation light generated by the corresponding excitation light source. The two reflectors distinguish the excitation light from the optical path of the laser by utilizing the difference in the amount of excitation and the amount of optical spread of the laser.
  • the wavelength conversion layer is transmissive, that is, the optical path of the excitation light and the optical path of the laser light are respectively located on both sides of the wavelength conversion layer, it is not necessary to use a reflection cover.
  • a reflective wavelength conversion layer and a reflector are used, which can reduce the loss of the beam and improve the beam utilization.
  • the spectroscopic system is configured to divide the first light and the third light into two different wavelength ranges of light that are emitted along the first light channel and the second light channel, respectively, and respectively emit the second light along the first light channel and the second light channel.
  • the fourth light In the present embodiment, the mirror 2812 is located on the exiting path of the second laser beam, and the first laser beam and the second laser beam reflected by the mirror 2812 are incident on both sides of the filter 2811, respectively.
  • the filter 2814 is configured to reflect the green light component in the yellow light (ie, the first light and the third light) and transmit the red light component, and is also used to reflect the blue light (ie, the second light and the fourth light) along the first light channel. And the second light channel exits.
  • the DMD 2811 is used to modulate the light beam exiting the first optical path through the filter 2814.
  • DMD 2813 is used to modulate the light beam exiting the second optical path through filter 2814.
  • the first received laser light is collected by the reflector 2803 and then sequentially enters the hooking device 2807 to homogenize and collect the lens 2810 and then exits to the filter 2811.
  • the second laser is collected by the reflector 2804 and then enters the hooking device 2808 and the collecting lens 2809, and then exits to the filter 2811. In this way, the utilization of the first laser beam and the second laser beam can be improved, and the light loss can be reduced.
  • Fig. 30 is a timing chart showing an operation of the light source system shown in Fig. 28.
  • the first control device controls the two excitation light sources to illuminate, and the two DMDs simultaneously Receiving blue light reflected by the filter 2811; when the first partition 2805A and the third partition 2508C are respectively located on the optical paths of the two excitation lights,
  • the first control device controls the excitation light source 2802 to illuminate, the excitation light source 2801 is turned off, the DMD 2813 receives the green light, and the DMD 2811 receives the red light; in the second t2, the first control device controls the excitation light source 2801 When illuminated, the excitation light source 2802 is turned off, the DMD2813 receives red light, and the DMD2811 receives green light.
  • the first control device controls the excitation light sources 2801 and 2802 to simultaneously illuminate, then the two DMDs At the same time, the combined light of red light and green light is received, that is, yellow light. This increases the brightness of the light source system.
  • the length of the working time of the two excitation lights can be adjusted to adjust the blue light respectively received by the two DMDs.
  • the amount which in turn adjusts the color of the image emitted by the final source system.
  • the first partition 2805A and the third partition 2805C are respectively located on the optical paths of the two excitation lights, the lengths of the working hours of the two excitation lights are respectively adjusted to adjust the timing red received by the two DMDs respectively. , the amount of green light.
  • the two excitation light sources may also be blue light sources, and the second partition 2805B and the fourth partition 2805D are each provided with a reflective area for reflecting blue light.
  • the excitation source is a laser source, preferably, the second section 2805B and the fourth section 2805D are further provided with a scattering material for decohering the blue light.
  • the first, second, third, and fourth lights may also be different color lights, and the spectra of the four beams may be determined according to the light respectively required to be modulated by the two DMDs, and the first light is used. And the filter curve of the filter of the third light splitting.
  • Figure 31 is a schematic illustration of an illumination source of yet another embodiment of the light source system of the present invention.
  • the light source system 3100 includes a light emitting device, a light splitting system, a first spatial light modulator 3111 and a second spatial light modulator 3113.
  • the light emitting device includes excitation light sources 3101 and 3102, a wavelength conversion layer 3105, a first driving device 3106, and a first control device (not shown).
  • the spectroscopic system includes a filter 3109, mirrors 3103 and 3104 with through holes.
  • a reflection cover is placed on the outgoing light path of the wavelength conversion layer 2805, so that the time-series light emitted from the light-emitting device is collected by the reflection cover and then enters the spectroscopic system.
  • the reflector is not placed on the outgoing light path of the wavelength conversion layer 3105, but the spectroscopic system is placed directly.
  • the filter 3109 in the spectroscopic system is for transmitting the green component in the yellow light and reflecting the red component in the yellow light, and also for transmitting the second light and the fourth light (both in this embodiment).
  • the excitation light generated by the first excitation light source 3101 sequentially passes through the through holes on the mirror 3103 and the collimating lens 3108, and is incident on the wavelength conversion layer 3105.
  • the first received laser light emitted from the wavelength conversion layer 3105 is collimated by the collimator lens 3108 and reflected by the mirror 3103 to the filter 3109.
  • the excitation light generated by the second excitation light source 3102 sequentially passes through the through holes on the mirror 3104, the filter 3109, and the collimator lens 3107, and is incident on the wavelength conversion layer 3105.
  • the second received laser light emitted from the wavelength conversion layer 3105 is collimated by the collimator lens 3107 and enters the filter 3109.
  • a specific example of the operation timing of the light source system shown in Fig. 31 is as follows.
  • the first control device controls the two excitation light sources to illuminate, and the DMD 3113 receives The blue light transmitted by the filter 3109, the DMD 3111 receives the blue light that is sequentially reflected by the transmission 3109 and the mirror 3104; when the first partition 2805A and the third partition 2805C are respectively located on the optical paths of the two excitation lights,
  • the first control device controls the excitation light source 3101 to illuminate, the excitation light source 3102 is turned off, the DMD 3113 receives the red light, and the DMD 3111 receives the green light; in the second t2, the first control device controls the excitation light source 3102 to illuminate.
  • the excitation light source 3101 is turned off, the DMD 3113 receives green light, and the
  • the first light and the third light are yellow light
  • the second light and the fourth light are blue light as an example.
  • the four beams of light may also be other color lights, and are not limited to those described above.
  • the filter curve of the filter or filter in the spectroscopic system is also specifically designed according to the specific color of the four beams.
  • the driving device for driving the wavelength conversion layer or the filter device may be a linear translation device or adopt other suitable arrangement such that the light beam formed on the wavelength conversion layer or the filter device respectively a straight path or other predetermined path acts on the wavelength conversion layer or Filter device.
  • the light emitted by the two DMDs can be projected into the same display area to form an image, as shown in Fig. 32, which is a schematic structural view of an embodiment of the light source system of the present invention.
  • Light from two DMDs can also be projected into two display areas to form two images, as shown in Figure 33.
  • Figure 33 is a schematic view showing the structure of still another embodiment of the light source system of the present invention.
  • Embodiments of the present invention also provide a projection system including a light source system, which may have the structure and function in the above embodiments.
  • the projection system can employ various projection technologies, such as liquid crystal display (LCD) projection technology and digital light processor (DLP) projection technology.
  • LCD liquid crystal display
  • DLP digital light processor
  • the above illumination device can also be applied to illumination systems, such as stage lighting.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)
  • Semiconductor Lasers (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

一种光源系统(200),包括:发光装置(1),用于依序出射第一光和第二光;分光系统(2),用于将来自发光装置(1)的第一光分成分别沿第一光通道和第二光通道出射的第一范围波长光和第二范围波长光,还用于将来自发光装置(1)的第二光的至少部分光沿第一光通道出射;第一空间光调制器(211),用于对分光系统(2)沿第一光通道出射的光进行调制;第二空间光调制器(213),用于对分光系统(2)沿第二光通道出射的至少部分光进行调制,该光源系统(200)具有高发光效率和低成本。还公开了一种包括上述光源系统(200)的投影系统。

Description

光源系统 目关投影系统
技术领域
本发明涉及照明及显示技术领域,特别是涉及一种光源系统及其相关 投影系统。 背景技术
在现有单片式 DMD ( Digital Micromirror Device, 数字微镜元件) 系 统中, 多个基色光交替进入 DMD ( DMD )而被其调制, 调制得到的单色 光图像在屏幕上快速交替切换,进而利用人眼的视觉残留效应将各时序的 单色光图像混合在一起而形成彩色图像。而现有技术中,一般采用 R( red, 红光)、 G ( green, 绿光)、 B ( blue, 蓝光)三基色光来进行调制。 最常 用的得到三基色时序光的做法是采用激发光依次激发色轮上的不同分段 以依次出射不同颜色光。 在该结构中, 激发光源采用蓝色 LED ( Light Emitting Diode, 发光二极管)或者蓝色激光。 色轮上具有三个分区, 一 个分区设置有透光区,用于透射蓝光; 另两个分区分别设置有绿光荧光粉 和红光荧光粉, 分别用于吸收激发光并产生绿色受激光和红色受激光。
但是,在这种荧光粉光源中, 红色荧光粉为限制光源的工作寿命和发 光效率的一个瓶颈。红光荧光粉的光转换效率不高,其中损失的能量都转 换为热量,导致荧光粉的温度快速上升,反过来又会影响其发光效率和使 用寿命, 形成恶性循环。
发明内容
本发明主要解决的技术问题是提供一种兼具发光效率和较低成本的 光源系统。
本发明实施例提供一种光源系统, 包括:
发光装置, 用于依序出射第一光与第二光;
分光系统,用于将来自发光装置的第一光分成分别沿第一光通道和第 二光通道出射的第一范围波长光和第二范围波长光,还用于将来自发光装 置的第二光的至少部分光沿第一光通道出射; 第一空间光调制器,用于对所述分光系统沿第一光通道出射的光进行 调制;
第二空间光调制器,用于对所述分光系统沿第二光通道出射的至少部 分光进行调制。
本发明实施例还提供一种投影系统, 包括上述光源系统。
与现有技术相比, 本发明包括如下有益效果:
本发明将第一光分光成第一范围波长光和第二范围波长光,并且该两 个范围波长光与第二光的至少部分光时序出射,这样, 某个时段只出射两 束光束, 另一时段只出射一束光束, 以使得可以采用两个空间光调制器对 三个光束进行调制;并且本发明可以采用具有较高光转换效率的波长转换 材料产生的受激光分光成另两个具有较低光转换效率的波长转换材料的 颜色光, 以提高光源的效率。 附图说明
图 1是黄色荧光粉产生的黄光光谱。
图 2是本发明的光源系统的一个实施例的示意图;
图 3A是波长转换层 203出射光的时序图的一种实施例;
图 3B和图 3C分别为 DMD 211和 DMD 213对不同色光的调制时间 图的一种实施例;
图 4是 DMD 213对红光的调制时间图的又一种实施例;
图 5是本发明的光源系统的又一个实施例的示意图;
图 6是本发明的光源系统的又一个实施例的示意图;
图 7是本发明的光源系统的又一个实施例的示意图;
图 8是图 7中色轮 703的一个实施例的主视图;
图 9是图 6中第一分光装置 609的又一个实施例的主视图; 图 10是本发明的光源系统的又一个实施例的示意图;
图 11为一种将波长转换层与第一分光装置固定连接的光源结构的示 意图;
图 12是本发明的光源系统的又一个实施例的示意图;
图 13A是波长转换层 1203出射蓝光和黄光的时序图; 图 13B和图 13C分别为 DMD1211和 DMD1213对不同色光的调制时 间图;
图 14是本发明的光源系统的又一个实施例的发光光源的示意图; 图 15为图 14所示的实施例中的发光光源组的结构示意图; 图 16是本发明的光源系统的又一实施例的示意图;
图 17A为图 16所示的光源系统出射光的颜色时序图;
图 17B和图 17C分别为 DMD1209和 DMD1211对不同色光的调制时 间图;
图 18是本发明的光源系统的又一实施例的示意图;
图 19是图 18所示的光源系统中的滤光装置的主视图的一个实施例; 图 20是图 18所示的光源系统的两个光源的发光时序图与两个 DMD 的调制时序图;
图 21是图 18所示的光源系统中的滤光装置的主视图的又一个实施 例;
图 22是本发明的光源系统的又一实施例的示意图;
图 23是图 22所示的光源系统中的滤光装置的主视图;
图 24是本发明的光源系统的又一个实施例的发光光源的示意图; 图 25是图 24所示的光源系统的三个光源的发光时序图与两个 DMD 的调制时序图;
图 26是本发明的光源系统的又一个实施例的发光光源的示意图; 图 27是图 26所示的光源系统的四个光源的发光时序图与两个 DMD 的调制时序图;
图 28是本发明的光源系统的又一个实施例的发光光源的示意图; 图 29是图 28所示的光源系统中的波长转换层的主视图的一个实施 例;
图 30是图 28所示的光源系统的一种工作时序;
图 31是本发明的光源系统的又一个实施例的发光光源的示意图; 图 32是本发明的光源系统的一个实施例的结构示意图;
图 33是本发明的光源系统的又一个实施例的结构示意图。 具体实施方式
本发明的发明思路包括: 通过发光装置依序出射第一光与第二光,通 过分光系统将第一光分成沿不同路径传播的两束不同波长范围光, 这样, 在某一时段分别出射两个不同波长范围光至两个空间光调制器,另一时段 出射第二光的至少部分光至这两个空间光调制器中的一个,以使得能用两 个空间光调制器对三束不同光进行调制; 同时,还可以通过将具有较高的 光转换效率的黄光荧光粉受激发产生的黄色受激光分光成红光和绿光,从 而避免使用光转换效率较低的红光荧光粉产生红光,以提高光源系统的效 率。
如图 1所示, 图 1是黄色荧光粉产生的黄光光谱的一个具体例子。 由 图可看出, 荧光粉产生的黄光的光语较宽,覆盖了绿光的光谱和红光的光 谱。 因此, 可将黄光分光成为绿光和红光。 为便于描述, 下文所提到的黄 光的光谱均覆盖红光成分以及绿光成分,黄光可经滤光装置分光成沿不同 路径传播的红光和绿光。
下面结合附图和实施方式对本发明实施例进行详细说明。
实施例一
请参阅图 2 , 图 2是本发明的光源系统的一个实施例的示意图。 该实 施例的光源系统 200包括发光装置 1、分光系统 2、第一空间光调制器 211 和第二空间光调制器 213。
发光装置 1包括用于产生激发光的激发光源 201、 波长转换层 203与 第一驱动装置 205。 波长转换层 203包括第一分区和第二分区, 该第一分 区上设置有第一波长转换材料,用于吸收激发光并出射第一光; 该第二分 区上设置有透光区,用于透射激发光,该激发光为第二光。在本实施例中, 激发光源 201用于产生蓝色激发光。激发光源 201优选为激光光源,也可 以为 LED或者其他固态光源。 波长转换层 203上的第一分区上设置有黄 光荧光粉, 用于吸收激发光并产生黄色受激光, 此为第一光; 第二分区上 为透光区, 用于透射蓝光, 此为第二光。 波长转换层 203呈圓盘状, 波长 转换层上的不同分区沿着该该圓盘周向分布。
第一驱动装置 205用于驱动波长转换层 203 ,使得激发光在波长转换 层 203上形成的光斑按预定路径作用于波长转换层 203 , 以使该激发光依 序照射在第一分区与第二分区上, 以使第一光和第二光依序出射。在本实 施例中,第一驱动装置 205为马达,用于驱动波长转换层 203周期性转动。
分光系统 2用于将来自发光装置 1的第一光分成沿第一光通道和第二 光通道出射的第一范围波长光和第二范围波长光;还用于将来自发光装置 1的第二光的至少部分光沿第一光通道出射。 第一空间光调制器 211用于 对分光系统 2 沿第一光通道出射的光进行调制。 第二空间光调制器 213 用于对分光系统 2沿第二光通道出射的至少部分光进行调制。经第一空间 光调制器 211和第二空间光调制器 213调制的光进行合光并进入投影区 域。
在本实施例中, 分光系统 2将黄光分光成绿光, 即第一范围波长光, 和红光, 即第二范围波长光。 为描述清楚, 在以下举例中, 第一光黄光分 光成绿光和红光时,其中第一范围波长光和第二范围波长光不一定分别是 绿光和红光,该两种范围光只是个相对概念,第一范围波长光和第二范围 波长光也可以分别是红光和绿光。
第一空间光调制器 211用于对时序的蓝光和绿光进行调制,第二空间 光调制器 213用于对红光进行调制。 由于黄光荧光粉的转换效率较高, 而 蓝光直接由发光器件产生,因此用蓝光激发黄光荧光粉而产生三基色使得 光源的效率较高。
具体举例来说, 分光系统 2包括 TIR ( Total Internal Reflection, 全内 反射)棱镜 207和 209的组合。 该两个棱镜为三角柱体, 其中第一棱镜 207的侧面为 207a、 207b和 207c, 第二棱镜 209的侧面为 209a、 209b和 209c; 其中第一棱镜 207的侧面 207c和第二棱镜 209的侧面 209c相接。
波长转换层 203出射的受激光 23从第一棱镜 207的侧面 207b进入该 棱镜, 并在侧面 207a上发生全反射, 经侧面 207c透射后从第二棱镜 209 的侧面 209c透射进入第二棱镜 209并到达侧面 209a上。 侧面 209a为镀 膜面, 其上镀有滤光膜, 该滤光膜透射红光, 并反射蓝光和绿光。 时序产 生的蓝光和绿光经镀膜面 209a反射后又在侧面 209c上发生全反射,并在 侧面 209b上透射以从第一光通道进入第一空间光调制器 211。 经调制后 的蓝光和绿光以另一角度入射侧面 209b并透射,并在侧面 209c上发生全 反射,然后经镀膜面 209a反射后从侧面 209c透射并从第一棱镜 207透射 出去。 而红光经镀膜面 209a透射后从第二光通道进入第二空间光调制器 213。 经调制后的红光依次从第二棱镜 209和第一棱镜 207透射, 与被调 制后的绿光合为一束光束。
空间光调制器可以是 DMD, 也可以是液晶等其他类型的空间光调制 器。 为方便说明, 在以下实施例中均采用 DMD作为例子。
如图 3A所示, 图 3A是波长转换层 203出射光的时序图的一种实施 例。 在本实施例中, 波长转换层 203上的第一分区占 270度, 第二分区占 90度。 从波长转换层 203的第二分区开始进入激发光的入射光路开始, 在波长转换层 203转动的一周期 T时间内, 光源系统的工作过程如下。 在前 0.25T内,波长转换层 203出射蓝光,在后 0.75T内,波长转换层 203 出射黄光。 相对应地, 前 0.25T内 DMD 211用于调制蓝光, DMD 213未 用于调制光束。 后 0.75T内 DMD 211用于调制绿光, DMD 213用于调制 红光。如图 3B和图 3C所示,图 3B和图 3C分别为 DMD 211和 DMD 213 对不同色光的调制时间图的一种实施例。 在这种情况下, 每一个周期 T 内红光和绿光均全被利用, 使得光源的利用最高效。 然而, 这可能不是实 际情况,因为这可能引起该三基色光混合而成的白光的色坐标与预定色坐 标有偏差。 在实际运用中, 可以通过利用该两个 DMD对不同颜色光的调 制时间的长短来控制白光的色坐标使之达到满意。 例如, 在本实施例中, 如果红光过多而导致白光的色坐标偏红, 则可以控制 DMD 213的调制时 间变短,使得在一定时间段上的红光为无效光。如图 4所示,图 4是 DMD 213对红光的调制时间图的又一种实施例。 在图 4中, 每一个周期 T内红 光的后段部分被舍弃。 在实际运用中, 也可以将红光的前段舍弃, 或者中 间的一端或几段舍弃, 这都是容易理解的。
另外, 以上第一分区和第二分区所占的比例只是举例, 并未限制其实 际比例。在实际运用中,可根据实际需要来决定第一分区和第二分区的所 占比例。
在本实施例中,发光装置依序出射第一光与第二光,并通过分光系统 将第一光分成沿不同路径传播的两束不同波长范围光,这样,在某一时段 分别出射两个不同波长范围光至两个空间光调制器,另一时段出射第二光 的至少部分光至这两个空间光调制器中的一个,以使得能用两个空间光调 制器对三束不同光进行调制。
在实际运用中, 分光系统 2中的 TIR棱镜 209中的镀膜面 209a上的 滤光曲线也可以是透射绿光和蓝光,并反射红光,在这种情况中, DMD 211 用于调制红光, DMD 213用于调制绿光和蓝光; 或者镀膜面 209a上的滤 光曲线改为透射绿光, 并反射红光和蓝光; 则 DMD 211用于调制红光和 蓝光, DMD 213用于调制绿光。 实际运用中可根据实际需要来设计镀膜 面 209a的滤光曲线。
以上受激光在该两块 TIR棱镜中的光路仅为方便说明而列举的例子, 并不限制 TIR棱镜的其他用法。
在上面的实施例中,使用两块棱镜来同时实现黄光中绿光成分和红光 成分的分光以及经两个空间光调制器调制后的光束的合光。 在实际运用 中, 也可以使用分光滤光片来对黄光进行分光, 并在两个 DMD的光路后 端使用滤光片来对其调制后的光束进行合光。
实施例二
如图 5所示, 图 5是本发明的光源系统的又一个实施例的示意图。本 实施例中, 光源系统 500包括发光装置 1、 分光系统 2、 第一空间光调制 器 511与第二空间光调制器 513。 发光装置 1包括激发光源 501、 波长转 换层 503与第一驱动装置 505。
本实施例与图 2所示实施例的区别之处包括:
分光系统 2包括滤光片 509与反射镜 507。 滤光片 509用于接收波长 转换层 503依序出射的黄光 53和蓝光 55 , 并透射蓝光 55和黄光 53中的 绿光 53a从第一光通道出射至 DMD511 , 且反射黄光 53中的红光 53b至 反射镜 507, 反射镜 507反射红光 53b从第二光通道出射至 DMD513。
优选地, 光源系统 500还包括分别设置于 DMD511与 DMD513的出 射光路上的滤光片 515与反射镜 517。反射镜 517用于将经 DMD511调制 后的时序的蓝光和绿光反射至滤光片 515。 滤光片 515用于反射来自反射 镜 517的蓝光和绿光并透射来自 DMD513的红光,以将 DMD 511和 DMD 513调制出射的光束合为一束光。 可以理解的是, 在其它实施例中, 可以 通过设置 DMD 511与 DMD 513的出光角度, 使得 DMD511与 DMD513 分别出射的两束光汇聚为一束光; 此外, 在有些应用场合中, 也可以不需 要将 DMD511与 DMD513分别出射的两束光汇聚为一束光, 因此反射镜 517与滤光片 515是可以省略的。
实施例三
请参阅图 6, 图 6是本发明的光源系统的又一个实施例的示意图。 本 实施例中, 光源系统 600包括发光装置 1、 分光系统 2、 第一空间光调制 器 611与第二空间光调制器 613。 发光装置 1包括激发光源 601、 波长转 换层 603与第一驱动装置 605。
本实施例与图 5所示实施例的区别之处包括:
分光系统 2包括第一分光装置 609、第二驱动装置 607和第一控制装 置 (图未示)。 为提高发光装置 1的出射光的利用率, 光源系统 600还包 括设置于发光装置 1与分光系统 2之间的光路上的收集透镜 615 , 用于收 集发光装置依序出射的黄光 63和蓝光 65 , 并将收集的光中继至第一分光 装置 609。 第一分光装置 609呈圓盘状, 并沿周向分为第一区段和第二区 段。第二驱动装置 607用于驱动第一分光装置转动,使得第一区段和第二 区段依序处于发光装置 1的出射光路上。第一控制装置控制第一驱动装置 605与第二驱动装置 607的转动 ,使得第一分光装置 609与波长转换层 603 同步转动, 以使第一区段位于第一光, 即黄光 63的出射光路上, 第二区 段位于第二光, 即蓝光 65的出射光路上。
第一分光装置 609上的第一区段用于透射黄光 63中的绿光从第二光
611 , 第二区段用于反射蓝光 65从第一光通道出射至 DMD 611。 当然, 在实际运用中也可以使第一区段反射红光并透射绿光; 或者, 第二区段也 可以透射部分蓝光并反射部分蓝光,其中该透射和反射的这两束蓝光可以 分别被 DMD 611与 DMD 613调制, 也可以只调制这两束中的其中一束。
实施例四
请参阅图 7, 图 7是本发明的光源系统的又一个实施例的示意图。 在本实施例中, 光源系统 700包括发光装置 1、 分光系统 2、 第一空间光 调制器 711与第二空间光调制器 713。 发光装置 1包括激发光源 701、 波 长转换层 703B与第一驱动装置 705。分光系统 2包括第一分光装置 703A 和光引导装置 3。 本实施例与图 6所示实施例的区别之处包括:
在本实施例中, 波长转换层 703B和第一分光装置 703A固定连接, 共同设置在色轮 703上。如图 8所示, 图 8是图 7中色轮 703的一个实施 例的主视图。 色轮 703 上设置有两个同心设置且相互嵌套的圓环区域 703 A和 703B, 其中圓环 703 A为分光区, 即第一分光装置; 圓环 703B 为波长转换区, 即波长转换层。 分光区 703A中包括第一区段 S1 , 用于透 射绿光至第一光通道出射, 并反射红光至第二光通道出射; 分光区 703A 还包括第二区段 S2 , 用于透射蓝光至第一光通道出射。 波长转换区 703B 包括第一分区 W1 , 设置有黄光波长转换材料, 用于产生黄色受激光, 该 分区与分光区 703A中第一区段 S1相对该环状的中心呈 180度设置; 还 包括第二分区 W2,设置有透光区,用于透射蓝光,该分区与分光区 703A 中的第二区段 S2相对该环状的中心呈 180度设置。 第一驱动装置 705用 于驱动色轮 703转动,使得第一分区 W1和第二分区 W2依序位于发光装 置 1的出射光路上。
光引导装置 3用于将波长转换层 703B上的第一分区 W1和第二分区 W2出射的时序光分别引导至第一分光装置 703A上的第一区段 S1和第二 区段 S2上。 具体解释如下。
在本实施例中, 光引导装置 3包括透镜 707、 反射镜 709和 715。 在 色轮 703转动的一个周期 T内, 在前 tl时间内, 激发光源 701产生的激 发光 71入射到波长转换区 703B上的第一分区 W1并出射黄光, 出射光 73从波长转换区 703B背向激发光的一侧出射,并经透镜 707收集后依次 被反射镜 709和 715反射并以 45度入射至分光区 703A上的第一区段 S1 上, 黄光中的绿光成分和红光成分分别经第一区段 S2透射和反射并分别 沿第一光通道出射至 DMD 711和沿第二光通道出射至 DMD713。
后 t2时间内, 激发光 71入射到第二分区 W2并出射蓝光, 经光引导 装置 3引导以 45度角入射至第二区段 S2上, 经透射后从第二光通道入 射至 DMD 711。激发光 71在分光区 705A上形成的光斑 A与在波长转换 区 703B上形成的光斑 B的连线经过环心 。 当然, 在实际运用中, 出射 分;
这可根据实际需要设计, 这样,相比图 6所示的光源系统, 波长转换层和第一分光装置可以同 步转动, 该两者的同步性更好, 而且不需要控制装置来控制其同步, 减小 了成本和光源体积。 实施例五
请参阅图 9, 图 9是图 6中第一分光装置 609的又一个实施例的主视 图。 与图 6 所示的光源系统不同的是, 本实施例中的第一分光装置 609 包括三个区段。 第一区段 R1用于透射红光至第一光通道出射, 并反射绿 光至第二光通道出射。 第二区段 R2用于透射绿光至第一光通道出射, 并 反射红光至第二光通道出射。第三区段用于透射部分蓝光至第一光通道出 射, 并反射部分蓝光至第二光通道出射。
相对应地, 第一控制装置用于控制第一分光装置 609, 使得第一区段 R1和第二区段 R2位于第一光的出射光路上, 第三区段 R3的位于第二光 的出射光路上。 具体来说, 在出射黄光的 T中, 前部分时间 tl 内第一区 段 R1位于黄光的出射光路上, 后部分时间 t2内第二区段 R2位于黄光的 出射光路上, 在出射蓝光时第三区段 R3位于蓝光的出射光路上。
在本实施例中,在波长转换层 603转动而产生 Y( yellow,黄)、B( blue, 蓝)序列光的一个周期内, DMD 611依次接收到 G(green, 绿)、 R ( red, 红)、 B序列光, DMD 613依次接收到 R、 G 、 B序列光。 因此, 相比以 上各实施例, 本实施例中两个 DMD能够各自接收到三基色序列光, 进而 每个 DMD可以各自调制一个图像, 并且在任何时段, 两个 DMD都处于 工作状态, 相比以上实施例能够更充分地利用 DMD。
容易理解的是,本实施例中也可以将波长转换层与第一分光装置固定 连接。相对应地, 图 7中所示的光源系统中色轮 703上的分光区上的第一 区段 S1需分成第一子区和第二子区, 其中第一子区用于透射红光至第一 光通道出射至 DMD 611 , 并反射绿光至第二光通道出射至 DMD 613; 第 二子区用于透射绿光至第一光通道出射至 DMD 613 , 并反射红光至第二 光通道出射至 DMD 611。
实施例六
图 7 所示的光源系统只是其中一种将波长转换层与第一分光装置固 定连接的结构, 在实际运用中还有许多其他光路结构。 请参阅图 10, 图 10是本发明的光源系统的又一个实施例的示意图。 在本实施例中, 光源 系统 1000包括发光装置 1、 分光系统 2、 第一空间光调制器 1011与第二 空间光调制器 1013。 发光装置 1包括激发光源 1001、 波长转换层 1003B 与第一驱动装置 1005。 分光系统 2包括第一分光装置 1003A和光引导装 置 3。 波长转换层 1003B和第一分光装置 1003A固定连接, 共同设置在 色轮 1003上。
本实施例与图 7所示实施例的区别之处包括:
波长转换区 1003B设置为反射式的, 即波长转换区 1003B的入射光 的光路与出射光的光路位于其同一侧。 且波长转换区 1003B上的第一区 段 S1与分光区 1003A上的第一分区 W1呈 0度设置, 第二区段 S2与分 光区 1003A上的第二分区 W2呈 0度设置, 即分光区域和与其对应的波 长转换区域相邻设置。
光引导装置 3包括带有通孔的反射镜 1007、 收集透镜 1009和 1015。 在本实施例中, 激发光源 1001为激光光源, 用于产生蓝色激光 101。 反射镜 1007设置在蓝色激光 101的出射光路上。 由于激光的光学扩展量 比较小, 而受激光的光学扩展量较大,使得蓝色激光 101从该通孔穿过并 经收集透镜 1009后进入到波长转换区 1003B上,而波长转换区 1003B出 射的序列光经收集透镜 1009收集后大部分被反射镜 1007反射至分光区 1003A。 其中分光区 1005A上形成的光斑与波长转换区 1005B上形成的 光斑位于色轮 1005上的同一半径线上。 相比图 8所示的光源系统, 本实 施例中的光源系统的光路更加紧凑。
实施例七
请参阅图 11 , 图 11为另一种将波长转换层与第一分光装置固定连接 的光源结构的示意图。 在本实施例中, 光源系统 1100包括发光装置、 分 光系统 2、 第一空间光调制器 1111与第二空间光调制器 1113。 发光装置 包括激发光源 1101、 波长转换层 1103B与第一驱动装置 1105。 分光系统 2包括第一分光装置 1103A和光引导装置 3。波长转换层 1103B和第一分 光装置 1103A固定连接, 共同设置在色轮 1003上。
本实施例与图 10所示实施例的区别之处包括:
波长转换区 1103A与分光区 1103B不是相互嵌套的两个圓环区域。 在色轮 1103的中心区域设置有一圓台 1103C, 波长转换层区 1103B设置 在该圓台 1103C的侧面上, 而分光区 1103A设置在色轮 1103的一个圓环 区域上。 蓝色激光 111依序穿过反射镜 1107的通孔和收集透镜 1109后, 入射到波长转换区 1103B上的其中一个区段上。 而波长转换区 1103B出 射的序列光 113经收集透镜 1109收集后大部分被反射镜 1107反射至分光 区 1103A上与波长转换区 1103B上光斑所在的区段对应的分区。
相比图 10所示的光源系统, 本实施例中由于波长转换区 1103B与分 光区 1103 A相隔的较远, 经反射镜 1107反射前和反射后的序列光 113之 间的夹角较大, 较容易分开光路。
在以上实施例中,波长转换层上的第二分区也可以设置有第二波长转 换材料, 用于吸收激发光并出射第二光。 具体举例来说, 激发光源用于产 生 UV光。 波长转换层的第一分区上设置有黄色荧光粉, 用于吸收 UV光 并产生黄光;第二分区上设置有蓝色荧光粉,用于吸收 UV光并产生蓝光, 该蓝光为第二光。
实施例八
本实施例的光源系统的示意图与以上实施例中的光源系统的示意图 基本一样, 不同的是,在本实施例中分光系统还将第二光分成分别沿第一 光通道和第二光通道出射的第三范围波长光和第四范围波长光,则第一空 间光调制器用于对沿第一光通道出射的第一光的第一范围波长光和第二 光的第三范围波长光进行调制,而第二空间光调制器用于对沿第二光通道 出射的第一光的第二范围波长光进行调制,或者还用于对沿第二光通道出 射的第二光的第四范围波长光进行调制。
以图 5举例来说, 激发光源 501用于产生 UV光。 波长转换层 503 的第一分区上设置有黄色荧光粉, 用于吸收 UV光并产生黄光; 第二分区 上设置有蓝色荧光粉, 用于吸收 UV光并产生蓝光, 该蓝光为第二光。 由 于蓝色荧光粉产生的蓝光的光语较宽,覆盖了绿光光谱的部分范围。分光 系统中的滤光片 505 同时设置为将第二分区产生的第二光即蓝光分光成 第三范围波长光和第四范围波长光, 即第二蓝光和第二绿光。 这样, 产生 的第二蓝光和第二绿光的光谱较窄, 色纯度较高。
相对应地,在将第二分区产生的蓝色受激光分光成第二蓝光和第二绿 光时,在图 2所示的光源系统的分光系统中,可将第二棱镜 209中的镀膜 面 209a同时设置为反射蓝色受激光中的蓝光成分并透射绿光成分, 或者 透射蓝光成分并反射绿光成分。在图 5所示的光源系统的分光系统中,可 将滤光片 505设置为同时反射蓝色受激光中的第二蓝光并透射第二绿光, 或者透射第二蓝光并反射第二绿光。 以上描述中,用于对第一光和第二光 分光的均为分光系统中的同一个分光装置。
在实际运用中,分光系统中也可以分别用两个分光装置分别对第一光 和第二光分光。如图 12所示, 图 12是本发明的光源系统的又一个实施例 的示意图。 本实施例中, 光源系统 1200包括发光装置 1、 分光系统 2、 第 一空间光调制器 1211与第二空间光调制器 1213。发光装置 1包括激发光 源 1201、 波长转换层 1203与第一驱动装置 1205。
本实施例与图 5所示实施例的区别之处包括:
分光系统 2包括滤光片 1221、 1209和 1207, 还包括反射镜 1219。 滤 光片 1221位于发光装置 1出射时序光的光路上, 用于反射蓝色受激光中 的第二蓝光 65b并透射蓝色受激光中的第二绿光 65a以及黄色受激光 63。
滤光片 1209位于滤光片 1221透射光束的出射光路上,用于透射蓝色 受激光中的第二绿光 65a以及黄色受激光 63中的第一绿光 63a并反射黄 色受激光 63中的红光 63b。 因此, 经滤光片 1209透射的第二绿光 65a和 第一绿光 63a沿第一光通道出射至 DMD 1211。 经滤光片 1209反射的红 光 63b再经滤光片 1207反射后沿第二光通道出射至 DMD1213 , 而经滤 光片 1221反射的第二蓝光 65b分别经过反射镜 1219反射和滤光片 1207 透射后沿第二光通道出射至 DMD 1213。
当蓝光 65分光后得到的第二蓝光 65b和第二绿光 65a均用于调制时, 由于两个 DMD用于调制的颜色增多, 使得两个 DMD能够调制的色域更 大。 相对应地, 波长转换层 1203和 DMD1211、 1213的工作时序图如图 13所示。 图 13A是波长转换层 1203出射蓝光和黄光的时序图。在波长转 换层 1203转动的一周期 T时间内,在前 0.25T内, 波长转换层 1203出射 蓝光, 在后 0.75T内, 波长转换层 1203出射黄光。 如图 13 B和图 13C所 示,图 13B和图 13C分别为 DMD1211和 DMD1213对不同色光的调制时 间图。 相对应地, 前 0.25T内 DMD1211用于调制第二绿光, DMD 1213 用于调制第二蓝光。后 0.75T内 DMD 1211用于调制第一绿光, DMD 1213 用于调制红光。
容易理解的是, 第二绿光也可以不用于调制, 在其进入 DMD 1211 时只要 DMD 1211不工作, 即可不调制这部分光。
以上实施例中都是利用光波长的差异,使用滤光片或者滤光膜对光束 进行透射和反射来进行分光或者合光。而某一个光路上的光在一个分光滤 光片上被透射还是被反射, 是可以任意设计的。 因此, 在本发明的所有实 施例中, 各光路上不同波长范围光通过滤光片或滤光膜的具体的光学结 构,都是为了方便说明而列举的例子, 并不限制使用其它的利用分光滤光 片或滤光膜进行光路合并或光束分光的光学结构。
在本实施例中, 波长转换层 1203上也可以设置多个分区, 其中不同 分区上设置有不同波长转换材料或者透光区。并且至少一个分区上出射的 光束被分光成两种不同波长范围的光以使得该两种不同波长范围光分别 进入两个空间光调制器中进行调制。
在本实施例中,第一分区和第二分区也可以设置产生其他颜色光的波 长转换材料,并不局限上述的黄色荧光粉和蓝色荧光粉。波长转换材料也 还可能是量子点、荧光染料等具有波长转换能力的材料,并不限于荧光粉。
实施例九
请参阅图 14, 图 14是本发明的光源系统的又一个实施例的发光光源 的示意图。与以上实施例不同的是, 以上实施例中发光装置 1通过色轮来 产生时序光,而本实施例中发光装置 1通过转动的反射镜来依次反射 LED 灯盘发出的不同颜色光出射以产生时序光,相比实施例一,本实施例中采 用反射镜能控制成本。
具体来说, 发光装置 1 包括发光光源组 1401、 第一反射装置 1405、 第二反射装置 1403和第二驱动装置 (图未示)。
发光光源组 1401 包括第一发光器件 (在本实施例中为黄光荧光粉 LED 1401a )和第二发光器件(在本实施例中为蓝光 LED 1401b ), 其中 荧光粉 LED指将荧光粉涂覆在 LED芯片的表面, 利用 LED发出的光来 激发荧光粉并发出荧光。 常见的黄光荧光粉 LED指将黄色荧光粉涂覆于 蓝光 LED芯片表面, 并被蓝光 LED发射出的蓝光所激发产生黄色光。 黄 光 LED 1401a和蓝光 LED 1401b呈环状分布, 并且黄光 LED 1401a和蓝 光 LED 1401b出射光的方向均平行于过该环状的圓心的中心轴。
第二反射装置,在本实施例中为一转动镜 1403 ,其包括反射面 1403a, 设置于发光光源组 1401的出射光的一侧, 并位于第一发光器件 1401a和 第二发光器件 1401b之间。
第一反射装置 1405包括两个反射元件, 在本实施例中均为反射镜, 分别位于第一发光器件 1401a和第二发光器件 1401b的出射光路上,用于 将不同发光器件的出射光反射至第二反射装置 1403。
第二驱动装置 1403驱动第二反射装置 1403运动, 使得反射面 1403a 依次置于第一反射装置 1405的两个反射元件的出射光路上, 以将第一、 第二发光器件发出的光依次反射出射。
在实际运用中, 发光光源组 1401也可以包括多个发光器件阵列, 在 本实施例中为 LED阵列。 相对应地, 反射装置组 1405包括多个反射镜, 分别置于光源 1401中多个发光器件阵列的出射光路上。
如图 15所示,图 15为本实施例中的发光光源组 1401的结构示意图。 发光光源组 1401中的各 LED设置在以转动镜 1403为圓心的圓盘上, 并 围绕转动镜 1403沿周向排布,并以转动镜 1403为中心沿径向呈阵列分布。 沿径向的阵列分布中, LED阵列中为发出同一种颜色光的 LED, 沿周向 排布中, 黄光荧光粉 LED 1401a和蓝光 LED 14101b交替分布。
实施例十
请参阅图 16, 图 16是本发明的光源系统的又一实施例的示意图。 光 源系统 1600包括发光装置 1、 分光系统 2、 第一空间光调制器 1611与第 二空间光调制器 1613。
本实施例与图 5所示实施例的区别之处包括:
发光装置 1包括第一发光器件、第二发光器件和第一控制装置(图未 示),其中第一发光器件用于产生第一光,第二发光器件用于产生第二光; 第一控制装置用于在至少部分时段将第一发光器件和第二发光器件交替 点亮, 以出射时序的第一光和第二光。
具体来说,第一发光器件为黄光 LED 11a,第二发光器件为蓝光 LED l ib, 分别用于产生黄光和蓝光。 第一控制装置用于分别控制不同颜色的 发光器件的开启与关闭, 使蓝光 LEDl lb和黄光 LEDl la交替点亮, 以产 生时序的黄光和蓝光。
在本实施例中,在某一时段第一控制装置可以控制黄光 LEDl la和蓝 光 LEDl lb 同时点亮。 由于蓝光以及黄光分光后得到的绿光均在 DMD 1611中进行调制,则在黄光 LEDl la和蓝光 LEDl lb同时点亮的这个时间 段中, DMD1611用于对蓝光和绿光的合光即青色光进行调制,对于 DMD 1613则没有影响。在这个时间段中, 由于两种光的混合,使得 DMD 1611 能够调制多一种颜色, 使得该 DMD 1611能够调制的色域更大。
如图 17A所示, 图 17A为光源系统 1600出射光的颜色时序图。在一 个周期 T内, 在 tl时间内, 点亮蓝光 LED, 则发光装置 1出射蓝光; 在 t2时间内, 点亮黄光 LED, 则发光装置 1出射黄光; 在 t3时间内, 同时 点亮蓝光 LED和黄光 LED,则发光装置 1出射该两种光的合光,即白光。 如图 17 B和图 17 C所示,图 17B和图 17C分别为 DMD1209和 DMD1211 对不同色光的调制时间图。 相对应地, tl时间内 DMD 1611用于调制蓝 光, DMD1613 未工作; t2 时间内 DMD1611 用于调制绿光, DMD1613 用于调制红光; t3时间内, DMD1611用于调制青光, DMD1613用于调 制红光。
但是, 不能一直使该两种颜色光同时点亮, 由于本光源系统中只有两 个 DMD, 其中一个 DMD用于在不同的时段分别调制蓝光和绿光。 如果 黄光 LEDl la和蓝光 LEDl lb—直保持同时点亮, 则导致没有蓝光和绿光 这两种单色光图像, 而只有青色光的图像。
容易理解的是, 如果分光系统 2中的滤光片 1609用于透射红光并反 射绿光,则蓝光和黄光分光后得到的红光均在 DMD 1611中进行调制,绿 光在 DMD 1613中进行调制。则在黄光 LEDl la和蓝光 LEDl lb同时点亮 的这个时间段中,该 DMD 1611用于对蓝光和红光的合光即紫色光进行调 制, 对于 DMD 1613则没有影响。
相比以上实施例,本实施例能同时点亮不同颜色的发光器件,使得用 于调制的颜色光更多, 进而能够调制的色域更大。
实施例十一
请参阅图 18, 图 18是本发明的光源系统的又一实施例的示意图。 本 实施例中, 光源系统 1800包括发光装置 1、 分光系统 2、 第一空间光调制 器 1811与第二空间光调制器 1813。
本实施例与图 16所示实施例的区别之处包括:
分光系统 2包括滤光装置 1805、 用于驱动滤光装置运动的第二驱动 装置 1806和第一控制装置 (图未示)。 滤光装置 1805上包括第一区段、 第二区段和第三区段,其中第一区段用于透射第一光的第一范围波长光至 第一光通道出射,并反射第二范围波长光至第二光通道出射; 第二区段用 于反射第一光的第一范围波长光至第二光通道出射,并透射第二范围波长 光至第一光通道出射; 第三区段用于透射部分第二光至第一光通道出射, 并反射部分第二光至第二光通道出射。第一控制装置用于控制第二驱动装 置 1806, 以使第一区段的至少部分和第二区段的至少部分依次位于第一 光的出射光路上, 第三区段的至少部分位于第二光的出射光路上。
具体举例来说, 如图 19所示, 图 19是图 18所示的光源系统中的滤 光装置的主视图的一个实施例。 滤光装置 1805呈圓盘状, 其上的各个区 段在该圓盘上沿周向分布。 该滤光装置 1805上的第一区段 1805A用于透 射部分蓝光并反射部分蓝光, 第二区段 1805B用于透射绿光并反射红光, 第三区段 1805C用于反射绿光并透射红光。 第二驱动装置 1806为马达, 用于驱动滤光装置 1805周期性转动, 以使各个区段依次位于发光装置 1 的出射光路上。
如图 20所示, 图 20是图 18所示的光源系统的两个光源的发光时序 图与两个 DMD的调制时序图。 在一个调制周期 T内, 在前 tl时间内, 滤光装置 1805的第一区段 1805A位于时序光的出射光路上, 则蓝光光源 1801点亮, 黄光光源 1802不工作, 则两个 DMD用于调制蓝光。 在接下 来的 t2时间内,滤光装置 1805的第二区段 1805B位于时序光的出射光路 上, 黄光光源 1802点亮, 蓝光光源 1801不工作, 则 DMD1811用于调制 绿光, DMD1813用于调制红光。 在接下来的 t3时间内, 滤光装置 1805 的第三区段 1805C位于时序光的出射光路上, 黄光光源 1802点亮, 蓝光 光源 1801不工作,则 DMD1811用于调制红光, DMD1813用于调制绿光。 这样, 可以使得两个 DMD分别调制时序的三基色光。
实施例十二
请参阅图 21 , 图 21是图 18所示的光源系统中的滤光装置的主视图 的又一个实施例。
在本实施例中, 滤光装置 1805上还包括第四区段, 用于反射蓝光并 透射黄光, 并且与图 18所示的光源系统不同的是, 第一区段 1805A用于 透射蓝光并反射黄光; 当第一区段 1805A和第四区段 1805D位于时序光 的出射光路上时, 蓝光光源 1801和黄光光源 1802同时点亮。 相对应地, 在一个调制周期 T内, 当滤光装置 1805的第一区段、 第二区段、 第三区 段和第四区段依次位于时序光的出射光路时, DMD 1811依次调制蓝光、 绿光、 红光和黄光, DMD 1813依次调制黄光、 红光、 绿光和蓝光。 在本 实施例中, 由于调制的颜色增添了黄光, 使得光源系统的亮度提高。
在图 18所示的光源系统中, 采用一个蓝光光源和一个黄光光源对应 滤光装置上的不同分光区时序点亮来分别为两个 DMD 提供至少三个时 序光, 其中该蓝光光源产生的光被分光成两束蓝光至该两个 DMD。 在实 际运用中, 也可以将采用两个蓝光光源提供两束蓝光分别用于两个 DMD 调制。 具体说明如下。
实施例十三
请参阅图 22, 图 22是本发明的光源系统的又一实施例的示意图。 本 实施例中, 光源系统 2200包括发光装置、 分光系统、 第一空间光调制器 2211与第二空间光调制器 2213。 发光装置包括第一发光器件 2201 A、 第 二发光器件 2202、 第三发光器件 2201B和第一控制装置(图未示)。 分光 系统包括滤光装置 2205、 第二驱动装置 2206、 滤光片 2203和 2204。
本实施例与图 18所示实施例的区别之处包括:
发光装置还包括第三发光器件,用于在出射第二光的至少部分时段产 生第四光。 在本实施例中, 该第三发光器件为蓝光光源 2201B。 分光系统 中的滤光装置 2205包括两个区段,即图 18所示的光源系统中的滤光装置 1805上的第二区段和第三区段。 如图 23所示, 图 23是图 22所示的光源 系统中滤光装置 2205的主视图。 滤光装置 2205上包括第一区段 2205A (即滤光装置 1805上的第二区段),用于透射绿光并反射红光;还包括第 二区段 2205B (即滤光装置 1805上的第三区段), 用于透射红光并反射绿 光。
黄光光源 2202发出的黄光(即第一光) 以一定角度入射到滤光装置 2205上, 经滤光装置 2205反射的光束经滤光片 2204透射后沿第一光通 道出射至 DMD 2211 ; 经滤光装置 2205透射的光束经滤光片 2203透射后 沿第二光通道出射至 DMD2213。蓝光光源 2201A发出的光束(即第二光) 经滤光片 2204反射后沿第一光通道出射后至 DMD 2211。蓝光光源 2201 B 发出的光束(即第四光)经滤光片 2203反射后沿第二光通道出射至 DMD 2213。
在一个调制周期 T内, 在前 tl时间内, 第一控制装置关闭黄光光源 2202, 并同时点亮蓝光光源 2201A和 2201B , DMD2211和 2213均用于 调制蓝光。 在后 t2时间内, 第一控制装置点亮黄光光源 2202并关闭蓝光 光源 2201A和 2201B, 第一区段 2203A和第二区段 2203B的至少部分区 段依次位于黄光的出射光路上时。 DMD 2211用于调制沿第一光通道依次 出射的红光和绿光, DMD 2213用于调制沿第二光通道依次出射的绿光和 红光。
在本实施例中, 可以分别控制两个 DMD中调制的蓝光的光强度, 以 更好地适应实际需要。 并且, 两个蓝光出射的时间长度也可以不一致, 其 中一个蓝光光源可以在另一个蓝光光源点亮的部分时间段内点亮,具体点 亮的时间长短可根据与其对应的 DMD 需要蓝光的量来决定。 同样道理 的, 为调节用于调制的绿光和红光的量,可以相应地控制第一区段 2203A 和第二区段 2203B分别位于黄光(即第一光) 的出射光路上时黄光的点 亮时间。容易理解的是,其中一个蓝光光源也可以替换成其他颜色的发光 元件,例如青色发光元件,相对应地其中一个 DMD用于调制时序的青光、 红光和绿光。
可以理解的是,本实施例中分光系统中的滤光片 2203和 2204不是必 须的,可以通过改变光源系统的光路结构来省略掉该两个滤光片。例如将 滤光装置 2205上的各个区段同时还设置为透射第二光和第四光(本实施 例中均为蓝光), 并将光源 2201A和 2201B分别位于滤光装置 2205的两 侧, 使得光源 2201A出射的光经滤光装置 2205透射后直接入射至 DMD 2211 , 光源 2201B 出射的光经滤光装置 2205 透射后直接入射至 DMD 2213。
实施例十四 请参阅图 24, 图 24是本发明的光源系统的又一个实施例的发光光源 的示意图。 本实施例中, 光源系统 2200包括发光装置、 分光系统、 第一 空间光调制器 2211与第二空间光调制器 2213。
发光装置用于依序出射第一光、 第二光和第三光。 具体举例来说, 发 光装置包括黄光光源 2402A、 蓝光光源 2401和黄光光源 2402B, 分别用 于产生黄光 22A、 蓝光 11和黄光 22B , 即第一光、 第二光和第三光; 还 包括第一控制装置 2403 , 用于控制该三个光源, 使得发光装置依序出射 黄光 22A、 蓝光 11和黄光 22B。
分光系统用于将来自发光装置的第二光分成沿第一光通道和第二光 通道出射的第一子光和第二子光,还用于将来自发光装置的第三光分成沿 第一光通道和第二光通道出射的第五范围波长光和第六范围波长光。具体 举例来说, 分光系统包括滤光片 2404和 2405。 滤光片 2405的滤光曲线 设置为透射黄光的绿光成分,即第一光的第一范围波长光和第三光的第五 范围波长光,并反射红光成分, 即第一光的第二范围波长光和第三光的第 六范围波长光;还透射部分蓝光并反射部分蓝光,即第一子光和第二子光。 滤光片 2404用于透射蓝光并反射黄光。 蓝光光源 2401和黄光 2402A产 生的光分别从滤光片 2404的两侧入射,分别经滤光片 2404透射和反射后 从同一光通道至滤光片 2405的同一侧入射。 黄光光源 2402B产生的光从 滤光片 2405的另一侧入射。经滤光片 2405反射的光沿第一光通道出射至 DMD 2411 , 经滤光片 2405透射的光沿第二光通道出射至 DMD 2413。
第一空间光调制器(即 DMD 2411 )用于对分光系统沿第一光通道依 序出射的第一范围波长光、第一子光和第五范围波长光进行调制。第二空 间光调制器(即 DMD 2413 )用于对所述分光系统沿第二光通道依序出射 的第二范围波长光、 第二子光和第六范围波长光进行调制。
如图 25所示, 图 25是图 24所示的光源系统的三个光源的发光时序 图与两个 DMD的调制时序图。 在一个调制周期 T内, 在前 tl时间内, 蓝光光源 2401点亮, 两个黄光光源不工作, 则两个 DMD均用于调制蓝 光。 在接下来的 t2时间内, 黄光光源 2402B点亮, 其余两个光源不工作, 则 DMD2411用于调制绿光, DMD2413用于调制红光。 在接下来的 t3时 间内, 黄光光源 2502A点亮, 其余两个光源不工作, 则 DMD2411用于调 制红光, DMD2413用于调制绿光。 这样, 便可以使得两个 DMD分别调 制时序的三基色光。
本实施例中, 也可以在一个调制周期 T 内加入时间段 t4, 在该时间 内, 三个光源同时点亮, 则两个 DMD用于调制蓝光和黄光的合光, 即白 光。 这样, 可以提高光源系统的亮度。 在本实施例中, tl、 t2、 t3和 t4的 比例可以根据对不同颜色的实际比例需要来进行调整。
相比以上实施例,本实施例中可通过分别控制两个黄光光源的亮度来 分别对两个 DMD接收到的红光和绿光的亮度进行调整,并且减少了对滤 光装置驱动的第二驱动装置的使用; 同时, 由于光源的点亮不需与滤光装 置的转动相同步, 在控制不同光源的时序点亮上更加容易, 在调整 DMD 对不同颜色光调制的量也更加方便。
容易理解的是,本实施例中的其中一个黄光光源也可以替换成第三颜 色的发光元件。 相对应的, 用于分光的滤光片 2405的滤光曲线同时还设 置为透射第三颜色光的一个波长范围的光并反射第三颜色光的另一波长 范围光。
在本实施例中 ,发光装置中还可以通过激发光激发转动的色轮而产生 三束时序光,而分光系统中也可以通过与色轮同时转动的滤光轮来对该三 束时序光进行分光来实现。 以上实施例已经对这些装置进行描述,只需简 单的对不同实施例中的发光装置和分光系统进行组合即可, 在此不再赘 述。
实施例十五
请参阅图 26, 图 26是本发明的光源系统的又一个实施例的发光光源 的示意图。 本实施例中, 光源系统 2600包括发光装置、 分光系统、 第一 空间光调制器 2211 与第二空间光调制器 2213。 发光装置包括蓝光光源 2601 A和 2601B、 黄光光源 2602A和 2602B、 第一控制装置 2603。 分光 系统包括滤光片 2404和 2405。
本实施例与图 24所示实施例的区别之处包括:
本实施例中的发光装置还包括蓝光光源 2601B , 和蓝光光源 2601 A 分别为两个 DMD提供蓝光。
相比图 24所示的光源系统中用于对两个黄光光源产生的光束进行分 的滤光片 2605设置为透射绿光和蓝光并反射红光, 且蓝光 2601A产生的 蓝光经滤光片 2605透射后沿第二光通道出射至 DMD 2613。 同时, 滤光 片 2606位于滤光片 2605反射光束的出射光路上,用于透射蓝光并反射其 他光。经滤光片 2605反射的时序的红光和绿光经滤光片 2606反射后沿第 一光通道出射至 DMD 2611 , 蓝光光源 2501B从滤光片 2606透射后沿第 一光通道出射至 DMD 2611。
如图 27所示, 图 27是图 26所示的光源系统的四个光源的发光时序 图与两个 DMD的调制时序图。 在一个调制周期 T内, 在前 tl时间内, 第一控制装置控制两个蓝光光源点亮,两个黄光光源不工作,则两个 DMD 用于调制蓝光。 在接下来的 t2时间内, 黄光光源 2602B点亮, 其余三个 光源不工作, 则 DMD2611用于调制绿光, DMD2613用于调制红光。 在 接下来的 t3 时间内, 黄光光源 2602A 点亮, 其余三个光源不工作, 则 DMD2611 用于调制红光, DMD2613 用于调制绿光。 这样, 便可以使得 两个 DMD分别调制时序的三基色光。
容易理解的是, 其中一个蓝光光源也可以只在时间段 tl 的部分时间 段内点亮即可,其中具体点亮的时间长短可根据实际需要的蓝光的量来进 行控制。
优选地 , 在一个调制周期 T内, 也可以加入时间段 t4 , 在该时间内 , 四个光源同时点亮,则两个 DMD均用于调制蓝光和黄光的合光,即白光。 这样, 可以提高光源的亮度。 在本实施例中, tl、 t2、 t3和 t4的比例可以 根据对不同颜色的实际比例需要来进行调整。
相比图 24所示的光源系统, 本实施例中采用两个蓝光光源, 可以分 别控制两个 DMD中调制的蓝光的光强度和调制时间的长短,以更好地适 应实际需要。
在以上实施例中, 每个滤光片的滤光曲线、 各个光源的时序控制、 DMD的调制时序和具体光路结构等等并不限于以上的举例, 本技术领域 人员可根据本发明具体设计。
实施例十六
请参阅图 28, 图 28是本发明的光源系统的又一个实施例的发光光源 的示意图。 本实施例中, 光源系统 2800包括发光装置、 分光系统、 第一 空间光调制器 2811 与第二空间光调制器 2813。 发光装置包括激发光源 2801和 2802、波长转换层 2805、第一驱动装置 2806和第一控制装置(图 未示)。 分光系统包括滤光片 2814和反射镜 2812。
本实施例与图 24所示实施例的区别之处包括:
图 24所示的光源系统中发光装置通过时序点亮四个光源来产生时序 光,而本实施例中的发光装置采用色轮结合时序点亮光源两种方式来产生 时序光, 具体说明如下。
波长转换层 2805上包括第一分区 2805A、 第二分区 2805B、 第三分 区 2805C和第四分区 2805C , 分别设置有第一、 第二、 第三和第四功能 材料, 分别用于吸收激发光并产生第一、 第二、 第三、 第四光。 在本实施 例中, 两个激发光源均为 UV光, 第一和第三分区上均设置有黄光波长转 换材料, 第二和第四分区上均设置有蓝光波长转换材料。在同一时间段内 第一分区和第三分区分别位于两个激发光源产生的激发光的出射光路上, 另一时间段内第二分区和第四分区分别位于两个激发光源产生的激发光 的出射光路上。
第一驱动装置 2806用于驱动波长转换层 2805 ,使得激发光在波长转 换层 2805上形成的光斑按预定路径作用于该波长转换层 2806。 同时, 第 一控制装置用于控制两个激发光源, 使得当第一分区 2805A和第三分区 2805C位于两束激发光的光路上时的至少部分时段交替点亮,当第二分区 2805B和第四分区 2805D位于两束激发光的光路上时至少部分时段同时 点亮。
以下具体举例来说明。 如图 29所示, 图 29是图 28所示的光源系统 中的波长转换层的主视图的一个实施例。在本实施例中,波长转换层 2805 呈圓盘状, 且第一分区 2805A和第三分区 2805C呈 180度设置, 第二分 区 2805B和第四分区 2805D呈 180度设置。 第一驱动装置 280为马达, 用于驱动波长转换层周期性转动。 两束激发光在波长转换层 2805上各自 形成的光斑的连线经过圓盘的圓心,使得在同一时间内呈 180度设置的分 区分别位于该两个激发光源产生的激发光的出射光路上。
在本实施例中, 波长转换层 2805设置为反射式的, 即激发光与受激 光的光路位于该波长转换层 2805 的同一侧。 可通过在波长转换层 2805 背向激发光源的一侧放置反射镜或者镀有反射膜来实现, 此为公知技术 , 在此不再赘述。
在波长转换层 2805的出射光路上设置有两个反射罩 2803和 2804, 分别用于收集激发光源 2801和激发光源 2802激发波长转换层所产生的受 激光,分别称为第一受激光和第二受激光。该两个反射罩上各自设置有一 通孔,用于透射与其对应的激发光源产生的激发光。该两个反射罩利用激 发光和受激光的光学扩展量的差异将激发光和受激光的光路区分开来。容 易理解的是, 波长转换层为透射式时, 即激发光的光路和受激光的光路分 别位于波长转换层的两侧,可以不需要使用反射罩。但本实施例中采用反 射式的波长转换层和反射罩, 能够减少光束的损失, 提高光束利用率。
分光系统用于将第一光和第三光分别分成沿第一光通道和第二光通 道出射的两束不同波长范围光,并分别沿第一光通道和第二光通道出射第 二光和第四光。 在本实施例中, 反射镜 2812位于第二受激光的出射光路 上, 第一受激光和经反射镜 2812 反射的第二受激光分别入射至滤光片 2811的两侧。 滤光片 2814用于反射黄光(即第一光和第三光) 中的绿光 成分并透射红光成分, 还用于反射蓝光(即第二光和第四光)沿第一光通 道和第二光通道出射。 DMD 2811用于对经滤光片 2814沿第一光通道出 射的光束进行调制。 DMD 2813用于对经滤光片 2814沿第二光通道出射 的光束进行调制。
优选地, 第一受激光经反射罩 2803 收集后依次进入勾光装置 2807 匀光和收集透镜 2810后再出射至滤光片 2811。 同样的, 第二受激光经反 射罩 2804收集后依次进入勾光装置 2808勾光和收集透镜 2809后再出射 至滤光片 2811。 这样, 能提高第一受激光和第二受激光的利用率, 减少 光损失。
如图 30所示, 图 30是图 28所示的光源系统的一种工作时序图。 具 体说明如下。在波长转换层 2805转动的一个周期 T内,当第二分区 2805B 和第四分区 2805D分别位于两束激发光的光路上时, 第一控制装置控制 两个激发光源点亮, 则两个 DMD同时接收到滤光片 2811反射的蓝光; 当第一分区 2805A和第三分区 2508C分别位于两束激发光的光路上时, 在前 tl 时间内, 第一控制装置控制激发光源 2802点亮, 激发光源 2801 关闭,则 DMD2813接收到绿光, DMD 2811接收到红光;在后 t2时间内, 第一控制装置控制激发光源 2801点亮,激发光源 2802关闭,则 DMD2813 接收到红光, DMD2811接收到绿光。
优选地, 当第一分区 2805A和第二分区 2805C分别位于两束激发光 的光路上时, 期间有部分时间段 t3内, 第一控制装置控制激发光源 2801 和 2802同时点亮, 则两个 DMD同时接收到红光和绿光的合光, 即黄光。 这使得光源系统的亮度提高。
在本实施例中, 当第二分区 2805B和第四分区 2805D分别位于两束 激发光的光路上时,可以调整两束激发光的工作时间的长短, 以调整两个 DMD分别接收到的蓝光的量,进而调整最终光源系统出射的图像的颜色。 同样道理的, 也可以在第一分区 2805A和第三分区 2805C分别位于两束 激发光的光路上时,分别调整两束激发光的工作时间的长短, 以调整两个 DMD分别接收到的时序红、 绿光的量。
在本实施例中, 两个激发光源也可以是蓝光光源, 第二分区 2805B 和第四分区 2805D上均设置有反光区, 用于反射蓝光。 当激发光源为激 光光源时, 优选地, 第二分区 2805B和第四分区 2805D还设置有散射材 料, 用于对蓝光进行消相干。
在本实施例中, 第一、 第二、 第三和第四光也可以是不同颜色光, 可 根据两个 DMD 分别需要调制的光来决定该四束光的光谱以及用于将第 一光和第三光分光的滤光片的滤光曲线。
实施例十七
请参阅图 31 , 图 31是本发明的光源系统的又一个实施例的发光光源 的示意图。 本实施例中, 光源系统 3100包括发光装置、 分光系统、 第一 空间光调制器 3111 与第二空间光调制器 3113。 发光装置包括激发光源 3101和 3102、波长转换层 3105、第一驱动装置 3106和第一控制装置(图 未示)。 分光系统包括滤光片 3109、 带有通孔的反射镜 3103和 3104。
本实施例与图 28所示实施例的区别之处包括:
图 28所示的光源系统中在波长转换层 2805的出射光路上放置反射 罩,使得发光装置发出的时序光经反射罩收集后再进入分光系统。在本实 施例中, 不在波长转换层 3105的出射光路上放置反射罩, 而是直接放置 分光系统。
分光系统中的滤光片 3109用于透射黄光中的绿光成分并反射黄光中 的红光成分,还用于分别透射第二光和第四光(在本实施例中均为蓝光)。 第一激发光源 3101产生的激发光依次经过反射镜 3103上的通孔和准直透 镜 3108后入射至波长转换层 3105。 波长转换层 3105出射的第一受激光 经准直透镜 3108准直后被反射镜 3103反射至滤光片 3109。 第二激发光 源 3102产生的激发光依次经过反射镜 3104上的通孔、 滤光片 3109和准 直透镜 3107后入射至波长转换层 3105。 波长转换层 3105出射的第二受 激光经准直透镜 3107准直后进入滤光片 3109。
图 31所示的光源系统的工作时序具体举例如下。在波长转换层 3108 转动的一个周期 T内, 当第二分区 2805B和第四分区 2805D分别位于两 束激发光的光路上时, 第一控制装置控制两个激发光源点亮, 则 DMD 3113接收到滤光片 3109透射的蓝光, DMD 3111 接收到依次经滤光片 3109 透射和反射镜 3104反射的蓝光; 当第一分区 2805A和第三分区 2805C分别位于两束激发光的光路上时, 在前 tl 时间内, 第一控制装置 控制激发光源 3101点亮,激发光源 3102关闭,则 DMD3113接收到红光, DMD3111接收到绿光;在后 t2时间内,第一控制装置控制激发光源 3102 点亮, 激发光源 3101关闭, 则 DMD3113接收到绿光, DMD3111接收到 红光。
为方便描述,在以上各实施例中均采用第一光和第三光为黄光, 第二 光和第四光为蓝光为例子说明。在实际运用中,该四束光也可以为其他颜 色光, 并不限定于以上所描述的。相对应的, 分光系统中的滤光片或者滤 光装置的滤光曲线也根据该四束光的具体颜色而具体设计。
在以上各实施例中,具有不同分区的波长转换层和不同区段的滤光装 置中,波长转换层或者滤光装置上的不同区域也可以不是围绕一个圓心周 向分布 ,而是呈平行设置的带状区域或采取其他适当设置方式。相对应的 , 用于驱动该波长转换层或者滤光装置运功的驱动装置可以是线性平移装 置或采取其他适当设置方式,以使得光束在该波长转换层或者滤光装置上 形成的光斑分别沿直线路径或者其他预定路径作用于该波长转换层或者 滤光装置。
在以上各实施例中, 两个 DMD 出射的光可以投射到同一显示区域 内, 以形成一幅图像, 如图 32所示, 图 32是本发明的光源系统的一个实 施例的结构示意图。 两个 DMD 出射的光也可以分别投射到两个显示区 域, 以形成两幅图像, 如图 33所示。 图 33是本发明的光源系统的又一个 实施例的结构示意图。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的 都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即 可。
本发明实施例还提供一种投影系统, 包括光源系统,该光源系统可以 具有上述各实施例中的结构与功能。 该投影系统可以采用各种投影技术, 例如液晶显示器 (LCD, Liquid Crystal Display )投影技术、 数码光路处 理器(DLP, Digital Light Processor )投影技术。 此外, 上述发光装置也 可以应用于照明系统, 例如舞台灯照明。
以上所述仅为本发明的实施方式, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直 接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范 围内。

Claims

权 利 要 求 书
1、 一种光源系统, 其特征在于, 包括:
发光装置, 用于依序出射第一光与第二光;
分光系统, 用于将来自发光装置的第一光分成分别沿第一光通道和 第二光通道出射的第一范围波长光和第二范围波长光, 还用于将来自发 光装置的第二光的至少部分光沿第一光通道出射;
第一空间光调制器, 用于对所述分光系统沿第一光通道出射的光进 行调制;
第二空间光调制器, 用于对所述分光系统沿第二光通道出射的至少 部分光进行调制。
2、 根据权利要求 1 所述的光源系统, 其特征在于, 所述第一光为 黄光, 所述第二光为蓝光。
3、 根据权利要求 2 所述的光源系统, 其特征在于, 所述第一范围 波长光和第二范围波长光分别为红光和绿光, 或者分别为绿光和红光。
4、 根据权利要求 1 所述的光源系统, 其特征在于, 所述发光装置 包括激发光源、 波长转换层与第一驱动装置;
所述激发光源用于产生激发光;
所述波长转换层包括第一分区和第二分区, 第一分区上设置有第一 波长转换材料, 用于吸收所述激发光并出射所述第一光; 第二分区上设 置有第二波长转换材料, 用于吸收所述激发光并出射第二光, 或者设置 有透光区, 用于透射所述激发光, 该激发光为第二光;
所述第一驱动装置用于驱动所述波长转换层, 使得所述激发光在所 述波长转换层上形成的光斑按预定路径作用于所述波长转换层, 使得该 波长转换层依序出射第一光与第二光。
5、 根据权利要求 4 所述的光源系统, 其特征在于, 所述分光系统 包括第一分光装置, 该第一分光装置包括第一区段和第二区段, 其中第 一区段用于将来自发光装置的第一光分成分别沿第一光通道和第二光 通道出射的两束不同波长范围光, 第二区段用于将来自发光装置的第二 光的至少部分光沿第一光通道出射; 所述波长转换层和第一分光装置固定连接;
所述发光装置还包括光引导装置, 用于将该波长转换层上的第一分 区和第二分区出射的时序光分别引导至所述第一区段和第二区段上。
6、 根据权利要求 1 所述的光源系统, 其特征在于, 所述发光装置 包括第一发光器件、 第二发光器件、 第一反射装置、 第二反射装置和第 二驱动装置;
第一发光器件用于产生第一光, 第二发光器件用于产生第二光; 第一反射装置包括两个反射元件, 分别位于第一发光器件和第二发 光器件的出射光路上, 用于将不同发光器件的出射光反射至第二反射装 置;
第二反射装置包括一反射面, 位于第一、 第二发光器件之间, 第二 驱动装置驱动第二反射装置运动, 使得该反射面依次置于第一反射装置 的两个反射元件的出射光路上, 以将第一、 第二发光器件发出的光依次 反射出射。
7、 根据权利要求 1 所述的光源系统, 其特征在于, 所述发光装置 包括第一发光器件、 第二发光器件和第一控制装置;
第一发光器件用于产生第一光, 第二发光器件用于产生第二光; 第一控制装置用于在至少部分时段将第一发光器件和第二发光器 件交替点亮。
8、 根据权利要求 1 所述的光源系统, 其特征在于, 所述分光系统 还用于将来自发光装置的第二光分成分别沿第一光通道和第二光通道 出射的第三范围波长光和第四范围波长光。
9、 根据权利要求 8 所述的光源系统, 其特征在于, 第二空间光调 制器还用于对所述分光系统出射的第二范围波长光进行调制。
10、 根据权利要求 1所述的光源系统, 其特征在于,
所述分光系统包括滤光装置和用于驱动滤光装置运动的第二驱动 装置, 该滤光装置包括第一区段、 第二区段和第三区段, 其中第一区段 用于透射部分第二光至第一光通道出射, 并反射部分第二光至第二光通 道出射; 第二区段用于透射第一光的第一范围波长光至第一光通道出 射, 并反射第二范围波长光至第二光通道出射; 第三区段用于反射第一 光的第一范围波长光至第二光通道出射, 并透射第二范围波长光至第一 光通道出射;
所述发光装置还包括第一控制装置, 用于控制该第二驱动装置, 以 使该第二区段的至少部分和第三区段的至少部分依次位于第一光的出 射光路上, 第一区段的至少部分位于第二光的出射光路上。
11、 根据权利要求 10 所述的光源系统, 其特征在于, 所述发光装 置包括第一发光器件和第二发光器件;
第一发光器件用于产生第一光, 第二发光器件用于产生第二光; 第一控制装置用于时序点亮第一发光器件和第二发光器件。
12、 根据权利要求 10 所述的光源系统, 其特征在于, 所述发光装 置包括激发光源、 波长转换层与第一驱动装置;
所述激发光源用于产生激发光;
所述波长转换层包括第一分区和第二分区, 第一分区上设置有第一 波长转换材料, 用于吸收所述激发光并出射所述第一光; 第二分区上设 置有第二波长转换材料, 用于吸收所述激发光并出射第二光, 或者设置 有透光区, 用于透射所述激发光, 该激发光为第二光;
所述第一驱动装置用于驱动所述波长转换层, 使得所述激发光在所 述波长转换层上形成的光斑按预定路径作用于所述波长转换层, 使得该 波长转换层依序出射第一光与第二光。
13、 根据权利要求 1所述的光源系统, 其特征在于, 所述发光装置 还用于在出射第二光的至少部分时段还出射第四光;
所述分光系统包括滤光装置和用于驱动滤光装置运动的第二驱动 装置, 该滤光装置包括第一区段和第二区段, 其中第一区段用于透射第 一光的第一范围波长光至第一光通道出射, 并反射第二范围波长光至第 二光通道出射; 第二区段用于反射第一光的第一范围波长光至第二光通 道出射, 并透射第二范围波长光至第一光通道出射; 所述分光系统还用 于分别沿第一光通道和第二光通道分别出射第二光和第四光;
所述发光装置还包括第一控制装置, 用于控制该第二驱动装置, 以 使该第一区段的至少部分和第二区段的至少部分依次位于第一光的出 射光路上。
14、 根据权利要求 1所述的光源系统, 其特征在于, 所述发光装置 用于依序出射第一光、 第二光和第三光;
所述分光系统用于将来自发光装置的第二光分成沿第一光通道和 第二光通道出射的第一子光和第二子光, 还用于将来自发光装置的第三 光分成沿第一光通道和第二光通道出射的第五范围波长光和第六范围 波长光;
第一空间光调制器用于对所述分光系统沿第一光通道依序出射的 第一范围波长光、 第一子光和第五范围波长光进行调制;
第二空间光调制器用于对所述分光系统沿第二光通道依序出射的 第二范围波长光、 第二子光和第六范围波长光进行调制。
15、 根据权利要求 1所述的光源系统, 其特征在于, 所述发光装置 用于依序出射第一光、 第二光、 第三光, 还用于在出射第二光的至少部 分时间段内出射第四光;
所述分光系统用于将来自发光装置的第三光分成沿第一光通道和 第二光通道出射的第五范围波长光和第六范围波长光, 并分别沿第一光 通道和第二光通道出射第二光和第四光;
第一空间光调制器用于对所述分光系统沿第一光通道依序出射的 第一范围波长光、 第二光和第五范围波长光进行调制;
第二空间光调制器用于对所述分光系统沿第二光通道依序出射的 第二范围波长光、 第四光和第六范围波长光进行调制。
16、 根据权利要求 13或 15所述的光源系统, 其特征在于, 第一光和第三光为同一种颜色光;
所述分光系统包括第一滤光片, 用于透射第一光的第一范围波长光 并反射第二范围波长光;
第一光和第三光分别从第一滤光片的两面入射。
17、 根据权利要求 15 所述的光源系统, 其特征在于, 所述发光装 置包括第一发光器件、 第二发光器件、 第三发光器件和第四发光器件和 第一控制装置;
第一发光器件用于产生第一光, 第二发光器件用于产生第二光, 第 三发光器件用于产生第三光, 第四发光器件用于产生第四光; 第一控制装置用于在至少部分时段将第一发光器件和第三发光器 件交替点亮, 并在另一至少部分时段将第二发光器件和第四发光器件同 时点亮。
18、 根据权利要求 17所述的光源系统, 其特征在于, 在部分时段, 第一、 第二、 第三、 第四发光器件被同时点亮, 使得第一空间光调制器 和第二空间光调制器在该部分时段均用于对第一光、 第二光、 第三光和 第四光的合光进行调制。
19、 根据权利要求 15 所述的光源系统, 其特征在于, 所述发光装 置包括两个用于产生激发光的激发光源、 波长转换层、 第一驱动装置和 第一控制装置;
所述波长转换层包括第一、 第二、 第三、 第四分区, 并且在同一时 间段内第一分区和第三分区分别位于所述两个激发光源产生的激发光 的出射光路上, 另一时间段内第二分区和第四分区分别位于所述两个激 发光源产生的激发光的出射光路上;
第一、 第二、 第三、 第四分区上分别设置有第一、 第二、 第三、 第 四功能材料, 用于分别出射第一、 第二、 第三、 第四光;
所述第一驱动装置用于驱动所述波长转换层, 使得所述激发光在所 述波长转换层上形成的光斑按预定路径作用于所述波长转换层; 所述第 一控制装置还用于控制所述两个激发光源在第一分区和第三分区位于 激发光的光路上的至少部分时段交替点亮, 并在第二分区和第四分区位 于激发光的光路上的至少部分时段同时点亮。
20、 一种投影系统, 其特征在于, 包括如权利要求 1至 19中任一 项权利要求所述的光源系统。
PCT/CN2013/084025 2012-09-28 2013-09-23 光源系统及相关投影系统 WO2014048287A1 (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
KR1020177006524A KR20170029662A (ko) 2012-09-28 2013-09-23 광원 시스템 및 관련 프로젝트 시스템
EP18203295.3A EP3454117A1 (en) 2012-09-28 2013-09-23 Light source system and related projection system
KR1020177006535A KR101901674B1 (ko) 2012-09-28 2013-09-23 광원 시스템 및 관련 프로젝트 시스템
KR1020177006536A KR101816072B1 (ko) 2012-09-28 2013-09-23 광원 시스템 및 관련 프로젝트 시스템
KR1020157008297A KR101830214B1 (ko) 2012-09-28 2013-09-23 광원 시스템 및 관련 프로젝트 시스템
KR1020177006525A KR101816079B1 (ko) 2012-09-28 2013-09-23 광원 시스템 및 관련 프로젝트 시스템
EP13842711.7A EP2902844B1 (en) 2012-09-28 2013-09-23 Light source system and related projection system
US14/432,018 US9746756B2 (en) 2012-09-28 2013-09-23 Light source system and related projection system employing a light division system and two spatial light modulatiors
JP2015533429A JP6185069B2 (ja) 2012-09-28 2013-09-23 光源システム及び関連する投影システム
KR1020177006538A KR20170030657A (ko) 2012-09-28 2013-09-23 광원 시스템 및 관련 프로젝트 시스템
KR1020177006531A KR101816076B1 (ko) 2012-09-28 2013-09-23 광원 시스템 및 관련 프로젝트 시스템
US15/599,297 US9897900B2 (en) 2012-09-28 2017-05-18 Light source system and related projection system
US15/599,306 US9897903B2 (en) 2012-09-28 2017-05-18 Light source system and related projection system
US15/599,364 US10197897B2 (en) 2012-09-28 2017-05-18 Light source system employing two light emitting devices and related projection system employing two spatial light modulators
US15/599,326 US9897901B2 (en) 2012-09-28 2017-05-18 Light source system and related projection system
US15/599,374 US10095095B2 (en) 2012-09-28 2017-05-18 Light source system employing two light emitting devices and related projection system employing two spatial light modulators
US15/599,336 US10228613B2 (en) 2012-09-28 2017-05-18 Light source system and related projection system employing a light division system and two spatial light modulators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210370491.XA CN103713454B (zh) 2012-09-28 2012-09-28 发光装置及相关投影系统
CN201210370491.X 2012-09-28

Related Child Applications (7)

Application Number Title Priority Date Filing Date
US14/432,018 A-371-Of-International US9746756B2 (en) 2012-09-28 2013-09-23 Light source system and related projection system employing a light division system and two spatial light modulatiors
US15/599,364 Continuation US10197897B2 (en) 2012-09-28 2017-05-18 Light source system employing two light emitting devices and related projection system employing two spatial light modulators
US15/599,336 Continuation US10228613B2 (en) 2012-09-28 2017-05-18 Light source system and related projection system employing a light division system and two spatial light modulators
US15/599,374 Continuation US10095095B2 (en) 2012-09-28 2017-05-18 Light source system employing two light emitting devices and related projection system employing two spatial light modulators
US15/599,297 Continuation US9897900B2 (en) 2012-09-28 2017-05-18 Light source system and related projection system
US15/599,306 Continuation US9897903B2 (en) 2012-09-28 2017-05-18 Light source system and related projection system
US15/599,326 Continuation US9897901B2 (en) 2012-09-28 2017-05-18 Light source system and related projection system

Publications (1)

Publication Number Publication Date
WO2014048287A1 true WO2014048287A1 (zh) 2014-04-03

Family

ID=50386989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084025 WO2014048287A1 (zh) 2012-09-28 2013-09-23 光源系统及相关投影系统

Country Status (6)

Country Link
US (7) US9746756B2 (zh)
EP (2) EP3454117A1 (zh)
JP (7) JP6185069B2 (zh)
KR (7) KR20170029662A (zh)
CN (1) CN103713454B (zh)
WO (1) WO2014048287A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155835A (zh) * 2014-08-15 2014-11-19 广景科技有限公司 Dlp微型投影机
JP2016033553A (ja) * 2014-07-31 2016-03-10 日亜化学工業株式会社 光源装置及びこの光源装置を備えたプロジェクタ
EP3136170A4 (en) * 2014-04-24 2017-03-08 Appotronics China Corporation Light source system and projection display device
JP2017519236A (ja) * 2014-04-23 2017-07-13 アッポトロニック チャイナ コーポレイション 光源システム、投影システム及び方法
JP2017526962A (ja) * 2014-12-08 2017-09-14 深▲せん▼市繹立鋭光科技開発有限公司Appotronics(China)Corporation 投影システム
EP3171591A4 (en) * 2014-07-17 2018-03-21 Appotronics China Corporation Digital micro-mirror device control apparatus and projection display system
JP2018513412A (ja) * 2015-04-09 2018-05-24 深▲せん▼市光峰光電技術有限公司Appotronics Corporation Limited 光源システム及び投影システム
CN109668574A (zh) * 2017-10-16 2019-04-23 深圳市绎立锐光科技开发有限公司 车辆行驶指示系统、车辆及方法
JP2020024429A (ja) * 2015-04-09 2020-02-13 深▲せん▼光峰科技股▲分▼有限公司Appotronics Corporation Limited 発光装置及び投影表示デバイス

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2070745A1 (en) * 1991-06-10 1992-12-11 Hiroyuki Hashimoto Video camera, video camera device and adopter used therewith
CN103713454B (zh) * 2012-09-28 2016-12-07 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
US9664989B2 (en) * 2013-05-23 2017-05-30 Texas Instruments Incorporated Multi-spatial light modulator image display projector architectures using solid state light sources
CN104980721B (zh) * 2014-04-02 2019-03-29 深圳光峰科技股份有限公司 一种光源系统及投影系统
CN104820290B (zh) * 2014-12-19 2017-05-17 深圳市科曼医疗设备有限公司 匀光装置
CN204730123U (zh) * 2015-06-01 2015-10-28 深圳市光峰光电技术有限公司 波长转换装置、光源系统和投影系统
US10261330B2 (en) * 2015-08-25 2019-04-16 Christie Digital Systems Usa, Inc. System for producing an output light beam of a given spectrum
JP6768191B2 (ja) * 2015-08-26 2020-10-14 カシオ計算機株式会社 光源装置及び投影装置
JP6897023B2 (ja) * 2016-07-28 2021-06-30 セイコーエプソン株式会社 投射型表示装置および電気光学装置
CN109976078B (zh) * 2016-08-04 2022-01-11 深圳光峰科技股份有限公司 发光装置及投影系统
WO2018073893A1 (ja) * 2016-10-18 2018-04-26 Necディスプレイソリューションズ株式会社 プロジェクター及び画像表示方法
WO2018195517A2 (en) * 2017-04-20 2018-10-25 Texas Instruments Incorporated Spatial light modulator image display projector apparatus with solid state illumination light sources
CN110007550B (zh) * 2018-01-04 2021-11-05 深圳光峰科技股份有限公司 光源系统及投影设备
CN110471244A (zh) * 2018-05-10 2019-11-19 中强光电股份有限公司 照明系统及投影装置
CN110632814A (zh) * 2018-06-25 2019-12-31 中强光电股份有限公司 照明系统以及投影装置
CN109212878B (zh) * 2018-09-27 2021-07-27 明基智能科技(上海)有限公司 投影系统
KR102655480B1 (ko) * 2019-01-22 2024-04-08 엘지전자 주식회사 프로젝터
CN109960099B (zh) * 2019-04-30 2024-03-15 成都极米科技股份有限公司 一种非共轴的投影光源系统
CN110716380B (zh) * 2019-11-25 2021-05-18 成都极米科技股份有限公司 一种光源系统及投影机
CN113805415B (zh) * 2020-06-11 2023-06-13 中强光电股份有限公司 投影装置
CN113418150B (zh) * 2021-06-21 2023-12-05 广东奥普特科技股份有限公司 一种可切换颜色的光源及其制备方法
US20230067172A1 (en) * 2021-08-27 2023-03-02 Himax Display, Inc. Holographic display system and method for generating holographic images
JP7428202B2 (ja) 2022-03-30 2024-02-06 セイコーエプソン株式会社 プロジェクター及びプロジェクターの制御装置
WO2024049464A1 (en) * 2022-08-30 2024-03-07 Excelitas Canada, Inc. Indexed multi-level selector for light beam with different but adjacent wavelengths

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224854A (zh) * 1998-01-30 1999-08-04 国际商业机器公司 使用全内反射棱镜的高效双空间光调制器投影仪
CN1482487A (zh) * 2002-09-14 2004-03-17 邱新萍 彩色投影显示装置
CN101144940A (zh) * 2006-09-14 2008-03-19 索尼株式会社 延迟补偿板、延迟补偿器、液晶显示装置以及投射型图像显示装置
CN201654428U (zh) * 2010-02-11 2010-11-24 北京中视中科光电技术有限公司 一种大屏幕投影系统
CN201974582U (zh) * 2010-09-29 2011-09-14 北京中视中科光电技术有限公司 一种投影显示装置
CN102253581A (zh) * 2011-07-15 2011-11-23 台达电子工业股份有限公司 投影装置及其分光单元以及合光单元
CN102608855A (zh) * 2012-03-19 2012-07-25 中国科学院半导体研究所 3-lcos激光投影显示照明光学系统
CN102650811A (zh) * 2011-08-27 2012-08-29 深圳市光峰光电技术有限公司 投影系统及其发光装置

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905545A (en) 1995-01-27 1999-05-18 Texas Instruments Incorporated Full-color projection display system using two light modulators
US5612753A (en) * 1995-01-27 1997-03-18 Texas Instruments Incorporated Full-color projection display system using two light modulators
US5517340A (en) * 1995-01-30 1996-05-14 International Business Machines Corporation High performance projection display with two light valves
JPH11264953A (ja) * 1998-03-17 1999-09-28 Minolta Co Ltd カラー投影装置
US5986815A (en) 1998-05-15 1999-11-16 Optical Coating Laboratory, Inc. Systems, methods and apparatus for improving the contrast ratio in reflective imaging systems utilizing color splitters
TW460730B (en) 1998-11-13 2001-10-21 Ind Tech Res Inst Dual board Liquid crystal projection display
ATE280472T1 (de) 1998-12-22 2004-11-15 Varintelligent Bvi Ltd Optische anordnung für reflektierende lichtventile
JP3522591B2 (ja) * 1999-06-04 2004-04-26 シャープ株式会社 画像表示装置
US6280034B1 (en) 1999-07-30 2001-08-28 Philips Electronics North America Corporation Efficient two-panel projection system employing complementary illumination
JP3618611B2 (ja) * 1999-12-09 2005-02-09 シャープ株式会社 反射型液晶表示装置
JP4627362B2 (ja) 2000-09-26 2011-02-09 浜松ホトニクス株式会社 波長可変光源
KR100400369B1 (ko) * 2000-12-28 2003-10-08 엘지전자 주식회사 화상 투사장치
US6672722B2 (en) 2001-06-19 2004-01-06 Intel Corporation Projection engine
EP1423753A4 (en) 2001-07-12 2005-08-03 Genoa Technologies Ltd SEQUENTIAL PROJECTION SCREEN WITH MULTIPLE PICTURE PANELS
US7083282B1 (en) 2002-02-19 2006-08-01 Colorlink, Inc. Light recycling colored light source and method of using
JP2004070017A (ja) * 2002-08-07 2004-03-04 Mitsubishi Electric Corp 投写装置の照明光学系構造及び投写装置
KR20040019767A (ko) * 2002-08-29 2004-03-06 삼성전자주식회사 두 광원 또는 두 라이트 밸브를 채용한 프로젝션 시스템
JP4046585B2 (ja) 2002-10-01 2008-02-13 オリンパス株式会社 照明装置と、この照明装置を用いた投影表示装置
JP3989412B2 (ja) * 2002-10-21 2007-10-10 オリンパス株式会社 照明装置及び画像投影装置
JP4059066B2 (ja) 2002-11-15 2008-03-12 セイコーエプソン株式会社 プロジェクタ
KR100519348B1 (ko) * 2003-01-27 2005-10-07 엘지전자 주식회사 레이저 표시 장치
KR20040068691A (ko) 2003-01-27 2004-08-02 삼성전자주식회사 칼라 조명장치 및 이를 채용한 화상투사장치
KR20040079083A (ko) 2003-03-06 2004-09-14 삼성전자주식회사 광 합성장치
US7287858B2 (en) * 2003-03-06 2007-10-30 Samsung Electronics Co., Ltd. Color separating unit and projection type image display apparatus employing the same
US7237899B2 (en) 2003-05-16 2007-07-03 3M Innovative Properties Company Highly efficient single panel and two panel projection engines
KR100965877B1 (ko) * 2003-06-13 2010-06-24 삼성전자주식회사 고효율 프로젝션 시스템 및 칼라화상 형성방법
JP2005055199A (ja) * 2003-08-05 2005-03-03 Juki Corp Led照明装置
JP2005107211A (ja) 2003-09-30 2005-04-21 Olympus Corp 画像投影装置
US7954960B2 (en) * 2007-12-04 2011-06-07 Silicon Quest Kabushiki-Kaisha Video image display apparatus and timing control method
US7289090B2 (en) * 2003-12-10 2007-10-30 Texas Instruments Incorporated Pulsed LED scan-ring array for boosting display system lumens
JP2005189653A (ja) 2003-12-26 2005-07-14 Olympus Corp 画像投影装置
TWI236291B (en) * 2004-01-15 2005-07-11 Delta Electronics Inc Color projection system
GB0403263D0 (en) * 2004-02-13 2004-03-17 Varintelligent Bvi Ltd High performance projection system with two reflective liquid crystal display panels
JP4052282B2 (ja) * 2004-05-07 2008-02-27 セイコーエプソン株式会社 プロジェクタ
JP2005321524A (ja) * 2004-05-07 2005-11-17 Seiko Epson Corp 光源装置およびプロジェクタ
US7347562B2 (en) * 2004-05-21 2008-03-25 Jds Uniphase Corporation Two-panel liquid-crystal-on-silicon color management system
JP4530743B2 (ja) * 2004-07-02 2010-08-25 オリンパス株式会社 色合成素子及びこれを用いた投影装置
JP2006023627A (ja) 2004-07-09 2006-01-26 Olympus Corp 照明装置及び画像投影装置
US7364302B2 (en) * 2004-08-09 2008-04-29 3M Innovative Properties Company Projection display system using multiple light sources and polarizing element for using with same
US7429111B2 (en) * 2004-12-06 2008-09-30 Jds Uniphase Corporation Two-panel color management system
US20060250581A1 (en) 2005-05-03 2006-11-09 Eastman Kodak Company Display apparatus using LCD panel
JP2006330176A (ja) * 2005-05-24 2006-12-07 Olympus Corp 光源装置
JP2006343500A (ja) * 2005-06-08 2006-12-21 Olympus Corp 光源装置及び投影光学装置
JP2006349731A (ja) 2005-06-13 2006-12-28 Olympus Corp 画像投影装置
US7506985B2 (en) * 2005-10-26 2009-03-24 Hewlett-Packard Development Company, L.P. Projection light source having multiple light emitting diodes
US7883216B2 (en) 2006-02-13 2011-02-08 High Definition Integration Ltd. Methods and systems for multiple primary color display
JP4736921B2 (ja) * 2006-04-12 2011-07-27 ソニー株式会社 液晶プロジェクタおよび画像再生装置
WO2008076114A1 (en) 2006-12-19 2008-06-26 Thomson Licensing High resolution dmd projection system
US7570410B2 (en) * 2006-12-28 2009-08-04 Texas Instruments Incorporated High brightness display systems using multiple spatial light modulators
TWI328125B (en) 2007-03-28 2010-08-01 Young Optics Inc Light source module
EP2113951B1 (en) 2007-04-17 2015-06-10 Nikon Corporation Illuminating device, projector and camera
JP5595907B2 (ja) 2007-04-25 2014-09-24 トムソン ライセンシング 高い分解能の3d投射システム
JP2008300115A (ja) 2007-05-30 2008-12-11 Olympus Corp 照明装置および画像投影表示装置
JP2008309827A (ja) * 2007-06-12 2008-12-25 Panasonic Corp 光遅延発生装置およびそれを用いた投射型画像表示装置
TW200905363A (en) * 2007-07-27 2009-02-01 Coretronic Corp Projection display apparatus and its light source module
JP2009069286A (ja) * 2007-09-11 2009-04-02 Victor Co Of Japan Ltd 投射型画像表示装置
US20090141194A1 (en) 2007-12-04 2009-06-04 Akira Shirai Apparatus and method, both for controlling spatial light modulator
US20090141187A1 (en) * 2007-12-04 2009-06-04 Akira Shirai Buffer Management system for video image display apparatus
KR20100103697A (ko) * 2008-01-17 2010-09-27 웨이비엔, 인코포레이티드 광 다중화기 및 재활용기와 이를 포함하는 마이크로 프로젝터
JP2010078766A (ja) * 2008-09-25 2010-04-08 Olympus Corp 色分離合成プリズムおよびその製造方法
JP2010091973A (ja) * 2008-10-10 2010-04-22 Olympus Corp 投影装置用照明光学系
JP2010113285A (ja) * 2008-11-10 2010-05-20 Olympus Corp 光学系及びこれを備えた多板式投影装置
JP2010169723A (ja) * 2009-01-20 2010-08-05 Seiko Epson Corp プロジェクター
KR101619518B1 (ko) 2009-06-11 2016-05-11 엘지이노텍 주식회사 프로젝션 시스템
JP4711156B2 (ja) 2009-06-30 2011-06-29 カシオ計算機株式会社 光源装置及びプロジェクタ
JP4756403B2 (ja) 2009-06-30 2011-08-24 カシオ計算機株式会社 光源装置及びプロジェクタ
JP5407664B2 (ja) * 2009-08-27 2014-02-05 セイコーエプソン株式会社 プロジェクター
JP5671666B2 (ja) * 2010-02-12 2015-02-18 日立マクセル株式会社 固体光源装置及び投射型表示装置
JP5617288B2 (ja) * 2010-03-18 2014-11-05 セイコーエプソン株式会社 照明装置及びプロジェクター
JP2012014045A (ja) * 2010-07-02 2012-01-19 Seiko Epson Corp プロジェクター
JP5527058B2 (ja) * 2010-07-06 2014-06-18 セイコーエプソン株式会社 光源装置及びプロジェクター
KR101169923B1 (ko) * 2010-07-14 2012-08-09 재단법인 대구경북과학기술원 영상 표시 장치 및 그 시스템
JP5445379B2 (ja) 2010-07-30 2014-03-19 セイコーエプソン株式会社 プロジェクター
JP5534331B2 (ja) * 2010-07-30 2014-06-25 カシオ計算機株式会社 光源ユニット及びプロジェクタ
CN201838620U (zh) * 2010-08-12 2011-05-18 红蝶科技(深圳)有限公司 一种带激发腔的高效率单色光源封装结构及投影光学引擎
JP5703631B2 (ja) * 2010-08-26 2015-04-22 セイコーエプソン株式会社 プロジェクター
JP5769046B2 (ja) * 2010-10-20 2015-08-26 セイコーエプソン株式会社 光源制御装置及び方法並びにプロジェクター
JP2012108486A (ja) * 2010-10-21 2012-06-07 Panasonic Corp 光源装置および画像表示装置
US20120106126A1 (en) * 2010-11-01 2012-05-03 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
JP5741795B2 (ja) * 2010-11-09 2015-07-01 セイコーエプソン株式会社 プロジェクター及びその制御方法
JP5682813B2 (ja) * 2010-11-30 2015-03-11 セイコーエプソン株式会社 照明装置及びプロジェクター
JP5895226B2 (ja) * 2010-11-30 2016-03-30 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
JP5817109B2 (ja) 2010-12-08 2015-11-18 セイコーエプソン株式会社 光源装置およびプロジェクター
US9851071B2 (en) 2010-12-08 2017-12-26 Appotronics China Corporation Light source employing a wavelength conversion device with a light introducing device and a light collecting device
JP2012123180A (ja) * 2010-12-08 2012-06-28 Seiko Epson Corp 光源装置およびプロジェクター
US9300929B2 (en) * 2011-01-24 2016-03-29 Seiko Epson Corporation Illumination device and projector
TWI436150B (zh) 2011-02-15 2014-05-01 Asia Optical Co Inc Projector with dual projection function and its external kit
JP2012173676A (ja) * 2011-02-24 2012-09-10 Seiko Epson Corp 光源装置及びプロジェクター
JP5673247B2 (ja) * 2011-03-15 2015-02-18 セイコーエプソン株式会社 光源装置及びプロジェクター
TWI427397B (zh) 2011-03-23 2014-02-21 Delta Electronics Inc 光源系統
JP5842162B2 (ja) 2011-03-23 2016-01-13 パナソニックIpマネジメント株式会社 光源装置及びそれを用いた画像表示装置
JP5979416B2 (ja) * 2011-04-20 2016-08-24 パナソニックIpマネジメント株式会社 光源装置および画像表示装置
JP2013008950A (ja) * 2011-05-23 2013-01-10 Panasonic Corp 光源装置および画像表示装置
JP5966363B2 (ja) * 2011-06-20 2016-08-10 株式会社リコー 光源装置及び画像投射装置
JP5987368B2 (ja) 2011-07-05 2016-09-07 株式会社リコー 照明装置および投射装置
JP5987382B2 (ja) 2011-07-22 2016-09-07 株式会社リコー 照明装置、ならびに、投射装置および投射装置の制御方法
JP5817313B2 (ja) * 2011-08-09 2015-11-18 セイコーエプソン株式会社 光源装置及びプロジェクター
JP5982752B2 (ja) * 2011-08-09 2016-08-31 セイコーエプソン株式会社 光源装置及びプロジェクター
CN202177773U (zh) * 2011-08-25 2012-03-28 绎立锐光科技开发(深圳)有限公司 光源系统及其应用的投影系统
US9075299B2 (en) 2011-08-27 2015-07-07 Appotronics Corporation Limited Light source with wavelength conversion device and filter plate
TWI448806B (zh) * 2011-09-22 2014-08-11 Delta Electronics Inc 螢光劑裝置及其所適用之光源系統及投影設備
CN103019013A (zh) * 2011-09-28 2013-04-03 苏州智能泰克有限公司 一种偏光式投影显示装置
US9866807B2 (en) * 2011-10-03 2018-01-09 Appotronics Corporation Limited Light source system and image projection system
TWM426048U (en) 2011-10-07 2012-04-01 Benq Corp Light source module and projector using the same
JP5799756B2 (ja) * 2011-11-02 2015-10-28 セイコーエプソン株式会社 プロジェクター
CN102645826B (zh) 2011-11-10 2015-05-27 深圳市光峰光电技术有限公司 一种光源系统、照明装置及投影装置
CN102645822B (zh) 2011-11-28 2014-12-10 深圳市光峰光电技术有限公司 投影装置及其控制方法
CN102563410B (zh) * 2011-12-04 2014-08-06 深圳市光峰光电技术有限公司 发光装置、投影装置和照明装置
TWI467242B (zh) 2012-05-29 2015-01-01 Delta Electronics Inc 提供複數視角影像之投影裝置
JP2014021223A (ja) 2012-07-17 2014-02-03 Panasonic Corp 映像表示装置
JP6268745B2 (ja) * 2012-09-18 2018-01-31 株式会社リコー 照明装置、投射装置および照明方法
CN103713454B (zh) * 2012-09-28 2016-12-07 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
WO2014192115A1 (ja) * 2013-05-30 2014-12-04 Necディスプレイソリューションズ株式会社 光源装置および投写型表示装置
CN105282528B (zh) 2014-07-17 2018-08-31 深圳市光峰光电技术有限公司 数字微镜器件控制设备和投影显示系统
US10230928B2 (en) * 2014-10-27 2019-03-12 Texas Instruments Incorporated Color recapture using polarization recovery in a color-field sequential display system
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224854A (zh) * 1998-01-30 1999-08-04 国际商业机器公司 使用全内反射棱镜的高效双空间光调制器投影仪
CN1482487A (zh) * 2002-09-14 2004-03-17 邱新萍 彩色投影显示装置
CN101144940A (zh) * 2006-09-14 2008-03-19 索尼株式会社 延迟补偿板、延迟补偿器、液晶显示装置以及投射型图像显示装置
CN201654428U (zh) * 2010-02-11 2010-11-24 北京中视中科光电技术有限公司 一种大屏幕投影系统
CN201974582U (zh) * 2010-09-29 2011-09-14 北京中视中科光电技术有限公司 一种投影显示装置
CN102253581A (zh) * 2011-07-15 2011-11-23 台达电子工业股份有限公司 投影装置及其分光单元以及合光单元
CN102650811A (zh) * 2011-08-27 2012-08-29 深圳市光峰光电技术有限公司 投影系统及其发光装置
CN102608855A (zh) * 2012-03-19 2012-07-25 中国科学院半导体研究所 3-lcos激光投影显示照明光学系统

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10554938B2 (en) 2014-04-23 2020-02-04 Appotronics Corporation Limited Light source system, and projection system and method
JP2017519236A (ja) * 2014-04-23 2017-07-13 アッポトロニック チャイナ コーポレイション 光源システム、投影システム及び方法
EP3136170A4 (en) * 2014-04-24 2017-03-08 Appotronics China Corporation Light source system and projection display device
JP2017514178A (ja) * 2014-04-24 2017-06-01 深▲ちぇん▼市繹立鋭光科技開発有限公司 光源システム及び投影表示装置
US9900564B2 (en) 2014-04-24 2018-02-20 Appotronics Corporation Limited Light source system and projection display device
EP3171591A4 (en) * 2014-07-17 2018-03-21 Appotronics China Corporation Digital micro-mirror device control apparatus and projection display system
JP2016033553A (ja) * 2014-07-31 2016-03-10 日亜化学工業株式会社 光源装置及びこの光源装置を備えたプロジェクタ
CN104155835B (zh) * 2014-08-15 2015-12-30 广景科技有限公司 Dlp微型投影机
CN104155835A (zh) * 2014-08-15 2014-11-19 广景科技有限公司 Dlp微型投影机
JP2017526962A (ja) * 2014-12-08 2017-09-14 深▲せん▼市繹立鋭光科技開発有限公司Appotronics(China)Corporation 投影システム
US10139713B2 (en) 2015-04-09 2018-11-27 Appotronics Corporation Limited Light source system and projection system
JP2018513412A (ja) * 2015-04-09 2018-05-24 深▲せん▼市光峰光電技術有限公司Appotronics Corporation Limited 光源システム及び投影システム
JP2020024429A (ja) * 2015-04-09 2020-02-13 深▲せん▼光峰科技股▲分▼有限公司Appotronics Corporation Limited 発光装置及び投影表示デバイス
CN109668574A (zh) * 2017-10-16 2019-04-23 深圳市绎立锐光科技开发有限公司 车辆行驶指示系统、车辆及方法

Also Published As

Publication number Publication date
KR20170030657A (ko) 2017-03-17
KR101830214B1 (ko) 2018-02-20
JP2017097360A (ja) 2017-06-01
JP2019105850A (ja) 2019-06-27
JP2017102460A (ja) 2017-06-08
JP2017097361A (ja) 2017-06-01
EP2902844A4 (en) 2016-10-12
US10095095B2 (en) 2018-10-09
EP2902844A1 (en) 2015-08-05
US20170255092A1 (en) 2017-09-07
KR20170029664A (ko) 2017-03-15
JP6296313B2 (ja) 2018-03-20
US9746756B2 (en) 2017-08-29
US9897900B2 (en) 2018-02-20
EP3454117A1 (en) 2019-03-13
KR101816079B1 (ko) 2018-01-08
US10228613B2 (en) 2019-03-12
KR20150048243A (ko) 2015-05-06
US20170255089A1 (en) 2017-09-07
JP2017224619A (ja) 2017-12-21
KR101816076B1 (ko) 2018-01-08
JP6296312B2 (ja) 2018-03-20
KR20170030653A (ko) 2017-03-17
KR101901674B1 (ko) 2018-11-07
US9897903B2 (en) 2018-02-20
JP6329619B2 (ja) 2018-05-23
US20170255090A1 (en) 2017-09-07
KR20170030655A (ko) 2017-03-17
CN103713454A (zh) 2014-04-09
US20170255088A1 (en) 2017-09-07
US20170255087A1 (en) 2017-09-07
KR101816072B1 (ko) 2018-01-08
JP6185069B2 (ja) 2017-08-23
CN103713454B (zh) 2016-12-07
US20150253654A1 (en) 2015-09-10
EP2902844B1 (en) 2018-12-05
JP6707158B2 (ja) 2020-06-10
JP2015533225A (ja) 2015-11-19
JP6513142B2 (ja) 2019-05-15
US10197897B2 (en) 2019-02-05
KR20170029662A (ko) 2017-03-15
US20170255091A1 (en) 2017-09-07
JP2018077485A (ja) 2018-05-17
KR20170029663A (ko) 2017-03-15
US9897901B2 (en) 2018-02-20
JP6479946B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6707158B2 (ja) 光源システム及び関連する投影システム
CN106842790B (zh) 光源系统及相关投影系统
CN104252094B (zh) 色轮及投影系统
CN104216210A (zh) 光源系统及相关投影系统
CN104216209B (zh) 光源系统及相关投影系统
CN104267567A (zh) 光源系统及相关投影系统
CN104252093A (zh) 光源系统及相关投影系统
CN104267568A (zh) 光源系统及相关投影系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533429

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14432018

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008297

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013842711

Country of ref document: EP