JP2005107211A - 画像投影装置 - Google Patents

画像投影装置 Download PDF

Info

Publication number
JP2005107211A
JP2005107211A JP2003341155A JP2003341155A JP2005107211A JP 2005107211 A JP2005107211 A JP 2005107211A JP 2003341155 A JP2003341155 A JP 2003341155A JP 2003341155 A JP2003341155 A JP 2003341155A JP 2005107211 A JP2005107211 A JP 2005107211A
Authority
JP
Japan
Prior art keywords
image
color
image data
light
projection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003341155A
Other languages
English (en)
Inventor
Shinichi Imaide
愼一 今出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003341155A priority Critical patent/JP2005107211A/ja
Priority to US10/948,880 priority patent/US7303284B2/en
Publication of JP2005107211A publication Critical patent/JP2005107211A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems

Abstract

【課題】表示画像の色分布を崩さずに非常に明るい画像を投影表示すること。
【解決手段】入力された画像データに応じて表示デバイス12R,12G,12B上に形成した画像を、観察者が観察可能なように、光源としてのLED11R,11G,11Bからの照明光によって被投影面に対し投影する画像投影装置において、適応色バランスベクトル算出部21にて、入力された画像データが色空間内で分布する領域を認識し、投影条件制御手段23によって、その認識した領域に基づき、上記被投影面に対し投影する画像の色バランスを変えず且つ輝度が増すように、上記入力された画像データを変換して上記表示デバイス12R,12G,12Bに送ると共に、このデータ変換に連係して上記LED11R,11G,11Bが発光する照明光の輝度を制御する。
【選択図】 図1

Description

本発明は、画像を表示する画像表示装置、特に、入力された画像データに応じて表示デバイス上に形成した画像を、観察者が観察可能なように、光源からの照明光によって被投影面に対し投影する画像投影装置に関する。
画像を表示する画像表示装置には、照明装置からの照明光を液晶やマイクロミラーなどの表示デバイスを使ってその透過量または反射量を制御して変調し、階調表現することによって画像を形成し表示する装置がある。液晶モニター、プロジェクタ等の画像投影装置などがそれである。カラー画像の表示では、原色毎に照明光を変調し、それらを空間的にまたは時間的に合成することによりカラー画像を生成する場合が多い。カラー画像を表示する場合、色の再現性を確保するために各原色の照明光量の合成比率のバランスを調整する必要がある。そのため、通常は各原色の入力画像データが同一である場合に、その合成色が白に見えるように所謂ホワイトバランスの調整を固定的に行う。
一般に原色の照明光は、白色ランプからダイクロイック・ミラーやカラーフィルタなどの色分離光学素子を使って固定的に原色光を分離して作り出すため、柔軟に各原色の照明光量を制御することはできない。従って、初期段階において原色照明光のバランスが所定の比になるよう光学的に設定したり、入力画像データに対する表示デバイスの変調量を所定の変換ルールに則って補正するようにしてホワイトバランスを調整する。
一方、照明光の明るさ或いは表示デバイスによる変調の結果得られる表示画像の明るさは、各原色の照明光の最大出力によって作り出す方が、表示可能な明るさを最大限にすることができる。但し、一般には、各原色の照明光の最大出力が偶然にもホワイトバランスがとれているような光源は見当たらないので、この場合は上述の説明のようにホワイトバランスが崩れ、表示画像の色再現性を劣化せざるを得なくなる。即ち、照明光を最大限明るくしようとすれば、色再現性が確保されず、色再現性を重視しようとすれば、光源が有する最大限の照明光量を引き出すことが困難となると言う解決しがたい課題が存在する。
このような課題を解決しようとして、例えば特許文献1に開示されている方法がある。この方法によれば、入力画像データを構成する各原色画像データの階調レベルが全て最大及び最小の場合に限って、各原色の照明光の最大出力によって表示するようにし、それ以外は所定のホワイトバランスを維持した表示になるように工夫されている。従って上記階調レベルが全て最大及び最小のときの表示画像の明るさは最大、最小を示すが色のバランスは崩れ、一般にホワイトバランスが取れた状態とはなっていないが、比較的色バランスを悪化させることなく、表示可能な明るさを高めることができるとされている。
また、特許文献2では、原色照明光を表示デバイスに順次照明して観察者の視覚上で画像合成し表示画像を生成する所謂カラー面順次方式の画像表示装置において、各原色の照明期間の間毎に白色の照明を行う実施の形態が開示されている。この方法は、入力画像データの白成分を強調することによって生成される画像の明るさを向上させようとするものである。従来のカラー面順次方式では、原色の照明光が切り替わる期間の混色状態が発生することによる画質劣化を防ぐために、原色の照明光及び対応する表示デバイスの変調画像の切り替わり期間は非表示としている場合が多い。しかし、非表示期間が存在している分、照明光の利用期間が短くなり、明るさの低下を招くと言う問題があるが、この点を特許文献2は解決しようとしている。但し、各原色の照明期間及び白色の照明を行う期間は所定の値に固定されている。
その他、画像表示装置に限らず、原色の照明光の光量バランスを種々の目的によって調整設定する実施の形態がある。例えば、特許文献3のようなカラー面順次照明方式の電子内視装置において、撮像センサの分光感度の偏りを相殺するために原色の照明光のバランスを調整し設定しているものなどがある。
これら開示されている実施の形態は、画像表示装置の表示画像において、色バランスを過度に悪化させることなく表示可能な明るさを高めたり、照明光の色バランスを調整することで撮像系の特性を補正し色再現性の良い画像を得ようとするものである。
特開2002−51353号公報 特開2002−82652号公報 特開2002−112962号公報
しかしながら、上記実施の形態は全て照明光の色バランスを予め調整し、固定的に設定する形式を取るものである。表示しようとする画像の色成分は個々に特徴的な分布を有するものも多く、特にビジネス用途や文教用途でのプレゼンテーション用画像では特定の背景色が使われたり、染色した試料の顕微鏡画像、また医療用内視鏡画像のように赤色成分を多く含む画像など、色成分の偏りある画像は多い。
特徴的な色分布を有する画像に対し、従来のように固定的な般化性のあるホワイトバランスを適用するのでは、却って各原色の照明光の最大出力を有効に活用することを困難にしていると言う未だ解決されていない課題が残っている。
本発明は、上記の点に鑑みてなされたもので、LEDのような原色を電気的に容易に光量制御が可能な光源を照明光とし、表示しようとする画像の色分布に応じて基準の色ベクトルを算出し、その基準の色ベクトルから各原色の照明光量のバランスをその都度適応的に設定すると共に、光源の照明光の出力能力を必要にして十分なレベルまで引き上げて有効に活用することにより、表示画像の色分布を崩さずに、非常に明るい画像を投影表示する画像投影装置を提供することを目的とする。
上記の目的を達成するために、請求項1に記載の発明による画像投影装置は、
入力された画像データに応じて表示デバイス上に形成した画像を、観察者が観察可能なように、光源からの照明光によって被投影面に対し投影する画像投影装置(プロジェクタ以外も含む)において、
前記入力された画像データが色空間内で分布する領域を認識する分布領域認識手段と、
前記分布領域認識手段が認識した領域に基づき、前記被投影面に対し投影する画像の色バランスを変えず且つ輝度が増すように、
前記入力された画像データを変換し前記表示デバイスに送ると共に、
このデータ変換に連係して前記光源が発光する照明光の輝度を制御する、
投影条件制御手段と、
を有することを特徴とする。
この構成は、図1乃至図17に対応するものである。
即ち、請求項1に記載の発明の画像投影装置によれば、表示しようとする画像の色分布に応じて基準の色ベクトルを算出し、その基準の色ベクトルから各原色の照明光量のバランスをその都度適応的に設定すると共に、光源の照明光の出力能力を必要にして十分なレベルまで引き上げて有効に活用することにより、表示画像の色分布を崩さずに、非常に明るい画像を投影表示することができる。
また、請求項2に記載の発明による画像投影装置は、
前記光源は複数色の照明光を発光可能であり、
各色の照明光は自らの色に対応するカラー画像データに応じた画像が形成された表示デバイスを照明する請求項1に記載の画像投影装置であって、
前記投影条件制御手段は、
前記表示デバイスで形成する所定の上限画像データ値を前記入力された画像データ値で割った各色毎のデータ比を求め、前記データ比の逆数の比を用いて前記光源の各色照明光の発光光量を設定する照明光量設定手段と、
前記入力された画像データ値を前記所定の上限画像データ値に変更する画像データ変換手段と、
を有することを特徴とする。
この構成は、図4及び図5に対応するものである。
即ち、請求項2に記載の発明の画像投影装置によれば、制御前の表示画像のカラー光量分布が、制御後の表示画像のカラー光量分布となるように、画像データがもつ色分布を必要十分に表示し得る表示可能範囲を特定し、その表示可能範囲を色の分布を崩さずにより明るく表現できるよう投影条件(照明光量及びデータ変換)を適応的に設定することができる。
また、請求項3に記載の発明による画像投影装置は、請求項2に記載の発明による画像投影装置において、
前記表示デバイスで形成する所定の上限画像データ値は、前記表示デバイスで形成可能な最大階調のデータ値であることを特徴とする。
即ち、請求項3に記載の発明の画像投影装置によれば、表示デバイスで形成可能な階調の全てを使って画像を表現できる。
また、請求項4に記載の発明による画像投影装置は、請求項2に記載の発明による画像投影装置において、
前記照明光量設定手段は、前記設定した各色照明光の発光光量値が、各色光源の最大発光光量値を超えた場合には、その設定した発光光量値に近傍する最大発光光量以内の発光光量値に置き換えることを特徴とする。
この構成は、図10に対応するものである。
即ち、請求項4に記載の発明の画像投影装置によれば、投影画像データの中のより多くの画素を明るく投影することができるようになる。
また、請求項5に記載の発明による画像投影装置は、請求項4に記載の発明による画像投影装置において、
前記近傍する最大発光光量以内の発光光量値は、色空間内において前記設定した各色照明光の発光光量値から最もユークリッド距離が短い最大発光光量内の光量値であることを特徴とする。
即ち、請求項5に記載の発明の画像投影装置によれば、発光光量値が置き換えられた画素を色合いの近いカラーで表現できる。
また、請求項6に記載の発明による画像投影装置は、請求項4に記載の発明による画像投影装置において、
前記近傍する最大発光光量以内の発光光量値は、色空間内において前記設定した各色照明光の発光光量値と色空間原点とを結んだ直線上における最大発光光量内の光量値であることを特徴とする。
この構成は、図10に対応するものである。
即ち、請求項6に記載の発明の画像投影装置によれば、色バランスを崩すことなく発光光量値を置き換えることができる。
また、請求項7に記載の発明による画像投影装置は、
前記光源は複数色の照明光を発光可能であり、
各色の照明光は自らの色に対応するカラー画像データに応じた画像が形成された表示デバイスを照明する請求項1に記載の画像投影装置であって、
前記投影条件制御手段は、
前記光源が発光する所定の上限発光光量値を前記光源が発光する発光光量の初期値で割った各色毎の発光光量比を求め、前記発光光量比の逆数の比を用いて前記入力された画像データ値をデータ変換する画像データ変換手段と、
前記初期値で設定された各色毎の光源の発光光量を前記所定の上限発光光量値に設定する照明光量設定手段と、
を有することを特徴とする。
この構成は、図7及び図8に対応するものである。
即ち、請求項7に記載の発明の画像投影装置によれば、画像データがもつ色分布を必要十分に表示し得る表示可能範囲を特定し、その表示可能範囲を色の分布を崩さずにより明るく表現できるよう投影条件(照明光量及びデータ変換)を適応的に設定することができる。
また、請求項8に記載の発明による画像投影装置は、請求項7に記載の発明による画像投影装置において、
前記光源が発光する所定の上限発光光量値は、各色の光源が発光可能な最大光量の発光光量値であることを特徴とする。
即ち、請求項8に記載の発明の画像投影装置によれば、光源の性能を最大限に利用できる。
また、請求項9に記載の発明による画像投影装置は、請求項1に記載の発明による画像投影装置において、
前記分布領域認識手段は、色空間内での前記画像データの各色ベクトルを任意のベクトルに投影した際に、分散が最大となるような任意のベクトルを適応色バランスベクトルとして用いて前記入力された画像データが分布する領域を認識することを特徴とする。
この構成は、図3に対応するものである。
即ち、請求項9に記載の発明の画像投影装置によれば、適切な領域を認識できる。
また、請求項10に記載の発明による画像投影装置は、請求項1に記載の発明による画像投影装置において、
前記分布領域認識手段は、前記入力された画像データのうち、各色毎の最大値を求め、この各色毎の最大値を用いて前記画像データが分布する領域を認識することを特徴とする。
即ち、請求項10に記載の発明の画像投影装置によれば、容易に画像データが分布する領域を認識することができる。
また、請求項11に記載の発明による画像投影装置は、請求項1に記載の発明による画像投影装置において、
前記分布領域認識手段は、
前記入力された画像データにおける各輝度毎のヒストグラムを求め、
輝度値として削除しても観察者に違和感を与えない輝度値の上限を前記ヒストグラムを用いて設定し、
この設定した各色毎の上限値を用いて前記画像データが分布する領域を認識する、
ことを特徴とする。
この構成は、図11に対応するものである。
即ち、請求項11に記載の発明の画像投影装置によれば、輝度値として削除しても観察者に違和感を与えない輝度値は削除して認識された画像データが分布する領域に基づいて輝度を上げるので、より明るい投影画像を得ることができる。
また、請求項12に記載の発明による画像投影装置は、請求項1に記載の発明による画像投影装置において、
前記画像データは画像ファイル単位で画像投影装置に入力され、
前記分布領域認識手段は、前記入力された画像ファイル毎に、画像データが色空間内で分布する領域を認識すると共に、
前記投影条件制御手段は、前記入力された画像ファイル毎に、前記光源が発光する照明光の輝度を制御する、
ことを特徴とする。
この構成は、図1に対応するものである。
即ち、請求項12に記載の発明の画像投影装置によれば、画像ファイル毎に照明光の輝度を制御するので、その画像ファイルに最適な投影が行える。
また、請求項13に記載の発明による画像投影装置は、請求項12に記載の発明による画像投影装置において、
前記分布領域認識手段は、前記入力された画像ファイル内の複数フレームにおける画像データの色空間での分布を用いて、前記領域を認識することを特徴とする。
即ち、請求項13に記載の発明の画像投影装置によれば、画像ファイル内の複数フレームに基づいて照明光の輝度を制御するので、フレーム毎に明るさが変わるような不自然な投影を防ぐことができる。
また、請求項14に記載の発明による画像投影装置は、請求項1に記載の発明による画像投影装置において、
前記画像データは動画像データとして画像投影装置に入力され、
前記分布領域認識手段は、前記入力された動画像データにおける一連のフレーム群毎に、画像データが色空間内で分布する領域を認識すると共に、
前記投影条件制御手段は、前記フレーム群毎に、前記光源が発光する照明光の輝度を制御する、
ことを特徴とする。
この構成は、図1に対応するものである。
即ち、請求項14に記載の発明の画像投影装置によれば、動画像データにおける一連のフレーム群毎に照明光の輝度を制御するので、一連のフレーム群内で明るさが変わるような不自然な投影を防ぐことができる。
また、請求項15に記載の発明による画像投影装置は、請求項14に記載の発明による画像投影装置において、
前記フレーム群毎は、前記入力された動画像データにおける一連のシーン毎であることを特徴とする。
即ち、請求項15に記載の発明の画像投影装置によれば、フレーム群を一連のシーンとしているので、シーン毎に最適な明るさに制御することができる。
また、請求項16に記載の発明による画像投影装置は、請求項14に記載の発明による画像投影装置において、
前記分布領域認識手段は、前記一連のフレーム群内の複数フレームにおける画像データの色空間での分布を用いて、前記領域を認識することを特徴とする。
即ち、請求項16に記載の発明の画像投影装置によれば、一連のフレーム群内の複数フレームから画像データの分布領域を認識するようにしているので、より適切な分布領域を認識できる。
また、請求項17に記載の発明による画像投影装置は、請求項15に記載の発明による画像投影装置において、
画像投影装置に入力される前記動画像データは、時系列に連続するフレーム間でデータ圧縮処理されたデータであって、
前記分布領域認識手段及び前記投影条件制御手段は、前記動画像データのフレーム毎のデータ量の変化からシーンの切り替わりを認識する、
ことを特徴とする。
即ち、請求項17に記載の発明の画像投影装置によれば、簡単にシーンの切り替わりを認識できる。
また、請求項18に記載の発明による画像投影装置は、請求項1に記載の発明による画像投影装置において、
前記入力された画像データが色空間内で分布する領域の情報が予め記憶された分布領域記憶手段を更に有し、
前記分布領域認識手段は、前記分布領域記憶手段が記憶した領域の情報を読み出すことによって領域を認識する、
ことを特徴とする。
この構成は、図1、図12及び図13に対応するものである。
即ち、請求項18に記載の発明の画像投影装置によれば、予め記憶しておいた領域の情報を選択使用するため、入力画像データから画像データが分布する領域を認識する処理が不要となり、高速動作が可能となる。
また、請求項19に記載の発明による画像投影装置は、請求項18に記載の発明による画像投影装置において、
前記画像データは画像ファイル単位で画像投影装置に入力され、
前記分布領域記憶手段は、画像ファイル単位に画像ファイル内の画像データが色空間内で分布する領域の情報を記憶する、
ことを特徴とする。
即ち、請求項19に記載の発明の画像投影装置によれば、画像ファイル単位の分布領域の情報を記憶しているので、画像ファイル毎に容易に照明光の輝度を制御することができる。
また、請求項20に記載の発明による画像投影装置は、請求項18に記載の発明による画像投影装置において、
前記画像データは動画像データとして画像投影装置に入力され、
前記分布領域記憶手段は、動画像データにおける一連のフレーム群毎に、画像データが色空間内で分布する領域の情報を記憶する、
ことを特徴とする。
即ち、請求項20に記載の発明の画像投影装置によれば、動画像データにおける一連のフレーム群毎に分布領域の情報を記憶しているので、一連のフレーム群毎に容易に照明光の輝度を制御することができる。
また、請求項21に記載の発明による画像投影装置は、請求項20に記載の発明による画像投影装置において、
前記フレーム群毎は、前記入力された動画像データにおける一連のシーン毎であることを特徴とする。
即ち、請求項21に記載の発明の画像投影装置によれば、フレーム群を一連のシーンとしているので、シーン毎に制御することができる。
また、請求項22に記載の発明による画像投影装置は、請求項18に記載の発明による画像投影装置において、
複数の表示モードに応じた画像を投影する請求項18に記載の画像投影装置であって、
前記複数の表示モードのうち1つを観察者が選択可能な表示モード選択手段を更に有し、
前記分布領域記憶手段は、前記複数の表示モードに対応する前記領域の情報を複数記憶すると共に、
前記分布領域認識手段は、前記分布領域記憶手段が記憶した複数の領域の情報から、前記表示モード選択手段で選択された表示モードに応じた領域の情報を読み出し、この読み出した領域の情報を前記入力された画像データが色空間内で分布する領域として認識する、
ことを特徴とする。
この構成は、図1に対応するものである。
即ち、請求項22に記載の発明の画像投影装置によれば、複数の表示モードのうち1つを観察者が選択するだけで、容易且つ高速に光源の輝度の制御が行える。
また、請求項23に記載の発明による画像投影装置は、請求項2または7に記載の発明による画像投影装置において、
前記光源は、発光色が異なる複数のLEDによって構成されていることを特徴とする。
この構成は、図1乃至図17に対応するものである。
即ち、請求項23に記載の発明の画像投影装置によれば、光源としてLEDを使用することで、発光光量の調整が容易に行え、また、消費電力を抑えることができる。
また、請求項24に記載の発明による画像投影装置は、請求項2または7に記載の発明による画像投影装置において、
前記表示デバイスは、被投影面に対し投影する画像において用いる色毎に複数有し、
前記複数の表示デバイスのうちの各表示デバイスは、前記入力された画像データの色毎の情報に応じてそれぞれ同時に画像を形成し、
前記光源の複数色の照明光は、自らの色に対応する前記表示デバイスをそれぞれ同時に照明する、
ことを特徴とする。
この構成は、図2及び図15に対応するものである。
即ち、請求項24に記載の発明の画像投影装置によれば、例えば3個の表示デバイスを使用して、R,G,Bの3色の光源を用いることで、カラー画像の投影を容易に行うことができる。
また、請求項25に記載の発明による画像投影装置は、請求項2または7に記載の発明による画像投影装置において、
前記表示デバイスは、1つのデバイスによって構成され、
前記1つの表示デバイスは、前記入力された画像データの色毎の情報に応じて順次画像を形成し、
前記光源の複数色の照明光は、自らの色に対応する画像を形成する前記表示デバイスを順次照明する、
ことを特徴とする。
この構成は、図16に対応するものである。
即ち、請求項25に記載の発明の画像投影装置によれば、表示デバイスに画像データのR,G,B各色の画像を順次形成し、その色の画像に応じた色の照明光で順次に表示デバイスを照明することで、カラー画像の投影を容易に行うことができる。
また、請求項26に記載の発明による画像投影装置は、請求項2または7に記載の発明による画像投影装置において、
前記照明光設定手段は、前記光源に印加する電圧値と電流値のうち少なくとも1つを設定することを特徴とする請求項2または7に記載の画像投影装置。
この構成は、図1乃至図15に対応するものである。
即ち、請求項26に記載の発明の画像投影装置によれば、光源が発光する照明光の輝度を容易に設定できる。
また、請求項27に記載の発明による画像投影装置は、請求項2または7に記載の発明による画像投影装置において、
前記照明光設定手段は、前記光源に印加する電圧値と電流値と前記光源の発光時間のうち少なくとも1つを設定することを特徴とする。
この構成は、図16及び図17に対応するものである。
即ち、請求項27に記載の発明の画像投影装置によれば、光源が発光する照明光の輝度を容易に設定できる。
本発明によれば、表示画像の入力データより基準の色ベクトルを適応的に設定することにより表示のための照明光の色バランスを設定し、且つその色バランスを維持して照明光量を最大限に制御することができるため、表示画像の色再現性を大きく崩さずに非常に明るい表示画像を得ることが可能となる画像投影装置を提供することができる。
以下、本発明を実施するための最良の形態を図面を参照して説明する。
[第1実施形態]
図1は本発明の第1実施形態に係る画像投影装置の電気的構成を示す図であり、図2は本実施形態に係る画像投影装置の光学的構成を示す図である。
本実施形態に係る画像投影装置は、図2に示すように、入力された画像データに応じて表示デバイス上に形成した画像を、観察者が観察可能なように、光源からの照明光によって被投影面(スクリーン1)に対し投影する画像投影装置であり、光源として、発光色が異なる複数のLED、ここでは発光色が赤色(R)、緑色(G)、青色(B)のLED11R,11G,11Bを用いている。また、表示デバイスも、スクリーン1面に対し投影する画像において用いる色毎に複数(R,G,B表示デバイス12R,12G,12B)有し、それら複数の表示デバイスのうちの各表示デバイスは、入力された画像データの色毎の情報に応じてそれぞれ同時に画像を形成し、LEDの複数色の照明光は、自らの色に対応する表示デバイスをそれぞれ同時に照明するよう構成されている。即ち、常時点灯される各LEDからの光を、対応するテーパーロッド13R,13G,13Bにより導光し、偏光変換素子14を介して、対応する表示デバイス12R,12G,12Bに照射するようにしている。ここで、テーパーロッドは、その入射端面の面積よりもその出射端面の面積の方が大きく構成され、LEDからの拡散光のNAを小さく変換する、即ち、LEDからの拡散光を略平行光に変換するものである。また、偏光変換素子14は、表示デバイス12R,12G,12Bとして本実施形態ではLCD(液晶パネル)を使用するものとしているため、偏波方向を揃えるために入れられている。そして、それら表示デバイス12R,12G,12Bに表示された画像に応じて光変調された光が、ダイクロイック・クロス・プリズム15によって合成され、投影レンズ16によって投影光17としてスクリーン1に投影される。なお、本実施形態では、表示デバイスを光透過型の液晶デバイスとしている。また、図では省略したが、この液晶デバイスの出力側(光が射出する側)には、偏光板が付設されている。
上記LED11R,11G,11Bの発光光量及び表示デバイス12R,12G,12Bの表示データは、入力される画像データに従って以下のようにして設定される。
即ち、図1に示すように、画像データ入力処理部18により、パーソナルコンピュータやビデオ機器などの不図示の画像出力装置から出力された画像データを取得し、画像データ記憶部19に一旦記憶させる。
そして、この画像データ記憶部19に記憶された画像データは、演算対象画像フレーム設定部20にて読み出され、次段の適応色バランスベクトル算出部21で用いる画素の色分布をどの範囲の画像データにより求めるかを設定する。
例えば、入力画像データとして、画像ファイル単位で入力されるプレゼンテーション用の静止画像であったとすると、そのようなプレゼンテーション用静止画像は背景色に偏りのある色を使うケースが多いので、複数の画像フレームで構成される報告資料の単位を対象画像フレームとすれば良い。また、自然画の静止画像であれば、色の偏りが無ければ一枚単位を対象画像フレームとすれば効果的である。
一方、動画像が画像データとして入力される場合には、その入力された動画像データにおける一連のフレーム群毎、例えばシーンチェンジの単位を対象画像フレームとすれば良い。このシーンチェンジは、MPEGなどの時系列に連続するフレーム間でデータ圧縮処理を行っている圧縮データを扱う場合は、圧縮データが急激に増加するフレーム位置によって特定する方法も考えられる。また、フレーム間の相関値を常に検出し、色や輝度の急激な変化により、特定していくことも他の方法として考えられる。さらには、既に動画像データにシーンチェンジ情報が付帯しているフォーマットでは、その情報を容易に利用でき便利である。
また、どのような範囲を演算対象画像フレームとして設定するかは、モード切替部22によって操作者が任意に指定するようにしても良い。
適応色バランスベクトル算出部21は、上記演算対象画像フレーム設定部20から与えられる演算対象画像フレームの画像データから、後述するようにして適応色バランスベクトルを算出し、入力画像データが色空間内で分布する領域を認識する。
適応色バランスベクトル算出部21により算出された適応色バランスベクトルは、投影条件制御手段23に入力される。この投影条件制御手段23では、その入力された適応色バランスベクトルと上記画像データ記憶部19からの投影対象となる画像データ(各原色毎の画像データから構成されるデータ)から、スクリーン1面に対し投影する画像の色バランスを変えず且つ輝度が増すように、各原色画像の照明光の光量設定及び画像データの階調データ変換を行う。即ち、詳細は後述するように、入力された画像データを階調変換して、R,G,B各原色毎に、R,G,B表示デバイス変調制御駆動部24R,24G,24Bに送り、階調変換された画像データをR,G,B各表示デバイス12R,12G,12Bに表示させる。また、このデータ変換に連係して決定される発光光量を表す信号若しくはデータを、R,G,B各原色毎に、R,G,B光源発光制御駆動部25R,25G,25Bに送り、そのような発光光量でR,G,B各光源としてのLED11R,11G,11Bを発光させる。なお、発光光量は、LED11R,11G,11Bに印加する電圧値と電流値のうち少なくとも1つを設定することで制御できる。
また、上記適応色バランスベクトル算出部21で算出された適応色バランスベクトルは、色バランスベクトル記録部26に記録しておき、同様の画像データが入力された時には、それを利用することで、適応色バランスベクトルの算出処理を省略することもできる。更には、この色バランスベクトル記録部26には、予め想定される画像データ種毎に、適応色バランスベクトルを記録しておいても良い。例えば、体内を写した医療用画像や染色した試料の顕微鏡画像では特定の色の成分が多く含まれているので、そのような画像では逐次算出するのではなく、予め適応色バランスベクトルを求め、この色バランスベクトル記録部26に記録しておいて設定値として選択して利用できるようにしておくことが合理的である。そのため、本実施形態に係る画像投影装置は、更に、使用者が所望のデータ種を指定入力するための画像データ種設定入力部27と、該画像データ種設定入力部27からの画像種IDに従って色バランスベクトル記録部26から対応する色バランスベクトルを選択する色バランスベクトル選択部28とを備えている。
なお、適応色バランスベクトルを算出する表示モードと、記録されている適応色バランスベクトルを使用する表示モードとを、モード切替部22により、使用者が任意に切り替えられる。更に、そのような適応色バランスベクトルに基づく光量設定及び階調データ変換を行う表示モードと、そのような光量設定及び階調データ変換を行なわない表示モードとを切り替える機能も持たせても良い。
なお、上記適応色バランスベクトル算出部21では、上記適応色バランスベクトルを、例えば図3に示すようにして求める。なおここで、説明を簡単にするため、原色が2つの照明光X,Yによる2次元色空間から成り立っているものとする。
図3の上側に示すように、横軸を原色Xのデータ値Dx、縦軸を原色Yのデータ値Dyとして、対象とする演算対象画像フレームの画像データの各画素の色ベクトルをプロットすると、画像データのカラー分布101が得られる。ここで、このカラー分布101における原色Yの最大値をdy1とし、それと原色Xについて値dx1とで定まる適応色バランスベクトルP2に対し、演算対象画像フレームの画像データの各画素の色ベクトルを、その適応色バランスベクトルP2に射影する(例えばC→C’)と、図3の下側に示すような発生頻度の分布が得られる。これを、適応色バランスベクトルP2の傾きを変えながら、即ち、例えば原色Xについて値dx1を順次変えながら順次行い、射影分布の分散が最大になる適応色バランスベクトルP2を、求める適応色バランスベクトルとする。なお、この分散が最大になるベクトルの求め方は、画像処理、符号化処理等で通常利用されるKL変換、ニューラルネットワーク等を活用すれば良い。
また、上記投影条件制御手段23は、図4に示すようにして投影条件を設定する。即ち、まず、入力画像の原色画像データの最大値が全て255かどうか確認する(ステップS11)。なお、これは各画素各原色8ビットデータとした場合であり、他のビット数のデータの場合はそれに応じた値となることは勿論である。ここで、全て255であったならば、もはや階調データ変換を行うことができないので、後述するステップS13に進む。これに対して、全て255でないならば、入力画像の原色画像Rの最大値が255に、原色画像Gの最大値が255に、原色画像Bの最大値が255になるようにデータのスケール変換を行う(ステップS12)。
これを、簡単化のためにX,Yによる2次元色空間で示す図5を参照して説明する。図5において、X,Yはそれぞれ原色画像X,Yに対応する各々の原色照明光を表示デバイスX,Yによって光量変調した結果の表示画像の各画素の光量(明るさ)を示す。但し、以下、光量(明るさ)とは、各色の比視感度特性が反映された量として扱う。また、Dx,Dyはそれぞれ原色画像X,Yの画像データ、即ち画素階調データである。一般に原色Yが他に比べ比視感度が大きい色とすれば、ホワイトバランスは原色Yの表示可能な最大値Ymaxを基準に他の原色Xの表示可能な最大値x0を原色XとYの所定の光量比率によって決定する。x0とYmaxは、図中のホワイトバランスベクトルP1の成分となっている。従って、図中の(x0,Ymax)に照明光のホワイトバランスをとった場合の表示画像の表示可能なカラー分布領域102において表示が可能である。この場合、投影条件のうち各原色X,Yの照明光はそれぞれ表示画像の光量がx0,y0(=Ymax)となる条件である。この表示可能なカラー分布領域102において、図の如く投影条件制御前のカラー光量分布103をもった画像データに対し、投影条件制御手段23によって投影条件を再設定する。このときの各原色の画像X,Yの画像データの最大レベルがそれぞれ例えば128,32であったとすると、表示画像の光量として得られるのがそれぞれx1,y1である。そこで、まず、画像Xの最大階調レベル128が255になるように線形的にスケール変換する。その結果、表示画像は元のx1の2倍の光量x0になる。同様に、画像Yの最大階調レベル32が255になるように線形的にスケール変換変換する。結果、表示画像は元のy1の8倍の光量y0になる。
次に、適応色バランスベクトル算出部21から適応色バランスベクトル算出部から適応色バランスベクトルP2のデータを入力し(ステップS13)、その適応色バランスベクトルから照明光R,G,Bの光量比を決定する(ステップS14)。その後、最大の光量比を示す照明光R,G,Bが何れであるかを検出して特定し(ステップS15)、その特定した照明光の光量を最大にするように発光制御データを設定する(ステップS16)。また、その特定した照明光に対して、残りの色の照明光の光量を、適応色バランスベクトルから求めた光量比に従って発光制御データを設定する(ステップS17)。例えば、図5の例において、X照明光の増光量104として示すように、原色Xの照明光量を制御してx0がx2(=Xmax)になるよう光量増加させ、また、Y照明光の減光量105として示すように、原色Yの照明光量を制御してy0がy2になるよう光量減少させる。ここで、x2は原色Xが照明可能な最大の光量を示す。x2及びy2は適応色バランスベクトルP2の成分となっている。
そして、そのようなスケール変換した原画像データR’,G’,B’を各々の表示デバイス変調制御駆動部24R,24G,24Bへ出力して、各表示デバイス12R,12G,12Bを駆動する(ステップS18)、また、設定した発光制御データをR,G,Bそれぞれの光源発光制御駆動部25R,25G,25Bへ出力して、LED11R,11G,11Bを発光させる(ステップS19)。このようにして、図5の例において、制御前の表示画像のカラー光量分布103が、制御後の表示画像のカラー光量分布106となるように、画像データがもつ色分布を必要十分に表示し得る表示可能範囲を特定し、その表示可能範囲を色の分布を崩さずにより明るく表現できるよう投影条件(照明光量及びデータ変換)を適応的に設定することができる。
即ち、図5の例で言えば、図6に示すように、原色画像Xについては、データ変換によってデータとして2倍の値になり、また、光量制御によってx2/x0倍つまり2倍に上げ、結果的に、表示可能光量は2×2倍つまり4倍に明るくすることができる。原色画像Yについては、データ変換によってデータとして8倍の値になり、また、光量制御によってx2/x0倍つまり半分に下げて、結果的に、表示可能光量は8×(1/2)倍とこちらも4倍に明るくすることができる。
つまり、投影条件制御手段23は、表示デバイス12R,12G,12Bで形成可能な最大階調のデータ値を、入力された画像データ値で割った各色毎のデータ比を求め、そのデータ比の逆数の比を用いて、光源であるLED11R,11G,11Bの各色照明光の発光光量を設定し、また、入力された画像データ値を上記最大階調のデータ値に変更する。例えば、R,G,Bの最大階調のデータ値が256,256,256で、R,G,Bの入力画像データ値が64,32,128であったとするならば、各色(R,G,B)毎のデータ比は4:8:2で、この逆数の比は1/4:1/8:1/2=2:1:4なので、光源の各色照明光の発光光量をRは2m倍、Gはm倍、Bは4m倍に設定し、R,G,Bの入力画像データ値を256,256,256に変更する(ここでmは、RGB各光源の発光光量が最大発光光量以内となるように調整される)。
[第2実施形態]
次に、本発明の第2実施形態を説明する。
本実施形態は、上記第1実施形態と同様の構成において、投影条件制御手段23での投影条件の設定の別の例である。
即ち、投影条件制御手段23は、図7に示すように、まず、原色照明光の発光量は全て最大かどうか確認する(ステップS21)。ここで、全て最大であったならば、もはや発光量調整を行うことができないので、後述するステップS23に進む。これに対して、全て最大でないならば、照明光Rの発光量が最大に、照明光Gの発光量が最大に、照明光Bの発光量が最大になるように発光制御データの設定を行う(ステップS22)。
これを、簡単化のためにX,Yによる2次元色空間で示す図8を参照して説明する。この図における諸条件は図5と同様である。この表示可能領域において、図の如く投影条件「制御前の表示画像のカラー光量分布103」をもった画像データに対し、投影条件制御手段23によって投影条件を再設定する。このときの各原色の画像X,Yの画像データの最大レベルがそれぞれ例えば128,32であったとすると、表示画像の光量として得られるのがそれぞれx1,y1である。ここで、X照明光の光量が最大になるようX照明光を光量増加させ、Y照明光の光量が最大になるよう光量増加させ照明光量を制御する。この例では、Y照明光は既に最大を出力しているので、事実上光量増加はない。この状態では、制御した照明光の光量による表示画像は色バランスを崩している。
次に、上記のような投影条件制御前のカラー光量分布103をもった画像データから適応色バランスベクトル算出部21で算出された適応色バランスベクトルP2を入力し(ステップS23)、その適応色バランスベクトルから画像データDr,Dg,Dbのデータ値の比を決定する(ステップS24)。その後、最大のデータ比を示す画像データがDr,Dg,Dbの何れであるかを検出して特定し(ステップS25)、その特定した画像データの最大量を255に変換する(ステップS26)。なお、これは各画素各原色8ビットデータとした場合であり、他のビット数のデータの場合はそれに応じた値となることは勿論である。また、その特定した画像データに対して、残りの色の画像データを、適応色バランスベクトルから求めた比になるようにスケール変換する(ステップS27)。そして、そのようなスケール変換した原画像データDr’,Dg’,Db’を各々の表示デバイス変調制御駆動部24R,24G,24Bへ出力して、各表示デバイス12R,12G,12Bを駆動する(ステップS28)、また、設定した発光制御データをR,G,Bそれぞれの光源発光制御駆動部25R,25G,25Bへ出力して、LED11R,11G,11Bを発光させる(ステップS29)。
例えば、図8の例においては、最大のデータ比を示す画像データはDxであるので、画像Xの最大階調レベル128が255になるようにXデータを線形的にスケール変換し、表示画像Xの光量最大値がx2になるようにする。その結果、表示画像は元のx1の4倍の光量になる。同様に画像Yの最大階調レベル32が128になるように線形的にスケール変換する。結果、表示画像は元のy1の4倍の光量になる。従って、元のデータの光量比x1:y1を維持してx2,y2を得て、表示画像を明るくできる。ここで、x1:y1、及びx2:y2は、適応色バランスベクトルP2の成分比となっている。このようにして、画像データがもつ色分布を必要十分に表示し得る表示可能範囲を特定し、その表示可能範囲を色の分布を崩さずにより明るく表現できるよう投影条件(照明光量及びデータ変換)を適応的に設定することができる。
即ち、図8の例で言えば、図9に示すように、原色画像Xについては、光量制御によってXmax/x0倍つまり2倍に上げ、また、データ変換によってデータとして2倍の値になり、結果的に、表示可能光量は2×2倍つまり4倍に明るくすることができる。原色画像Yについては、光量制御によってYmax/y0倍つまり1倍とし、また、データ変換によってデータとして4倍の値になり、結果的に、表示可能光量は1×4倍とこちらも4倍に明るくすることができる。
つまり、投影条件制御手段23は、各色の光源であるLED11R,11G,11Bが発光可能な最大光量の発光光量値を、それら光源が発光する発光光量の初期値(ホワイトバランスがとれた値)で割った各色毎の発光光量比を求め、その発光光量比の逆数の比を用いて、入力された画像データ値をデータ変換し、また、上記初期値で設定された各色毎の光源の発光光量を上記発光可能な最大光量の発光光量値に設定する。例えば、R,G,Bの各色の光源が発光可能な最大光量の発光光量値が1600,1600,1600で、R,G,Bの光源が発光する発光光量の初期値が400,200,800であったとするならば、各色(R,G,B)毎の発光光量比は4:8:2で、この逆数の比は1/4:1/8:1/2=2:1:4なので、R,G,Bの入力画像データ値をRは2n倍、Gはn倍、Bは4n倍に変換し、光源の各色照明光の発光光量値を1600,1600,1600に設定する(ここでnは、表示デバイスで表示可能なデータ値以内となるように調整される)。
[第3実施形態]
適応色バランスベクトル算出部21での適応色バランスベクトルの算出方法の別の例を、本発明の第3実施形態として説明する。
図3を用いて説明した第1実施形態では、画像データの表示可能範囲を、画像データのカラー分布を全てカバーするようなdx1,dy1の値に設定していた。しかしながら、図10に示すように、画像データのカラー分布を全てカバーしないdx1,dy1の値に設定しても良い。
但しこの場合、設定した各色照明光の発光光量値が、各色光源の最大発光光量値を超えた場合には、その設定した発光光量値に近傍する最大発光光量以内の発光光量値に置き換えることが必要となる。即ち、dx1,dy1を超える範囲にある画素、例えば図中記載の画素Aはdx1,dy1以下の範囲(領域C)にある画素に割り当てる。この場合、色空間内において上記設定した各色照明光の発光光量値と色空間原点とを結んだ直線上における最大発光光量内の光量値に置き換えることが好ましい。即ち、例えば図中記載の画素Aはdx1,dy1以下の範囲(領域C)にある画素の中で、画素Aと原点を通る線上で最大を示す画素A’に割り当てれば、色バランスを維持することができる。
また、図示はしないが、最もユークリッド距離(符号間距離)が短い画素A’に割当てても良い。ユークリッド距離はDx−Dyの座標空間において定義される距離である。この場合、dx1,dy1を超える画素は忠実な色表現は望めず、色バランスを崩したものにならざるを得ないが、その頻度が小さければ多少の色のバランスが崩れた画素が投影画像中に存在していても視感上は大きな問題とならない。
また、割り当て方は、上記でなくとも、予め視感上違和感のないことを確かめて得られる割当テーブルを作成し、それによって変換しても構わない。
また、領域Aの画素を領域Cのどの画素に対応付けて変換するかは、ニューラルネットワークを構成し学習によって決定できるような仕組みにすることも有効な手段である。
本実施形態のような設定の仕方にすると、投影画像データの中のより多くの画素を明るく投影することができるようになる。
[第4実施形態]
適応色バランスベクトル算出部21での適応色バランスベクトルの算出方法のさらに別の例を、本発明の第4実施形態として説明する。
本実施形態においては、入力された画像データにおける各輝度毎のヒストグラムを求め、輝度値として削除しても観察者に違和感を与えない輝度値の上限をそのヒストグラムを用いて設定し、この設定した各色毎の上限値を用いて画像データが分布する領域を認識するものである。
即ち、図11に示すように、まず、画像データのカラー分布から座標軸Dx,Dyそれぞれに射影した発生頻度分布を求める。そして、座標軸Dxに対する発生頻度分布からDxの最小値と最大値の間で所定の発生割合を示す設定値dx1を定める。同様に、座標軸Dyに対する発生頻度分布からDyの最小値と最大値の間で所定の発生割合を示す設定値dy1を定める。こうして求めたdx1,dx2より適応色バランスベクトルP2が決定される。
これら設定値dx1,dx2は、これらの値を超える座標値をもつ画素が、これらの値以下の範囲に何れかの画素に丸め込まれても視覚上違和感の無い程度に設定される。視覚上違和感の無い程度を見つけるには、いくつものサンプル画像データにより実際に表示画像を複数の被験者が観察して経験則として決定されるものである。
なお、丸め込みの手法については、上記第3実施形態で説明した方法が利用できる。
[第5実施形態]
図12は、本発明の第5実施形態に係る画像投影装置の構成を示す図である。本実施形態に係る画像投影装置は、入力される画像データにプロファイルデータが既にヘッダー情報として付されている場合に適用できるものである。
即ち、この画像投影装置は、上記第1実施形態における演算対象画像フレーム設定部20、適応色バランスベクトル算出部21、モード切替部22、色バランスベクトル記録部26、画像データ種設定入力部27、及び色バランスベクトル選択部28に代えて、画像データ記憶部19に記憶された入力画像データから画像データプロファイルを分離する画像データプロファイル分離部29を備えている。
図13は、画像データ入力処理部18に入力され画像データ記憶部19に記憶される入力画像データ107のフォーマットを示す図である。即ち、入力画像データ107は、画像データプロファイル107aと、R,G,B各原色画像データ107b,107c,107dからなっている。ここで、画像データプロファイル107aには、当該入力画像データ107に適用するための色バランスベクトルの情報107a1と各原色画像データの最大値107a2,107a3,107a4とを少なくとも有している。従って、画像データプロファイル分離部29は、この画像データプロファイル107aから必要な情報を分離して、投影条件制御手段23に対し与えることができる。即ち、上記第1乃至第4実施形態のように色バランスベクトルを算出するまでもなく、投影条件の設定プロセスに移行できる。
なお、これはフレーム画像のデータ単位での例であるが、所定の画像データ群として共通の画像データプロファイル107aをもっても良い。その場合には、該画像データプロファイル107aが適用されるフレームを特定するデータ(画像フレームID107a5及び帰属ファイル名107a6)が付加される。
このように、入力された画像データ107が、当該画像データが色空間内で分布する領域の情報が予め記憶された画像データプロファイル107aを有し、画像データプロファイル分離部29が、その画像データプロファイル107aから上記領域の情報を読み出すことによって領域を認識することができる。
この場合、画像データは画像ファイル単位で入力され、画像データプロファイル107aは、その画像ファイル単位に画像ファイル内の画像データが色空間内で分布する領域の情報を記憶する。あるいは、画像データは動画像データとして入力され、画像データプロファイル107aは、その動画像データにおける一連のフレーム群毎に各シーンを構成する画像データが色空間内で分布する領域の情報を記憶する。この場合、フレーム群毎は入力された動画像データにおける一連のシーン毎である。
[第6実施形態]
図14は、本発明の第6実施形態に係る画像投影装置に使用するライトエンジン30の構成を示す図であり、図15は、そのようなライトエンジンによる3板方式の本実施形態に係る画像投影装置の構成を示す図である。
即ち、本実施形態に係る画像投影装置は、図2の構成において、光源としてのLED11R,11G,11Bの代わりに、ライトエンジン30R,30G,30Bを使用するものである。
この場合、各ライトエンジン30は、平行ロッド31と反射プリズム32が一体的に接合されて導光部材を形成し、該導光部材が回転モータ33の回転軸34と結合されたロッドホルダ35により保持されて図中矢印のように高速回転するようになっている。そして、ドラム状に形成した発光体基板36の内周に配列した複数の光源としてのLED11を、上記導光部材の回転に併せて順次点灯する。この場合、平行ロッド31の端面である入射面にLED11からの拡散光を導くための導光手段として平行ロッド37が各LED11毎に固定設置されている。而して、このような構成の照明装置では、上記回転に伴って変化する平行ロッド31の位置に対応するLED11が発光し、そのLED11からの拡散光が当該LED11に対し設けられた平行ロッド37によって導光され、この平行ロッド37の出射面から、そのとき対向している平行ロッド31の入射面に入射されて、反射プリズム32で反射され、テーパーロッド13の出射面から射出される。
なお、上記ドラム状の発光体基板36の外周には放熱板38が設けられており、LED11の発光に伴って発生される熱を放熱することで、熱によるLED11の特性変化を防止し、該ライトエンジン30を連続運転しても安定した照明が得られるようになっている。また更に、その放熱板38に接する空気を排気するための放熱ファン39を備えている。ここで、該放熱ファン39は、上記導光部材即ちロッドホルダ35を回転させるための回転モータ33の軸に連結され、上記回転モータ33によって上記導光部材が回転すると同時に上記放熱ファン39が回転し、放熱板38に接する空気を排気することが可能となる。このように、導光部材を可動させる回転モータ33とLED11の放熱を行なうための放熱ファン39のモータとを同一にしているため、単一の駆動力源で2つの機能を実現することができ、効果的にこの駆動力源を活用するため、使用スペースの削減、電力の有効利用が可能となる。
このような構成のライトエンジン30では、複数のLED11を順次切り替えパルス発光させ、放射光を取込む導光部材との相対位置関係をLED11の発光切り替えに併せて選択しながら変移させることによって、実効的に高輝度のLEDが得られ、大光量の平行度の向上した光が導光部材の出射端面から得られることになる。
また、導光部材にLED拡散光を導く平行ロッド37が個々のLED11毎に設けられるため、LED11の配列ピッチが密に確保できなくとも平行ロッド37によって導かれた光があたかも密に配列されたLEDから発するような状態を作り出すことが可能となる。即ち、LED11の配列間隔を確保でき設計を容易にすると共にLED11の密なる配置を実現し、導光部材が取り込む光量の欠如状態をなくすことができ、安定した照明光を得ることができるようになる。
従って、該ライトエンジン30に搭載するLED11の発光色をR,G,Bの何れか一色にすることで、図15のように、Rライトエンジン30R、Gライトエンジン30G、Bライトエンジン30Bを構成することができる。なお、図15における表示デバイスは、透過型の液晶を用いた場合の構成例として図示してある。
そして、各ライトエンジン30の各LED11の発光光量を、上記第1乃至第6実施形態で説明したように制御すれば良い。
また、反射プリズム32からの出射光は、回転せず図示しない保持機構により固定的に設置されたテーパーロッド13の入射口に、円形状の入射照明形状として入射される。このテーパーロッド13の入射口は、上記入射照明形状が該入射口にほぼ内接するような大きさの矩形形状とされている。このテーパーロッド13に入射された光は、矩形の出射口形状をしたテーパーロッド13の出射口から図のようにほぼ矩形の出射照明形状をした照明光として射出される。このことにより照明光の形状が矩形で得られるため、その後に矩形の受光面を持つ表示デバイス12R,12G,12Bに照明光を入射するときに、形状が互いに一致しているため無駄なく効率良く照明光を利用することが可能となる。
[第7実施形態]
本実施形態は、表示デバイスとして反射型の表示素子であるDMD(商標)を使用した単板方式の画像投影装置である。ここで、DMD(商標)とは、2次元マイクロミラー偏向アレイであり、その詳細は、例えば、特開平11−32278号公報の段落[0026]や国際公開第WO98/29773号公報の第5頁第23行目乃至第6頁第6行目に開示されているので、説明は省略する。
図16は、本実施形態に係る画像投影装置の構成を示す図である。即ち、本実施形態おいては、原色R,G,Bの光を合成して射出可能なライトエンジン40を用い、該ライトエンジン40から出射された光は、照明光学系41を介して反射ミラー42により反射し、DMD(商標)43に入射され変調された後、投影レンズ16を介して投影光17として出力する。この場合、ライトエンジン40からの出射光とDMD(商標)43受光面の入射光は結像関係をなすように設計された曲率形状をもった反射ミラー42によりクリティカル照明系を構成する。DMD(商標)43受光面は矩形形状であり、その形状のアスペクト比に合わせてライトエンジン40からの矩形形状の出射形状は決められている。この構成によれば、照明光路を畳み込んでいるためコンパクトに納めることができる。なお、DMD(商標)43の変調動作によりDMD(商標)43から投影レンズ16に入射されないときの所謂オフ光が反射ミラー42及びライトエンジン40のテーパーロッド13の出射口に入射されないように光路設計がなされている。
なお、ライトエンジン40の構成は、次のようになっている。即ち、ドラム状に形成した3段の基板のそれぞれ内周にLED11R,11G,11Bを実装している。ここで、各段をそれぞれ同色の発光色のLED11が配列されている。このようなドラムの内側には、一体可動部44が収納されている。この一体可動部44は、6個の平行ロッド45と、2個の3角プリズム46と、4個の導光パイプ47と、4個のダイクロイックプリズム48と、1個のテーパーロッド13とから構成されている。
即ち、同図において、最も左の段には赤(R)色の発光色のLED11Rを配列し、対応する3角プリズム46の対角面にには、括弧書きで示すように、赤(R)色の波長帯域の光を反射するミラーコート49を形成する。LED11R側つまり平行ロッド45側である入射面には何も設けない。また、中央の段には緑(G)色の発光色のLED11Gを配列し、対応するダイクロイックプリズム48の、対角面には赤(R)色の波長帯域の光を透過し且つ緑(G)色の波長帯域の光を反射するダイクロイックコート50を形成し、LED11G側つまり平行ロッド45側である入射面には緑(G)色の波長帯域の光を透過し且つ赤(R)色の波長帯域の光を反射するダイクロイックコート51を形成する。そして、最も右の段には青(B)色の発光色のLED11Bを配列し、対応するダイクロイックプリズム48の、対角面には赤(R)色及び緑(G)色の波長帯域の光を透過し且つ青(B)色の波長帯域の光を反射するダイクロイックコート52を形成し、LED11B側つまり平行ロッド45側である入射面には青(B)色の波長帯域の光を透過し且つ赤(R)色及び緑(G)色の波長帯域の光を反射するダイクロイックコート53を形成する。なお、3角プリズム46を、ダイクロイックプリズムに置き換えても良い。
このような構成のライトエンジン40では、図示しない回動可能な保持具に取り付けられた一体可動部44を図示しない回転モータで矢印方向に回転し、ドラム状に形成した基板の内周に配列した複数の光源としてのLED11を、上記一体可動部44の回転に併せて順次点灯する。即ち、複数のLED11を順次切り替えパルス発光させ、その放射光を取込む一体可動部44の入射端面との相対位置関係をLED11の発光切り替えに併せて選択しながら変移させることによって、実効的に高輝度の3色のLEDが得られ、大光量の平行度の向上した3色の光が一体可動部44の出射端面であるテーパーロッド13の出射端面から得られることになる。
このような構成の単板方式の画像投影装置では、R,G,B時分割で重ならないように各原色のLEDを発光させるものであるが、本実施形態では、更に、図17に示すように、R,G,Bを全て発光させるシーケンスも含めた4つのシーケンスで、発光光量と時間とをコントロールすることで、所望の照明光量が得られる。
即ち、R,G,Bそれぞれの照明光量は、前述した第1乃至第5実施形態で説明した方法によって算出され、その算出された結果が、
Rの照明光量:LR=(Ir×Tr)+(Ipr×Tp)
Gの照明光量:LG=(Ig×Tg)+(Ipg×Tp)
Bの照明光量:LB=(Ib×Tb)+(Ipb×Tp)
を満足するように、照明光量の発光制御がなされる。なおここで、LR,LG,LBの成分比は、適応色バランスベクトルの成分比と一致させる。
[第8実施形態]
上記第1乃至第7実施形態は、スクリーン1に画像を投影表示する所謂プロジェクタに適用した場合の画像投影装置を説明したが、画像投影装置はプロジェクタ以外の装置にも種々適用可能である。
例えば、図18に示すように、写真露光装置に適用できる。即ち、画像データ入力部54より入力された画像データは入力処理の後、画像投影制御部55に入力され、上記第1乃至第7実施形態で説明したような画像投影装置、例えば第1実施形態のような画像投影装置でなる画像投影部56を制御し画像投影を行う。この投影された画像は、印画紙ロール57から繰り出される所定の印画紙58面に焼付け露光される。露光時間は投影画像の明るさによって最適に調整されるが、本発明を使えば、従来のCRTプリンタ方式やLEDアレイ方式よりも光量大きく確保することも可能であり、面記録なので工程を速くすることができる。露光された印画紙58は定着部59、乾燥部60を通り、切断部61により所望のサイズにカットされて排出される。
露光の状態を制御するには、図のように画像品質調整部62から画像投影制御部55に所望する色彩や明るさを調整する信号またはデータを出力すればよい。色彩は、上記実施形態で説明してきたように、各原色の照明光や表示デバイスを制御して容易に調整可能である。明るさも同様である。なお、図18では手動で調整操作をするようにしてあるが、勿論、センサ等を設け、所定の色彩、明るさになるように自動的に調整する機構も構成できる。
また、印画紙58に相当するところに光書き込みが可能で書き換えが容易に可能なリライタブル電子ペーパーを使えば、将来実用化されるであろうリライタブル電子ペーパー記録装置に対し本発明は有効な画像形成手段となる。
同様に、従来の線記録に代わり、面記録が可能な次世代コピー機、プリンターが出現すれば、本発明は有効な画像形成手段となる。
以上実施形態に基づいて本発明を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。
例えば、適応色バランスベクトル算出部21では、入力画像データのうち、各色毎の最大値を求め、この各色毎の最大値を用いて上記画像データが分布する領域を認識するようにしても良い。
本発明の第1実施形態に係る画像投影装置の電気的構成を示す図である。 第1実施形態に係る画像投影装置の光学的構成を示す図である。 適応色バランスベクトルの算出方法を説明するための図である。 投影条件制御手段における投影条件の設定動作を説明するためのフローチャートを示す図である。 データを最大化し照明光でバランス取りを行う画像に適応したカラーバランス方法を説明するための図である。 投影条件の設定された値とそれによる表示可能光量とを示す図である。 本発明の第1実施形態に係る画像投影装置の投影条件制御手段における投影条件の設定動作を説明するためのフローチャートを示す図である。 照明光を最大化しデータでバランス取りを行う画像に適応したカラーバランス方法を説明するための図である。 投影条件の設定された値とそれによる表示可能光量とを示す図である。 本発明の第3実施形態に係る画像投影装置における適応色バランスベクトルの算出方法を説明するための図である。 本発明の第4実施形態に係る画像投影装置における適応色バランスベクトルの算出方法を説明するための図である。 本発明の第5実施形態に係る画像投影装置の構成を示す図である。 入力画像データのフォーマットを示す図である。 本発明の第6実施形態に係る画像投影装置に使用するライトエンジンの構成を示す図である。 第6実施形態に係る画像投影装置の構成を示す図である。 本発明の第7実施形態に係る画像投影装置の構成を示す図である。 照明光の出力シーケンスを示す図である。 本発明の第8実施形態としての、画像投影装置を適用した写真露光装置の構成を示す図である。
符号の説明
1…スクリーン、 11,11R,11G,11B…LED、 12R,12G,12B…表示デバイス、 13,13R,13G,13B…テーパーロッド、 14…偏光変換素子、 15…ダイクロイック・クロス・プリズム、 16…投影レンズ、 17…投影光、 18…画像データ入力処理部、 19…画像データ記憶部、 20…演算対象画像フレーム設定部、 21…適応色バランスベクトル算出部、 22…モード切替部、 23…投影条件制御手段、 24R,24G,24B…表示デバイス変調制御駆動部、 25R,25G,25B…光源発光制御駆動部、 26…色バランスベクトル記録部、 27…画像データ種設定入力部、 28…色バランスベクトル選択部、 29…画像データプロファイル分離部、 30…ライトエンジン、 30,30R,30G,30B…ライトエンジン、 31,45…平行ロッド、 32…反射プリズム、 33…回転モータ、 34…回転軸、 35…ロッドホルダ、 36…発光体基板、 37…平行ロッド、 38…放熱板、 39…放熱ファン、 40…ライトエンジン、 41…照明光学系、 42…反射ミラー、 44…一体可動部、 46…3角プリズム、 47…導光パイプ、 48…ダイクロイックプリズム、 49…ミラーコート、 50,51,52,53…ダイクロイックコート、 54…画像データ入力部、 55…画像投影制御部、 56…画像投影部、 57…印画紙ロール、 58…印画紙、 59…定着部、 61…切断部、 62…画像品質調整部、 101…画像データのカラー分布、 102…(x0,Ymax)に照明光のホワイトバランスをとった場合の表示画像の表示可能なカラー分布領域、 103…制御前の表示画像のカラー光量分布、 104…X照明光の増光量、 105…Y照明光の減光量、 106…制御後の表示画像のカラー光量分布、 107…入力画像データ、 107a…画像データプロファイル、 107a1…色バランスベクトルの情報、 107a2,107a3,107a4…原色画像データの最大値、 107b,107c,107d…原色画像データ、 107a5…画像フレームID、 107a6…帰属ファイル名。

Claims (27)

  1. 入力された画像データに応じて表示デバイス上に形成した画像を、観察者が観察可能なように、光源からの照明光によって被投影面に対し投影する画像投影装置において、
    前記入力された画像データが色空間内で分布する領域を認識する分布領域認識手段と、
    前記分布領域認識手段が認識した領域に基づき、前記被投影面に対し投影する画像の色バランスを変えず且つ輝度が増すように、
    前記入力された画像データを変換し前記表示デバイスに送ると共に、
    このデータ変換に連係して前記光源が発光する照明光の輝度を制御する、
    投影条件制御手段と、
    を有することを特徴とする画像投影装置。
  2. 前記光源は複数色の照明光を発光可能であり、
    各色の照明光は自らの色に対応するカラー画像データに応じた画像が形成された表示デバイスを照明する請求項1に記載の画像投影装置であって、
    前記投影条件制御手段は、
    前記表示デバイスで形成する所定の上限画像データ値を前記入力された画像データ値で割った各色毎のデータ比を求め、前記データ比の逆数の比を用いて前記光源の各色照明光の発光光量を設定する照明光量設定手段と、
    前記入力された画像データ値を前記所定の上限画像データ値に変更する画像データ変換手段と、
    を有することを特徴とする請求項1に記載の画像投影装置。
  3. 前記表示デバイスで形成する所定の上限画像データ値は、前記表示デバイスで形成可能な最大階調のデータ値であることを特徴とする請求項2に記載の画像投影装置。
  4. 前記照明光量設定手段は、前記設定した各色照明光の発光光量値が、各色光源の最大発光光量値を超えた場合には、その設定した発光光量値に近傍する最大発光光量以内の発光光量値に置き換えることを特徴とする請求項2に記載の画像投影装置。
  5. 前記近傍する最大発光光量以内の発光光量値は、色空間内において前記設定した各色照明光の発光光量値から最もユークリッド距離が短い最大発光光量内の光量値であることを特徴とする請求項4に記載の画像投影装置。
  6. 前記近傍する最大発光光量以内の発光光量値は、色空間内において前記設定した各色照明光の発光光量値と色空間原点とを結んだ直線上における最大発光光量内の光量値であることを特徴とする請求項4に記載の画像投影装置。
  7. 前記光源は複数色の照明光を発光可能であり、
    各色の照明光は自らの色に対応するカラー画像データに応じた画像が形成された表示デバイスを照明する請求項1に記載の画像投影装置であって、
    前記投影条件制御手段は、
    前記光源が発光する所定の上限発光光量値を前記光源が発光する発光光量の初期値で割った各色毎の発光光量比を求め、前記発光光量比の逆数の比を用いて前記入力された画像データ値をデータ変換する画像データ変換手段と、
    前記初期値で設定された各色毎の光源の発光光量を前記所定の上限発光光量値に設定する照明光量設定手段と、
    を有することを特徴とする請求項1に記載の画像投影装置。
  8. 前記光源が発光する所定の上限発光光量値は、各色の光源が発光可能な最大光量の発光光量値であることを特徴とする請求項7に記載の画像投影装置。
  9. 前記分布領域認識手段は、色空間内での前記画像データの各色ベクトルを任意のベクトルに投影した際に、分散が最大となるような任意のベクトルを適応色バランスベクトルとして用いて前記入力された画像データが分布する領域を認識することを特徴とする請求項1に記載の画像投影装置。
  10. 前記分布領域認識手段は、前記入力された画像データのうち、各色毎の最大値を求め、この各色毎の最大値を用いて前記画像データが分布する領域を認識することを特徴とする請求項1に記載の画像投影装置。
  11. 前記分布領域認識手段は、
    前記入力された画像データにおける各輝度毎のヒストグラムを求め、
    輝度値として削除しても観察者に違和感を与えない輝度値の上限を前記ヒストグラムを用いて設定し、
    この設定した各色毎の上限値を用いて前記画像データが分布する領域を認識する、
    ことを特徴とする請求項1に記載の画像投影装置。
  12. 前記画像データは画像ファイル単位で画像投影装置に入力され、
    前記分布領域認識手段は、前記入力された画像ファイル毎に、画像データが色空間内で分布する領域を認識すると共に、
    前記投影条件制御手段は、前記入力された画像ファイル毎に、前記光源が発光する照明光の輝度を制御する、
    ことを特徴とする請求項1に記載の画像投影装置。
  13. 前記分布領域認識手段は、前記入力された画像ファイル内の複数フレームにおける画像データの色空間での分布を用いて、前記領域を認識することを特徴とする請求項12に記載の画像投影装置。
  14. 前記画像データは動画像データとして画像投影装置に入力され、
    前記分布領域認識手段は、前記入力された動画像データにおける一連のフレーム群毎に、画像データが色空間内で分布する領域を認識すると共に、
    前記投影条件制御手段は、前記フレーム群毎に、前記光源が発光する照明光の輝度を制御する、
    ことを特徴とする請求項1に記載の画像投影装置。
  15. 前記フレーム群毎は、前記入力された動画像データにおける一連のシーン毎であることを特徴とする請求項14に記載の画像投影装置。
  16. 前記分布領域認識手段は、前記一連のフレーム群内の複数フレームにおける画像データの色空間での分布を用いて、前記領域を認識することを特徴とする請求項14に記載の画像投影装置。
  17. 画像投影装置に入力される前記動画像データは、時系列に連続するフレーム間でデータ圧縮処理されたデータであって、
    前記分布領域認識手段及び前記投影条件制御手段は、前記動画像データのフレーム毎のデータ量の変化からシーンの切り替わりを認識する、
    ことを特徴とする請求項15に記載の画像投影装置。
  18. 前記入力された画像データが色空間内で分布する領域の情報が予め記憶された分布領域記憶手段を更に有し、
    前記分布領域認識手段は、前記分布領域記憶手段が記憶した領域の情報を読み出すことによって領域を認識する、
    ことを特徴とする請求項1に記載の画像投影装置。
  19. 前記画像データは画像ファイル単位で画像投影装置に入力され、
    前記分布領域記憶手段は、画像ファイル単位に画像ファイル内の画像データが色空間内で分布する領域の情報を記憶する、
    ことを特徴とする請求項18に記載の画像投影装置。
  20. 前記画像データは動画像データとして画像投影装置に入力され、
    前記分布領域記憶手段は、動画像データにおける一連のフレーム群毎に、画像データが色空間内で分布する領域の情報を記憶する、
    ことを特徴とする請求項18に記載の画像投影装置。
  21. 前記フレーム群毎は、前記入力された動画像データにおける一連のシーン毎であることを特徴とする請求項20に記載の画像投影装置。
  22. 複数の表示モードに応じた画像を投影する請求項18に記載の画像投影装置であって、
    前記複数の表示モードのうち1つを観察者が選択可能な表示モード選択手段を更に有し、
    前記分布領域記憶手段は、前記複数の表示モードに対応する前記領域の情報を複数記憶すると共に、
    前記分布領域認識手段は、前記分布領域記憶手段が記憶した複数の領域の情報から、前記表示モード選択手段で選択された表示モードに応じた領域の情報を読み出し、この読み出した領域の情報を前記入力された画像データが色空間内で分布する領域として認識する、
    ことを特徴とする請求項18に記載の画像投影装置。
  23. 前記光源は、発光色が異なる複数のLEDによって構成されていることを特徴とする請求項2または7に記載の画像投影装置。
  24. 前記表示デバイスは、被投影面に対し投影する画像において用いる色毎に複数有し、
    前記複数の表示デバイスのうちの各表示デバイスは、前記入力された画像データの色毎の情報に応じてそれぞれ同時に画像を形成し、
    前記光源の複数色の照明光は、自らの色に対応する前記表示デバイスをそれぞれ同時に照明する、
    ことを特徴とする請求項2または7に記載の画像投影装置。
  25. 前記表示デバイスは、1つのデバイスによって構成され、
    前記1つの表示デバイスは、前記入力された画像データの色毎の情報に応じて順次画像を形成し、
    前記光源の複数色の照明光は、自らの色に対応する画像を形成する前記表示デバイスを順次照明する、
    ことを特徴とする請求項2または7に記載の画像投影装置。
  26. 前記照明光設定手段は、前記光源に印加する電圧値と電流値のうち少なくとも1つを設定することを特徴とする請求項2または7に記載の画像投影装置。
  27. 前記照明光設定手段は、前記光源に印加する電圧値と電流値と前記光源の発光時間のうち少なくとも1つを設定することを特徴とする請求項2または7に記載の画像投影装置。
JP2003341155A 2003-09-30 2003-09-30 画像投影装置 Pending JP2005107211A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003341155A JP2005107211A (ja) 2003-09-30 2003-09-30 画像投影装置
US10/948,880 US7303284B2 (en) 2003-09-30 2004-09-24 Image projecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003341155A JP2005107211A (ja) 2003-09-30 2003-09-30 画像投影装置

Publications (1)

Publication Number Publication Date
JP2005107211A true JP2005107211A (ja) 2005-04-21

Family

ID=34373439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341155A Pending JP2005107211A (ja) 2003-09-30 2003-09-30 画像投影装置

Country Status (2)

Country Link
US (1) US7303284B2 (ja)
JP (1) JP2005107211A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134482A (ja) * 2003-10-28 2005-05-26 Olympus Corp 画像投影装置
JP2007094108A (ja) * 2005-09-29 2007-04-12 Casio Comput Co Ltd プロジェクタ装置、及びその光源制御方法
JP2008009324A (ja) * 2006-06-30 2008-01-17 Sharp Corp 映像表示装置及び映像表示方法
WO2009011085A1 (ja) * 2007-07-18 2009-01-22 Panasonic Corporation レーザ光源の光出力制御装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450311B2 (en) 2003-12-12 2008-11-11 Luminus Devices, Inc. Optical display systems and methods
JP4546930B2 (ja) * 2004-01-28 2010-09-22 パナソニック株式会社 発光方法、発光装置、投写型表示装置
JP2006023627A (ja) * 2004-07-09 2006-01-26 Olympus Corp 照明装置及び画像投影装置
KR101199757B1 (ko) * 2005-03-18 2012-11-08 엘지전자 주식회사 디스플레이장치 및 디스플레이방법
FR2887640B1 (fr) * 2005-06-24 2008-10-03 Thomson Licensing Sa Procede d'illumination d'un imageur de projecteur, systeme et projecteur correspondant
US8267521B2 (en) * 2005-08-31 2012-09-18 Sanyo Electric Co., Ltd. Optical element, illuminating device, and projection type video display
US20070064008A1 (en) * 2005-09-14 2007-03-22 Childers Winthrop D Image display system and method
US20070063996A1 (en) * 2005-09-14 2007-03-22 Childers Winthrop D Image display system and method
US7551154B2 (en) * 2005-09-15 2009-06-23 Hewlett-Packard Development Company, L.P. Image display system and method
US7658497B2 (en) * 2006-01-11 2010-02-09 Sanyo Electric Co., Ltd Rod integrator holder and projection type video display
JP2007206282A (ja) * 2006-01-31 2007-08-16 Toshiba Corp 情報処理装置、及び輝度制御方法
CN101276134A (zh) * 2007-03-27 2008-10-01 香港应用科技研究院有限公司 光学元件及包含光学元件之投影系统
JP2008300115A (ja) * 2007-05-30 2008-12-11 Olympus Corp 照明装置および画像投影表示装置
JP2009244360A (ja) * 2008-03-28 2009-10-22 Brother Ind Ltd ライトパイプ、照明光学系及び画像投影装置
KR100927724B1 (ko) * 2008-03-31 2009-11-18 삼성모바일디스플레이주식회사 투사형 표시 장치 및 이의 구동 방법
CN102016751A (zh) * 2008-03-31 2011-04-13 惠普开发有限公司 使用矢量校准的rgb led控制
JP2011100102A (ja) * 2009-10-09 2011-05-19 Seiko Epson Corp プロジェクター
JP6019859B2 (ja) * 2012-07-17 2016-11-02 セイコーエプソン株式会社 プロジェクター、及び、プロジェクターにおける発光制御方法
US20140085426A1 (en) * 2012-09-24 2014-03-27 Alces Technology, Inc. Structured light systems with static spatial light modulators
CN103713454B (zh) 2012-09-28 2016-12-07 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN103852850A (zh) * 2012-12-04 2014-06-11 建兴电子科技股份有限公司 对位方法与光学装置
JP6119440B2 (ja) * 2013-06-07 2017-04-26 富士ゼロックス株式会社 画像処理装置、色調整システムおよびプログラム
DE102013215374A1 (de) * 2013-08-05 2015-02-05 Osram Opto Semiconductors Gmbh Beleuchtungsanordnung
JP6427280B2 (ja) * 2016-03-03 2018-11-21 Hoya株式会社 補正データ生成方法及び補正データ生成装置
CN109429045B (zh) * 2017-08-30 2021-11-09 深圳光峰科技股份有限公司 图像处理及显示装置、图像处理及显示方法
US11717973B2 (en) * 2021-07-31 2023-08-08 Cognex Corporation Machine vision system with multispectral light assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160811A (ja) * 1992-11-26 1994-06-07 Sanyo Electric Co Ltd 液晶プロジェクタ
JPH11338407A (ja) * 1998-05-26 1999-12-10 Hitachi Ltd 固定画素表示装置及びその駆動方法
JP2002099250A (ja) * 2000-09-21 2002-04-05 Toshiba Corp 表示装置
JP2002140038A (ja) * 2000-11-02 2002-05-17 Advanced Display Inc 透過型画像表示装置
JP2002156951A (ja) * 2000-08-14 2002-05-31 Canon Inc 表示装置
JP2003099010A (ja) * 2001-09-25 2003-04-04 Sharp Corp 映像表示装置および映像表示方法
WO2003075257A1 (fr) * 2002-03-07 2003-09-12 Sharp Kabushiki Kaisha Dispositif d'affichage

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043797A (en) * 1996-11-05 2000-03-28 Clarity Visual Systems, Inc. Color and luminance control system for liquid crystal projection displays
TW391139B (en) 1996-12-26 2000-05-21 Plus Kk Image display device
JPH1132278A (ja) 1997-07-10 1999-02-02 Fuji Xerox Co Ltd プロジェクタ装置
JP3371200B2 (ja) * 1997-10-14 2003-01-27 富士通株式会社 液晶表示装置の表示制御方法及び液晶表示装置
JP2002082652A (ja) 2000-05-18 2002-03-22 Canon Inc 画像表示装置および方法
JP2002051353A (ja) 2000-08-04 2002-02-15 Seiko Epson Corp 画像表示システム及びこれに用いられる色信号調整装置
JP2002112962A (ja) 2000-10-12 2002-04-16 Asahi Optical Co Ltd 電子内視鏡装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160811A (ja) * 1992-11-26 1994-06-07 Sanyo Electric Co Ltd 液晶プロジェクタ
JPH11338407A (ja) * 1998-05-26 1999-12-10 Hitachi Ltd 固定画素表示装置及びその駆動方法
JP2002156951A (ja) * 2000-08-14 2002-05-31 Canon Inc 表示装置
JP2002099250A (ja) * 2000-09-21 2002-04-05 Toshiba Corp 表示装置
JP2002140038A (ja) * 2000-11-02 2002-05-17 Advanced Display Inc 透過型画像表示装置
JP2003099010A (ja) * 2001-09-25 2003-04-04 Sharp Corp 映像表示装置および映像表示方法
WO2003075257A1 (fr) * 2002-03-07 2003-09-12 Sharp Kabushiki Kaisha Dispositif d'affichage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134482A (ja) * 2003-10-28 2005-05-26 Olympus Corp 画像投影装置
JP2007094108A (ja) * 2005-09-29 2007-04-12 Casio Comput Co Ltd プロジェクタ装置、及びその光源制御方法
JP2008009324A (ja) * 2006-06-30 2008-01-17 Sharp Corp 映像表示装置及び映像表示方法
WO2009011085A1 (ja) * 2007-07-18 2009-01-22 Panasonic Corporation レーザ光源の光出力制御装置
JPWO2009011085A1 (ja) * 2007-07-18 2010-09-16 パナソニック株式会社 レーザ光源の光出力制御装置
US8169164B2 (en) 2007-07-18 2012-05-01 Panasonic Corporation Light output control device for laser light source
JP5175287B2 (ja) * 2007-07-18 2013-04-03 パナソニック株式会社 レーザ光源の光出力制御装置

Also Published As

Publication number Publication date
US7303284B2 (en) 2007-12-04
US20050068503A1 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP2005107211A (ja) 画像投影装置
JP4210554B2 (ja) デュアル空間光変調器を用いて色域を拡張するイメージング装置
JP4235533B2 (ja) 複数の重畳画像を含むカラー画像を形成するディスプレイ装置
JP4216161B2 (ja) 拡張色域を有する画像化装置、色域を有する画像化装置、および画像化装置に拡張色域を提供する方法
US7916939B2 (en) High brightness wide gamut display
JP2005134482A (ja) 画像投影装置
US20060012722A1 (en) Optical unit, video display apparatus, and color switching method
JP2006330070A (ja) 多原色表示方法および装置
JP2004333758A (ja) 表示装置、及び表示方法、並びにプロジェクタ
KR19980042477A (ko) 프로젝터 장치
US20060023003A1 (en) Color display apparatus
JPH10326080A (ja) 映像表示装置及び映像表示方法
WO2007026885A1 (ja) レーザ画像形成装置およびカラー画像形成方法
US7145520B2 (en) Display apparatus box using a spatial light modulator
US7812300B2 (en) Methods and systems for imaging having an illumination splitting means with a dynamic selecting means and a static selecting means
JP2004045989A (ja) 投影型表示装置及びその表示駆動方法
JP2005189472A (ja) 表示装置及びそれに使用する照明装置
TWI288568B (en) Image display method and device, and projector
JP5010218B2 (ja) 液晶プロジェクタおよび画像表示制御方法
JP6787290B2 (ja) 投影装置及び投影方法
JP2007065677A (ja) 映像表示装置
JP2002207192A (ja) 映像表示装置及び駆動回路
JP4281385B2 (ja) 投射型表示装置
JP2009175771A (ja) プロジェクタの制御方法
JP4729911B2 (ja) 画像表示方法およびプロジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420