WO2014045445A1 - Moteur électrique à aimant permanent intégré - Google Patents

Moteur électrique à aimant permanent intégré Download PDF

Info

Publication number
WO2014045445A1
WO2014045445A1 PCT/JP2012/074421 JP2012074421W WO2014045445A1 WO 2014045445 A1 WO2014045445 A1 WO 2014045445A1 JP 2012074421 W JP2012074421 W JP 2012074421W WO 2014045445 A1 WO2014045445 A1 WO 2014045445A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
permanent magnet
rotor core
center
Prior art date
Application number
PCT/JP2012/074421
Other languages
English (en)
Japanese (ja)
Inventor
馬場 和彦
昌弘 仁吾
和慶 土田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/074421 priority Critical patent/WO2014045445A1/fr
Priority to JP2014536926A priority patent/JP5788104B2/ja
Priority to CN201380049527.7A priority patent/CN104662777B/zh
Priority to PCT/JP2013/075425 priority patent/WO2014046228A1/fr
Priority to US14/427,838 priority patent/US10084354B2/en
Priority to CN201320703992.5U priority patent/CN203466649U/zh
Publication of WO2014045445A1 publication Critical patent/WO2014045445A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to an embedded permanent magnet electric motor in which a permanent magnet is embedded in a rotor core.
  • Patent Document 1 discloses the following rotor of a permanent magnet embedded motor.
  • the rotor of the permanent magnet embedded motor includes a laminated iron core and a shaft, and the laminated iron core has a plurality of arc-shaped permanent magnets and a plurality of punched holes for receiving the permanent magnets.
  • a plurality of punching holes are provided at a rate of one per one pole.
  • the plurality of punching holes are arranged with the convex portion side of the arc facing the rotor center.
  • a permanent magnet having a shape in which circumferential end portions have different shapes is used, and the end portion having a small thickness is on the front side in the rotational direction.
  • the permanent magnet is arranged so that the thick end portion is located on the rear side in the rotation direction.
  • a pair of permanent magnet slots constituting one pole are arranged in a V shape on the outer peripheral portion of the rotor core, and permanent magnets are embedded in each permanent magnet slot.
  • two homopolar permanent magnets are embedded in a V shape in each rotor core.
  • the thickness of each permanent magnet increases from the radially inner end of the rotor core, which is the central portion of the V-shape, toward the radially outer end of the rotor core, which is the left and right ends of the V-shape.
  • the curved part is formed in the both ends of each permanent magnet.
  • the permanent magnet embedded motor shown in Patent Document 1 has a uniform thickness in the radial direction of the permanent magnet.
  • the magnetic resistance has a feature that the magnetic resistance is larger toward the center side of the rotor core and is smaller toward the outer side in the radial direction of the rotor core. Therefore, the magnetic resistance is the smallest near both ends of the permanent magnet, the demagnetizing field produced by the stator coil tends to concentrate on both ends of the permanent magnet, the both ends of the permanent magnet are demagnetized, and the torque is reduced. There was a problem that.
  • the present invention has been made in view of the above, and even when a sintered ferrite magnet is used, by increasing the demagnetization resistance against a demagnetizing field, the output of the motor is reduced without reducing the torque.
  • An object of the present invention is to provide a permanent magnet embedded type electric motor capable of increasing the motor.
  • an embedded permanent magnet electric motor of the present invention includes a rotor having a rotor core, and a stator provided so as to surround the rotor.
  • a plurality of magnet housing holes formed in the circumferential direction corresponding to the number of poles, and a plurality of permanent magnets housed in the plurality of magnet housing holes, each of the magnet housing holes rotating the rotor It is formed in a concave shape when viewed along the axial direction, and is disposed so that the concave side faces the outside of the rotor, and each of the magnet receiving holes is viewed along the rotational axis direction of the rotor.
  • each of the magnet housing holes in the short direction is formed so as to be symmetrical with respect to the center line of the magnetic pole, and is formed in an integral structure without being divided in the same pole.
  • the center part of the magnetic pole is the smallest, and the rotor
  • the thickness in the short direction of the central portion of the magnetic pole in the permanent magnet is at least as large as the thickness in the short direction of the central portion of the magnetic pole in the corresponding magnet housing hole. equal.
  • the output of the motor can be increased without increasing the torque by increasing the demagnetization resistance against the demagnetizing field.
  • FIG. 1 is a cross-sectional view of a permanent magnet embedded electric motor according to a first embodiment of the present invention. It is sectional drawing which shows the state which has not set the permanent magnet in the magnet accommodation hole regarding the rotor core shown by FIG. It is the elements on larger scale which show the dimension characteristic of the magnet accommodation hole of FIG. It is sectional drawing of the rotor of the state which set the permanent magnet in the magnet accommodation hole in FIG. It is a figure which shows an example of the magnetic orientation of a permanent magnet.
  • FIG. 5 is a diagram of the same mode as that of FIG. It is the elements on larger scale which show the dimension characteristic of the magnet accommodation hole of FIG.
  • FIG. 1 is a cross-sectional view of a permanent magnet embedded electric motor according to Embodiment 1 of the present invention, and more specifically, a cross-sectional view in which a rotation axis of a rotor is a perpendicular line.
  • FIG. 2 is sectional drawing which shows the state which has not set the permanent magnet in the magnet accommodation hole regarding the rotor core shown by FIG. 3 is a partially enlarged view showing the dimensional characteristics of the magnet accommodation hole of FIG. 2
  • FIG. 4 is a cross-sectional view of the rotor in which a permanent magnet is set in the magnet accommodation hole in FIG.
  • an embedded permanent magnet motor 1 includes a stator 3 and a rotor 5.
  • the stator 3 includes an annular stator core 7, a plurality of teeth 9 formed at equiangular pitches in the circumferential direction (rotating direction of the rotor 5) in the inner peripheral portion of the stator core 7, and each tooth. 3 and the coil 11 wound around.
  • the rotor 5 is rotatably disposed on the inner peripheral side of the stator 3, and an annular gap 15 is formed between the outer peripheral surface 13 of the rotor 5 and the plurality of teeth 9.
  • the stator 1 of the first embodiment shown in FIG. 1 is a distributed winding stator as an example, but a concentrated winding stator can be used as the present invention as will be described later.
  • FIG. 2 shows the structure of the rotor core 19 before the permanent magnet is inserted.
  • the rotor 5 shown in FIG. 2 has a rotary shaft 17 for transmitting rotational energy as a main structure, and this structure.
  • a rotor core 19 provided on the outer periphery of the rotating shaft 17 is included.
  • the rotating shaft 17 and the rotor iron core 19 are connected by, for example, shrink fitting and press fitting.
  • the rotor iron core 19 is manufactured by laminating a plurality of silicon steel plates (electromagnetic steel plates), called iron core punches, punched with a mold in the extending direction of the rotating shaft 17 (the front and back direction in FIG. 2). .
  • the outer peripheral surface 13 of the rotor core 19 is formed in a cylindrical shape.
  • the rotor core 19 is formed with a plurality (six in the illustrated example) of magnet housing holes 21 arranged on the same circumference so as to be arranged in the circumferential direction.
  • the magnet accommodation holes 21 are arranged by the number of poles.
  • Each of the magnet housing holes 21 is formed in an integral structure (one pole as one hole) without being divided in the same pole.
  • Each of the magnet housing holes 21 is formed in a concave shape when viewed along the direction of the rotation axis of the rotor 3 (as viewed in the cross section of FIGS. 1 to 7). More specifically, the concave shape has a substantially U shape in which both the inner defined arc line 21a and the outer defined arc line 21b extend in an arc shape. In addition, each of the magnet housing holes 21 is arranged such that the U-shaped concave side faces the radially outer side of the rotor 5.
  • the thickness of the magnet housing hole 21 in the short direction (the distance between the inner defined arc line 21 a and the outer defined arc line 21 b) is the smallest at the pole center portion of the magnetic pole, and is radially outward of the rotor core 19. It is set to gradually increase as you go.
  • the rotor core 19 is provided with an outer peripheral thin core portion 25 between the outer peripheral surface 13 of the rotor core 19 and the radially outer surface 23c of the permanent magnet 23 (see the enlarged reference portion in FIG. 1). ).
  • the some hole 27 formed between the rotating shaft 17 and the some magnet accommodation hole 21 is for a refrigerant
  • the rotor core 19 By configuring the rotor core 19 in this way, the magnetic resistance in the vicinity of both ends of the magnet housing hole 21 can be increased. Thereby, the salient pole ratio (ratio of the minimum inductance to the maximum inductance) of the rotor core 19 can be increased, the reluctance torque can be used effectively, and a high torque can be realized.
  • the radius of curvature (the radius of the arc on the center side of the rotor core 19) of the concave radially outer defined arc line 21 b of the magnet housing hole 21 is R 1
  • the defined arc on the radially inner side of the magnet housing hole 21 is R 1
  • the radius of curvature of the line 21a (the radius of the arc on the outer peripheral side of the rotor core 19)
  • the relationship of R1> R2 is satisfied.
  • the center of curvature of the radius R1 is located outside the outer peripheral surface 13 as seen in FIG. 3
  • the center of curvature of the radius R2 is located inside the outer peripheral surface 13 as seen in FIG.
  • both the center of curvature and the center of curvature of radius R2 are located on the center line CL (the center line of the magnetic pole) CL of the corresponding magnet housing hole 21 as seen in FIG.
  • the permanent magnets 23 are symmetric with respect to the center line of each magnetic pole, that is, the center line CL is a symmetric center line.
  • each of the plurality of permanent magnets 23 is accommodated in the corresponding magnet accommodation hole 21. That is, the permanent magnets 23 constituting the magnetic poles of the rotor core 19 are arranged in the outer circumferential side of the rotor core 19 in a number corresponding to the number of poles in the circumferential direction of the rotor core 19.
  • the plurality of permanent magnets 23 are composed of sintered ferrite magnets.
  • the outer edge shape of the permanent magnet 23 is such that at least the thickness in the short direction of the central portion of the magnetic pole in the permanent magnet 23 is equal to the thickness in the short direction of the central portion of the magnetic pole in the corresponding magnet housing hole 21.
  • the shape is substantially the same as the shape of the magnet accommodation hole 21 (strictly speaking, a similarity having a size relationship such that the permanent magnet 23 can be inserted into the magnet accommodation hole 21).
  • the circumferential corner 29 of the permanent magnet 23 is appropriately chamfered to avoid local partial demagnetization.
  • Each permanent magnet 23 is magnetized so that N poles and S poles alternate with respect to the rotation direction of the rotor 5.
  • the embedded permanent magnet electric motor configured as described above has the following excellent advantages.
  • sintered ferrite magnets have higher electrical resistance than Nd / Fe / B sintered rare earth permanent magnets, so eddy current loss is less likely to flow, but the coercive force is very small (sintered rare earth permanent magnets). About 1/3), it is easy to demagnetize when a demagnetizing field is applied. On the other hand, when there is no magnet accommodation hole, the magnetic resistance increases toward the center side of the iron core.
  • the thickness of the magnet housing hole in the short direction is minimized on the iron core center side (pole center portion), and is increased as it moves outward in the iron core radial direction. Unbalance can be mitigated and demagnetization can be prevented from concentrating near the end of the permanent magnet.
  • each of the permanent magnets 23 has a configuration in which both end portions are positioned on the radially outer side of the rotor core with respect to the center portion, but there is no connecting portion as shown in Patent Document 3 described above. Further, demagnetization at the pole center can be prevented.
  • the permanent magnet 23 has a focal point 33 of the magnetic orientation 31 on a center line CL passing through the center CP of the rotor 5 and the central portion of the permanent magnet 23, and outside the rotor 5. Oriented and magnetized so as to be positioned. Further, on the center line CL, the radius of curvature of the demarcated arc line 21b outside the magnet housing hole 21 (the radius of the arc on the center side of the rotor core among the arcs demarcating the magnet housing hole) R1 and the outside demarcation.
  • the rotor 5 is configured such that the relationship with the distance A between the arc line 21b and the focal point 33 is A ⁇ 2 ⁇ R1.
  • the magnetic flux generated by the permanent magnet 23 can be easily linked to the coil of the stator 3, and the magnetic force of the permanent magnet 23 can be effectively used. Further, the demagnetization resistance at both ends of the permanent magnet 23 can be improved.
  • the permanent magnet embedded electric motor according to the first embodiment, even when a sintered ferrite magnet is used, an appropriate magnetic force is ensured and a demagnetization resistance against a demagnetizing field is increased. Thus, the output of the motor can be increased without lowering the torque.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIGS.
  • this Embodiment 2 shall be comprised similarly to Embodiment 1 mentioned above except the part demonstrated below.
  • 6 is a view of the same mode as FIG. 4 relating to the second embodiment
  • FIG. 7 is a partially enlarged view showing the dimensional characteristics of the magnet accommodation hole of FIG.
  • the radius of curvature of the arc line defined outside the concave portion of the magnet housing hole 121 in the second embodiment is R1
  • the magnet is housed.
  • the radius of curvature of the defined arc line inside the hole 121 (the radius of the arc on the outer peripheral side of the rotor core 19) is R2, and further, the radius of the arc on the outer peripheral side of the rotor core 19 among the arcs defining the permanent magnet 23
  • R3 is R3
  • the magnet housing hole 121 and the permanent magnet 23 are configured so that the relationship of R1> R3> R2 is satisfied.
  • a space portion 135 is provided between the magnet accommodation hole 121 and both end portions of the permanent magnet 23. The space 135 gradually becomes larger toward the end of the permanent magnet 121.
  • the demagnetization resistance can be improved as in the first embodiment.
  • a space is provided between the magnet housing hole and the vicinity of both ends of the permanent magnet, and the space is configured to gradually increase toward the end of the permanent magnet. The effect of the applied demagnetizing field is reduced, which also has the advantage of further improving the demagnetization resistance.

Abstract

L'invention concerne un moteur électrique à aimant permanent intégré (1) qui par le renforcement d'une résistance à la démagnétisation, permet d'augmenter la puissance de sortie d'un moteur sans abaissement de couple. Ce moteur électrique à aimant permanent intégré (1) est équipé d'un rotor (5) possédant un noyau de rotor (19), et d'un stator (3). Le noyau de rotor contient une pluralité d'orifices d'admission d'aimant (21), et une pluralité d'aimants permanents (23). L'épaisseur dans une direction courte de chacun des orifices d'admission d'aimant, est à son minimum dans une partie centrale de pôle magnétique, et augmente graduellement au fur et à mesure d'un rapprochement côté externe dans une direction radiale du noyau de rotor. Au moins l'épaisseur dans la direction courte de la partie centrale de pôle magnétique au niveau des aimants permanents, est égale à l'épaisseur dans la direction courte de la partie centrale de pôle magnétique au niveau des orifices d'admission d'aimant.
PCT/JP2012/074421 2012-09-24 2012-09-24 Moteur électrique à aimant permanent intégré WO2014045445A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2012/074421 WO2014045445A1 (fr) 2012-09-24 2012-09-24 Moteur électrique à aimant permanent intégré
JP2014536926A JP5788104B2 (ja) 2012-09-24 2013-09-20 永久磁石埋込型電動機
CN201380049527.7A CN104662777B (zh) 2012-09-24 2013-09-20 永磁体埋入型电动机
PCT/JP2013/075425 WO2014046228A1 (fr) 2012-09-24 2013-09-20 Moteur électrique à aimant permanent intégré
US14/427,838 US10084354B2 (en) 2012-09-24 2013-09-20 Electric motor with a permanent magnet embedded rotor with curved magnets and magnet accommodation holes of varying radiuses
CN201320703992.5U CN203466649U (zh) 2012-09-24 2013-09-24 永磁铁嵌入型电动机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074421 WO2014045445A1 (fr) 2012-09-24 2012-09-24 Moteur électrique à aimant permanent intégré

Publications (1)

Publication Number Publication Date
WO2014045445A1 true WO2014045445A1 (fr) 2014-03-27

Family

ID=50340793

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/074421 WO2014045445A1 (fr) 2012-09-24 2012-09-24 Moteur électrique à aimant permanent intégré
PCT/JP2013/075425 WO2014046228A1 (fr) 2012-09-24 2013-09-20 Moteur électrique à aimant permanent intégré

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075425 WO2014046228A1 (fr) 2012-09-24 2013-09-20 Moteur électrique à aimant permanent intégré

Country Status (3)

Country Link
US (1) US10084354B2 (fr)
CN (1) CN104662777B (fr)
WO (2) WO2014045445A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936234A (zh) * 2015-12-29 2017-07-07 珠海格力节能环保制冷技术研究中心有限公司 电机转子及永磁电机
JP2020202718A (ja) * 2019-06-13 2020-12-17 株式会社ダイドー電子 永久磁石回転子および回転電気機械

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162713A1 (fr) * 2014-04-23 2015-10-29 三菱電機株式会社 Moteur électrique du type à aimant permanent intégré, compresseur, et dispositif de réfrigération et de climatisation
US20180254676A1 (en) * 2016-01-07 2018-09-06 Mitsubishi Electric Corporation Permanent-magnet-embedded electric motor, compressor, and refrigeration and air-conditioning apparatus
JP6802087B2 (ja) 2017-02-23 2020-12-16 ファナック株式会社 ロータ
CN110326191B (zh) * 2017-02-28 2022-02-08 日立安斯泰莫株式会社 旋转电机的转子及具备其的旋转电机
US10819259B2 (en) 2017-05-04 2020-10-27 Ge Global Sourcing Llc Permanent magnet based electric machine having enhanced torque
JP6879140B2 (ja) * 2017-09-15 2021-06-02 トヨタ自動車株式会社 回転電機
JP7331356B2 (ja) * 2018-12-14 2023-08-23 Tdk株式会社 永久磁石および回転電機
JP2020096484A (ja) * 2018-12-14 2020-06-18 Tdk株式会社 永久磁石および回転電機
JP7169911B2 (ja) * 2019-03-12 2022-11-11 日立グローバルライフソリューションズ株式会社 電動機及びこれを備える機器
JPWO2021090667A1 (fr) * 2019-11-07 2021-05-14
WO2021149130A1 (fr) * 2020-01-21 2021-07-29 三菱電機株式会社 Stator et machine électrique tournante l'utilisant
WO2022114075A1 (fr) * 2020-11-26 2022-06-02 株式会社デンソー Rotor et machine électrique tournante
JP7381914B2 (ja) * 2021-11-12 2023-11-16 ダイキン工業株式会社 回転子、モータ、圧縮機および空気調和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105779U (ja) * 1982-01-14 1983-07-19 株式会社日立製作所 永久磁石回転子
JPH08251846A (ja) * 1995-03-15 1996-09-27 Matsushita Electric Ind Co Ltd ロータの構造
JPH11155247A (ja) * 1997-11-20 1999-06-08 Aichi Emerson Electric Co Ltd 埋め込み磁石型回転子
JP2000184640A (ja) * 1998-12-09 2000-06-30 Aichi Emerson Electric Co Ltd 永久磁石回転子
JP2010011640A (ja) * 2008-06-27 2010-01-14 Hitachi Ltd 永久磁石式回転電機
JP2011091911A (ja) * 2009-10-21 2011-05-06 Fuji Electric Systems Co Ltd 永久磁石式回転電機
JP2012139068A (ja) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp 埋め込み磁石型モータの回転子

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133479A (ja) * 1992-09-02 1994-05-13 Toshiba Corp 永久磁石ロータ及びその製造装置
US5510662A (en) * 1993-05-26 1996-04-23 Kabushiki Kaisha Toshiba Permanent magnet motor
DE69629419T2 (de) * 1995-05-31 2004-04-01 Matsushita Electric Industrial Co., Ltd., Kadoma Motor mit eingebauten Permanentmagneten
US5811904A (en) * 1996-03-21 1998-09-22 Hitachi, Ltd. Permanent magnet dynamo electric machine
JPH1198721A (ja) 1997-09-17 1999-04-09 Toshiba Corp 永久磁石電動機
EP1207616B1 (fr) * 2000-06-02 2014-11-05 Mitsubishi Heavy Industries, Ltd. Moteur sans balais
JP3513467B2 (ja) * 2000-06-16 2004-03-31 ファナック株式会社 同期電動機のロータ
JP2002044915A (ja) * 2000-07-27 2002-02-08 Yamaha Motor Co Ltd 磁石埋込型回転子及び充填方法
WO2002031947A1 (fr) * 2000-10-12 2002-04-18 Matsushita Electric Industrial Co., Ltd. Moteur electrique
US6815859B2 (en) * 2001-03-07 2004-11-09 Aisin Seiki Kabushiki Kaisha Synchronous reluctance motor
JP3748387B2 (ja) * 2001-04-05 2006-02-22 株式会社日立製作所 永久磁石式回転電機及びそれを用いた発電システムと駆動システム
JP4726105B2 (ja) * 2001-08-03 2011-07-20 ヤマハ発動機株式会社 配向装置
JP4815204B2 (ja) * 2005-12-01 2011-11-16 アイチエレック株式会社 永久磁石回転機及び圧縮機
JP5085071B2 (ja) * 2006-08-11 2012-11-28 株式会社東芝 永久磁石式回転電機の回転子
KR20080082779A (ko) * 2007-03-09 2008-09-12 엘지전자 주식회사 모터
WO2008113082A1 (fr) * 2007-03-15 2008-09-18 A.O. Smith Corporation Moteur à aimants permanents intérieur comprenant un moteur équipé de barrières de flux
WO2008114692A1 (fr) * 2007-03-15 2008-09-25 Daikin Industries, Ltd. Inducteur
JP5332137B2 (ja) * 2007-05-22 2013-11-06 日産自動車株式会社 回転電機
US8421293B2 (en) * 2008-07-16 2013-04-16 Minebea Co., Ltd. Method of rare earth-iron based annular magnet and motor fabricated thereby
US7939982B2 (en) * 2008-10-02 2011-05-10 Nidec Motor Corporation Motor with lobed rotor having uniform and non-uniform air gaps
DE112010005756T5 (de) * 2010-07-23 2013-07-04 Toyota Jidosha Kabushiki Kaisha Rotor und IPM-Motor
JP5337769B2 (ja) * 2010-08-25 2013-11-06 日立アプライアンス株式会社 電動機、これを備えた密閉型圧縮機及びこれを備えた冷蔵庫
JP5806073B2 (ja) * 2010-10-19 2015-11-10 アスモ株式会社 ブラシレスモータ
JP2012228104A (ja) * 2011-04-21 2012-11-15 Mitsubishi Electric Corp 永久磁石埋込型電動機
WO2013061427A1 (fr) * 2011-10-26 2013-05-02 三菱電機株式会社 Rotor et moteur à aimants permanents intérieurs
US8664823B2 (en) * 2012-05-30 2014-03-04 GM Global Technology Operations LLC Magnetic barrier for minimizing demagnetization in bi-permanent magnet synchronous machines
US8664822B2 (en) * 2012-05-30 2014-03-04 GM Global Technology Operations LLC Bi-permanent magnets in synchronous machines
US9130422B2 (en) * 2013-03-08 2015-09-08 GM Global Technology Operations LLC Interior permanent magnet machine having a mixed rare earth magnet and ferrite magnet rotor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105779U (ja) * 1982-01-14 1983-07-19 株式会社日立製作所 永久磁石回転子
JPH08251846A (ja) * 1995-03-15 1996-09-27 Matsushita Electric Ind Co Ltd ロータの構造
JPH11155247A (ja) * 1997-11-20 1999-06-08 Aichi Emerson Electric Co Ltd 埋め込み磁石型回転子
JP2000184640A (ja) * 1998-12-09 2000-06-30 Aichi Emerson Electric Co Ltd 永久磁石回転子
JP2010011640A (ja) * 2008-06-27 2010-01-14 Hitachi Ltd 永久磁石式回転電機
JP2011091911A (ja) * 2009-10-21 2011-05-06 Fuji Electric Systems Co Ltd 永久磁石式回転電機
JP2012139068A (ja) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp 埋め込み磁石型モータの回転子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936234A (zh) * 2015-12-29 2017-07-07 珠海格力节能环保制冷技术研究中心有限公司 电机转子及永磁电机
JP2020202718A (ja) * 2019-06-13 2020-12-17 株式会社ダイドー電子 永久磁石回転子および回転電気機械
JP7177442B2 (ja) 2019-06-13 2022-11-24 株式会社ダイドー電子 永久磁石回転子および回転電気機械

Also Published As

Publication number Publication date
US20150318743A1 (en) 2015-11-05
CN104662777B (zh) 2017-03-08
US10084354B2 (en) 2018-09-25
CN104662777A (zh) 2015-05-27
WO2014046228A1 (fr) 2014-03-27

Similar Documents

Publication Publication Date Title
WO2014046228A1 (fr) Moteur électrique à aimant permanent intégré
US7233090B2 (en) Electric machine, in particular brushless synchronous motor
JP5663936B2 (ja) 永久磁石式回転電機
JP4396537B2 (ja) 永久磁石型モータ
US9172279B2 (en) Automotive embedded permanent magnet rotary electric machine
JP5774081B2 (ja) 回転電機
WO2011001533A1 (fr) Machine électrique rotative à aimant permanent
JP4844570B2 (ja) 永久磁石型モータ
WO2013098940A1 (fr) Moteur électrique
JP2007074870A (ja) 永久磁石埋込型ロータおよび永久磁石埋込型モータ
JP5755338B2 (ja) 永久磁石埋込型電動機および圧縮機
JP2012217278A (ja) 永久磁石型回転電機及び永久磁石型回転電機の製造方法
JP2018137924A (ja) 回転電機のロータ
KR20130066528A (ko) 영구자석 회전자 및 이 회전자를 포함하는 전기 모터
JP2008092715A (ja) 永久磁石型モータ
WO2001097363A1 (fr) Moteur synchrone a aimant permanent
JP2013132124A (ja) 界磁子用コア
JP7299531B2 (ja) 回転子、モータ
JP2017055560A (ja) 永久磁石式回転電機
JP2014064427A (ja) ロータおよび回転電気機械
JP4080273B2 (ja) 永久磁石埋め込み型電動機
JPWO2020194390A1 (ja) 回転電機
JP2006340507A (ja) 回転電機の固定子
JP5788104B2 (ja) 永久磁石埋込型電動機
JP2010045872A (ja) 永久磁石式回転機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP