WO2014045445A1 - Permanent magnet-embedded electric motor - Google Patents

Permanent magnet-embedded electric motor Download PDF

Info

Publication number
WO2014045445A1
WO2014045445A1 PCT/JP2012/074421 JP2012074421W WO2014045445A1 WO 2014045445 A1 WO2014045445 A1 WO 2014045445A1 JP 2012074421 W JP2012074421 W JP 2012074421W WO 2014045445 A1 WO2014045445 A1 WO 2014045445A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
permanent magnet
rotor core
center
Prior art date
Application number
PCT/JP2012/074421
Other languages
French (fr)
Japanese (ja)
Inventor
馬場 和彦
昌弘 仁吾
和慶 土田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/074421 priority Critical patent/WO2014045445A1/en
Priority to CN201380049527.7A priority patent/CN104662777B/en
Priority to PCT/JP2013/075425 priority patent/WO2014046228A1/en
Priority to JP2014536926A priority patent/JP5788104B2/en
Priority to US14/427,838 priority patent/US10084354B2/en
Priority to CN201320703992.5U priority patent/CN203466649U/en
Publication of WO2014045445A1 publication Critical patent/WO2014045445A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to an embedded permanent magnet electric motor in which a permanent magnet is embedded in a rotor core.
  • Patent Document 1 discloses the following rotor of a permanent magnet embedded motor.
  • the rotor of the permanent magnet embedded motor includes a laminated iron core and a shaft, and the laminated iron core has a plurality of arc-shaped permanent magnets and a plurality of punched holes for receiving the permanent magnets.
  • a plurality of punching holes are provided at a rate of one per one pole.
  • the plurality of punching holes are arranged with the convex portion side of the arc facing the rotor center.
  • a permanent magnet having a shape in which circumferential end portions have different shapes is used, and the end portion having a small thickness is on the front side in the rotational direction.
  • the permanent magnet is arranged so that the thick end portion is located on the rear side in the rotation direction.
  • a pair of permanent magnet slots constituting one pole are arranged in a V shape on the outer peripheral portion of the rotor core, and permanent magnets are embedded in each permanent magnet slot.
  • two homopolar permanent magnets are embedded in a V shape in each rotor core.
  • the thickness of each permanent magnet increases from the radially inner end of the rotor core, which is the central portion of the V-shape, toward the radially outer end of the rotor core, which is the left and right ends of the V-shape.
  • the curved part is formed in the both ends of each permanent magnet.
  • the permanent magnet embedded motor shown in Patent Document 1 has a uniform thickness in the radial direction of the permanent magnet.
  • the magnetic resistance has a feature that the magnetic resistance is larger toward the center side of the rotor core and is smaller toward the outer side in the radial direction of the rotor core. Therefore, the magnetic resistance is the smallest near both ends of the permanent magnet, the demagnetizing field produced by the stator coil tends to concentrate on both ends of the permanent magnet, the both ends of the permanent magnet are demagnetized, and the torque is reduced. There was a problem that.
  • the present invention has been made in view of the above, and even when a sintered ferrite magnet is used, by increasing the demagnetization resistance against a demagnetizing field, the output of the motor is reduced without reducing the torque.
  • An object of the present invention is to provide a permanent magnet embedded type electric motor capable of increasing the motor.
  • an embedded permanent magnet electric motor of the present invention includes a rotor having a rotor core, and a stator provided so as to surround the rotor.
  • a plurality of magnet housing holes formed in the circumferential direction corresponding to the number of poles, and a plurality of permanent magnets housed in the plurality of magnet housing holes, each of the magnet housing holes rotating the rotor It is formed in a concave shape when viewed along the axial direction, and is disposed so that the concave side faces the outside of the rotor, and each of the magnet receiving holes is viewed along the rotational axis direction of the rotor.
  • each of the magnet housing holes in the short direction is formed so as to be symmetrical with respect to the center line of the magnetic pole, and is formed in an integral structure without being divided in the same pole.
  • the center part of the magnetic pole is the smallest, and the rotor
  • the thickness in the short direction of the central portion of the magnetic pole in the permanent magnet is at least as large as the thickness in the short direction of the central portion of the magnetic pole in the corresponding magnet housing hole. equal.
  • the output of the motor can be increased without increasing the torque by increasing the demagnetization resistance against the demagnetizing field.
  • FIG. 1 is a cross-sectional view of a permanent magnet embedded electric motor according to a first embodiment of the present invention. It is sectional drawing which shows the state which has not set the permanent magnet in the magnet accommodation hole regarding the rotor core shown by FIG. It is the elements on larger scale which show the dimension characteristic of the magnet accommodation hole of FIG. It is sectional drawing of the rotor of the state which set the permanent magnet in the magnet accommodation hole in FIG. It is a figure which shows an example of the magnetic orientation of a permanent magnet.
  • FIG. 5 is a diagram of the same mode as that of FIG. It is the elements on larger scale which show the dimension characteristic of the magnet accommodation hole of FIG.
  • FIG. 1 is a cross-sectional view of a permanent magnet embedded electric motor according to Embodiment 1 of the present invention, and more specifically, a cross-sectional view in which a rotation axis of a rotor is a perpendicular line.
  • FIG. 2 is sectional drawing which shows the state which has not set the permanent magnet in the magnet accommodation hole regarding the rotor core shown by FIG. 3 is a partially enlarged view showing the dimensional characteristics of the magnet accommodation hole of FIG. 2
  • FIG. 4 is a cross-sectional view of the rotor in which a permanent magnet is set in the magnet accommodation hole in FIG.
  • an embedded permanent magnet motor 1 includes a stator 3 and a rotor 5.
  • the stator 3 includes an annular stator core 7, a plurality of teeth 9 formed at equiangular pitches in the circumferential direction (rotating direction of the rotor 5) in the inner peripheral portion of the stator core 7, and each tooth. 3 and the coil 11 wound around.
  • the rotor 5 is rotatably disposed on the inner peripheral side of the stator 3, and an annular gap 15 is formed between the outer peripheral surface 13 of the rotor 5 and the plurality of teeth 9.
  • the stator 1 of the first embodiment shown in FIG. 1 is a distributed winding stator as an example, but a concentrated winding stator can be used as the present invention as will be described later.
  • FIG. 2 shows the structure of the rotor core 19 before the permanent magnet is inserted.
  • the rotor 5 shown in FIG. 2 has a rotary shaft 17 for transmitting rotational energy as a main structure, and this structure.
  • a rotor core 19 provided on the outer periphery of the rotating shaft 17 is included.
  • the rotating shaft 17 and the rotor iron core 19 are connected by, for example, shrink fitting and press fitting.
  • the rotor iron core 19 is manufactured by laminating a plurality of silicon steel plates (electromagnetic steel plates), called iron core punches, punched with a mold in the extending direction of the rotating shaft 17 (the front and back direction in FIG. 2). .
  • the outer peripheral surface 13 of the rotor core 19 is formed in a cylindrical shape.
  • the rotor core 19 is formed with a plurality (six in the illustrated example) of magnet housing holes 21 arranged on the same circumference so as to be arranged in the circumferential direction.
  • the magnet accommodation holes 21 are arranged by the number of poles.
  • Each of the magnet housing holes 21 is formed in an integral structure (one pole as one hole) without being divided in the same pole.
  • Each of the magnet housing holes 21 is formed in a concave shape when viewed along the direction of the rotation axis of the rotor 3 (as viewed in the cross section of FIGS. 1 to 7). More specifically, the concave shape has a substantially U shape in which both the inner defined arc line 21a and the outer defined arc line 21b extend in an arc shape. In addition, each of the magnet housing holes 21 is arranged such that the U-shaped concave side faces the radially outer side of the rotor 5.
  • the thickness of the magnet housing hole 21 in the short direction (the distance between the inner defined arc line 21 a and the outer defined arc line 21 b) is the smallest at the pole center portion of the magnetic pole, and is radially outward of the rotor core 19. It is set to gradually increase as you go.
  • the rotor core 19 is provided with an outer peripheral thin core portion 25 between the outer peripheral surface 13 of the rotor core 19 and the radially outer surface 23c of the permanent magnet 23 (see the enlarged reference portion in FIG. 1). ).
  • the some hole 27 formed between the rotating shaft 17 and the some magnet accommodation hole 21 is for a refrigerant
  • the rotor core 19 By configuring the rotor core 19 in this way, the magnetic resistance in the vicinity of both ends of the magnet housing hole 21 can be increased. Thereby, the salient pole ratio (ratio of the minimum inductance to the maximum inductance) of the rotor core 19 can be increased, the reluctance torque can be used effectively, and a high torque can be realized.
  • the radius of curvature (the radius of the arc on the center side of the rotor core 19) of the concave radially outer defined arc line 21 b of the magnet housing hole 21 is R 1
  • the defined arc on the radially inner side of the magnet housing hole 21 is R 1
  • the radius of curvature of the line 21a (the radius of the arc on the outer peripheral side of the rotor core 19)
  • the relationship of R1> R2 is satisfied.
  • the center of curvature of the radius R1 is located outside the outer peripheral surface 13 as seen in FIG. 3
  • the center of curvature of the radius R2 is located inside the outer peripheral surface 13 as seen in FIG.
  • both the center of curvature and the center of curvature of radius R2 are located on the center line CL (the center line of the magnetic pole) CL of the corresponding magnet housing hole 21 as seen in FIG.
  • the permanent magnets 23 are symmetric with respect to the center line of each magnetic pole, that is, the center line CL is a symmetric center line.
  • each of the plurality of permanent magnets 23 is accommodated in the corresponding magnet accommodation hole 21. That is, the permanent magnets 23 constituting the magnetic poles of the rotor core 19 are arranged in the outer circumferential side of the rotor core 19 in a number corresponding to the number of poles in the circumferential direction of the rotor core 19.
  • the plurality of permanent magnets 23 are composed of sintered ferrite magnets.
  • the outer edge shape of the permanent magnet 23 is such that at least the thickness in the short direction of the central portion of the magnetic pole in the permanent magnet 23 is equal to the thickness in the short direction of the central portion of the magnetic pole in the corresponding magnet housing hole 21.
  • the shape is substantially the same as the shape of the magnet accommodation hole 21 (strictly speaking, a similarity having a size relationship such that the permanent magnet 23 can be inserted into the magnet accommodation hole 21).
  • the circumferential corner 29 of the permanent magnet 23 is appropriately chamfered to avoid local partial demagnetization.
  • Each permanent magnet 23 is magnetized so that N poles and S poles alternate with respect to the rotation direction of the rotor 5.
  • the embedded permanent magnet electric motor configured as described above has the following excellent advantages.
  • sintered ferrite magnets have higher electrical resistance than Nd / Fe / B sintered rare earth permanent magnets, so eddy current loss is less likely to flow, but the coercive force is very small (sintered rare earth permanent magnets). About 1/3), it is easy to demagnetize when a demagnetizing field is applied. On the other hand, when there is no magnet accommodation hole, the magnetic resistance increases toward the center side of the iron core.
  • the thickness of the magnet housing hole in the short direction is minimized on the iron core center side (pole center portion), and is increased as it moves outward in the iron core radial direction. Unbalance can be mitigated and demagnetization can be prevented from concentrating near the end of the permanent magnet.
  • each of the permanent magnets 23 has a configuration in which both end portions are positioned on the radially outer side of the rotor core with respect to the center portion, but there is no connecting portion as shown in Patent Document 3 described above. Further, demagnetization at the pole center can be prevented.
  • the permanent magnet 23 has a focal point 33 of the magnetic orientation 31 on a center line CL passing through the center CP of the rotor 5 and the central portion of the permanent magnet 23, and outside the rotor 5. Oriented and magnetized so as to be positioned. Further, on the center line CL, the radius of curvature of the demarcated arc line 21b outside the magnet housing hole 21 (the radius of the arc on the center side of the rotor core among the arcs demarcating the magnet housing hole) R1 and the outside demarcation.
  • the rotor 5 is configured such that the relationship with the distance A between the arc line 21b and the focal point 33 is A ⁇ 2 ⁇ R1.
  • the magnetic flux generated by the permanent magnet 23 can be easily linked to the coil of the stator 3, and the magnetic force of the permanent magnet 23 can be effectively used. Further, the demagnetization resistance at both ends of the permanent magnet 23 can be improved.
  • the permanent magnet embedded electric motor according to the first embodiment, even when a sintered ferrite magnet is used, an appropriate magnetic force is ensured and a demagnetization resistance against a demagnetizing field is increased. Thus, the output of the motor can be increased without lowering the torque.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIGS.
  • this Embodiment 2 shall be comprised similarly to Embodiment 1 mentioned above except the part demonstrated below.
  • 6 is a view of the same mode as FIG. 4 relating to the second embodiment
  • FIG. 7 is a partially enlarged view showing the dimensional characteristics of the magnet accommodation hole of FIG.
  • the radius of curvature of the arc line defined outside the concave portion of the magnet housing hole 121 in the second embodiment is R1
  • the magnet is housed.
  • the radius of curvature of the defined arc line inside the hole 121 (the radius of the arc on the outer peripheral side of the rotor core 19) is R2, and further, the radius of the arc on the outer peripheral side of the rotor core 19 among the arcs defining the permanent magnet 23
  • R3 is R3
  • the magnet housing hole 121 and the permanent magnet 23 are configured so that the relationship of R1> R3> R2 is satisfied.
  • a space portion 135 is provided between the magnet accommodation hole 121 and both end portions of the permanent magnet 23. The space 135 gradually becomes larger toward the end of the permanent magnet 121.
  • the demagnetization resistance can be improved as in the first embodiment.
  • a space is provided between the magnet housing hole and the vicinity of both ends of the permanent magnet, and the space is configured to gradually increase toward the end of the permanent magnet. The effect of the applied demagnetizing field is reduced, which also has the advantage of further improving the demagnetization resistance.

Abstract

A permanent magnet-embedded electric motor (1) wherein it is possible to increase the output of the motor without the torque declining by strengthening demagnetization resistance. The permanent magnet-embedded electric motor (1) is provided with a stator (3), and a rotor (5) having a rotor core (19), wherein the rotor core contains multiple magnet housing holes (21) and multiple permanent magnets (23), the thickness of the magnet housing holes in the short direction is smallest at the center part of the magnetic pole and becomes gradually larger towards the outside of the rotor core in the radial direction, and at least the thickness of the permanent magnets at the center part of the magnetic pole in the short direction is the same as the thickness of the magnetic housing holes at the center part of the magnetic pole in the short direction.

Description

永久磁石埋込型電動機Permanent magnet embedded motor
 本発明は、永久磁石を回転子鉄心の内部に埋め込んだ永久磁石埋込型電動機に関するものである。 The present invention relates to an embedded permanent magnet electric motor in which a permanent magnet is embedded in a rotor core.
 近年、省エネ意識の高まりから、回転子に保磁力の高い希土類永久磁石を用いることによって高効率化を実現した永久磁石型電動機が多く提案されている。ただし、希土類永久磁石は高価であり電動機のコスト増加を招くため、従来の一般的な永久磁石埋込型電動機の回転子には、希土類永久磁石の代わりに焼結フェライト磁石が用いられている。このように、希土類永久磁石の代わりに焼結フェライト磁石を用いた場合、磁力の大きさを示す残留磁束密度が約1/3に低下する。磁力の低下によるトルク不足を補うためには、永久磁石の表面積をできるだけ大きくした焼結フェライト磁石を、回転子鉄心の内部に配置する必要がある。また、永久磁石によるトルクの他にリラクタンストルクを積極的に利用することで、焼結フェライト磁石による磁力の不足を補うことができる。 In recent years, with increasing awareness of energy saving, many permanent magnet type motors that have realized high efficiency by using rare earth permanent magnets with high coercive force for the rotor have been proposed. However, since rare earth permanent magnets are expensive and increase the cost of the motor, sintered ferrite magnets are used instead of rare earth permanent magnets in the rotors of conventional general permanent magnet embedded motors. Thus, when a sintered ferrite magnet is used instead of the rare earth permanent magnet, the residual magnetic flux density indicating the magnitude of the magnetic force is reduced to about 1/3. In order to make up for the shortage of torque due to a decrease in magnetic force, it is necessary to dispose a sintered ferrite magnet having the permanent magnet surface area as large as possible inside the rotor core. In addition to the reluctance torque in addition to the torque due to the permanent magnet, it is possible to compensate for the lack of magnetic force due to the sintered ferrite magnet.
 例えば、特許文献1には、次のような永久磁石埋込型電動機の回転子が開示されている。永久磁石埋込型電動機の回転子は、積層鉄心と、シャフトとを備え、積層鉄心は、複数の円弧状の永久磁石と、該永久磁石を収容する複数の打抜孔とを有する。複数の打抜孔は、1極に対して、1個の割合で設けられる。そして、複数の打抜孔は、円弧の凸部側を、回転子中心に向けて配置されている。 For example, Patent Document 1 discloses the following rotor of a permanent magnet embedded motor. The rotor of the permanent magnet embedded motor includes a laminated iron core and a shaft, and the laminated iron core has a plurality of arc-shaped permanent magnets and a plurality of punched holes for receiving the permanent magnets. A plurality of punching holes are provided at a rate of one per one pole. The plurality of punching holes are arranged with the convex portion side of the arc facing the rotor center.
 また、特許文献2に示される永久磁石埋込型電動機においては、永久磁石として周方向端部の厚さが互いに異なる形状のものが用いられており、厚さの小さい端部が回転方向前方側に位置し、厚さの大きい端部が回転方向後方側に位置するように永久磁石が配置される。そして、このような構成によって、逆トルクを発生する磁束の増加を抑制しながらインダクタンスを増加させ、それによって、リラクタンストルクを効果的に増加させると共に、鉄損の増加を抑制している。 Moreover, in the permanent magnet embedded type electric motor shown in Patent Document 2, a permanent magnet having a shape in which circumferential end portions have different shapes is used, and the end portion having a small thickness is on the front side in the rotational direction. The permanent magnet is arranged so that the thick end portion is located on the rear side in the rotation direction. And by such a structure, while suppressing the increase in the magnetic flux which generate | occur | produces a reverse torque, an inductance is increased, and thereby the reluctance torque is increased effectively and the increase in iron loss is suppressed.
 また、特許文献3に示される永久磁石埋込型電動機においては、回転子鉄心の外周部に1極を構成する一対の永久磁石スロットがV字形に配置され、永久磁石スロットそれぞれに永久磁石が埋設されている。すなわち、回転子鉄心には、1極あたり2個ずつ同極永久磁石が、V字形に埋設されている。各永久磁石の厚さは、V字形の中央部分となる回転子鉄心の径方向内側の端部から、V字形の左右端部となる回転子鉄心の径方向外側の端部に向けて、増加する。また、永久磁石それぞれの両端部には、曲線部が形成されている。 Moreover, in the permanent magnet embedded type electric motor shown in Patent Document 3, a pair of permanent magnet slots constituting one pole are arranged in a V shape on the outer peripheral portion of the rotor core, and permanent magnets are embedded in each permanent magnet slot. Has been. That is, two homopolar permanent magnets are embedded in a V shape in each rotor core. The thickness of each permanent magnet increases from the radially inner end of the rotor core, which is the central portion of the V-shape, toward the radially outer end of the rotor core, which is the left and right ends of the V-shape. To do. Moreover, the curved part is formed in the both ends of each permanent magnet.
実開昭58-105779(主に図1)Shokai 58-1057779 (mainly Figure 1) 特開平11-98721(主に図7)JP-A-11-98721 (mainly FIG. 7) 特許第4627788号(主に図1)Japanese Patent No. 4627788 (mainly FIG. 1)
 しかしながら、上記特許文献1に示される永久磁石埋込型電動機は、永久磁石の径方向の厚みは均一な構造となっていた。永久磁石の厚みが均一の場合、磁気抵抗は、回転子鉄心の中心側になるほど大きく、また、回転子鉄心の径方向外側になるほど小さいという特徴を有する。そのため、永久磁石の両端部付近が最も磁気抵抗が小さくなり、永久磁石の両端部に固定子のコイルの作る反磁界が集中し易くなり、永久磁石の両端部が減磁し、トルクが低下してしまうという問題があった。 However, the permanent magnet embedded motor shown in Patent Document 1 has a uniform thickness in the radial direction of the permanent magnet. When the thickness of the permanent magnet is uniform, the magnetic resistance has a feature that the magnetic resistance is larger toward the center side of the rotor core and is smaller toward the outer side in the radial direction of the rotor core. Therefore, the magnetic resistance is the smallest near both ends of the permanent magnet, the demagnetizing field produced by the stator coil tends to concentrate on both ends of the permanent magnet, the both ends of the permanent magnet are demagnetized, and the torque is reduced. There was a problem that.
 また、上記特許文献2に示される永久磁石埋込型電動機では、周方向端部の厚さが互いに異なる形状の永久磁石が用いられているため、磁気抵抗にアンバランスが生じ、磁気抵抗の小さい回転方向前方側の永久磁石端部に反磁界が集中し、電流の大きい領域で動作させた場合、減磁を引き起こし、トルクが低下してしまうという問題があった。 Moreover, in the permanent magnet embedded type electric motor shown in Patent Document 2, since permanent magnets having different shapes at the circumferential end portions are used, the magnetic resistance is unbalanced and the magnetic resistance is small. When the demagnetizing field is concentrated on the end of the permanent magnet on the front side in the rotation direction and operated in a region where the current is large, demagnetization is caused and torque is reduced.
 また、上記特許文献3に示される永久磁石型電動機では、V字形の中央部である回転子鉄心の径方向内側の端部に連結部が設けられるため、磁束が流れやすく、V字形の中央部の磁気抵抗が極端に小さい構造となってしまう。このため、焼結希土類永久磁石よりも保磁力の小さい焼結フェライト磁石を用いた場合、V字形の中央部付近の永久磁石が反磁界により減磁してしまうという問題があった。また、焼結フェライト磁石は電気抵抗が大きいため、渦電流が流れにくく、また、低温になるほど減磁し易いという特性を有するため、渦電流による熱減磁を防止するという特許文献3の所期の効果は全く得られないという問題があった。 Further, in the permanent magnet type electric motor shown in Patent Document 3, a connecting portion is provided at the radially inner end of the rotor core, which is the V-shaped central portion, so that the magnetic flux easily flows and the V-shaped central portion. The magnetic resistance becomes extremely small. For this reason, when a sintered ferrite magnet having a coercive force smaller than that of the sintered rare earth permanent magnet is used, there is a problem that the permanent magnet near the center of the V shape is demagnetized by the demagnetizing field. Further, since the sintered ferrite magnet has a large electric resistance, it has a characteristic that eddy current does not easily flow and demagnetizes easily at a lower temperature. There was a problem that no effect was obtained.
 本発明は、上記に鑑みてなされたものであって、焼結フェライト磁石を用いた場合であっても、反磁界に対する減磁耐力を強くすることで、トルクが低下することなく、モータの出力を増加させることができる永久磁石埋込型電動機を提供することを目的とする。 The present invention has been made in view of the above, and even when a sintered ferrite magnet is used, by increasing the demagnetization resistance against a demagnetizing field, the output of the motor is reduced without reducing the torque. An object of the present invention is to provide a permanent magnet embedded type electric motor capable of increasing the motor.
 上述した目的を達成するため、本発明の永久磁石埋込型電動機は、回転子鉄心を有する回転子と、前記回転子を囲むように設けられた固定子とを備え、前記回転子鉄心は、周方向に沿って極数の数だけ形成された複数の磁石収容孔と、該複数の磁石収容孔に収容された複数の永久磁石とを含み、前記磁石収容孔はそれぞれ、前記回転子の回転軸方向に沿ってみて凹形状に形成されており、且つ、凹側が前記回転子の外側を向くように配置されており、前記磁石収容孔はそれぞれ、前記回転子の回転軸方向に沿ってみて、磁極の中心線に対して対称形状となるように形成されており、且つ、同一の極内では分割することなく、一体構造で形成されており、前記磁石収容孔それぞれの短手方向の厚みは、磁極の中心部が最も小さく、前記回転子鉄心の径方向外側に向かうにしたがい徐々に大きくなり、少なくとも、前記永久磁石における磁極の中心部の短手方向の厚みは、対応する前記磁石収容孔における磁極の中心部の短手方向の厚みと等しい。 In order to achieve the above-described object, an embedded permanent magnet electric motor of the present invention includes a rotor having a rotor core, and a stator provided so as to surround the rotor. A plurality of magnet housing holes formed in the circumferential direction corresponding to the number of poles, and a plurality of permanent magnets housed in the plurality of magnet housing holes, each of the magnet housing holes rotating the rotor It is formed in a concave shape when viewed along the axial direction, and is disposed so that the concave side faces the outside of the rotor, and each of the magnet receiving holes is viewed along the rotational axis direction of the rotor. The thickness of each of the magnet housing holes in the short direction is formed so as to be symmetrical with respect to the center line of the magnetic pole, and is formed in an integral structure without being divided in the same pole. The center part of the magnetic pole is the smallest, and the rotor The thickness in the short direction of the central portion of the magnetic pole in the permanent magnet is at least as large as the thickness in the short direction of the central portion of the magnetic pole in the corresponding magnet housing hole. equal.
 本発明によれば、反磁界に対する減磁耐力を強くすることで、トルクが低下することなく、モータの出力を増加させることができるという効果を奏する。 According to the present invention, there is an effect that the output of the motor can be increased without increasing the torque by increasing the demagnetization resistance against the demagnetizing field.
本発明の実施の形態1にかかる永久磁石埋込型電動機の断面図である。1 is a cross-sectional view of a permanent magnet embedded electric motor according to a first embodiment of the present invention. 図1に示される回転子鉄心に関し、磁石収容孔に永久磁石をセットしていない状態を示す断面図である。It is sectional drawing which shows the state which has not set the permanent magnet in the magnet accommodation hole regarding the rotor core shown by FIG. 図2の磁石収容孔の寸法的特徴を示す部分拡大図である。It is the elements on larger scale which show the dimension characteristic of the magnet accommodation hole of FIG. 図2において磁石収容孔に永久磁石をセットした状態の回転子の断面図である。It is sectional drawing of the rotor of the state which set the permanent magnet in the magnet accommodation hole in FIG. 永久磁石の磁気配向の一例を示す図である。It is a figure which shows an example of the magnetic orientation of a permanent magnet. 実施の形態2に関する、図4と同態様の図である。FIG. 5 is a diagram of the same mode as that of FIG. 図6の磁石収容孔の寸法的特徴を示す部分拡大図である。It is the elements on larger scale which show the dimension characteristic of the magnet accommodation hole of FIG.
 以下、本発明に係る永久磁石埋込型電動機の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。 Hereinafter, embodiments of an embedded permanent magnet motor according to the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.
 実施の形態1.
 図1は、本発明の実施の形態1に係る永久磁石埋込型電動機の断面図であり、詳細には、回転子の回転軸を垂線とする断面で示す図である。また、図2は、図1に示される回転子鉄心に関し、磁石収容孔に永久磁石をセットしていない状態を示す断面図である。図3は、図2の磁石収容孔の寸法的特徴を示す部分拡大図であり、図4は、図2において磁石収容孔に永久磁石をセットした状態の回転子の断面図であり、図5は、永久磁石の磁気配向の一例を示す図である。
Embodiment 1 FIG.
1 is a cross-sectional view of a permanent magnet embedded electric motor according to Embodiment 1 of the present invention, and more specifically, a cross-sectional view in which a rotation axis of a rotor is a perpendicular line. Moreover, FIG. 2 is sectional drawing which shows the state which has not set the permanent magnet in the magnet accommodation hole regarding the rotor core shown by FIG. 3 is a partially enlarged view showing the dimensional characteristics of the magnet accommodation hole of FIG. 2, and FIG. 4 is a cross-sectional view of the rotor in which a permanent magnet is set in the magnet accommodation hole in FIG. These are figures which show an example of the magnetic orientation of a permanent magnet.
 図1において、本実施の形態1に係る永久磁石埋込型電動機1は、固定子3と、回転子5とを備えている。固定子3は、環状を成す固定子鉄心7と、この固定子鉄心7の内周部において周方向(回転子5の回転方向)に等角ピッチで形成された複数のティース9と、各ティース3に巻回されたコイル11とを含んでいる。 In FIG. 1, an embedded permanent magnet motor 1 according to the first embodiment includes a stator 3 and a rotor 5. The stator 3 includes an annular stator core 7, a plurality of teeth 9 formed at equiangular pitches in the circumferential direction (rotating direction of the rotor 5) in the inner peripheral portion of the stator core 7, and each tooth. 3 and the coil 11 wound around.
 固定子3の内周側には、回転子5が回転可能に配設され、回転子5の外周面13と複数のティース9との間には、環状の空隙15が形成されている。なお、図1に示される本実施の形態1の固定子1は、一例として分布巻の固定子であるが、本発明としては、後述するように集中巻の固定子を用いることもできる。 The rotor 5 is rotatably disposed on the inner peripheral side of the stator 3, and an annular gap 15 is formed between the outer peripheral surface 13 of the rotor 5 and the plurality of teeth 9. The stator 1 of the first embodiment shown in FIG. 1 is a distributed winding stator as an example, but a concentrated winding stator can be used as the present invention as will be described later.
 図2には永久磁石を挿入する前の回転子鉄心19の構造が示されており、図2に示される回転子5は、主たる構成として、回転エネルギーを伝達するための回転軸17と、この回転軸17の外周部に設けられた回転子鉄心19とを含んでいる。回転軸17と回転子鉄心19とは、例えば焼嵌および圧入等により連結されている。 FIG. 2 shows the structure of the rotor core 19 before the permanent magnet is inserted. The rotor 5 shown in FIG. 2 has a rotary shaft 17 for transmitting rotational energy as a main structure, and this structure. A rotor core 19 provided on the outer periphery of the rotating shaft 17 is included. The rotating shaft 17 and the rotor iron core 19 are connected by, for example, shrink fitting and press fitting.
 回転子鉄心19は、鉄心抜板と呼ばれるケイ素鋼板(電磁鋼板)を金型で打ち抜いたものを、回転軸17の延在方向(図2の紙面表裏方向)に複数枚積層して製作される。そして、回転子鉄心19の外周面13は、円筒状に形成されている。 The rotor iron core 19 is manufactured by laminating a plurality of silicon steel plates (electromagnetic steel plates), called iron core punches, punched with a mold in the extending direction of the rotating shaft 17 (the front and back direction in FIG. 2). . The outer peripheral surface 13 of the rotor core 19 is formed in a cylindrical shape.
 回転子鉄心19には、同一円周上に配置された複数(図示例では6つ)の磁石収容孔21が周方向に並ぶように形成されている。磁石収容孔21は極数の数だけ配置されている。磁石収容孔21はそれぞれ、同一の極内では分割することなく、一体構造で(一つの極が一つの孔として)形成されている。 The rotor core 19 is formed with a plurality (six in the illustrated example) of magnet housing holes 21 arranged on the same circumference so as to be arranged in the circumferential direction. The magnet accommodation holes 21 are arranged by the number of poles. Each of the magnet housing holes 21 is formed in an integral structure (one pole as one hole) without being divided in the same pole.
 磁石収容孔21はそれぞれ、回転子3の回転軸方向に沿ってみて(図1~図7の断面においてみて)、凹形状に形成されている。より詳細には、凹形状は、内側の画定円弧ライン21a及び外側の画定円弧ライン21bが共に円弧状に延びる略U字状をなしている。また、磁石収容孔21はそれぞれ、そのU字の凹側が回転子5の径方向外側を向くように配置されている。さらに、磁石収容孔21の短手方向の厚み(内側の画定円弧ライン21aと外側の画定円弧ライン21bとの間隔)は、磁極の極中心部が最も小さく、回転子鉄心19の径方向外側に向かうにしたがい徐々に大きくなるように設定されている。 Each of the magnet housing holes 21 is formed in a concave shape when viewed along the direction of the rotation axis of the rotor 3 (as viewed in the cross section of FIGS. 1 to 7). More specifically, the concave shape has a substantially U shape in which both the inner defined arc line 21a and the outer defined arc line 21b extend in an arc shape. In addition, each of the magnet housing holes 21 is arranged such that the U-shaped concave side faces the radially outer side of the rotor 5. Further, the thickness of the magnet housing hole 21 in the short direction (the distance between the inner defined arc line 21 a and the outer defined arc line 21 b) is the smallest at the pole center portion of the magnetic pole, and is radially outward of the rotor core 19. It is set to gradually increase as you go.
 回転子鉄心19には、回転子鉄心19の外周面13と永久磁石23の径方向外側面23cとの間に、外周薄肉鉄心部25が設けられている(図1の参考部分拡大部を参照)。なお、回転軸17と複数の磁石収容孔21との間に形成された複数の穴27は、冷媒や冷凍機油が通過するためのものである。より詳細には、各穴27は、回転軸17と隣り合う一対の磁石収容孔21との三者の中央に配置されている。 The rotor core 19 is provided with an outer peripheral thin core portion 25 between the outer peripheral surface 13 of the rotor core 19 and the radially outer surface 23c of the permanent magnet 23 (see the enlarged reference portion in FIG. 1). ). In addition, the some hole 27 formed between the rotating shaft 17 and the some magnet accommodation hole 21 is for a refrigerant | coolant and refrigerator oil to pass through. More specifically, each hole 27 is disposed at the center of the three of the rotating shaft 17 and a pair of magnet housing holes 21 adjacent to each other.
 このように回転子鉄心19を構成することによって、磁石収容孔21の両端部付近の磁気抵抗を大きくすることができる。これにより、回転子鉄心19の突極比(最大インダクタンスに対する最小インダクタンスの比)を大きくでき、リラクタンストルクを有効に利用でき、高トルク化が実現できる。 By configuring the rotor core 19 in this way, the magnetic resistance in the vicinity of both ends of the magnet housing hole 21 can be increased. Thereby, the salient pole ratio (ratio of the minimum inductance to the maximum inductance) of the rotor core 19 can be increased, the reluctance torque can be used effectively, and a high torque can be realized.
 次に、主に図3に基づき、磁石収容孔の寸法的特徴について説明する。図3においてみて、磁石収容孔21の凹の径方向外側の画定円弧ライン21bの曲率半径(回転子鉄心19の中心側の円弧の半径)をR1、磁石収容孔21の径方向内側の画定円弧ライン21aの曲率半径(回転子鉄心19の外周側の円弧の半径)をR2としたとき、R1>R2の関係が満たさされる。また、半径R1の曲率中心は、図3においてみて、外周面13よりも外側に位置し、半径R2の曲率中心は、図3においてみて、外周面13よりも内側に位置しており、半径R1の曲率中心及び半径R2の曲率中心は共に、図3においてみて、対応する磁石収容孔21の中央線(磁極の中心線)CL上に位置している。なお、本実施の形態1では、永久磁石23はそれぞれ磁極の中心線に対して左右対称であり、すなわち中央線CLは、左右対称の中心線である。 Next, the dimensional characteristics of the magnet accommodation hole will be described mainly based on FIG. In FIG. 3, the radius of curvature (the radius of the arc on the center side of the rotor core 19) of the concave radially outer defined arc line 21 b of the magnet housing hole 21 is R 1, and the defined arc on the radially inner side of the magnet housing hole 21. When the radius of curvature of the line 21a (the radius of the arc on the outer peripheral side of the rotor core 19) is R2, the relationship of R1> R2 is satisfied. Further, the center of curvature of the radius R1 is located outside the outer peripheral surface 13 as seen in FIG. 3, and the center of curvature of the radius R2 is located inside the outer peripheral surface 13 as seen in FIG. Both the center of curvature and the center of curvature of radius R2 are located on the center line CL (the center line of the magnetic pole) CL of the corresponding magnet housing hole 21 as seen in FIG. In the first embodiment, the permanent magnets 23 are symmetric with respect to the center line of each magnetic pole, that is, the center line CL is a symmetric center line.
 次に、永久磁石23について説明する。図4に示されるように、複数の永久磁石23はそれぞれ、対応する磁石収容孔21に収容される。すなわち、回転子鉄心19の磁極を構成する永久磁石23は、回転子鉄心19の外周側において回転子鉄心19の周方向へ極数に相当する数だけ配置される。複数の永久磁石23は、焼結フェライト磁石で構成される。 Next, the permanent magnet 23 will be described. As shown in FIG. 4, each of the plurality of permanent magnets 23 is accommodated in the corresponding magnet accommodation hole 21. That is, the permanent magnets 23 constituting the magnetic poles of the rotor core 19 are arranged in the outer circumferential side of the rotor core 19 in a number corresponding to the number of poles in the circumferential direction of the rotor core 19. The plurality of permanent magnets 23 are composed of sintered ferrite magnets.
 永久磁石23の外縁形状は、少なくとも、永久磁石23における磁極の中心部の短手方向の厚みが、対応する磁石収容孔21における磁極の中心部の短手方向の厚みと等しくなる形状であるが、本実施の形態1では、磁石収容孔21の形状と略同一(厳密には永久磁石23が磁石収容孔21に挿入できる程度の大小関係を備えた相似)である。永久磁石23の周方向隅部29には、局所的な部分減磁を回避するため、適宜、面取り加工が施されている。そして、各永久磁石23は、回転子5の回転方向に対してN極とS極とが交互になるように着磁されている。 The outer edge shape of the permanent magnet 23 is such that at least the thickness in the short direction of the central portion of the magnetic pole in the permanent magnet 23 is equal to the thickness in the short direction of the central portion of the magnetic pole in the corresponding magnet housing hole 21. In the first embodiment, the shape is substantially the same as the shape of the magnet accommodation hole 21 (strictly speaking, a similarity having a size relationship such that the permanent magnet 23 can be inserted into the magnet accommodation hole 21). The circumferential corner 29 of the permanent magnet 23 is appropriately chamfered to avoid local partial demagnetization. Each permanent magnet 23 is magnetized so that N poles and S poles alternate with respect to the rotation direction of the rotor 5.
 以上のように構成された永久磁石埋込型電動機においては、次のような優れた利点がある。 The embedded permanent magnet electric motor configured as described above has the following excellent advantages.
 まず、焼結フェライト磁石は、Nd・Fe・B系の焼結希土類永久磁石に比べ、電気抵抗が大きいため、渦電流損は流れにくい反面、保磁力が非常に小さく(焼結希土類永久磁石の1/3程度)、反磁界が加わると減磁し易いという特性を有する。一方、磁気抵抗は、磁石収容孔がない場合は、鉄心の中心側にいくほど大きくなる。 First, sintered ferrite magnets have higher electrical resistance than Nd / Fe / B sintered rare earth permanent magnets, so eddy current loss is less likely to flow, but the coercive force is very small (sintered rare earth permanent magnets). About 1/3), it is easy to demagnetize when a demagnetizing field is applied. On the other hand, when there is no magnet accommodation hole, the magnetic resistance increases toward the center side of the iron core.
 上記に鑑みて、本実施の形態1では、磁石収容孔の短手方向の厚みを鉄心中心側(極中心部)で最も小さくし、鉄心径方向外側になるにつれ大きくすることで、磁気抵抗のアンバランスを緩和し、永久磁石の端部付近に反磁界が集中するのを防止することができる。 In view of the above, in the first embodiment, the thickness of the magnet housing hole in the short direction is minimized on the iron core center side (pole center portion), and is increased as it moves outward in the iron core radial direction. Unbalance can be mitigated and demagnetization can be prevented from concentrating near the end of the permanent magnet.
 また、永久磁石23それぞれは、その両端部が中央部よりも回転子鉄心の径方向外側に位置する形態を採っておりながら、上述した特許文献3に示されているような連結部がないため、極中心部の減磁を防止することができる。 In addition, each of the permanent magnets 23 has a configuration in which both end portions are positioned on the radially outer side of the rotor core with respect to the center portion, but there is no connecting portion as shown in Patent Document 3 described above. Further, demagnetization at the pole center can be prevented.
 図5においてみて、永久磁石23は、磁気配向31の焦点33が、回転子5の中心CPと永久磁石23の中央部とを通る中央線CL上であって、かつ、回転子5の外側に位置するように、配向着磁されている。さらに、中央線CL上において、磁石収容孔21の外側の画定円弧ライン21bの曲率半径(磁石収容孔を画定する円弧のうち回転子鉄心の中心側の円弧の半径)R1と、当該外側の画定円弧ライン21b及び焦点33の間の距離Aとの関係は、A≧2・R1となるように、回転子5は構成されている。 As shown in FIG. 5, the permanent magnet 23 has a focal point 33 of the magnetic orientation 31 on a center line CL passing through the center CP of the rotor 5 and the central portion of the permanent magnet 23, and outside the rotor 5. Oriented and magnetized so as to be positioned. Further, on the center line CL, the radius of curvature of the demarcated arc line 21b outside the magnet housing hole 21 (the radius of the arc on the center side of the rotor core among the arcs demarcating the magnet housing hole) R1 and the outside demarcation. The rotor 5 is configured such that the relationship with the distance A between the arc line 21b and the focal point 33 is A ≧ 2 · R1.
 このように構成することによって、永久磁石23が作る磁束が、固定子3のコイルに鎖交し易くなり、永久磁石23の磁力を効果的に利用することができる。また、永久磁石23の両端部の減磁耐力を改善することができる。 With this configuration, the magnetic flux generated by the permanent magnet 23 can be easily linked to the coil of the stator 3, and the magnetic force of the permanent magnet 23 can be effectively used. Further, the demagnetization resistance at both ends of the permanent magnet 23 can be improved.
 以上より、本実施の形態1に係る永久磁石埋込型電動機においては、焼結フェライト磁石を用いた場合であっても、適正な磁力を確保すること及び反磁界に対する減磁耐力を強くすることによって、トルクが低下することなく、モータの出力を増加させることができる。 As described above, in the permanent magnet embedded electric motor according to the first embodiment, even when a sintered ferrite magnet is used, an appropriate magnetic force is ensured and a demagnetization resistance against a demagnetizing field is increased. Thus, the output of the motor can be increased without lowering the torque.
 実施の形態2.
 次に、本発明の実施の形態2について図6及び図7を参照して説明する。なお、本実施の形態2は、以下に説明する部分を除いては、上述した実施の形態1と同様に構成されているものとする。図6は、実施の形態2に関する、図4と同態様の図であり、図7は、図6の磁石収容孔の寸法的特徴を示す部分拡大図である。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIGS. In addition, this Embodiment 2 shall be comprised similarly to Embodiment 1 mentioned above except the part demonstrated below. 6 is a view of the same mode as FIG. 4 relating to the second embodiment, and FIG. 7 is a partially enlarged view showing the dimensional characteristics of the magnet accommodation hole of FIG.
 図6及び図7に示されるように、本実施の形態2における磁石収容孔121の凹の外側の画定円弧ラインの曲率半径(回転子鉄心19の中心側の円弧の半径)をR1、磁石収容孔121の内側の画定円弧ラインの曲率半径(回転子鉄心19の外周側の円弧の半径)をR2とし、さらに、永久磁石23を画定する円弧のうち回転子鉄心19の外周側の円弧の半径をR3としたとき、R1>R3>R2の関係が満たされるように、磁石収容孔121及び永久磁石23が構成されている。また、かかる関係により、磁石収容孔121と永久磁石23の両端部との間には空間部135が設けられている。空間部135は永久磁石121の端部に向かうにつれ徐々に大きくなる。 As shown in FIGS. 6 and 7, the radius of curvature of the arc line defined outside the concave portion of the magnet housing hole 121 in the second embodiment (the radius of the arc on the center side of the rotor core 19) is R1, and the magnet is housed. The radius of curvature of the defined arc line inside the hole 121 (the radius of the arc on the outer peripheral side of the rotor core 19) is R2, and further, the radius of the arc on the outer peripheral side of the rotor core 19 among the arcs defining the permanent magnet 23 When R3 is R3, the magnet housing hole 121 and the permanent magnet 23 are configured so that the relationship of R1> R3> R2 is satisfied. In addition, due to this relationship, a space portion 135 is provided between the magnet accommodation hole 121 and both end portions of the permanent magnet 23. The space 135 gradually becomes larger toward the end of the permanent magnet 121.
 このように構成された本実施の形態2の永久磁石埋込型電動機においても、上記実施の形態1と同様、減磁耐力を改善することができる。また、磁石収容孔と永久磁石の両端部付近の間には空間部が設けられ、かかる空間部は永久磁石の端部に向かうにつれ徐々に大きくなるように構成されるため、永久磁石両端部に加わる反磁界の影響が小さくなり、それによっても、減磁耐力が更に改善する利点が得られている。 In the permanent magnet embedded electric motor of the second embodiment configured as described above, the demagnetization resistance can be improved as in the first embodiment. In addition, a space is provided between the magnet housing hole and the vicinity of both ends of the permanent magnet, and the space is configured to gradually increase toward the end of the permanent magnet. The effect of the applied demagnetizing field is reduced, which also has the advantage of further improving the demagnetization resistance.
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、上述した実施の形態は、本発明の内容の一例を示すものであり、更なる別の公知技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは無論である。 The content of the present invention has been specifically described above with reference to the preferred embodiment. However, the above-described embodiment shows an example of the content of the present invention, and is combined with another known technique. Of course, it is possible to change the configuration such as omitting a part without departing from the gist of the present invention.
 1 永久磁石埋込型電動機、3 固定子、5,105 回転子、7 固定子鉄心、19 回転子鉄心、21,121 磁石収容孔、23 永久磁石、31 磁気配向、33 焦点、135 空間部。 1 Embedded permanent magnet motor, 3 stator, 5,105 rotor, 7 stator core, 19 rotor core, 21, 121 magnet housing hole, 23 permanent magnet, 31 magnetic orientation, 33 focal point, 135 space.

Claims (4)

  1.  回転子鉄心を有する回転子と、
     前記回転子を囲むように設けられた固定子とを備え、
     前記回転子鉄心は、周方向に沿って極数の数だけ形成された複数の磁石収容孔と、該複数の磁石収容孔に収容された複数の永久磁石とを含み、
     前記磁石収容孔はそれぞれ、前記回転子の回転軸方向に沿ってみて凹形状に形成されており、且つ、凹側が前記回転子の外側を向くように配置されており、
     前記磁石収容孔はそれぞれ、前記回転子の回転軸方向に沿ってみて、磁極の中心線に対して対称形状となるように形成されており、且つ、同一の極内では分割することなく、一体構造で形成されており、
     前記磁石収容孔それぞれの短手方向の厚みは、磁極の中心部が最も小さく、前記回転子鉄心の径方向外側に向かうにしたがい徐々に大きくなり、
     少なくとも、前記永久磁石における磁極の中心部の短手方向の厚みは、対応する前記磁石収容孔における磁極の中心部の短手方向の厚みと等しい、
    永久磁石埋込型電動機。
    A rotor having a rotor core;
    A stator provided so as to surround the rotor,
    The rotor core includes a plurality of magnet housing holes formed in the number of poles along the circumferential direction, and a plurality of permanent magnets housed in the plurality of magnet housing holes,
    Each of the magnet housing holes is formed in a concave shape when viewed along the rotation axis direction of the rotor, and the concave side is disposed so as to face the outside of the rotor,
    Each of the magnet housing holes is formed so as to be symmetrical with respect to the center line of the magnetic pole when viewed along the rotation axis direction of the rotor, and is integrated without being divided within the same pole. Formed with a structure,
    The thickness in the short direction of each of the magnet housing holes is the smallest at the center of the magnetic pole, and gradually increases toward the radially outer side of the rotor core,
    At least the thickness in the short direction of the center part of the magnetic pole in the permanent magnet is equal to the thickness in the short direction of the center part of the magnetic pole in the corresponding magnet housing hole,
    Permanent magnet embedded motor.
  2.  前記回転子の回転軸方向に沿ってみて、前記磁石収容孔を画定する円弧のうち前記回転子鉄心の中心側の円弧の半径をR1、前記回転子鉄心の外周側の円弧の半径をR2としたとき、R1>R2の関係が満たされるように、前記磁石収容孔それぞれが構成されている、
    請求項1の永久磁石埋込型電動機。
    Along the rotation axis direction of the rotor, the radius of the arc on the center side of the rotor core among the arcs defining the magnet accommodation hole is R1, and the radius of the arc on the outer peripheral side of the rotor core is R2. Each of the magnet accommodation holes is configured so that the relationship of R1> R2 is satisfied.
    The embedded permanent magnet electric motor according to claim 1.
  3.  前記回転子の回転軸方向に沿ってみて、前記磁石収容孔を画定する円弧のうち前記回転子鉄心の中心側の円弧の半径をR1、前記回転子鉄心の外周側の円弧の半径をR2、さらに、前記永久磁石を画定する円弧のうち前記回転子鉄心の外周側の円弧の半径をR3としたとき、R1>R3>R2の関係が満たされるように、前記磁石収容孔それぞれ及び前記永久磁石が構成され、
     前記磁石収容孔のそれぞれと対応する前記永久磁石の両端部との間には空間部が設けられており、該空間部は、当該対応する永久磁石の端部に向かうにつれ徐々に大きくなる、
    請求項1の永久磁石埋込型電動機。
    Along the rotation axis direction of the rotor, the radius of the arc on the center side of the rotor core among the arcs defining the magnet housing hole is R1, the radius of the arc on the outer peripheral side of the rotor core is R2, Further, when the radius of the arc on the outer peripheral side of the rotor core among the arcs defining the permanent magnet is R3, each of the magnet receiving holes and the permanent magnets are set such that the relationship of R1>R3> R2 is satisfied. Is configured,
    A space portion is provided between each of the magnet housing holes and the corresponding end portions of the permanent magnet, and the space portion gradually increases toward the end portion of the corresponding permanent magnet.
    The embedded permanent magnet electric motor according to claim 1.
  4.  前記回転子の回転軸方向に沿ってみて、前記永久磁石は、磁気配向の焦点が、回転子の中心と永久磁石の磁極の中心部とを通る中央線上であって、かつ、回転子の外側に位置するように、配向着磁されており、
     前記磁石収容孔を画定する円弧のうち前記回転子鉄心の中心側の円弧の半径をR1とし、前記中心側の円弧及び前記焦点の間の距離をAとしたとき、A≧2・R1を満たすように、前記回転子は構成されている、
    請求項1乃至3の何れか一項の永久磁石埋込型電動機。
    When viewed along the direction of the rotation axis of the rotor, the permanent magnet has a magnetic orientation focal point on a center line passing through the center of the rotor and the center of the magnetic pole of the permanent magnet, and outside the rotor. Is oriented and magnetized to be located at
    When the radius of the arc on the center side of the rotor core is R1 and the distance between the arc on the center side and the focal point is A, among the arcs defining the magnet accommodation hole, A ≧ 2 · R1 is satisfied. As such, the rotor is configured,
    The permanent magnet embedded type electric motor according to any one of claims 1 to 3.
PCT/JP2012/074421 2012-09-24 2012-09-24 Permanent magnet-embedded electric motor WO2014045445A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2012/074421 WO2014045445A1 (en) 2012-09-24 2012-09-24 Permanent magnet-embedded electric motor
CN201380049527.7A CN104662777B (en) 2012-09-24 2013-09-20 Permanent magnet submerged motor
PCT/JP2013/075425 WO2014046228A1 (en) 2012-09-24 2013-09-20 Permanent magnet-embedded electric motor
JP2014536926A JP5788104B2 (en) 2012-09-24 2013-09-20 Permanent magnet embedded motor
US14/427,838 US10084354B2 (en) 2012-09-24 2013-09-20 Electric motor with a permanent magnet embedded rotor with curved magnets and magnet accommodation holes of varying radiuses
CN201320703992.5U CN203466649U (en) 2012-09-24 2013-09-24 Permanent magnet embedded motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074421 WO2014045445A1 (en) 2012-09-24 2012-09-24 Permanent magnet-embedded electric motor

Publications (1)

Publication Number Publication Date
WO2014045445A1 true WO2014045445A1 (en) 2014-03-27

Family

ID=50340793

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/074421 WO2014045445A1 (en) 2012-09-24 2012-09-24 Permanent magnet-embedded electric motor
PCT/JP2013/075425 WO2014046228A1 (en) 2012-09-24 2013-09-20 Permanent magnet-embedded electric motor

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075425 WO2014046228A1 (en) 2012-09-24 2013-09-20 Permanent magnet-embedded electric motor

Country Status (3)

Country Link
US (1) US10084354B2 (en)
CN (1) CN104662777B (en)
WO (2) WO2014045445A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936234A (en) * 2015-12-29 2017-07-07 珠海格力节能环保制冷技术研究中心有限公司 Rotor and magneto
JP2020202718A (en) * 2019-06-13 2020-12-17 株式会社ダイドー電子 Permanent magnet rotor and rotating electric machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162713A1 (en) 2014-04-23 2015-10-29 三菱電機株式会社 Embedded permanent magnet-type electric motor, compressor, and refrigeration/air-conditioning device
WO2017119102A1 (en) * 2016-01-07 2017-07-13 三菱電機株式会社 Permanent magnet embedded motor, compressor, and refrigeration and air conditioning device
JP6802087B2 (en) 2017-02-23 2020-12-16 ファナック株式会社 Rotor
CN110326191B (en) * 2017-02-28 2022-02-08 日立安斯泰莫株式会社 Rotor of rotating electrical machine and rotating electrical machine provided with same
US10819259B2 (en) 2017-05-04 2020-10-27 Ge Global Sourcing Llc Permanent magnet based electric machine having enhanced torque
JP6879140B2 (en) * 2017-09-15 2021-06-02 トヨタ自動車株式会社 Rotating machine
JP7331356B2 (en) * 2018-12-14 2023-08-23 Tdk株式会社 Permanent magnets and rotating electrical machines
JP2020096484A (en) * 2018-12-14 2020-06-18 Tdk株式会社 Permanent magnet and rotating electric machine
JP7169911B2 (en) * 2019-03-12 2022-11-11 日立グローバルライフソリューションズ株式会社 Electric motors and equipment equipped with them
US20220123611A1 (en) * 2019-11-07 2022-04-21 Denso Corporation Rotor and method for manufacturing rotor
CN114982095A (en) * 2020-01-21 2022-08-30 三菱电机株式会社 Stator and rotating electric machine using the same
WO2022114075A1 (en) * 2020-11-26 2022-06-02 株式会社デンソー Rotor and rotating electric machine
JP7381914B2 (en) * 2021-11-12 2023-11-16 ダイキン工業株式会社 Rotor, motor, compressor and air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105779U (en) * 1982-01-14 1983-07-19 株式会社日立製作所 permanent magnet rotor
JPH08251846A (en) * 1995-03-15 1996-09-27 Matsushita Electric Ind Co Ltd Rotor structure
JPH11155247A (en) * 1997-11-20 1999-06-08 Aichi Emerson Electric Co Ltd Rotor with embedded magnet
JP2000184640A (en) * 1998-12-09 2000-06-30 Aichi Emerson Electric Co Ltd Permanent-magnet rotor
JP2010011640A (en) * 2008-06-27 2010-01-14 Hitachi Ltd Permanent magnet type rotary electric machine
JP2011091911A (en) * 2009-10-21 2011-05-06 Fuji Electric Systems Co Ltd Permanent-magnet rotary electric machine
JP2012139068A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Rotor for embedded magnet type motor

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133479A (en) * 1992-09-02 1994-05-13 Toshiba Corp Permanent magnet rotor and manufacture thereof
US5510662A (en) * 1993-05-26 1996-04-23 Kabushiki Kaisha Toshiba Permanent magnet motor
EP0746079B1 (en) * 1995-05-31 2003-08-13 Matsushita Electric Industrial Co., Ltd. Motor with built-in permanent magnets
US5811904A (en) * 1996-03-21 1998-09-22 Hitachi, Ltd. Permanent magnet dynamo electric machine
JPH1198721A (en) 1997-09-17 1999-04-09 Toshiba Corp Permanent-magnet motor
US6853106B2 (en) * 2000-06-02 2005-02-08 Mitsubishi Heavy Industries, Ltd. Brushless motor
JP3513467B2 (en) * 2000-06-16 2004-03-31 ファナック株式会社 Synchronous motor rotor
JP2002044915A (en) * 2000-07-27 2002-02-08 Yamaha Motor Co Ltd Rotor of magnet built-in type and build-in method
WO2002031947A1 (en) * 2000-10-12 2002-04-18 Matsushita Electric Industrial Co., Ltd. Electric motor
US6815859B2 (en) * 2001-03-07 2004-11-09 Aisin Seiki Kabushiki Kaisha Synchronous reluctance motor
JP3748387B2 (en) * 2001-04-05 2006-02-22 株式会社日立製作所 Permanent magnet type rotating electrical machine and power generation system and drive system using the same
JP4726105B2 (en) * 2001-08-03 2011-07-20 ヤマハ発動機株式会社 Orientation device
JP4815204B2 (en) * 2005-12-01 2011-11-16 アイチエレック株式会社 Permanent magnet rotating machine and compressor
JP5085071B2 (en) * 2006-08-11 2012-11-28 株式会社東芝 Permanent magnet type rotating electrical machine rotor
KR20080082779A (en) * 2007-03-09 2008-09-12 엘지전자 주식회사 Motor
US8040009B2 (en) * 2007-03-15 2011-10-18 Daikin Industries, Ltd. Filed element
WO2008113082A1 (en) * 2007-03-15 2008-09-18 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
JP5332137B2 (en) * 2007-05-22 2013-11-06 日産自動車株式会社 Rotating electric machine
US8421293B2 (en) * 2008-07-16 2013-04-16 Minebea Co., Ltd. Method of rare earth-iron based annular magnet and motor fabricated thereby
US7939982B2 (en) * 2008-10-02 2011-05-10 Nidec Motor Corporation Motor with lobed rotor having uniform and non-uniform air gaps
DE112010005756T5 (en) * 2010-07-23 2013-07-04 Toyota Jidosha Kabushiki Kaisha Rotor and IPM engine
JP5337769B2 (en) * 2010-08-25 2013-11-06 日立アプライアンス株式会社 Electric motor, hermetic compressor equipped with the same, and refrigerator equipped with the same
JP5806073B2 (en) * 2010-10-19 2015-11-10 アスモ株式会社 Brushless motor
JP2012228104A (en) * 2011-04-21 2012-11-15 Mitsubishi Electric Corp Permanent magnet-embedded motor
JP5755336B2 (en) * 2011-10-26 2015-07-29 三菱電機株式会社 Rotor and permanent magnet embedded motor
US8664822B2 (en) * 2012-05-30 2014-03-04 GM Global Technology Operations LLC Bi-permanent magnets in synchronous machines
US8664823B2 (en) * 2012-05-30 2014-03-04 GM Global Technology Operations LLC Magnetic barrier for minimizing demagnetization in bi-permanent magnet synchronous machines
US9130422B2 (en) * 2013-03-08 2015-09-08 GM Global Technology Operations LLC Interior permanent magnet machine having a mixed rare earth magnet and ferrite magnet rotor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105779U (en) * 1982-01-14 1983-07-19 株式会社日立製作所 permanent magnet rotor
JPH08251846A (en) * 1995-03-15 1996-09-27 Matsushita Electric Ind Co Ltd Rotor structure
JPH11155247A (en) * 1997-11-20 1999-06-08 Aichi Emerson Electric Co Ltd Rotor with embedded magnet
JP2000184640A (en) * 1998-12-09 2000-06-30 Aichi Emerson Electric Co Ltd Permanent-magnet rotor
JP2010011640A (en) * 2008-06-27 2010-01-14 Hitachi Ltd Permanent magnet type rotary electric machine
JP2011091911A (en) * 2009-10-21 2011-05-06 Fuji Electric Systems Co Ltd Permanent-magnet rotary electric machine
JP2012139068A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Rotor for embedded magnet type motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936234A (en) * 2015-12-29 2017-07-07 珠海格力节能环保制冷技术研究中心有限公司 Rotor and magneto
JP2020202718A (en) * 2019-06-13 2020-12-17 株式会社ダイドー電子 Permanent magnet rotor and rotating electric machine
JP7177442B2 (en) 2019-06-13 2022-11-24 株式会社ダイドー電子 Permanent magnet rotors and rotating electrical machines

Also Published As

Publication number Publication date
CN104662777A (en) 2015-05-27
US20150318743A1 (en) 2015-11-05
WO2014046228A1 (en) 2014-03-27
CN104662777B (en) 2017-03-08
US10084354B2 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
WO2014046228A1 (en) Permanent magnet-embedded electric motor
US7233090B2 (en) Electric machine, in particular brushless synchronous motor
JP5663936B2 (en) Permanent magnet rotating electric machine
JP4396537B2 (en) Permanent magnet type motor
US9172279B2 (en) Automotive embedded permanent magnet rotary electric machine
JP5774081B2 (en) Rotating electric machine
WO2011001533A1 (en) Permanent magnetic rotating electric machine
JP4844570B2 (en) Permanent magnet type motor
WO2013098940A1 (en) Electric motor
JP2007074870A (en) Rotor embedded with permanent magnet and motor embedded with permanent magnet
JP5755338B2 (en) Permanent magnet embedded electric motor and compressor
JP2012217278A (en) Permanent magnet type rotary electric machine and manufacturing method therefor
JP2018137924A (en) Rotary electric machine rotor
KR20130066528A (en) Permanent magnet rotor and electric motor incorporating the rotor
JP2008092715A (en) Permanent magnet motor
WO2001097363A1 (en) Permanent magnet synchronous motor
JP2013132124A (en) Core for field element
JP7299531B2 (en) rotor, motor
JPWO2020194390A1 (en) Rotating machine
JP2017055560A (en) Permanent magnet type rotary electric machine
JP2014064427A (en) Rotor and rotary electric machine
JP4080273B2 (en) Permanent magnet embedded motor
JP2006340507A (en) Stator of rotary electric machine
JP5788104B2 (en) Permanent magnet embedded motor
JP2010045872A (en) Permanent magnet rotary machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP