WO2014034424A1 - SiC単結晶の製造方法 - Google Patents
SiC単結晶の製造方法 Download PDFInfo
- Publication number
- WO2014034424A1 WO2014034424A1 PCT/JP2013/071812 JP2013071812W WO2014034424A1 WO 2014034424 A1 WO2014034424 A1 WO 2014034424A1 JP 2013071812 W JP2013071812 W JP 2013071812W WO 2014034424 A1 WO2014034424 A1 WO 2014034424A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- sic single
- single crystal
- crucible
- seed crystal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02628—Liquid deposition using solutions
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/10—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/10—Crucibles or containers for supporting the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B17/00—Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
- C30B9/04—Single-crystal growth from melt solutions using molten solvents by cooling of the solution
- C30B9/06—Single-crystal growth from melt solutions using molten solvents by cooling of the solution using as solvent a component of the crystal composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
Definitions
- the present invention relates to a method for producing a SiC single crystal suitable as a semiconductor element.
- SiC single crystals are very thermally and chemically stable, excellent in mechanical strength, resistant to radiation, and have excellent physical properties such as higher breakdown voltage and higher thermal conductivity than Si single crystals. . Therefore, it is possible to realize high power, high frequency, withstand voltage, environmental resistance, etc. that cannot be realized with existing semiconductor materials such as Si single crystal and GaAs single crystal, and power devices that enable high power control and energy saving. Expectations are growing as next-generation semiconductor materials in a wide range of materials, high-speed and large-capacity information communication device materials, in-vehicle high-temperature device materials, radiation-resistant device materials, and the like.
- the sublimation method has drawbacks such as the formation of lattice defects such as hollow through defects called micropipe defects and stacking faults and crystal polymorphism in the grown single crystal. Because of the high growth rate, many of SiC bulk single crystals have heretofore been manufactured by a sublimation method, and attempts have been made to reduce defects in the grown crystal. In the Atchison method, since silica and coke are used as raw materials and heated in an electric furnace, it is impossible to obtain a single crystal with high crystallinity due to impurities in the raw materials.
- the solution method forms Si melt which melted Si melt or an alloy in a graphite crucible, melt
- the layer is deposited and grown.
- crystal growth is performed in a state close to thermal equilibrium as compared with the gas phase method, the reduction of defects can be most expected. For this reason, several methods for producing SiC single crystals by the solution method have recently been proposed.
- Patent Document 1 a method for producing a SiC single crystal in which the temperature gradient of the Si—C solution in the vicinity of the seed crystal substrate is 5 ° C./cm or less.
- This invention solves the said subject, and aims at providing the manufacturing method of the SiC single crystal which can improve a growth rate significantly conventionally compared with a solution method.
- the present invention provides a SiC single crystal that is placed in a crucible and grows a SiC single crystal by bringing a seed crystal substrate into contact with a Si—C solution having a temperature gradient that decreases in temperature from the inside toward the liquid surface.
- a method The depth / inner diameter of the crucible is less than 1.71, The temperature gradient in the range from the liquid level of the Si—C solution to 10 mm below is greater than 42 ° C./cm, It is a manufacturing method of a SiC single crystal.
- FIG. 1 is a schematic cross-sectional view of a crucible structure that can be used in the method according to the present invention.
- FIG. 2 is a schematic cross-sectional view of the crucible structure when the crucible depth is increased.
- FIG. 3 is a schematic cross-sectional view of the crucible structure when the crucible depth is reduced.
- FIG. 4 is a schematic sectional view of a meniscus formed between the seed crystal substrate and the Si—C solution.
- FIG. 5 is a schematic diagram showing a cut-out portion of the grown crystal when the presence or absence of inclusion in the grown crystal is inspected.
- FIG. 6 is a schematic cross-sectional view showing an example of a single crystal manufacturing apparatus that can be used in the present invention.
- FIG. 7 is an optical micrograph of a cross section of a SiC ingot including a SiC single crystal and a seed crystal substrate grown in Example 1.
- FIG. 8 is a photomicrograph of the etched surface of the SiC single crystal grown in Example 1.
- FIG. 9 is a graph plotting the growth rate of the SiC single crystal against the temperature gradient of the surface region of the Si—C solution obtained in Examples 1 to 3, Reference Examples 1 to 5, and Comparative Examples 1 to 12.
- ⁇ 1 in the notation of the (000-1) plane or the like is a place where “ ⁇ 1” is originally written with a horizontal line on the number.
- the inventor of the present application has conducted intensive research on the improvement of the growth rate in SiC single crystal growth, and has found a method for producing a SiC single crystal that can greatly improve the growth rate.
- the present invention provides a SiC single crystal that is placed in a crucible and grows a SiC single crystal by bringing a seed crystal substrate into contact with a Si—C solution having a temperature gradient that decreases in temperature from the inside toward the liquid surface.
- the temperature gradient in the range from the liquid level of the Si—C solution to 10 mm below (hereinafter referred to as the temperature gradient of the surface region of the Si—C solution, or temperature gradient) is made larger than 42 ° C./cm.
- the growth rate of the SiC single crystal can be significantly improved as compared with the conventional case.
- the method according to the present invention is a method for producing a SiC single crystal by a solution method, and grows a SiC single crystal by bringing a SiC seed crystal into contact with a Si—C solution having a temperature gradient that decreases from the inside toward the surface. Can be made.
- the surface region of the Si—C solution is supersaturated by forming a temperature gradient in which the temperature decreases from the inside of the Si—C solution toward the liquid level of the solution, and the seed crystal substrate brought into contact with the Si—C solution is used as a base point.
- SiC single crystals can be grown.
- the temperature gradient of the surface region of the Si—C solution is more than 42 ° C./cm, preferably 47 ° C./cm or more, more preferably 50 ° C./cm or more, and further preferably 57 ° C./cm or more. . In these temperature gradient ranges, a very high SiC single crystal growth rate can be obtained.
- the upper limit of the temperature gradient is not particularly limited, but a temperature gradient that can be actually formed can be a practical upper limit, for example, about 70 ° C./cm.
- the temperature gradient in the surface region of the Si—C solution is adjusted by adjusting the output of a heater such as a high-frequency coil arranged around the crucible, adjusting the positional relationship between the crucible and the high-frequency coil, and removing heat from the surface of the Si—C solution. It can be formed by heat removal through a seed crystal holding shaft, etc., but this time, in particular, in order to form a high temperature gradient, the crucible depth is reduced, the crucible inner diameter is increased, or both It was found effective to do.
- a heater such as a high-frequency coil arranged around the crucible
- FIG. 1 shows a schematic cross-sectional view of a crucible structure that can be used in the method according to the present invention.
- the graphite crucible 10 holds the Si—C solution 24 inside, and the seed crystal holding shaft 12 holding the seed crystal substrate 14 can be disposed through the opening 28 provided in the lid 20 at the top of the crucible.
- the crucible depth 16 is the length from the lower part of the crucible containing the Si—C solution to the upper end of the side wall of the crucible, and this side wall part is heated by a heater arranged around the crucible.
- the crucible inner diameter 17 is the diameter of the crucible inner diameter for containing the Si—C solution.
- the crucible depth is increased as shown in FIG. 2, it becomes difficult to form a high temperature gradient, but if the crucible depth is reduced as shown in FIG. 3, a high temperature gradient is likely to be formed.
- the crucible inner diameter is reduced, it is difficult to form a high temperature gradient.
- the crucible inner diameter is increased, it is easy to form a high temperature gradient.
- the crucible depth 16 is reduced, the distance between the liquid surface of the Si—C solution 24 and the lid 20 at the top of the crucible is reduced, and the influence of heat removal from the lid 20 at the top of the crucible is affected. It is considered that the temperature gradient in the surface region of the Si—C solution 24 can be increased by increasing the temperature.
- the crucible inner diameter 17 is increased, the seed crystal substrate is moved away from the side wall of the crucible heated by the heater, so that the temperature around the seed crystal substrate is likely to decrease, and the temperature gradient in the surface region of the Si—C solution 24 is increased. I think it can be done.
- the dimensional ratio of crucible depth / crucible inner diameter is preferably less than 1.71 and more preferably 1.14 or less.
- the lower limit of the dimensional ratio of crucible depth / crucible inner diameter is not particularly limited.
- the lower limit of the dimensional ratio of the crucible depth / crucible inner diameter may be set within a range in which the SiC single crystal can be stably grown. For example, when the ratio of the crucible depth / crucible inner diameter is 0.3 or more, SiC A single crystal can be stably grown.
- the growth rate of the SiC single crystal can be increased even if the temperature gradient of the surface region of the Si—C solution is the same. I understood.
- the inclusion is the entrainment of the Si—C solution used for the growth of the SiC single crystal in the grown crystal.
- a solvent component such as Cr or Ni that can be included in the solvent used as the Si—C solution can be detected.
- the flow of the Si—C solution from the central portion directly below the interface of the crystal growth surface to the outer peripheral portion is caused by the mechanical stirring of the Si—C solution or electromagnetic stirring by high-frequency heating, etc.
- the Si—C solution is caused to flow toward the outer periphery, and further, the Si—C solution is caused to flow from the central portion to the outer peripheral portion, thereby forming a flow in which the Si—C solution circulates from the outer peripheral portion to the deep portion. .
- the seed crystal substrate is continuously rotated in a predetermined direction at a predetermined speed for a predetermined time or more. There is a way.
- the flow of the Si—C solution immediately below the crystal growth interface can be promoted.
- the flow stagnation part of the solution can be eliminated, the solution entrainment (inclusion) in the outer peripheral part can be suppressed, and a SiC single crystal having a threading dislocation density equivalent to that of the seed crystal substrate can be grown.
- the rotation speed of the seed crystal substrate is the speed of the outermost peripheral portion (also referred to as the outer peripheral portion or the outermost peripheral portion of the seed crystal substrate in the present specification) of the growth surface (lower surface) of the seed crystal substrate.
- the speed of the outer peripheral portion of the seed crystal substrate is preferably higher than 25 mm / second, more preferably 45 mm / second or more, and further preferably 63 mm / second or more. Inclusion is suppressed and the occurrence of threading dislocations is easily suppressed by setting the speed of the outer peripheral portion of the seed crystal substrate within the above range.
- the growth rate of the SiC single crystal advances by controlling the speed of the outer peripheral portion of the seed crystal substrate, the growth crystal generally grows with the same or larger diameter with respect to the growth surface of the seed crystal substrate.
- the rotation speed of the outer periphery of the crystal is the same as or higher than the speed of the outer periphery of the seed crystal substrate. Therefore, by controlling the speed of the outer peripheral portion of the seed crystal substrate within the above range, the flow of the Si—C solution directly under the grown crystal can be continued even when the crystal growth proceeds.
- the speed of the outer peripheral portion of the grown crystal may be controlled within the above speed range.
- the grown crystal grows generally with the same or larger diameter with respect to the growth surface of the seed crystal substrate, and the speed of the outer peripheral portion of the grown crystal increases.
- the number of revolutions per minute (rpm) may be maintained, or the number of revolutions per minute (rpm) may be decreased so that the outer peripheral portion of the grown crystal has a constant speed.
- the solution flow is stabilized by setting a time (rotation holding time) for rotating the seed crystal substrate in the same direction to be longer than a predetermined time. It is possible to suppress the entrainment of the solution in the outer peripheral portion.
- the rotation holding time in the same direction is preferably longer than 30 seconds, more preferably 200 seconds or more, and further preferably 360 seconds or more.
- the stop time of the seed crystal substrate when the rotation direction is reversed is better as it is shorter, preferably 10 seconds or less, more preferably 5 seconds or less, and even more preferably. Is 1 second or less, even more preferably substantially 0 seconds.
- the SiC single crystal it is preferable to grow the crystal while forming a meniscus between the seed crystal substrate and the Si—C solution.
- the meniscus means a concave curved surface 34 formed on the surface of the Si—C solution 24 wetted on the seed crystal substrate 14 by surface tension, as shown in FIG.
- a SiC single crystal can be grown while forming a meniscus between the seed crystal substrate and the Si—C solution.
- the meniscus is formed by pulling and holding the seed crystal substrate at a position where the lower surface of the seed crystal substrate is higher than the liquid level of the Si—C solution. be able to.
- the temperature of the meniscus portion formed at the outer peripheral portion of the growth interface is likely to decrease due to radiation heat, the temperature of the Si—C solution in the outer peripheral portion is higher than the central portion immediately below the interface of the crystal growth surface by forming the meniscus. Temperature gradient can be formed. Thereby, the supersaturation degree of the Si—C solution at the outer peripheral part of the growth interface can be made larger than the supersaturation degree of the Si—C solution at the central part of the growth interface.
- the inclusion inspection method is not particularly limited, but the growth crystal 40 is sliced parallel to the growth direction as shown in FIG. 5A, and the growth crystal 42 as shown in FIG. 5B is cut out.
- the presence or absence of inclusion can be inspected by observing from the transmission image whether or not the entire surface of the grown crystal 42 is a continuous crystal.
- the grown crystal may be sliced perpendicular to the growth direction, and the cut out grown crystal may be inspected for inclusion by the same method.
- the growth crystal is cut out as described above, and qualitative analysis is performed on the Si—C solution component in the cut out growth crystal by energy dispersive X-ray spectroscopy (EDX), wavelength dispersive X-ray analysis (WDX), or the like.
- EDX energy dispersive X-ray spectroscopy
- WDX wavelength dispersive X-ray analysis
- inclusion can be detected by quantitative analysis.
- a portion where visible light does not pass can be detected as inclusion.
- the elemental analysis method using EDX, WDX, etc. for example, when using Si / Cr solvent, Si / Cr / Ni solvent, etc. as the Si—C solution, other than Si and C such as Cr and Ni in the grown crystal. The presence or absence of a solvent component is analyzed, and solvent components other than Si and C such as Cr and Ni can be detected as inclusions.
- the evaluation of the presence or absence of threading dislocations in the grown crystal is mirror polished so that the (0001) plane is exposed, and molten alkali etching using molten potassium hydroxide, sodium peroxide or the like is performed to emphasize the dislocations, This can be done by microscopic observation of etch pits on the surface of the SiC single crystal.
- a SiC single crystal of a quality generally used for the production of an SiC single crystal can be used as a seed crystal substrate.
- an SiC single crystal generally prepared by a sublimation method can be used as a seed crystal substrate. .
- An SiC single crystal or the like having an offset angle of 5 mm can be used as a seed crystal substrate.
- the growth surface is flat.
- a SiC single crystal having a (0001) just plane or a (000-1) just plane is preferably used.
- the SiC single crystal generally prepared by the sublimation method generally includes many threading dislocations including threading screw dislocations and threading edge dislocations, but the seed crystal substrate used in the present invention includes threading dislocations. May or may not be included.
- SiC single crystal having a low threading dislocation density can be grown, and therefore, by using an SiC single crystal having a low threading dislocation density as a seed crystal substrate, an SiC single crystal having a low threading dislocation density or no threading dislocations is used.
- the SiC single crystal having a low threading dislocation density or no threading dislocation is preferable as the seed crystal substrate.
- the overall shape of the seed crystal substrate can be an arbitrary shape such as a plate shape, a disk shape, a columnar shape, a prism shape, a truncated cone shape, or a truncated pyramid shape.
- the seed crystal substrate can be installed in the single crystal manufacturing apparatus by holding the upper surface of the seed crystal substrate on the seed crystal holding shaft using an adhesive or the like.
- the contact of the seed crystal substrate with the Si—C solution is caused by lowering the seed crystal holding axis holding the seed crystal substrate toward the Si—C solution surface and lowering the lower surface of the seed crystal substrate with respect to the Si—C solution surface. Can be performed in parallel with each other and brought into contact with the Si—C solution.
- the SiC single crystal can be grown by holding the seed crystal substrate in a predetermined position with respect to the Si—C solution surface.
- the holding position of the seed crystal substrate is such that the position of the lower surface of the seed crystal substrate coincides with the Si—C solution surface, is below the Si—C solution surface, or is relative to the Si—C solution surface. It may be on the upper side.
- the lower surface of the seed crystal substrate is held at a position above the Si—C solution surface, the seed crystal substrate is once brought into contact with the Si—C solution, and the Si—C solution is brought into contact with the lower surface of the seed crystal substrate. Then, pull it up to a predetermined position.
- the position of the lower surface of the seed crystal substrate may coincide with the Si—C solution surface or be lower than the Si—C solution surface, but in order to form a meniscus as described above, Crystal growth is preferably performed while the lower surface is held at a position above the Si—C solution surface. In order to prevent the generation of polycrystals, it is preferable that the Si—C solution does not contact the seed crystal holding shaft. In these methods, the position of the seed crystal substrate may be adjusted during crystal growth.
- the seed crystal holding shaft can be a graphite shaft that holds the seed crystal substrate on its end face.
- the seed crystal holding shaft may be in an arbitrary shape such as a columnar shape or a prismatic shape, and a graphite shaft having the same end surface shape as the shape of the upper surface of the seed crystal substrate may be used.
- the Si—C solution refers to a solution in which C is dissolved using a melt of Si or Si / X (X is one or more metals other than Si) as a solvent.
- X is one or more kinds of metals, and is not particularly limited as long as it can form a liquid phase (solution) in thermodynamic equilibrium with SiC (solid phase).
- suitable metals X include Ti, Mn, Cr, Ni, Ce, Co, V, Fe and the like.
- Si, Cr, Ni, or the like can be charged into the crucible to form a Si—Cr solution, a Si—Cr—Ni solution, or the like.
- the surface temperature of the Si—C solution is preferably 1800 to 2200 ° C. with little variation in the amount of C dissolved in the Si—C solution.
- the temperature of the Si—C solution can be measured using a thermocouple, a radiation thermometer, or the like.
- a thermocouple from the viewpoint of high temperature measurement and prevention of impurity contamination, a thermocouple in which a tungsten-rhenium strand coated with zirconia or magnesia glass is placed in a graphite protective tube is preferable.
- FIG. 6 shows an example of an SiC single crystal manufacturing apparatus that can implement the present invention.
- the illustrated SiC single crystal manufacturing apparatus 100 includes a crucible 10 containing a Si—C solution 24 in which C is dissolved in a Si or Si / X melt, and is provided from the inside of the Si—C solution to the surface of the solution. A temperature gradient that decreases toward the surface is formed, and the seed crystal substrate 14 held at the tip of the seed crystal holding shaft 12 that can be moved up and down is brought into contact with the Si—C solution 24, and the SiC single crystal is based on the seed crystal substrate 14 as a starting point. Can grow.
- the Si—C solution 24 is prepared by charging a raw material into a crucible and dissolving C in a melt of Si or Si / X prepared by heating and melting.
- a carbonaceous crucible such as a graphite crucible or an SiC crucible
- C is dissolved in the melt by melting the crucible 10 to form a Si—C solution.
- the supply of C may be performed by, for example, a method of injecting hydrocarbon gas or charging a solid C supply source together with the melt raw material, or combining these methods with melting of a crucible. Also good.
- the outer periphery of the crucible 10 is covered with a heat insulating material 18. These are collectively accommodated in the quartz tube 26.
- a high frequency coil 22 for heating is disposed on the outer periphery of the quartz tube 26.
- the high frequency coil 22 may be composed of an upper coil 22A and a lower coil 22B, and the upper coil 22A and the lower coil 22B can be independently controlled.
- the water cooling chamber includes a gas introduction port and a gas exhaust port in order to enable adjustment of the atmosphere in the apparatus.
- the crucible 10 is provided with an opening 28 through which the seed crystal holding shaft 12 passes, and by adjusting a gap (interval) between the crucible 10 and the seed crystal holding shaft 12 in the opening 28, the Si—C
- the degree of radiation heat removal from the surface of the solution 24 can be changed.
- the inside of the crucible 10 needs to be kept at a high temperature.
- the gap between the crucible 10 and the seed crystal holding shaft 12 in the opening 28 is set large, the radiation heat from the surface of the Si—C solution 24 is increased.
- the gap between the crucible 10 and the seed crystal holding shaft 12 in the opening 28 is narrowed, the radiation heat from the surface of the Si—C solution 24 can be reduced.
- the gap (interval) between the crucible 10 and the seed crystal holding shaft 12 in the opening 28 is preferably 1 to 5 mm, more preferably 3 to 4 mm. When the meniscus is formed, radiation heat can also be removed from the meniscus portion.
- C dissolved in the Si—C solution 24 is dispersed by diffusion and convection.
- the Si—C solution 24 is controlled by output control of a heating device such as a high frequency coil, heat removal from the surface of the Si—C solution 24, heat removal through the seed crystal holding shaft 12, and the like.
- a temperature gradient can be formed that is cooler than the interior of the.
- meltback may be performed to dissolve and remove the surface layer of the seed crystal substrate in the Si—C solution.
- the surface layer of the seed crystal substrate on which the SiC single crystal is grown may have a work-affected layer such as dislocations or a natural oxide film, which must be dissolved and removed before the SiC single crystal is grown.
- a work-affected layer such as dislocations or a natural oxide film
- it is effective for growing a high-quality SiC single crystal.
- the thickness to be dissolved varies depending on the processing state of the surface of the seed crystal substrate, but is preferably about 5 to 50 ⁇ m in order to sufficiently remove the work-affected layer and the natural oxide film.
- the meltback can be performed by forming a temperature gradient in the Si—C solution in which the temperature increases from the inside of the Si—C solution toward the surface of the solution, that is, a temperature gradient opposite to the SiC single crystal growth. it can.
- the temperature gradient in the reverse direction can be formed by controlling the output of the high frequency coil.
- Melt back can also be performed by immersing the seed crystal substrate in a Si—C solution heated to a temperature higher than the liquidus temperature without forming a temperature gradient in the Si—C solution.
- Si—C solution temperature the higher the dissolution rate, but it becomes difficult to control the amount of dissolution, and the lower the temperature, the slower the dissolution rate.
- the seed crystal substrate may be heated in advance and then contacted with the Si—C solution.
- heat shock dislocation may occur in the seed crystal. Heating the seed crystal substrate before bringing the seed crystal substrate into contact with the Si—C solution is effective for preventing thermal shock dislocation and growing a high-quality SiC single crystal.
- the seed crystal substrate can be heated by heating the seed crystal holding shaft. In this case, after the seed crystal substrate is brought into contact with the Si—C solution, the heating of the seed crystal holding shaft is stopped before the SiC single crystal is grown.
- the Si—C solution may be heated to a temperature at which the crystal is grown after contacting the seed crystal with a relatively low temperature Si—C solution. This case is also effective for preventing heat shock dislocation and growing a high-quality SiC single crystal.
- the air inside the single crystal production apparatus was replaced with argon.
- the high-frequency coil 22 disposed around the graphite crucible 10 was energized and heated to melt the raw material in the graphite crucible 10 to form a Si / Cr / Ni alloy melt. Then, a sufficient amount of C was dissolved from the graphite crucible 10 in the Si / Cr / Ni alloy melt to form a Si—C solution 24.
- the graphite crucible 10 was heated by adjusting the outputs of the upper coil 22A and the lower coil 22B to form a temperature gradient in which the temperature decreased from the inside of the Si—C solution 24 toward the solution surface.
- the temperature gradient was measured by changing the position of the crucible up and down with respect to the center of heat generation of the high-frequency coil 22, and the crucible was arranged at a position where the temperature gradient was maximized.
- the temperature gradient was measured by measuring the temperature of the Si—C solution 24 using a thermocouple that can be raised and lowered.
- the temperature on the surface of the Si—C solution 24 is set to 2000 ° C.
- the liquid surface of the Si—C solution is set to the low temperature side
- the temperature on the liquid surface of the Si—C solution 24, and the liquid surface of the Si—C solution 24 is introduced into the solution.
- a temperature gradient of 57 ° C./cm was formed by setting the temperature difference from the temperature at a depth of 10 mm in the vertical direction to 57 ° C.
- a cylindrical graphite seed crystal holding shaft 12 having a diameter of 12 mm and a length of 200 mm was prepared.
- a disk-shaped 4H—SiC single crystal prepared by a sublimation method, having a (000-1) just surface having a thickness of 1 mm and a diameter of 12 mm and having a threading dislocation density of 5.5 ⁇ 10 3 pieces / cm 2 was prepared. Used as a seed crystal substrate 14.
- the upper surface of the seed crystal substrate 14 was bonded to the substantially central portion of the end surface of the seed crystal holding shaft 12 using a graphite adhesive so that the lower surface of the seed crystal substrate 14 became the (000-1) plane.
- the seed crystal holding shaft 12 and the seed crystal substrate 14 were arranged so that the seed crystal holding shaft 12 was passed through an opening 28 having a diameter of 20 mm opened on the heat insulating material 18 and the lid 20 on the upper part of the graphite crucible.
- the gap between the crucible 10 and the seed crystal holding shaft 12 in the opening 28 was 4.0 mm.
- the seed crystal holding shaft 12 holding the seed crystal substrate 14 is lowered, and the seed crystal substrate 14 is made into the Si—C solution 24 so that the lower surface of the seed crystal substrate 14 coincides with the surface position of the Si—C solution 24.
- the lower surface of the seed crystal substrate 14 was wetted with the Si—C solution 24.
- the seed crystal substrate 14 is pulled up so that the lower surface of the seed crystal substrate 14 is located 1.0 mm above the surface of the Si—C solution 24 to form a meniscus of the Si—C solution. Grown up.
- the seed crystal holding shaft 12 is rotated at a speed of 150 rpm so that the outer peripheral portion of the lower surface of the seed crystal substrate 14 is rotated at a speed of 94.2 mm / sec, and the seed crystal substrate 14 is the same.
- the rotation direction was periodically switched by setting the rotation holding time for continuous rotation in the direction to 15 seconds and the stop time of the seed crystal substrate 14 at the time of switching the rotation direction to 5 seconds.
- the graphite axis was raised, and the seed crystal and the SiC crystal grown from the seed crystal as a base point were separated from the Si—C solution and the graphite axis and collected.
- the obtained grown crystal was a SiC single crystal, the diameter was 12 mm, the thickness at the center of the growth surface was 1.96 mm, and the growth rate of the SiC single crystal was 1.96 mm / hour.
- the obtained SiC single crystal together with the seed crystal substrate 14 is cut out to a thickness of 1 mm so as to include the central portion of the growth surface in a direction parallel to the growth direction, and mirror-polished, and the cut growth is obtained.
- the cross section of the crystal was observed with an optical microscope in a transmission mode.
- FIG. 7 the optical microscope photograph of the cross section of the SiC ingot containing the SiC single crystal and seed crystal substrate which were grown in this example is shown.
- the obtained grown crystal was cut out from the growth surface with a thickness of 0.5 mm, the (0001) plane of the cut out growth crystal was mirror-polished, and alkali etched using 510 ° C. molten KOH.
- the etched surface was observed with a microscope.
- FIG. 8 shows a photomicrograph of the etched surface. The number of etch pits seen in FIG. 8 was measured, and the threading dislocation density of the grown crystal was measured. The threading dislocation density was 5.5 ⁇ 10 3 pieces / cm 2 , which was equivalent to the dislocation density of the seed crystal substrate, and it was confirmed that there was almost no new dislocation generation.
- Example 1-2 A SiC single crystal was grown under the same conditions as in Example 1, and the reproducibility was evaluated. As a result, a growth rate of 1.92 mm / hour of SiC single crystal was obtained, and no inclusion was included over a diameter range of 8 mm. It was confirmed that an SiC single crystal having a dislocation density equivalent to that of the substrate was obtained.
- Example 2 While the liquid surface temperature of the Si—C solution was 2000 ° C., the crucible was moved 1 mm downward with respect to the position of the crucible disposed in Example 1, and the liquid surface of the Si—C solution and the Si—C Crystal growth was performed under the same conditions as in Example 1 except that a temperature gradient of 50 ° C./cm was formed between the liquid surface of the solution 24 and a position at a depth of 10 mm in the vertical direction from the liquid surface to the inside of the solution. A SiC single crystal growth rate of 1.72 mm / hour was obtained.
- Example 3 While the liquid surface temperature of the Si—C solution was set to 2000 ° C., the crucible was moved 5 mm downward from the position of the crucible disposed in Example 1, and the liquid surface of the Si—C solution, the Si—C solution, Crystal growth was performed under the same conditions as in Example 1 except that a temperature gradient of 47 ° C./cm was formed between the liquid surface of the solution 24 and the position at a depth of 10 mm in the vertical direction from the liquid surface to the inside of the solution. However, a growth rate of the SiC single crystal of 1.27 mm / hour was obtained.
- Reference Examples 1 to 5 In Reference Examples 1 to 5, except that the crucible was arranged with respect to the high-frequency coil 22 so as to have the temperature gradient shown in Table 1 while the liquid surface temperature of the Si—C solution was 2000 ° C., respectively. When crystal growth was performed under the same conditions as in Example 1, the growth rates of the SiC single crystals shown in Table 1 were obtained.
- the graphite axis was raised, and the seed crystal and the SiC crystal grown from the seed crystal as a base point were separated from the Si—C solution and the graphite axis and collected.
- the obtained growth crystal was a SiC single crystal, the diameter was 12 mm, the thickness at the center of the growth surface was 0.57 mm, and the growth rate of the SiC single crystal was 0.57 mm / hour.
- Comparative Examples 2 to 12 In Comparative Examples 2 to 12, except that the crucible was arranged with respect to the high-frequency coil 22 so as to have the temperature gradient shown in Table 1 while the liquid surface temperature of the Si—C solution was 2000 ° C., respectively. When crystal growth was performed under the same conditions as in Example 1, the growth rates of the SiC single crystals shown in Table 1 were obtained.
- Example 2 In the same manner as in Example 1, the SiC single crystals grown in Comparative Examples 2 to 12 were observed for inclusion and the dislocation density was measured. The dislocation was not included in the 8 mm diameter range and was equivalent to the seed crystal substrate. It was confirmed that a SiC single crystal having a density was obtained.
- Table 1 shows the temperature gradient of the surface region of the Si—C solution obtained in Examples 1 to 3, Reference Examples 1 to 5, and Comparative Examples 1 to 12, and the growth rate of the SiC single crystal.
- FIG. 9 is a graph plotting the growth rate of the SiC single crystal against the temperature gradient of the surface region of the Si—C solution obtained in Examples 1 to 3 and Comparative Examples 1 to 17.
- the dotted line drawn on each plot is an approximate line calculated by the method of least squares.
- the slope of the approximate line of the data obtained in Examples 1 to 3 is 0.0585
- the slope of the approximate line of the data obtained in Reference Examples 1 to 5 is 0.0109
- Comparative Examples 1 to 12 The slope of the approximate line of the obtained data was 0.0122.
- the SiC single-piece When using a crucible with a crucible depth / crucible inner diameter ratio of 1.14, the SiC single-piece has the same temperature gradient as compared to using a crucible depth / crucible inner diameter dimension ratio of 1.71 crucible. A high crystal growth rate was obtained. In addition, a very high growth rate of the SiC single crystal was obtained in a region where the temperature gradient of the surface region of the Si—C solution was larger than 42 ° C./cm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
溶液法において、従来よりも成長速度を大幅に向上することができるSiC単結晶の製造方法を提供する。坩堝内に入れられ、内部から液面に向けて温度低下する温度勾配を有するSi-C溶液に、種結晶基板を接触させてSiC単結晶を結晶成長させる、SiC単結晶の製造方法であって、前記坩堝の深さ/内径が1.71未満であり、Si-C溶液の液面から10mm下までの範囲の温度勾配が42℃/cmよりも大きい、SiC単結晶の製造方法。
Description
本発明は、半導体素子として好適なSiC単結晶の製造方法に関する。
SiC単結晶は、熱的、化学的に非常に安定であり、機械的強度に優れ、放射線に強く、しかもSi単結晶に比べて高い絶縁破壊電圧、高い熱伝導率などの優れた物性を有する。そのため、Si単結晶やGaAs単結晶などの既存の半導体材料では実現できない高出力、高周波、耐電圧、耐環境性等を実現することが可能であり、大電力制御や省エネルギーを可能とするパワーデバイス材料、高速大容量情報通信用デバイス材料、車載用高温デバイス材料、耐放射線デバイス材料等、といった広い範囲における、次世代の半導体材料として期待が高まっている。
従来、SiC単結晶の成長法としては、代表的には気相法、アチソン(Acheson)法、及び溶液法が知られている。気相法のうち、例えば昇華法では、成長させた単結晶にマイクロパイプ欠陥と呼ばれる中空貫通状の欠陥や積層欠陥等の格子欠陥及び結晶多形が生じやすい等の欠点を有するが、結晶の成長速度が大きいため、従来、SiCバルク単結晶の多くは昇華法により製造されており、成長結晶の欠陥を低減する試みも行われている。アチソン法では原料として珪石とコークスを使用し電気炉中で加熱するため、原料中の不純物等により結晶性の高い単結晶を得ることは不可能である。
そして、溶液法は、黒鉛坩堝中でSi融液または合金を融解したSi融液を形成し、その融液中に黒鉛坩堝からCを溶解させ、低温部に設置した種結晶基板上にSiC結晶層を析出させて成長させる方法である。溶液法は気相法に比べ熱平衡に近い状態での結晶成長が行われるため、低欠陥化が最も期待できる。このため、最近では、溶液法によるSiC単結晶の製造方法がいくつか提案されている。
例えば、欠陥が少ないSiC単結晶を得るために、種結晶基板の近傍のSi-C溶液の温度勾配を5℃/cm以下とするSiC単結晶の製造方法が開示されている(特許文献1)。
このように、溶液法によれば、他の方法よりも欠陥が少ないSiC単結晶を得られやすいものの、特許文献1等に記載の従来の方法では、SiC単結晶の成長速度が遅いという問題点がある。
本発明は上記課題を解決するものであり、溶液法において、従来よりも成長速度を大幅に向上することができるSiC単結晶の製造方法を提供することを目的とする。
本発明は、坩堝内に入れられ、内部から液面に向けて温度低下する温度勾配を有するSi-C溶液に、種結晶基板を接触させてSiC単結晶を結晶成長させる、SiC単結晶の製造方法であって、
坩堝の深さ/内径が1.71未満であり、
Si-C溶液の液面から10mm下までの範囲の温度勾配が42℃/cmよりも大きい、
SiC単結晶の製造方法である。
坩堝の深さ/内径が1.71未満であり、
Si-C溶液の液面から10mm下までの範囲の温度勾配が42℃/cmよりも大きい、
SiC単結晶の製造方法である。
本発明によれば、従来よりも大幅に速い成長速度でSiC単結晶を成長させることが可能となる。
本明細書において、(000-1)面等の表記における「-1」は、本来、数字の上に横線を付して表記するところを「-1」と表記したものである。
従来の溶液法によるSiC単結晶の成長は、熱平衡に近い状態での結晶成長のため、低欠陥化が期待できるものの、概して成長速度が遅く、所望の成長速度を得ることが難しかった。
本願発明者は、SiC単結晶成長における成長速度の向上について鋭意研究を行い、大幅に成長速度を向上することができるSiC単結晶の製造方法を見出した。
本発明は、坩堝内に入れられ、内部から液面に向けて温度低下する温度勾配を有するSi-C溶液に、種結晶基板を接触させてSiC単結晶を結晶成長させる、SiC単結晶の製造方法であって、Si-C溶液の液面から10mm下までの範囲の温度勾配が42℃/cmよりも大きい、SiC単結晶の製造方法を対象とする。
本発明によれば、Si-C溶液の液面から10mm下までの範囲の温度勾配(以下、Si-C溶液の表面領域の温度勾配、または温度勾配という)を42℃/cmよりも大きくすることによって、従来よりも大幅にSiC単結晶の成長速度を向上させることが可能となる。
本発明に係る方法は、溶液法によるSiC単結晶の製造方法であり、内部から表面に向けて温度低下する温度勾配を有するSi-C溶液に、SiC種結晶を接触させてSiC単結晶を成長させることができる。Si-C溶液の内部から溶液の液面に向けて温度低下する温度勾配を形成することによってSi-C溶液の表面領域を過飽和にして、Si-C溶液に接触させた種結晶基板を基点として、SiC単結晶を成長させることができる。
本発明において、Si-C溶液の表面領域の温度勾配は42℃/cm超であり、好ましくは47℃/cm以上、より好ましくは50℃/cm以上、さらに好ましくは57℃/cm以上である。これらの温度勾配範囲において、非常に高いSiC単結晶の成長速度を得ることができる。
温度勾配の上限は特に限定されるものではないが、実際に形成可能な温度勾配が実質的な上限となり得、例えば70℃/cm程度である。
Si-C溶液の表面領域の温度勾配は、坩堝の周囲に配置した高周波コイル等のヒーターの出力調節、坩堝と高周波コイルとの位置関係の調節、Si-C溶液の表面からの輻射抜熱や種結晶保持軸を介した抜熱等により形成することができるが、今回、特に、高い温度勾配を形成するためには、坩堝深さを小さくするか、坩堝内径を大きくするか、またはその両方を行うことが効果的であることが分かった。
図1に、本発明に係る方法に用いることができる坩堝構造の断面模式図を示す。黒鉛製の坩堝10は、内部にSi-C溶液24を保持し、坩堝上部の蓋20に設けた開口部28を通して、種結晶基板14を保持した種結晶保持軸12を配置することができる。図1に示すように、坩堝深さ16は、Si-C溶液を収容する坩堝の下部から坩堝の側壁の上端までの長さであり、この側壁部分が坩堝周囲に配置されたヒーターにより加熱される。また、図1に示すように、坩堝内径17は、Si-C溶液を収容する坩堝内径の直径である。
例えば、図2に示すように坩堝深さを大きくすると、高い温度勾配を形成しにくくなるが、図3に示すように坩堝深さを小さくすると、高い温度勾配を形成しやすくなる。坩堝内径についても同様に、坩堝内径を小さくすると、高い温度勾配を形成しにくくなるが、坩堝内径を大きくすると、高い温度勾配を形成しやすくなる。
理論に束縛されるものではないが、坩堝深さ16を小さくすると、Si-C溶液24の液面と坩堝上部の蓋20との距離が狭まり、坩堝上部の蓋20からの抜熱の影響が大きくなって、Si-C溶液24の表面領域の温度勾配を大きくすることができると考えられる。また、坩堝内径17を大きくすると、ヒーターにより加熱される坩堝の側壁から種結晶基板が遠ざかるから、種結晶基板周辺の温度低下が起きやすくなり、Si-C溶液24の表面領域の温度勾配を大きくすることができると考えられる。
坩堝深さ/坩堝内径の寸法比率は、好ましくは1.71未満であり、より好ましくは1.14以下である。これらの範囲の坩堝深さ/坩堝内径の寸法比率を有する坩堝を用いることによって、Si-C溶液の表面領域の温度勾配を大きくしやすくなる。
このように、坩堝深さ/坩堝内径の寸法比率が小さいほど温度勾配を大きくしやすくなり、この観点では、坩堝深さ/坩堝内径の寸法比率の下限は特に限定されるものではない。坩堝深さ/坩堝内径の寸法比率の下限は、SiC単結晶を安定して成長させることができる範囲とすればよく、例えば、坩堝の深さ/坩堝の内径の比率が0.3以上でSiC単結晶を安定して成長させることができる。
また、驚くべきことに、坩堝深さ/坩堝内径の寸法比率を小さくすると、Si-C溶液の表面領域の温度勾配が同じであっても、SiC単結晶の成長速度を大きくすることができることが分かった。
また、高い結晶成長速度を得つつ、さらに、インクルージョン及び貫通転位等の欠陥の発生を抑制した高品質なSiC単結晶を得るために、結晶成長面の界面直下の中央部から外周部にSi-C溶液を流動させて、Si-C溶液の滞留を抑制することが効果的である。
本明細書において、インクルージョンとは、SiC単結晶成長に使用するSi-C溶液の、成長結晶中の巻き込みである。成長結晶にインクルージョンが発生する場合、インクルージョンとして、例えば、Si-C溶液として用いる溶媒中に含まれ得るCrやNi等の溶媒成分を検出することができる。
結晶成長面の界面直下の中央部から外周部にSi-C溶液を流動させることで、結晶成長面に溶質を供給しつつ、外周部を含む成長界面全体への溶質の安定的な供給が可能になり、インクルージョンを含まず、種結晶基板と同等の貫通転位密度を有するSiC単結晶を得ることができる。
結晶成長面の界面直下の中央部から外周部へのSi-C溶液の流動は、Si-C溶液の機械的攪拌や高周波加熱による電磁攪拌等によって、Si-C溶液の深部から結晶成長面に向けてSi-C溶液を流動させ、さらに中央部から外周部にSi-C溶液を流動させ、外周部から深部へとSi-C溶液が循環するような流動を形成することによって行うことができる。
結晶成長面の界面直下の中央部から外周部にSi-C溶液を流動させるための好適な方法として、例えば、種結晶基板を所定の速度で所定の時間以上、連続して一定方向に回転させる方法がある。
種結晶基板を所定の速度で所定の時間以上、連続して一定方向に回転させることによって、結晶成長界面直下のSi-C溶液の流動を促進することができ、特に、外周部におけるSi-C溶液の流動停滞部を解消することができ、外周部における溶液巻き込み(インクルージョン)を抑制し、種結晶基板と同等の貫通転位密度を有するSiC単結晶を成長させることができる。
本明細書において、種結晶基板の回転速度とは種結晶基板の成長面(下面)の最外周部(本明細書において、種結晶基板の外周部または最外周部ともいう)の速度である。種結晶基板の外周部の速度は、25mm/秒よりも速い速度が好ましく、45mm/秒以上がより好ましく、63mm/秒以上がさらに好ましい。種結晶基板の外周部の速度を、前記範囲にすることでインクルージョンを抑制し、貫通転位の発生を抑制しやすくなる。
種結晶基板の外周部の速度を制御して、SiC単結晶の成長が進んだ場合、種結晶基板の成長面に対して成長結晶は概して口径が同じか口径拡大するように成長するため、成長結晶の外周部の回転速度は種結晶基板の外周部の速度と同じかそれよりも大きくなる。したがって、種結晶基板の外周部の速度を上記範囲に制御することによって、結晶成長が進んだ場合でも、成長結晶直下のSi-C溶液の流動を続けることができる。
また、種結晶基板の外周部の速度に代えて、成長結晶の外周部の速度を上記の速度範囲に制御してもよい。SiC単結晶の成長が進むにつれ、種結晶基板の成長面に対して成長結晶は概して口径が同じか口径拡大するように成長し、成長結晶の外周部の速度は速くなるが、この場合、1分間当たりの回転数(rpm)を維持してもよく、あるいは成長結晶の外周部の速度が一定となるように1分間当たりの回転数(rpm)を下げてもよい。
また、種結晶基板の回転方向を周期的に切り替える場合に、種結晶基板を同方向に回転させている時間(回転保持時間)を所定時間よりも長く設定することによって、溶液流動を安定化させることができ、外周部の溶液巻き込みを抑制し得る。
種結晶基板の回転方向を周期的に変化させることによって、同心円状にSiC単結晶を成長させることが可能となり、成長結晶中に発生し得る欠陥の発生を抑制することができるが、その際、同一方向の回転を所定の時間以上、維持することによって、結晶成長界面直下のSi-C溶液の流動を安定化することができる。回転保持時間が短すぎると、回転方向の切り替えを頻繁に行うことになり、Si-C溶液の流動が不十分または不安定になると考えられる。
種結晶基板の回転方向を周期的に変化させる場合、同方向の回転保持時間は、30秒よりも長いことが好ましく、200秒以上がより好ましく、360秒以上がさらに好ましい。種結晶基板の同方向の回転保持時間を、前記範囲にすることでインクルージョン及び貫通転位の発生をより抑制しやすくなる。
種結晶基板の回転方向を周期的に変化させる場合、回転方向を逆方向にきりかえる際の種結晶基板の停止時間は短いほどよく、好ましくは10秒以下、より好ましくは5秒以下、さらに好ましくは1秒以下、さらにより好ましくは実質的に0秒である。
また、SiC単結晶を成長させる際に、種結晶基板とSi-C溶液との間にメニスカスを形成しながら結晶成長させることが好ましい。
本願において、メニスカスとは、図4に示すように、表面張力によって種結晶基板14に濡れ上がったSi-C溶液24の表面に形成される凹状の曲面34をいう。種結晶基板とSi-C溶液との間にメニスカスを形成しながら、SiC単結晶を成長させることができる。例えば、種結晶基板をSi-C溶液に接触させた後、種結晶基板の下面がSi-C溶液の液面よりも高くなる位置に種結晶基板を引き上げて保持することによって、メニスカスを形成することができる。
成長界面の外周部に形成されるメニスカス部分は輻射抜熱により温度が低下しやすいので、メニスカスを形成することによって、結晶成長面の界面直下の中央部よりも外周部のSi-C溶液の温度が低くなる温度勾配を形成することができる。これにより、成長界面の外周部のSi-C溶液の過飽和度を、成長界面の中心部のSi-C溶液の過飽和度よりも大きくすることができる。
このように結晶成長界面直下のSi-C溶液内にて水平方向の過飽和度の傾斜を形成することによって、凹形状の結晶成長面を有するようにSiC結晶を成長させることが可能となる。これにより、SiC単結晶の結晶成長面がジャスト面とならないように結晶成長させることができ、インクルージョン及び貫通転位の発生を抑制しやすくなる。
インクルージョンの検査方法としては、特に限定されないが、図5(a)に示すように成長結晶40を成長方向に対して平行にスライスして、図5(b)に示すような成長結晶42を切り出し、成長結晶42の全面が連続した結晶であるかどうかを透過画像から観察してインクルージョンの有無を検査することができる。また、成長結晶を成長方向に対して垂直にスライスして、切り出した成長結晶について、同様の方法でインクルージョンの有無を検査してもよい。あるいは、上記のように成長結晶を切り出して、エネルギー分散型X線分光法(EDX)や波長分散型X線分析法(WDX)等により、切り出した成長結晶内のSi-C溶液成分について定性分析または定量分析を行って、インクルージョンを検出することもできる。
透過画像観察によれば、インクルージョンが存在する部分は可視光が透過しないため、可視光が透過しない部分をインクルージョンとして検出することができる。EDXやWDX等による元素分析法によれば、例えばSi-C溶液としてSi/Cr系溶媒、Si/Cr/Ni系溶媒等を用いる場合、成長結晶内にCrやNi等のSi及びC以外の溶媒成分が存在するか分析し、CrやNi等のSi及びC以外の溶媒成分を、インクルージョンとして検出することができる。
成長結晶の貫通転位の有無の評価は、(0001)面を露出させるように鏡面研磨して、溶融水酸化カリウム、過酸化ナトリウム等を用いた溶融アルカリエッチングを行って、転位を強調させて、SiC単結晶の表面のエッチピットを顕微鏡観察することによって行われ得る。
本方法においては、SiC単結晶の製造に一般に用いられる品質のSiC単結晶を種結晶基板として用いることができ、例えば昇華法で一般的に作成したSiC単結晶を種結晶基板として用いることができる。
例えば、成長面がフラットであり(0001)ジャスト面または(000-1)ジャスト面を有するSiC単結晶、(0001)ジャスト面または(000-1)ジャスト面から0°よりも大きく例えば8°以下のオフセット角度を有するSiC単結晶等を種結晶基板として用いることができる。
上記の方法のように、メニスカスを形成しながら種結晶基板を所定の速度で所定の時間以上、連続して一定方向に回転させることによってSiC単結晶を結晶成長させる場合は、成長面がフラットであり(0001)ジャスト面または(000-1)ジャスト面を有するSiC単結晶が好ましく用いられる。
昇華法で一般的に作成したSiC単結晶には、概して貫通らせん転位及び貫通刃状転位を含む貫通転位が多く含まれているが、本発明に用いる種結晶基板には、貫通転位は含まれていても含まれていなくてもよい。
上記の方法のように、メニスカスを形成しながら種結晶基板を所定の速度で所定の時間以上、連続して一定方向に回転させることによってSiC単結晶を結晶成長させる場合は、種結晶基板と同程度の貫通転位密度を有するSiC単結晶を成長させることができるため、貫通転位密度が小さいSiC単結晶を種結晶基板として用いることによって、貫通転位密度が小さいかあるいは貫通転位を含まないSiC単結晶を成長させることができる点で、貫通転位密度が小さいかあるいは貫通転位を含まないSiC単結晶が種結晶基板としては好ましい。
種結晶基板の全体形状は、例えば板状、円盤状、円柱状、角柱状、円錐台状、または角錐台状等の任意の形状であることができる。
単結晶製造装置への種結晶基板の設置は、接着剤等を用いて種結晶基板の上面を種結晶保持軸に保持させることによって行うことができる。
種結晶基板のSi-C溶液への接触は、種結晶基板を保持した種結晶保持軸をSi-C溶の液面に向かって降下させ、種結晶基板の下面をSi-C溶液面に対して平行にしてSi-C溶液に接触させることによって行うことができる。そして、Si-C溶液面に対して種結晶基板を所定の位置に保持して、SiC単結晶を成長させることができる。
種結晶基板の保持位置は、種結晶基板の下面の位置が、Si-C溶液面に一致するか、Si-C溶液面に対して下側にあるか、またはSi-C溶液面に対して上側にあってもよい。種結晶基板の下面をSi-C溶液面に対して上方の位置に保持する場合は、一旦、種結晶基板をSi-C溶液に接触させて種結晶基板の下面にSi-C溶液を接触させてから、所定の位置に引き上げる。種結晶基板の下面の位置を、Si-C溶液面に一致するか、またはSi-C溶液面よりも下側にしてもよいが、上記のようにメニスカスを形成するために、種結晶基板の下面をSi-C溶液面に対して上方の位置に保持して結晶成長させることが好ましい。また、多結晶の発生を防止するために、種結晶保持軸にSi-C溶液が接触しないようにすることが好ましい。これらの方法において、結晶成長中に種結晶基板の位置を調節してもよい。
種結晶保持軸はその端面に種結晶基板を保持する黒鉛の軸であることができる。種結晶保持軸は、円柱状、角柱状等の任意の形状であることができ、種結晶基板の上面の形状と同じ端面形状を有する黒鉛軸を用いてもよい。
本願において、Si-C溶液とは、SiまたはSi/X(XはSi以外の1種以上の金属)の融液を溶媒とするCが溶解した溶液をいう。Xは一種類以上の金属であり、SiC(固相)と熱力学的に平衡状態となる液相(溶液)を形成できれば特に制限されない。適当な金属Xの例としては、Ti、Mn、Cr、Ni、Ce、Co、V、Fe等が挙げられる。
Si-C溶液はSi/Cr/X(XはSi及びCr以外の1種以上の金属)の融液を溶媒とするSi-C溶液が好ましい。さらに、原子組成百分率でSi/Cr/X=30~80/20~60/0~10の融液を溶媒とするSi-C溶液が、Cの溶解量の変動が少なく好ましい。例えば、坩堝内にSiに加えて、Cr、Ni等を投入し、Si-Cr溶液、Si-Cr-Ni溶液等を形成することができる。
Si-C溶液は、その表面温度が、Si-C溶液へのCの溶解量の変動が少ない1800~2200℃が好ましい。
Si-C溶液の温度測定は、熱電対、放射温度計等を用いて行うことができる。熱電対に関しては、高温測定及び不純物混入防止の観点から、ジルコニアやマグネシア硝子を被覆したタングステン-レニウム素線を黒鉛保護管の中に入れた熱電対が好ましい。
図6に、本発明を実施し得るSiC単結晶製造装置の一例を示す。図示したSiC単結晶製造装置100は、SiまたはSi/Xの融液中にCが溶解してなるSi-C溶液24を収容した坩堝10を備え、Si-C溶液の内部から溶液の表面に向けて温度低下する温度勾配を形成し、昇降可能な種結晶保持軸12の先端に保持された種結晶基板14をSi-C溶液24に接触させて、種結晶基板14を基点としてSiC単結晶を成長させることができる。
Si-C溶液24は、原料を坩堝に投入し、加熱融解させて調製したSiまたはSi/Xの融液にCを溶解させることによって調製される。坩堝10を、黒鉛坩堝などの炭素質坩堝またはSiC坩堝とすることによって、坩堝10の溶解によりCが融液中に溶解し、Si-C溶液を形成することができる。こうすると、Si-C溶液24中に未溶解のCが存在せず、未溶解のCへのSiC単結晶の析出によるSiCの浪費が防止できる。Cの供給は、例えば、炭化水素ガスの吹込み、または固体のC供給源を融液原料と一緒に投入するといった方法を利用してもよく、またはこれらの方法と坩堝の溶解とを組み合わせてもよい。
保温のために、坩堝10の外周は、断熱材18で覆われている。これらが一括して、石英管26内に収容されている。石英管26の外周には、加熱用の高周波コイル22が配置されている。高周波コイル22は、上段コイル22A及び下段コイル22Bから構成されてもよく、上段コイル22A及び下段コイル22Bはそれぞれ独立して制御可能である。
坩堝10、断熱材18、石英管26、及び高周波コイル22は、高温になるので、水冷チャンバーの内部に配置される。水冷チャンバーは、装置内の雰囲気調整を可能にするために、ガス導入口とガス排気口とを備える。
坩堝10は、上部に種結晶保持軸12を通す開口部28を備えており、開口部28における坩堝10と種結晶保持軸12との間の隙間(間隔)を調節することによって、Si-C溶液24の表面からの輻射抜熱の程度を変更することができる。概して坩堝10の内部は高温に保つ必要があるが、開口部28における坩堝10と種結晶保持軸12との間の隙間を大きく設定すると、Si-C溶液24の表面からの輻射抜熱を大きくすることができ、開口部28における坩堝10と種結晶保持軸12との間の隙間を狭めると、Si-C溶液24の表面からの輻射抜熱を小さくすることができる。開口部28における坩堝10と種結晶保持軸12との間の隙間(間隔)は好ましくは1~5mmであり、より好ましくは3~4mmである。メニスカスを形成したときは、メニスカス部分からも輻射抜熱をさせることができる。
Si-C溶液24中に溶解したCは、拡散及び対流により分散される。種結晶基板14の下面近傍は、高周波コイル等の加熱装置の出力制御、Si-C溶液24の表面からの抜熱、及び種結晶保持軸12を介した抜熱等によって、Si-C溶液24の内部よりも低温となる温度勾配が形成され得る。高温で溶解度の大きい溶液内部に溶け込んだCが、低温で溶解度の低い種結晶基板付近に到達すると過飽和状態となり、この過飽和度を駆動力として種結晶基板14上にSiC結晶を成長させることができる。
いくつかの態様において、SiC単結晶の成長前に、種結晶基板の表面層をSi-C溶液中に溶解させて除去するメルトバックを行ってもよい。SiC単結晶を成長させる種結晶基板の表層には、転位等の加工変質層や自然酸化膜などが存在していることがあり、SiC単結晶を成長させる前にこれらを溶解して除去することが、高品質なSiC単結晶を成長させるために効果的である。溶解する厚みは、種結晶基板の表面の加工状態によって変わるが、加工変質層や自然酸化膜を十分に除去するために、およそ5~50μmが好ましい。
メルトバックは、Si-C溶液の内部から溶液の表面に向けて温度が増加する温度勾配、すなわち、SiC単結晶成長とは逆方向の温度勾配をSi-C溶液に形成することにより行うことができる。高周波コイルの出力を制御することによって上記逆方向の温度勾配を形成することができる。
メルトバックは、Si-C溶液に温度勾配を形成せず、単に液相線温度より高温に加熱されたSi-C溶液に種結晶基板を浸漬することによっても行うことができる。この場合、Si-C溶液温度が高くなるほど溶解速度は高まるが溶解量の制御が難しくなり、温度が低いと溶解速度が遅くなることがある。
いくつかの態様において、あらかじめ種結晶基板を加熱しておいてから種結晶基板をSi-C溶液に接触させてもよい。低温の種結晶基板を高温のSi-C溶液に接触させると、種結晶に熱ショック転位が発生することがある。種結晶基板をSi-C溶液に接触させる前に、種結晶基板を加熱しておくことが、熱ショック転位を防止し、高品質なSiC単結晶を成長させるために効果的である。種結晶基板の加熱は種結晶保持軸ごと加熱して行うことができる。この場合、種結晶基板をSi-C溶液に接触させた後、SiC単結晶を成長させる前に種結晶保持軸の加熱を止める。または、この方法に代えて、比較的低温のSi-C溶液に種結晶を接触させてから、結晶を成長させる温度にSi-C溶液を加熱してもよい。この場合も、熱ショック転位を防止し、高品質なSiC単結晶を成長させるために効果的である。
(実施例1-1)
図6に示す単結晶製造装置100を用いてSiC単結晶の成長を行った。Si-C溶液24を収容する深さが80mm、内径が70mm(坩堝深さ/坩堝内径=1.14)の黒鉛坩堝10にSi/Cr/Niを原子組成百分率で54:40:6の割合で融液原料として仕込んだ。単結晶製造装置の内部の空気をアルゴンで置換した。黒鉛坩堝10の周囲に配置された高周波コイル22に通電して加熱により黒鉛坩堝10内の原料を融解し、Si/Cr/Ni合金の融液を形成した。そしてSi/Cr/Ni合金の融液に黒鉛坩堝10から十分な量のCを溶解させて、Si-C溶液24を形成した。
図6に示す単結晶製造装置100を用いてSiC単結晶の成長を行った。Si-C溶液24を収容する深さが80mm、内径が70mm(坩堝深さ/坩堝内径=1.14)の黒鉛坩堝10にSi/Cr/Niを原子組成百分率で54:40:6の割合で融液原料として仕込んだ。単結晶製造装置の内部の空気をアルゴンで置換した。黒鉛坩堝10の周囲に配置された高周波コイル22に通電して加熱により黒鉛坩堝10内の原料を融解し、Si/Cr/Ni合金の融液を形成した。そしてSi/Cr/Ni合金の融液に黒鉛坩堝10から十分な量のCを溶解させて、Si-C溶液24を形成した。
上段コイル22A及び下段コイル22Bの出力を調節して黒鉛坩堝10を加熱し、Si-C溶液24の内部から溶液の液面に向けて温度低下する温度勾配を形成した。このとき、高周波コイル22の発熱中心に対して坩堝の位置を上下に変化させて温度勾配を測定し、温度勾配が最大となる位置に坩堝を配置した。温度勾配の測定は、昇降可能な熱電対を用いて、Si-C溶液24の温度を測定することによって行った。Si-C溶液24の表面における温度を2000℃にし、Si-C溶液の液面を低温側として、Si-C溶液24の液面における温度と、Si-C溶液24の液面から溶液内部に向けて垂直方向の深さ10mmの位置における温度との温度差を57℃として、57℃/cmの温度勾配を形成した。
直径が12mm及び長さが200mmの円柱形状の黒鉛の種結晶保持軸12を用意した。昇華法により作成され、厚み1mm、直径12mmの(000-1)ジャスト面を有し、5.5×103個/cm2の貫通転位密度を有する円盤状4H-SiC単結晶を用意して種結晶基板14として用いた。
種結晶基板14の下面が(000-1)面となるようにして種結晶基板14の上面を、種結晶保持軸12の端面の略中央部に、黒鉛の接着剤を用いて接着した。断熱材18及び黒鉛製の坩堝上部の蓋20の上部に開けた直径20mmの開口部28に種結晶保持軸12を通すようにして種結晶保持軸12及び種結晶基板14を配置した。開口部28における坩堝10と種結晶保持軸12との間の隙間は4.0mmであった。
次いで、種結晶基板14を保持した種結晶保持軸12を降下させ、Si-C溶液24の表面位置に種結晶基板14の下面が一致するようにして種結晶基板14をSi-C溶液24に接触させ、種結晶基板14の下面をSi-C溶液24に濡らした。次いで、Si-C溶液24の液面から種結晶基板14の下面が1.0mm上方に位置するように種結晶基板14を引き上げ、Si-C溶液のメニスカスを形成させ、1時間、SiC結晶を成長させた。
結晶成長をさせている間、種結晶基板14の下面の外周部が94.2mm/秒の速度で回転するように種結晶保持軸12を150rpmの速度で回転させ、且つ種結晶基板14を同一方向に連続して回転させる回転保持時間を15秒間とし、回転方向切り替え時の種結晶基板14の停止時間を5秒として、周期的に回転方向を切り替えた。
結晶成長の終了後、黒鉛軸を上昇させて、種結晶及び種結晶を基点として成長したSiC結晶を、Si-C溶液及び黒鉛軸から切り離して回収した。得られた成長結晶はSiC単結晶であり、直径が12mm、成長面の中心における厚みが1.96mmであり、SiC単結晶の成長速度は1.96mm/時であった。
図5に示すようにして、得られたSiC単結晶を種結晶基板14とともに、成長方向に平行方向に成長面の中心部分が含まれるように1mm厚に切り出して鏡面研磨を行い、切り出した成長結晶の断面について、透過モードで光学顕微鏡観察を行った。図7に、本例で成長させたSiC単結晶及び種結晶基板を含むSiCインゴットの断面の光学顕微鏡写真を示す。
成長させたSiC単結晶には、直径8mmの範囲の広い範囲にわたって黒色部はみられず、インクルージョンは含まれていなかった。
また、得られた成長結晶を成長面から0.5mmの厚みで切り出し、切り出した成長結晶の(0001)面を鏡面研磨し、510℃の溶融KOHを用いてアルカリエッチングした。エッチング面について顕微鏡観察を行った。図8にエッチング面の顕微鏡写真を示す。図8にみられるエッチピットの個数を計測し、成長結晶の貫通転位密度を測定した。貫通転位密度は5.5×103個/cm2であり、種結晶基板の転位密度と同等であり、新規の転位発生はほとんどないことを確認した。
(実施例1-2)
実施例1と同条件でSiC単結晶を成長させ、再現性を評価したところ、1.92mm/時のSiC単結晶の成長速度が得られ、且つ直径8mmの範囲にわたってインクルージョンを含まず、種結晶基板と同等の転位密度を有するSiC単結晶が得られていることを確認した。
実施例1と同条件でSiC単結晶を成長させ、再現性を評価したところ、1.92mm/時のSiC単結晶の成長速度が得られ、且つ直径8mmの範囲にわたってインクルージョンを含まず、種結晶基板と同等の転位密度を有するSiC単結晶が得られていることを確認した。
(実施例2)
Si-C溶液の液面温度を2000℃にしつつ、実施例1で配置した坩堝の位置に対して、坩堝を下方に1mm移動させて配置し、Si-C溶液の液面と、Si-C溶液24の液面から溶液内部に向けて垂直方向の深さ10mmの位置と間で50℃/cmの温度勾配を形成したこと以外は、実施例1と同様の条件にて結晶成長を行ったところ、1.72mm/時のSiC単結晶の成長速度が得られた。
Si-C溶液の液面温度を2000℃にしつつ、実施例1で配置した坩堝の位置に対して、坩堝を下方に1mm移動させて配置し、Si-C溶液の液面と、Si-C溶液24の液面から溶液内部に向けて垂直方向の深さ10mmの位置と間で50℃/cmの温度勾配を形成したこと以外は、実施例1と同様の条件にて結晶成長を行ったところ、1.72mm/時のSiC単結晶の成長速度が得られた。
実施例1と同様にして、成長結晶についてインクルージョンの観察及び転位密度の測定を行い、直径8mmの範囲にわたってインクルージョンを含まず、且つ種結晶基板と同等の転位密度を有するSiC単結晶が得られていることを確認した。
(実施例3)
Si-C溶液の液面温度を2000℃にしつつ、実施例1で配置した坩堝の位置に対して、坩堝を下方に5mm移動させて配置し、Si-C溶液の液面と、Si-C溶液24の液面から溶液内部に向けて垂直方向の深さ10mmの位置と間で47℃/cmの温度勾配を形成したこと以外は、実施例1と同様の条件にて結晶成長を行ったところ、1.27mm/時のSiC単結晶の成長速度が得られた。
Si-C溶液の液面温度を2000℃にしつつ、実施例1で配置した坩堝の位置に対して、坩堝を下方に5mm移動させて配置し、Si-C溶液の液面と、Si-C溶液24の液面から溶液内部に向けて垂直方向の深さ10mmの位置と間で47℃/cmの温度勾配を形成したこと以外は、実施例1と同様の条件にて結晶成長を行ったところ、1.27mm/時のSiC単結晶の成長速度が得られた。
実施例1と同様にして、成長結晶についてインクルージョンの観察及び転位密度の測定を行い、直径8mmの範囲にわたってインクルージョンを含まず、且つ種結晶基板と同等の転位密度を有するSiC単結晶が得られていることを確認した。
(参考例1~5)
参考例1~5においては、それぞれ、Si-C溶液の液面温度を2000℃にしつつ、表1に示した温度勾配を有するように、高周波コイル22に対して坩堝を配置したこと以外は、実施例1と同様の条件にて結晶成長を行ったところ、それぞれ、表1に示すSiC単結晶の成長速度が得られた。
参考例1~5においては、それぞれ、Si-C溶液の液面温度を2000℃にしつつ、表1に示した温度勾配を有するように、高周波コイル22に対して坩堝を配置したこと以外は、実施例1と同様の条件にて結晶成長を行ったところ、それぞれ、表1に示すSiC単結晶の成長速度が得られた。
実施例1と同様にして、参考例1~5で成長させたSiC単結晶についてインクルージョンの観察及び転位密度の測定を行い、直径8mmの範囲にわたってインクルージョンを含まず、且つ種結晶基板と同等の転位密度を有するSiC単結晶が得られていることを確認した。
(比較例1)
比較例1においては、深さが120mm、内径が70mm(坩堝深さ/坩堝内径=1.71)の黒鉛坩堝10を用い、高周波コイル22の発熱中心に対する坩堝の位置を上下に変化させて温度勾配を測定し、Si-C溶液24の表面における温度を2000℃にしつつ、温度勾配が最大となる位置に坩堝を配置し、42℃/cmのSi-C溶液表面領域の温度勾配を形成したこと以外は、実施例1と同様の条件にてSiC単結晶の結晶成長を行った。
比較例1においては、深さが120mm、内径が70mm(坩堝深さ/坩堝内径=1.71)の黒鉛坩堝10を用い、高周波コイル22の発熱中心に対する坩堝の位置を上下に変化させて温度勾配を測定し、Si-C溶液24の表面における温度を2000℃にしつつ、温度勾配が最大となる位置に坩堝を配置し、42℃/cmのSi-C溶液表面領域の温度勾配を形成したこと以外は、実施例1と同様の条件にてSiC単結晶の結晶成長を行った。
結晶成長の終了後、黒鉛軸を上昇させて、種結晶及び種結晶を基点として成長したSiC結晶を、Si-C溶液及び黒鉛軸から切り離して回収した。得られた成長結晶はSiC単結晶であり、直径が12mm、成長面の中心における厚みが0.57mmであり、SiC単結晶の成長速度は0.57mm/時であった。
実施例1と同様にして、比較例1で成長させたSiC単結晶についてインクルージョンの観察及び転位密度の測定を行い、直径8mmの範囲にわたってインクルージョンを含まず、且つ種結晶基板と同等の転位密度を有するSiC単結晶が得られていることを確認した。
(比較例2~12)
比較例2~12においては、それぞれ、Si-C溶液の液面温度を2000℃にしつつ、表1に示した温度勾配を有するように、高周波コイル22に対して坩堝を配置したこと以外は、実施例1と同様の条件にて結晶成長を行ったところ、それぞれ、表1に示すSiC単結晶の成長速度が得られた。
比較例2~12においては、それぞれ、Si-C溶液の液面温度を2000℃にしつつ、表1に示した温度勾配を有するように、高周波コイル22に対して坩堝を配置したこと以外は、実施例1と同様の条件にて結晶成長を行ったところ、それぞれ、表1に示すSiC単結晶の成長速度が得られた。
実施例1と同様にして、比較例2~12で成長させたSiC単結晶についてインクルージョンの観察及び転位密度の測定を行い、直径8mmの範囲にわたってインクルージョンを含まず、且つ種結晶基板と同等の転位密度を有するSiC単結晶が得られていることを確認した。
表1に、実施例1~3、参考例1~5、及び比較例1~12で得られたSi-C溶液の表面領域の温度勾配及びSiC単結晶の成長速度を示す。
また、図9に、実施例1~3及び比較例1~17で得られたSi-C溶液の表面領域の温度勾配に対するSiC単結晶の成長速度をプロットしたグラフを示す。それぞれのプロットに引いた点線は、最小自乗法により算出した近似線である。実施例1~3で得られたデータの近似線の傾きは0.0585であり、参考例1~5で得られたデータの近似線の傾きは0.0109であり、比較例1~12で得られたデータの近似線の傾きは0.0122であった。
坩堝深さ/坩堝内径の寸法比率が1.14の坩堝を用いた場合、坩堝深さ/坩堝内径の寸法比率が1.71の坩堝を用いた場合と比べて、温度勾配が同じでもSiC単結晶の高い成長速度が得られた。また、Si-C溶液の表面領域の温度勾配が42℃/cmよりも大きい領域にて、SiC単結晶の非常に高い成長速度が得られた。
100 単結晶製造装置
10 坩堝
12 種結晶保持軸
14 種結晶基板
16 坩堝高さ
17 坩堝内径
18 断熱材
20 坩堝上部の蓋
22 高周波コイル
22A 上段高周波コイル
22B 下段高周波コイル
24 Si-C溶液
26 石英管
28 坩堝上部の開口部
34 メニスカス
40 SiC成長結晶
42 切り出した成長結晶
10 坩堝
12 種結晶保持軸
14 種結晶基板
16 坩堝高さ
17 坩堝内径
18 断熱材
20 坩堝上部の蓋
22 高周波コイル
22A 上段高周波コイル
22B 下段高周波コイル
24 Si-C溶液
26 石英管
28 坩堝上部の開口部
34 メニスカス
40 SiC成長結晶
42 切り出した成長結晶
Claims (5)
- 坩堝内に入れられ、内部から液面に向けて温度低下する温度勾配を有するSi-C溶液に、種結晶基板を接触させてSiC単結晶を結晶成長させる、SiC単結晶の製造方法であって、
前記坩堝の深さ/内径が1.71未満であり、
前記Si-C溶液の液面から10mm下までの範囲の温度勾配が42℃/cmよりも大きい、
SiC単結晶の製造方法。 - 前記温度勾配が47℃/cm以上である、請求項1に記載のSiC単結晶の製造方法。
- 前記温度勾配が50℃/cm以上である、請求項1に記載のSiC単結晶の製造方法。
- 前記温度勾配が57℃/cm以上である、請求項1に記載のSiC単結晶の製造方法。
- 前記坩堝の深さ/内径が1.14以下である、請求項1~4のいずれか一項に記載のSiC単結晶の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157005108A KR101710814B1 (ko) | 2012-08-30 | 2013-08-12 | SiC 단결정의 제조 방법 |
CN201380045663.9A CN104603336B (zh) | 2012-08-30 | 2013-08-12 | SiC单晶体的制造方法 |
US14/420,984 US9530642B2 (en) | 2012-08-30 | 2013-08-12 | Method for producing SiC single crystal |
EP13832833.1A EP2891732B1 (en) | 2012-08-30 | 2013-08-12 | Method for producing sic single crystal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012190547A JP5876390B2 (ja) | 2012-08-30 | 2012-08-30 | SiC単結晶の製造方法 |
JP2012-190547 | 2012-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034424A1 true WO2014034424A1 (ja) | 2014-03-06 |
Family
ID=50183240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/071812 WO2014034424A1 (ja) | 2012-08-30 | 2013-08-12 | SiC単結晶の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9530642B2 (ja) |
EP (1) | EP2891732B1 (ja) |
JP (1) | JP5876390B2 (ja) |
KR (1) | KR101710814B1 (ja) |
CN (1) | CN104603336B (ja) |
WO (1) | WO2014034424A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016148207A1 (ja) * | 2015-03-18 | 2016-09-22 | 新日鐵住金株式会社 | SiC単結晶の製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015122184A1 (ja) * | 2014-02-12 | 2015-08-20 | 新日鐵住金株式会社 | SiC単結晶の製造方法 |
US9732437B2 (en) | 2014-09-09 | 2017-08-15 | Toyota Jidosha Kabushiki Kaisha | SiC single crystal and method for producing same |
JP6119732B2 (ja) * | 2014-09-09 | 2017-04-26 | トヨタ自動車株式会社 | SiC単結晶及びその製造方法 |
JP2016079070A (ja) * | 2014-10-17 | 2016-05-16 | 新日鐵住金株式会社 | 溶液成長法によるSiC単結晶の製造装置及びSiC単結晶の製造方法 |
JP6256411B2 (ja) * | 2015-05-18 | 2018-01-10 | トヨタ自動車株式会社 | SiC単結晶の製造方法 |
US20170327968A1 (en) * | 2016-05-10 | 2017-11-16 | Toyota Jidosha Kabushiki Kaisha | SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME |
CN114635184B (zh) * | 2022-03-21 | 2023-03-31 | 北京晶格领域半导体有限公司 | 封闭式液相法生长碳化硅的装置、系统和方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004002173A (ja) * | 2002-04-15 | 2004-01-08 | Sumitomo Metal Ind Ltd | 炭化珪素単結晶とその製造方法 |
JP2006347852A (ja) * | 2005-06-20 | 2006-12-28 | Toyota Motor Corp | 炭化珪素単結晶の製造方法 |
JP2009091222A (ja) | 2007-10-11 | 2009-04-30 | Sumitomo Metal Ind Ltd | SiC単結晶の製造方法、SiC単結晶ウエハ及びSiC半導体デバイス |
JP2009179491A (ja) * | 2008-01-29 | 2009-08-13 | Toyota Motor Corp | p型SiC半導体単結晶の製造方法およびそれにより製造されたp型SiC半導体単結晶 |
JP2011168447A (ja) * | 2010-02-18 | 2011-09-01 | Toyota Motor Corp | SiC単結晶の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4196791B2 (ja) * | 2003-09-08 | 2008-12-17 | トヨタ自動車株式会社 | SiC単結晶の製造方法 |
JP4419937B2 (ja) * | 2005-09-16 | 2010-02-24 | 住友金属工業株式会社 | 炭化珪素単結晶の製造方法 |
JP4179331B2 (ja) * | 2006-04-07 | 2008-11-12 | トヨタ自動車株式会社 | SiC単結晶の製造方法 |
JP5801730B2 (ja) * | 2012-01-20 | 2015-10-28 | トヨタ自動車株式会社 | 単結晶の製造装置に用いられる種結晶保持軸及び単結晶の製造方法 |
-
2012
- 2012-08-30 JP JP2012190547A patent/JP5876390B2/ja active Active
-
2013
- 2013-08-12 WO PCT/JP2013/071812 patent/WO2014034424A1/ja active Application Filing
- 2013-08-12 CN CN201380045663.9A patent/CN104603336B/zh active Active
- 2013-08-12 US US14/420,984 patent/US9530642B2/en active Active
- 2013-08-12 EP EP13832833.1A patent/EP2891732B1/en not_active Not-in-force
- 2013-08-12 KR KR1020157005108A patent/KR101710814B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004002173A (ja) * | 2002-04-15 | 2004-01-08 | Sumitomo Metal Ind Ltd | 炭化珪素単結晶とその製造方法 |
JP2006347852A (ja) * | 2005-06-20 | 2006-12-28 | Toyota Motor Corp | 炭化珪素単結晶の製造方法 |
JP2009091222A (ja) | 2007-10-11 | 2009-04-30 | Sumitomo Metal Ind Ltd | SiC単結晶の製造方法、SiC単結晶ウエハ及びSiC半導体デバイス |
JP2009179491A (ja) * | 2008-01-29 | 2009-08-13 | Toyota Motor Corp | p型SiC半導体単結晶の製造方法およびそれにより製造されたp型SiC半導体単結晶 |
JP2011168447A (ja) * | 2010-02-18 | 2011-09-01 | Toyota Motor Corp | SiC単結晶の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2891732A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016148207A1 (ja) * | 2015-03-18 | 2016-09-22 | 新日鐵住金株式会社 | SiC単結晶の製造方法 |
JPWO2016148207A1 (ja) * | 2015-03-18 | 2017-12-28 | トヨタ自動車株式会社 | SiC単結晶の製造方法 |
US10145025B2 (en) | 2015-03-18 | 2018-12-04 | Toyota Jidosha Kabushiki Kaisha | Method for producing SiC single crystal |
Also Published As
Publication number | Publication date |
---|---|
CN104603336B (zh) | 2017-09-29 |
EP2891732B1 (en) | 2021-09-22 |
KR101710814B1 (ko) | 2017-02-27 |
CN104603336A (zh) | 2015-05-06 |
KR20150036779A (ko) | 2015-04-07 |
EP2891732A4 (en) | 2015-11-04 |
US9530642B2 (en) | 2016-12-27 |
JP2014047096A (ja) | 2014-03-17 |
JP5876390B2 (ja) | 2016-03-02 |
EP2891732A1 (en) | 2015-07-08 |
US20150221511A1 (en) | 2015-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6046405B2 (ja) | SiC単結晶のインゴット、その製造装置及びその製造方法 | |
JP5876390B2 (ja) | SiC単結晶の製造方法 | |
JP5821958B2 (ja) | SiC単結晶及びその製造方法 | |
JP5839117B2 (ja) | SiC単結晶及びその製造方法 | |
JP5434801B2 (ja) | SiC単結晶の製造方法 | |
JP5668724B2 (ja) | SiC単結晶のインゴット、SiC単結晶、及び製造方法 | |
JP5905864B2 (ja) | SiC単結晶及びその製造方法 | |
JP5890377B2 (ja) | SiC単結晶の製造方法 | |
JP6354615B2 (ja) | SiC単結晶の製造方法 | |
JP2017202969A (ja) | SiC単結晶及びその製造方法 | |
JPWO2018062224A1 (ja) | SiC単結晶の製造方法及びSiC種結晶 | |
JP6060863B2 (ja) | SiC単結晶及びその製造方法 | |
JP6390628B2 (ja) | SiC単結晶の製造方法及び製造装置 | |
JP6030525B2 (ja) | SiC単結晶の製造方法 | |
JP2017226583A (ja) | SiC単結晶の製造方法 | |
JP6500828B2 (ja) | SiC単結晶の製造方法 | |
JP2019052074A (ja) | SiC単結晶の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13832833 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14420984 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157005108 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |