WO2014020647A1 - 傾斜角検出装置および車載機器 - Google Patents
傾斜角検出装置および車載機器 Download PDFInfo
- Publication number
- WO2014020647A1 WO2014020647A1 PCT/JP2012/004891 JP2012004891W WO2014020647A1 WO 2014020647 A1 WO2014020647 A1 WO 2014020647A1 JP 2012004891 W JP2012004891 W JP 2012004891W WO 2014020647 A1 WO2014020647 A1 WO 2014020647A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acceleration
- vehicle
- road surface
- tilt angle
- calculation unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/30—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C9/00—Measuring inclination, e.g. by clinometers, by levels
- G01C9/02—Details
- G01C9/08—Means for compensating acceleration forces due to movement of instrument
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
- B60Q1/02—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
- B60Q1/04—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
- B60Q1/06—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
- B60Q1/08—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
- B60Q1/10—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution
- B60Q1/115—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution by electric means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/14—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of gyroscopes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/16—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by evaluating the time-derivative of a measured speed signal
Definitions
- the present invention relates to an inclination angle detection device for detecting either or both of an inclination angle (road surface gradient) of a road surface and an inclination angle (pitching angle) of a vehicle with respect to the road surface, and an in-vehicle device using the inclination angle detection device.
- an inclination angle detection device for detecting either or both of an inclination angle (road surface gradient) of a road surface and an inclination angle (pitching angle) of a vehicle with respect to the road surface, and an in-vehicle device using the inclination angle detection device.
- the pitching angle is used in auto levelizer systems that adjust the optical axis of vehicle headlights.
- a method of calculating the pitching angle by measuring the angle of the suspension arm to determine the height positions of the front wheels and the rear wheels see, for example, Patent Document 1
- radio waves reflected on the road surface at a plurality of locations on the vehicle There has been a method of receiving and calculating a pitching angle based on the phase difference (see, for example, Patent Document 2).
- the road surface gradient is used in car navigation systems and the like to correct errors that occur in the vehicle turning angle detected by the gyro while traveling on a slope.
- the road surface gradient is calculated from the acceleration generated in the vehicle detected by the uniaxial acceleration sensor, the acceleration in the vehicle traveling direction obtained from the wheel speed, and the preset vehicle specifications (vehicle weight, suspension spring constant, etc.). It was estimated (see, for example, Patent Document 3).
- the present invention has been made in order to solve the above-described problems, and an inclination angle detection device that uses a detection value of a sensor installed in a vehicle and can be shared between vehicles, and the inclination angle.
- An object is to provide an in-vehicle device using a detection device.
- the inclination angle detection device is a road surface gradient that is an inclination angle in the front-rear direction of the road surface on which the vehicle is placed, based on the vehicle longitudinal acceleration, the vertical acceleration, and the actual acceleration in the traveling direction. And / or a pitching angle, which is an inclination angle of the vehicle in the longitudinal direction with respect to the road surface, or both.
- the in-vehicle device operates based on one or both of the road surface gradient and the pitching angle calculated by the above-described inclination angle detection device.
- the road surface gradient and the pitching angle are calculated based on the longitudinal and vertical accelerations of the vehicle and the actual acceleration in the traveling direction. Can be used. Therefore, it is not necessary to install a dedicated detector in the vehicle. Further, since the vehicle specifications are not required, the tilt angle detection device can be shared between vehicles.
- FIG. 6A is a graph showing the linear approximation formula ⁇ x of tan ⁇ 1 (x), and FIG.
- 6B is a graph showing the linear approximation formula ⁇ x of sin ⁇ 1 (x). It is a block diagram which shows the structure of the inclination-angle detection apparatus which concerns on Embodiment 2 of this invention. It is a figure explaining the vehicle installation state of the various sensors which the inclination-angle detection apparatus which concerns on Embodiment 2 utilizes. It is a figure explaining the orientation of the biaxial direction of the acceleration sensor with respect to the XYZ axis
- 10 is a flowchart showing the operation of the tilt angle detection apparatus according to the third embodiment. It is a block diagram which shows the structure of the inclination-angle detection apparatus which concerns on Embodiment 4 of this invention. 10 is a flowchart showing the operation of the tilt angle detection apparatus according to the fourth embodiment.
- Embodiment 1 An inclination angle detection device 1 shown in FIG. 1 is mounted on a vehicle, and an inclination angle (road surface gradient) in the vehicle front-rear direction of a road surface on which the vehicle is placed, and an inclination angle (pitching angle) in the front-rear direction of the vehicle with respect to the road surface. Is detected.
- This vehicle is provided with a biaxial acceleration sensor 11 and a wheel speed sensor 12 for use in an air bag device, an ABS (Antilock Brake System), and the like.
- this vehicle is equipped with a navigation device 13 and an optical axis adjustment device 14 (so-called auto levelizer system).
- the inclination angle detection device 1 performs communication between the sensors and the vehicle-mounted devices through a vehicle communication network such as a CAN (Controller Area Network) or a LIN (Local Inter-connect Network).
- FIG. 2 is a diagram illustrating a vehicle installation state of various sensors used by the tilt angle detection device 1.
- the longitudinal direction of the vehicle 10 is defined as the X axis, the lateral direction as the Y axis, and the vertical direction as the Z axis. These three axes are orthogonal to each other.
- the biaxial acceleration sensor 11 is installed above the suspension (not shown) of the vehicle 10. This acceleration sensor 11 is arranged in a direction in which two axes are parallel to the XZ plane, and one axis is oriented parallel to the X axis to detect the acceleration Gx in the front-rear direction of the vehicle 10, and the other axis Are oriented parallel to the Z axis to detect the vertical acceleration Gz of the vehicle 10.
- the detected accelerations Gx and Gz are transmitted from the acceleration sensor 11 to the tilt angle detection device 1 through the vehicle communication network.
- the inclination angle detection device 1 and the acceleration sensor 11 are installed at the same place, thereby reducing the labor of installation and wiring.
- the wheel speed sensor 12 is installed on the front wheel or the rear wheel below the suspension of the vehicle 10.
- the wheel speed sensor 12 detects the rotational speed of the wheel and calculates the speed V in the traveling direction of the vehicle 10.
- the calculated speed V is transmitted from the wheel speed sensor 12 to the tilt angle detection device 1 through the vehicle communication network.
- the tilt angle detection device 1 is an ECU (Electric Control Unit) constituted by a microcomputer (hereinafter referred to as a microcomputer), and is a communication interface (hereinafter referred to as an acceleration sensor 11 and a wheel speed sensor 12) via a vehicle communication network. , I / F) 2, a communication I / F 7 that communicates with the navigation device 13 and the optical axis adjustment device 14 via the vehicle communication network, an actual acceleration calculation unit 3, and an inclination angle calculation unit 4.
- the actual acceleration calculation unit 3 time-differentiates the speed V transmitted from the wheel speed sensor 12, and calculates the acceleration in the traveling direction of the vehicle 10, that is, the actual acceleration Gw.
- the inclination angle calculation unit 4 calculates the inclination angle (road surface gradient ⁇ 1) in the front-rear direction of the road surface on which the vehicle 10 is placed, and the inclination angle (pitching angle) in the front-rear direction of the vehicle 10 with respect to the road surface. and a pitching angle calculation unit 6 for calculating ⁇ 2).
- the inclination angle calculation unit 4 calculates the road surface gradient ⁇ 1 and the pitching angle ⁇ 2 based on the accelerations Gx and Gz transmitted from the acceleration sensor 11 and the actual acceleration Gw calculated by the actual acceleration calculation unit 3, and outputs the calculated inclination angle information. To do.
- the road surface gradient ⁇ 1 is transmitted to the navigation device 13 via the communication I / F 7 and used for vehicle position correction and the like.
- the pitching angle ⁇ 2 is transmitted to the optical axis adjustment device 14 via the communication I / F 7 and is used for control for maintaining the optical axis of the headlight at a constant angle with respect to the road surface. Note that the processing based on the road surface gradient ⁇ 1 of the navigation device 13 and the processing based on the pitching angle ⁇ 2 of the optical axis adjusting device 14 are known techniques, and thus detailed description thereof is omitted.
- FIG. 3 is a schematic diagram in a state where the road surface is flat and the vehicle 10 is not inclined with respect to the road surface.
- the longitudinal acceleration Gx of the vehicle 10 coincides with the actual acceleration Gw in the traveling direction of the vehicle 10 (Equation 1).
- the vertical acceleration Gz of the vehicle 10 coincides with the gravitational acceleration ⁇ g (Formula 2).
- FIG. 4 is a schematic diagram of a state in which the road surface is inclined such as a slope and the vehicle 10 is not inclined with respect to the road surface.
- the longitudinal acceleration Gx of the vehicle 10 is detected by subtracting the gravitational acceleration component gsin ⁇ 1 from the actual acceleration Gw in the traveling direction of the vehicle 10 (Equation 3).
- the vertical acceleration Gz of the vehicle 10 is gravitational acceleration ⁇ g cos ⁇ 1 (Formula 4).
- FIG. 5 is a schematic diagram of a state where a road surface such as a slope is inclined and the vehicle 10 is also inclined with respect to the road surface.
- the vehicle 10 is inclined in the front-rear direction as a result of the displacement of the suspension of the front wheels and the rear wheels due to the load on the loading platform.
- the longitudinal acceleration Gx of the vehicle 10 and the actual acceleration Gw in the traveling direction of the vehicle 10 are different in direction by the pitching angle ⁇ 2 of the vehicle (Equation 5).
- the sin component of the actual acceleration Gw in the traveling direction of the vehicle 10 is also superimposed on the acceleration Gz in the vertical direction of the vehicle 10 (Equation 6).
- the pitching angle calculation unit 6 of the inclination angle calculation unit 4 Since the accelerations Gx, Gz, and Gw are input to the pitching angle calculation unit 6 of the inclination angle calculation unit 4, the road surface gradient ⁇ 1 and the pitching angle ⁇ 2 of the vehicle 10 can be calculated from the above equations (5) and (6). It is.
- the specific derivation of the pitching angle ⁇ 2 is as follows.
- the pitching angle calculation unit 6 can calculate the accurate pitching angle ⁇ 2 by calculating ⁇ 2 based on the above equation (9). However, since Equation (9) includes complex inverse functions such as tan ⁇ 1 and sin ⁇ 1 , it is necessary to use a high-performance microcomputer.
- FIG. 6A is a graph showing a linear approximate expression ⁇ x of tan ⁇ 1 (x).
- FIG. 6B is a graph showing a linear approximation expression ⁇ x of sin ⁇ 1 (x).
- linear approximation is possible in the vicinity of the zero point. Therefore, approximation as in the following equation (12) is possible using the coefficients ⁇ and ⁇ .
- the pitching angle calculation unit 6 calculates the above equation (12) using the coefficients ⁇ and ⁇ , and the pitching angle ⁇ is calculated. It is possible to calculate.
- the road surface gradient calculation unit 5 can calculate an accurate road surface gradient ⁇ 1 by calculating ⁇ 1 based on the above equation (15). However, since a complicated function such as sin ⁇ 1 is included in the expression (15), it is necessary to use a high-performance microcomputer.
- a calculation function of the road gradient ⁇ 1 is approximated by a complex function to reduce the calculation processing.
- the above equation (15) is transformed into an approximate equation (16) with sin ⁇ 1 ⁇ 1.
- the road surface gradient calculation unit 5 can calculate the road surface gradient ⁇ 1 by calculating the following equation (16).
- the road surface gradient calculating unit 5 calculates the above equation (17) using the coefficient ⁇ to calculate the road surface gradient ⁇ 1. Is possible.
- the tilt angle calculation unit 4 of the tilt angle detection device 1 is based on the longitudinal acceleration Gx, the vertical acceleration Gz, and the actual acceleration Gw in the traveling direction of the vehicle 10.
- the road surface gradient calculation unit 5 that calculates the road surface gradient ⁇ 1 and the pitching angle calculation unit 6 that calculates the pitching angle ⁇ 2 based on the accelerations Gx and Gz and the actual acceleration Gw are used. Therefore, the road surface gradient ⁇ 1 and the pitching angle ⁇ 2 can be calculated by using the detection values of the biaxial acceleration sensor 11 and the wheel speed sensor 12 that are originally installed in the vehicle 10, and the wheel position can be determined as in the past.
- Expensive detectors such as a sensor for detection and a device for transmitting and receiving radio waves are not required. Further, it is not necessary to install a plurality of detectors at a plurality of locations of the vehicle 10. Furthermore, since it is not necessary to refer to vehicle specifications as in the prior art, the tilt angle detection device 1 can be shared between vehicles. Therefore, it is possible to provide the tilt angle detection device 1 that uses the detection value of the sensor installed in the vehicle 10 and can be shared between the vehicles.
- the tilt angle detection device 1 is configured to obtain the traveling direction speed V from the wheel speed sensor 12 installed in the vehicle 10 and the communication I / F2 via the communication I / F2.
- the obtained speed V is differentiated to provide the actual acceleration calculation unit 3 that calculates the actual acceleration Gw in the traveling direction. For this reason, the detection value of the wheel speed sensor 12 used in ABS or the like can be used, and installation of a new sensor for detecting the actual acceleration Gw becomes unnecessary.
- the tilt angle detection device 1 is installed in the vehicle 10 with one axis parallel to the front-rear direction of the vehicle 10 and the other axis parallel to the vertical direction of the vehicle.
- the communication I / F 2 for acquiring the longitudinal acceleration Gx and the vertical acceleration Gz from the acceleration sensor 11 is provided.
- the detection value of the acceleration sensor 11 used in the airbag apparatus or the like can be used, and installation of a new sensor for detecting the accelerations Gx and Gz becomes unnecessary.
- the detected acceleration can be used as it is in the tilt angle calculation unit 4 without being converted. Therefore, the processing load of the tilt angle detection device 1 is reduced, and a cheaper microcomputer can be used.
- the road surface gradient calculation unit 5 and the pitching angle calculation unit 6 of the inclination angle calculation unit 4 include the longitudinal acceleration Gx, the vertical acceleration Gz, and the actual acceleration Gw in the traveling direction. Is used to calculate or approximate the above two formulas (5) and (6) to calculate the road surface gradient ⁇ 1 and the pitching angle ⁇ 2. Therefore, the road surface gradient ⁇ 1 and the pitching angle ⁇ 2 can be calculated without referring to the vehicle specifications. Further, by using the approximate expressions (10) to (12), (16), (17) and the like derived from the expressions (5) and (6), the processing load of the tilt angle detection device 1 is reduced and the cost is lower. Can be used.
- the navigation device 13 is configured to control the position of the vehicle at the time of navigation based on the road surface gradient ⁇ 1 calculated by the inclination angle detection device 1.
- the vehicle position can be calculated.
- the optical axis adjustment device 14 is configured to control the optical axis of the headlight of the vehicle 10 based on the pitching angle ⁇ 2 calculated by the tilt angle detection device 1, so that it does not dazzle against oncoming vehicles. It is possible to adjust the angle.
- FIG. FIG. 7 is a block diagram showing a configuration of the tilt angle detection apparatus 1a according to the second embodiment.
- FIG. 8 is a diagram illustrating a vehicle installation state of various sensors used by the tilt angle detection device 1a. 7 and 8, the same or corresponding parts as in FIGS. 1 to 7 are denoted by the same reference numerals, and description thereof is omitted.
- the biaxial acceleration sensor 11 installed to detect the longitudinal acceleration Gx and the vertical acceleration Gz of the vehicle 10 is used.
- the acceleration G1 in an arbitrary direction is used.
- G2 is used as a biaxial acceleration sensor 11a.
- an acceleration conversion unit 8 that converts accelerations G1 and G2 detected by the acceleration sensor 11a into accelerations Gx and Gz is added to the tilt angle detection device 1a.
- the acceleration conversion unit 8 mounting information indicating in which direction the two axes of the acceleration sensor 11a are installed is set in advance.
- the acceleration conversion unit 8 converts the accelerations G1 and G2 detected by the acceleration sensor 11a into the longitudinal acceleration Gx and the vertical acceleration Gz of the vehicle 10 using this attachment information. Since the acceleration conversion method is a known technique, detailed description thereof is omitted.
- FIGS. 9A and 9B are diagrams for explaining the orientation of the acceleration sensor 11a in the biaxial direction with respect to the virtual XYZ axes of the vehicle 10,
- FIGS. 9A and 9C are views in the XZ plane, and
- FIG. It is a face view.
- the directions of the two axes for detecting the accelerations G1 and G2 can be oriented at an arbitrary angle from the X, Y, and Z axes.
- FIG. 9 (a) and 9 (b) the directions of the two axes for detecting the accelerations G1 and G2 can be oriented at an arbitrary angle from the X, Y, and Z axes.
- FIG. 9 (a) and 9 (b) the directions of the two axes for detecting the accelerations G1 and G2 can be oriented at an arbitrary angle from the X, Y, and Z axes.
- the subsequent processing is the same as in the first embodiment, and the inclination angle calculation unit 4 calculates the accelerations Gx and Gz converted by the acceleration conversion unit 8 and the actual traveling direction of the vehicle 10 calculated by the actual acceleration calculation unit 3. Based on the acceleration Gw, the road surface gradient ⁇ 1 and the pitching angle ⁇ 2 are calculated and output as inclination angle information.
- the inclination angle detection device 1a includes a horizontal plane (XY plane) in which at least one axis passes in the front-rear direction and the left-right direction, and a vertical plane (YZ plane) that passes in the left-right direction and the up-down direction.
- Communication I / F2 for acquiring arbitrary biaxial accelerations G1 and G2 from the acceleration sensor 11a installed in the vehicle 10 in a state of being inclined with respect to the vehicle I, and using the attachment information of the acceleration sensor 11a, the communication I Acceleration G1, G2 acquired via / F2 is configured to include an acceleration conversion unit 8 that converts the acceleration Gx in the front-rear direction and the acceleration Gz in the vertical direction.
- the freedom degree of the orientation of the biaxial direction of the acceleration sensor 11a is securable. Therefore, even if the biaxial acceleration sensor installed in advance in the vehicle 10 does not detect the vehicle longitudinal and vertical accelerations, it can be used for the inclination angle detection device 1a.
- the acceleration sensors 11 and 11a originally installed in the vehicle 10 are used by the inclination angle detection devices 1 and 1a. You may make it the structure which has the acceleration sensors 11 and 11a for exclusive use.
- An example of this configuration is shown in FIG.
- the tilt angle detection device 1 b includes a dedicated acceleration sensor 11 b and outputs accelerations Gx and Gz from the acceleration sensor 11 b to the tilt angle calculation unit 4 without using the communication I / F 2.
- the wheel speed sensor 12 originally installed in the vehicle 10 is used by the tilt angle detection devices 1 and 1a.
- the tilt angle detection device 1b shown in FIG. the actual acceleration Gw may be detected by using the acceleration sensor 9 instead of the wheel speed sensor 12.
- the inclination angle detection device 1b may be configured to receive the detection value of the acceleration sensor 9 through a vehicle communication network or the like. In the case of this configuration, the actual acceleration calculation unit 3 becomes unnecessary.
- a biaxial acceleration sensor is used as the acceleration sensors 11 and 11a.
- two uniaxial acceleration sensors may be used. It is obvious that the same effect can be obtained with this configuration.
- the inclination angle calculation unit 4 includes both the road surface gradient calculation unit 5 and the pitching angle calculation unit 6, but may include either one.
- FIG. 11 is a block diagram showing the configuration of the tilt angle detection apparatus 1c according to the third embodiment.
- the same or corresponding parts as those in FIGS. 1 to 10 are denoted by the same reference numerals and description thereof is omitted.
- the calculation process of the road surface gradient ⁇ 1 and the pitching angle ⁇ 2 while the vehicle 10 is traveling has been described.
- the third embodiment the calculation process while the vehicle 10 is stopped will be described.
- the speed V of the vehicle 10 received from the wheel speed sensor 12 is used not only by the actual acceleration calculation unit 3 but also by the tilt angle calculation unit 4.
- the inclination angle calculation unit 4 determines whether the vehicle 10 is traveling or stopped based on the speed V acquired from the wheel speed sensor 12 via the communication I / F 2, and performs different calculation processes during traveling and stopping. Do.
- FIG. 12 is a flowchart showing the operation of the tilt angle detection apparatus 1c according to the third embodiment.
- the wheel speed sensor 12 measures the speed V of the vehicle 10, and the tilt angle calculation unit 4 acquires and updates the speed V.
- the inclination angle calculation unit 4 determines whether or not the speed V is close to 0. If the speed V is close to 0 (step ST2 “YES”), it is determined that the vehicle is stopped and proceeds to step ST4. In the case (step ST2 “NO”), it is determined that the vehicle is traveling, and the process proceeds to step ST3.
- step ST3 the road surface gradient calculation unit 5 and the pitching angle calculation unit 6 of the inclination angle calculation unit 4 perform the longitudinal acceleration Gx of the vehicle 10 and the vertical direction as described in the first embodiment.
- the road surface gradient ⁇ 1 and the pitching angle ⁇ 2 are calculated from the above approximate expression.
- step ST4 the road surface gradient calculation unit 5 of the inclination angle calculation unit 4 assumes that the road surface gradient ⁇ 1 does not change, does not perform calculation, and retains (does not change) the value of ⁇ 1.
- the pitching angle calculation unit 6 holds the acceleration Gx in the front-rear direction, the acceleration Gz in the vertical direction, and the road surface gradient calculation unit 5 in order to detect, for example, the inclination of the vehicle 10 that accompanies loading or unloading of an occupant or luggage.
- the pitching angle ⁇ 2 is calculated from the following equation (18) or (19).
- the pitching angle calculation unit 6 can calculate the pitching angle ⁇ 2 by calculating the expression (20) obtained by modifying the above expression (18) or the expression (21) obtained by modifying the above expression (19). .
- sin ⁇ 1 or cos ⁇ 1 may be linearly approximated in advance, and the pitching angle ⁇ 1 may be calculated by approximately calculating equation (20) or (21).
- the road surface gradient calculation unit 5 of the inclination angle calculation unit 4 holds the road surface gradient ⁇ 1
- the pitching angle calculation unit 6 determines the acceleration Gx in the front-rear direction or the vertical
- either the above formula (18) or (19) is calculated or approximated to calculate the pitching angle ⁇ 2. Therefore, it is possible to calculate the pitching angle ⁇ 2 while the vehicle 10 is stopped. Therefore, for example, it is possible to detect the inclination of the vehicle 10 that accompanies the loading or unloading of a passenger or luggage.
- the tilt angle detection device 1 of the first embodiment shown in FIG. 1 is modified to configure the tilt angle detection device 1c shown in FIG. 11, but the tilt angle of the second embodiment shown in FIG. It is also possible to modify the detection device 1a.
- FIG. 13 is a block diagram showing the configuration of the tilt angle detection apparatus 1d according to the fourth embodiment.
- the inclination angle calculation unit 4 amplifies the accelerations Gx and Gz detected by the acceleration sensor 11 with a predetermined sensitivity (gain) and uses them to calculate the road surface gradient ⁇ 1 and the pitching angle ⁇ 2. Therefore, in the fourth embodiment, a sensitivity correction unit 15 that corrects the sensitivity of the acceleration sensor 11 is newly added, and sensitivity correction of the acceleration sensor 11 is performed while the vehicle 10 is stopped.
- FIG. 14 is a flowchart showing the operation of the tilt angle detection apparatus 1d according to the fourth embodiment.
- the acceleration sensor 11 measures the longitudinal acceleration Gx and the vertical acceleration Gz of the vehicle 10, and the tilt angle calculation unit 4 acquires and updates these accelerations Gx, Gz.
- the tilt angle calculation unit 4 determines whether the speed V is near 0, and if it is near 0, determines that the vehicle is stopped (step ST12 “YES”). When it is determined that the vehicle is stopped (step ST12 “YES”), the process proceeds to step ST13.
- the determination that the vehicle is stopped can be combined on the condition that the speed V is in the vicinity of 0 and immediately after the ignition switch is turned on (for example, several 100 ms). A specific example will be described.
- the tilt angle detection device 1d When the passenger turns on the ignition switch, power is supplied to the tilt angle detection device 1d, and the tilt angle detection device 1d is activated.
- the inclination angle calculation unit 4 determines that the vehicle is stopped ("YES" in step ST12). In other cases, it is determined that the vehicle is traveling ("NO" in step ST12).
- step ST13 to ST13 the correction process described below (steps ST13 to ST13) is performed at a time from when the passenger of the vehicle 10 turns on the ignition switch until the accelerator is depressed, that is, when the vehicle 10 is more certain that the vehicle 10 is stopped.
- step 15 is performed, and unnecessary correction processing (steps ST13 to ST15) in a state where there is a possibility that the velocity V is slightly moving in the vicinity of 0 is prevented, and highly accurate correction is possible.
- step ST13 the sensitivity correction unit 15 compares the longitudinal acceleration Gx and the vertical acceleration Gz of the vehicle 10 with the gravity g. Specifically, when the absolute values of the vector components of these accelerations Gx and Gz deviate from the gravitational acceleration g by a predetermined first threshold value Thr or more (step ST13 “NO”), the sensitivity correction processing in step ST14 is performed. carry out.
- step ST14 the sensitivity correction unit 15, the acceleration Gx, by multiplying the magnification sqrt (g 2 / (Gx 2 + Gz 2)) with respect to the sensitivity of the Gz, implementing the sensitivity correction of the acceleration sensor 11.
- the inclination angle calculation unit 4 amplifies the accelerations Gx and Gz detected by the acceleration sensor 11 with the sensitivity corrected by the sensitivity correction unit 15 and uses it to calculate the road surface gradient ⁇ and the pitching angle ⁇ 2.
- the acceleration sensor 11 determines that an abnormality has occurred and detects the acceleration sensor 11. You may comprise so that acceleration Gx, Gz may not be used. Specifically, when the absolute values of the vector components of the accelerations Gx and Gz deviate from the gravitational acceleration g by a preset second threshold Thr1 (Thr1> Thr) or more (
- step ST15 the road surface gradient calculation unit 5 and the pitching angle calculation unit 6 of the inclination angle calculation unit 4 do not perform the calculation process of the road surface gradient ⁇ 1 and the pitching angle ⁇ 2, and set values ⁇ 1 (default) and ⁇ 2 (set in advance) default).
- the set values ⁇ 1 (default) and ⁇ 2 (default) are safe in advance so that devices (such as the navigation device 13 and the optical axis adjusting device 14) that operate based on the road surface gradient ⁇ 1 and the pitching angle ⁇ 2 operate safely.
- devices such as the navigation device 13 and the optical axis adjusting device 14
- the set value ⁇ 2 (default) is set to a value on the safe side (Low side), and the headlight is raised more than necessary while the vehicle is stopped. To avoid dazzling oncoming vehicles.
- step ST12 when it is determined that the vehicle is traveling (step ST12 “NO”) or when
- the inclination angle detection device 1d determines the difference
- is equal to or greater than a predetermined first threshold value Thr
- the sensitivity correction unit 15 determines that the difference
- the second threshold value Thr1 is greater than the threshold value Thr
- the inclination angle calculation unit 4 is notified.
- the inclination angle calculation unit 4 receives the notification from the sensitivity correction unit 15, either the road surface gradient ⁇ 1 or the pitching angle ⁇ 2 is notified. , Or both are configured to be replaced with preset setting values ⁇ 1 (default) and ⁇ 2 (default). For this reason, when the accelerations Gx and Gz output from the acceleration sensor 11 are abnormal values, values that allow the navigation device 13 and the optical axis adjustment device 14 to be controlled to the safe side can be output.
- the tilt angle detecting device 1 of the first embodiment shown in FIG. 1 is modified to configure the tilt angle detecting device 1d shown in FIG. 13, but the second embodiment shown in FIG. 7 or FIG. It is also possible to modify the tilt angle detecting devices 1a and 1b.
- the navigation device 13 is shown as an example of the in-vehicle device using the road surface gradient ⁇ 1
- the optical axis adjusting device 14 is shown as an example of the in-vehicle device using the pitching angle ⁇ 2.
- the inclination angle detection devices 1 and 1a to 1d may output the road surface gradient ⁇ 1 and the pitching angle ⁇ 2 to other in-vehicle devices.
- the tilt angle detection devices 1 and 1a to 1d may be built in the vehicle equipment such as the navigation device 13 and the optical axis adjustment device 14.
- the tilt angle detection device calculates the road surface gradient and the pitching angle based on the longitudinal acceleration, the vertical acceleration, and the actual acceleration in the traveling direction of the vehicle. It is suitable for use in in-vehicle devices such as an on-board navigation device and an optical axis adjustment device.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Abstract
Description
さらに、トラックで貨物の積載重量の違いが発生したり、乗用車で乗車人員の違いが発生したりした場合には、平坦路でもピッチング角の違いが生じるが、このような要因を加味できないという課題もあった。
実施の形態1.
図1に示す傾斜角検出装置1は、車両に搭載され、この車両がおかれている路面の車両前後方向の傾斜角(路面勾配)、および路面に対する車両の前後方向の傾斜角(ピッチング角)を検出するものである。
この車両には、エアバック装置およびABS(Antilock Brake System)等で使用するための、2軸の加速度センサ11および車輪速センサ12が設置されている。またこの車両には、ナビゲーション装置13および光軸調整装置14(いわゆるオートレベライザシステム)が搭載されている。傾斜角検出装置1は、これらのセンサおよび車載機器との間で、CAN(Controller Area Network)またはLIN(Local Inter-connect Network)等の車両通信網を通じた通信を行う。
2軸の加速度センサ11は、車両10のサスペンション(不図示)より上部に設置されている。この加速度センサ11は、2軸がXZ面に平行になる向きに配置されており、一方の軸がX軸と平行に配向されて車両10の前後方向の加速度Gxを検出し、もう一方の軸がZ軸と平行に配向されて車両10の上下方向の加速度Gzを検出する。検出した加速度Gx,Gzは、車両通信網を通じて加速度センサ11から傾斜角検出装置1へ送信される。
なお、図2の例では、傾斜角検出装置1と加速度センサ11を同じ場所に設置して、設置および配線の手間を軽減している。
なお、ナビゲーション装置13の路面勾配θ1に基づく処理、および光軸調整装置14のピッチング角θ2に基づく処理は公知の技術であるため詳細な説明を省略する。
図3は、路面が平坦、かつ路面に対する車両10の傾斜が無い状態の模式図である。この場合、車両10の前後方向の加速度Gxは、車両10の進行方向の実加速度Gwと一致する(式1)。また、車両10の上下方向の加速度Gzは、重力加速度-gと一致する(式2)。
具体的なピッチング角θ2の導出は、以下のとおりである。
ここで、sqrt(x)はxの平方根を求める関数である。
ただし、式(9)にはtan-1、sin-1のような複雑な逆関数が含まれているため、高性能なマイコンを使用する必要がある。
ピッチング角θ2の領域が0°に近い付近(θ2≪1)での変動であることを利用し、上式(9)をsinθ2≒θ2およびcosθ2≒1とした近似式(10)または(11)に変形する。ピッチング角演算部6は、下式(10)または式(11)を演算して、ピッチング角θ2を算出することが可能である。
まず、上式(5),(6)それぞれの両辺を2乗して加算し、整理して、下式(13)を得る。続いて、加法定理に基づき下式(13)を変形して、下式(14)を得る。これを、路面勾配θ1について変形して、下式(15)を得る。
ただし、式(15)にはsin-1のような複雑な関数が含まれているため、高性能なマイコンを使用する必要がある。
路面勾配θ1の領域が0°に近い付近(θ1≪1)での変動であることを利用し、上式(15)をsinθ1≒θ1とした近似式(16)に変形する。路面勾配演算部5は、下式(16)を演算して、路面勾配θ1を算出することが可能である。
また、光軸調整装置14は、傾斜角検出装置1の算出するピッチング角θ2をもとに、車両10のヘッドライトの光軸の制御を行う構成にしたので、対向車に対して眩しくないような角度に調整可能となる。
図7は、本実施の形態2に係る傾斜角検出装置1aの構成を示すブロック図である。図8は、傾斜角検出装置1aが利用する各種センサの車両設置状態を説明する図である。図7および図8において、図1~図7と同一または相当の部分については同一の符号を付し説明を省略する。
上記実施の形態1では、車両10の前後方向の加速度Gxと上下方向の加速度Gzを検出するよう設置された2軸の加速度センサ11を使用したが、本実施の形態2では任意方向の加速度G1,G2を検出する2軸の加速度センサ11aを使用する。また、加速度センサ11aの検出する加速度G1,G2を加速度Gx,Gzに変換する加速度変換部8を、傾斜角検出装置1aに追加している。
図9は、車両10の仮想XYZ軸に対する加速度センサ11aの2軸方向の配向を説明する図であり、図9(a)および図9(c)はXZ面視、図9(b)はXY面視である。
図9(a)および図9(b)に示すように、加速度G1,G2を検出する2軸の方向は、X軸、Y軸およびZ軸から任意の角度傾いた状態に配向可能である。
ただし、図9(c)に示すように、加速度G1,G2の2軸が両方ともXY面(車両10の前後方向と左右方向を通る水平面)に平行に配向されると、加速度変換部8において車両10の上下方向の加速度Gzを算出できない。同様に、図示は省略するが2軸が両方ともYZ面(左右方向と上下方向を通る垂直面)に平行に配向されると、加速度変換部8において車両10の前後方向の加速度Gxを算出できない。そのため、少なくとも1軸を、XY面およびYZ面から傾いた状態に配向する必要がある。
この構成の場合には、実加速度演算部3が不要になる。
図11は、本実施の形態3に係る傾斜角検出装置1cの構成を示すブロック図である。図11において、図1~図10と同一または相当の部分については同一の符号を付し説明を省略する。
上記実施の形態1,2では、車両10の走行中の路面勾配θ1およびピッチング角θ2の演算処理について説明したが、本実施の形態3では車両10の停車中の演算処理について説明する。
図13は、本実施の形態4に係る傾斜角検出装置1dの構成を示すブロック図である。図13において、図1~図11と同一または相当の部分については同一の符号を付し説明を省略する。
通常、傾斜角演算部4は、加速度センサ11が検出した加速度Gx,Gzを所定の感度(ゲイン)で増幅して、路面勾配θ1およびピッチング角θ2の演算に使用している。そこで、本実施の形態4では、加速度センサ11の感度を補正する感度補正部15を新たに追加し、車両10の停車中に加速度センサ11の感度補正を実施する。
具体例を説明する。
乗員がイグニッションスイッチをONにすると、傾斜角検出装置1dに電源が供給され、傾斜角検出装置1dが起動される。傾斜角検出装置1dの起動直後、かつ、速度Vが0近傍であれば、傾斜角演算部4が車両停車中である(ステップST12“YES”)と判定する。それ以外の場合は車両走行中である(ステップST12“NO”)と判定する。
これにより、車両10の乗員がイグニッションスイッチをONしてからアクセルを踏み込むまでの時間、即ち、車両10が停車中であることがより確実であるタイミングで、以下に説明する補正処理(ステップST13~ST15)が実施され、速度Vが0近傍で微小に動いている可能性がある状態での不要な補正処理(ステップST13~ST15)を防止し、精度の高い補正が可能となる。
具体例としては、車両10のピッチング角θ2を利用する光軸調整装置14において、設定値θ2(default)を安全側(Low側)の値に設定し、停車中にヘッドライトが必要以上に上方を照射して対向車等を眩惑しないようにする。
さらに、ナビゲーション装置13および光軸調整装置14等の車載機器に、傾斜角検出装置1,1a~1dを内蔵する構成にしてもよい。
Claims (10)
- 車両の前後方向の加速度と、上下方向の加速度と、進行方向の実加速度とに基づいて、前記車両がおかれている路面の前記前後方向の傾斜角である路面勾配、および、当該路面に対する前記車両の前後方向の傾斜角であるピッチング角のいずれか一方、または両方を算出する傾斜角演算部を備える傾斜角検出装置。
- 前記車両に設置されている車輪速センサから前記進行方向の速度を取得する通信インタフェースと、
前記通信インタフェースを介して取得した前記速度を微分して、前記進行方向の実加速度を算出する実加速度演算部とを備えることを特徴とする請求項1記載の傾斜角検出装置。 - 少なくとも1軸が前記車両の前後方向と左右方向を通る水平面、および当該左右方向と上下方向を通る垂直面それぞれに対して傾いた状態で前記車両に設置されている2軸加速度センサから、任意の2軸方向の加速度を取得する通信インタフェースと、
前記2軸加速度センサの取り付け情報を用いて、前記通信インタフェースを介して取得した前記任意の2軸方向の加速度を、前記前後方向の加速度と前記上下方向の加速度に変換する加速度変換部とを備えることを特徴とする請求項1記載の傾斜角検出装置。 - 1軸が前記車両の前後方向と平行、もう1軸が前記車両の上下方向と平行な状態で前記車両に設置されている2軸加速度センサから、前記前後方向の加速度と前記上下方向の加速度を取得する通信インタフェースを備えることを特徴とする請求項1記載の傾斜角検出装置。
- 1軸が前記車両の前後方向と平行、もう1軸が前記車両の上下方向と平行な状態で前記車両に設置され、前記前後方向の加速度と前記上下方向の加速度を検出する2軸加速度センサを備えることを特徴とする請求項1記載の傾斜角検出装置。
- 前記車両の停車中、前記前後方向の加速度および前記上下方向の加速度のベクトル成分と重力加速度との差分が所定の第1閾値以上の場合に、前記各加速度および前記重力加速度に基づいて前記2軸加速度センサの感度を補正する感度補正部を備えることを特徴とする請求項3記載の傾斜角検出装置。
- 前記感度補正部は、前記前後方向の加速度および前記上下方向の加速度のベクトル成分と重力加速度との差分が、前記第1閾値より大きい第2閾値以上の場合に前記傾斜角演算部に通知し、
前記傾斜角演算部は、前記感度補正部からの通知を受けた場合に、前記路面勾配および前記ピッチング角のいずれか一方、または両方を、予め設定された設定値に置き換えることを特徴とする請求項8記載の傾斜角検出装置。 - 請求項1記載の傾斜角検出装置が算出した路面勾配およびピッチング角のいずれか一方、または両方に基づき動作する車載機器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/004891 WO2014020647A1 (ja) | 2012-08-01 | 2012-08-01 | 傾斜角検出装置および車載機器 |
US14/395,771 US10001361B2 (en) | 2012-08-01 | 2012-08-01 | Inclination detector and onboard apparatus |
DE112012006760.6T DE112012006760T5 (de) | 2012-08-01 | 2012-08-01 | Neigungsdetektor und Bordvorrichtung |
JP2014527825A JP5931198B2 (ja) | 2012-08-01 | 2012-08-01 | 傾斜角検出装置および車載機器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/004891 WO2014020647A1 (ja) | 2012-08-01 | 2012-08-01 | 傾斜角検出装置および車載機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014020647A1 true WO2014020647A1 (ja) | 2014-02-06 |
Family
ID=50027380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/004891 WO2014020647A1 (ja) | 2012-08-01 | 2012-08-01 | 傾斜角検出装置および車載機器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10001361B2 (ja) |
JP (1) | JP5931198B2 (ja) |
DE (1) | DE112012006760T5 (ja) |
WO (1) | WO2014020647A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155242A (ja) * | 2014-02-20 | 2015-08-27 | 三菱電機株式会社 | 前照灯用光軸制御装置 |
JP2015171869A (ja) * | 2014-03-12 | 2015-10-01 | 株式会社小糸製作所 | 車両姿勢制御装置 |
WO2015159872A1 (ja) * | 2014-04-18 | 2015-10-22 | 株式会社デンソー | 車両のピッチング角算出装置及び光軸調整装置 |
JP2017100549A (ja) * | 2015-12-01 | 2017-06-08 | 株式会社小糸製作所 | 車両用灯具の制御装置及び車両用灯具システム |
EP2995906B1 (en) * | 2014-09-04 | 2018-08-15 | Hitachi Construction Machinery Co., Ltd. | Position calculating system and haulage vehicle |
US10126922B2 (en) | 2014-09-10 | 2018-11-13 | Mitsubishi Heavy Industries Machinery Systems, Ltd. | On-board unit and fault determination method |
JP2018193005A (ja) * | 2017-05-19 | 2018-12-06 | スタンレー電気株式会社 | 車両用灯具の制御装置および車両用灯具システム |
CN111344576A (zh) * | 2017-11-29 | 2020-06-26 | 戴姆勒股份公司 | 加速度传感器的安装方向判定装置和安装方向判定方法 |
JP2020132034A (ja) * | 2019-02-22 | 2020-08-31 | スタンレー電気株式会社 | 車両用灯具の制御装置および車両用灯具システム |
WO2020183532A1 (ja) * | 2019-03-08 | 2020-09-17 | 三菱電機株式会社 | 光軸制御装置 |
JP2020183180A (ja) * | 2019-05-08 | 2020-11-12 | トヨタ自動車株式会社 | 車両の勾配推定装置 |
WO2021075400A1 (ja) * | 2019-10-18 | 2021-04-22 | 株式会社小松製作所 | 加速度検出装置、作業機械および加速度検出方法 |
JP2022077482A (ja) * | 2020-11-11 | 2022-05-23 | ヒュンダイ・モービス・カンパニー・リミテッド | 車両用ランプのレベリング制御装置及びその制御方法 |
JP2023104163A (ja) * | 2022-01-17 | 2023-07-28 | ダイハツ工業株式会社 | 車両用制御装置 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012024970A1 (de) * | 2012-12-20 | 2013-07-04 | Daimler Ag | Verfahren zum Bestimmen einer Soll-Kurvenneigung eines Kraftfahrzeugs beim Befahren eines kurvenförmigen Fahrbahnabschnitts |
FR3021605B1 (fr) * | 2014-06-03 | 2016-05-27 | Valeo Vision | Procede et systeme de correction de l’orientation des projecteurs d’un vehicule a moteur |
CN107206928B (zh) * | 2015-01-14 | 2020-11-10 | 株式会社小糸制作所 | 车辆用灯具的控制装置和车辆用灯具系统 |
DE102015111350A1 (de) * | 2015-07-14 | 2017-01-19 | Hella Kgaa Hueck & Co. | Verfahren zur Ermittlung einer Neigung einer Fahrzeugkarosserie |
DE102016103659A1 (de) * | 2016-03-01 | 2017-09-07 | Prüftechnik Dieter Busch AG | Vorrichtung und Verfahren zur Bestimmung einer räumlichen Orientierung |
DE102016225043A1 (de) * | 2016-12-14 | 2018-06-14 | Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. | Beschleunigungskompensierter neigungssensor |
DE102017001271B3 (de) * | 2017-02-10 | 2018-01-11 | HTW Hochschule für Technik und Wirtschaft Dresden | System und Verfahren zur Bestimmung eines Nickwinkels eines Fahrzeugs |
DE102017118809B4 (de) * | 2017-08-17 | 2019-05-02 | Valeo Schalter Und Sensoren Gmbh | Verfahren zum Betreiben einer Sensorvorrichtung eines Kraftfahrzeugs, Sensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug |
DE102017217271A1 (de) * | 2017-09-28 | 2019-03-28 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Ermittlung des Nickwinkels eines Kraftfahrzeugs |
JP7037907B2 (ja) * | 2017-10-17 | 2022-03-17 | スタンレー電気株式会社 | 車両用灯具の制御装置および車両用灯具システム |
FR3077792B1 (fr) | 2018-02-14 | 2020-10-02 | Aml Systems | Procede et dispositif autonomes de determination d’une assiette d’un vehicule automobile. |
CN108297872B (zh) * | 2018-03-08 | 2023-05-05 | 中国第一汽车股份有限公司 | 全工况车载路面坡度估算装置和方法 |
US10632845B2 (en) * | 2018-06-14 | 2020-04-28 | Stephen Torres | Automatic shutoff system for a motor vehicle |
CN113442733B (zh) * | 2020-03-24 | 2024-10-15 | 林德(中国)叉车有限公司 | 一种基于坡度进行工作模式调节的叉车 |
EP4183629B1 (en) | 2021-11-23 | 2024-02-14 | C.R.F. Società Consortile per Azioni | System and method for adjusting the emission direction of a motor-vehicle headlight unit |
IT202200008477A1 (it) | 2022-04-28 | 2023-10-28 | Fiat Ricerche | "Sistema e procedimento per regolare la direzione di emissione di un gruppo proiettore di autoveicolo" |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01267463A (ja) * | 1988-04-19 | 1989-10-25 | Fujitsu Ten Ltd | 車体加速度の検出装置 |
JP2006047156A (ja) * | 2004-08-05 | 2006-02-16 | Nissin Kogyo Co Ltd | 車載用装置および加速度センサの傾斜角度検出方法 |
JP2006300588A (ja) * | 2005-04-18 | 2006-11-02 | Sumitomo Electric Ind Ltd | 車両用傾斜角検出装置 |
JP2006337196A (ja) * | 2005-06-02 | 2006-12-14 | Kayaba Ind Co Ltd | 多軸加速度検出装置 |
JP2008185418A (ja) * | 2007-01-29 | 2008-08-14 | Toyota Motor Corp | 道路形状算出装置及び車両センサ補正装置 |
JP2009282022A (ja) * | 2008-04-25 | 2009-12-03 | Mitsubishi Electric Corp | 車両傾斜検知装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0863381B1 (en) | 1997-03-07 | 2004-06-02 | Pioneer Electronic Corporation | Navigation apparatus |
JPH10253352A (ja) | 1997-03-07 | 1998-09-25 | Pioneer Electron Corp | 移動判定装置及びナビゲーション装置 |
JP3518303B2 (ja) | 1998-01-06 | 2004-04-12 | 日産自動車株式会社 | 車両のピッチ角演算装置 |
JP2002243494A (ja) | 2001-02-13 | 2002-08-28 | Denso Corp | 車載用角速度検出装置、及び車載角速度センサの傾斜角度検出方法,装置 |
JP4696214B2 (ja) | 2001-09-20 | 2011-06-08 | 三菱自動車工業株式会社 | 路面勾配推定装置 |
US6714851B2 (en) | 2002-01-07 | 2004-03-30 | Ford Global Technologies, Llc | Method for road grade/vehicle pitch estimation |
JP4226462B2 (ja) | 2003-12-25 | 2009-02-18 | 三菱電機株式会社 | 角度検出装置および傾斜角度測定装置 |
DE102005003292A1 (de) | 2004-04-15 | 2005-11-03 | Continental Teves Ag & Co. Ohg | Langzeitoffsetabgleich eines Sensors |
US8086384B2 (en) * | 2006-01-06 | 2011-12-27 | Fuji Jukogyo Kabushiki Kaisha | Stop determination apparatus, inclination determination apparatus, and electric parking brake controller |
JP4321554B2 (ja) | 2006-06-23 | 2009-08-26 | トヨタ自動車株式会社 | 姿勢角検出装置と姿勢角検出方法 |
US8095309B2 (en) | 2007-06-05 | 2012-01-10 | GM Global Technology Operations LLC | GPS assisted vehicular longitudinal velocity determination |
US8150651B2 (en) | 2008-06-11 | 2012-04-03 | Trimble Navigation Limited | Acceleration compensated inclinometer |
US8589015B2 (en) * | 2010-02-12 | 2013-11-19 | Webtech Wireless Inc. | Vehicle sensor calibration for determining vehicle dynamics |
-
2012
- 2012-08-01 US US14/395,771 patent/US10001361B2/en active Active
- 2012-08-01 DE DE112012006760.6T patent/DE112012006760T5/de not_active Withdrawn
- 2012-08-01 WO PCT/JP2012/004891 patent/WO2014020647A1/ja active Application Filing
- 2012-08-01 JP JP2014527825A patent/JP5931198B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01267463A (ja) * | 1988-04-19 | 1989-10-25 | Fujitsu Ten Ltd | 車体加速度の検出装置 |
JP2006047156A (ja) * | 2004-08-05 | 2006-02-16 | Nissin Kogyo Co Ltd | 車載用装置および加速度センサの傾斜角度検出方法 |
JP2006300588A (ja) * | 2005-04-18 | 2006-11-02 | Sumitomo Electric Ind Ltd | 車両用傾斜角検出装置 |
JP2006337196A (ja) * | 2005-06-02 | 2006-12-14 | Kayaba Ind Co Ltd | 多軸加速度検出装置 |
JP2008185418A (ja) * | 2007-01-29 | 2008-08-14 | Toyota Motor Corp | 道路形状算出装置及び車両センサ補正装置 |
JP2009282022A (ja) * | 2008-04-25 | 2009-12-03 | Mitsubishi Electric Corp | 車両傾斜検知装置 |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155242A (ja) * | 2014-02-20 | 2015-08-27 | 三菱電機株式会社 | 前照灯用光軸制御装置 |
JP2015171869A (ja) * | 2014-03-12 | 2015-10-01 | 株式会社小糸製作所 | 車両姿勢制御装置 |
WO2015159872A1 (ja) * | 2014-04-18 | 2015-10-22 | 株式会社デンソー | 車両のピッチング角算出装置及び光軸調整装置 |
JP2015205570A (ja) * | 2014-04-18 | 2015-11-19 | 株式会社デンソー | ピッチング角算出装置及び光軸調整装置 |
CN106232424A (zh) * | 2014-04-18 | 2016-12-14 | 株式会社电装 | 车辆的俯仰角计算装置以及光轴调整装置 |
US10099603B2 (en) | 2014-04-18 | 2018-10-16 | Denso Corporation | Pitch angle calculation device and optical axis adjusting device for vehicles |
EP2995906B1 (en) * | 2014-09-04 | 2018-08-15 | Hitachi Construction Machinery Co., Ltd. | Position calculating system and haulage vehicle |
US10126922B2 (en) | 2014-09-10 | 2018-11-13 | Mitsubishi Heavy Industries Machinery Systems, Ltd. | On-board unit and fault determination method |
JP2017100549A (ja) * | 2015-12-01 | 2017-06-08 | 株式会社小糸製作所 | 車両用灯具の制御装置及び車両用灯具システム |
CN108944647B (zh) * | 2017-05-19 | 2022-12-06 | 斯坦雷电气株式会社 | 车辆用灯具的控制装置和车辆用灯具系统 |
JP2018193005A (ja) * | 2017-05-19 | 2018-12-06 | スタンレー電気株式会社 | 車両用灯具の制御装置および車両用灯具システム |
CN108944647A (zh) * | 2017-05-19 | 2018-12-07 | 斯坦雷电气株式会社 | 车辆用灯具的控制装置和车辆用灯具系统 |
JP7430827B2 (ja) | 2017-05-19 | 2024-02-13 | スタンレー電気株式会社 | 車両用灯具の制御装置および車両用灯具システム |
JP2023052600A (ja) * | 2017-05-19 | 2023-04-11 | スタンレー電気株式会社 | 車両用灯具の制御装置および車両用灯具システム |
CN111344576A (zh) * | 2017-11-29 | 2020-06-26 | 戴姆勒股份公司 | 加速度传感器的安装方向判定装置和安装方向判定方法 |
US11442078B2 (en) | 2017-11-29 | 2022-09-13 | Daimler Ag | Mounting direction determination device and mounting direction determination method of acceleration sensor |
JP2020132034A (ja) * | 2019-02-22 | 2020-08-31 | スタンレー電気株式会社 | 車両用灯具の制御装置および車両用灯具システム |
JP7258593B2 (ja) | 2019-02-22 | 2023-04-17 | スタンレー電気株式会社 | 車両用灯具の制御装置および車両用灯具システム |
WO2020183532A1 (ja) * | 2019-03-08 | 2020-09-17 | 三菱電機株式会社 | 光軸制御装置 |
JPWO2020183532A1 (ja) * | 2019-03-08 | 2021-09-13 | 三菱電機株式会社 | 光軸制御装置 |
JP2020183180A (ja) * | 2019-05-08 | 2020-11-12 | トヨタ自動車株式会社 | 車両の勾配推定装置 |
JP7120147B2 (ja) | 2019-05-08 | 2022-08-17 | トヨタ自動車株式会社 | 車両の勾配推定装置 |
US11846650B2 (en) | 2019-10-18 | 2023-12-19 | Komatsu Ltd. | Acceleration detection device, work machine, and acceleration detection method |
JP7406340B2 (ja) | 2019-10-18 | 2023-12-27 | 株式会社小松製作所 | 加速度検出装置、作業機械および加速度検出方法 |
WO2021075400A1 (ja) * | 2019-10-18 | 2021-04-22 | 株式会社小松製作所 | 加速度検出装置、作業機械および加速度検出方法 |
JP7137613B2 (ja) | 2020-11-11 | 2022-09-14 | ヒュンダイ・モービス・カンパニー・リミテッド | 車両用ランプのレベリング制御装置及びその制御方法 |
JP2022077482A (ja) * | 2020-11-11 | 2022-05-23 | ヒュンダイ・モービス・カンパニー・リミテッド | 車両用ランプのレベリング制御装置及びその制御方法 |
JP2023104163A (ja) * | 2022-01-17 | 2023-07-28 | ダイハツ工業株式会社 | 車両用制御装置 |
JP7451065B2 (ja) | 2022-01-17 | 2024-03-18 | ダイハツ工業株式会社 | 車両用制御装置 |
Also Published As
Publication number | Publication date |
---|---|
US10001361B2 (en) | 2018-06-19 |
JP5931198B2 (ja) | 2016-06-08 |
DE112012006760T5 (de) | 2015-08-20 |
US20150088455A1 (en) | 2015-03-26 |
JPWO2014020647A1 (ja) | 2016-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5931198B2 (ja) | 傾斜角検出装置および車載機器 | |
KR101216446B1 (ko) | 차륜 차량 내의 측정 장치를 모니터링하는 방법 및 배열체 | |
US7092808B2 (en) | Integrated sensing system for an automotive system | |
US20050080542A1 (en) | Reference signal generator for an integrated sensing system | |
US9403415B2 (en) | GPS based pitch sensing for an integrated stability control system | |
EP1452353A2 (en) | A vehicle dynamic control system and method | |
EP1346883A2 (en) | Vehicle roll angle estimator and method | |
WO2016042599A1 (ja) | 前照灯用光軸制御装置 | |
EP3083330B1 (en) | Controlling exterior vehicle lights | |
JP2006300588A (ja) | 車両用傾斜角検出装置 | |
KR20170028767A (ko) | 차량의 사고위험상황 정보 제공 장치 및 방법 | |
CN109153351B (zh) | 前照灯用光轴控制装置 | |
KR102637830B1 (ko) | 위치 결정을 위한 방법, 전자 제어 장치 및 시스템 | |
JP2007001423A (ja) | 車両用乗員拘束制御装置 | |
KR20180068635A (ko) | 차량 및 상기 차량의 전복 판단 방법 | |
CN114987378A (zh) | 一种适用于汽车驾驶的安全防护系统、安全防护方法 | |
US11084441B2 (en) | Vehicle airbag firing control system and airbag firing control method using the same | |
CN110065462B (zh) | 车辆的安全气囊点火控制系统及其控制方法 | |
JP6916038B2 (ja) | 車両用灯具の制御装置および車両用灯具システム | |
JP2008209242A (ja) | 対地車速計測装置 | |
JP2016024097A (ja) | 運搬車両 | |
JP2015040784A (ja) | 車体傾斜角検出装置 | |
KR20150062323A (ko) | 차량의 적응형 전방 조명 시스템 | |
CN102166997B (zh) | 一种can-bus网络系统及其控制方法 | |
US20210170924A1 (en) | System and method for reducing injury in autonomous vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12882295 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014527825 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14395771 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112012006760 Country of ref document: DE Ref document number: 1120120067606 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12882295 Country of ref document: EP Kind code of ref document: A1 |