WO2014019152A1 - 锡酸盐荧光材料及其制备方法 - Google Patents

锡酸盐荧光材料及其制备方法 Download PDF

Info

Publication number
WO2014019152A1
WO2014019152A1 PCT/CN2012/079461 CN2012079461W WO2014019152A1 WO 2014019152 A1 WO2014019152 A1 WO 2014019152A1 CN 2012079461 W CN2012079461 W CN 2012079461W WO 2014019152 A1 WO2014019152 A1 WO 2014019152A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent material
stannate
sol
stannate fluorescent
preparation
Prior art date
Application number
PCT/CN2012/079461
Other languages
English (en)
French (fr)
Inventor
周明杰
王荣
陈贵堂
Original Assignee
海洋王照明科技股份有限公司
深圳市海洋王照明工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司, 深圳市海洋王照明工程有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to CN201280071696.6A priority Critical patent/CN104169393B/zh
Priority to JP2015521937A priority patent/JP6001172B2/ja
Priority to PCT/CN2012/079461 priority patent/WO2014019152A1/zh
Priority to US14/399,005 priority patent/US9447317B2/en
Priority to EP12882088.3A priority patent/EP2881449B1/en
Publication of WO2014019152A1 publication Critical patent/WO2014019152A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/20Luminescent screens characterised by the luminescent material

Definitions

  • the present invention relates to the field of luminescent materials, and more particularly to a stannate fluorescent material and a method of preparing the same. Background technique
  • the Field Emission Display is a newly developed flat panel display that works like a conventional cathode ray tube and is imaged by electron beam bombardment of fluorescent material on the display. Compared to other Flat Panel Displays (FPDs), FEDs have potential advantages in terms of brightness, viewing angle, response time, operating temperature range, and energy consumption. Preparation of Good Performance One of the key factors in FED is the preparation of fluorescent materials.
  • the existing cathode ray fluorescent material is mainly composed of stone A.
  • the sulfur therein reacts with a trace amount of elements such as molybdenum, silicon or germanium in the cathode, it is weakened. Its electron emission results in a weaker luminescence intensity of the FED.
  • a stannate fluorescent material having a molecular formula of A 2 _ x Sn0 4 :Eu x @Sn0 2 @M y ,
  • A is selected from the group consisting of Ca, Sr and Ba;
  • M is at least one selected from the group consisting of Ag, Au, Pt, Pd, and Cu metal nanoparticles
  • y is the ratio of the moles of the elements M to Sn, 0 ⁇ y ⁇ l 10 - 2 ;
  • the stannate fluorescent material has M as a core
  • Sn0 2 is an intermediate layer shell
  • a 2 _ x Sn0 4 :Eu x is an outer layer shell.
  • a method for preparing a stannate fluorescent material comprises the following steps:
  • a sol containing M selected from the group consisting of Ag, Au, Pt, Pd, and Cu metal nanoparticles At least one of them;
  • the surface of the sol containing M is subjected to surface treatment, and the pH of the sol containing M is adjusted to be 10-12, and then heated and stirred at a constant temperature of 60 to 90 ° C according to the molecular formula A 2 _ x Sn0 4 :Eu x @Sn0 2 @M y
  • the molar ratio of the element M to the Sn is y, sodium stannate, potassium stannate or tin tetrachloride is added, and the reaction is stirred and separated to obtain a Sn0 2 @M powder coated with M, wherein, 0 ⁇ ylx l0- 2 ;
  • the mixture is subjected to heat treatment, cooling, and grinding to obtain a stannate fluorescent material having a molecular formula of A 2 _ x Sn0 4 :Eu x @Sn0 2 @M y ;
  • A is selected from one of Ca, Sr and Ba elements, 0 ⁇ x 0.05, the stannate fluorescent material has M as a core, Sn0 2 is an intermediate layer shell, and A 2 _ x Sn0 4 :Eu x is Outer shell.
  • the step of preparing the sol containing M is:
  • a salt solution containing at least one of Ag, Au, Pt, Pd, and Cu is mixed with an auxiliary agent and a reducing agent, and reacted for 10-45 minutes to obtain a sol containing M.
  • the concentration of the salt solution of at least one of Ag, Au, Pt, Pd, and Cu is 1 x 10 -3 mol / L ⁇ 5 x 10 - 2 mol / L;
  • the auxiliary agent is at least one selected from the group consisting of polyvinylpyrrolidone, sodium citrate, cetyltrimethylammonium bromide, sodium dodecyl sulfate, and sodium dodecyl sulfate;
  • the content of the auxiliary agent in the sol containing M is lxlO- 4 g/mL ⁇ 5xl- 2 g/mL;
  • the reducing agent is at least one selected from the group consisting of hydrazine hydrate, ascorbic acid, sodium citrate, and sodium borohydride; and the reducing agent is in a salt solution with at least one of Ag, Au, Pt, Pd, and Cu.
  • the molar ratio of metal ions is 3.6:1 to 18:1.
  • the step of surface treating the sol containing M is carried out by adding the sol containing M to an aqueous solution of polyvinylpyrrolidone for 12 to 24 hours.
  • the aqueous solution of polyvinylpyrrolidone has a concentration of from 0.005 g/ml to 0.01 g/ml.
  • the step of adjusting the pH of the sol containing M to 10 to 12 is adjusted with sodium hydroxide or aqueous ammonia.
  • the stirring reaction is carried out for a period of from 1 to 5 hours.
  • the step of subjecting the mixture to heat treatment is: The mixture is heated to 800-1200 ° C for pre-calcination for 2 to 12 hours, and then calcined at 1000 to 1400 ° C for 0.5 to 6 hours.
  • the compound corresponding to A is an oxide, a carbonate, an acetate, a nitrate or an oxalate corresponding to Ca, Sr or Ba
  • the compound corresponding to Eu is an oxidation corresponding to Eu. , carbonate, acetate, nitrate or oxalate.
  • the stannate fluorescent material forms a core-shell structure by coating at least one of Ag, Au, Pt, Pd and Cu metal nanoparticles, and the metal nanoparticles improve the internal quantum efficiency of the fluorescent material, so that the stannate The fluorescent material has a high luminous intensity.
  • FIG. 1 is a flow chart showing a method of preparing a stannate fluorescent material according to an embodiment
  • Figure 2 shows the coated metal nanoparticle Au prepared in Example 2
  • the stannate fluorescent material of one embodiment has a molecular formula of A 2 _ x Sn0 4 :Eu x @Sn0 2 @M y , wherein A is selected from one of Ca, Sr and Ba elements;
  • M is at least one selected from the group consisting of Ag, Au, Pt, Pd, and Cu metal nanoparticles
  • y is the ratio of the moles of the elements M to Sn, 0 ⁇ ylx l0 - 2 ;
  • the stannate fluorescent material M is a core
  • Sn0 2 is an intermediate layer shell
  • a 2 _ x Sn0 4 :Eu x is an outer shell.
  • the ":" of the formula A 2 _ x Sn0 4 :Eu x ⁇ indicates doping, that is, Eu is a doping element, and the divalent Eu ion thereof is an activating ion of the fluorescent material.
  • the outer shell layer A 2 _ x Sn0 4 :Eu x is composed of erbium (Eu ) doped in stannate (A 2 — x Sn 0 4 ).
  • the stannate (A 2 _ x Sn0 4 ) has good chemical and thermal stability and its internal structural defects It is very advantageous for it to be a higher quality fluorescent material.
  • the stannates of Ca, Sr and Ba have relatively high stability.
  • the cerium ion (Eu 2+ ) acts as an activating ion of the stannate fluorescent material, and the stannate fluorescent material emits red fluorescence under the action of a voltage.
  • the metal nanoparticle M As the core of the stannate fluorescent material, the metal nanoparticle M generates a surface plasmon resonance effect to improve the internal quantum efficiency of the stannate fluorescent material.
  • the stannate fluorescent material forms a core-shell structure by coating at least one of Ag, Au, Pt, Pd and Cu metal nanoparticles, and the metal nanoparticles improve the internal quantum efficiency of the fluorescent material, so that the stannate The fluorescent material has a high luminous intensity.
  • the stannate fluorescent material M, Sn0 2 and A 2 _ x Sn0 4 :Eu are chemically stable substances, so that the core-shell structured fluorescent material has good stability during use and can be maintained. Better luminescence properties.
  • the stannate fluorescent material has high stability and good luminescent properties, and can be widely used in the field of display and illumination.
  • this stannate fluorescent material does not produce toxic sulfides during use, is environmentally friendly, non-toxic and safe to use.
  • a method for preparing a stannate fluorescent material comprises the following steps: Step S110: preparing a sol containing M.
  • M is at least one selected from the group consisting of Ag, Au, Pt, Pd, and Cu metal nanoparticles.
  • the step of preparing the sol containing M is to mix a salt solution of at least one of Ag, Au, Pt, Pd and Cu, an auxiliary agent and a reducing agent to obtain a sol containing M.
  • the reaction time is preferably 10 to 45 minutes under the premise of obtaining a sol containing M.
  • the salt solution of Ag, Au, Pt, Pd or Cu is a chlorine solution of Ag, Au, Pt, Pd or Cu, a nitrate solution or the like.
  • the concentration of the salt solution of Ag, Au, Pt, Pd or Cu is flexibly formulated according to actual needs. Preferably lxlO- 3 mol / L ⁇ 5x10- 2 mol / L.
  • the adjuvant is at least one selected from the group consisting of polyvinylpyrrolidone, sodium citrate, hexadecanyltrimethylammonium bromide, sodium lauryl sulfate, and sodium dodecylsulfonate.
  • the content of the auxiliary agent in the sol containing M is 1 x 10 - 4 g / mL ⁇ 5 x 10 - 2 g / mL.
  • the reducing agent is selected from at least one of hydrazine hydrate, ascorbic acid, sodium citrate, and sodium borohydride.
  • Will Reducing agents were formulated as 1 X 10- 4 mol / L ⁇ lmol / L aqueous solution is then reacted with at least one of Ag Au Pt salt solution was mixed,,, Pd and Cu and additives.
  • the molar ratio of the reducing agent to the metal ion in the salt solution of at least one of Ag, Au, Pt, Pd and Cu is 3.6:1 to 18:1.
  • Step S120 Surface-treating the sol containing M, adjusting the pH of the sol containing M to 10 ⁇ 12, and then heating and stirring at 60-90 °C, according to the molecular formula A 2 _ x Sn0 4 :Eu x @ In Sn0 2 @M y , the molar ratio of the element M to the Sn is y, sodium stannate, potassium stannate or tin tetrachloride is added, and the reaction is stirred and separated to obtain a Sn0 2 @M powder coated with M, wherein 0 ⁇ y 1 10- 2 .
  • the M-containing sol obtained in the step S110 is first subjected to surface treatment to form a relatively stable Sn0 2 @M structure of the Sn0 2 coated metal nanoparticles M.
  • the surface treatment step is to add the sol containing M to the aqueous solution of polyvinylpyrrolidone (PVP) and stir for 12 to 24 hours.
  • concentration of the aqueous solution of polyvinylpyrrolidone (PVP) is preferably 0.005 to 0.01 g/ml.
  • the time for stirring the reaction is preferably from 1 to 5 hours.
  • sodium stannate (Na 2 SnO 3 ), tin S potassium (K 2 SnO 3 ) or tin tetrachloride (SnCl 4 ) is hydrolyzed to form Sn(OH) 4 , which is then calcined to obtain Sn0 2 , Sn0 2 .
  • the surface coated with M forms Sn0 2 @M powder.
  • the reaction equation using sodium stannate (Na 2 SnO 3 ) or potassium stannate (K 2 Sn0 3 ) is as follows:
  • Step S130 Mixing the compound corresponding to A and Eu and the Sn0 2 @M powder in a stoichiometric ratio of the molecular formula A 2 _ x Sn0 4 :Eu x @Sn0 2 @M y to obtain a mixture.
  • the corresponding compound of A is an oxide, carbonate, acetate, nitrate or oxalate corresponding to Ca, Sr or Ba, such as calcium carbonate (CaCO 3 ), calcium nitrate Ca(N0 3 ) 2 , bismuth oxalate ( BaC 2 0 4 ) and so on.
  • the compound corresponding to Eu is an oxide, a carbonate, an acetate, a nitrate or an oxalate corresponding to Eu, such as lanthanum oxalate (Eu 2 (C 2 0 4 ) 3 ), lanthanum acetate ( Eu(CH 3 COO)). 3 ), cesium carbonate (Eu 2 (C0 3 ) 3 ) and the like.
  • the compound corresponding to A and Eu and the Sn0 2 @M powder were mixed in a stoichiometric ratio of the molecular formula A 2 _ x Sn0 4 :Eu x @Sn0 2 @M y to obtain a mixture for subsequent reaction.
  • Step S140 heat-treating, cooling, and grinding the mixture to obtain a stannate fluorescent material having a molecular formula of A 2 _ x Sn0 4 :Eu x @Sn0 2 @M y , wherein A is selected from the group consisting of Ca, Sr, and Ba elements.
  • A is selected from the group consisting of Ca, Sr, and Ba elements.
  • the stannate fluorescent material has M as the core, Sn0 2 as the intermediate layer shell, and A 2 _ x Sn0 4 :Eu x as the outer shell.
  • the mixture obtained in the step S130 is heated to 800 ° C to 1200 ° C for pre-calcination for 2 to 12 hours, and then calcined at 1000 ° C to 1400 ° C for 0.5 to 6 hours, and then cooled to room temperature with the furnace to grind the obtained sample.
  • a stannate fluorescent material coated with metal nanoparticles was obtained.
  • the molecular formula of the fluorescent material is A 2 _ x Sn0 4 :Eu x @Sn0 2 @M y ,
  • A is selected from the group consisting of Ca, Sr and Ba;
  • M is at least one selected from the group consisting of Ag, Au, Pt, Pd, and Cu metal nanoparticles
  • y is the ratio of the moles of the elements M to Sn, 0 ⁇ ylx lO - 2 ;
  • the stannate fluorescent material has M as a core
  • Sn0 2 is an intermediate layer shell
  • a 2 _ x Sn0 4 :Eu x is an outer shell
  • the outer shell layer A 2 _ x Sn0 4 :Eu x is composed of erbium (Eu ) doped in stannate (A 2 — x Sn 0 4 ).
  • the preparation method of the above stannate fluorescent material adopts a high-temperature solid phase method to prepare a fluorescent material having a core-shell structure in which M is a core, Sn0 2 is an intermediate layer shell, and A 2 _ x Sn0 4 :Eu x is an outer shell.
  • the method has a single process, low equipment requirements, no pollution, easy control, and is suitable for industrial production, and has broad application prospects.
  • Preparation of Sn0 2 @Pd Measure 1.5 mL of 5 x 10" 5 mol/L sol containing metal nanoparticles Pd in a beaker, and add 8 mL of 0.005 g/mL PVP and magnetically stir for 16 h to obtain a surface treated surface.
  • the sol containing the metal nanoparticle Pd Then, the pH of the surface-treated metal nanoparticle Pd-containing sol is adjusted to 10 by using NaOH, stirred for 10 minutes, then transferred to a 60 ° C water bath for constant temperature heating and stirring, and then stirred.
  • Preparation of Sn0 2 @Au Measure 15 mL of 5 x 10" 5 mol/L sol containing metal nanoparticles Au, and add 2 mL of O.lg/mL PVP solution, magnetically stir for 8 h to obtain surface treated The sol containing the metal nanoparticle Au. Then, the pH of the surface-treated metal nanoparticle Au-containing sol is adjusted to 10.5 by NaOH, stirred for 5 minutes, then transferred to a 60 ° C water bath for constant temperature heating and stirring, and then stirred. Quickly add 20mL 0.25mol / L K 2 SnO 3 solution, then stir the reaction for 3h, centrifugation, separation and drying to obtain Sn0 2 powder coated with metal nanoparticles Au, namely Sn0 2 @Au;
  • Example 2 is a Ca 1 .99 Sn0 4 :Eu of the coated metal nanoparticle Au prepared in the second embodiment. . . . 1 @ Sn0 2 @Au 1. 5xl . --4 fluorescent material and uncoated metallic nanoparticles Ca 1 99 Sn0 4:. Euo.oi@Sn0 2 cathodoluminescence spectra of the fluorescent material at 1.5kv FIG comparison voltage, can be seen from the figure at the 615nm
  • the emission intensity of the fluorescent material coated with the metal nanoparticle Au is 28% higher than that of the fluorescent material not coated with the metal nanoparticle.
  • the fluorescent material of the second embodiment has good stability, good color purity, and luminous efficiency. High features.
  • Example 3 Example 3
  • Preparation of sol containing metal nanoparticle Ag Weigh 3.4mg of silver nitrate (AgN0 3 ) and dissolve it into 18.4mL of deionized water. When the silver nitrate is completely dissolved, weigh 42mg of sodium citrate and dissolve it under magnetic stirring.
  • Preparation of Sn0 2 @Ag Measure 1.2 mL of 1 10" mol/L of metal nanoparticle-containing Ag The sol was placed in a beaker, and then 10 mL of O.Olg/mL PVP was added, and magnetically stirred for 12 hours to obtain a surface-treated sol containing metal nanoparticles Ag. Then, the pH of the surface-treated metal nanoparticle Ag-containing sol was adjusted to 11 by using ammonia water, stirred for 5 minutes, then transferred to a 80 ° C water bath for constant temperature heating and stirring, and then rapidly added 15 mL of 0.32 mol/L under stirring. SnCl 4 solution, followed by stirring reaction for 3 h, centrifugation, separation and drying to obtain Sn0 2 powder coated with metal nanoparticle Ag, namely Sn0 2 @Ag;
  • Preparation of Sn0 2 @Pt Measure 8 mL of 2.5xlO" mol/L sol containing metal nanoparticles Pt in a beaker, and add 4mL of 0.02g/mL PVP solution, magnetically stir for 18h, and obtain the surface treated content.
  • the sol of the metal nanoparticle Pt Then, the pH of the surface treated metal nanoparticle Pt-containing sol is adjusted to 12 by using NaOH, stirred for 5 minutes, then transferred to a 60 ° C water bath for constant temperature heating and stirring, and then rapidly stirred.
  • Preparation of sol containing metal nanoparticle Cu Weigh 1.6 mg of copper nitrate and dissolve it into 16 mL of ethanol. After completely dissolving, add 12 mg of PVP while stirring, then slowly add dropwise to 0.4 mL of sodium borohydride in 1 mL of ethanol. 4 mL of a 1 10" mol/L sodium borohydride solution was obtained, and the reaction was further stirred for 10 minutes to obtain 20 mL of 4 x 10" 4 mol/L sol containing metal nanoparticles Cu;
  • Preparation of Sn0 2 @Cu Measure 1.5 mL of 4 10" 4 mol/L sol containing metal nanoparticles Cu in a beaker, and add 5 mL of 0.03 g/mL PVP, and magnetically stir 1 Oh, after surface treatment. The sol containing the metal nanoparticle Cu. Then adjust the pH of the sol containing the metal nanoparticle Cu to 10.5 with NaOH, stir for 15 minutes, then transfer to a 90 °C water bath for constant temperature heating and stirring, then quickly add 30 mL under stirring. Mo/L Na 2 SnO 3 solution, followed by stirring reaction for 1 h, centrifugation, separation and drying to obtain Sn0 2 powder coated with metal nanoparticles Cu, namely Sn0 2 @Cu;
  • Ca 1 .998Sn0 4 Preparation of Euo.oo2@Sn02@Cuixio- 4 : Weigh Ca(N0 3 ) 2 1.3107g , Eu(N0 3 ) 3 0.0027g and 0.6028 g of Sn0 2 @Cu powder, placed in agate Grind into the mortar in a mortar to make it evenly mixed. Then transfer the powder to corundum crucible, heat-treat in a muffle furnace at 800 ° C for 5 h, then at 1300 ° C for 0.5 h, cool to room temperature, and grind into a powder to obtain a coating.
  • Ca 1 . 998 Sn0 4 Eu with metal nanoparticles Cu. . . . . 2 @Sn0 2 @Cu . - 4 stannate fluorescent material.
  • Aqueous sodium borohydride solution at a concentration of 1.5 x 10 - 2 mol/L; in a magnetically stirred environment, add 2 mL of a 1.5 X 10 - 2 mol/L aqueous solution of sodium borohydride to the above mixed solution, and then continue the reaction.
  • 20min that is, 30mL total metal (Ag + Au) concentration of 1 x 10" mol / L of metal nanoparticles Ag0.5 / Au0.5 sol;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供一种锡酸盐荧光材料,分子通式为A2-xSnO4:Eux@SnO2@My,其中,Α选自Ca、Sr及Ba元素中的一种;M选自Ag、Au、Pt、Pd及Cu金属纳米粒子中的至少一种;0<x≤0.05;y为元素M与Sn的摩尔数之比,0<y≤1×10—2;@表示包覆,该锡酸盐荧光材料以M为核,SnO2为中间层壳,A2-xSnO4:Eux为外层壳。这种锡酸盐荧光材料通过包覆Ag、Au、Pt、Pd及Cu金属纳米粒子中的至少一种形成核-壳结构,金属纳米粒子提高了该荧光材料的内量子效率,使得该锡酸盐荧光材料的发光强度较高。进一步还提供一种锡酸盐荧光材料的制备方法。

Description

锡酸盐荧光材料及其制备方法
技术领域
本发明涉及发光材料领域, 特别是涉及一种锡酸盐荧光材料及其制备方 法。 背景技术
场发射显示器 (Field Emission Display, FED)是一种新发展起来的平板显 示器, 其工作原理和传统的阴极射线管类似, 是通过电子束轰击显示屏上的 荧光材料而成像的。 与其它的平板显示器 (Flat Panel Display, FPD)相比, FED 在亮度、 视角、 响应时间、 工作温度范围、 能耗等方面均具有潜在的优势。 制备优良性能 FED的关键因素之一是荧光材料的制备。
然而, 现有的阴极射线荧光材料以石 A化物为主, 当将其用来制作场发射 显示屏时, 由于其中的硫会与阴极中微量钼、 硅或锗等元素发生反应, 从而 减弱了其电子发射, 导致 FED的发光强度较弱。 发明内容
基于此, 有必要针对现有的荧光材料发光强度较低问题, 提供一种发光 强度较高的锡酸盐荧光材料及其制备方法。
一种锡酸盐荧光材料, 分子通式为 A2_xSn04:Eux@Sn02@My,
其中, A选自 Ca、 Sr及 Ba元素中的一种;
M选自 Ag、 Au、 Pt、 Pd及 Cu金属纳米粒子中的至少一种;
0<x<0.05;
y为元素 M与 Sn的摩尔数之比, 0<y≤l 10— 2
@表示包覆, 所述锡酸盐荧光材料以 M 为核, Sn02为中间层壳, A2_xSn04:Eux为夕卜层壳。
一种锡酸盐荧光材料的制备方法, 包括如下步骤:
制备含有 M的溶胶, 所述 M选自 Ag、 Au、 Pt、 Pd及 Cu金属纳米粒子 中的至少一种;
将所述含有 M的溶胶进行表面处理,调节所述含有 M的溶胶的 pH值为 10-12, 然后于 60~90°C恒温加热搅拌, 按分子通式 A2_xSn04:Eux@Sn02@My 中元素 M与 Sn的摩尔比为 y加入锡酸钠、 锡酸钾或四氯化锡, 搅拌反应, 分离干燥得到包覆有 M的 Sn02@M粉末, 其中, 0<y l x l0-2;
按分子通式 A2_xSn04:Eux@Sn02@My的化学计量比混合 A和 Eu对应的 化合物及所述 Sn02@M粉末得到混合物;
将所述混合物进行热处理、 冷却、 研磨后得到分子通式为 A2_xSn04:Eux@Sn02@My的锡酸盐荧光材料;
其中, A选自 Ca、 Sr及 Ba元素中的一种, 0<x 0.05, 所述锡酸盐荧光 材料以 M为核, Sn02为中间层壳, A2_xSn04:Eux为外层壳。
在其中一个实施例中, 所述制备含有 M的溶胶的步骤为:
将 Ag、 Au、 Pt、 Pd及 Cu中的至少一种的盐溶液与助剂、 还原剂混合, 反应 10-45分钟得到含有 M的溶胶。
在其中一个实施例中, 所述 Ag、 Au、 Pt、 Pd及 Cu中的至少一种的盐溶 液的浓度为 1x10— 3mol/L~ 5x10— 2mol/L;
所述助剂选自聚乙烯砒咯烷酮、 柠檬酸钠、 十六烷基三曱基溴化铵、 十 二烷基硫酸钠和十二烷基磺酸钠中的至少一种;
所述含有 M的溶胶中助剂的含量为 lxlO—4g/mL~5xlO—2g/mL;
所述还原剂选自水合肼、 抗坏血酸、柠檬酸钠和硼氢化钠中的至少一种; 所述还原剂与所述 Ag、 Au、 Pt、 Pd及 Cu中的至少一种的盐溶液中的金 属离子的摩尔比为 3.6:1~18:1。
在其中一个实施例中, 所述含有 M的溶胶进行表面处理的步骤为将所述 含有 M的溶胶加入聚乙烯吡咯烷酮的水溶液中搅拌 12~24小时。
在其中一个实施例中, 所述聚乙烯吡咯烷酮的水溶液的浓度为 0.005g/ml~0.01g/ml。
在其中一个实施例中, 所述调节含有 M的溶胶的 pH值为 10~12的步骤 为采用氢氧化钠或氨水进行调节。
在其中一个实施例中, 所述搅拌反应的时间为 1~5小时。
在其中一个实施例中, 将所述混合物进行热处理的步骤为: 将所述混合物升温至 800~1200°C预煅烧 2~12小时,再于 1000~1400°C下 煅烧 0.5~6小时。
在其中一个实施例中, 所述 A对应的化合物为 Ca、 Sr或 Ba对应的氧化 物、 碳酸盐、 醋酸盐、 硝酸盐或草酸盐, 所述 Eu对应的化合物为 Eu对应的 氧化物、 碳酸盐、 醋酸盐、 硝酸盐或草酸盐。
上述锡酸盐荧光材料通过包覆 Ag、 Au、 Pt、 Pd及 Cu金属纳米粒子中的 至少一种形成核-壳结构, 金属纳米粒子提高了该荧光材料的内量子效率, 使 得该锡酸盐荧光材料的发光强度较高。 附图说明
图 1为一实施方式的锡酸盐荧光材料的制备方法的流程图;
图 2 为 实 施例 2 制 备 的 包覆金属 纳 米粒子 Au 的
Ca1.99Sn04:Euo.ol @Sn02@Au1.5xio-4锡酸盐荧光材料与未包覆金属纳米粒子的 Ca^SnO^Euao^SnOz锡酸盐荧光材料在 1.5kv 电压下的阴极射线发光光谱 对比图。 具体实施方式
以下通过具体实施方式和附图对上述锡酸盐荧光材料及其制备方法进一 步阐述。
一实施方式的锡酸盐荧光材料, 分子通式为 A2_xSn04:Eux@Sn02@My, 其中, A选自 Ca、 Sr及 Ba元素中的一种;
M选自 Ag、 Au、 Pt、 Pd及 Cu金属纳米粒子中的至少一种;
0<x < 0.05;
y为元素 M与 Sn的摩尔数之比, 0<y l x l0— 2
@表示包覆,该锡酸盐荧光材料 M为核, Sn02为中间层壳, A2_xSn04:Eux 为外层壳。
分子式 A2_xSn04:Eux†的": "表示掺杂, 即 Eu为掺杂元素, 其 2价的 Eu 离子是该荧光材料的激活离子。 外壳层 A2_xSn04:Eux是由铕(Eu )掺杂于锡 酸盐 (A2_xSn04)中组成。
锡酸盐 (A2_xSn04)具有良好的化学稳定性和热稳定性, 其内部的结构缺陷 对其成为较高质量的荧光材料来说非常有利。 Ca、 Sr及 Ba的锡酸盐的稳定 性相对较高。
铕离子 (Eu2+ )作为该锡酸盐荧光材料的激活离子, 在电压的作用下使 该锡酸盐荧光材料发出红色荧光。
金属纳米粒子 M作为锡酸盐荧光材料的内核, 产生表面等离子体共振效 应, 以提高锡酸盐荧光材料的内量子效率。
该锡酸盐荧光材料通过包覆 Ag、 Au、 Pt、 Pd及 Cu金属纳米粒子中的至 少一种形成核-壳结构, 金属纳米粒子提高了该荧光材料的内量子效率, 使得 该锡酸盐荧光材料的发光强度较高。
这种锡酸盐荧光材料的 M、 Sn02及 A2_xSn04:Eu 为化学性质较为稳定 物质, 使得这种核-壳结构的荧光材料在使用过程中的稳定性较好, 能够保持 较好的发光性能。
因而, 该锡酸盐荧光材料稳定性高、 发光性能好, 能够广泛应用于显示 领域和照明领域。
和现有的硫化物荧光材料相比, 这种锡酸盐荧光材料在使用过程中不会 产生有毒的硫化物, 环保无毒, 使用安全。
请参阅图 1 , 一实施方式的锡酸盐荧光材料的制备方法, 包括如下步骤: 步骤 S110: 制备含有 M的溶胶。
M选自 Ag、 Au、 Pt、 Pd及 Cu金属纳米粒子中的至少一种。
制备含有 M的溶胶的步骤为将 Ag、 Au、 Pt、 Pd及 Cu中的至少一种的 盐溶液、 助剂和还原剂混合, 反应得到含有 M 的溶胶。 在保证得到含有 M 的溶胶的前提下, 为了节约能耗, 反应时间优选为 10~45分钟。
Ag、 Au、 Pt、 Pd或 Cu的盐溶液为 Ag、 Au、 Pt、 Pd或 Cu的氯^ i物溶 液、 硝酸盐溶液等。 Ag、 Au、 Pt、 Pd或 Cu的盐溶液的浓度根据实际需要灵 活配制。 优选为 lxlO—3 mol/L ~ 5x10— 2mol/L。
助剂选自聚乙烯砒咯綻酮、 柠檬酸钠、 十六綻基三曱基溴化铵、 十二烷 基硫酸钠和十二烷基磺酸钠中的至少一种。 含有 M 的溶胶中助剂的含量为 1x10— 4 g/mL ~ 5xlO— 2g/mL。
还原剂选自水合肼、 抗坏血酸、 柠檬酸钠和硼氢化钠中的至少一种。 将 还原剂配制成浓度为 1 X 10— 4mol/L~lmol/L的水溶液, 再与 Ag、 Au、 Pt、 Pd 及 Cu中的至少一种的盐溶液及助剂混合进行反应。
还原剂与 Ag、 Au、 Pt、 Pd及 Cu中的至少一种的盐溶液中的金属离子的 摩尔比为 3.6:1~18:1。
步骤 S120: 将含有 M的溶胶进行表面处理, 调节含有 M的溶胶的 pH 值为 10~12 , 然后 于 60~90 °C 恒温加热搅拌, 按分子通式 A2_xSn04:Eux@Sn02@My中元素 M与 Sn摩尔比为 y加入锡酸钠、锡酸钾或四 氯化锡, 搅拌反应, 分离干燥得到包覆有 M的 Sn02@M粉末, 其中, 0<y 1 10-2
为了便于包覆, 首先对步骤 S110得到的含有 M的溶胶进行表面处理, 以形成较为稳定的 Sn02包覆金属纳米粒子 M的 Sn02@M结构。
表面处理的步骤为将含有 M的溶胶加入聚乙烯吡咯烷酮 (PVP )水溶液 中搅拌 12~24 小时。 聚乙烯吡咯烷酮 ( PVP ) 水溶液的浓度优选为 0.005~0.01g/ml。
用氢氧化钠 (NaOH )或氨水调节经过表面处理的含有 M 的溶胶的 pH 值为 10~12 , 然后于 60~90°C水浴恒温加热搅拌, 在搅拌下, 按分子通式 A2_xSn04:Eux@Sn02@My中 M与 Sn的摩尔数之比为 y的摩尔数比值,快速加 入锡酸钠 (Na2Sn03 )、 锡酸钾 ( K2Sn03 ) 或四氯化锡(SnCl4 ), 搅拌反应, 分离干燥得到包覆有金属纳米粒子 M的 Sn02@M粉末,其中, 0<y 1 X 10— 2
搅拌反应的时间优选为 1~5小时。 反应过程中, 锡酸钠 (Na2Sn03 )、 锡 S史钾 ( K2Sn03 )或四氯化锡( SnCl4 )水解生成 Sn(OH)4, 再经煅烧得到 Sn02, Sn02包覆在 M的表面形成 Sn02@M粉末。 采用锡酸钠 ( Na2Sn03 )或锡酸钾 ( K2Sn03 )反应方程式如下:
NaSn03+H20+C02→Sn(OH)4+Na2C03
Sn(OH)4→Sn02+2H20。
采用四氯化锡(SnCl4 ) 的反应方程式如下:
SnCl4 +4NH4OH→ Sn(OH)4 +4NH4C1;
Sn(OH)4→Sn02+2H20。
步骤 S130:按分子通式 A2_xSn04:Eux@Sn02@My的化学计量比混合 A和 Eu对应的化合物及 Sn02@M粉末得到混合物。 A对应的化合物为 Ca、 Sr或 Ba对应的氧化物、 碳酸盐、 醋酸盐、 硝酸 盐或草酸盐, 如碳酸钙 (CaC03 )、 硝酸钙 Ca(N03)2、 草酸钡 ( BaC204 )等。
Eu对应的化合物为 Eu对应的氧化物、 碳酸盐、 醋酸盐、 硝酸盐或草酸 盐, 如草酸铕(Eu2(C204)3 )、 醋酸铕( Eu(CH3COO)3 )、 碳酸铕 ( Eu2(C03) 3 ) 等。
按分子通式 A2_xSn04:Eux@Sn02@My的化学计量比混合 A和 Eu对应的 化合物及 Sn02@M粉末得到混合物, 以进行后续反应。
步骤 S140 : 将混合物进行热处理、 冷却、 研磨得到分子通式为 A2_xSn04:Eux@Sn02@My的锡酸盐荧光材料, 其中, A选自 Ca、 Sr及 Ba元 素中的一种, 0<x 0.05 , 锡酸盐荧光材料以 M 为核, Sn02为中间层壳, A2_xSn04:Eux为外层壳。
将步骤 S130得到的混合物升温至 800°C~1200°C预煅烧 2~12小时,再于 1000°C ~1400°C下煅烧 0.5~6小时, 然后随炉冷却至室温, 将得到的样品研磨 为粉末, 得到包覆有金属纳米粒子的锡酸盐荧光材料。 该荧光材料的分子通 式为 A2_xSn04:Eux@Sn02@My,
其中, A选自 Ca、 Sr及 Ba元素中的一种;
M选自 Ag、 Au、 Pt、 Pd及 Cu金属纳米粒子中的至少一种;
0<x < 0.05;
y为元素 M与 Sn的摩尔数之比, 0<y l x lO—2;
@表示包覆,该锡酸盐荧光材料以 M为核, Sn02为中间层壳, A2_xSn04:Eux 为外层壳。 A2_xSn04:Eux†的": "表示掺杂, 即 Eu为掺杂元素, 其 2价的 Eu 离子是该荧光材料的激活离子。 外壳层 A2_xSn04:Eux是由铕(Eu )掺杂于锡 酸盐 (A2_xSn04)中组成。
上述锡酸盐荧光材料的制备方法采用高温固相法制备以 M 为核, Sn02 为中间层壳, A2_xSn04:Eux为外层壳的核-壳结构的荧光材料。 该方法工艺筒 单, 设备要求低、 无污染、 易于控制, 适用于工业化生产, 具有广阔的应用 前景。
以下为具体实施例。
实施例 1
高温固相法制备 BaL992SnO4:Eu0.008@SnO2@Pdlxl0- 5: 含有金属纳米粒子 Pd的溶胶的制备: 称取 0.22mg氯化钯( PdCl2.2H20 ) 溶解到 19mL的去离子水中; 当氯化钯完全溶解后, 称取 ll.Omg柠檬酸钠和 4.0mg 十二綻基硫酸钠, 并在磁力搅拌的环境下溶解到氯化钯水溶液中; 称 取 3.8mg硼氢化钠溶到 10mL去离子水中, 得到浓度为 1 x 10"2mol/L的硼氢 化钠还原液; 在磁力搅拌的环境下, 往氯化钯水溶液中快速加入 lmL 1 10— 2mol/L的硼氢化钠水溶液, 之后继续反应 20min, 即得 20mL Pd含量为 5 X 10"5mol/L的含有金属纳米粒子 Pd的溶胶;
Sn02@Pd的制备: 量取 1.5mL 5 x 10"5mol/L的含有金属纳米粒子 Pd的 溶胶于烧杯中, 并加入 8mL 0.005g/mL PVP, 并磁力搅拌 16h, 得到经表面处 理后的含有金属纳米粒子 Pd的溶胶。然后采用 NaOH将经表面处理后的含有 金属纳米粒子 Pd的溶胶的 pH值调为 10, 搅拌 lOmin后, 转入 60°C水浴中 恒温加热搅拌, 然后在搅拌下快速加入 25mL 0.3mol/L 的 Na2Sn03溶液, 接 着搅拌反应 2h, 离心、 分离干燥得到包覆有金属纳米粒子 Pd的 Sn02粉末, 即 Sn02@ Pd;
BaL992Sn04:EuQ.QQ8@Sn02@Pdlxl。- 5 的制备: 称取 BaC204 1.7955g , Eu2(C204)30.0181g和 0.6030 g的 Sn02@ Pd粉末, 置于玛瑙研钵中充分研磨 至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 900°C热处理 4h, 再于 1300°C烧结 3h, 冷却至室温, 研磨成粉末即可得到包覆有金属纳米粒子 Pd的 BaL992Sn04:Eu。.。。8@Sn02@ Pdlxl。- 5锡酸盐荧光材料。 实施例 2
高温固相法制备 Ca1.99SnO4:Eu0.01@SnO2@Au1.5xl0- 4:
含有金属纳米粒子 Au 的溶胶的制备: 称取 0.21mg 氯金酸 ( AuCl3.HC1.4H20 )溶解到 16.8mL的去离子水中; 当氯金酸完全溶解后, 称 取 14mg柠檬酸钠和 6mg十六烷基三曱基溴化铵, 并在磁力搅拌的环境下溶 解到氯金酸水溶液中; 称取 1.9mg硼氢化钠和 17.6mg抗坏血酸分别溶解到 10mL去离子水中,得到 10mL浓度为 5 10" mol/L的硼氢化钠水溶液和 10mL 浓度为 1 X 10—2mol/L的抗坏血酸水溶液; 在磁力搅拌的环境下, 先往氯金酸 水溶液中加入 0.08mL硼氢化钠水溶液, 搅拌反应 5min后再往氯金酸水溶液 中加入 3.12mLl 10"2mol/L的抗坏血酸水溶液, 之后继续反应 30min, 即得 20mL Au含量为 5 x 10"5mol/L的含有金属纳米粒子 Au的溶胶;
Sn02@Au的制备: 量取 15mL为 5 x 10"5mol/L的含有金属纳米粒子 Au 的溶胶, 并加入 2mL O.lg/mL 的 PVP溶液, 磁力搅拌 8h, 得到经表面处理 后的含有金属纳米粒子 Au的溶胶。 然后采用 NaOH将经表面处理后的含有 金属纳米粒子 Au的溶胶的 pH值调为 10.5 , 搅拌 5min后, 转入 60°C水浴中 恒温加热搅拌, 然后在搅拌下快速加入 20mL 0.25mol/L 的 K2Sn03溶液, 接 着搅拌反应 3h, 离心、 分离干燥得到包覆有金属纳米粒子 Au的 Sn02粉末, 即 Sn02@Au;
Ca1.99SnO4:Eua01@SnO2@Au1.5xl0- 4的制备: 称取 CaC03 0.7967g, Eu203 0.0070 g和 0.6148 g的 Sn02@Au粉末,置于玛瑙研钵中充分研磨至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 800°C预处理 2h, 再于 1200°C煅 烧 4h , 冷却至室温, 研磨成粉末即可得到包覆有金属纳米粒子 Au 的 Ca! .99Sn04:Euo.oi @ Sn02 @ AuL5x i0-4锡酸盐荧光材料。
图 2 是本实施例 2 制备的 包覆金属纳 米粒子 Au 的 Ca1.99Sn04:Eu。.。1@Sn02@Au1.5xl。-4 荧光材料与未包覆金属纳米粒子的 Ca1.99Sn04:Euo.oi@Sn02荧光材料在 1.5kv电压下的阴极射线发光光谱对比图, 从图 中可以看出在 615nm处的发射峰, 包覆金属纳米粒子 Au的荧光材料 的发光强度较未包覆金属纳米粒子的荧光材料增强了 28%, 本实施例 2的荧 光材料具有稳定性好、 色纯度好、 并且发光效率较高的特点。 实施例 3
高温固相法法制备 Sr! .98Sn04: Euo.o2 @ Sn02 @ Ag2 5x ι0-4
含有金属纳米粒子 Ag的溶胶的制备: 称取 3.4mg硝酸银 ( AgN03 )溶 解到 18.4mL的去离子水中; 当硝酸银完全溶解后, 称取 42mg柠檬酸钠在磁 力搅拌的环境下溶解到硝酸银水溶液中; 称取 5.7mg硼氢化钠溶到 10mL去 离子水中,得到 10mL浓度为 1.5 X 10—2mol/L的硼氢化钠水溶液; 在磁力搅拌 的环境下, 往硝酸银水溶液中一次性加入 1.6mL1.5 10"2mol/L的硼氢化钠水 溶液, 之后继续反应 lOmin, 即得 20mL Ag含量为 1 x 10" mol/L的含有金属 纳米粒子 Ag的溶胶;
Sn02@Ag的制备: 量取 1.2mL 1 10" mol/L的含有金属纳米粒子 Ag的 溶胶于烧杯中, 再加入 lOmL O.Olg/mL PVP, 并磁力搅拌 12h, 得到经表面处 理后的含有金属纳米粒子 Ag 的溶胶。 然后采用氨水将经表面处理后的含有 金属纳米粒子 Ag的溶胶的 pH值调为 11 , 搅拌 5min后, 转入 80°C水浴中恒 温加热搅拌, 然后在搅拌下快速加入 15mL 0.32mol/L的 SnCl4溶液, 接着搅 拌反应 3h, 离心、 分离干燥得到包覆有金属纳米粒子 Ag的 Sn02粉末, 即 Sn02@Ag;
8 9881104 110.02@81102@八82.5><10- 4的制备: 称取 Sr(CH3COO)2 1.6292g, Eu(CH3COO)30.0263g和 0.6030 g的 Sn02@Ag粉末, 置于玛瑙研钵中充分研 磨至混合均匀,然后将粉末转移到刚玉坩埚中,于马弗炉中 1000°C热处理 4h, 再于 1200°C烧结 6h, 冷却至室温, 研磨成粉末即可得到包覆有金属纳米粒子 Ag的 Sr1.98Sn04:Eu0.02@Sn02 @ Ag2.5 x 1o- 4锡酸盐荧光材料。 实施例 4
高温固相法制备 BaL95SnO4:Eu0.05@SnO2@Pt5xl0- 3
含有金属纳米粒子 Pt的溶胶的制备:称取 25.9mg氯铂酸( H2PtCl6-6H20 ) 溶解到 17mL的去离子水中; 当氯铂酸完全溶解后, 称取 40.0mg柠檬酸钠和 60.0mg十二烷基礒酸钠, 并在磁力搅拌的环境下溶解到氯铂酸水溶液中; 称 取 1.9mg硼氢化钠溶解到 lOmL去离子水中, 得到 lOmL浓度为 5xlO—3mol/L 的硼氢化钠水溶液, 同时配制 lOmL浓度为 5xlO—2mol/L的水合肼溶液; 磁力 搅拌的环境下, 先往氯铂酸水溶液中滴加 0.4mL硼氢化钠水溶液, 搅拌反应 5min, 然后再往氯铂酸水溶液中滴加 2.6mL 5xlO—2mol/L的水合肼溶液, 之后 继续反应 40min, 即得 lOmL Pt含量为 2.5x10— 3mol/L的含有金属纳米粒子 Pt 的溶胶;
Sn02@Pt的制备: 量取 8mL 2.5xlO" mol/L的含有金属纳米粒子 Pt的溶 胶于烧杯中, 并加入 4mL 0.02g/mL的 PVP溶液, 磁力搅拌 18h, 得到经表 面处理后的含有金属纳米粒子 Pt的溶胶。然后采用 NaOH将经表面处理后的 含有金属纳米粒子 Pt的溶胶的 pH值调为 12, 搅拌 5min后, 转入 60°C水浴 中恒温加热搅拌, 然后在搅拌下快速加入 lOmL 0.4mol/L的 Na2Sn03溶液, 接着搅拌反应 5h, 离心、分离干燥得到包覆有金属纳米粒子 Pt的 Sn02粉末, 即 Sn02@Pt; Β .958ηΟ4:Ειια05@8ηΟ2χ1。- 3的制备: 称取 BaC03 1.5392g, Eu2(C03)3 0.0967g和 0.6028 g的 Sn02@Pt粉末, 置于玛瑙研钵中充分研磨至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 900 °C热处理 12h, 再于 1400 °C 烧结 4h , 冷却至室温, 研磨成粉末即可得到包覆有金属纳米粒子 Pt 的 Ba1.95Sn04:Eu。.。5@Sn02@Pt5xl。- 3锡酸盐荧光材料。 实施例 5
高温法制备 Cai .998Sn04: Eu0.002 @ Sn02 @Cuixi0-4:
含有金属纳米粒子 Cu的溶胶的制备:称取 1.6mg硝酸铜溶解到 16mL的 乙醇中, 完全溶解后, 一边搅拌一边加入 12mg PVP, 然后緩慢滴入用 0.4mg 硼氢化钠溶到 1 OmL乙醇中得到的 1 10" mol/L的硼氢化钠醇溶液 4mL , 继 续搅拌反应 lOmin,得到 20mL 4 x 10"4mol/L的含有金属纳米粒子 Cu的溶胶;
Sn02@Cu的制备: 量取 1.5mL 4 10"4mol/L的含有金属纳米粒子 Cu的 溶胶于烧杯中, 并加入 5mL 0.03g/mL PVP, 并磁力搅拌 1 Oh, 得经表面处理 后的含有金属纳米粒子 Cu的溶胶。 然后采用 NaOH将含有金属纳米粒子 Cu 的溶胶的 pH值调为 10.5 , 搅拌 15min后, 转入 90 °C水浴中恒温加热搅拌, 然后在搅拌下快速加入 30mL 0.2mol/L的 Na2Sn03溶液, 接着搅拌反应 lh, 离心、 分离干燥得到包覆有金属纳米粒子 Cu的 Sn02粉末, 即 Sn02@Cu;
Ca1.998Sn04:Euo.oo2@Sn02@Cuixio-4 的制备: 称取 Ca(N03)2 1.3107g , Eu(N03)3 0.0027g和 0.6028 g的 Sn02@Cu粉末, 置于玛瑙研钵中充分研磨 至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 800°C热处理 5h, 再于 1300°C烧结 0.5h, 冷却至室温, 研磨成粉末即可得到包覆有金属纳米粒 子 Cu的 Ca1.998Sn04:Eu。.。。2@Sn02@Cu 。- 4锡酸盐荧光材料。 实施例 6
高温固相法制备 Sr1.88SnO4:Eu0.12@SnO2@(Ag0.5/Au0.5 : 含有金属纳米粒子 Ag0.5/Au0.5 的溶胶的制备: 称取 6.2mg 氯金酸 ( AuCl3.HC1.4H20 )和 2.5mg AgN03溶解到 28mL的去离子水中; 当完全溶 解后, 称取 22mg柠檬酸钠和 20mgPVP, 并在磁力搅拌的环境下溶解到上述 混合溶液中;称取新制备的 5.7mg硼氢化钠溶到 10mL去离子水中,得到 10mL 浓度为 1.5 x 10— 2mol/L 的硼氢化钠水溶液; 在磁力搅拌的环境下, 往上述混 合溶液中一次性加入 2mL1.5 X 10— 2mol/L 的硼氢化钠水溶液, 之后继续反应 20min, 即得 30mL总金属( Ag+Au )浓度为 1 x 10" mol/L的含有金属纳米粒 子 Ag0.5/Au0.5的溶胶;
SnO2@(Ag0.5/Au0.5)的制备: 量取 5mL 1 10— 3mol/L的含有金属纳米粒 子 Ag0.5/Au0.5的溶胶于烧杯中,并加入 10mL 0.1g/mL PVP,并磁力搅拌 12h, 得经表面处理后的有金属纳米粒子 Ag0.5/Au0.5的溶胶。 然后采用 NaOH将 经表面处理后的有金属纳米粒子 Ag0.5/Au0.5的溶胶的 pH值调为 11 , 搅拌 15min后, 转入 70 °C水浴中恒温加热搅拌, 然后在搅拌下快速加入 30mL 0.2mol/L 的 K2Sn03溶液, 接着搅拌反应 lh, 离心、 分离干燥得到包覆有金 属纳米粒子 Ag0.5/Au0.5的 Sn02粉末, 即 SnO2@(Ag0.5/Au0.5);
Sr1.88SnO4:Euai2@SnO2@(Ag0.5/Au0.5)L25xl0- 3的制备: 称取 SrO 0.7792g, Eu203 0.0844g和 0.6028 g的
Figure imgf000013_0001
置于玛瑙研钵 中充分研磨至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 1000°C 热处理 3h, 再于 1250°C烧结 5h, 冷却至室温, 研磨成粉末即可得到包覆有 金属纳米合金粒子 Ag0.5/Au0.5的 Sr1.88SnO4:Euai2@SnO2@(Ag0.5/Au0.5)1.25 x
KT 3锡酸盐荧光材料。 细, 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于 本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若 干变形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范 围应以所附权利要求为准。

Claims

权利要求书
1 、 一种锡酸盐 荧光材料, 其特征在于 , 分子通式为 A2_xSn04:Eux @ Sn02 @ My ,
其中, A选自 Ca、 Sr及 Ba元素中的一种;
M选自 Ag、 Au、 Pt、 Pd及 Cu金属纳米粒子中的至少一种;
0<x<0.05 ;
y为元素 M与 Sn的摩尔数之比, 0<y≤l 10— 2
@表示包覆, 所述锡酸盐荧光材料以 M 为核, Sn02为中间层壳, A2_xSn04:Eux为夕卜层壳。
2、 一种锡酸盐荧光材料的制备方法, 其特征在于, 包括如下步骤: 制备含有 M的溶胶, 所述 M选自 Ag、 Au、 Pt、 Pd及 Cu金属纳米粒子 中的至少一种;
将所述含有 M的溶胶进行表面处理,调节所述含有 M的溶胶的 pH值为 10-12, 然后于 60~90°C恒温加热搅拌, 按分子通式 A2_xSn04:Eux@Sn02@My 中元素 M与 Sn的摩尔比为 y加入锡酸钠、 锡酸钾或四氯化锡, 搅拌反应, 分离干燥得到包覆有 M的 Sn02@M粉末, 其中, 0<y l x l0-2;
按分子通式 A2_xSn04:Eux@Sn02@My的化学计量比混合 A和 Eu对应的 化合物及所述 Sn02@M粉末得到混合物;
将所述混合物进行热处理、 冷却、 研磨后得到分子通式为 A2_xSn04:Eux@Sn02@My的锡酸盐荧光材料;
其中, A选自 Ca、 Sr及 Ba元素中的一种, 0<x 0.05, 所述锡酸盐荧光 材料以 M为核, Sn02为中间层壳, A2_xSn04:Eux为外层壳。
3、 根据权利要求 2所述的锡酸盐荧光材料的制备方法, 其特征在于, 所 述制备含有 M的溶胶的步骤为:
将 Ag、 Au、 Pt、 Pd及 Cu中的至少一种的盐溶液与助剂、 还原剂混合, 反应 10-45分钟得到含有 M的溶胶。
4、 根据权利要求 3所述的锡酸盐荧光材料的制备方法, 其特征在于, 所 述 Ag、 Au、 Pt、 Pd及 Cu 中的至少一种的盐溶液的浓度为 lxlO—3mol/L~ 5x10— 2mol/L; 所述助剂选自聚乙烯砒咯烷酮、 柠檬酸钠、 十六烷基三曱基溴化铵、 十 二烷基硫酸钠和十二烷基磺酸钠中的至少一种;
所述含有 M的溶胶中助剂的含量为 lxlO—4g/mL~5xlO—2g/mL;
所述还原剂选自水合肼、 抗坏血酸、柠檬酸钠和硼氢化钠中的至少一种; 所述还原剂与所述 Ag、 Au、 Pt、 Pd及 Cu中的至少一种的盐溶液中的金 属离子的摩尔比为 3.6:1~18:1。
5、 根据权利要求 2所述的锡酸盐荧光材料的制备方法, 其特征在于, 所 述含有 M的溶胶进行表面处理的步骤为将所述含有 M的溶胶加入聚乙烯吡 咯烷酮的水溶液中搅拌 12~24小时。
6、 根据权利要求 5所述的锡酸盐荧光材料的制备方法, 其特征在于, 所 述聚乙烯吡咯烷酮的水溶液的浓度为 0.005g/ml~0.01g/ml。
7、 根据权利要求 2所述的锡酸盐荧光材料的制备方法, 其特征在于, 所 述调节含有 M的溶胶的 pH值为 10~12的步骤为采用氢氧化钠或氨水进行调 T。
8、 根据权利要求 2所述的锡酸盐荧光材料的制备方法, 其特征在于, 所 述搅拌反应的时间为 1~5小时。
9、 根据权利要求 2所述的锡酸盐荧光材料的制备方法, 其特征在于, 将 所述混合物进行热处理的步骤为:
将所述混合物升温至 800~1200°C预煅烧 2~12小时,再于 1000~1400°C下 煅烧 0.5~6小时。
10、 根据权利要求 2所述的锡酸盐荧光材料的制备方法, 其特征在于, 所述 A对应的化合物为 Ca、 Sr或 Ba对应的氧化物、 碳酸盐、 醋酸盐、 硝酸 盐或草酸盐, 所述 Eu对应的化合物为 Eu对应的氧化物、 碳酸盐、 醋酸盐、 硝酸盐或草酸盐。
PCT/CN2012/079461 2012-07-31 2012-07-31 锡酸盐荧光材料及其制备方法 WO2014019152A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280071696.6A CN104169393B (zh) 2012-07-31 2012-07-31 锡酸盐荧光材料及其制备方法
JP2015521937A JP6001172B2 (ja) 2012-07-31 2012-07-31 スズ酸塩蛍光材料、及び、その製造方法
PCT/CN2012/079461 WO2014019152A1 (zh) 2012-07-31 2012-07-31 锡酸盐荧光材料及其制备方法
US14/399,005 US9447317B2 (en) 2012-07-31 2012-07-31 Stannate fluorescent material and method for preparing same
EP12882088.3A EP2881449B1 (en) 2012-07-31 2012-07-31 Stannate fluorescent material and method for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/079461 WO2014019152A1 (zh) 2012-07-31 2012-07-31 锡酸盐荧光材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2014019152A1 true WO2014019152A1 (zh) 2014-02-06

Family

ID=50027080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079461 WO2014019152A1 (zh) 2012-07-31 2012-07-31 锡酸盐荧光材料及其制备方法

Country Status (5)

Country Link
US (1) US9447317B2 (zh)
EP (1) EP2881449B1 (zh)
JP (1) JP6001172B2 (zh)
CN (1) CN104169393B (zh)
WO (1) WO2014019152A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117399635A (zh) * 2023-12-15 2024-01-16 中国科学院遗传与发育生物学研究所 一种金纳米颗粒及其制备方法与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860360A (zh) * 2021-11-17 2021-12-31 云南锡业锡化工材料有限责任公司 一种纳米花球状二氧化锡的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565614A (zh) * 2009-04-30 2009-10-28 兰州大学 一种橙红色长余辉发光材料
CN101775279A (zh) * 2010-01-28 2010-07-14 海洋王照明科技股份有限公司 核壳结构荧光粉及其制备方法
CN102051170A (zh) * 2009-11-02 2011-05-11 海洋王照明科技股份有限公司 掺杂发光离子的钙钇锡酸盐发光材料及制备方法
CN102191054A (zh) * 2010-03-11 2011-09-21 海洋王照明科技股份有限公司 硅酸盐发光材料及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326781A (ja) * 1989-06-23 1991-02-05 Nichia Chem Ind Ltd 蛍光体
AUPP004497A0 (en) * 1997-10-28 1997-11-20 University Of Melbourne, The Stabilized particles
FR2829946B1 (fr) 2001-09-26 2003-12-19 Tech Avancees & Membranes Ind Nouvelles membranes inorganiques de nanofiltration
JP2007146102A (ja) * 2005-11-07 2007-06-14 Kyushu Institute Of Technology 無機酸化物蛍光体
CN102906220A (zh) * 2010-06-09 2013-01-30 海洋王照明科技股份有限公司 氧化物锡酸盐发光材料及其制备方法
JP5568179B2 (ja) * 2010-06-13 2014-08-06 海洋王照明科技股▲ふん▼有限公司 ケイ酸塩発光物質及びその製造方法
US9080106B2 (en) * 2010-07-12 2015-07-14 Ocean's King Lighting Science & Technology Co., Ltd. Oxide luminescent materials and preparation methods thereof
EP2653519B8 (en) 2010-12-14 2015-10-21 Ocean's King Lighting Science & Technology Co., Ltd. Tungstate fluorescent materials and preparation methods thereof
JP5707505B2 (ja) * 2010-12-14 2015-04-30 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド ハロゲンケイ酸塩発光材料及びその調製方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565614A (zh) * 2009-04-30 2009-10-28 兰州大学 一种橙红色长余辉发光材料
CN102051170A (zh) * 2009-11-02 2011-05-11 海洋王照明科技股份有限公司 掺杂发光离子的钙钇锡酸盐发光材料及制备方法
CN101775279A (zh) * 2010-01-28 2010-07-14 海洋王照明科技股份有限公司 核壳结构荧光粉及其制备方法
CN102191054A (zh) * 2010-03-11 2011-09-21 海洋王照明科技股份有限公司 硅酸盐发光材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117399635A (zh) * 2023-12-15 2024-01-16 中国科学院遗传与发育生物学研究所 一种金纳米颗粒及其制备方法与应用
CN117399635B (zh) * 2023-12-15 2024-03-29 中国科学院遗传与发育生物学研究所 一种金纳米颗粒及其制备方法与应用

Also Published As

Publication number Publication date
JP2015522105A (ja) 2015-08-03
CN104169393A (zh) 2014-11-26
US9447317B2 (en) 2016-09-20
EP2881449A4 (en) 2016-04-13
JP6001172B2 (ja) 2016-10-05
CN104169393B (zh) 2016-01-13
EP2881449A1 (en) 2015-06-10
EP2881449B1 (en) 2017-03-01
US20150129803A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
CN102477293B (zh) 一种场致发光材料及其制备方法
WO2011147088A1 (zh) 含有金属粒子的稀土掺杂的卤氧化物发光材料及其制备方法
EP2848674A1 (en) Metal nanoparticle-coating titanate fluorescent material and preparation method therefor
WO2014067113A1 (zh) 硅酸盐发光材料及其制备方法
WO2014019152A1 (zh) 锡酸盐荧光材料及其制备方法
WO2013166663A1 (zh) 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法
CN103849384A (zh) 铝酸锌发光材料及其制备方法
WO2011147080A1 (zh) 包覆金属纳米粒子的铝酸盐基荧光粉及其制备方法
WO2014040229A1 (zh) 铝酸锌发光材料及其制备方法
WO2014019153A1 (zh) 铝酸锌荧光材料及其制备方法
CN103849389B (zh) 钙钇锡酸盐发光材料及其制备方法
US8936733B2 (en) Borate luminescent materials, preparation methods and uses thereof
WO2014067112A1 (zh) 硅酸盐发光材料及其制备方法
WO2014040222A1 (zh) 氧化镥发光材料及其制备方法
WO2014067111A1 (zh) 锗酸盐发光材料及其制备方法
WO2014067109A1 (zh) 铝酸盐发光材料及其制备方法
WO2013166659A1 (zh) 钛酸盐发光材料及其制备方法
EP2896675B1 (en) Stannate luminescent material and preparation method thereof
WO2014040220A1 (zh) 硅酸盐发光材料及其制备方法
CN104059661A (zh) 掺杂金属纳米粒子的钆酸钙发光材料及制备方法
CN104119884A (zh) 一种铝酸锶发光材料及其制备方法
CN104119908A (zh) 掺杂金属纳米粒子的铝酸钇发光材料及其制备方法
CN104119878A (zh) 一种铝酸锶发光材料及其制备方法
CN104119877A (zh) 一种铝酸锶铽发光材料及其制备方法
WO2014067114A1 (zh) 硫氧化物发光材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882088

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012882088

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012882088

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14399005

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015521937

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE