WO2013166663A1 - 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法 - Google Patents

包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法 Download PDF

Info

Publication number
WO2013166663A1
WO2013166663A1 PCT/CN2012/075207 CN2012075207W WO2013166663A1 WO 2013166663 A1 WO2013166663 A1 WO 2013166663A1 CN 2012075207 W CN2012075207 W CN 2012075207W WO 2013166663 A1 WO2013166663 A1 WO 2013166663A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal nanoparticles
preparing
silicate luminescent
luminescent material
metal
Prior art date
Application number
PCT/CN2012/075207
Other languages
English (en)
French (fr)
Inventor
周明杰
王荣
陈贵堂
Original Assignee
海洋王照明科技股份有限公司
深圳市海洋王照明工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司, 深圳市海洋王照明工程有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to US14/397,925 priority Critical patent/US9193901B2/en
Priority to CN201280072747.7A priority patent/CN104302730A/zh
Priority to PCT/CN2012/075207 priority patent/WO2013166663A1/zh
Priority to JP2015510596A priority patent/JP6017679B2/ja
Priority to EP12876231.7A priority patent/EP2848671A4/en
Publication of WO2013166663A1 publication Critical patent/WO2013166663A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7743Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
    • C09K11/77492Silicates

Definitions

  • the invention relates to the technical field of luminescent materials, in particular to a silicate luminescent material coated with metal nanoparticles and a preparation method thereof.
  • the fluorescent materials used in conventional field emission devices are mainly sulfide series and sulfur oxide series phosphors used in conventional cathode ray tubes and projection television tubes.
  • the luminescence brightness is high and has certain conductivity, but it is easily decomposed under the bombardment of large beam electron beams, releasing the elemental sulfur "poisoning" cathode tip and generating other precipitates. Covering the phosphor surface reduces the luminous efficiency of the phosphor and shortens the lifetime of the field emission device.
  • a silicate luminescent material having metal nanoparticles and a preparation method thereof A silicate luminescent material coated with metal nanoparticles, the molecular formula is:
  • M is at least one of Ag, Au, Pt, Pd and Cu nanoparticles, 0 ⁇ x ⁇ 0.2, y is the molar ratio of M to Si, 0 ⁇ y ⁇ lxl0 -2 .
  • a method for preparing a silicate luminescent material coated with metal nanoparticles comprising the steps of: preparing a colloid comprising metal nanoparticles, wherein the metal is at least one of Ag, Au, Pt, Pd and Cu;
  • the metal nanoparticle-containing colloid is subjected to surface treatment, followed by adding anhydrous ethanol, deionized water and ammonia water, and after mixing, adding orthosilicate according to a ratio of metal nanoparticles to Si molar ratio of y under stirring after the reaction was isolated metal nanoparticles coated with Si0 2; wherein, 0 ⁇ y ⁇ lxl0 -2; taken ⁇ said stoichiometric ratio, Tb and Ca compound and the corresponding metal nanoparticles coated with Si0 2 , heat treatment after mixing, and then thermal reduction under a reducing atmosphere, after cooling to obtain Li 2 Cai -x Si0 4 : Tb x @M y ; wherein @ denotes coating, M is Ag, Au, Pt, Pd and Cu At least one of the nanoparticles, 0 ⁇ x ⁇ 0.2.
  • the step of preparing a colloid comprising metal nanoparticles is:
  • the metal salt solution, the auxiliary agent and the reducing agent are mixed for a reaction time of 10 min to 45 min. After the reaction, a colloid containing metal nanoparticles is obtained, and the metal is at least one of Ag, Au, Pt, Pd and Cu.
  • the concentration of the metal salt solution is lxlO -3 mol / L - 5 x 10" 2 mol / L;
  • the auxiliary agent is polyvinyl pyrrolidone, sodium citrate, cetyl three At least one of mercapto ammonium bromide, sodium lauryl sulfate, and sodium dodecyl sulfate;
  • the auxiliary agent is contained in the colloid containing the metal nanoparticles in an amount of from 1 ⁇ 10 ⁇ 4 g/mL to 5 ⁇ 10 ⁇ 2 g/mL.
  • the reducing agent is at least one of hydrazine hydrate, ascorbic acid, sodium citrate and sodium borohydride; the molar ratio of the reducing agent to the metal ion in the salt solution of the metal is 3.6:1 to 18:1.
  • the metal nanoparticle-containing colloid is surface-treated: the metal nanoparticle-containing colloid is added to the polyvinylpyrrolidone solution and stirred for 8 to 18 hours.
  • the polyvinylpyrrolidone solution has a concentration of from 0.005 g/mL to 0.1 g/mL.
  • the water, absolute ethanol, aqueous ammonia, and ethyl orthosilicate are mixed according to a volume fraction of 10-20: 15-50: 1-7: 0.5-3.
  • the compounds corresponding to ruthenium, Ca and Tb are oxides, carbonates, acetates or oxalates corresponding to ruthenium, Ca and Tb.
  • the heat treatment is: calcination at 500 ° C to 1000 ° C for 2 h to 5 h.
  • the thermal reduction in the reducing atmosphere is: at 800 ° C ⁇ 1200 ° C, reducing in a reducing atmosphere for 0.5 h ⁇ 6 h;
  • the reducing atmosphere is at least one of a N 2 and H 2 reducing atmosphere, a carbon powder reducing atmosphere, a CO reducing atmosphere, and a pure reducing atmosphere.
  • composition of the silicate luminescent material coated with the metal nanoparticles is I ⁇ Ca ⁇ SiO ⁇ Tbx coated metal nanoparticles, all of which are chemically stable, and are stable under the bombardment of large beam electron beams. better.
  • FIG. 1 is a flow chart showing a method of preparing a metal nanoparticle-coated silicate luminescent material according to an embodiment
  • Example 2 is a Li 2 Ca coated with a metal nanoparticle-coated silicate luminescent material prepared in Example 3 and a conventional undoped metal nanoparticle. . 9 . Si0 4 : Tb i .
  • a metal nanoparticle-coated silicate luminescent material has the molecular formula: Li 2 Ca 1- x Si0 4 : Tb x @M y .
  • M is at least one of Ag, Au, Pt, Pd and Cu metal nanoparticles, 0 ⁇ x ⁇ 0.2, y is the molar ratio of M to Si, 0 ⁇ y ⁇ lxl0 -2 .
  • the coating is based on metal nanoparticles, and the Li 2 Ca 1-x SiO 4 :Tb x phosphor is a shell layer.
  • the composition of the silicate luminescent material coated with the metal nanoparticles is I ⁇ Ca ⁇ SiO ⁇ Tbx coated metal nanoparticles, all of which are chemically stable, and are stable under the bombardment of large beam electron beams. better.
  • a method for preparing a metal nanoparticle-coated silicate luminescent material as shown in FIG. 1 includes the following steps:
  • the metal salt solution, the auxiliary agent and the reducing agent are mixed, and the reaction time is 10 min to 45 min. After the reaction, a colloid containing the metal nanoparticles is obtained, and the metal may be at least one of Ag, Au, Pt, Pd and Cu.
  • the metal salt solution may be any soluble salt such as: nitrate, hydrochloride, sulfate, and the like.
  • soluble salt such as: nitrate, hydrochloride, sulfate, and the like.
  • chloroauric acid AuCI 3 -HCI-4H 2 0
  • chloroplatinic acid H 2 PtCI 6 -6H 2 0
  • the concentration of the metal salt solution may be lxlO -3 mol / L - 5xl0" 2 mol / L
  • the adjuvant may be at least one of polyvinylpyrrolidone, sodium citrate, cetyltrimethylammonium bromide, sodium lauryl sulfate, and sodium dodecylsulfonate.
  • the amount of the auxiliary agent added in the finally obtained metal nanoparticle-containing colloid is 1 ⁇ 10 ⁇ 4 g/mL - 5 ⁇ 10′ 2 g/mL
  • the reducing agent may be at least one of hydrazine hydrate, ascorbic acid, sodium citrate, and sodium borohydride.
  • the reducing agent is usually formulated into a solution and mixed with a metal salt solution.
  • the reducing agent can be formulated or diluted into an aqueous solution having a concentration of Ixl0" 4 mol/L ⁇ 1 mol/L.
  • the molar ratio of the reducing agent added to the metal ion in the metal salt solution is 3.6:1 ⁇ 18:1.
  • the reaction time of this step can be 10min ⁇ 45min.
  • step S20 subjecting the metal nanoparticle-containing colloid obtained in step S10 to surface treatment, then adding anhydrous ethanol, deionized water and ammonia water, mixing and hooking, adding the orthosilicate according to the molar ratio of the metal nanoparticles to Si under stirring ethyl ester, was isolated after the reaction of metal nanoparticles coated with Si0 2; wherein, 0 ⁇ y ⁇ lxl0 -2.
  • the surface treatment of the colloid containing the metal nanoparticles is as follows: The colloid containing the metal nanoparticles is added to the polyvinylpyrrolidone (PVP) solution, and magnetically stirred for 8 to 18 hours to complete the surface treatment process.
  • the concentration of the polyvinylpyrrolidone solution may range from 0.005 g/mL to 0.1 g/mL.
  • Si0 2 coated with metal nanoparticles can be referred to as Si0 2 @M y .
  • the operation of separating the SiO 2 coated with the metal nanoparticles may be: centrifugation, washing, and drying to obtain Si0 2 powder coated with metal nanoparticles.
  • the compound corresponding to Li, Ca and Tb may be an oxide, a carbonate, an acetate or an oxalate.
  • the compound corresponding to Li, Ca, and Tb weighed and the SiO 2 coated with metal nanoparticles obtained by S20 can be ground to uniform mixing.
  • the heat treatment can be: calcination in a muffle furnace at 500 °C ⁇ 1000 °C for 2h ⁇ 5h.
  • the thermal reduction under a reducing atmosphere can be: at 800 ° C to 1200 ° C, reduction in a reducing atmosphere for 0.5 h to 6 h.
  • the sol-gel method was used to prepare Si0 2 @M, and then Si0 2 @M was used as the silicon source.
  • High-temperature solid-phase method was used to prepare lithium calcium silicate phosphor coated with metal nanoparticles by using compounds corresponding to lanthanum, Ca and Tb.
  • the powder that is, Li 2 Ca 1-x SiO 4 :Tb x @M yo enhances phosphor luminescence by coating metal nanoparticles.
  • the doped metal nanoparticle-doped yttrium silicate 4 lignin luminescent material prepared by the method for preparing the silicate luminescent material coated with the metal nanoparticle has the advantages of good stability and better luminescent property, and can be widely used. Fields such as lighting and display. The following are specific embodiments: Example 1
  • Si0 2 @ Au lxl Preparation of 2 : Measure 10 mL of Au nanoparticle sol of 5 ⁇ 10 ⁇ 3 ⁇ / ⁇ _, and place it into Au beaker sol in a beaker and add 2mL of 0.1g/mL PVP solution, magnetically stir for 8h, and obtain surface treatment. After the Au nanoparticles. While stirring, 25 mL of absolute ethanol, 5 mL of ammonia water, and 1.2 mL of tetraethyl orthosilicate were sequentially added to the above Au nanoparticle sol, and after reacting for 8 hours, it was centrifuged, washed, and dried to obtain Si0 2 @ Au lxl . - 2 powder.
  • Li 2 Ca 0 .85Si0 4 :Tbo.i5 @ Au lxl0 - 2 0.1195 g of Li 2 0, 0.1904 g of CaO, 0.1121 g of Tb 4 0 7 and 0.2404 g of Si0 2 @ Au powder were weighed. It is placed in an agate mortar and thoroughly ground until it is evenly mixed. Then the powder is transferred to corundum crucible, heat treated in a muffle furnace at 500 ° C for 15 h, and then sintered in a tube furnace at 1000 ° C for 2 h in a carbon reduction atmosphere. After cooling to room temperature, a Li 2 Ca 0 .85Si04:Tbo.i5@Auixio-2 luminescent material was obtained.
  • Preparation of Si0 2 @ Pt 5 xio-3 Measure 8 mL of 2.5xl0" 3 mol/L Pt nanoparticle sol in a beaker. Then, 4 mL of 0.02 g/mL PVP solution was added and magnetically stirred for 18 hours to obtain surface-treated Pt nanoparticles. While stirring, 20 m of absolute ethanol, 4 mL of aqueous ammonia, and 1 mL of tetraethyl orthosilicate were sequentially added to the above Pt nanoparticle sol. After the reaction 3 h, centrifuged, washed, and dried to give 2 @Pt 5xl0 SiO - 3 powder.
  • Li 2 Cao.9oSi0 4 Tbo.io@ Ag 2 ⁇ Preparation of 5x10-4.
  • Ag nanoparticle sol 3.4 mg of silver nitrate (AgN0 3 ) was weighed and dissolved in 18.4 mL of deionized water. After the silver nitrate was completely dissolved, 42 mg of sodium citrate was weighed and dissolved in an aqueous solution of silver nitrate under magnetic stirring. 5.7 mg of sodium borohydride was weighed and dissolved in 10 mL of deionized water to obtain 10 mL of an aqueous solution of sodium borohydride having a concentration of 1.5 x 10 2 mol/L.
  • Nanoparticle sol In a magnetic stirring environment, 1.6 mL of 1.5 ⁇ 10 ⁇ 2 mol/L sodium borohydride aqueous solution was added to the silver nitrate aqueous solution at one time, and then the reaction was continued for 10 min to obtain 20 mL Ag having an Ag content of 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ _. Nanoparticle sol.
  • Si0 2 @ Ag 2 . 5xl . - Preparation of 4 Measure 1.2 mL of Ixl0" 3 mol/L Ag nanoparticle sol in a beaker, and then add 10 mL of 0.01 g/mL PVP and magnetically stir for 12 h to obtain surface-treated Ag nanoparticles. While stirring, the above Ag nanoparticle sol was sequentially added with 30 mL of absolute ethanol, 7.2 mL of ammonia water, and 1.2 mL of tetraethyl orthosilicate. After 6 hours of reaction, it was centrifuged, washed, and dried to obtain Si0 2 @ Ag 2 ⁇ 5x10-4 powder.
  • Li 2 Cao.9oSi0 4 Tbo.io@ Ag 2 .
  • Preparation of 5xl0 - 4 weigh 0.2955g of Li 2 C0 3 , 0.2016g of CaO, 0.0747g of Tb 4 0 7 and 0.2404g of Si0 2 of Si0 2 @Au powder, placed in an agate mortar and ground to a uniform consistency, then transferred to a corundum crucible, heat treated in a muffle furnace at 600 ° C for 4 h, and then in a tube furnace at 95% N 2 plus The mixture was sintered at 800 ° C for 6 h under a 5% H 2 weak reducing atmosphere, and cooled to room temperature to obtain U 2 Ca. . 9 .
  • Si0 4 Tb i . @ Ag 2 ⁇ 5x10-4 luminescent material.
  • 2 is a Li 2 Ca coated with Ag nanoparticles prepared in the present example. . 9 . Si0 4 : Tb i . @Ag 2 . 5xl . - 4 luminescent materials and conventional undoped metal nanoparticles of I ⁇ Ca ⁇ SiO ⁇ Tbcn.
  • a comparison of cathode ray luminescence spectra of a luminescent material at a voltage of 1.5 kV. 1 is a graph of Ag-doped metal nanoparticles Li 2 Cao.9oSi0 4:. Tbo.io @ Ag 2 5xl.
  • curve 2 is I ⁇ Cao ⁇ SiO ⁇ Tbc of undoped metal nanoparticles.
  • the luminescence spectrum of the luminescent material It can be seen from the figure that the emission peak at 544 nm coats the U 2 Ca of the Ag nanoparticles. . 9 . Si0 4 : Tb i . @Ag 2 . 5xl .
  • the luminescence intensity of -4 is 20% higher than that of commercial undoped metal nanoparticles of 1_1 2 [3 0 . 90 510 4 : butyl
  • the luminescent material of the embodiment has the characteristics of good stability, good color purity, and high luminous efficiency.
  • Pd nanoparticle sol 0.22 mg of palladium chloride (PdCI 2 .2H 2 0 ) was weighed and dissolved in 19 mL of deionized water. After the palladium chloride was completely dissolved, ll. Omg of sodium citrate and 4.0 mg of sodium lauryl sulfate were weighed and dissolved in an aqueous solution of palladium chloride under magnetic stirring. Weigh 3.8mg of sodium borohydride dissolved in 10mL of deionized water to obtain a sodium borohydride reducing solution with a concentration of lxlO -2 mol/L; quickly add 1mL Ixl0" 2 mol to the palladium chloride aqueous solution under magnetic stirring. /L aqueous sodium borohydride solution, after which the reaction was continued for 20 min to obtain 20 mL of a Pd nanoparticle sol having a Pd content of 5 ⁇ 10 ⁇ 5 ⁇ / ⁇ .
  • Preparation of Si0 2 @ Pdix!os Measure 1.5 mL of 5xl0" 5 mol/L Pd nanoparticle sol in a beaker, add 8mL of 0.005g/mL PVP, and stir magnetically for 16h to obtain Pd nanometer after surface treatment. While stirring, 40 m of absolute ethanol, 8 mL of ammonia water and 1.8 mL of tetraethyl orthosilicate were sequentially added to the above Pd nanoparticle sol. After reacting for 5 hours, it was centrifuged, washed, and dried to obtain Si0 2 @ Pd. Lxl0 - 5 powder.
  • Li 2 Ca 0 .8oSi0 4 Tbo.2o@ Pd lxl . - 5
  • Preparation: Weigh 0.4076 g of Li 2 C 2 0 4 , 0.4096 g of CaC 2 0 4 , 0.2327 g of Tb 2 (C 2 0 4 ) 3 and 0.2404 g of SiO 2 SiO 2 @ Pd powder, Place it in an agate mortar and grind it thoroughly until it is evenly mixed. Then transfer the powder to corundum crucible, heat it at 700 °C for 5 h in a muffle furnace, and add 95% N 2 plus 5% H 2 weakly in a tube furnace.
  • Preparation of Si0 2 @ CUix!o-4 Measure 1.5 mL of 4xlO" 4 mol/L Cu nanoparticle sol in a beaker, add 5mL of 0.03g/mL PVP, and magnetically stir for 10h, after surface treatment. Cu nanoparticles. While stirring, 15 mL of absolute ethanol, 3 mL of ammonia water, and 1.4 mL of tetraethyl orthosilicate were sequentially added to the above Cu nanoparticle sol. After reacting for 4 hours, it was centrifuged, washed, and dried to obtain Si0 2 @ Cu. Lxl0 - 4 powder.
  • Li 2 Ca 0 .95Si04: Tbo.o5@Cuixio-4 Preparation: Weigh 0.5516g of LiN0 3, 0.6232g of Ca (N0 3) 2, 0.0689g of Tb (N0 3) 3 and 0.2404g of Si0 2
  • the Si0 2 @ Pd powder was placed in an agate mortar and thoroughly ground to a uniform consistency. The powder was then transferred to a corundum crucible, heat treated at 600 °C for 4 h in a muffle furnace, and 95% N 2 in a tube furnace. It was reduced by sintering at 1000 ° C for 6 h under a 5% H 2 weak reducing atmosphere, and cooled to room temperature to obtain Li 2 Ca. . 8 . Si0 4 : Tb. . 2 . @ Pd lxl . - 5 luminescent materials.
  • Preparation of Ag nanoparticle sol Weigh 0.0429g of AgN0 3, 0.0733g of sodium citrate, 0.05g of PVP formulated as the other points 1 J 10mL 0.025 mol / L of an aqueous solution of AgN0 3, 10mL 0.025 mol / L Pestle An aqueous solution of sodium citrate and 10 mL of a 5 mg/mL aqueous solution of PVP.
  • Si0 2 @Ag 5xl. - Preparation of 4 Measure 5 mL of Ixl0" 3 mol/L Ag nanoparticle sol in a beaker, and add 6 mL of 0.06 g/mL PVP, and magnetically stir for 15 h to obtain surface-treated Ag nanoparticles. To the above Ag nanoparticle sol, 35 mL of absolute ethanol and 8 mL of ammonia water were sequentially added. 1.5 mL of tetraethyl orthosilicate. After reacting for 2 hours, it was centrifuged, washed, and dried to obtain SiO 2 @Ag 5x10 - 4 powder.
  • Li 2 Cao.88Si0 4 Tbo.i2 @ Ag 5xl.
  • - Preparation 4 Weigh 0.2955g of Li 2 C0 3, 0.4506g of CaC 2 0 4, 0.1396g of Si0 2 @ Pd powder Tb 2 (C 2 0 4) 3 and 0.2404g of Si0 2 is placed The agate mortar is fully ground to a uniform mixing, and then the powder is transferred to a corundum crucible, heat treated at 500 ° C for 10 h in a muffle furnace, and then sintered in a tube furnace at 1100 ° C for 3 h in a pure H 2 reducing atmosphere. After cooling to room temperature, a Li 2 Cao.8oSi0 4 :Tbo.2o@ Pd 1x10-5 luminescent material was obtained.
  • Si ⁇ 2@(Ago.5/AUo.5) Preparation of 1.25x10-3: Measure 5 mL of Ixl0" 3 mol/L Ag.. 5 /Au.. 5 nanoparticle sol in a beaker and add 10 mL 0.1 g/mL PVP, and magnetically stirred for 12h, after surface treatment of Ag.. 5 /Au.. 5 nanometer particles. While stirring, add 30mL of absolute ethanol, 6mL of ammonia water, lmL positive to the above Ag nanoparticle sol. tetraethylorthosilicate. after the reaction 5h, centrifuged, washed, and dried, to give SiO 2 @ (Ag .. 5 / Au 0. 5) 1.25x10-3 powder.
  • Li 2 Ca 0 .92Si0 4 :Tbo.o8@ (Ag.. 5 /Au.. 5 ): Weigh 0.2955g of Li 2 C0 3 , 0.2016g of CaO, 0.0747g of Tb 4 0 7 and 0.2404 G0 2 @(Ag.. 5 /Au.. 5 ) LK ⁇ powder, placed in an agate mortar and ground to a uniform mixing, then transferred to a corundum crucible, heat treated at 700 °C in a muffle furnace 8h, and then sintered in a tube furnace at 95 ° C for 5 h under a 95% N 2 plus 5% H 2 weak reducing atmosphere. After cooling to room temperature, Li 2 Ca is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种包覆有金属纳米颗粒的硅酸盐发光材料,分子通式为:Li2Ca1-xSiO4:Tbx@My;其中,@表示包覆,M为Ag、Au、Pt、Pd和Cu纳米颗粒中的至少一种,0<x<0.2,y为M与Si的摩尔比,0<y≤1×10-2。这种包覆有金属纳米颗粒的硅酸盐发光材料的成分为Li2Ca1-xSiO4:Tbx包覆金属纳米颗粒,均为化学性质很稳定的物质,在大束流电子束的轰击下稳定性较好。本发明还提供一种上述包覆有金属纳米颗粒的硅酸盐发光材料的制备方法。

Description

说明书
发明名称: 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法 【技术领域】
本发明涉及发光材料技术领域, 特别是涉及包覆有金属纳米颗粒的硅酸盐 发光材料及其制备方法。
【背景技术】
20世纪 60年代, Ken Shoulder提出了基于场发射阴极阵列 ( FEAs ) 电子束 微型装置的设想, 于是利用 FEAs设计和制造平板显示与光源器件的研究引起了 人们的极大兴趣。 这种新型的场发射器件的工作原理与和传统的阴极射线管 ( CRT )类似, 是通过电子束轰击红、 绿、 蓝三色荧光粉发光实现成像或照明用 途, 这种器件在亮度、 视角、 响应时间、 工作温度范围、 能耗等方面均具有潜 在的优势。
制备优良性能场发射器件的关键因素之一是高性能荧光粉体的制备。 传统 的场发射器件所采用的荧光材料主要是一些用于传统阴极射线管和投影电视显 象管的硫化物系列和硫氧化物系列荧光粉。
对于硫化物和硫氧化物系列荧光粉, 其发光亮度较高且具有一定的导电性, 但在大束流电子束的轰击下容易发生分解,放出单质硫"毒化"阴极针尖, 并生成 其他沉淀物覆盖在荧光粉表面, 降低了荧光粉的发光效率, 缩短了场发射器件 的使用寿命。
【发明内容】
基于此, 针对传统的硫化物和硫氧化物系列荧光粉在大束流电子束的轰击 下稳定性较差的问题, 有必要提供一种在大束流电子束的轰击下稳定性较好的 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法。 一种包覆有金属纳米颗粒的硅酸盐发光材料, 分子通式为:
Li2Ca1-xSi04:Tbx@My;
其中, @表示包覆, M为 Ag、 Au、 Pt、 Pd和 Cu纳米颗粒中的至少一种, 0 < x<0.2 , y为 M与 Si的摩尔比, 0 < y≤lxl0-2
一种包覆有金属纳米颗粒的硅酸盐发光材料的制备方法, 包括如下步骤: 制备含有金属纳米颗粒的胶体, 所述金属为 Ag、 Au、 Pt、 Pd和 Cu中的至 少一种;
对所述含有金属纳米颗粒的胶体进行表面处理, 接着加入无水乙醇、 去离 子水和氨水, 混勾后在搅拌下按照金属纳米颗粒与 Si的摩尔比为 y的比例加入 正硅酸乙酯, 反应后分离得到包覆有金属纳米颗粒的 Si02; 其中, 0 < y≤lxl0-2; 按照化学计量比称取 ϋ、 Ca和 Tb对应的化合物以及所述包覆有金属纳米颗 粒的 Si02 , 混勾后热处理, 再在还原气氛下热还原, 冷却后得到 Li2Cai-xSi04:Tbx@My; 其中, @表示包覆, M为 Ag、 Au、 Pt、 Pd和 Cu纳米颗粒 中的至少一种, 0 < x≤0.2。
在一个实施例中, 所述制备含有金属纳米颗粒的胶体的步骤为:
将金属的盐溶液、 助剂和还原剂混合, 反应时间为 10min~45min, 反应后得 到含有金属纳米颗粒的胶体, 所述金属为 Ag、 Au、 Pt、 Pd和 Cu中的至少一种。
在一个实施例中, 所述金属的盐溶液的浓度为 lxlO-3mol/L - 5xl0"2mol/L; 所述助剂为聚乙烯砒咯烷酮、 柠檬酸钠、 十六烷基三曱基溴化铵、 十二烷 基硫酸钠和十二烷基磺酸钠中的至少一种;
所述助剂在含有金属纳米颗粒的胶体中的含量为 lxlO_4g/mL~ 5xl0_2g/mL。 所述还原剂为水合肼、 抗坏血酸、 柠檬酸钠和硼氢化钠中的至少一种; 所述还原剂与所述金属的盐溶液中的金属离子的摩尔比为 3.6: 1~18: 1。 在一个实施例中, 所述对所述含有金属纳米颗粒的胶体进行表面处理为: 将所述含有金属纳米颗粒的胶体加入到聚乙烯吡咯烷酮溶液中, 搅拌 8h~18h。
在一个实施例中, 所述聚乙烯吡咯烷酮溶液的浓度为 0.005g/mL ~ 0.1g/mL。 在一个实施例中, 所述水、 无水乙醇、 氨水和正硅酸乙酯按照体积分数 10-20: 15-50: 1~7: 0.5~3混合。 在一个实施例中, 所述 ϋ、 Ca和 Tb对应的化合物为 ϋ、 Ca和 Tb对应的氧 化物、 碳酸盐、 醋酸盐或草酸盐。
在一个实施例中, 所述热处理为: 在 500 °C~1000 °C下煅烧 2h~5h。
在一个实施例中, 所述在还原气氛下热还原为: 在 800 °C~1200 °C下, 还原 气氛下还原 0.5h~6h;
所述还原气氛为 N2和 H2还原气氛、 碳粉还原气氛、 CO还原气氛和纯 ^还 原气氛中的至少一种。
这种包覆有金属纳米颗粒的硅酸盐发光材料的成分为 I^Ca^SiO^Tbx包覆金 属纳米颗粒, 均为化学性质 ^艮稳定的物质, 在大束流电子束的轰击下稳定性较 好。
【附图说明】
图 1 为一实施方式的包覆有金属纳米颗粒的硅酸盐发光材料的制备方法的 流程图;
图 2为实施例 3制备的包覆有金属纳米颗粒的硅酸盐发光材料与传统的未 掺杂金属纳米颗粒的 Li2Ca。.9。Si04:Tb i。发光材料在加速电压为 1.5KV下的阴极射 线激发下的发光光谱对比图。
【具体实施方式】
为了便于理解本发明, 下面将参照相关附图对本发明进行更全面的描述。 附图中给出了本发明的较佳实施例。 但是, 本发明可以以许多不同的形式来实 现, 并不限于本文所描述的实施例。 相反地, 提供这些实施例的目的是使对本 发明的公开内容的理解更加透彻全面。
一实施方式的包覆有金属纳米颗粒的硅酸盐发光材料, 分子通式为: Li2Ca1-xSi04:Tbx@My
其中, @表示包覆, M为 Ag、 Au、 Pt、 Pd和 Cu金属纳米颗粒中的至少一 种, 0 < x<0.2 , y为 M与 Si的摩尔比, 0 < y≤lxl0-2
包覆是以金属纳米颗粒为核, Li2Ca1-xSi04:Tbx荧光粉为壳层。 这种包覆有金属纳米颗粒的硅酸盐发光材料的成分为 I^Ca^SiO^Tbx包覆金 属纳米颗粒, 均为化学性质 ^艮稳定的物质, 在大束流电子束的轰击下稳定性较 好。
如图 1所示的包覆有金属纳米颗粒的硅酸盐发光材料的制备方法, 包括如 下步骤:
S10、 制备含有金属纳米颗粒的胶体。
将金属的盐溶液、 助剂和还原剂混合,反应时间为 10min~45min, 反应后得 到含有金属纳米颗粒的胶体, 金属可以为 Ag、 Au、 Pt、 Pd和 Cu中的至少一种。
金属的盐溶液可以为任意的可溶性盐, 例如: 硝酸盐、 盐酸盐、 硫酸盐等。 对于 Ag和 Pt, 可以采用氯金酸 ( AuCI3-HCI-4H20 )和氯铂酸 ( H2PtCI6-6H20 )。
金属的盐溶液的浓度可以为 lxlO-3mol/L - 5xl0"2mol/L„
助剂可以为聚乙烯砒咯烷酮、 柠檬酸钠、 十六烷基三曱基溴化铵、 十二烷 基硫酸钠和十二烷基磺酸钠中的至少一种。 助剂的添加量在最终得到的含有金 属纳米颗粒的胶体中的含量为 lxlO-4g/mL - 5xl0"2g/mL„
还原剂可以为水合肼、 抗坏血酸、 柠檬酸钠和硼氢化钠中的至少一种。 还 原剂一般配制成溶液后与金属的盐溶液混合。 还原剂可以配制或稀释成浓度为 Ixl0"4mol/L ~ lmol/L的水溶液。 还原剂的添加量与金属的盐溶液中的金属离子 的摩尔比为 3.6: 1 ~ 18: 1。
在保证得到含有金属纳米颗粒的胶体的前提下, 为了节约能耗, 本步骤反 应时间可以为 10min ~ 45min。
S20、 对步骤 S10得到的含有金属纳米颗粒的胶体进行表面处理, 接着加入 无水乙醇、 去离子水和氨水, 混勾后在搅拌下按照金属纳米颗粒与 Si的摩尔比 为 y加入正硅酸乙酯, 反应后分离得到包覆有金属纳米颗粒的 Si02; 其中, 0 < y≤lxl0-2
对含有金属纳米颗粒的胶体进行表面处理为: 将含有金属纳米颗粒的胶体 加入到聚乙烯吡咯烷酮 (PVP )溶液中, 磁力搅拌 8h~18h , 完成表面处理过程。 聚乙烯吡咯烷酮溶液的浓度可以为 0.005g/mL - 0.1g/mL。
为了能够更好的形成 Si02微球, 水、 无水乙醇、 氨水和正硅酸乙酯按照体 积分数 10-20: 15-50: 1~7: 0.5~3混合。
为了方便, 包覆有金属纳米颗粒的 Si02可以记为 Si02@My
分离得到包覆有金属纳米颗粒的 Si02的操作可以为: 离心、 洗涤、 干燥, 得到包覆有金属纳米颗粒的 Si02粉末。
S30、 按照化学计量比称取 ϋ、 Ca和 Tb对应的化合物以及 S20得到的包覆 有金属纳米颗粒的 Si02, 混勾后热处理, 再在还原气氛下热还原, 冷却后得到
Li2Cai-xSi04:Tbx@My; 其中, @表示包覆, M为金属纳米颗粒, 0 < x≤0.2。
Li、 Ca和 Tb对应的化合物可以为氧化物、 碳酸盐、 醋酸盐或草酸盐。
称取的 Li、Ca和 Tb对应的化合物以及 S20得到的包覆有金属纳米颗粒的 Si02 可以研磨至混合均匀。
热处理可以为: 在 500 °C ~1000 °C下, 马弗炉中煅烧 2h~5h。
在还原气氛下热还原可以为:在 800 °C~1200 °C下,还原气氛下还原 0.5h~6h。
采用溶胶 -凝胶法制得 Si02@M ,再以 Si02@M为硅源, 采用高温固相法, 与 ϋ、 Ca 和 Tb 对应的化合物制备包覆有金属纳米颗粒的硅酸钙锂荧光粉, 即 Li2Ca1-xSi04:Tbx@Myo 通过包覆金属纳米颗粒来增强荧光粉发光。
这种包覆有金属纳米颗粒的硅酸盐发光材料的制备方法制备的掺杂金属纳 米颗粒的掺铽硅酸 4弓锂发光材料具有稳定性好, 发光性能更好的优点, 可以广 泛用于照明和显示等领域。 下面为具体实施例部分: 实施例 1
Li2Ca 85Si04:Tb i5 @ Auixi0-2的制备。
Au纳米颗粒溶胶的制备:称取 20.6mg氯金酸( AuCI3.HCI.4H20 )溶解到 16.8mL 的去离子水中。 当氯金酸完全溶解后, 称取 14mg柠檬酸钠和 6mg十六烷基三 曱基溴化铵, 并在磁力搅拌的环境下溶解到氯金酸水溶液中。 称取 1.9mg硼氢 化钠和 17.6mg 抗坏血酸分别溶解到 10mL 去离子水中, 得到 10mL 浓度为 5xlO"3mol/L的硼氢化钠水溶液和 10mL浓度为 lxlO-2mol/L的抗坏血酸水溶液。 在磁力搅拌的环境下, 先往氯金酸水溶液中加入 0.08mL硼氢化钠水溶液, 搅拌 反应 5min后再往氯金酸水溶液中加入 3.12mLlxl0"2mol/L的抗坏血酸水溶液, 之后继续反应 30min , 即得 20mLAu含量为 5xl0-3mol/L的 Au纳米颗粒溶胶。
Si02@ Aulxl。-2的制备: 量取 10mL为 5Χ10·3ΓΤΊΟΙ/Ι_的 Au纳米颗粒溶胶, 往 Au纳米颗粒溶胶中于烧杯中并加入 2mL 0.1g/mL 的 PVP溶液,磁力搅拌 8h ,得 经表面处理后的 Au纳米颗粒。 一边搅拌一边依次向上述 Au纳米颗粒溶胶中加 入 25mL无水乙醇、 5mL氨水, 1.2mL正硅酸四乙酯, 反应 8h后, 经离心, 洗 涤, 干燥, 得到 Si02@ Aulxl。-2粉末。
Li2Ca0.85Si04:Tbo.i5 @ Aulxl0-2的制备: 称取 0.1195g的 Li20, 0.1904g的 CaO , 0.1121g的 Tb407和 0.2404g的 Si02@ Au粉末, 置于玛瑙研钵中充分研磨至混合 均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 500°C热处理 15h , 再于管式 炉中在碳粉还原气氛下 1000 °C烧结 2h 还原, 冷却至室温, 即可得到 Li2Ca0.85Si04:Tbo.i5@Auixio-2发光材料。 实施例 2
Li2Cao.98Si04:Tbo.o2 @ t5xio-3的制备。
Pt纳米颗粒溶胶的制备: 称取 25.9mg氯铂酸( H2PtCI6.6H20 )溶解到 17mL 的去离子水中。 当氯铂酸完全溶解后, 称取 40.0mg柠檬酸钠和 60.0mg十二烷 基橫酸钠, 并在磁力搅拌的环境下溶解到氯铂酸水溶液中。 称取 1.9mg硼氢化 钠溶解到 10mL去离子水中, 得到 10mL浓度为 5Χ10·3ΓΤΊΟΙ/Ι_的硼氢化钠水溶液, 同时配制 10mL浓度为 5xl0_2mol/L的水合肼溶液。 磁力搅拌的环境下, 先往氯 铂酸水溶液中滴加 0.4mL硼氢化钠水溶液, 搅拌反应 5m in , 然后再往氯铂酸水 溶液中滴加 2.6mL 5xl0"2mol/L的水合肼溶液,之后继续反应 40min ,即得 10mL Pt 含量为 2.5xl0_3mol/L的 Pt纳米颗粒溶胶。
Si02@ Pt5xio-3的制备: 量取 8mL 2.5xl0"3mol/L的 Pt纳米颗粒溶胶于烧杯中, 并加入 4mL 0.02g/mL的 PVP溶液,磁力搅拌 18h ,得经表面处理后的 Pt纳米颗 粒。一边搅拌一边依次向上述 Pt纳米颗粒溶胶中依次加入 20m L无水乙醇、 4mL 氨水, lmL正硅酸四乙酯。反应 3 h后, 经离心, 洗涤, 干燥, 得到 SiO2@Pt5xl0-3 粉末。
Li2Ca0.98Si04:Tbo.o2@ t5xio-3的制备:称取 0.2955g的 Li2C03, 0.3924g的 CaC03, 0.0199g的 Tb2(C03)3和 0.2404g的 Si02@ Au粉末,置于玛瑙研钵中充分研磨至混 合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 1000°C热处理 2h, 再于管 式炉中在 CO 还原气氛下 1200 °C烧结 0.5h 还原, 冷却至室温, 即可得到 Li2Cao.98Si04:Tbo.o2 @Pt5xi0-3发光材料。 实施例 3
Li2Cao.9oSi04:Tbo.io@ Ag2■5x10—4的制备。
Ag纳米颗粒溶胶的制备: 称取 3.4mg硝酸银 ( AgN03 )溶解到 18.4mL的去 离子水中。 当硝酸银完全溶解后, 称取 42mg柠檬酸钠在磁力搅拌的环境下溶解 到硝酸银水溶液中。 称取 5.7mg硼氢化钠溶到 10mL去离子水中, 得到 10mL浓 度为 1.5xl0_2mol/L的硼氢化钠水溶液。 在磁力搅拌的环境下, 往硝酸银水溶液 中一次性加入 1.6mL1.5xl0-2mol/L的硼氢化钠水溶液, 之后继续反应 lOmin, 即 得 20mL Ag含量为 1Χ10·3ΓΤΊΟΙ/Ι_的 Ag纳米颗粒溶胶。
Si02@ Ag2.5xl。-4的制备: 量取 1.2mL Ixl0"3mol/L的 Ag纳米颗粒溶胶于烧杯 中, 再力口入 10mL 0.01g/mL PVP, 并磁力搅拌 12h, 得经表面处理后的 Ag纳米颗 粒。一边搅拌一边依次向上述 Ag纳米颗粒溶胶中加入依次加入 30mL无水乙醇、 7.2mL氨水, 1.2mL正硅酸四乙酯。反应 6h后,经离心, 洗涤,干燥,得到 Si02@ Ag2■5x10—4粉末。
Li2Cao.9oSi04:Tbo.io@ Ag2.5xl0-4的制备:称取 0.2955g的 Li2C03, 0.2016g的 CaO, 0.0747g的 Tb407和 0.2404g的 Si02的 Si02@Au粉末, 置于玛瑙研钵中充分研磨 至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 600°C热处理 4h , 再 于管式炉中在 95%N2加上 5%H2弱还原气氛下 800°C烧结 6h还原, 冷却至室温, 即可得到 U2Ca。.9。Si04:Tb i。@ Ag2■5x10—4发光材料。 图 2为本实施例制备的包覆 Ag纳米颗粒的 Li2Ca。.9。Si04:Tb i。@ Ag2.5xl。-4发光 材料与传统的未掺杂金属纳米颗粒的 I^Ca ^SiO^Tbcn。发光材料在 1.5kv电压下 的阴极射线发光光谱对比图。 曲线 1 是掺杂金属纳米粒子 Ag 的 Li2Cao.9oSi04:Tbo.io@ Ag2.5xl。-4发光材料的发光光谱, 曲线 2是未掺杂金属纳米粒 子的 I^Cao^SiO^Tbc 。发光材料的发光光谱。 从图中可以看出在 544nm处的发 射峰, 包覆 Ag纳米颗粒的 U2Ca。.9。Si04:Tb i。@ Ag2.5xl。-4的发光强度较商业的未掺 杂金属纳米颗粒的 1_12〔30.905104:丁|30.10发光材料增强了 20%。
本实施例的发光材料具有稳定性好、 色纯度好、 并且发光效率较高的特点。 实施例 4
Li2Cao.8oSi04:Tbo.2o@ d 1x10—5的制备。
Pd纳米颗粒溶胶的制备: 称取 0.22mg氯化钯(PdCI2.2H20 )溶解到 19mL 的去离子水中。 当氯化钯完全溶解后, 称取 ll.Omg柠檬酸钠和 4.0mg十二烷基 硫酸钠, 并在磁力搅拌的环境下溶解到氯化钯水溶液中。 称取 3.8mg硼氢化钠 溶到 10mL去离子水中, 得到浓度为 lxlO-2mol/L的硼氢化钠还原液; 在磁力搅 拌的环境下, 往氯化钯水溶液中快速加入 lmL Ixl0"2mol/L的硼氢化钠水溶液, 之后继续反应 20min , 即得 20mL Pd含量为 5Χ10·5ΓΤΊΟΙ/Ι_的 Pd纳米颗粒溶胶。
Si02@ Pdix!o-s的制备:量取 1.5mL 5xl0"5mol/L的 Pd纳米颗粒溶胶于烧杯中, 并加入 8mL 0.005g/mL PVP , 并磁力搅拌 16h , 得经表面处理后的 Pd纳米颗粒。 一边搅拌一边依次向上述 Pd纳米颗粒溶胶中依次加入 40m L无水乙醇、 8mL氨 水, 1.8mL正硅酸四乙酯。待反应 5h后,经离心,洗涤,干燥,得到 Si02@ Pdlxl0-5 粉末。
Li2Ca0.8oSi04:Tbo.2o@ Pdlxl。-5的制备: 称取 0.4076g 的 Li2C204 , 0.4096g 的 CaC204, 0.2327g的 Tb2(C204)3和 0.2404g的 Si02的 Si02@ Pd粉末, 置于玛瑙研 钵中充分研磨至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 700°C热 处理 5h , 再于管式炉中在 95%N2加上 5%H2弱还原气氛下 1000°C烧结 6h还原, 冷却至室温, 即可得到 Li2Ca。.8。Si04:Tb。.2。@ Pdlxl。-5发光材料。 实施例 5
Li2Ca0.95SiO4:Tb0.05@Culxl0-4的制备。
Cu纳米颗粒溶胶的制备: 称取 1.6mg硝酸铜溶解到 16mL的乙醇中, 完全 溶解后,一边搅拌一边加入 12mg PVP ,然后緩慢滴入用 0.4mg硼氢化钠溶到 10mL 乙醇中得到的 lxlO-3mol/L的硼氢化钠醇溶液 4mL, 继续搅拌反应 lOmin , 得到 20mL 4xlO"4mol/L的 Cu纳米颗粒胶体。
Si02@ CUix!o-4的制备:量取 1.5mL 4xlO"4mol/L的 Cu纳米颗粒溶胶于烧杯中, 并加入 5mL 0.03g/mL PVP , 并磁力搅拌 10h , 得经表面处理后的 Cu纳米颗粒。 一边搅拌一边向上述 Cu纳米颗粒溶胶中依次加入 15mL无水乙醇、 3mL氨水, 1.4mL正硅酸四乙酯。 待反应 4h后, 经离心, 洗涤, 干燥, 得到 Si02@ Culxl0-4 粉末。
Li2Ca0.95Si04:Tbo.o5@Cuixio-4的制备: 称取 0.5516g 的 LiN03 , 0.6232g 的 Ca(N03)2, 0.0689g的 Tb(N03)3和 0.2404g的 Si02的 Si02@ Pd粉末, 置于玛瑙研 钵中充分研磨至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 600 °C热 处理 4h , 再于管式炉中在 95%N2加上 5%H2弱还原气氛下 1000°C烧结 6h还原, 冷却至室温, 即可得到 Li2Ca。.8。Si04:Tb。.2。@ Pdlxl。-5发光材料。 实施例 6
Li2Cao.88Si04:Tbo.i2 @ Ag5xl0-4的制备。
Ag纳米颗粒溶胶的制备:分别称取 0.0429g的 AgN03、 0.0733g的柠檬酸钠、 0.05g的 PVP分另1 J配制成 10mL 0.025 mol/L的 AgN03水溶液、 10mL 0.025 mol/L 的杵檬酸钠水溶液和 10mL 5mg/mL 的 PVP水溶液。取 2mL AgN03水溶液力口入到 30mL去离子水中, 同时加入上述 PVP水溶液 4mL搅拌, 加热至 100°C , 然后逐 滴加入 4mL杵檬酸钠水溶液,反应 15min后, 得到 40mL Ixl0"3mol/L的 Ag纳米 颗粒溶胶。
Si02@Ag5xl。-4的制备: 量取 5mL Ixl0"3mol/L的 Ag纳米颗粒溶胶于烧杯中, 并加入 6mL 0.06g/mL PVP , 并磁力搅拌 15h , 得经表面处理后的 Ag纳米颗粒。 一边搅拌一边向上述 Ag纳米颗粒溶胶中依次加入 35mL无水乙醇、 8mL氨水、 1.5mL正硅酸四乙酯。 待反应 2h后, 经离心, 洗涤, 干燥, 得到 SiO2@Ag5xl0-4 粉末。
Li2Cao.88Si04:Tbo.i2@ Ag5xl。-4的制备: 称取 0.2955g的 Li2C03, 0.4506g的 CaC204, 0.1396g的 Tb2(C204)3和 0.2404g的 Si02的 Si02@ Pd粉末, 置于玛瑙研钵中充分 研磨至混合均匀,然后将粉末转移到刚玉坩埚中,于马弗炉中 500°C热处理 10h , 再于管式炉中在纯 H2还原气氛下 1100°C烧结 3h还原, 冷却至室温, 即可得到 Li2Cao.8oSi04:Tbo.2o@ Pd 1x10—5发光材料。
实施例 7
Li2Ca 92Si04:Tb議 @ (Ag0.5/Au 5) 1.25x10—3的制备。
Ag0.5/Au。.5纳米颗粒溶胶的制备:称取 6.2mg氯金酸( AuCI3'HCI'4H20 )^ 2.5mg AgN03溶解到 28mL 的去离子水中。 当完全溶解后, 称取 22mg柠檬酸钠和 20mgPVP, 并在磁力搅拌的环境下溶解到上述混合溶液中。 称取新制备的 5.7mg 硼氢化钠溶到 10mL去离子水中,得到 10mL浓度为 1.5xl(y2mol/L的硼氢化钠水 溶液。 在磁力搅拌的环境下, 往上述混合溶液中一次性加入 2mL1.5xl0"2mol/L 的硼氢化钠水溶液,之后继续反应 20min , 即得 30mL总金属浓度为 1Χ10·3ΓΤΊΟΙ/Ι_ 的 Ag/Au纳米颗粒溶胶。
Si〇2@(Ago.5/AUo.5) 1.25x10-3的制备: 量取 5mL Ixl0"3mol/L的 Ag。.5/Au。.5纳米颗 粒溶胶于烧杯中, 并加入 10mL 0.1g/mL PVP, 并磁力搅拌 12h , 得经表面处理后 的 Ag。.5/Au。.5纳米颗粒。 一边搅拌一边向上述 Ag纳米颗粒溶胶中依次加入 30mL 无水乙醇、 6mL氨水、 lmL正硅酸四乙酯。 待反应 5h后, 经离心, 洗涤, 干燥, 得到 SiO2@(Ag。.5/Au0.5) 1.25x10—3粉末。
Li2Ca0.92Si04:Tbo.o8@ (Ag。.5/Au。.5) 的制备:称取 0.2955g的 Li2C03, 0.2016g 的 CaO, 0.0747g的 Tb407和 0.2404g的 Si02@(Ag。.5/Au。.5) L K^粉末, 置于玛瑙 研钵中充分研磨至混合均匀, 然后将粉末转移到刚玉坩埚中, 于马弗炉中 700 °C 热处理 8h,再于管式炉中在 95%N2加上 5%H2弱还原气氛下 900°C烧结 5h还原, 冷却至室温, 即可得到 Li2Ca。.92Si04:Tb。.。8@ (Ag。.5/Au。.5) L K^发光材料。 上所述实施例仅表达了本发明的一种或几种实施方式, 其描述较为具体和 详细, 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于 本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干 变形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应 以所附权利要求为准。

Claims

权利要求书
1、一种包覆有金属纳米颗粒的硅酸盐发光材料, 其特征在于, 分子通式为: Li2Cai-xSi04:Tbx(S My;
其中, @表示包覆, M为 Ag、 Au、 Pt、 Pd和 Cu纳米颗粒中的至少一种, 0 < x<0.2 , y为 M与 Si的摩尔比, 0 < y≤lxl0-2
2、 一种包覆有金属纳米颗粒的硅酸盐发光材料的制备方法, 其特征在于, 包括如下步骤:
制备含有金属纳米颗粒的胶体, 所述金属为 Ag、 Au、 Pt、 Pd和 Cu中的至 少一种;
对所述含有金属纳米颗粒的胶体进行表面处理, 接着加入无水乙醇、 去离 子水和氨水, 混勾后在搅拌下按照金属纳米颗粒与 Si的摩尔比为 y的比例加入 正硅酸乙酯, 反应后分离得到包覆有金属纳米颗粒的 Si02; 其中, 0 < y≤lxl0-2; 按照化学计量比称取 ϋ、 Ca和 Tb对应的化合物以及所述包覆有金属纳米颗 粒的 Si02 , 混勾后热处理, 再在还原气氛下热还原, 冷却后得到 Li2Cai-xSi04:Tbx@My; 其中, @表示包覆, M为 Ag、 Au、 Pt、 Pd和 Cu纳米颗粒 中的至少一种, 0 < x≤0.2。
3、 根据权利要求 2所述的包覆有金属纳米颗粒的硅酸盐发光材料的制备方 法, 其特征在于, 所述制备含有金属纳米颗粒的胶体的步骤为:
将金属的盐溶液、 助剂和还原剂混合, 反应时间为 10min~45min, 反应后得 到含有金属纳米颗粒的胶体, 所述金属为 Ag、 Au、 Pt、 Pd和 Cu中的至少一种。
4、 根据权利要求 3所述的包覆有金属纳米颗粒的硅酸盐发光材料的制备方 法, 其特征在于, 所述金属的盐溶液的浓度为 1Χ10·3ΓΤΊΟΙ/Ι_ ~ 5Χ10·2ΓΤΊΟΙ/Ι_;
所述助剂为聚乙烯砒咯烷酮、 柠檬酸钠、 十六烷基三曱基溴化铵、 十二烷 基硫酸钠和十二烷基磺酸钠中的至少一种;
所述助剂在含有金属纳米颗粒的胶体中的含量为 lxlO_4g/mL~ 5xl0_2g/mL。 所述还原剂为水合肼、 抗坏血酸、 柠檬酸钠和硼氢化钠中的至少一种; 所述还原剂与所述金属的盐溶液中的金属离子的摩尔比为 3.6: 1~18: 1。
5、 根据权利要求 2所述的包覆有金属纳米颗粒的硅酸盐发光材料的制备方 法, 其特征在于, 所述对所述含有金属纳米颗粒的胶体进行表面处理为: 将所 述含有金属纳米颗粒的胶体加入到聚乙烯吡咯烷酮溶液中, 搅拌 8h~18h。
6、 根据权利要求 5所述的包覆有金属纳米颗粒的硅酸盐发光材料的制备方 法, 其特征在于, 所述聚乙烯吡咯烷酮溶液的浓度为 0.005g/mL - 0.1g/mLo
7、 根据权利要求 2所述的包覆有金属纳米颗粒的硅酸盐发光材料的制备方 法, 其特征在于, 所述水、 无水乙醇、 氨水和正硅酸乙酯按照体积分数 10~20: 15-50: 1~7: 0.5-3混合。
8、 根据权利要求 2所述的包覆有金属纳米颗粒的硅酸盐发光材料的制备方 法, 其特征在于, 所述 ϋ、 Ca和 Tb对应的化合物为 ϋ、 Ca和 Tb对应的氧化物、 碳酸盐、 醋酸盐或草酸盐。
9、 根据权利要求 2所述的包覆有金属纳米颗粒的硅酸盐发光材料的制备方 法, 其特征在于, 所述热处理为: 在 500°010001下煅烧2^5
10、 根据权利要求 2所述的包覆有金属纳米颗粒的硅酸盐发光材料的制备 方法, 其特征在于, 所述在还原气氛下热还原为: 在 800°C ~1200°C下, 还原气 氛下还原 0.5h~6h;
所述还原气氛为 N2和 H2还原气氛、 碳粉还原气氛、 CO还原气氛和纯 ^还 原气氛中的至少一种。
PCT/CN2012/075207 2012-05-08 2012-05-08 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法 WO2013166663A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/397,925 US9193901B2 (en) 2012-05-08 2012-05-08 Metal nanoparticle-coating silicate luminescent material and preparation method therefor
CN201280072747.7A CN104302730A (zh) 2012-05-08 2012-05-08 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法
PCT/CN2012/075207 WO2013166663A1 (zh) 2012-05-08 2012-05-08 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法
JP2015510596A JP6017679B2 (ja) 2012-05-08 2012-05-08 金属ナノ粒子を被覆するケイ酸塩発光材料およびその製造方法
EP12876231.7A EP2848671A4 (en) 2012-05-08 2012-05-08 SILICATE LUMINESCENT MATERIAL WITH METAL NANOPARTICLE COATING AND METHOD FOR PREPARING SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/075207 WO2013166663A1 (zh) 2012-05-08 2012-05-08 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2013166663A1 true WO2013166663A1 (zh) 2013-11-14

Family

ID=49550069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075207 WO2013166663A1 (zh) 2012-05-08 2012-05-08 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法

Country Status (5)

Country Link
US (1) US9193901B2 (zh)
EP (1) EP2848671A4 (zh)
JP (1) JP6017679B2 (zh)
CN (1) CN104302730A (zh)
WO (1) WO2013166663A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106281313A (zh) * 2016-08-10 2017-01-04 盐城工学院 一种硅酸盐荧光粉及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926449B2 (ja) * 2012-05-08 2016-05-25 ▲海▼洋王照明科技股▲ふん▼有限公司 コア−シェル構造のケイ酸塩発光材料およびその製造方法
US20150275083A1 (en) * 2012-10-31 2015-10-01 Ocean's King Lighting Science & Technology Co., Ltd Silicate luminescent material and preparation method therefor
EP2915863B1 (en) * 2012-10-31 2019-11-06 Ocean's King Lighting Science & Technology Co., Ltd. Silicate luminescent material and preparation method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337121A (zh) * 2010-07-21 2012-02-01 海洋王照明科技股份有限公司 硅酸盐发光材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909443A (en) * 1973-08-16 1975-09-30 Gte Sylvania Inc Calcium lithium silicate phosphors
JP3408493B2 (ja) * 2000-04-06 2003-05-19 株式会社東芝 蛍光体とその製造方法、ならびにそれを用いたカラー表示装置
JP2001288467A (ja) * 2000-04-06 2001-10-16 Toshiba Corp 酸化物複合体粒子とその製造方法、蛍光体とその製造方法、カラーフィルターとその製造方法、ならびにカラー表示装置
DE10238399A1 (de) * 2002-08-22 2004-02-26 Philips Intellectual Property & Standards Gmbh Vorrichtung zur Erzeugung von Strahlung
JP5361199B2 (ja) * 2008-01-29 2013-12-04 株式会社東芝 蛍光体および発光装置
US20090189514A1 (en) * 2008-01-29 2009-07-30 Kabushiki Kaisha Toshiba Luminescent material
CN102191054B (zh) * 2010-03-11 2013-10-09 海洋王照明科技股份有限公司 硅酸盐发光材料及其制备方法
JP5568181B2 (ja) * 2010-06-18 2014-08-06 海洋王照明科技股▲ふん▼有限公司 ハロシリケート発光材料、その製造方法およびその応用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337121A (zh) * 2010-07-21 2012-02-01 海洋王照明科技股份有限公司 硅酸盐发光材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2848671A4 *
ZHUO, FANGPING ET AL.: "Synthesize and Luminescence Properties of Na2CaSiO4:RE3+ (RE = Ce3+, Tb3+, Eu3+)", CHINESE JOURNAL OF LUMINESCENCE, vol. 33, no. 3, March 2012 (2012-03-01), pages 238 - 242, XP055172300 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106281313A (zh) * 2016-08-10 2017-01-04 盐城工学院 一种硅酸盐荧光粉及其制备方法和应用

Also Published As

Publication number Publication date
US9193901B2 (en) 2015-11-24
JP6017679B2 (ja) 2016-11-02
CN104302730A (zh) 2015-01-21
EP2848671A4 (en) 2015-12-23
US20150129802A1 (en) 2015-05-14
JP2015519438A (ja) 2015-07-09
EP2848671A1 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2011147088A1 (zh) 含有金属粒子的稀土掺杂的卤氧化物发光材料及其制备方法
WO2013166663A1 (zh) 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法
EP2915863B1 (en) Silicate luminescent material and preparation method therefor
JP5913730B2 (ja) 金属ナノ粒子含有の珪酸塩発光材料及びその調製方法
JP6034503B2 (ja) ケイ酸塩発光材料及びその製造方法
CN104619812A (zh) 铝酸锌发光材料及其制备方法
CN103773362A (zh) 偏硅酸钙发光材料及其制备方法
WO2014019153A1 (zh) 铝酸锌荧光材料及其制备方法
EP2881449B1 (en) Stannate fluorescent material and method for preparing same
JP6009091B2 (ja) アルミン酸塩発光材料及びその製造方法
EP2607447B1 (en) Preparation method of borate luminescent materials
WO2014040222A1 (zh) 氧化镥发光材料及其制备方法
EP2832818A1 (en) Luminescent materials doped with metal nano particles and preparation methods therefor
EP2896675B1 (en) Stannate luminescent material and preparation method thereof
CN103788950A (zh) 稀土铝酸镧发光材料及其制备方法
CN104059654A (zh) 掺杂金属纳米粒子的空心结构锡酸钇钙发光材料及制备方法
WO2014040220A1 (zh) 硅酸盐发光材料及其制备方法
CN104736668A (zh) 硫氧化物发光材料及其制备方法
CN104119878A (zh) 一种铝酸锶发光材料及其制备方法
CN104119899A (zh) 一种掺杂金属纳米粒子的氧化钇锶发光材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876231

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14397925

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012876231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012876231

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015510596

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE